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Deep learning has greatly advanced the performance of algorithms on tasks

such as image classification, speech enhancement, sound separation, and generative

image models. However many current popular systems are driven by empirical

rules that do not fully exploit the underlying physics of the data. Many speech

and audio systems fix STFT preprocessing before their networks. Hyperspectral

Image (HSI) methods often don’t deliberately consider the spectral spatial trade

off that is not present in normal images. Generative Adversarial Networks (GANs)

that learn a generative distribution of images don’t prioritize semantic labels of the

training data. To meet these opportunities we propose to alter known deep learning

methods to be more dependent on the semantic and physical underpinnings of the

data to create better performing and more robust algorithms for sound separation

and classification, image generation, and HSI segmentation. Our approaches take

inspiration from from Harmonic Analysis, SVMs, and classical statistical detection

theory, and further the state-of-the art in source separation, defense against audio



adversarial attacks, HSI classification, and GANs.

Recent deep learning approaches have achieved impressive performance on

speech enhancement and separation tasks. However, these approaches have not been

investigated for separating mixtures of arbitrary sounds of different types, a task we

refer to as universal sound separation. To study this question, we develop a dataset

of mixtures containing arbitrary sounds, and use it to investigate the space of mask-

based separation architectures, varying both the overall network architecture and

the framewise analysis-synthesis basis for signal transformations. We compare using

a short-time Fourier transform (STFT) with a learnable basis at variable window

sizes for the feature extraction stage of our sound separation network. We also

compare the robustness to adversarial examples of speech classification networks

that similarly hybridize established Time-frequency (TF) methods with learnable

filter weights.

We analyze HSI images for material classification. For hyperspectral image

cubes TF methods decompose spectra into multi-spectral bands, while Neural Net-

works (NNs) incorporate spatial information across scales and model multiple levels

of dependencies between spectral features. The Fourier scattering transform is an

amalgamation of time-frequency representations with neural network architectures.

We propose and test a three dimensional Fourier scattering method on hyperspectral

datasets, and present results that indicate that the Fourier scattering transform is

highly effective at representing spectral data when compared with other state-of-the-

art methods. We study the spectral-spatial trade-off that our Scattering approach

allows. We also use a similar multi-scale approach to develop a defense against audio



adversarial attacks. We propose a unification of a computational model of speech

processing in the brain with commercial wake-word networks to create a cortical

network, and show that it can increase resistance to adversarial noise without a

degradation in performance.

Generative Adversarial Networks are an attractive approach to constructing

generative models that mimic a target distribution, and typically use conditional

information (cGANs) such as class labels to guide the training of the discriminator

and the generator. We propose a loss that ensures generator updates are always

class specific, rather than training a function that measures the information theo-

retic distance between the generative distribution and one target distribution, we

generalize the successful hinge-loss that has become an essential ingredient of many

GANs to the multi-class setting and use it to train a single generator classifier pair.

While the canonical hinge loss made generator updates according to a class agnostic

margin a real/fake discriminator learned, our multi-class hinge-loss GAN updates

the generator according to many classification margins. With this modification, we

are able to accelerate training and achieve state of the art Inception and FID scores

on Imagenet128. We study the trade-off between class fidelity and overall diversity

of generated images, and show modifications of our method can prioritize either

each during training. We show that there is a limit to how closely classification

and discrimination can be combined while maintaining sample diversity with some

theoretical results on K+1 GANs.
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Chapter 1: Introduction

The question of how to best represent a signal (such as audio or an image)

for a task (such as denoising or classification) is a fundamental problem in audi-

tory signal processing and computer vision. Encoding schemes like Huffman coding

that were invented for transmitting generic bits ignore whether data is semantically

meaningful when encoding it. For example, when representing an audio recording

of speech data for the ultimate goal of transcription, background noises can be con-

sidered as nuisances and left out. On the other hand when representing the same

audio for the task of geographic localization, these background noises may contain

relevant information and should not be discarded. This motivates the idea that

optimal representations of data depend on the task of interest, and should extract

information that is semantically meaningful for the task and discard information

that is irrelevant. It is an exciting challenge to consider this problem across data

modalities such as audio, color images, and hyperspectral images, and more. Each

of these domains have unique characteristics that should be exploited in the aim of

optimally representing data generated in them, and each of them can bring their

own challenges.

Over the last decade the rapid advancement of Deep Learning techniques,
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which come with the promise of learning hierarchical representations of data with

minimal user design required, have been at the forefront of tasks such as classifi-

cation, denoising, and generative modeling on a variety of modalities. Many re-

searchers have advanced the performance of deep learning techniques by building

in semantically or physically meaningful priors to deep learning methods. In this

dissertation, we aim to contribute along this direction of improving deep learning

methods by modifying them to take more advantage of the physics and semantics

behind the data they process. Our focus is in improving representations in chal-

lenging scenarios when the data is extremely diverse, or when data is extremely

limited. In addition to finding better representations for data for the tasks of de-

noising and classification, we also study a popular generative method from Deep

Learning: Generative Adversarial Networks (GANs). We find an opportunity for

exploiting semantic information in a task that is in many ways the opposite of rep-

resentation learning since GANs transform an (often random) embedding vector to

a human friendly data modality like images.

Here is an overview of the contributions of this dissertation:

In Chapters 2 to 4 we study the tradeoffs between learnable and classical

bases. In Chapter 2 we address source separation of widely varying sound events

in audio recordings. Though much work has been done on speech enhancement,

we present work on separating mixtures of arbitrary sounds, a new task we refer

to as universal sound separation. We study two paradigms of source separation

models, class-based masking and multiple-instance segmentation, on large datasets
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we created explicitly for exploring the capacity of our models, and find that multiple-

instance segmentation is better suited to real world tasks. We investigate the space of

mask-based separation architectures, varying both the overall network architecture

and the framewise analysis-synthesis basis for signal transformations, and propose

novel modifications to improve separation performance. In terms of the framewise

analysis-synthesis basis, we find that for STFTs, we find that longer windows (25-50

ms) work best for speech/non-speech separation, while shorter windows (2.5 ms)

work best for arbitrary sounds. For learnable bases, shorter windows (2.5 ms) work

best on all tasks. Surprisingly, for universal sound separation, STFTs outperform

learnable bases.

In Chapter 3 we investigate new techniques that are able to capture the special

physical properties of hyperspectral data for hyperspectral image (HSI) classifica-

tion, the one of the most active tasks in geoscience and remote sensing. We build a

bridge in this chapter between time-frequency methods that decompose spectra into

multi-spectral bands, with hierarchical neural networks that incorporate spatial in-

formation across scales and model multiple levels of dependencies between spectral

features. To accommodate for the low training sample scenario we investigate the

use of the Fourier scattering transform, which is an amalgamation of time-frequency

representations with neural network architectures, and advance the state of the art

in spectral-spatial classification. We test the proposed three dimensional Fourier

scattering method on standard hyperspectral datasets, and show that the Fourier

scattering transform is highly effective at representing spectral data when compared

with other state-of-the-art spectral-spatial classification methods.
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In Chapter 4 we examine similar enhancements for neural networks for robust

speech classification. We integrate knowledge from Neuroscience of how the brain

represents speech specifically to develop a defense against adversarial attacks on

audio. We enhance neural networks used for wake-word detection by integrating

a computational approximation to biological sound processing known as the corti-

cal representation. We optimize this architecture to perform at the same level as

commercial voice assistant while being several times more resistant to adversarial

noise.

Having addressed the discriminatory tasks of source separation and classifi-

cation in the challenging scenarios of extremely diverse data and adversarial data

in audio and scarce data in hyperspectral imagery, we also examine how semantic

information can be further exploited in generative tasks in Chapters 5 and 6.

In Chapter 5 we propose a new algorithm to incorporate class conditional

information into the discriminator of GANs via a multi-class generalization of the

commonly used Hinge loss. Our innovation takes inspiration from SVMs and controls

the margins that a spectrally constrained Wasserstein GAN learns. Our approach

is in contrast to most GAN frameworks in that we train a classifier and conditional

discriminator with the same hinge loss style loss function, instead of an auxiliary

cross entropy classifier. We discover a way to connect the tasks of discrimination

and classification even more closely by adjusting the embeddings learned by the

projection discrimination layer, resulting in a controllable trade-off between class-

fidelity (and therefore quality) and diversity. With our multi-hinge loss modification

we were able to improve the state of the art Inception Scores and Frechet Inception
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Distances on the popular vision Imagenet-128 dataset.

In Chapter 6 we study the interplay between discrimination and classification

tasks in GANs more closely in K+1 GANs, which unify these two tasks further. We

provide theoretical insight into why K+1 GANs have not developed the same level

of performance as conditional Wasserstein GANs. We further confirm the principle

learned in Chapter 5 that discrimination and classification cannot be combined too

closely, as it results in trading diversity for quality for GANs.

Finally in Chapter 7 we conclude and discuss possible directions for future

work to further the understanding of how deep learning methods can exploit the

semantic content of data.
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Chapter 2: Universal Sound Separation

A fundamental challenge in machine hearing is that of selectively listening to

different sounds in an acoustic mixture. Extracting estimates of each source is es-

pecially difficult in monaural recordings where there are no directional cues. Recent

advances have been made in solving monaural speech enhancement and speech sep-

aration problems in increasingly difficult scenarios, thanks to deep learning methods

[11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21]. However, separation of arbitrary sounds

from each other may still be considered a “holy grail” of the field.

In particular, it is an open question whether current methods are best suited

to learning the specifics of a single class of sounds, such as speech, or can learn

more general cues for separation that can apply to mixtures of arbitrary sounds.

Previous experiments have focused mainly on scenarios where at least one of the

target signals to be separated is speech. In speech enhancement, the task is to

separate the relatively structured sound of a single speaker from a much less con-

strained set of non-speech sounds. For separation of multiple speakers, the state

of the art has progressed from speaker-dependent separation [22], where models

are trained on individual speakers or speaker combinations, to speaker-independent

speech separation [16, 17, 18], where the system has to be flexible enough to separate
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unknown speakers. In particular, ConvTasNet is a recently proposed model [2] that

uses a combination of learned time-domain analysis and synthesis transforms with a

time-dilated convolutional network (TDCN), showing significant improvements on

the task of speech separation relative to previously state-of-the-art models based on

short-time Fourier transform (STFT) analysis/synthesis transforms and long short-

term memory (LSTM) recurrent networks. Despite this progress, it is still unknown

how current methods perform on separation of arbitrary types of sounds. The fact

that human hearing is so adept at selective listening suggests that more general

principles of separation exist and can be learned from large databases of arbitrary

sounds.

Separation scenarios broadly fall into two categories: class-based separation

and multiple-instance separation [16]. In class-based separation, the task is to sep-

arate whole classes of signals from one another, such as speech versus non-speech.

They can be viewed as classifying each time-frequency (T-F) bin in an input mixture

signal. A caveat for class-based approaches is scaling them to finer grained separa-

tion problems with a multitude of sound event classes, where the model complexity

may grow prohibitively with the number of classes present in the dataset. Such

models cannot be applied to test data that contains sound classes not trained upon.

Moreover, given that training datasets require explicit class labels, it may be chal-

lenging to prepare enough data belonging to distinct and non-overlapping classes.

Finally, the class-based separation side-steps the commonplace real-world condition

where there is more than one source of the same type, such as in a conversation.

In multiple-instance separation, multiple sounds of the same type may be
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present, as in the case of speaker-independent speech separation. Although class

information may be useful, each occurrence of a type of sound may have its own dis-

tinctive traits. These traits are cues that enable multiple sounds to be distinguished

from each other using a partition-based segmentation approach. Partition-based ap-

proaches do not depend on the number of classes in the data, so they may flexibly

adapt to richer datasets. Since they do not require class labels, they may be applied

with more abundant and larger training datasets. As classes may contain signifi-

cant within-class variation, and different classes may overlap with each other, the

class-based approach may fail to learn these distinguishing traits, whereas a system

trained only to separate each sound from one another, regardless of its class, may

have the advantage of training on more varied cues.

In the first part of this chapter, we investigate the source separation problem

for non-speech audio and evaluate our models’ ability to segment diverse non-speech

sounds. We compare a straightforward class-based segmentation approach with a

more scalable partition-based segmentation approach [16] on two large and diverse

datasets of real world non-speech sounds, and show that these models can even

separate some sounds that humans struggle to consistently segment. Our focus is

on the single channel setting, but our models can easily be extended to multiple

channels as in [23].

In the second part of this chapter, we improve our partition based approach.

We evaluate ConvTasNet on both speech/non-speech separation and universal sound

separation tasks for the first time. We provide a systematic comparison of different

combinations of masking network architectures and analysis-synthesis transforms,
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optimizing each over the effect of window size. We also propose novel variations

in architecture, including alternative feature normalization, improved initialization,

longer range skip-residual connections, and iterative processing that further improve

separation performance on all tasks.

Figure 2.1: Architecture for mask-based separation experiments. We vary the mask
network and analysis/synthesis transforms.

2.1 Background

A variety of networks have been successfully applied to two-source separa-

tion problems, including LSTMs and bidirectional LSTMs (BLSTMs) [12, 14], U-

Nets [24], Wasserstein GANs [25], and fully convolutional network (FCN) encoder-

decoders followed by a BLSTM [26]. For multi-source separation, a variety of ar-

chitectures have been used that directly generate a mask for each source, includ-

ing BLSTMs [16, 19], CNNs [27], DenseNets followed by an LSTM [28], separate

encoder-decoder networks for each source [29], joint one-to-many encoder-decoder

networks with o decoder per source [30], and TDCNs with learnable analysis-

synthesis basis [2]. Our models are most similar to [19] and [2].

Networks that perform source separation in an embedding space rather than di-

rectly in the T-F space, such as deep clustering, have been effective. Deep clustering

learns a high dimensional embedding for each T-F unit that can be optimized with
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objectives like deep LDA or whitened k-means [16, 21]. Deep attractor networks

learn both the embedding function and embedding space class centroids that are

used to segment the embedding space in a nearest neighbor fashion [31]. These net-

works are convenient in that they solve the more general problem of partition-based

rather than class-based segmentation [16]. Direct masking and embedding-based

models are also complementary in that they can be combined in a chimera network,

with one head performing mask inference (MI), and the other acting as a regularizer

by minimizing a loss on the learned embeddings. Such models have achieved state-

of-the-art performance on music separation [32] and two-speaker source separation

[21]. In this chapter, we focus on direct masking approaches with permutation-

invariant losses, and leave the exploration of deep clustering related approaches for

multisource non-speech source separation to future work.

Many datasets for source separation have focused on mixing speech with non-

speech or other speech, with the speech sourced from datasets such as TIMIT [25]

and WSJ0 [16, 31, 33]. Small datasets used for the non-speech multi-source sep-

aration setting have included distressing sounds from DCASE 2017 [27], music in-

strument tracks in Demixing Secrets Dataset 100 [32], and speech and music in

SiSEC-2015 [26, 29]. A larger music dataset for the separation of vocals from all

accompaniments in commercial music has been investigated by Spotify [24]. The

datasets we introduce are the first of their kind investigated in multisource separa-

tion in that up to 5 overlapping real-world sounds are mixed together at once, from

a selection of up to 77 distinct sound classes.
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2.2 Class based vs. Partition based separation

Figure 2.2: Structure of the CLDNN mask network. In the convolutional layers, the
5 integers per layer correspond to the number of filters, the kernel size in frames,
the kernel size in frequency, the dilation in frames, the dilation in frequency.

We use a mask-based enhancement system driven by a deep neural network.

The masking network we use consists of 14 dilated 2D convolutional layers, a bidi-

rectional LSTM, and two dense layers, which we will refer to as a convolutional-

LSTM-dense neural network (CLDNN). The CLDNN is based on a network which

achieves state-of-the-art performance on CHiME2 WSJ0 speech enhancement [3]

and strong performance on a large internal dataset at Google [4]. The architecture

of CLDNN is shown in Fig. 2.2.

We consider two different settings, a class-based separation network, which es-

timates a mask for each class of sound in the dataset, and a partition-based network,

which estimates a fixed number of masks corresponding to the maximum number of

expected sources in the mixture, regardless of class information.

In the speech enhancement setting, this network, shown in Fig. 2.1, produces

a speech mask and a noise mask, performing two-class separation. In the case of C

different classes present in the dataset, we alter the final layers of the network to

always output C masks, independent of the number of classes present per mixture.
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The loss function used to train this network is:

LClass =
C∑
c=1
‖Rα

c − |Mc �X|α‖2
2 (2.1)

where Rc denotes the short-time Fourier transform (STFT) magnitude for the clean

source of the c-th class, α a power-law compression factor (here set to α = 0.3), Mc

the mask predicted for the c-th source, X the complex STFT of the mixture, and �

the element-wise multiplication. When class c is not present in the mixture X, Rc =

0. Thus, when the number of classes in a mixture is less than the maximum number

of classes C in the dataset, the network is implicitly performing classification of the

sounds present in the mixture by attributing energy to the masks corresponding to

these sources.

To generalize to real-world datasets which have an unknown and large number

C of possible sound classes that could be in a mixture, we consider a different system

in which we alter the final layers of the network to produce K ≤ C masks instead,

where K is the maximum number of clean audio signals we want to extract. In

this case, the order of the masks generated by the network is no longer tied to the

type of sound, and there is thus no longer a direct matching with the references at

training time, so we need to use a permutation free (PF) loss:

LPF = min
σ∈SK

K∑
k=1

∥∥∥Rα
k − |Mσ(k) �X|α

∥∥∥2

2
(2.2)

where SK denotes the symmetric group of degree K (the set of permutations on
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{1, . . . , K}) [16, 17, 18]. Only the error for the best permutation is used in train-

ing. Although the cardinality of SK is K!, in our experiments K ≤ 5 and this

minimization did not lengthen training time significantly. Even for larger K, the

time-consuming loss function computation can be first done in parallel for all pairs

(i, j), 1 ≤ i, j ≤ K, and the exhaustive search over permutations for the best com-

bination is performed on the scores, which is relatively fast to compute. At very

large scales (K � 5), a more efficient algorithm could be used to speed up training

time. However, note that at run time there is no matching problem so the cost of

searching permutations goes away.

Both models are trained end-to-end. To retrieve the denoised audio, an inverse

STFT is applied to the masked T-F representations Mc �X. An advantage of the

PF model is that the same network can be tested on other datasets potentially

containing more classes than the model was trained on.

2.2.1 Dataset construction

To investigate the general source separation problem, we extract loud events

from the ProSound database [34] in 3 s clips, and mix them together. For each

dataset, 70% of the source material was used for training audio, while 20% and 10%

were reserved exclusively for validation and test audio.

Urban street corner dataset. The urban street corner dataset is constructed

to simulate the noises heard on a city street corner, an auditory scene prevalent in

online multimedia. The five classes of sounds chosen are a car accelerating (revving,
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wheels squealing), the fricative sound of a car passing, an engine (of various volumes)

idling, a horn honking, and footsteps over various hard and soft surfaces.

Despite the source recordings of these sound classes in the ProSound database

being minutes-long, they often contained only a few salient sound events just a

few seconds long, separated by quiet or ambience. We automatically identified the

start of these sound events in the recordings by detecting when the local (15-60ms)

root-mean-squared (RMS) power changed from below the average to above average.

This condition is triggered several times per recording for footsteps and honking,

but often only once for cars passing. When sources are mixed, we select a 3-second

segment centered on the detected event time with a random offset of up to half a

second before or after.

To generate each mixture clip, K sound classes are chosen randomly, for each

of which one sound event is chosen at random, a 3 s segment is extracted with

jitter, and the segments for the K classes are added together. There is no adaptive

volume normalization, and to avoid clipping the intensity of each premixed segment

is halved.

We report results for K ∈ {2, 3, 5}. The sounds often significantly overlapped

in the STFT domain, and were sometimes hard for human listeners to distinguish.

The mixed dataset comprises 10 hours of audio and is constructed using a few hours

of unmixed source audio.

Diverse dataset. The diverse dataset is created to have tremendous variability

and to leverage a larger training set size by removing any class restrictions on the

source audio. Sounds used included crawling insects, animal calls, creaking doors,
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construction noises, musical instruments, speech, composed music, and artificial

sounds (e.g., science fiction sounds). Ambience/environment sounds are excluded.

Because the source material is so unconstrained, the 20 hours of mixtures we

created contain many more unique types of sources compared to the urban street

corner dataset. However, the large number of classes in the dataset (77) makes it

challenging to consider a class-specific approach for separating the mixtures. In this

larger set of classes, there are many sound files that are shorter than 3 s; in this

case, the short clips are looped with a random delay up to a second to create a

single source segment. Overall, 11,797 audio files are used as source material for the

training set, 3,370 for the validation set, and 1,686 for the test set. The same class

distribution was maintained in these three data partitions.

2.2.2 Training and evaluation setup

All experiments are performed using TensorFlow [35], trained with the Adam

[36] optimizer with batch size 2 on a single NVIDIA Tesla V100 GPU. Separation

performance is measured using scale-invariant signal-to-distortion ratio improvement

(SI-SDRi) [17, 37], which evaluates the fidelity of a signal estimate ŝ, represented

as a vector, relative to the ground truth signal s while accommodating a possible

scale mismatch. SI-SDR is computed as

SI-SDR(s, ŝ) def= 10 log10
‖αs‖2

‖αs− ŝ‖2 , (2.3)
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where α = argmina ‖as − ŝ‖2 = 〈s, ŝ〉/‖s‖2, and 〈a, b〉 denotes the inner product.

SI-SDRi is the difference between the SI-SDR of the estimated signal and that of

the input mixture signal. The sample rate for the mixtures was 16 kHz, and all

STFTs use a square-root Hann window, where windowed frames are zero-padded to

the next power of 2 above the window size.

We use a permutation-invariant loss to align network outputs with the refer-

ence sources during training, where the loss used for a gradient step on a batch is

the minimum error across the set SK of all permutations of the K estimated sources,

compared to the fixed K reference sources [16, 17, 18]. Although the cardinality of

SK is K!, in our experiments K ≤ 3 and this minimization did not lengthen training

time significantly. Even for larger K, the time-consuming loss function computa-

tion can be first done in parallel for all pairs (i, j), 1 ≤ i, j ≤ K, and the exhaustive

search over permutations for the best combination is performed on the scores.

All networks use negative signal-to-noise ratio (SNR) as their training loss f

between time-domain reference source y and separated source ŷ, defined as

f(y, ŷ) = −10 log10

( ∑
t y

2
t∑

t(yt − ŷt)2

)
. (2.4)

Compared to negative SI-SDR used to train ConvTasNet [2], this negative SNR ob-

jective has the advantage that the scale of separated sources is preserved and consis-

tent with the mixture, which is further enforced by our use of mixture consistency

layers [4]. Since we measure loss in the time domain, gradients are backpropagated

through the synthesis transform and its overlap-add layer, so STFT consistency
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[4, 38] is implicitly enforced when using the STFT.

2.2.3 Experiments

Figure 2.3: Median improvement in SI-SDR in dB on the urban street corner dataset,
for each class and for the average.

For the urban street corner dataset, Fig. 2.3 compares the scale-invariant SDR

improvements obtained by all models with K ∈ {2, 3, 5}, for the C denoised signals

reported separately for each class of signal, using the mixed noisy signal as baseline.

Class-K and PF-K denote class-specific and permutation-free models trained and

tested with K sources in each mixed noisy clip. The PF model outperforms the

corresponding class-specific model for every sound class other than horn, the most

harmonic sound class. These results also indicate, not surprisingly, that some types

of sounds may be much easier to segment than others: transient events such as

footsteps and horn are relatively better separated than smoother sound textures

such as engine idling. Overall the best scores on the urban street corner data were

4.4 dB, 4.6 dB, and 4.1 dB SI-SDR improvements on mixtures of 2, 3, and 5 sounds,

respectively. Some examples of learned segmentations are shown in Figs. 2.4 and
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Source 1 Source 2

Mixture

Separated source 1 Separated source 2

Figure 2.4: Footsteps mixed with car accelerating.

Table 2.1: Median scale invariant SDR (dB) for 2-source separation for the diverse
dataset.

Source 1 Source 2
Noisy 0.5 -0.6
PF 7.5 7.8

2.5.

The results on the diverse data are shown in Tables 2.1 and 2.2. The network

seems to do surprisingly well, averaging around 7.7 dB of improvement in SI-SDR

in the two-source case, and 6 dB improvement in the three-source case.

2.2.4 Discussion

The results on the urban street corner data show that permutation-free loss

seems to work better than class-based separation in most cases. This is a surprise,

18



Source 1 Source 2

Mixture

Separated source 1 Separated source 2

Figure 2.5: Footsteps mixed with engine idling

Table 2.2: Median scale invariant SDR (dB) for 3-source separation for the diverse
dataset.

Source 1 Source 2 Source 3
Noisy -5.2 -4.9 -6.0
PF 1.1 0.8 0.2

since the class-based loss provides more information than the permutation-free loss.

One hypothesis might be that the class-based scenario is a harder problem: in ad-

dition to separating the signals, the network has to identify which signal belongs to

which class. It is also interesting to note that we observed no obvious correspon-

dence between the classes and the order of the PF network outputs, so perhaps the

boundaries between different types of sounds follow some pattern that made them

easier to learn than the class boundaries.

In this section, two models have been presented for separating arbitrary audio,
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a class-specific and a non-class-specific permutation free (PF) model. Surprisingly,

using the class information in the outdoor scene dataset does not always improve

the SI-SDR of the separated audio. This points to the strength of the PF model

which discards the class information in this setting. This model also proves to

generalize to the non-class-constrained setting with the diverse dataset. The SI-

SDR performance on separating the diverse sounds was in fact competitive with

separating the constrained sounds, speaking to the adaptability of the network used

when trained with the permutation free loss. In the next section we follow up on

these promising results and train even higher performing sound separation networks.

2.3 Masking Networks with Learnable analysis-synthesis bases

In this section we experiment with combinations of different network archi-

tectures and different analysis-synthesis bases for neural-network mask-based sep-

aration systems. All masking networks use a sigmoid activation to predict a real

number in [0, 1] to modulate each basis coefficient.

2.3.1 Masking network architectures

The first masking network we use is the CLDNN from the previous section.

Our second masking network is a TDCN inspired by ConvTasNet [2]. We employ

the same parameters as the best noncausal model reported by [2]. We also consider

an improved version of ConvTasNet’s TDCN masking network, which we refer to as

“improved TDCN” (TDCN++). This new architecture includes three improvements
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to the original ConvTasNet network. First, global layer normalization within the

TDCN, which normalizes over all features and frames, is replaced with a feature-

wise layer normalization over frames. This is inspired by cepstral mean and variance

normalization used in automatic speech recognition systems. Second, we add longer-

range skip-residual connections from earlier repeat inputs to later repeat inputs

after passing them through dense layers. This presumably helps with gradient flow

from layer to layer during training. Third, we add a learnable scaling parameter

after each dense layer. The scaling parameter for the second dense layer in each

convolutional block – which is applied right before the residual connection – is

initialized to an exponentially decaying scalar equal to 0.9L, where L is the layer or

block index. This initial scaling contributes to better training convergence by first

learning the contributions of the bottom layers, similar to layer-wise training, and

then easily adjusting the scale of each block’s contribution through the learnable

scaling parameter. This initialization is partly inspired by “Fixup” initialization in

residual networks [39].

A third network variant we consider is an iterative improved TDCN network

(iTDCN++), in which the signal estimates from an initial mask-based separation

network serve as input, along with the original mixture, to a second separation net-

work. This architecture is inspired by [17], in which a similar iterative scheme with

LSTM-based networks led to significant performance improvements. In our version,

both the first and second stage networks are identical copies of the TDCN++ net-

work architecture, except for the inputs and parameters. In the second stage, the

noisy mixture and initial signal estimates are transformed by the same basis (STFT
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or learned) prior to concatenation of their coefficients. Because, with two iterations,

the network is twice as deep as a single-stage TDCN++, we also include a twice

deeper TDCN++ model (2xTDCN++) for comparison.

2.3.2 Analysis-synthesis bases

Whereas earlier mask-based separation work had used STFTs as the analysis-

synthesis basis due to the sparsity of many signals in this domain, ConvTasNet

[2] uses a learnable analysis-synthesis basis. The analysis transform is a framewise

basis analogous to the STFT, and can also be described as a 1D convolution layer

where the kernel size is the window size, the stride is the hop length, and the

number of filters is the number of basis vectors. A ReLU activation is applied to the

analysis coefficients before processing by the mask network. The learnable synthesis

transform can be expressed as a transposed 1D convolution and operates similarly to

an inverse STFT, where a linear synthesis basis operates on coefficients to produce

frames which are overlap-added to form a time-domain signal. Unlike an STFT,

this learnable basis and its resulting coefficients are real-valued.

The original work [2] found that ConvTasNet performed best with very short

(2.5 ms) learnable basis functions. However, this window size is an important pa-

rameter that needs to be optimized for each architecture, input transform, and data

type. We therefore compare a learnable basis with STFT as a function of window

size, in combination with CLDNN and TDCN masking networks. All models apply

mixture consistency projections to their outputs [4], which ensure the estimated

sources add up to the input mixture. Note that the TDCN with STFT basis is a
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Figure 2.6: Mean SI-SDR improvement in dB on the test set as a function of basis
window size in ms, using different combinations of network architectures and bases,
on a) speech/non-speech separation, b) two-sound universal separation, and c) three-
sound universal separation. Systems * and ** come from [2] and [3, 4], respectively.
“Oracle BM” corresponds to an oracle binary STFT mask, a theoretical upper bound
on our systems’ performance. Note the CLDNN STFT failed to converge for 2.5 ms
windows on two-sound separation and is omitted.
Table 2.3: Mean scale-invariant SDR improvement (dB) for speech/non-speech sep-
aration and two-source or three-source sound separation. Note that the bottom
four TDCN networks below the thick line are twice as deep as the top four TDCN
networks above the thick line.

Speech/non-speech separation Two-source separation Three-source separation

Masking network, basis Best
win. size

Val.
SI-SDRi

Test
SI-SDRi

Best
win. size

Val.
SI-SDRi

Test
SI-SDRi

Best
win. size

Val.
SI-SDRi

Test
SI-SDRi

CLDNN, STFT [3, 4] 50 ms 11.9 11.8 5.0 ms 7.8 7.4 5.0 ms 6.7 6.4
TDCN, learned [2] 2.5 ms 12.6 12.5 2.5 ms 8.5 7.9 2.5 ms 6.8 6.4
TDCN, STFT 25 ms 11.5 11.3 2.5 ms 9.4 8.6 2.5 ms 7.6 7.0
TDCN++, learned 2.5 ms 12.7 12.7 2.5 ms 9.1 8.5 2.5 ms 8.4 7.7
TDCN++, STFT 25 ms 11.1 11.0 2.5 ms 9.9 9.1 5.0 ms 8.8 8.2
2xTDCN++, learned 2.5 ms 13.3 13.2 2.5 ms 8.1 7.6 2.5 ms 8.0 7.3
2xTDCN++, STFT 25 ms 11.2 11.1 5.0 ms 9.3 8.3 5.0 ms 9.0 8.0
iTDCN++, learned 2.5 ms 13.5 13.4 2.5 ms 9.3 8.7 2.5 ms 8.1 7.4
iTDCN++, STFT 25 ms 11.6 11.5 2.5 ms 10.6 9.8 2.5 ms 9.6 8.7

novel combination that, as we show below, performs best on the universal separation

task.

2.3.3 Experiments

Results on the universal data are shown in Figure 2.6 and Table 2.3, and audio

demos may be found online: https://universal-sound-separation.github.io.

Figure 2.6 shows results for different window sizes, where for each size, the hop is

half the window size. For comparison, speech/non-speech separation performance
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on data described in [4] is shown1 alongside results for two-source and three-source

universal sound separation. We also tried training CLDNN networks with learned

bases, but these networks failed to converge and are not shown. For all tasks,

we show the performance of an oracle binary mask using an STFT for varying

window sizes. These oracle scores provide a theoretical upper bound on the possible

performance of our methods.

The differences between tasks in terms of basis type are striking. Notice that

for speech/non-speech separation, longer STFT windows are preferred for all mask-

ing networks, while shorter windows are best when using a learnable basis. For

universal sound separation, the optimal window sizes are shorter in general com-

pared to speech/non-speech separation, regardless of the basis.

Window size is an important variable since it controls the frame rate and

temporal resolution of the network, as well as the basis size in the case of STFT

analysis and synthesis transforms. The frame rate also determines the temporal

context seen by the network. On the speech/non-speech separation task, for all

masking networks, 25-50 ms is the best window size. Speech may work better with

such relatively long windows for a variety of reasons: speech is largely voiced and has

sustained harmonic tones, with both the pitch and vocal tract parameters varying

relatively slowly. Thus, speech is well described by sparse patterns in an STFT

with longer windows as preferred by the models, and may thus be easier to separate

in this domain. Speech is also highly structured and may carry more predictable

1Note that we consider here the more general “speech/non-speech separation” task, in contrast
to the “speech enhancement” task, which typically refers to separating only the speech signal.
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longer-term contextual information than arbitrary sounds; with longer windows, the

LSTM in a CLDNN has to remember information across fewer frames for a given

temporal context.

For universal sound separation, the TDCNs prefer short (2.5 ms or 5 ms)

frames, and the optimal window size for the CLDNN is 5 ms or less, which in both

cases is much shorter than the optimal window size for speech/non-speech separa-

tion. This holds both with learned bases and with the STFT basis. Surprisingly

the STFT outperforms learned bases for sound separation overall, whereas the op-

posite is true for speech/non-speech separation. In contrast to speech/non-speech

separation, where a learned basis can exploit the structure of speech signals, it is

perhaps more difficult to learn general-purpose basis functions for the wide variety

of acoustic patterns present in arbitrary sounds. In contrast to speech, arbitrary

sounds may contain more percussive components, and hence be better represented

using an STFT with finer time resolution. To fairly compare different models, we

report results using the optimal window size for each architecture, determined via

cross-validation.

Table 2.3 shows summary comparisons using the best window size for each

masking network and basis. The optimal performance for speech/non-speech sepa-

ration is achieved by models using learnable bases, while for universal sound separa-

tion, STFTs provide a better representation. For both two-source and three-source

separation, the iTDCN++ with 2.5 ms STFT basis provides the best average SI-

SDR improvement of 9.8 dB and 8.7 dB, respectively, on the test set, whereas the

2xTDCNN++, is not competitive on the universal separation task. For speech/non-
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speech separation, the iTDCN++ with a 2.5 ms learnable basis achieves the best

performance of 13.4 dB SI-SDRi. The iterative networks were trained with the loss

function applied to the output of each iteration. These results point to iterative

separation as a promising direction for future exploration.

Figure 2.7 shows scatter plots of input SI-SDR versus improvement in SI-SDR

for each example in the test set. Panel a) displays results for the best model from

Table 2.3, and panel b) displays results for oracle binary masking computed using

an STFT with 10 ms windows and 5 ms hop. Oracle binary masking achieves 16.3

dB mean SI-SDRi, and indicates the potential separation that can be achieved on

this dataset.

Figure 2.7: Scatter plots of input SI-SDR versus SI-SDR improvement on two-source
universal sound mixture test set for a) our best model (iTDCN++, STFT) and b)
oracle binary masking using an STFT with 10 ms window and 5 ms hop. The
darkness of points is proportional to the number of overlapping points.

2.3.4 Conclusion

We compared different combinations of network architectures and analysis-

synthesis transforms, optimizing each over the effect of window size. We also pro-

26



posed novel variations in architecture, including longer-range skip-residual connec-

tions and iterative processing, that improve separation performance on all tasks.

Interestingly, the optimal basis and window size are different when separating speech

versus separating arbitrary sounds, with learned bases working better for speech/non-

speech separation, and STFTs working better for sound separation. The best mod-

els, using iterative TDCN++, produce an average SI-SDR improvement of almost

10 dB on sound separation, and over 13 dB on speech/non-speech separation. Over-

all, these are extremely promising results which show that perhaps the holy grail of

universal sound separation may soon be within reach.
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Figure 3.1: Hyperspectral data cube

Chapter 3: Three-Dimensional Fourier Scattering Transform and Clas-

sification of Hyperspectral Images

Hyperspectral image sensors routinely collect hundreds of bands of different

wavelength channels of the surface of the Earth [40]. Due to the rapidly growing

amount of available hyperspectral imagery (HSI) [41], there is much interest in the

development of algorithms that can take advantage of these resources for a wide

range of applications, from anomaly detection to automatic classification. However,

several characteristics of HSI data make these tasks challenging: the high dimension-

ality of the data, the low spatial resolution, the resulting unfavorable signal-to-noise
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ratio, and the fact that labeled data is scarce and typically not transferable across

different domains. This emphasizes the continued need for development of more

efficient processing algorithms.

One potential source of needed advancements is the field of machine learn-

ing. As recently noted in the review by He et al. [42], neural networks (NNs) and

deep learning, having already achieved breakthroughs in the traditional image clas-

sification or segmentation tasks, are now gaining popularity in HSI applications

[43, 44, 45, 46, 47]. These hierarchical networks built for feature extraction at

multiple levels have a potential to produce highly informative data features, which

cannot be achieved by manually-designed feature extractors. However, the cost of

these improvements is the increase in computational complexity of learning algo-

rithms, which stems from the fact that there is now a great number of parameters

to train. This predicament is often resolved by combining the learning scheme with

an appropriately chosen representation transform which maximizes the information

content in the first layer, consecutively leading to a reduction of the time needed for

training the algorithm. It is thus in this context that we note that time-frequency

representations for HSI have recently proven to provide both meaningful and high

quality results [42, 48, 49], especially when the filters are specifically designed for

the HSI data [50]. At the same time, these time-frequency representations are an

underutilized tool when compared with the more popular wavelet based methods

[51, 52, 53, 54, 55, 56].

The Fourier scattering transformation (FST), introduced in [57, 58], can be

viewed as a modern machine learning-inspired approach to time-frequency analysis.
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It unifies deep learning architectures with time-frequency generated filters in order

to capture higher order correlations between different time-frequency coefficients.

One notable difference from deep learning is that the FST uses fixed filters instead

of adaptable or learned ones such as those in NNs. However, the advantage is that

the FST does not require computationally expensive training and enjoys theoretical

guarantees that NNs lack [57]. In particular, the FST is invariant under small

diffeomorphic nonlinearities or perturbations.

The three-dimensional Fourier scattering transform (3D FST) algorithm, which

is introduced in this chapter, is inspired by the mathematical Fourier scattering

transformation for square integrable functions on a continuum. The novelty of this

algorithm is the deviation from the original continuous time one-dimensional setting

designated for traditional function approximation. Instead, here we design and em-

ploy three dimensional time-frequency generated filters to deal simultaneously with

the discrete spatial and spectral aspects of the data. Furthermore, we implement

these filters in a purpose-built architecture which takes advantage of recent devel-

opments in convolutional NNs. When used on HSI data, it provides a multi-layer

spectral-spatial decomposition. We argue that the spectra generated by standard

material classes are more discriminable in the time-frequency domain when com-

pared to other representations. We note that this argument was also made in [50],

which showed that decomposing the signal using time-frequency filters provides in-

formative features for HSI data. However, the 3D FST further refines this idea by

integrating together the spectral and spatial information in a multi-layer setting,

where deeper layers are able to capture more complex features.
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We demonstrate that the 3D FST provides state-of-the-art performance on HSI

data. We compare to results with neural network and wavelet scattering based meth-

ods [56, 59, 60]. One notable method that we compare with is the three-dimensional

wavelet scattering transform (3D WST). The wavelet scattering transform (WST)

was originally developed by Mallat [61] and the 3D WST was applied to HSI clas-

sification in [56]. Our results show that time-frequency Fourier features are more

suitable than time-scale wavelet features for HSI discrimination and classification

purposes. Among others, we obtain state of the art results on Indian Pines at 10%

and 5% of training data, and on Pavia University at 1% and 0.5%. We also provide

an open source implementation of all code used for our algorithms and experiments.1

The rest of this chapter is organized as follows. Section 3.1.1 reviews re-

lated work on using neural networks, wavelets, and time-frequency bases for feature

extraction and the classification of HSI data. Section 3.1.2 provides background

information on scattering transforms. Section 3.2 defines the 3D FST and how it

provides a joint spectral-spatial representation suited for HSI data. Section 3.3 in-

troduces the datasets that 3D FST is evaluated on, explains the parameter choices

in the 3D FST, and discusses the results on these datasets while comparing them

to other competing methods.

1https://github.com/ilyakava/pyfst
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3.1 Background

3.1.1 Previous Work

Not surprisingly, many methods available in the literature have concentrated

solely on analyzing the spectrum content for the classification of HSI data. More

recently, to improve classification performance, spectral-spatial techniques which

better exploit the properties of HSI data have become popular. Our review of

deep learning, neural network, wavelet, and time-frequency methods can be roughly

split into four categories: 1) purely spectral techniques 2) spectral methods that

incorporate spatial pre/post processing, 3) purely spatial methods that may include

spectral pre/post processing, and 4) those that integrate spectral-spatial information

at once.

1. Pixelwise methods that extract wavelet, time-frequency, and neural network

features solely in the spectral domain have been developed to address the chal-

lenges in HSI classification [62, 63, 64, 65, 66, 67]. The neural network (NN)

family of methods iteratively composes layers of matrix multiplications or lin-

ear convolutions with a pointwise non-linear function. The weights in these

matrices, or convolution filters, are adapted using backpropagation during an

initial training phase. NNs consisting of 1D convolutions with spectra [63], and

2D convolutions of reshaped 1D spectral vectors [66], as well as other Deep

Belief Networks (DBN) [64] have been evaluated. Another family of methods

are the wavelet and time-frequency methods which use a pre-determined basis
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to extract edge-like features. 1D Morlet wavelet features with trainable scale

and translation parameters have been extracted and input to a 2 layer NN

[65, 68].

A compromise between the learned and potentially deep and complex neural

networks, and classical wavelet features are scattering transforms, which are

particular types of operators introduced by S. Mallat [61]. The coefficients are

computed with a hierarchical network structure that captures several types

of invariances in data. 1D Fourier scattering features coupled with an SVM

have also proved to be effective, outperforming 1D wavelet scattering features

[67]. These purely spectral methods improve upon the performance of simpler

machine learning algorithms, like the application of SVMs on the 1D spectra

of each pixel, but ignore the significant spatial structure present in HSI data.

2. A variety of methods have successfully used spatial information in the pre-

processing steps (more rarely in post-processing, as well) to improve classi-

fication performance while still focusing on the spectral aspects of the data

[43, 46, 69, 70, 71]. Ashitha et al. [71] classify 1D wavelet scattering features

with an SVM after smoothing each channel of the HSI with 2D Gaussian fil-

ters. Sandwiching a spectral NN between two 2D Gaussian blur layers with

trainable variance greatly improves performance and remains one of the most

competitive HSI methods [46]. Lee et al. followed up on this work with a deep

spectral NN with residual connections following a single 3D filter layer [69].

Acquarelli et al. made changes instead to the training process and included
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a spatial term in the regularizer of a purely spectral 1D convolutional neural

network (CNN) [43].

3. Spatial methods that include some spectral pre-processing have also been ap-

plied to HSI data [44, 45, 47, 52, 67, 72]. Classical 2D CNNs and Recurrent

CNNs (RCNN) have been used on each channel of HSI input independently

[72]. Also popular has been using PCA or other dimensionality reduction

methods to reduce the number of channels in the the HSI before using a 2D

CNN [44, 47, 60], or 2D wavelet scattering [52]. After using PCA to reduce

the dimension, Attribute Profiles can be used to extract spatial features on

each principle component and expand the dimension by a small amount [42].

These features capture morphological properties like area and shape per prin-

ciple component, and the concatenation of many such 2D feature images can

then be fed into a 2D CNN [59]. Our previous work performed competitively

using 1D Fourier scattering preprocessing followed by 2D wavelet scattering

[67]. Recently Deng et al. used a new CapsNet NN architecture [73] with 2D

filters on each channel independently to achieve competitive results.

4. Integrated spectral-spatial methods which combine information from spectral

signatures and spatial neighborhoods simultaneously are also common. Some

papers consider sequences of 1D spectra [62], for example in a variety of NNs

known as Long Short Term Memory (LSTM), or convert the HSI cube to a

matrix and use standard 2D methods [74]. However, by far the most popular

methods involve building 3D filters [44, 48, 49, 50, 51, 54, 55, 56, 72]. 3D
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convolutional layers in NNs, CNNs, and RCNNs, both shallow and deep have

been evaluated [44, 72]. But the lack of training data challenges models with

many learnable parameters, and these networks struggled in comparison to

methods with predetermined filters such as the 3D Gabor wavelets that Shen

and Jia et al. used to extract features [49, 53, 54], and classify with a vari-

ety of algorithms, for instance a sparse representation based classification (3D

WT+SRC) [54]. Bau et al. [48] used the real part of 3D Gabor filters sampled

densely in the time-frequency domain to get features used with a Mahalanobis

distance classifier. He et al. [50] decomposed the same filter into 8 subfilters,

using only 3 to construct a discriminative low-rank Gabor mother filter (DL-

RGF) used to extract features, a hand designed feature which proved to be

very competitive with a least squares based classifier (3D DLRGF+LS). Qian

and Cao et al. [51, 55] used a Haar 3D wavelet filter bank (3D DWT-FB)

and discrete wavelet transform (3D DWT) with various classifiers. Tang et al.

[56] proposed a 3D Gabor wavelet scattering approach to extract features (3D

WST), which decomposes the HSI across multiple wavelet scales and orienta-

tions and uses local averaging to keep class labels consistent in neighborhoods,

and classified with a radial basis function SVM (3D WST+RBF-SVM).

The paradigm that we have ordered our review by has been the degree to

which each method integrates spectral-spatial information, which greatly affects

classification performance. Another characteristic that can be used to distinguish

HSI methods, which we would like to mention here, is the amount of interaction
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between the spectral-spatial features that each technique employs, as [42] points

out.

In the terminology of [42], the simplest dependency system is the case where

features are extracted directly from the HSI data. This encompasses the majority

of the methods we presented. However, NNs with multiple layers naturally model a

hierarchical interaction of features, with as many degrees of interaction as number

of layers in the network: [43, 44, 45, 47, 62, 63, 64, 66, 69, 72]. The same can be

said for the layers of scattering networks: [52, 56, 67, 71, 74]. This distinguishes

these two classes of approaches from wavelet techniques [51, 54, 55, 75] or from

time-frequency methods [42, 48, 49, 50], and yields more sophisticated features that

provide improved classification results, as we demonstrate in Section 3.3.

3.1.2 Fourier Scattering Transform

We begin this section by formally defining the mathematical concept of the

scattering transformation. Fix a sequence Φ = {φ, φλ}λ∈Λ of square integrable

functions on Rd, where Λ is the index set of the sequence. Given an input function

f defined on Rd, we iteratively convolve it with this sequence and take the modulus

in the following way. For each index λ ∈ Λ, let

U [λ](f) = |f ∗ φλ|,
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Figure 3.2: The network structure of the scattering transform for square integrable
signals in a Hilbert space. The functions U [λ](f) are generated iteratively and they
are represented by the black dots. The scattering coefficients of f , represented by
the red dots, are found by convolving each U [λ](f) with φ.

where ∗ is the convolution of functions on Rd. We can extend this rule to multi-

indices. For each λ = (λ1, . . . , λk) ∈ Λk, let

U [λ](f) = U [λk] · · ·U [λ1](f).

The scattering transform SΦ associated with Φ is formally defined as the sequence

of functions

SΦ(f) = {f ∗ φ, U [λ](f) ∗ φ}λ∈Λk,k≥1.

See Figure 3.2 for a visualization of the scattering transform as a convolutional

network.

The mathematical properties of the scattering transform and the features that

it generates greatly depend on the underlying sequence of functions Φ. Mallat [61]

and his collaborators [76] primarily considered the wavelet (time-scale) case, where φ
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is the father wavelet and {φλ}λ∈Λ are dilations of the mother wavelet function. The

resulting transform is called the wavelet scattering transform (WST) and it provides

a powerful multi-scale representation [76]. In contrast, we study the time-frequency

analogue [57, 58], where φ is a band-limited function and {φλ} are frequency modu-

lations of φ. The resulting transformation is called the Fourier scattering transform

(FST) and it provides a novel hierarchical time-frequency representation of the data.

Although wavelet-based techniques have recently dominated the spectrum of

signal processing applications in the field of HSI analysis, due to their overall impact

on image processing, see e.g., [49, 51, 54, 65], the time-frequency methods form

a natural foundation for spectral data exploration. They were the basis for the

early Fourier transform imaging spectroscopy methods [77, 78], as well as for recent

attempts to analyze hyperspectral imagery [50].

We note here that wavelet and Fourier scattering transforms provide entirely

different representations: the WST computes localization and scale characteristics,

whereas the FST provides frequency distribution information. Both transformations

satisfy several similar representation-theoretic properties: they are energy preserv-

ing, non-expansive, and contract sufficiently small translations and diffeomorphisms,

see the results in [57, 61] for precise statements. However, it is the FST that has a

provable exponentially fast convergence of finite approximations, which is crucial in

implementations. These properties explain why FST is an effective feature extrac-

tor. Indeed, as a mathematical construct, the scattering transform has an infinite

number of layers and each node has infinitely many children. Thus, for practical

applications we can only compute a finite subset of its coefficients. Thanks to the
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aforementioned property, the FST can be truncated to a finite approximation with-

out loosing its properties. Indeed, theoretical results guarantee that the total energy

contained in the k-th order FST coefficients is at most εk−1 of the original energy

of f for some small ε ∈ (0, 1), see [57].

We close this section by observing that, in a recent work, He et al. [50] intro-

duced the concept of discriminative low-rank Gabor filtering (DLRGF) for spectral-

spatial classification. The DLRGF is built upon a foundation formed by a 3D har-

monic modulated with a 3D Gaussian - a concept which in mathematics is known

sometimes as a Gabor frame. The mathematical representation system U [λ](f) ∗ φ

generated by the FST, using the iterative convolution process described above, is in

fact a generalization of a Gabor frame and is known as a uniform covering frame.

As such, our method provides the same theoretical guarantees for the analysis of

HSI data as that of [50]. But the main difference between these two methods is

the manner in which they are computed. DLRGF builds the representation using

a priori filters, while our method constructs the efficient representation through an

appropriately designed iterative procedure. The advantage of the latter is that it

can be made significantly faster, even by orders of magnitude. The implementation

process which enables this is described in the next section.
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Figure 3.3: Our proposed 3D FST network for HSI data. The padded input f is the
HSI cube is convolved with the collection of filters {gm} and the modulus nonlinear-
ity is applied followed by a downsampling to create the first order intermediate 3D
FST coefficients. These are in turn convolved along frequency increasing paths with
{g′n}, followed by a modulus nonlinearity and downsampling to create the second
order intermediate 3D FST coefficients. Then the input and the intermediate co-
efficients are locally averaged with g, g′ and g′′, concatenated, and downsampled a
final time to create our 3D FST representation S(f). Because of the downsampling
throughout the feature size is never significantly increased compared to the size of
the input. This is in contrast to the network in Figure 3.2 where the number of
scattering coefficient functions SΦ(f) grows exponentially with depth.

3.2 Proposed Discrete Fourier Scattering Network for HSI Classifi-

cation

The FST is a generic transformation and a mathematical model that is suitable

for many applications and purposes. To differentiate between the generic FST and

the particular algorithm which we introduce in this chapter for HSI classification,

we shall call the latter the three-dimensional Fourier scattering transform (3D FST)

algorithm. We now give its detailed description.

In the context of HSI data, we consider its data dimension to be equal to

d = 3 and we represent an HSI datacube as a function f defined on a 3-orthotope

(i.e., rectangular box) subset of Z3. That is, f(x, y, b) is the value of the image

at spatial location (x, y) and spectral band b. Fix a function g on Zd, which is
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typically called the window function. Following standard convention, we select the

window g to be compactly supported in a 3-dimensional rectangle with side lengths

M = (M1,M2,M3). Let ΛM be the collection of m ∈ Z3 such that 0 ≤ mj ≤Mj− 1

for each j. We define the functions {gm}m∈ΛM
by the formula,

gm(x, y, b) = exp
(

2πi
(
xm1

M1
+ ym2

M2
+ bm3

M3

))
g(x, y, b). (3.1)

Here, x and y are the spatial coordinates and b is the spectral coordinate.

There is the usual trade-off with time-frequency representations: Larger values

of M provide worse spatial localization but better frequency resolution, whereas a

smaller M yields the opposite effect. For this reason, it is reasonable to use different

functions in each layer of the network to maximize the performance of the transform.

Let M ′ = (M ′
1,M

′
2,M

′
3) and M ′′ = (M ′′

1 ,M
′′
2 ,M

′′
3 ) be multi-integers and let g′ and g′′

denote functions supported in rectangles of size M ′ and M ′′ respectively. We define

{g′m}m∈ΛM′ and {g′′m}m∈ΛM′′ analogous to the definition of gm given in equation (3.1),

except with M ′ and M ′′ replacing M and g′ and g′′ replacing g, respectively.

Time-frequency representations are inherently redundant. We can downsample

the features in such a way that we do not lose important information, e.g., see [79],

and this type of result is closely related to the classical Shannon sampling theorem.

In our case, we do not downsample in the spatial dimensions. We fix positive integers

P , P ′, P ′′ which shall be the downsampling factors in the each of the three layers.
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The zero order 3D FST coefficient, S0(f), is defined as

S0(f)(x, y, b) = (f ∗ g)(x, y, Pb).

Here, ∗ denotes the convolution operator on Z3. This is simply a local averaging

of the input by the window function g and downsampled by P . The first order

intermediate 3D FST coefficients are

Um(f)(x, y, b) = |(f ∗ gm)(x, y, Pb)|.

The collection {Um(f)}m∈ΛM
can be interpreted as the modulus of the windowed

Fourier transform of f (also called the short-time Fourier transform in signal pro-

cessing or the spectrogram in audio processing).

The windowed Fourier transform is not stable to small perturbations of the

input function. The basic reason is that if f consists of a single high frequency

component, then there exists a f̃ such that f̃ is a small diffeomorphism of f and its

frequency support is disjoint from that of f ; consequently, f and f̃ are very different

in both the L2 metric, see [61, 80] for a rigorous analysis. To avoid this behavior

in 3D FST we proposes to locally average Um(f) with g′. The first order 3D FST

coefficients are then:

Sm(f)(x, y, b) = (Um(f) ∗ g′)(x, y, P ′b).

Hence, the first order 3D FST coefficients carry information about a spatially-
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averaged short-time Fourier transform of f .

While naive local averaging improves stability to small deformations, it also

removes a significant amount of high-frequency information because g is a low-pass

filter. The lost components are aggregated in the functions Um(f) ∗ gn. However,

these functions suffer from the same instability properties as Um(f). The second

order intermediate 3D FST coefficients are thus,

Um,n(f)(x, y, b) = |(Um(f) ∗ g′n)(x, y, P ′b)|.

These intermediate coefficients are also unstable to small diffeomorphisms, so we

perform a local averaging. The second order 3D FST coefficients are now defined to

be:

Sm,n(f)(x, y, b) = (Um,n(f) ∗ g′′)(x, y, P ′′b).

We also note that theoretical results in [57] guarantee that Sm,n(f) is small when

n ≥ m, so we can improve the computational efficiency of the algorithm by only

computing the coefficients for which n 6= m.

The zero and first order 3D FST coefficients can be interpreted as spatially-

smoothed versions of classical spectral-spatial representations. It is not as obvious

what the second order coefficients represent. At first glance, the second order 3D

FST coefficients appear similar to the Mel-frequency cepstral coefficients (MFCCs),

but there is an important distinction. The MFCCs are calculated by fixing the spa-

tial coordinate and then further decomposing the spectrogram along the frequency
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axis in log scale. MFCCs play an important role in audio analysis because more

global characteristics, which are not captured by the spectrogram, contain important

information.

In contrast to the MFCCs, the second order 3D FST coefficients are calcu-

lated by fixing the spectral variable and then further decomposing along the spatial

coordinate. That is, Um,n(f) describes whether the m-th frequency of f over inter-

vals of length M (a local property captured by the first order coefficients) varies at

frequency n over intervals of length MM ′ (a more global property).

In summary, given a hyperspectral image f , the features generated by the 3D

FST at location (x, y) are the collection of vectors

Zero order: S0(f)(x, y, ·)

First order: {Sm(f)(x, y, ·)}m∈ΛM

Second order: {Sm,n(f)(x, y, ·)}m∈ΛM ,n∈ΛM′ .

These vectors are concatenated to form a feature vector for each pixel (x, y) of the

hyperspectral image f .

In Figure 3.3 is a schematic of our proposed 3D FST method as we imple-

mented it with standard tensorflow [35] primitives on the GPU: 3D convolutions

with nonlinearities and 3D max pooling operations. This spatial domain imple-

mentation, as opposed to a frequency domain implementation, has the advantage

of benefiting from the highly optimized tensorflow programming interface, which

can distribute the necessary computations over ubiquitous and very powerful mod-
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Table 3.1: Attributes of the HSI datasets we evaluate on.
Name Satellite No. Bands Bandwidth Meters per Pixel Dimensions H×W No. Labeled Pixels No. Classes

PaviaU ROSIS 103 430-860 nm 1.3 m 610x340 42776 9
IP AVIRIS 224 400-2500 nm 3.7 m 145x145 10249 16

KSC AVIRIS 224 400-2500 nm 18 m 512x614 5211 13
Botswana NASA EO-1 242 400-2500 nm 30 m 1476x256 3248 14

(a) (b) (c) (d)

Figure 3.4: An example using Pavia University to illustrate strictly site specific
sampling for creating training masks. (a) Ground Truth Labels. (b) 2% of labels
randomly selected. (c) 1-KNN interpolation of the labels in (b) which is correct for
93% of all labels. (d) 2% of the labels selected in a strictly site specific manner.
Note how there is only 1 site per class label with all its pixels in a connected set.
The 1-KNN interpolation of the labels in (d) would be correct for 22% of all the
labels.

ern GPUs. The scattering layer that we programmed can also thus be seamlessly

blended into any stage of a deep network since it allows backpropagation, we leave

such integrations to future work. Figure 3.3 also illustrates how our method can be

performed on an input of any size since it maps any HSI cube to an HSI-feature

cube with equal spatial dimension. We release our implementation publicly [81] and

discuss its runtime performance in Section 3.3.5.

45



3.3 Experimental Results and Discussion

3.3.1 Data Sets

We test the performance of these feature extractors on the following hyper-

spectral databases:

• Indian Pines (IP) acquired over the Indian Pines test site in Northwestern

Indiana in 1992 by the Airborne Visible / Infrared Imaging Spectrometer

(AVIRIS) sensor [82]. 49% of all pixels are labelled.

• Pavia University (PaviaU) acquired during a 2001 flight campaign over Pavia,

northern Italy, using the reflective optics system imaging spectrometer (RO-

SIS) sensor [83]. 21% of all pixels are labelled.

• Kennedy Space Center (KSC) acquired over the wetlands on the west shore

of the Kennedy Space Center (KSC) and the Indian River using the AVIRIS

sensor [84]. 1.7% of all pixels are labelled.

• Botswana acquired over the Okavango Delta, Botswana in 2001, by the Hype-

rion sensor on the NASA EO-1 satellite [85]. 0.86% of all pixels are labelled.

Table 3.1 shows additional information on all datasets. All datasets can be

downloaded from the webpage [86], and we also make them available in our released

code [81].
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(a) PaviaU (b) Indian Pines (c) KSC (d) Botswana

(e) PaviaU (SSS) (f) Indian Pines (SSS) (g) KSC (SSS) (h) Botswana (SSS)

Figure 3.5: Gridsearches over the hyperparameters M,M ′,M ′′ of the 3D FST for
each dataset we analyze. The vertical axis is the average classification accuracy over
10 trials. Each dataset generates a unique shape because of the various degree of
spatial or spectral noise that should be smoothed. Larger receptive fields perform
more smoothing. Each of the datasets in the second row is constructed in a single
site specific manner as elaborated in the main text. Each of the datasets in the first
row is constructed with the more typical random distributed sampling. A black star
marks the best result per gridsearch which determine the hyperparameters we use
with our 3D FST method.

3.3.2 Methods Compared

To better evaluate the performance of our proposed method we implement

three state of the art feature HSI classification methods, and score all methods in

the same exact training and testing conditions. We release our tensorflow imple-

mentation of these methods with the rest of our code [81].

• PCA + Deep Learning (DFFN) We re-implement a Deep Feature Fusion Net-

work exactly to the specification of [60], which is publicly available in a caffe

implementation [87]. This method projects the HSI data to a few PCA com-
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ponents and passes windows to a deep network consisting of three towers with

4 or 5 residual convolution blocks. This is a very deep network that in the

case of PaviaU contains 34 2D convolutional layers. It has a large receptive

field of 23 or 25. With our implementation we are able to replicate the same

performance as in the original paper for the Indian Pines and PaviaU datasets

[87].

• Extended Attribute Profiles + Deep Learning (EAP) We implement a Deep

Learning With Attribute Profiles method to the specification of the EAP-Area

method in [59]. This method projects the HSI data to 4 PCA components and

then creates APs of length 4 for each component. With a receptive field

of 9, the 9 × 9 × 36 cube is passed to a neural network containing 3 2D

convolutional layers and 2 Fully Connected layers before a softmax classifier.

In our implementation we exceed the performance in the original paper for the

PaviaU dataset [59].

• 3D Wavelet Scattering Transform (WST) We implement a 3D Wavelet scat-

tering approach to the specification of [56]. It is a 2 layer network with 7×7×7

wavelet filters (receptive field of 19) with 9 orientations and 3 scales per layer.

We use the same strategy of downsampling that we employ in our 3D FST in

our implementation to enhance performance. We classify the features with a

linear SVM and are able to match the performance in [56] for our datasets.

The DFFN and EAP methods are Deep Learning methods for which we per-

form from-scratch training for every single training dataset. In this chapter the
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results we report are from hundreds of training runs for DFFN and EAP. To make

sure we train the best neural network possible for each trial, we extract a validation

set from each trial’s test set, and we train until validation loss is non-decreasing

for 20 consecutive epochs. We evaluate every 2 epochs and save the model with

the highest validation accuracy. For overall accuracy we report the accuracy on the

original test set. We use the same batch sizes as in the original papers [59, 60],

and adjust the learning rate (in the range 0.1 to 1e-5) to ensure convergence on our

training sets of a variety of sizes. We use the Adam optimizer for training all of

our networks [36]. Further details are available in our released source code [81]. We

do not use data augmentation for any method. For additional comparison we also

include additional popular methods:

• 3D Gabor Filters Three dimensional Gabor filters are a popular feature ex-

tractor for HSI classification [48, 53, 54]. In fact, a truncation at the first layer

of our proposed 3D Fourier Scattering feature extractor (Um(f)) is equivalent

to Gabor filtering. Thus we compare to such a truncated version of the FST

on each dataset, using the same parameters for the Gabor filters as used in the

the first layer of our scattering filters. This allows us to directly see what addi-

tional information the following layers of the FST extract to aid classification.

After extracting the Gabor filters, we use a linear SVM for classification.

• Raw features We denote this in the text as the Raw method. It is simply the

raw spectrum of a pixel used as a feature vector for linear SVM classification.

Every time that we use an SVM for classification, it is linear with the regular-
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Figure 3.6: Performance of the 6 implemented methods on randomly sampled train-
ing sets from Indian Pines. Each point is the average of 10 trials, the shading is the
standard deviation over the 10 trials. Each method is tested on the same 10 train-
ing sets per training set size. 3D FST performs optimally in all training scenarios
on randomly distributed data. SSS training is noisy and low performance for this
dataset, FST provides a slight benefit over Gabor features.

ization parameter fixed to C = 1000. We chose this parameter by cross-validating

for C = 10−10, 10−9, ..., 1010 on Raw SVM, where we found C = 1000 leads to the

best Raw+SVM overall classification accuracy.

3.3.3 Hyperparameters of 3D FST

In this section we perform a robustness analysis on the hyperparameter values

of 3D FST and discuss the performance impact of various choices of spatial and

spectral window sizes. The promise of deep learning methods like DFFN or EAP is

that they learn their parameters to adjust to the dataset. With 3D FST a choice

of several parameters serve the same crucial function before the features extracted

with it are fed to a learning classifier (a linear SVM in this chapter). When using the

Fourier scattering transform on HSI data, there are several parameter choices that

impact the effectiveness of our method. Recall that g, g′, g′′ are the window functions
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Figure 3.7: Performance of the 6 implemented methods on randomly sampled train-
ing sets from PaviaU. Only DFFN, which is the deepest method by far, does not
clearly surpass raw features in this setting of very limited training data. SSS train-
ing very noisy, and the less deep networks tie, and Wavelet features underperform
Fourier features.

(a) False Color (b) Ground Truth (c) Raw (d) Raw SSS

(e) DFFN (f) EAP (g) 3D WST (h) 3D Gabor (i) 3D FST

(j) DFFN
SSS

(k) EAP
SSS

(l) 3D WST
SSS

(m) 3D Ga-
bor SSS

(n) 3D FST
SSS

(o)

Figure 3.8: Full classification for Indian Pines with 5 samples per class (0.8% of
training data). The best performing trial by classification accuracy per model is
plotted. The classification performance for these methods is in Figure 3.6.
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used in each layer of the 3D FST, where M,M ′,M ′′ are the size of their supports,

and P, P ′, P ′′ are the downsampling parameters. The most impactful parameters

to choose are M,M ′,M ′′. A large spatial support of the FST windows will lead

to larger spatial features being extracted, as well as more spatial blurring. The

size of the FST window supports in the spectral domain will also lead to a greater

range of frequency features extracted in the spectrum and also more averaging in

the spectrum. These hyperparameters can be selected to best exploit the different

physical conditions that a dataset was collected according to, like meters/pixel and

sampling rate in the spectral domain. We would like to choose M,M ′,M ′′ once

per dataset, and a natural approach is to choose the M,M ′,M ′′ that yield the best

classification score on a validation set. However, we also have to be careful when we

create our validation set to ensure that M,M ′,M ′′ will not be influenced by artificial

biases created by picking this validation set.

Uncontrolled random sampling to create a training set of HSI pixels has been

previously observed to create a positive bias to methods that use larger spatial

neighborhoods [43, 88]. For methods that extract features from neighboring pixels

to perform a classification on a single test pixel, if the neighborhood includes a

pixel that was present in the training set, then the training and testing features

will overlap in the spatial domain. A larger neighborhood used to extract features

will lead to a greater overlap between training and testing neighborhoods and thus a

greater similarity between training and testing features. Thus sampling a HSI image

randomly and choosing the spatial window size to use for feature extraction based

on classification performance can lead to an artificial preference for large windows.
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This exact effect is displayed in Figure 3.5. In the first row of Figure 3.5 we see

a trend that larger spatial windows lead to higher overall accuracy on the test set

when the training set is randomly distributed across the image.

To limit this preference for larger spatial neighborhoods we can compare to a

sampling strategy similar to [88] for picking the training set. In contrast to sampling

randomly from the labels to create a training set like in Figure 3.4b, we may sample

in a local manner according to connected components as discussed in [88]. To create

a training set, we can instead pick a single pixel per class, and add pixels to our

training set only when they are directly adjacent to already selected pixels of the

same class. As long as we do not request too many pixels to be in our training set,

this method leads to a single site of training pixels per class, and we refer to such

a training set as strictly site specific (SSS). The largest such training set we create

for this chapter (90 samples per class) is shown in Figure 3.4d (90 samples per class

is about 1.9% of training data for PaviaU). Note how when sampling 2% of pixels

randomly in Figure 3.4b a 1-KNN classifier on the pixel coordinates will perform

at 93% accuracy as shown in Figure 3.4c while for a SSS dataset of equal size the

same type of classifier will perform at 22% accuracy. This shows that neighborhood

overlap in feature generation has the potential to inflate classification accuracy by

a large degree for the randomly sampled training set, but not for the strictly site

specific training set.

The grid searches over hyperparameters M,M ′,M ′′ that we perform are shown

in Figure 3.5, the first row contains grid search results on randomly distributed

training data, and the second row contains grid search results on SSS datasets which
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limit unnecessary spatial bias. For the SSS datasets, for PaviaU we build training

sets with 9 sites of size 90 (1.9% of training data), for Indian Pines we use 16 sites

sized such that 10% of the data is used for training, for KSC 13 sites of size 20 (5%

of training data), and for Botswana 14 sites of size 20 (9% of training data). The

gridsearches for randomly distributed data in the first row of Figure 3.5 use the same

amount of data as the SSS gridsearches. For each point in the grid we perform 10

trials each on a different training set, and plot the mean accuracy. 3,200 experiments

are summarized in Figure 3.5. Each selection of M,M ′,M ′′ has 6 degrees of freedom

(we use square spatial windows), and each individual window we test has a support

of 3,5,7, or 9 for randomly distributed data, and 1,3,5,7 for SSS data. We plot the

spatial receptive field (proportional to M1 + M ′
1 + M ′′

1 ) and the spectral receptive

field (proportional to M3 +M ′
3 +M ′′

3 ) against the mean accuracy. We find that the

general shape of the loss surface does not change as we vary the size of the training

sets but is smoother for larger training sets. The best hyperparameters M,M ′,M ′′

are:

• PaviaU. 7×7×5, 7×7×5, 7×7×5 which has a receptive field of 24 m by 179 nm

(19 spatial samples by 43 spectral samples). For a strictly site specific setting

for this dataset we choose the hyperparameters 3× 3× 7, 3× 3× 7, 3× 3× 7

which has a receptive field of 9 m by 254 nm (7 spatial samples by 61 spectral

samples).

• Indian Pines. 9×9×7, 9×9×7, 9×9×7 which has a receptive field of 92 m by

571 nm (25 spatial samples by 61 spectral samples). For a strictly site specific
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setting for this dataset we choose the hyperparameters 1×1×5, 1×1×5, 1×1×5

which has a receptive field of 3 m by 403 nm (1 spatial samples by 43 spectral

samples).

• KSC. 7×7×3, 7×7×3, 7×7×3 which has a receptive field of 342 m by 234 nm

(19 spatial samples by 25 spectral samples). For a strictly site specific setting

for this dataset we choose the hyperparameters 7× 7× 3, 1× 1× 3, 1× 1× 3

which has a receptive field of 126 m by 234 nm (7 spatial samples by 25 spectral

samples).

• Botswana. 9×9×7, 5×5×7, 5×5×7 which has a receptive field of 510 m by

529 nm (17 spatial samples by 61 spectral samples). For a strictly site specific

setting for this dataset we choose the hyperparameters 5×5×3, 5×5×3, 5×5×3

which has a receptive field of 390 m by 216 nm (13 spatial samples by 25

spectral samples).

Some general patterns we observe are that a larger spectral receptive field is

preferred for randomly distributed training, and that the spatial window should only

decrease in size in the network. In the results of the grid search, we observe the

intuitive trade off in making the spatial receptive larger: that noise is reduced, but

as a result of blurring the ability to resolve details is lost, hence the optimal value

is a spatial window that is neither too large nor too small. In the SSS gridsearches

we see that the largest spatial receptive field does not perform the best, hence we

conclude that picking parameters with such a search yields a feature extractor that

avoids unnecessary spatial bias. This is in line with our expectations since in a
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randomly sampled training dataset like in Figure 3.4b, for every test pixel, as we

increase the size of the spatial window in which to extract features, the number of

training point features that we mix with the test point features grows. But for the

SSS training dataset like in Figure 3.4d this is not true for most test points which

are not near the single class sites.

The most dramatic difference in hyperparameters for the two sampling strate-

gies is for Indian Pines, where the largest possible spatial window performs best

with randomly distributed data, and the smallest possible spatial window performs

best with single site data, yet number of spectra samples used does not dramatically

differ. This is likely to do with the density of Indian Pines: 49% of pixels have labels

(compared with 21%, 2%, and > 1% for PaviaU, KSC, and Botswana) and because

of the human-planned agricultural setting all the pixels belonging to a class are of-

ten adjacent. Thus with a randomly distributed training set, growing the window of

features around a test pixel often incorporates features from training pixels nearby.

At the same time for strictly site specific training sets, growing a window around a

test pixel that is not near training pixels can incorporate features from the wrong

class since the fields of different crops are nearby.

The receptive field sizes that our grid search picks are generally middle of the

range compared to the literature. The EAP method we compare to has a smaller

spatial receptive field of 9 while the DFFN has a larger receptive field of up to 25,

and the 3D WST has a similar receptive field of 19.

Looking at Figure 3.5 performance varies much less along the spectral dimen-

sion than the spatial, and a middle-ground value for the spectral window is often
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picked over an extreme value. For PaviaU, which has the fewest spectral bands of

all the datasets and most diverse material classes, switching from larger to smaller

windows for randomly distributed data versus SSS data causes a preference for a

larger spectral window, perhaps to compensate for the decreased spatial features.

For Indian Pines where 14 of 16 classes are types of vegetation, we see that the best

performing spatial windows have similar performance in the spectral dimension. For

KSC and Botswana a smaller spectral window is preferred in general, perhaps also

because of the material similarity of most classes. We also note that for all the best

hyperparameters that M ′
3 = M ′′

3 = M ′′′
3 , that the spectral receptive field should be

equally distributed throughout the layers of scattering.

Regarding the other hyperparameters, we keep them constant throughout our

experiments. Higher downsampling improves the speed of our method but decreases

the performance, so we fix P, P ′, P ′′ to be as low as possible without making our

method prohibitively slow (also note that the higher the downsampling the higher

the receptive field of the network). Setting P = M−2, P ′ = M ′−2, and P ′′ = M ′′−2

achieves this balance. For simplicity, for g = g′ = g′′ we use the rectangular window.

The parameters listed in this section are used for 3D FST experiments throughout

the rest of the chapter, though we do note that if we only wanted to improve

classification accuracy for randomly sampled distributed training sets, the larger

the spatial window the better the accuracy, but only for the reasons of spatial bias

noted in this section. The best representation of HSI data is achieved with the

M,M ′,M ′′ triplets listed above.
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3.3.4 Analysis

In this section we compare our methods with both the standard random sam-

pling method and strictly site specific (SSS) training datasets for Indian Pines,

PaviaU, KSC, and Botswana. PaviaU and Indian Pines were selected for their pop-

ularity, and have a very geometrically structured ground truth. In contrast KSC

and Botswana have a more abstract ground truth that has a similar appearance to

the SSS sampling strategy.

On Indian Pines our proposed method has the highest classification accuracies

for all the training sets used between 5 samples per class to using of 10% of the

data, as seen in Figure 3.6. In the full classification maps shown in Figure 3.8 for

the highly limited training data scenario of 5 samples per class we can observe many

interesting details. For the randomly distributed datasets, DFFN and 3D FST have

the same receptive field size, but DFFN blurs classes together much more, it only

begins to perform well and above Raw features at 5% of training data. When it

comes to using the SSS dataset, the spatial blur seems to increase, showing that the

large spatial receptive field cannot adapt to SSS data in Indian Pines. The extra

layers of convolutions and nonlinearities that 3D FST adds to 3D Gabor pay off in

overall accuracy, and leads to slight spatial blurring in the distributed datasets. For

SSS data 3D Gabor and 3D FST are not much different than Raw features, since

the hyper-parameter search suggested a spatial window size of 1. EAP has a good

balance between blurring and maintaining detail for this dataset and ties with many

other methods. 3D WST has the roundest features of all the methods.
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We note that for the SSS datasets all methods struggle, and the results are

noisy. In some instances the performance can decrease as the site size grows (this

happens with the lowest performing methods on SSS data, 3D WST and DFFN,

several times). The standard deviation of all the methods for SSS data is also very

high and prevents seeing a clear dominating method. Our explanation for this is that

the SSS setting is very challenging because of the great variability between different

SSS datasets. Since each SSS dataset contains only a single site per class, there is

little information on the overall shape of a class, or number of locations in the image

a single class may be, and it is rare for training pixels to be different classes but

near. Though we believe an artificial bias for spatially smoothing feature extractors

is diminished with SSS sampling, this dataset construction may leave little in the

training data to be exploited other than the spectral information of each pixel, which

would explain the consistent high performance of Raw single-pixel spectral features.

The classification accuracy for our proposed method on PaviaU for randomly

sampled data is about the same as EAP and 3D WST at 2% of training data, but

performs the best at lower training data percentages and we see more details are

preserved in the classification maps in Figure 3.9. We see a similar pattern in overall

accuracy in Figure 3.6 to Indian Pines, in that the deepest neural network method

has the biggest gains as the amount of training data increases. For PaviaU the

filters for 3D FST are a slightly different shape than the 7 × 7 × 7 cube filters of

3D WST, and the two methods perform within a margin of error of each other.

However in the full classification maps in Figure 3.9 we see that 3D WST has more

spatial smoothing than 3D FST: details like the separation between the painted
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metal sheets in the red rectangle and the tree shadows in the blue rectangle are

clearer in 3D FST. Likely because this dataset has more thinly articulated features

such as the self-blocking bricks parking lots our gridsearch chose a smaller receptive

field for this dataset compared to Indian Pines. We also notice in Figure 3.9 that

3D FST best preserves details that we see in Figure 3.9a, which are also clear in the

SVM full classification maps, albeit with salt and pepper noise (though Raw misses

the Bitumen and Gravel classes). We also see an improvement over 3D Gabor with

the additional layers of 3D FST. The shapes in the distributed datasets become less

dithered in the distributed training sets.

The SSS scenario is much more challenging as evident when comparing the

performance of various methods on PaviaU at 90 samples per class (roughly 2%

of training data) in Figure 3.7. The performance in the SSS scenario varies much

more wildly between training sets, even though the number of trials performed

stays the same as with the randomly sampled datasets. We see that the deep

learning methods DFFN and EAP are most affected by the change from a distributed

randomly sampled training set to a single site training set. EAP stops correctly

classifying the lower parking lot of PaviaU, and the shapes in DFFN become more

distorted. 3D FST is the least affected by the shift to a SSS training set. The

features in the red, yellow, and blue boxes of Figure 3.9a change only slightly, and

the thin asphalt roads are maintained. No single method edges out ahead by much

consistently for the PaviaU SSS datasets. We again see that performance does not

increase by much as the size of the single site grows. The greatest misclassification

error comes from missing large components like the bare soil block in the middle
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and the continuous meadows.

For KSC and Botswana the SSS sampling method mirrors the structure of

the ground truth much more closely (compare the ground truths in Figures 3.12b

and 3.13j with the training set in Figure 3.4d). In effect when we create our training

sets for KSC and Botswana we slice away a piece of just one of the connected

components per class in the ground truth. Perhaps for this reason for KSC and

Botswana we see a slightly clearer margin of better performance for 3D FST. The

simple SVM on the Raw spectrum remains competitive, however the smoothing of

3D FST and 3D Gabor are advantageous over the raw SVM for Botswana. For KSC

we see among the methods a variety of different levels of smoothing around the

blue rectangle of Figure 3.12a, where the separation between mud flats and water is

ambiguous. DFFN with its large receptive field blurs the bridge shapes, and EAP

mostly erases the islands in the middle body of water.

It is interesting to see how the extra layers of 3D FST add more detail into

the 3D Gabor images for KSC and Botswana for both distributed and SSS training.

For KSC we can see more articulation in the SSS dataset especially. For Botswana

we see a reed border added to the main body of water. But in general the structure

of the ground truth besides the water is especially hard to tell from the false color

images of KSC and Botswana, and all but the deepest DFFN give abstract results

that look appealing but have a different amount of smoothness.

Spatial smoothing in our proposed method is largely influenced by the choices

of M,M ′,M ′′. The amount of smoothing our grid search found for FST is on the

whole less than other state of the art methods for distributed data, even though the
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Table 3.2: Feature extraction and SVM computation time on the whole image.

IP PaviaU KSC Botswana
3D FST Feat. (s total) 9 23 75 71
3D FST Feat. (pixels/s) 2,300 9,000 4,100 5,300
SVM for 3D FST (s total) 5 41 40 90
SVM for 3D FST (pixels/s) 4,200 5,000 7,800 4,200

spatial receptive field is similar to the literature. For SSS data, the spatial smoothing

suggested by our gridsearch is at a near minimum, and occasionally edges above the

performance of Raw features for this challenging setting.

Finally we look at metrics beyond overall classification scores. Section 3.3.4

shows confusion matrices on our proposed method, and a runner up method on all

four datasets at a median amount of data. We see no deviation in any conclusions

drawn from overall accuracies since the performance is so high in this setting. No

small classes suffer a great amount. Looking across the diagonal of per class accu-

racies between the two most competitive methods we see a great deal of similarity

of performance, though on the aggregate 3D FST inches ahead.

3.3.5 Computational Cost

The runtime performance of our 3D FST is in Table 3.2. In our implementation

we classified one patch of pixels (51 × 51) at a time, which greatly accelerated

processing compared to processing one pixel at a time. The average rate that we

extracted features from the 4 datasets tested was 5,200 pixels per second. In the

classification setting, after all the pixels were processed, a linear SVM was trained,

and then the test samples were classified. The average rate that we classified pixels
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across the 4 datasets was 5,300 pixels per second. The SVM performance numbers

in Table 3.2 are computed from the test SVM, and the training was always faster

(by at least one order of magnitude) than the testing of the SVM. The major factor

in performance was not the filter size directly, but the number of filters used in

total, which is influenced by our windows size and downsampling choices. In our

experiments the number of filters per layer was proportional to the product of the

size of the supports of the fiters in each dimension, for example in the first layer the

number of filters was M1×M2×M3. Since the SVM did not take much time total,

we saw no need to run PCA or any other form of dimension reduction reduction

between feature extraction and classification, though it could have reduced memory

usage by throwing away some coefficients. Needless to say the supervised training

of the neural networks of EAP and DFFN took much longer to train than the

feature extraction of 3D FST and 3D WST. Supervised neural networks also need

to be retrained for different training/validation/testing set partitions, while the

3D FST of an HSI cube can be saved once for each dataset, and sampled later.

Our downsampling strategy for 3D FST reduced the feature size by about 20x in

comparison to the original 3D WST in [56]. All our methods were performed on a

NVidia Titan X GPU with 12 GB of memory.

3.4 Conclusion

In this chapter we have proposed a three-dimensional Fourier scattering trans-

form for HSI classification. This method has the neural network like benefits of
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hierarchical feature extraction while bypassing the training process which is com-

putationally expensive in both the amount of required training data and training

time. Our three dimensional time-frequency features are well suited for HSI data

since they decompose the HSI into multi-frequency bands and remove small pertur-

bations such as noise. The 3D FST is particularly effective when there is limited

training data. As supported by the experimental results, 3D FST achieved SoA

performance on benchmark datasets, all while executing within a few minutes on a

conventional GPU, and using a simple linear SVM for classification.

An advantage of our method is its compatibility with conventional deep learn-

ing implementations. This readily allows for a shift from the pre-processing based

classification with a linear SVM we presented to an end-to-end feature extraction

with a classification deep network. This has the potential to improve classification

performance further as both the classification and feature filters will be learned for

each dataset, and opens the door for integrating our method with other deep learn-

ing techniques like transfer learning or meta learning. Our future work investigates

this hybridization of scattering transforms with deep learning where the classifica-

tion is performed with a neural network following a tune-able scattering transform

that serves as a feature extractor, and both are trained jointly. We also leave to

future work a task even more challenging than classification from limited data: clas-

sification when training data is only available from other datasets. In this case the

3D FST and the classifier will be adapted to a new dataset where training data may

not be available at all.
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(a) False Color (b) GT (c) Raw (d) Raw SSS (e) Labels

(f) DFFN (g) EAP (h) 3D WST (i) 3D Gabor (j) 3D FST

(k) DFFN SSS (l) EAP SSS (m) 3D WST SSS (n) 3D Gabor SSS (o) 3D FST SSS

Figure 3.9: Full classification on PaviaU. The middle row is trained with 2% of
training data with samples randomly selected. The classification performance for
these methods is in Figure 3.7. The bottom row is trained with 90 samples per class
(1.8% of training data) Strictly Site Specific. The best performing trial by classi-
fication accuracy per model is plotted. Though the training set sizes are roughly
the same in size, distributed versus site specific training shows a big difference in
full classification maps, and an even bigger performance in classification accuracy:
with distributed sampling the methods perform with over 90% OA versus with SSS
the methods perform with less than 60% OA (see Figure 3.7). The courtyard in
the yellow rectangle, the asphalt gap between the painted metal sheets of the red
rectangle, and the shadows in the blue rectangle are well preserved in the 3D FST
images.
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Figure 3.10: Performance of the 6 implemented methods on randomly sampled
training sets from KSC. Performance converges quickly at just 50 training samples
per class, but FST keeps an edge. For SSS datasets the Fourier features of 3D FST
and 3D Gabor methods lead to the best performance.

Figure 3.11: Performance of the 6 implemented methods on randomly sampled train-
ing sets from Botswana. Performance is very high on the very small datasets tested.
The SSS sampling strategy has the biggest spread of any dataset, but the results are
consistent in that 3D FST, 3D Gabor, and Raw features are all competitive with
each other.
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(a) False Color (b) GT (c) Raw (d) Raw SSS

(e) DFFN (f) EAP (g) WST (h) Gabor (i) FST

(j) DFFN SSS (k) EAP SSS (l) WST SSS (m) Gabor SSS (n) FST SSS

(o)

Figure 3.12: Full classification on KSC with 50 samples per class sampled randomly
and in a Strictly Site Specific way. The best performing trial by classification accu-
racy per model is plotted.
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(a) False Color

(b) Raw

(c) DFFN

(d) EAP

(e) WST

(f) 3D Gabor

(g) 3D FST

(h) Ground Truth

(i) Raw SSS

(j) DFFN SSS

(k) EAP SSS

(l) WST SSS

(m) 3D Gabor SSS

(n) 3D FST SSS

(o) Labels

Figure 3.13: Full classification on Botswana with 20 samples per class. This dataset
has labels for only 0.86% of all pixels and is the hardest to interpret of all our
datasets, but both these attributes have the potential to reveal spatial bias in clas-
sification methods. We see this is the case for DFFN and EAP, where compared to
the false color image, delicate features near the central water like islands is blurred
away.

68



(a) Indian Pines
3D FST

(b) PaviaU
3D FST

(c) KSC
3D FST

(d) Botswana
3D FST

(e) Indian Pines
DFFN

(f) PaviaU
WST

(g) KSC
WST

(h) Botswana
Gabor

Figure 3.14: Confusion matrices. In parentheses on the y-axis is the total number
of samples per class in the test set. The number in the (i, j)-th cell is the number
of pixels predicted to be class j when the true label is class i, when this number is
greater than 99 it is instead expressed as a percentage of all the pixels in that class
in the test set and is colored yellow. The colorbar is on a log scale. For Indian Pines
5% of training data was used, for PaviaU 10 samples, for KSC 20 samples, and for
Botswana 10 samples. All confusion matrices are made from the best performing
trial of the two best methods at the stated amount of randomly distributed training
data.
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Chapter 4: Cortical Features for Defense Against Adversarial Audio

Attacks

As voice assistant systems like Amazon Alexa, Google Assistant, Apple Siri

and Microsoft Cortana become more ubiquitous and integrated into modern life, so

does the risk of antagonists taking control of devices that we depend on. Adversarial

Attacks on Audio are one way that a voice assistant could be subverted to send an

unwanted message, or bank transfer, or unlock a home. All the mentioned voice

assistants rely on wake-word detection to initiate their automatic speech recognition

(ASR) systems that give control over their functions. The wake word detection

system is both a voice assistant’s first line of defense against adversarial attacks and

its least complex feature. An attacker’s first step to manipulate a voice assistant

would be to issue an human-imperceptible wake-word, or conversely to prevent a

user’s wake-words from being registered. The latter is called a denial-of-service, and

can have safety critical applications, for example when a user needs to call for help

but cannot physically reach a device.

A number of recent works have achieved adversarial examples for automatic

speech recognition. The Carlini-Wagner attack [89] can produce an adversarial

waveform that is 99.9% similar to the original, but produces any other intended
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Figure 4.1: A schematic showing the flow of information for a voice assistant wake-
word detector and two attack vectors. The speaker generates audio for their intended
command. The environment is an acoustic environment containing the speaker,
other sources of audio like background and other speakers, distortions like rever-
berations, and the voice assistant’s microphone and audio hardware including the
ADC. The data (assumed to be 16 bit integer and 16kHz) is then available to a
model which ultimately makes the decision whether or not to ”wake up” its general
ASR capability. Image Credits: the FC nodes [5].

sentence by the ASR. Adversarial examples have since developed and improved in

several ways. An important attribute for practical adversarial audio is that it be

causal. Often an adversarial example is a function of the complete original audio

that it is meant to modify, so thus original audio from hundreds of milliseconds

in the future must be accessed to play an adversarial sound in the present. One

solution is universal adversarial examples [90, 91], examples that can behave ad-

versarially regardless of what original audio they are superimposed on. Universal

adversarial audio examples have been demonstrated with as little as one training

sample for ASR [92]. Another important attribute for practical adversarial audio

is that it be robust, that is the adversarial example remains effective despite some

level of distortions. This goal is not completely orthogonal to universal adversar-

ial examples, since examples cannot be universal without also being invariant to

translation in time, and when superimposed with some other audio. The ultimate

test of robustness is over-the-air attacks, where as shown in Fig. 4.1 the adversarial
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example is introduced to the environment generating the data for the model rather

than to the data directly. Robust adversarial examples have been demonstrated to

exist for simulated environment ASR systems [93], and more recently robust and

universal examples have been generated for ASR systems [94], and even commercial

wake word systems [95].

Across many languages speech has a pattern of spectrotemporal modulations

that differ from most environmental noise and distortions [96], and the brain has

developed a hierarchical neural system that uniquely responds to these signals [6].

These specialized neuronal structures are in the auditory cortex, and for example

are largely unresponsive to pure tones [6]. It has been demonstrated in animals

that the auditory cortex encodes vocalization features while suppressing or being

invariant to the noise features [97, 98]. Invasive experiments in humans also have

shown that auditory cortex neurons selectively suppress of acoustic features of noise

in their neural responses [99].

This characteristic of speech-noise separability found the auditory cortex is ex-

actly the same characteristic we would like in artificial intelligence voice assistants.

For example, if a wake-word system had an intermediate representation that was

tuned to speech the same way our brains are, then it would be necessary to percep-

tively modify speech to change that representation and ultimately the output of the

wake-word model, making imperceptible adversarial examples impossible. Indeed

the aforementioned biological findings have inspired a computational model of the

mammalian auditory cortex to create such a representation [100, 101]. Our aim in

this chapter is to incorporate the advantages of this cortical representation into a
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(a) Complex Colorized

(b) Real part

(c) Imaginary part

Figure 4.2: The 48 cortical filters used in the cortical network. Along the rows are
the six scale parameters ψ ∈ {.25, .5, 1, 2, 4, 8}, the left four columns are the rate
parameters ω ∈ {4, 8, 16, 32} with phase φ = +1 and the four right columns have
phase φ = −1 and the same scale × rate parameters. Colorization with hue =
(∠z + π)/(2π) + 1/2 and lightness = 1− 1/(1 + |z|0.3).

voice assistant and show the advantages of the cortical representation for defending

against adversarial audio attacks.

4.1 Cortical Transform

The details of human hearing have been studied for centuries. In this section

we highlight some of the consensus of the last few decades of modeling for the first

stages of how the brain makes sense of speech. In the early stage, acoustic signals

are transformed into 2 dimensional spectrograms in the cochlea, which acts as a

filter bank, and filtered by the hair cell and lateral inhibitory network [6, 102].

These lower auditory areas are tonotopically organized: each cochlear location is

73



associated with a best frequency it responds to, with time as the other axis this

representation can be interpreted as an auditory image [6]. As signals move out

to the auditory cortex (A1), what was essentially 1 dimensional processing in the

cochlea becomes 2 dimensional in A1 [101]. Invasive experiments have measured

the responses of ferrets’ A1 neurons and characterized them with corresponding

spectro-temporal receptive fields (STRFs) [103]. An STRF of a neuron indicates the

frequencies and time lags that correlate with an increased response of that neuron;

these two dimensions are often referred to as scale (spectral) and rate (temporal).

A computational model for these receptive fields can be estimated from the

measurements of these neurons responses [101, 104]. On the scale axis the transfer

function of these neurons are well approximated by the second derivative of a Gaus-

sian function h(y) = Ω(1 − 2(Ωy)2) exp (−(Ωy)2) [101]. Neurons are tuned to be

responsive to a variety of rates and scales [103], for scale features we parameterize

the approximation of the neural response as:

R2,ψ(y) = (Ω2y/ψ)2) exp (1− (Ω2y/ψ)2), y = 1, . . . , L, ψ ∈ Ψ (4.1)

where R2,ψ(y) = F{r2,ψ(f)} [101]. On the rate axis, the response is modeled by a

function with a central excitatory band surrounded by inhibitory side bands, this is

approximated with:

r1,ω(t) = (t/Ω1ω)2ω exp (−αt/Ωω) sin(2πt Ω1ω), t = 1, . . . , L, ω ∈ W (4.2)
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Figure 4.3: A schematic showing the proposed cortical network, meant to emulate
the first two stages of audio processing in the brain (labeled in light blue). Inte-
grating this features extraction directly into the network gives us two advantages
over prepossessing: 1) The feature representation can be enhanced with learning
(dropout with 1x1 convolutions) 2) We can backpropagate through these layers are
find adversarial audio directly without any lossy transformations (such as Griffin-
Lim). Image Credits: the cochlea [6], the FC nodes [5].

where α = 3.5 was chosen empirically, as detailed in [101]. Finally the 2D STRF

filters are

f(ω, ψ, φ) =


r2,ψ ⊗ r1,ω , φ = 1

r2,ψ ⊗ r1,ω , φ = −1

, ω ∈ W , ψ ∈ Ψ (4.3)

When phase is−1 the rate filter is conjugated. These filters with Ψ = {.25, .5, 1, 2, 4, 8}

(cyc/oct) and W = {4, 8, 16, 32} (Hz) are displayed in Fig. 4.2.

Taking these biophysical observations, we can build an audio processing pipeline

that transforms sound into a two dimensional auditory spectrogram, and then ap-

plies the STRFs in Eq. (4.3) to form a higher dimensional cortical representation

from the magnitude response. This abstraction captures important physiological ob-

servations: selectivity to combined spectral and temporal features, and with proper
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Figure 4.4: False alarm and Miss rates of the networks that we compare. One line
is plotted for each of three training trials for each of the two architectures.

choice of W the temporal dynamics of phase locking which decreases to less than

30 Hz in the cortex [100] (something only possible with large filters). This pipeline

can be seen in Fig. 4.3. The cortical transform of audio is a high dimensional tensor

with dimensions (time × frequency × rate × scale). This can be reduced to two

3D tensors by reducing/max pooling across the rate (scalegram) or scale (rategram)

[102].

Such a pre-processing feature extraction pipeline has previously been applied

successfully to speaker detection [105] and phoneme classification [102, 106]. The

cortical representation captures the distinctive dynamics of phonemes, which are

easily visually discernible in rategrams and scalegrams [102]. The magnitude cortical

response carries enough information to reconstruct the spectrogram that generated

it [100]. Because of its ability to capture speech specific features, inverting the

magnitude cortical response has been applied to speech enhancement since it has

high fidelity in the reconstruction of speech and low fidelity in the reconstruction of

background noise [107].
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4.2 Proposed Architecture

Since we study defending against adversarial attacks on the wake-word systems

of voice assistants, we choose a baseline network from the Amazon Alexa team. A

variety of networks have been published by team-members at Amazon [108, 109,

110] and cybersecurity practitioners [111, 112], and the time-delayed bottleneck

highway network (TDB-HW) is the latest in the literature [108]. It consists of a

feature extractor stage and a classifier stage. Before the feature extraction stage, an

auditory spectrogram (a log-mel filter bank spectrogram, abbreviated LFBE [110])

features are fed into a two layer FC prenet with dropout. The feature extraction

stage of TDB-HW consists of four highway blocks. Then a bottleneck with 20 left

(200ms) and 10 right (100ms) contexts is applied. Finally six highway blocks and

one FC layer is applied to provide a classification. This is the network we refer to

as ”baseline”.

For our Cortical network, the input LFBE features remain the same, and are

convolved with 48 size 32x32 complex STRF filters from Eq. (4.3). These 48 filters

are shown in Fig. 4.2, and have parameters which mimic the response measured in

auditory cortex neurons [101]. After applying an absolute value and dropout, max-

pooling is applied along the rate and scale axes of the features to yield a scalegram

and a rategram. These are concatenated, a 1x1 convolution is applied, and the

original spectrogram with substantial dropout (0.9) is added to this 3D tensor.

A small prenet is applied before the TDB-HW network is applied. The residual

addition is motivated by the loss of 2D high frequency features by the STRFs, and
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(a) (b)

(c) (d)

Figure 4.5: We trained three baseline and three cortical networks, and at-
tacked each network four times with various SOTA attacks from IBM’s ART
toolbox [7]. Each point in each figure corresponds to the hyperparame-
ters for a single type of attack constrained to an `∞ ball with radius ε ∈
{0.0025, 0.00375, 0.005, 0.0075, 0.01, 0.015, 0.02} (the x-axis is converted to the SNR
of the achieved attack, larger ε leads to smaller SNR). Each point is the mean of 12
trials, that is the mean validation mask accuracy for the best (minimum accuracy)
adversarial noise found during the attack trial. The shaded region shows 1 standard
deviation across the 12 trials.

a way to recover some of that information. The STRFs are not learned during

training, so the total learnable parameters are similar between the two models.
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4.3 Experimental Results and Discussion

4.3.1 Data Sets

We created several monaural 15 hour training dataset and a 3 hour validation

set to train our networks. We create our training and validation splits from differ-

ent speakers of wakewords from the Kaggle Alexa dataset [113] and speakers in the

Librispeech dataset [114]. For additional background noise we use the DEMAND

dataset kitchen, living room, laundry room, hallway, office, cafeteria, cafe environ-

ments. We developed an algorithm to extract separate words from speech, which

we use to isolate single words from the Librispeech dataset for negative example

words. We use this algorithm and fine tune it manually when necessary on the

Alexa dataset to extract start/end times positive words (but keep surrounding au-

dio including noise), and we use it unsupervised on Librispeech to extract negative

words. Positive words are augmented randomly to have duration between 400ms

and 900ms (drawn from a distribution fitted on the training speakers), and to have

a base frequency drawn from U([80, 350]∩ [fsource−60, fsource +60]) Hz using the high

quality C++ sound library Rubberband [115]. Negative words have modified length

multiplied by U([0.8, 1.2]), and modified pitch multiplied by U([0.8, 1.4]) using the

same library. To form a single training or validation sound clip, words are randomly

selected to be positive or negative, and arranged with silence (U(50, 150) ms) to

form a multi channel clip. Background noise form DEMAND is added as an addi-

tional channel. To form the single channel audio the channels are normalized to -15
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(a) ε = 0.015 (b) ε = 0.015

(c) ε = 0.00375 (d) ε = 0.00375

Figure 4.6: This figure shows qualitative differences between the adversarial attacks
on baseline and cortical networks for the FGSM and PGD attacks in the mel spec-
trogram domain. Each subfigure concatenates the best noise from 6 trials. We see a
slightly higher dependence of modifying speaker frequencies in the baseline network
over the cortical network. This is consistent with our hypothesis that the cortical
representation of speech is more invariant to noise, at least for speaker frequencies
(below 1kHz). In the PGD attacks we see more horizontal lines in the baseline, and
some diagonal lines in the cortical. This is consistent with our expectation that
cortical features filter out stationary noises.

dBFS and simulated in a bedroom or living room with absorption U([0.4, 0.9]) with

random distances from the simulated microphone [116]. Finally the single channel

is normalized -15 dBFS and quantized to 16-bits.

The word extraction algorithm. To extract words from audio in an unsupervised
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method on Librispeech we used the following algorithm. Original audio was filtered

for speech base frequencies 85 − 255 Hz and normalized, then the energy of this

signal was convolved with a 100ms Hann window at 25ms hop, giving an envelope

for the signal’s energy . Local min/max extrema were found, and segments were

marked around triplets of low-high-low extrema points. Neighboring segments were

joined if less than 350ms, and segments longer than 1.2s were discarded. Then words

segments were sorted by the quietest silences preceding and following the word, and

were extracted from the original unmodified audio.

4.3.2 Analysis

The baseline and cortical networks were both able to train to similar compet-

itive rates as seen in the Detection Error Tradeoff (DET) curves in Fig. 4.4. These

curves are specific to the dataset that we created, but for comparison, the com-

pany PicoVoice has created a dataset in a similar manner to ours and tested the

CMU Sphinx Open Source Toolkit PocketSphinx, the open source KITT.AI, and

their own commercial product PicoVoice [117]. They advertise a miss rate of 6% at

1 false alarm per 10 hours for their own product, 32% for KITT.AI, and 48% for

PocketSphinx. On our dataset our miss rate is 7% at 1 false alarm per 10 hours for

our baseline and 10% for the cortical network. However this is an extreme mode of

operation, at 1 false alarm per 1 hour is 5% for both models.

We evaluate the merit of the cortical network as a defense to adversarial exam-

ples on Universal FGSM, PGD, Deepfool, and Carlini-Wagner attacks [90, 91, 118,
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(a) ε = 0.005 (b) ε = 0.005

(c) ε = 0.01 (d) ε = 0.01

Figure 4.7: This figure shows qualitative differences between the adversarial attacks
on baseline and cortical networks for the Deepfool and Carlini Wagner attacks in
the mel spectrogram domain. Each subfigure concatenates the best noise from 6
trials, and reports the SNR and accuracy on these 6 noises on the x-axis. The
cortical network attacks appear to pulsate more in time while the baseline network
attacks are more stationary. The cortical attacks also exhibit more diagonal lines
at resonant frequencies.

119, 120, 121]. We use the standard implementation of these in the IBM Adversarial

Robustness Toolbox (ART) [7]. The FGSM, Deepfool, and Carlini-Wagner attacks

were performed for 4000 iterations and evaluated every 400, PGD was performed for

250 examples for 100 iterations each, evaluated every 25 examples. For each trial,

the minimum accuracy noise was recorded on an eval set, and the average minimum

accuracy of 12 trials over the three networks is show in Fig. 4.5.
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The FGSM and PGD attacks have the slowest accuracy decay rate as the

strength of the noise grows on the cortical network. This is likely due to the more

dispersed patterns of attacks that these two methods create, shown in Fig. 4.6.

Because of the STRFs selectivity for changing phoneme dynamics [102, 122], the

cortical network should be more invariant to stationary noises as the human auditory

cortex [99], and is only slowly impacted by this type of noise. We see the noises

generated by the Deepfool and Carlini-Wagner attacks are much more textured in

Fig. 4.7. For the same search in a given `∞ size ball, the cortical network requires a

more elaborate noise than the baseline network off of the auditory spectrogram (and

still performs better at the same SNR). The noise for the baseline is more stationary

and has a higher impact on speaking frequencies. However, all the adversarial noises

cannot be said to be imperceptible to the human ear, though speech is still clearly

heard and understood by a human, the fricative like quality of the adversarial noises

is perceptible even at 25dB SNR.

4.4 Conclusion & Further Work

We apply several white-box iterative optimization-based adversarial attacks to

an implementation of Amazon Alexa’s HW network, and a modified version of this

network with integrated cortical representation prepossessing, and show that the

cortical features help defend against universal adversarial examples. At the same

level of distortion, the adversarial noises found for the cortical network are always

less effective for universal attacks. Further work could start by refining the audi-
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tory preprocessing, which here was limited to LFBE features emulating the cochlear

filterbank. A more faithful auditory spectrogram would simulate the transduction

of the hair cells and the reduction of the lateral inhibitory network (band specific

non-linearities and additional filtering). We also constrained our analysis to highly

effective but not imperceptible adversarial noise. Further work could more subtle

noises that degrade performance gradually, enforcing imperceptibility with percep-

tual masking [93, 123].

84



Chapter 5: cGANs with Multi-Hinge Loss

Generative Adversarial Networks (GANs) [124] are an attractive approach to

constructing generative models that mimic a target distribution, and have shown

to be capable of learning to generate high-quality and diverse images directly from

data [125]. Conditional GANs (cGANs) [126] are a type of GAN that use condi-

tional information such as class labels to guide the training of the discriminator

and the generator. Most frameworks of cGANs either augment a GAN by injecting

(embedded) class information into the architecture of the real/fake discriminator

[8], or by adding an auxiliary loss that is class based [9].

We describe an algorithm that uses both a projection discriminator and an

auxiliary classifier with a loss that ensures generator updates are always class spe-

cific. Rather than training with a function that measures the information theoretic

distance between the generative distribution and one target distribution, we gen-

eralize the successful hinge-loss [127] that has become an essential ingredient of

state of the art GANs [125, 128] to the multi-class setting and use it to train a

single generator-classifier pair [128]. While the canonical hinge loss made generator

updates according to a class agnostic margin learned by a real/fake discrimina-

tor [127], our multi-class hinge-loss GAN updates the generator according to many
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Figure 5.1: The proposed MHGAN generates images while leveraging the informa-
tion from the margins of a classifier. All the images in this figure are conditionally
sampled from our MHGAN.

(a) (b) (c)

Figure 5.2: The architectures of the fully supervised GANs that we train. 5.2a shows
the projection discriminator architecture [8] of our SAGAN. 5.2b shows how the
projection discriminator could simultaneously be trained with an auxiliary classifier
loss: we train MHSharedGAN this way. 5.2c Is an ACGAN [9] architecture that
also contains a projection discriminator: we train our ACGAN and MHGAN with
this architecture.

classification margins. With this modification, we are able to accelerate training

compared to other GANs with auxiliary classifiers by performing only 1 D-step per

G-step, and we improve Inception and Frechet Inception Distance Scores on Ima-

genet at 128 × 128 on a SAGAN baseline. We make our tensorflow code available

at https://github.com/ilyakava/gan.
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5.1 Background

A GAN [124] is a framework to train a generative model that maps random

vectors z ∈ Z into data example space x ∈ X concurrently with a discriminative

network that evaluates its success by judging examples from the dataset and gen-

erator as real or fake. The GAN was originally formulated as the minimax game:

max
D
Ex∼pd [log(D(x))] + Ez∼pz [log(1−D(G(z)))],

min
G
Ez∼pz [log(1−D(G(z)))],

(5.1)

where pd is the real data distribution consisting of examples x ∈ X , pz is the latent

distribution over the latent space Z, G : Z → X is the generator neural network,

and D : X → [0, 1] is the discriminator neural network. The GAN model transfers

the success of the deep discriminative model D to the generative model G and

succeeds in generating impressive samples G(z).

5.1.1 Loss functions for training GANs

In this chapter we will use the word ”loss” (and symbol L) for a quantity that

we minimize when optimizing. For clarity we rewrite the GAN optimization problem

in a more generic form [129] that is amenable to discussion and programming:

min
D
Ex∼pd [f(D(x))] + Ez∼pz [g(D(G(z)))],

min
G
Ez∼pz [h(D(G(z)))].

(5.2)
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(a) (b) (c)

Figure 5.3: Evaluation metrics for Imagenet-128. Inception Score and Frechet In-
ception Distance during training, and a comparison of Intra-class Frechet Inception
distance for our best MHGAN model and the best baseline SAGAN we trained. In
Figure 5.3c there are 622 classes whose intra-fid improve (each point below the red
line is a class for which FID improves) and there are 46 classes in the lower right
cluster.

Note the two minimums. We also don’t restrict D to the unit interval but instead

D : X → R.

To regain the minimax objective in Eq. (5.1) we set f(w) = log(1 + e−w) and

h(w) = −g(w) = −w−log(1+e−w) [129]. This choice minimizes the Jensen-Shannon

divergence between pd and pg [124], which denotes the model distribution implicitly

defined by G(z), z ∼ pz. The minimax objective however was difficult to train [130],

and the study of various ways to measure the divergence or distance between pd and

pg has been a source of improved loss functions that make training more stable and

samples G(z) of higher quality.

WGAN set f(w) = −w, h(w) = −g(w) = −w and clipped the weights of D to

greatly improved the ease and quality of training and reduced the mode dropping

problem of GANs, and had the interpretation of minimizing the Wasserstein-1 dis-

tance between pd and pg. Minimizing Wassertstein-1 distance was shown to be a spe-

cial instance of minimizing the integral probability metric (IPM) between pd and pg
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[131], and inspired a mean and covariance feature matching IPM loss (McGAN)[131]

following the empirical successes of the Maximum Mean Discrepancy objective [132]

and feature matching [128].

The mean feature matching of McGAN has a geometric interpretation as well:

the gradient updates of feature matching for generator updates are normal to the

separatating hyperplane learned by the discriminator [127]. Using the SVM like

hinge-loss choice of f(w) = max(0, 1 − w), g(w) = max(0, 1 + w) and h(w) = −w

[127, 133] the gradient are would be similar to those of McGAN. When combined

with spectral normalization of weights in D [134], the hinge loss greatly improves

performance, and has become a mainstay in recent state of the art GANs [8, 125,

135]. In this chapter we generalize this hinge loss to a multi-class setting.

5.1.2 Supervised training for conditional GANs

Conditional GANs (cGANs) are a type of GAN that use conditional informa-

tion [126] in the discriminator and generator. G and D become functions of the

pairs (z ∼ pz, y ∼ pd) and (x, y) ∼ pd, where y is the conditional data, for exam-

ple the class labels of an image. In a cGAN with a hinge loss, the discriminator

would minimize LD in Eq. (5.3), and the generator would minimize LG in Eq. (5.3)
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[125, 135].

LD =E(x,y)∼pd [max(0, 1−D(x, y))]

+Ez∼pz ,y∼pd [max(0, 1 +D(G(z, y), y))]

=LDreal + LDfake,

LG =− Ez∼pz ,y∼pd [D(G(z, y), y)].

(5.3)

We briefly review some work on using conditional information to train the discrim-

inator of GANs, as well as uses of classifiers.

(a) For x ∼ pd (b) For x ∼ punlab

Figure 5.4: The architectures of the semi supervised GANs that we train. 5.4a
shows the auxiliary classifier architecture [8] of our SAGAN, the same as used for
fully supervised experiments. When x ∼ pd the discriminator treats the example
as shown in 5.4a. In the diagram the green ”Embedding” block is the projection
discriminator embedding for a class, φ is the discriminator up to the penultimate
feature layer, ψ is a linear layer with scalar output, ψC is a linear layer with output
size n classes. When x ∼ punlab and the label is not available, it is treated as shown in
5.4b. This is similar to S2GAN [10]. Both ACGAN-SSL and MHGAN-SSL use these
architectures, the only difference between the two is the form of the classification
loss for labeled examples.

A projection discriminator [8] is a type of conditional discriminator that adds
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the inner product between an intermediate feature and a class embedding to its

final output, and proves highly effective when combined with spectral normalization

in G [8, 125, 135]. Using multiple discriminator networks [136, 137] or multiple

sub-networks of a single discriminator [138] has also been explored.

Several GANs have used a classifier in addition to, or in place of, a discrimi-

nator to improve training. CatGAN [139] replaces the discriminator with a K-class

classifier trained with cross entropy loss that the generator tries to confuse. ALI [140]

trains an encoder decoder pair with a discriminator, while also using the encoder

for inference in a semi-supervised setting. ACGAN [9] uses an auxiliary classifica-

tion network or extra classification layer appended to the discriminator, and adds

the cross entropy loss from this network to the minimax GAN loss. Triple GAN

[141] trains a classifier in addition to a discriminator and updates it with a special

minimax type loss.

Improved GAN [128] originally proposed using a K + 1 classifier for semi-

supervised learning (SSL) with feature matching loss, and others [142] have a used

a similar setup for SSL GANs as well. The single conditional critic architecture of

D : (x, y)→ R is swapped for the classifier architecture C : x→ RK+1, where there

are K class labels and an extra label for fake images (the ”+1”) [128]. The Im-

proved GAN trains this classifier architecture in a semi-supervised setting with log-

likelihood loss, and trains the generator with a class agnostic mean feature matching

loss. BadGAN [143] used the Improved GAN to achieve state of the art perfor-

mance on semi-supervised learning classification and found the aim of having a low

classification error on the K real classes is orthogonal to generating realistic ex-
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(a) MHGAN
IFID 134.82

(b) MHGAN
IFID 126.52

(c) MHGAN
IFID 158.00

(d) MHGAN
IFID 147.14

(e) MHGAN
IFID 132.38

(f) SAGAN
IFID 287.50

(g) SAGAN
IFID 275.03

(h) SAGAN
IFID 339.48

(i) SAGAN
IFID 307.16

(j) SAGAN
IFID 296.28

Figure 5.5: Classes for which Intra-FID gets better for our proposed MHGAN. We
show random samples from the 5 classes that improved the most in Figure 5.3c by
points, excluding the trout class where SAGAN completely collapses.

amples. MarginGAN [144] similarly proposed a Triple GAN to train a high-quality

Mean Teacher Shake-Shake classifier [145, 146] with a ”bad” GAN by decreasing the

margins of error of the cross entropy loss for generated images. Other approaches

incorporate multiple adversarial games to get better SSL classification performance

[147, 148]. There are few works which focus on improving the generator quality in

a label limited setting. One approach has used two discriminators, one specializing

on labeled and the other on unlabeled data [149]. Another approach investigated

training an ACGAN and using pseudo labels from the classifier as inputs to the

projection discriminator during training, but found that pre-labeling the unlabeled

training data with a SSL classifier to be a better performing choice [10].

Our proposed multi-hinge GAN (MHGAN) uses a classifier like ACGAN [9] but

instead of using a probabilistic cross entropy loss with the WGAN, we use a multi-
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(a) MHGAN
IFID 27.92

(b) MHGAN
IFID 93.79

(c) MHGAN
IFID 154.82

(d) MHGAN
IFID 102.92

(e) MHGAN
IFID 182.66

(f) SAGAN
IFID 19.48

(g) SAGAN
IFID 81.93

(h) SAGAN
IFID 146.08

(i) SAGAN
IFID 94.21

(j) SAGAN
IFID 173.95

Figure 5.6: Classes for which Intra-FID gets worse for our proposed MHGAN. We
show random samples from the 5 classes that worsened the most in Figure 5.3c by
points. We did not observe any instances of mode collapse in MHGAN.

hinge loss similar to that in the discriminator. We demonstrate that adding this loss

to the current state of the art SAGAN architecture with projection discrimination

improves image quality and diversity, and trains stably at only 1 discriminator step

per generator step for both supervised and semi-supervised settings. We compare

our class specific modification with cross entropy loss [9] with projection discrimi-

nation, and with projection discrimination alone. Unlike cross-entropy, which has a

basis in probabilistic quantities that are not present in WGANs, our multi-hinge loss

is completely compatible with the WGAN formulation. We also find that the task

of classification and discrimination should not share parameters, and show how to

trade-off image diversity for quality in a shared parameter version MHSharedGAN.
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5.2 Multi-hinge loss

We propose a multi-hinge loss that can be easily plugged into the popular

and state of the art projection discriminator cGAN architecture of [8]. Our fully

supervised formulation, motivated in Section 5.2.1, uses the auxiliary classifier setup

seen in Figure 5.2c, but instead of using cross entropy as ACGAN [9] does to train

this classifier we generalize the binary hinge loss [127, 133] to a multi-class hinge loss

developed for SVMs [150], and we use it to train a spectrally normalized WGAN

[134, 135, 151, 152]. Unlike other ACGANs, our multi-hinge loss formulation only

requires 1 Critic step per 1 Generator step greatly speeding up training, and uses a

single classifier for all classes in the dataset.

We denote the classifier function as C : X → Y and let Ck(x) denote the kth

element of the vector output of C for an example x, which represents the affinity of

class k for x. The Crammer-Singer multi-hinge loss that we propose as an auxiliary

term is:

LDaux = E(x,y)∼pd [max(0, 1− Cy(x) + C¬y(x))]

LGaux =

Ez∼pz
y∼pd

[max(0, 1− Cy(G(z, y)) + C¬y(G(z, y)))]

(5.4)

where C¬y(x) is the classifier’s highest affinity for any label that is ”not y”: C¬y(x) =
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maxk 6=y Ck(x), y = 0, 1, . . . , K. We then train with the modified loss:

LMH,D =LDreal + LDfake + LDaux,

LMH,G =LG + λLGaux.

(5.5)

where λ = 0.1. The advantage of a conditional WGAN trained with the auxiliary

terms in Eq. (5.4) is the main result of this chapter. In the following sections we

discuss the motivation and advantage of training procedure. We also provide an

SSL formulation in Section 5.2.2.

Method Imagenet-128
IS FID

Real data 156.40
SAGAN 52.79 16.39
ACGAN 48.94 24.72
MHGAN 61.98 13.27

SAGAN 1M [135] 52.52 18.65
BigGAN 1M [125] 63.03 14.88

Table 5.1: Inception Scores and FIDs for supervised image generation on Imagenet-
128. The models were chosen by maximizing the IS within 1M iterations. The
BigGAN comparison we include is the one most similar to our setting (batch size
1024). Our SAGAN Baseline results are consistent with the results reported online
with the implementation we use [1].

5.2.1 Motivation behind the multi-hinge loss

A class conditional discriminator should obviously not output ”real” when it

is conditioned on the wrong class. That is for a pair (x, y) ∼ pd we expect if our

discriminator loss is minimized then so is the quantity: 1−D(x, y) +D(x, k), k 6= y

(recall that in WGANs D is not a probability measure and may take values outside
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[0, 1]). This quantity is positive for all k so long as the output of the discriminator

conditioned on the correct label is larger by at least one than the discriminator

conditioned on the rest of the labels. To explicitly enforce this margin, we could

minimize the expectation:

E(x,y)∼pd [max(0, 1−D(x, y) + max
k 6=y

D(x, k))] (5.6)

This form of a hinge-loss has been used by [150] in their formulation of efficient

multi-class kernel SVMs. The ReLU max(0, ·) leads Eq. (5.6) to ignore cases where

the correct decision is made with a margin more than 1. We design Eq. (5.4) to

enforce the margins in Eq. (5.6).

Note that a projection discriminator cGAN implicitly has a classifier in it. The

output of D(x, k) projects the penultimate features onto an embedding for class k.

Similarly the vector output of a typical classifier is a matrix multiply of the penulti-

mate features with a n features × n class matrix. A projection discriminator D(x, k)

could be turned into a classifier C(x) by using the entire matrix of class embeddings

to output an affinity for every class. Creating a classifier this way doesn’t increase

the parameter count at all, and only increases computation in one layer of D by a

constant factor (the number of classes) which we find is completely negligible for the

large models typically trained for 64× 64 images or greater. However, we find that

this sharing of parameters between the classification task in Eq. (5.6) and the dis-

crimination task around which the adversarial training centers is disadvantageous.

As we will discuss, it is instead preferable to add an auxiliary classifier via an extra
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final fully connected layer, the additional cost of a n features × n class matrix proves

to be negligible in our experiments.

5.2.2 Semi-supervised learning

When additional unlabeled data x ∼ punlab is available, we find that learning

with projection discrimination is not stable, that is bypassing the projection dis-

criminator when a label is not available does not lead to successful training. So

for semi-supervised settings we modify the training procedure in Eq. (5.5) by using

pseudo-labels [10]. For the discriminator we add the term:

LDunlab = Ex∼punlab [max(0, 1−D(x, ỹC(x)))] (5.7)

where ỹC(x) = arg maxk∈Y Ck(x), that is we depend on the classifier that we co-train

with the discriminator. The loss for the generator is left unchanged. Overall for the

semi-supervised setting we train with the losses:

LMH,SSL,D =LDreal + LDunlab

2 + LDfake + LDaux,

LMH,SSL,G =LMH,G.

(5.8)
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(a) (b)

Figure 5.7: Inception Scores and FIDs (10k) for supervised image generation on
Imagenet 64× 64. 1 Million D-steps for SAGAN and MHGAN can be completed in
about 48 hours.

A similar loss has previously been used with a WGAN co-trained with a cross entropy

auxiliary classifier [10]

LAC,SSL,D =LDreal + LDunlab

2 + LDfake

+ E(x,y)∼pd [logCy(x)],

LAC,SSL,G =LG + λEz∼pz
y∼pd

[logCy(G(z, y))].

(5.9)

However we find that the consistency of hinge functions throughout the loss terms

leads to more successful training.

Figure 5.4 shows how labeled and unlabeled data flow through our ACAN and

MHGAN networks during semi-supervised learning. In Figure 5.4a is a projection

discrimination network with an auxiliary classifier added. Figure 5.4b shows that

for unlabeled data, the role of y is substituted with the pseudolabel ỹC(x), and the

classification loss is not trained.
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5.3 Experiments

As our baseline, we use a spectrally normalized [134] SAGAN [135] architec-

ture. We use this baseline from the publicly available tfgan implementation [1], and

execute experiments on single v2-8 and v3-8 TPUs available on Google TFRC. This

baseline was chosen for its exceptional performance [1]. On top of this baseline we

implement a second baseline, ACGAN, and our MHGAN. The only architectural

changes to SAGAN for both of these networks is that a single dense classification

layer is added to the penultimate features. For these networks conditional infor-

mation is given to G using class conditional BatchNorm [153, 154] and to D with

projection discrimination [8]. A spectral norm is applied to both D and G during

training [8, 135]. We train our SAGAN baseline with the hinge loss [127, 133] in

Eq. (5.3). We train our proposed MHGAN with Eq. (5.5). To better see the advan-

tage of our multi-hinge loss formulation we train an ACGAN baseline with the loss:

LAC,D =LDreal + LDfake + E(x,y)∼pd [logCy(x)],

LAC,G =LG + λEz∼pz
y∼pd

[logCy(G(z, y))].
(5.10)

We also evaluate our multi-hinge formulation for semi-supervised settings and sim-

ilarly train a MHGAN-SSL model with Eq. (5.8), and compare it with an ACGAN-

SSL model trained with Eq. (5.9) (SAGAN was not able to train stably without an

auxiliary classifier).
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Method Imagenet 64x64
IS FID

Real data 56.67
Baseline 1M 19.60 15.49
MHGAN 1M 22.16 13.29

Table 5.2: Inception Scores and FIDs (50k) for supervised image generation on
Imagenet 64×64. Though the margin of improvement is not as great as for Imagenet
128×128, adding the auxiliary MHGAN loss proves fruitful. Diversity is maintained
at the same level (it improved in Imagenet 128× 128).

For SAGAN, MHGAN, and MHGAN-SSL we optimize with size 1024 batches,

learning rates of 1e − 4 and 4e − 4 for G and D, and 1 D step per G step. For

ACGAN and ACGAN-SSL, we found training to be unsuccessful with only 1 D

step per G step, so we train with 2 D steps per G step (training with more than

2 D steps did not improve results). For ACGAN-SSL we also used a learning rate

of 5e − 4 for D and a z dimension of 120 instead of 128 in our other experiments

[10]. The generator’s auxiliary classifier loss weight is fixed at λ = 0.1 for all

experiments. We use 64 channels and limit most of our experiments to 1,000,000

iterations. We use the Inception Score (IS) [128] and Frechet Inception Distance

(FID) for quantitative evaluation of our generative models. During training we

compute these scores with 10 groups of 1024 randomly generated samples using the

official tensorflow implementations [1, 155], and for the final numbers in Table 5.1

we use 50k samples.
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(a)
(b)

Figure 5.8: Validation accuracy and self accuracy track IS and FID improvements
and reach their own plateaus during training. Discriminator accuracy is very noisy
during training, and behaves differently than classification accuracy, suggesting that
the two tasks can be separately optimized.

5.3.1 Fully supervised image generation

In Figure 5.3 and Table 5.1 we present fully supervised results on the Imagenet

dataset [156]. Previous work has noted a multitude of GAN algorithms train well

on datasets of limited complexity and resolution but may not provide an indication

that they can scale [157]. Thus we choose the largest and most diverse image data

set commonly used to evaluate our GANs. Imagenet contains 1.3M training images

and 50k validation images, each corresponding to one of 1k object classes. We resize

the images to 128 × 128 for our experiments. On a single v3-8 TPU MHGAN and

SAGAN complete 10k steps every 2 hours, and ACGAN completes 10k G-steps

every 3.3 hours. Thus 1M MHGAN iterations takes 8.3 days.

We can see that the auxiliary MHGAN loss added to SAGAN trains a better

GAN according to Inception score and FID. The classifier increases the fidelity of the
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samples generated by the GAN without sacrificing diversity as shown in Figure 5.3c,

where we plot the intra-class FID of SAGAN versus MHGAN for the best models

we trained by overall IS. The mean class FID improves by 3.5%, and the class FID

is lowered for 622 classes, and for 46 classes in the lower right cluster improves by

an average of 50%. For the point below the cluster, mode collapse is prevented

by MHGAN for the trout class. Some of these points in the cluster are shown in

Figure 5.5, where we randomly sample images from classes where the FID score

decreased (improved) from the SAGAN baseline to our MHGAN. We see in some

of these cases that SAGAN is showing distortions or early signs of mode collapse,

despite overall IS being at a high. We also show the opposite relation in Figure 5.6,

where we randomly sample the classes for which FID increases (worsens) the most

from SAGAN to MHGAN. From Figure 5.6 MHGAN doesn’t show a worrying level

of decreased diversity or mode collapse.

We also evaluated MHGAN on a smaller scale dataset of Imagenet at resolution

64 × 64. The conclusions from these experiments are the same but more muted

compared to Imagenet at 128 × 128. Figures 5.7a and 5.7b show that MHGAN

improves the FID and IS scores over SAGAN and ACGAN baselines, and in Table 5.2

are FID and IS numbers calculated over 50k images, and the Intra-FID comparison

of SAGAN versus MHGAN which shows that diversity stayed the same between the

two models.
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5.3.2 Measuring the conditioning of the discriminator and generator

We attribute our model’s success to the fact that it gradually incorporates class

specific information into both the discriminator and the generator networks than

just projection discrimination alone. When we have a classifier as in MHGAN and

ACGAN it is straightforward to calculate the Validation accuracy and Self accuracy.

Validation accuracy is the accuracy of the classifie on real validation data, the whole

standard validation partition of the dataset is used. This measures how good the

classifier learned is; if it starts to overfit the training data the we expect validation

accuracy to decay. For self accuracy we test if arg maxk∈Y Ck(G(z, y)) equals y. This

measures how G incorporates the label information into its output, as measured by

the concurrently trained C. This measures the self consistency of the GAN.

For the baseline SAGAN network with a projection discriminator, it is also

possible to perform classification using the method mentioned in Section 5.2.1. That

is our ”classification” for an example x is arg maxk∈Y D(x, k), where each k is used

as input to the projection discriminator layer that was trained.

We find that our suspicion from Section 5.2.1 is confirmed for the baseline projection

discriminator model: for (x, y) ∼ pd it is not the case that D(x, y) > D(x, k), k 6= y

with high probability. In fact, we find that for all projection discriminators in our

trained models that D(x, y) > D(x, k), k 6= y uniformly and randomly.

However, the motivation behind Eq. (5.4) was to create a better GAN by

training the discriminator to incorporate as much conditional information in the

dataset. Though we find that the projection discriminator layer cannot be made

103



Method Imagenet-128 10%
IS FID

Real data 156.40
ACGAN-SSL 32.38 26.12
MHGAN-SSL 32.40 23.51

S2GAN-CO [10] 37.2 17.7
S2GAN [10] 73.4 8.9

Table 5.3: Inception Scores and FIDs (50k) for semi-supervised image generation on
Imagenet-128 trained with 10% of the data. The models were chosen by maximizing
the IS within 1M iterations.

useful for classification, we can still incorporate more conditional information into

the discriminator network through the embeddings it produces. In Figure 5.8a we

plot validation and self accuracy for the models with a classifier (these metrics

oscillate randomly near 1/ n class throughout training for SAGAN).

We see that validation performance (top-1 accuracy on Imagenet) is about the

same for both models, converging around 50% and peaking at 50.32% for ACGAN

and 52.66% for MHGAN. This is not competitive with purpose built classifiers which

have different architectures and are typically much deeper than the discriminator

of our GANs. Meanwhile classification accuracy on the training set hovers around

the level of 98%. Self accuracy converges to 90% in both, and for obvious reasons

goes to 100% when the generator experiences collapse (it is a curious detail that the

SOTA top-1 classification accuracy on Imagenet has also been converging to 90%

[158]). We leave it to future work to control self accuracy to be at the same level as

validation accuracy, and for both to increase even more gradually, since this could

prolong training and IS and FID improvements further. Intuitively there is a trade-

off between fidelity (generated images looking like the right class) and diversity. In
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Figure 5.8a we see that the absence of a logarithm, and the hinge function which

limits learning on examples that are correct by a margin, leads to the more gradual

incorporation of class specific information into the generator for MHGAN.

In Figure 5.8b we plot the discriminator’s accuracy on the real validation set

(the percentage of examples for which D(x, y) > 0). This is a very noisy metric

during training, so we also plot the 100k itr moving average with the heavier line. It

is interesting that this metric declines to around 50% as training progresses, since the

same discriminator accuracy on the training set is stable at 91% on the training set

for MHGAN, and 98% for SAGAN. Intuitively this indicates that D is memorizing

the training set [125]. Yet since the classification accuracy remains stable or declines

only slightly, this shows a disconnect between the classification and discrimination

tasks.

5.3.3 The importance of separating classification and discrimination

tasks

Earlier we mentioned that for all three models that we compare, the projection

discriminator never incorporates class specific information; that the discriminator

output has the highest affinity for the correct class about 1/ n class of the time. We

observe that it is disadvantageous to try and train the projection discriminator to

have the property D(x, y) > D(x, k), k 6= y with high probability. Both MHGAN

and ACGAN use an extra fully connected layer as an auxiliary classifier during

training. Having this extra layer we saw that training with Eq. (5.5) improves both
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quality and diversity as shown in Figure 5.3. It is also possible to follow the approach

mentioned in Section 5.2.1 and share parameters between the projection discrimi-

nator and the classifier, and train with Eq. (5.5). We call this MHSharedGAN and

illustrate this strategy in Figure 5.2b.

Training from scratch this way does not lead to satisfactory performance, but

introducing this loss in the middle of SAGAN training produces interesting results

(introducing it after 1M steps is also unsuccessful). After just 5k iterations after

transitioning from training with Eq. (5.3) (SAGAN) to Eq. (5.5) (MHSharedGAN)

Inception score skyrockets from 47.79 to 169.68 and Frechet Inception Distance drops

to 8.87 (evaluated on 50k images). The catch is that unlike with MHGAN, there is

a trade-off between quality and diversity being made when parameters are shared.

This is illustrated in Figure 5.9, where we see the diversity of the generator drops

drastically. Though the layer is spectrally normalized during training with 1 step

of the power iteration method, during this second phase of training the spectrum

of the projection discriminator (rank v.s. value plot of eigenvalues) changes from

a sigmoid shape to a steep exponential shape, indicating that the projection has

collapsed to a just a few dimensions.

We also performed the MHShared GAN finetuning on the SAGAN in Table 5.2

(trained for 1M steps) and after 15k steps the IS went to 30.47 and the FID went to

10.03 (and the validation classification accuracy went to 23.60% while the generator

classification self accuracy went to 62.66%, both started at 1/n class). Again the

diversity of the generator visibly declined; some examples of this are in Figure 5.11.
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5.3.4 Semi-supervised image generation

To demonstrate our multi-hinge loss in a semi-supervised setting we use the

partially labeled Imagenet data set with a random selection of 10% of the samples

from each class retaining their label publicly available on TFDS [159]. We perform

experiments on this dataset resized to 128 × 128. We keep the same architecture

choices described in Section 5.3 and train our MHGAN-SSL with Eq. (5.8) and com-

pare to ACGAN-SSL trained with Eq. (5.9). We find in Figure 5.10 that MHGAN-

SSL trains faster than ACGAN-SSL but reaches a similar level of performance in

Table 5.3. Both networks have their validation accuracy go to 40%, and self accu-

racy above 80%. The speed of of MHGAN-SSL is an advantage over ACGAN-SSL,

which has a similar loss formulation to S2GAN-CO [10], but a smaller and simpler

network. We leave it to future work to train the network in S2GAN-CO with the

MHGAN-SSL loss. However it has been shown that co-training with pseudo-labels

is not as competitive as pre-labeling the unlabeled data with a separate classifier

and then using a fully supervised ACGAN like loss (S2GAN-CO vs S2GAN). We also

leave it to future work to use this pre-labeling strategy with MHGAN to improve

on SSL GAN training.

Figure 5.12 shows that the best FID over time was more quickly achieved by

MHGAN-SSL for 1 million iterations, though the performance is not as impressive

as in the fully supervised case.
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5.4 Conclusion

MHGAN is a powerful addition to projection discrimination and improves

training with negligible additional computational cost. Tables 5.1 and 5.3 and Fig-

ure 5.3 show that the multi-hinge loss improves both the quality and diversity of

generated images on Imagenet-128. We also show how classification and discrimina-

tion tasks should not be integrated too closely, and show how the multi-hinge loss

can be used to trade diversity for image quality in MHSharedGAN. MHGAN is able

to perform well in both fully supervised and semi-supervised settings, and learns a

relatively accurate classifier concurrently with a high quality generator.
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(a) SAGAN
trained for 580k steps.
IS 47.79 and FID 17.10 (50k).

(b) The model after 5k steps of
MHSharedGAN training. IS 169.68
and FID 8.87 (50k).

Figure 5.9: Enforcing class fidelity without an auxiliary classifier, and training class
margins to be respected in the projection discriminator using Eq. (5.4) instead leads
to low diversity, but higher quality images.
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Figure 5.10: Inception Score and Frechet Inception distance when co-training a
classifier in a semi-supervised setting of Imagenet-128 with 10% of labels. These
experiments run at a similar rate to their fully supervised counterparts. MHGAN-
SSL reaches IS and FID optima faster.

Figure 5.11: Before/After performing the MHSharedGAN finetuning to lower the
diversity, but raise the quality (according to IS and FID metrics) of samples on Ima-
genet 64×64. The top row of images is sampled from SAGAN trained for 1M steps.
And the bottom row is that same model after 15k steps using the MHSharedGAN
strategy, where the projection discriminator weights are shared between a itself and
a classifier optimized with multi-hinge loss.
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(a) Semi-Supervised (b) Fully Supervised

Figure 5.12: The best FID of our models plotted by duration of training. The
multi-hinge loss accelerates training over SAGAN and ACGAN baselines in both
fully supervised and semi-supervised settings.
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Chapter 6: A study of quality and diversity in K+1 GANs

When GANs were first introduced [124], deep learning had already had striking

successes with learning discriminative models while high quality deep generative

models had yet to appear. The GAN framework combined these two models in an

adversarial setting that allowed the successes of discriminative models to be used

to train generative models that produced realistic samples. The first GAN pitted a

two class real/fake discriminator against a generator network and real images [124].

Since then a multitude of innovations in the architectures of these networks, and

loss functions for how to combine them, have flourished [129], with the chief goals

of improving sample diversity and quality [160].

Many works have found new ways to incorporate class information into the

GAN training process to improve image generation [8, 9, 139, 142, 161, 162]. In this

chapter we focus on K+1 GANs which combine the task of real/fake discrimination

with class discrimination directly [162]. K+1 GANs proved most successful in im-

proving semi-supervised learning classification performance [143, 161, 162], but have

more recently been challenged by a different class of methods [163, 164]. They have

never been as widely successful as GANs with auxiliary classifiers (ACGAN) [9], or

GANs that use class embeddings without the classification task [8, 125, 165]. Here
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we investigate why the GAN architecture which most closely unifies real sample

classification with fake sample classification has been overtaken by other methods.

In the previous chapter we readily extended a binary formulation of the WGAN

with hinge loss to a multi-class setting using inspiration from SVMs. In this chapter

we take a more theoretical approach using a probabilistic interpretation of GANs.

We study a hypothesis testing inspired extension of the binary GAN into the

K+1 setting [162], where K real distributions are classified against each other, and

against a fake distribution. We show how the optimal discriminator/classifier in this

setting is a straightforward generalization of the optimal binary GAN discriminator,

and show that the formulation of the log likelihood loss prevents the generator from

fully benefiting from supervision over the classes of real samples. Then we then

introduce another generator loss criterion that uses dynamic labeling [161], and

describe how it has increased class specificity over the K+1 GAN by emphasizing

the modes of the real data. Finally we demonstrate with experiments on CelebA

and CIFAR10 to what degree both GAN formulations have an effect on increasing

the quality and diversity of samples over the original binary GAN and more popular

ACGAN.
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6.1 Binary GANs

The objective function of a binary GAN is chosen to be the log likelihood:

L(d, g) =p0E[logP[D = 0 | X] | H = 0] + p1E[logP[D = 1 | X] | H = 1]

=p0

∫
log(1− d(x))f0(x)dF (x) + p1

∫
log d(x)f1(x)dF (x)

=p0

∫
log(1− d(g(z)))f0(g(z))dF (g(z)) + p1

∫
log d(x)f1(x)dF (x)

(6.1)

We use capitalized notation for the random variables on some probability triple

(Ω,F ,P): X(ω) ∈ Rk our observation (images for us), H(ω) ∈ {0, 1} the always

present underlying hypothesis or state of nature (the observation is from the real

distribution or the fake distribution), and Z random noise. We follow the convention

that the real hypothesis is 1 and the fake hypothesis is 0. Our discriminator d(x)

will model the probability that an observation is from the real distribution, so we

also introduce a random variable D(ω) ∈ {0, 1} for a decision to describe that our

discriminator outputs the probability d(x) = P[D = 1 | X = x,H] (at test time

our strategy is implemented as arg max{d(x), 1 − d(x)}, the formalism here is for

the training of d and g). We assume the existence of two conditional probability

distributions Fh(x) = P[X ≤ x | H = h], h = 0, 1 on Rk which are both absolutely

continuous with respect to some distribution F on Rk. We denote the fake and real

densities induced by F0, F1 respectively as fh(x) = P[X = x | H = h], h = 0, 1.

We denote the generator as the Borel measurable mapping g : z 7→ x. The random
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variable g(Z) has a density which is set to f0(g(z)). Where ph = P[H = h], h = 0, 1 is

the prior on each hypothesis (often taken to be uniform). The discriminator seeks to

maximize this objective while the generator seeks to minimize it. Maximizing L(d, g)

over discriminators gives the pointwise solution d∗(x) = p1f1(x)/(p0f0(x)+p1f1(x)).

Thus, letting favg(x) = p0f0(x)+p1f1(x) be the average of the densities and f(·, h) =

fh(·)ph, i = 0, 1 be the joint densities:

L(d∗, g) =
∫

log p0f0(x)
favg(x) p0f0(x)dF (x) +

∫
log p1f1(x)

favg(x) p1f1(x)dF (x)

= KL(f(·, 0) || favg(·)) +KL(f(·, 1) || favg(·))
(6.2)

The solution to ming L(d∗, g) when p0 = p1 = 1/2 is f0(g(z)) = f0(x) = f1(x). And

more generally: p0f0(x) = p1f1(x) [124].

6.2 K+1 GANs

Figure 6.1: The K + 1 Improved GAN architecture. ψCK+1 denotes the K + 1
classification layer. Note that there is no projection discriminator layer.

The generalization of the binary GAN [124], known as the K+1 GAN (and
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also as LabelGAN [161]), was originally developed for semi-supervised learning with

GANs [162]. This architecture is shown in Figure 6.1. We let M = K + 1 denote

the total number of classes, K real classes plus the fake class, which we refer to

as the zeroth class. This generalization echoes the form of the generalization of

binary minimax hypothesis testing to be M-ary [166]. In this setting an observation

X(ω) may occur under one of M hypotheses, for example an image X may be of

a bird, a truck, a fake image, a frog, etc.. We generalize the discriminator to not

just decide whether an example is from the real or fake hypothesis, but whether

an example is from one of M − 1 real data hypotheses or from an additional fake

hypothesis. Now the state of nature take values H(ω) ∈ {0, 1, . . . ,M − 1}, and the

same for our decision random variable D(ω). We use the convention that 0 still

denotes the fake hypothesis, and 1, 2, . . . ,M−1 denote the multiple real hypotheses

(for example image classes). Our discriminator d(x) outputs a vector in [0, 1] ∈ RM

of probabilities dm(x) = P[D = m|X = x],m = 0, 1, . . . ,M − 1 to signify the

probability that the decision should be m (at test time our decision strategy will

simply be arg maxm dm(x)). We denote the distributions of X under each hypothesis

as Fm(x) = P[X ≤ x|H = m],m = 0, 1, . . . ,M − 1, all absolutely continuous

with respect to some distribution F , and all with densities fm. Our generator g is

unchanged from the binary GAN setting, and we again set the density of g(Z) to

f0. The objective function of the binary GAN naturally generalizes to training all
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outputs of the discriminator:

LK+1(d, g) =
M−1∑
m=0

pmE[logP[D = m | X] | H = m]

=
M−1∑
m=0

pm

∫
log dm(x)fm(x)dF (x)

=
M−1∑
m=1

pm

∫
log dm(x)fm(x)dF (x) + p0

∫
log d0(g(z))f0(g(z))dF (g(z))

(6.3)

We denote the fake and real densities as fh(x) = P[X = x | H = h], h = 0, 1, . . . , K

and pm is the prior on each hypothesis (often taken to be uniform).

Proposition 1. For each x ∈ Rk the optimal vector valued decision strategy d∗(x)

exists and each of its M elements is given by d∗m(x) = pmfm(x)/∑M−1
i=0 pifi(x).

This can be proved for discrete densities using the classic optimality criterion for

differentiable convex objectives [167].

An optimality criterion for differentiable convex objectives [167]. Suppose

f is differentiable (with domain Df) s.t. we have the first order condition f(y) ≥

f(x) +∇f(x)T (y − x), ∀x, y ∈ Df , then x ∈ D∗ (the feasible set) is optimal if and

only if ∇f0(x)T (y − x) ≥ 0, ∀y ∈ D∗. ∇f0(x) is the direction you can increase the

objective function, it is the supporting hyperplane at the boundary point x.

Proof. (of Proposition 1)

LK+1(d, g) =
∫ M−1∑

m=0
pmfm(x) log dm(x)dF (x) (6.4)
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Fix x in ∑M−1
m=0 pmfm(x) log dm(x), and consider the following convex optimization

problem where pmfm(x) becomes fm and dm(x) becomes dm:

min
d
L(d) = −

M−1∑
i=0

fi log di s.t.
∑

di = 1, d ≥ 0 (6.5)

with fi ≥ 0 constants. Let c, d be vectors in the feasible set and let ci, di denote

their elements. First we check that we have the first order condition for c and d,

noting that ∇L(d)i = − fi

di
and that log x ≤ x− 1, x ≥ 0:

−L( c
d

) =
M−1∑
i=0

fi log ci
di
≤

M−1∑
i=0

fi(
ci
di
− 1) =

M−1∑
i=0

fi
di

(ci − di) = −∇L(d)T (c− d)

(6.6)

since L(d)−L(c) = −L( c
d
), this shows that L(c)−L(d) ≥ ∇L(d)T (c−d). Next we can

get the solution d∗ by looking at the iff condition. Suppose ∃d∗ ∈ D∗ s.t. ∇L(d∗) =

−K111:

∇L(d∗)T (c− d∗) ≥ 0

−K111(c− d∗) ≥ 0

∑
ci −

∑
d∗i ≤ 0

(6.7)

Indeed is true for all c in the feasible set. Therefore di = fi/
∑M−1
j=0 fj is optimal. This

solution is on the edge of the feasible set. Because d∗m(x) = pmfm(x)/∑M−1
i=0 pifi(x).

d∗ for each x this is an algebraic combination of Borel measurable functions, it is

Borel measurable. �
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Note that this result easily simplifies to the binary GAN result when M =

2 and p0 = p1 = 1/2 [124]. Continuing to generalize the binary GAN game of

ming maxd L(d, g) we see:

LK+1(d∗, g) =
M−1∑
m=0

∫
log pmfm(x)

favg(x) pmfm(x)dF (x)

=
M−1∑
m=0

KL(f(·,m) || favg(·))
(6.8)

where favg(x) = ∑M−1
m=0 pmfm(x).

Any M-ary problem can be converted to a binary problem by changing the

task from deciding between {0, 1, . . . ,M − 1} to {0, not0}, and deciding not0 is

equivalent to deciding ”real.” The following Proposition 2 says that the loss for

the optimal strategy for an M-ary problem will be lower bounded by that strategy

applied to the corresponding binary problem.

Proposition 2. Let ming maxd LK+1 be an M-ary problem with some densities fm,m =

1, 2, . . . ,M − 1. Let d∗ be optimal in the sense of Proposition 1. Define a new bi-

nary GAN problem (we use ṽar to indicate a variable is for the new binary GAN

problem) ming̃ max
d̃

L with the real density f̃1 as the average of all the M − 1 real

density f̃1 = freal(x) = ∑M−1
m=1 pmfm(x). Then the optimal discriminator d̃∗ in this

binary GAN problem will be 1− d∗0(x) and

ming LK+1(d∗, g) ≥ ming̃ L(1 − d∗0, g̃) = L(1 − d∗0, g̃
∗) where g̃∗ has the density

p0f̃0(x) = freal(x).

Proof. The optimal discriminator for the binary GAN problem follows from Propo-
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sition 1 and noting 1− d∗0(x) = freal(x)/favg. By the log-sum inequality:

M−1∑
m=1

log pmfm(x)
favg(x) pmfm(x) ≥

(
M−1∑
m=1

pmfm(x)
)

log

(∑M−1
m=1 pmfm(x)

)
(M − 1)favg(x)

= freal(x) log freal(x)
p0f0(x) + freal(x) − freal(x) log(M − 1)

(6.9)

where the last term has no dependence on g. Plugging in we see:

min
g

LK+1(d∗, g) ≥ min
g

∫
log p0f0(x)

favg(x) p0f0(x)dF (x) +
∫

log freal(x)
favg(x)freal(x)dF (x)

(6.10)

where we recognize the right hand side is: ming L(1− d∗0, g), so we make the appro-

priate reparameterizations f0 → f̃0, g → g̃, and the minimum of the binary GAN

problem was addressed in Section 6.1. Equality is achieved in the log-sum inequality

when pmfm(x),m = 1, 2, . . . ,M − 1 are equal. �

Of course in the original binary GAN setting of M = 2 and p0 = p1 = 1/2,

both sides of the bound are identical. For M > 2 this lower bound is not tight

at the minimum f0 = f̃0 = freal/p0 and we cannot directly say that g̃∗ from the

constructed binary GAN problem minimizes the M-ary GAN problem. But the

following remark will help provide evidence for the claim that indeed for M > 2 too

p0f0(x) = freal(x), that is that training the M-ary discriminator d to classify the

real examples in parallel with telling fake examples apart from real examples does

not change the generator learned.

Remark 1. For discrete PMFs fm,m = 0, 1, . . . ,M−1, we may write the following
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analogue of Equation (6.8):

min
f0

LK+1(d∗, g) = min
f0

M−1∑
m=0

KL(f(·,m) || favg(·)) (6.11)

which is a convex optimization problem. The empirical solution we observe is

p0f0(x) ≈ freal(x) = ∑M−1
m=1 pmfm(x).

6.2.1 Summary

The typical intuition in training neural networks is that learning from more

data and sharing parameters across tasks leads to better performance. But here,

surprisingly the theory states that by using class information in the K + 1 GAN to

train a discriminator that can discriminate between classes, and between fake images

and each of the classes, is no better than ignoring the class information. That is, if

we have labeled classes for data, but choose to throw it away by merging f1, . . . , fK

into a single freal, the generator of the binary GAN that we train should have the

same distribution f0 as if we trained the K+1 GAN. This result is also consistent

with examining the gradients of the K+1 GAN which reveal a ”overlaid-gradient”

problem whereby the overall gradient w.r.t. a generated example is the same as that

in the binary GAN [161].

The K + 1 GAN’s original purpose was however to improve the state of the

art in semi-supervised classification [162], rather than improve generation of images

(though human annotators were said to prefer images from a K+1 GAN). We note

that in Equation (6.3) we omitted the part of the loss for unlabeled real images.
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Nevertheless we have shown that counter-intuitively, training a fully supervisedK+1

discriminator to classify the real examples in parallel with telling fake examples apart

from real examples does not change the generator learned.

6.3 Dynamic Labeling and Mode Emphasizing GAN

One extension that increases the class specificity of the generator learned by

a K+1 GAN is to introduce dynamic labeling [161]. Such a choice leads to f0

converging to emphasize the modes of f1, . . . , fK , rather than being the average of

them freal.

Looking at the last integral in Equation (6.3), we notice that the g∗ that solves

ming E[logP[D = 0 | X] | H = 0] also solves ming−E[logP[D 6= 0 | X] | H = 0] =

ming−E[log∑m>0 P[D = m | X] | H = 0]. This equivalence provides the intuition

for why the density of the generator will be the average of all the real distributions.

Let: LDyn(d, g) = −E[log maxl>0 P[D = l | X] | H = 0]. That is for each fake g(z)

we look at the ”most likely mistake” the discriminator makes d(g(z)), and train g

to emphasize it. For d we keep the K+1 GAN objective unchanged. If we let d∗ be

optimal in the sense of the previous section, then

min
g

LDyn(d∗, g) = min
g
KL(f0 || ptwise max

m>0
fm)−KL(f0 || favg) (6.12)

Comparing this to Equation (6.8), our intuition expects f0(x) ≈ maxm>0 fm(x) with

Dynamic Labeling instead of f0(x) = ∑
m>0 fm(x) in K+1 GAN for the following

reason.
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Remark 2. For discrete PMFs fm,m = 0, 1, . . . ,M − 1 we may write the following

analogue of Equation (6.12):

min
f0

LDyn(d∗, g) = min
f0

KL(f0 || ptwise max
m>0

fm)−KL(f0 || favg) (6.13)

We note that

min
f0

LDyn(d∗, g) ≤ min
f0

KL(f0 || ptwise max
m>0

fm) (6.14)

where the right hand side is a convex optimization problem. The empirical solution

we observe f0(x) ≈ maxm>0 fm(x) matching our intuition.

Dynamic labeling GAN was found to be experimentally preferable to compet-

ing non-dynamically labeled GANs in the sense of Inception Score (IS) [161]. Our

analysis here, which looks at the unconditional K+1 GAN with dynamic labeling,

explains why but also reveals a potential failure mode. IS is proportional to the

KL divergence of P(Y |X) and P(Y ) for images X and labels Y from a pretrained

Inception v3 network [162, 168]. Thus a generator that emphasizes all the modes

(classes) of the real data distribution should generate easily recognizable images

and have low entropy P(Y |X) and have a high entropy P(Y ) by displaying all the

classes, giving a high IS. However emphasizing the modes of the data could also

result in lower observed diversity from finite samplings of g since the density of f0

is concentrated around the modes. For this reason we also refer to this GAN as

”Mode GAN”.
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6.4 Multi-hinge loss for K+1 GANs

With MHShared GAN in Chapter 5 we demonstrated a fine-tuning strategy

that shares parameters between the projection discriminator for real/fake discrim-

ination and a classifier layer for classification and can improve IS and FID of the

generated samples but loose diversity. This provided some evidence that the tasks

of classification and discrimination should not be too closely integrated for success-

fully training a GAN. In developing MHGAN we also experimented with K + 1

[128] formulations of the loss where the discrimination and classification tasks were

on equal footing. This provides another training strategy that brings the tasks of

discrimination and classification close together as shown in Fig. 6.1.

More specifically, we denote the classifier architecture as C : x→ RK+1 where

the class labels are y ∈ {1, · · · , K} and the label for fake images is 0. Note that

while the previous networks had outputs which were modeled as probabilities, here

the classifier only outputs affinities. Ck(x) denote the kth element of the vector

output of C for an example x, which represents the affinity of class k for x. For this

loss we require a conditional generator, G becomes a function of the noise-label pair

(z ∼ Z, y ∼ Unif(1, . . . , K)). The multi-hinge loss for the classifier LK+1,MH is:

LK+1,MH−C =
K∑
h=1

E[max(0, 1− Cm(X) + C¬m(X)) | H = h]

+
K∑
h=1

E[max(0, 1 + C¬0(G(Z, h))− C0(G(Z, h))) | H = h]
(6.15)

where C¬y(x) is the classifier’s highest affinity for any label that is ”not y”: C¬y(x) =
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maxk 6=y Ck(x), y = 0, 1, . . . , K.

For the generator, we pair the class specific multi-hinge loss with a class ag-

nostic feature matching loss:

LK+1,MH−G = λ LK+1,Gcs + LK+1,Gfm

= λ
K∑
h=1

E[max(0, 1− Ch(G(Z, h)) + C¬h(G(Z, h))) | H = h]

+
∥∥∥∥∥
K∑
h=1

E[Cfeat(G(Z, h)) | H = h]− E[Cfeat(X)]
∥∥∥∥∥

1

(6.16)

where Cfeat denotes the features before the final classification layer of C. Substituting

LK+1,Gfm with a more WGAN like choice of E[ E[C0(G(Z, h)) | H = h] ] did not

train as stably. We abbreviate the K + 1 classifier and generator pair with trained

with Eqs. (6.15) and (6.16) as K + 1 MHGAN.

6.5 Experiments and Discussion

6.5.1 Methods

We demonstrate our findings on K+1 GANs using four datasets: synthetic 2D

Gaussians, CelebA, and CIFAR10 and CIFAR100.

Overlapping Gaussians. In this dataset our observations x ∈ R2 are distributed

normally. These data PMFs are plotted in Figure 6.2a. We also create a dataset

of 10 highly overlapping 2D Gaussians whose means are distributed uniformly on a

circle, samples from different Gaussians are different ”classes”. Samples from all the

classes are shown in Figure 6.3a.
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(a) Data, Av-
eraged

(b) Expected
K+1 GAN

(c) Learned
K+1 GAN

(d) Expected
Mode GAN

(e) Learned
Mode GAN

Figure 6.2: Distributions of 4 generators on 2D Gaussian data on (0, 4) × (−1, 5).
(b) shows the PMF that minimizes Equation (6.11), which is the distribution that
we expect a GAN trained with LK+1 to learn. (c) shows the histogram of a generator
trained with LK+1. (d) shows the PMF that minimizes Equation (6.14), which is
the distribution that we expect a GAN trained with LDyn to learn. (e) shows the
histogram of a generator trained with LDyn.

(a) Data (b) f0 Exp. (c) f0 (d)

Figure 6.3: Mode emphasis of Dynamic Labeling GAN. ((a)) shows 10 overlapping
classes of 2D Gaussian data arranged on a circle within (0, 4)× (−1, 5). ((b)) shows
the PMF that is the solution of the convex upper-bound of Equation (6.12), this
is the distribution that we expect a GAN trained with LDyn to learn. ((c)) shows
the histogram of a generator trained with LDyn. ((d)) shows a random selection
10 images from each GAN that have a MTCNN confidence of 0. The first row
from is from a binary GAN, the second row is from ACGAN, and the third row
from Dynamic Labeling GAN. This shows that even if modes are emphasized, this
does not necessarily mean samples are not realized in what could be considered
undesirable low density regions of freal.

CelebA. CelebA is a dataset with 40 binary attribute annotations and 5 landmark

locations, the images we use are 64×64 and have the background cropped. From the

landmarks we can estimate the face rotation from the ratio of eye distance and nose

to mouth distance (using the rule of thirds). To train our supervised models Mode

GAN and ACGAN we split the dataset into 5 categories: Non-rotated female/male

with mouth open/closed are 4, and all rotated faces (more than 15 degrees) are the
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5th.

CIFAR10 & CIFAR100. CIFAR10 is a 32 × 32 dataset with 10 classes, and

CIFAR100 is the same dataset with the labels specified into 100 classes. We use

all 50,000 images for training, and the 10 classes are the labels for our supervised

models.

We train three SN GAN networks [165] (Binary GAN, ACGAN, Mode GAN)

with default hyperparameters and only vary the loss function used. We also train two

additional SN GAN networks (Mode GAN and K+1 GAN) that also used projection

discrimination [134]. Finally we train conditional architecture [135] variants of GAN,

ACGAN, and K+1 MHGAN for CIFAR100. All networks were trained for 200k iters

for CelebA and 500k iters for CIFAR10 and CIFAR100.

6.5.2 Discussion

When the form of the true densities fm(x) are known, we can observe the

learned density of the generator f0 via the histogram of its samples. For the Dy-

namically Labeled GAN we see the PMF that minimizes the convex upper-bound

of Equation (6.12) in Figure 6.3b emphasizes the modes of the data. In Figure 6.3c

we see that the learned g from minimizing Equation (6.12) while training a GAN

indeed emphasizes the modes of the data: the samples are in high density around

the means of each class, and are low density in the overlap between classes. How-

ever, this simple example does not generalize neatly to real data. We may expect

an analogous situation in the domain of faces to be that few samples exist between
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the ”means” of the 5 classes we chose: i.e. no interpolations between males facing

left and females facing right. But we see in Figure 6.3d that Dynamically Labeled

GAN generates unwanted low quality samples just like the baseline Binary GAN

and ACGAN networks.

To measure the quality of our CelebA GAN’s output, we use the confidence

output of MTCNN, a publicly available pretrained face detector, to measure the

frequency of bad generator samples. In Figure 6.3d are examples of images that

MTCNN assigns 0 confidence output by all 3 GANs. For images that are far

away from the modes of the CelebA data density, for example images that blur

together multiple face orientations into 1 image, MTCNN will assign a low con-

fidence. The right hand side of Figure 6.4 shows out of 100,000 samples gener-

ated by each GAN, the percentage of images with MTCNN confidence greater than

c = 0, 1 − 10−1, . . . , 1 − 10−4 is always largest in Mode GAN, but only by a small

margin. And as shown in the figure, all the networks produce a score 0 face 4-6

times every 10000 images.

The left hand side of Figure 6.4 shows that performance was tied for the three

networks on CelebA and CIFAR10. Adding projection discrimination (PJ) to the

networks yeilded a much greater difference in IS performance than the changes in

loss function. We show some samples from the CIFAR10 GANs in Figure 6.5, which

are hard to qualitatively rank.

To measure diversity within a batch of generated images, we embed the images

in a feature space with an auxiliary network, calculate all the pairwise distances,

and record the mean. In Figure 6.5d we see Mode GAN always has a higher mean
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CelebA CIFAR-10
FID IS

SN GAN 4.13 8.03
SN ACGAN 5.07 8.02
SN Mode GAN 3.65 8.13
PJ SN Mode GAN 8.50
PJ SN K+1 GAN 8.43

Figure 6.4: On the left are FIDs image generation on CelebA and Inception scores
for CIFAR-10. On the right is the percentage of 100,000 samples generated by each
GAN for which MTCNN has greater than c confidence that a face is present, where
c = 0, 1−10−1, 1−10−2, 1−10−3, 1−10−4. We use the publicly available pretrained
MTCNN face detector network to compute the confidence scores.

(a) SNGAN (b) ACGAN (c) Mode GAN (d) CIFAR10

Figure 6.5: Generated images on CIFAR10 for the three methods we compare.
Images are randomly selected from each generator and sorted by class by an auxiliary
DenseNet121 classifier with 95% test accuracy into the 10 classes of CIFAR10: plane,
car, bird, cat, deer, dog, frog, horse, ship, truck. In (d) we plot the mean pairwise
distance of the outputs of the three GANs. That is for each image in a batch of size
in the range n ∗ 128, n = 1, 2, . . . , 79 an embedding was generated by an auxiliary
network, and then the pairwise Euclidean distances were computed. For each of
these 79 batches of increasing size the mean embedding distance per generator was
recorded. In each plot the average of 10 trials is shown with the standard deviation
shaded. The embedding network was the 1,024 dimension penultimate layer of a
DenseNet-121.

pairwise distance only within a margin of error. Thus we don’t observe that fitting

the modes of real data yields a big impact on quality or diversity of samples.

At low resolutions (48 × 48 and below) we observed that such models are
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able to train from scratch and obtain competitive IS and FID scores, but that

fidelity came at the cost of diversity there too. In Figure 6.6 we show that K + 1

MHGAN can perform well from the standpoint of Inception Score, less so from the

standpoint of FID, but increases the intra-class FID by 29%. Unifying the classifier

and the discriminator leads to an excellent Inception Score for CIFAR100, and a

good FID, but the mean IFID score goes from 74.70 for the SAGAN to 96.32 for

the K+1 MHGAN, indicating a drop in diversity. MHGAN led to an increase in

quality and diversity in generated images. But Similar to MHSharedGAN, MH K+1

Improved GAN shows that sharing parameters between the tasks of classification

and discrimination leads to a less desirable GAN.

Figure 6.6: Comparing MH K+1 Improved GAN with SAGAN and ACGAN base-
lines on CIFAR100.

Our experiments show that classification should be left as an auxiliary task to

discrimination, and not combined with it by sharing parameters too closely.

6.6 Conclusion

We studied the K+1 GAN paradigm which generalizes the canonical true/fake

GAN by training a generator with a K+1-ary classifier instead of a binary discrim-

inator. We showed how the standard formulation of the K+1 GAN does not take
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advantage of class information fully and show how its learned generative data dis-

tribution is no different than the distribution that a traditional binary GAN learns.

We then investigated another GAN loss function that dynamically labels its data

during training and showed how this leads to learning a generative distribution

that emphasizes the target distribution modes, but we saw that this has a tenuous

link to increased quality and diversity of generated samples. We also modified the

multi-hinge loss of Chapter 5 for K+1 GANs, and accumulated more evidence that

classification should remain a separate task from real/fake discrimination for the

best quality and diversity GAN generator.
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Chapter 7: Summary and Suggestions for Future Work

In Chapters 2 and 3 we studied the tradeoffs between learnable and classical

bases. In Chapter 2 we addressed source separation of widely varying sound events

in audio recordings. Recent deep learning approaches have achieved impressive per-

formance on speech enhancement and separation tasks. However, these approaches

have not been investigated for separating mixtures of arbitrary sounds of different

types, a task we refer to as universal sound separation, and it is unknown how

performance on speech tasks carries over to non-speech tasks. We compared two

paradigms of source separation models, class-based masking and multiple-instance

segmentation, on large datasets we created explicitly for exploring the capacity

of models traditionally successful on speech data. Finding that multiple-instance

segmentation is better suited to real world tasks, we investigated the space of mask-

based separation architectures, varying both the overall network architecture and

the framewise analysis-synthesis basis for signal transformations. These network ar-

chitectures include convolutional long short-term memory networks and time-dilated

convolution stacks inspired by the recent success of time-domain enhancement net-

works like ConvTasNet. For the latter architecture, we also proposed novel mod-

ifications that further improve separation performance. In terms of the framewise

132



analysis-synthesis basis, we explored both a short-time Fourier transform (STFT)

and a learnable basis, as used in ConvTasNet. For both of these bases, we also

examined the effect of window size. In particular, for STFTs, we found that longer

windows (25-50 ms) work best for speech/non-speech separation, while shorter win-

dows (2.5 ms) worked best for arbitrary sounds. For learnable bases, shorter win-

dows (2.5 ms) worked best on all tasks. Surprisingly, for universal sound separation,

STFTs outperform learnable bases.

In Chapter 3 we investigated new techniques that are able to capture the spe-

cial physical properties of hyperspectral data for hyperspectral image (HSI) classifi-

cation, the one of the most active tasks in geoscience and remote sensing. The special

property of this data over color images is an additional spectral dimension that has

great physical relevance. In the aim of classifying what material lies in a single pixel

within a HSI cube, the spectrum of that pixel should contain the spectral signature

of the material. Confounding noise factors can then be accounted for by investigat-

ing neighboring pixels. This means a feature extractor for HSI data should jointly

extract spectral-spatial features. Simultaneously HSI data is also greatly limited,

so a feature extractor must not need more than a handful of examples per material

for training to be applicable in real world scenarios. We built a bridge between

time-frequency methods that decompose spectra into multi-spectral bands, with hi-

erarchical neural networks that incorporate spatial information across scales and

model multiple levels of dependencies between spectral features. To accommodate

for the low training sample scenario we investigated the use of the Fourier scat-

tering transform, which is an amalgamation of time-frequency representations with
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neural network architectures, to advance the state of the art in spectral-spatial clas-

sification. We tested the proposed three dimensional Fourier scattering method on

standard hyperspectral datasets, and present results that indicate that the Fourier

scattering transform is highly effective at representing spectral data when compared

with other state-of-the-art spectral-spatial classification methods.

In Chapter 4 we used a similar multi-scale approach to develop a defense

against audio adversarial attacks. We propose a unification of a computational

model of speech processing in the brain with commercial wake-word networks to

create a cortical network, and show that it can increase resistance to adversarial

noise without a degradation in performance. We integrated knowledge from the

cortical representation of speech studied in Neuroscience to develop a defense against

adversarial attacks on audio. We enhanced a neural networks used for wake-word

detection by integrating this biological representation for sound processing, and

found that the accuracy of the architecture did not degrade, while resistance to

adversarial noise increased several times.

We also examined how semantic information can be further exploited in gen-

erative tasks in Chapters 5 and 6. In Chapter 5 we proposed a new algorithm

to incorporate class conditional information into the discriminator of GANs via

a multi-class generalization of the commonly used Hinge loss. Like in SVMs we

showed how to control the margins that a spectrally constrained Wasserstein GAN

learns. Our approach is in contrast to most GAN frameworks in that we train a

classifier and conditional discriminator with the same hinge loss style loss function,

instead of an auxiliary cross entropy classifier. We also used the classifier to evaluate
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the conditioning of the discriminator, and show that the consistency between the

class conditioned generator inputs and class specific generator outputs is improved

without our loss. We showed the dangers of connecting the tasks of discrimination

and classification too closely, and the resulting trade-off between class-fidelity (and

therefore quality) and diversity. With our multi-hinge loss modification we were able

to improve the state of the art Inception Scores and Frechet Inception Distances on

the popular vision Imagenet-128 dataset.

In Chapter 6 we continued to look at how closely classification and discrim-

ination can be combined in GANs. We studied the multiclass image generation

problem from a fundamental hypothesis testing framework, taking a probabilistic

interpretation of GANs. We introduced theory for the K+1 GAN network and

training paradigm, and found that a single GAN cannot generate class specific sam-

ples when conditioned with a straightforward cross entropy loss. We also study an

adapted loss that emphasizes the class modes of the target distribution through

dynamic labeling (Mode GAN), which is manifested by the generator learning a

distribution with decreased density near class boundaries. This chapter gathered

more evidence to confirm the principle learned in Chapter 5 that discrimination and

classification cannot be combined too closely, as it results in trading diversity for

quality for GANs.

We now discuss some further methods to exploit the semantic content of data.
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7.1 Open Issues and Directions for Future Work

7.1.1 Adversarial Audio Attacks on Smaller Networks

We applied our cortical defense to network a network with minimal preprocess-

ing, but nonetheless reportedly used by Amazon Alexa [108]. Some other commer-

cial voice assistants such as Google Assistant make miniaturizing changes to their

wake-word detection and speech recognition algorithms to save on power [169, 170].

These include local dynamic normalization instead of global normalization, quan-

tized weights, and smaller features [170]. It has not been investigated what ef-

fect these choices make on the robustness or vulnerability of their ASR systems.

There are opportunities for developing new adversarial attacks that exploit these

attributes, and it is also important to evaluate defenses that are compatible with

these low-power architecture choices.

Our cortical defense focused on integrating what is known about the auditory

cortex into a defense, but there is also an opportunity to refine the auditory spec-

trogram. The techniques to computationally mimick the transduction of the hair

cells and the reduction of the lateral inhibitory network are differentiable and their

inclusion could be investigated in their impact on adversarial examples.

7.1.2 Transfer learning with Multispectral and Hyperspectral Im-

agery

An advantage of the method we presented in Chapter 3 is its compatibility

with conventional deep learning implementations. This readily allows for a shift
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from the pre-processing based classification with a linear SVM we presented to

an end-to-end feature extraction with a classification deep network. This has the

potential to improve classification performance further as both the classification and

feature filters will be learned for each dataset, and opens the door for integrating our

method with other deep learning techniques like transfer learning or meta learning.

Our method focused on the limited data scenario, but recently there have been

larger labeled satellite imagery datasets made available with RGB and Multi-spectral

data [171]. An investigation of the ability of FST networks to generalize between

geographically distant locations, as well as their ability to transfer networks trained

on RGB to more bands, remains to be evaluated.

7.1.3 ModeGAN with Adversarial distributions

Adversarial examples are commonly understood to be a threat to Deep Net-

works, but they can also be harnessed as additional training examples to improve

image recognition models [143, 172]. In general having more training data prevents

overfitting in deep networks, but when the additional data comes from different dis-

tributions, the performance of the model may be greatly reduced as a consequence

of added robustness. Some methods source additional training data from other do-

mains or generate synthetic training data, and then apply techniques that lessen

the impact of the domain shift in the data on the model [173]. Since adversarial

examples come from a different data distribution, special techniques such as auxil-

iary network structures have been developed to lessen this domain shift [172]. The

Mode GAN developed in Chapter 6 has the ability to emphasize the modes of all
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distributions it is trained on which resulted in fidelity in its generator. Adversarial

examples could be searched for in the proximity of these modes to find the ”most

likely” adversaries a network might encounter. The impact of this kind of GAN

guided adversarial training has yet to be studied.
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