
Titan: a High-Performance Remote-sensing Database �Chialin Chang, Bongki Moon, Anurag Acharya, Carter ShockAlan Sussman, Joel SaltzInstitute for Advanced Computer Studies andDepartment of Computer ScienceUniversity of Maryland, College Park 20742AbstractThere are two major challenges for a high-performance remote-sensing database. First, it mustprovide low-latency retrieval of very large volumes of spatio-temporal data. This requires e�ectivedeclustering and placement of a multi-dimensional dataset onto a large disk farm. Second, the orderof magnitude reduction in data-size due to post-processing makes it imperative, from a performanceperspective, that the postprocessing be done on the machine that holds the data. This requires carefulcoordination of computation and data retrieval. This paper describes the design, implementation andevaluation of Titan, a parallel shared-nothing database designed for handling remote-sensing data.The computational platform for Titan is a 16-processor IBM SP-2 with four fast disks attached toeach processor. Titan is currently operational and contains about 24 GB of data from the AdvancedVery High Resolution Radiometer (AVHRR) on the NOAA-7 satellite. The experimental resultsshow that Titan provides good performance for global queries, and interactive response times forlocal queries.1 IntroductionRemotely-sensed data acquired from satellite-based sensors is widely used in geographical, meteorolog-ical and environmental studies. A typical analysis processes satellite data for ten days to a year andgenerates one or more images of the area under study. Data volume has been one of the major limitingfactors for studies involving remotely-sensed data. Coarse-grained satellite data (4.4 km per pixel) fora global query that spans the shortest period of interest (ten days) is about 4.1 GB; a �ner-grained�This research was supported by the National Science Foundation under Grant #ASC 9318183, NASA under Grant#NAG 11485 (ARPA Project #8874), and ARPA under Grant #DABT 63-94-C-0049 (Caltech Subcontract #9503).1



version of the same data (1.1 km per pixel) is about 65.6 GB. The output images are usually signi�cantlysmaller than the input data. For example, a multi-band full-globe image corresponding to the 4.4 kmdataset mentioned above is 228 MB. This data reduction is achieved by composition of information cor-responding to di�erent days. Before it can be used for composition, individual data has to be processedfor correcting the e�ects of various distortions including instrument drift and atmospheric e�ects.These characteristics present two major challenges for the design and implementation of a high-performance remote-sensing database. First, the database must provide low-latency retrieval of verylarge volumes of spatio-temporal data from secondary storage. This requires e�ective declustering andplacement of a multi-dimensional dataset onto a large disk farm. Furthermore, it is necessary that thedisk farm be suitably con�gured so as to provide the high I/O bandwidth needed for rapid retrieval oflarge data volumes. Second, the order of magnitude reduction in data size makes it imperative, from aperformance perspective, that correction and composition operations be performed on the same machinethat the data is stored on. This requires careful coordination of computation and data retrieval to avoidslowing down either process.Several database systems have been designed for handling geographic datasets [4, 24, 8, 31, 32].These systems are capable of handling map-based raster images as well as geographic entities such asmap points (e.g. cities) and line segments (e.g. rivers, roads). The systems provide powerful queryoperations, including various forms of spatial joins. However, these systems are not suitable for storingraw remote-sensing data that has not been processed to a map-based coordinate system. This means thatthey are suitable for the output images we have described, rather than the original data. Maintainingremote-sensing data in its raw form is necessary for two reasons [28]: (1) a signi�cant amount of earthscience research is devoted to developing correlations between raw sensor readings at the satellite andvarious properties of the earth's surface; once the composition operation is performed it is no longerpossible to retrieve the original data and (2) the process of generating a map-based image requiresprojection of a globe onto a two-dimensional grid; this results in spatial distortion of the data. Manydi�erent projections are used for various purposes by earth scientists; no single projected product isadequate for all potential uses. Finally, all of these systems have been implemented on uniprocessorplatforms. None of them have been targeted for con�gurations with large disk farms, which we believeare important given the volume of data retrieved for each query.This paper describes the design, implementation and evaluation of Titan, a parallel shared-nothingdatabase designed for handling remote-sensing data. The computational platform for Titan is a 16-2



processor IBM SP-2 with four fast disks (IBM Star�re 7200) attached to each processor. A widelyused micro-benchmark indicated the maximum aggregate application-level disk-I/O bandwidth of thiscon�guration to be 170 MB/s using the Unix �lesystem interface. 1 Titan is currently operational andcontains about 24 GB of data from the Advanced Very High Resolution Radiometer (AVHRR) sensoron the National Oceanic and Atmospheric Administration NOAA-7 satellite.The paper focuses on three aspects of the design and implementation of Titan: data placement onthe disk farm, query partitioning and coordination of data retrieval, computation and communicationover the entire machine. Section 2 provides an overview of the system. Section 3 describes the declus-tering and data placement techniques used in Titan. The data layout decisions in Titan were motivatedby the format of AVHRR data and the common query patterns identi�ed by NASA researchers and ourcollaborators in the University of Maryland Geography Department. Section 4 describes the indexingscheme used by Titan. Section 5 describes the mechanisms used to coordinate data retrieval, compu-tation and interprocessor communication over all the processors. The goal of these mechanisms is tooverlap all three operations as much as possible, while maintaining computation, communication andI/O balance over the entire machine. Section 6 describes the experiments performed to evaluate thesystem and analyzes the results. Section 7 describes the lessons learned in this endeavor. We believeour experiences suggest useful guidelines that go beyond remote-sensing databases in their scope. Inparticular, we expect our techniques for coordinating and balancing computation, communication andI/O are useful for other unconventional databases that need to perform substantial post-processing.Similarly, we believe our results provide additional evidence for the utility of the minimax algorithm fordeclustering multidimensional datasets over large disk farms. Finally, Section 8 provides a summary ofour results and describes ongoing work.2 System OverviewTitan consists of two parts:� a front-end, to interact with querying clients, perform initial query processing and partition dataretrieval and computation; and� a back-end, to retrieve the data and perform post-processing and composition operations.1The bandwidths reported in [1] were measured under AIX 3.5. The system has recently been upgraded to AIX 4.1,but we have not yet been able to con�gure the system to again achieve the reported bandwidth.3



The front-end is a single machine which can be located anywhere on the network, though a con�gurationwhere it shares a dedicated network with the back-end is preferred (even after data reduction fromcompositing, the result image is usually quite large). The back-end consists of a set of processing nodesthat store the data and do the computation. Given the volume of data to be transferred, it is preferableif these nodes share a dedicated network. The current implementation of Titan uses one node of the16-processor IBM SP-2 as the front-end and the remaining 15 nodes as the back-end. There is no datastored on the disks of the front-end node.Titan partitions its entire sensor data set into coarse-grained chunks. Spatio-temporal keys to searchfor and retrieve these chunks are stored in a simpli�ed R-tree. The partitioning and indexing schemeswill be described more fully in Sections 3.1 and 4, respectively. The index is used by the front-endto identify data blocks needed for resolving a given query, and to partition the work load for e�cientparallel execution. The size of Titan's index for 24 GB of sensor data is 11.6 MB, which is small enoughfor the front-end to retain in main memory.Titan queries specify four kinds of constraints: (1) temporal bounds, which are speci�ed in UniversalCoordinated Time (UTC), (2) spatial bounds, which are speci�ed as a quadrilateral on the surface ofthe globe, (3) sensor type and number, and (4) resolution of the grid that will be used for the imagegenerated as the result.The result of a query is a composited multi-band image. The value of each pixel in the resultimage is generated by composition over all the sensor readings corresponding to that pixel. The currentimplementation supports max and min composition functions.When the front-end receives a query, it searches the index for all data blocks that intersect withthe query window in space and time. The search returns a list of requests for data blocks. Using thelocation information for each block stored in the index, the front-end partitions the list of data blockrequests among the back-end nodes { the list corresponding to each node contains the requests for datablocks stored on that node. In addition, the front-end partitions the result image among all back-endnodes. Currently the result image is evenly partitioned by blocks of rows and columns, assigning eachback-end node approximately the same number of output pixels. The front-end then distributes datablock requests and output partition information to all back-end nodes.When a back-end node receives its query information, it computes a schedule for retrieving blocksfrom its local disks. As data blocks are retrieved from the disks, the back-end node generates thecommunication necessary to move the blocks to all back-end nodes that need them to resolve their4



parts of the output image, in a pipelined fashion. Each back-end node can thus process the data blocksit requires, as they arrive either from local disks or across the communication network. More detailsabout scheduling the various back-end operations are described in Section 5.Once a data block is available on a back-end node (either retrieved from a local disk or forwarded byanother back-end node), a simple quadrature scheme is used to search for sensor readings that intersectwith the local part of the partitioned output image. First, the locations of the four "corner" sensorreadings in a data block are mapped to the output image. If all the locations fall inside the image, allreadings in the data block are mapped to pixels in the output image and composed with the existingvalue of the pixel. If any corner location is outside the local part of the output image, the data block isdivided into four approximately equal sub-blocks and searched recursively, rejecting any portions thatare wholly outside the image.Finally, after all data blocks have been processed, the result image can either be returned to thefront-end for forwarding to the querying client, or stored in a �le locally for later retrieval.3 Data PlacementTitan addresses the problem of low-latency retrieval of very large volumes of data in three ways. First,Titan takes advantage of the AVHRR data format, and of common query patterns identi�ed by earthscience researchers, to partition the entire dataset into coarse-grained chunks that allow the hardwarecon�guration to deliver good disk bandwidth. Second, Titan tries to maximize disk parallelism bydeclustering the set of chunks onto a large disk farm. Finally, Titan attempts to minimize seek timeon individual disks by clustering the chunks assigned to each disk. The following subsections describeeach of these techniques used to provide low-latency data retrieval.3.1 Data PartitioningThe data partitioning decisions in Titan were motivated by the format of AVHRR data and the commonquery patterns identi�ed by NASA researchers [7, 29] and our collaborators in the University of MarylandGeography Department [13, 18].AVHRR data is organized as one �le per satellite orbit. The NOAA satellites orbit the earthapproximately 14 times a day. Each �le consists of a sequence of scan lines, each line containing 409pixels. Each pixel consists of �ve readings, each in a di�erent band of the electromagnetic spectrum.The AVHRR �les provided by NASA [2] are organized in a band-interleaved form (i.e., all the values5



for a single pixel are stored consecutively). However, the satellite data processing programs that we areaware of process either band one and two data or band three, four and �ve data [7, 29]. This groupingis due to the properties of the bands: the �rst two bands provide information to estimate the amountof chlorophyll in a region [12] whereas the last three bands can be used to estimate cloud cover andsurface temperature [19]. To take advantage of these query patterns, Titan stores AVHRR data in twoparts, one containing data for bands one and two and the other containing data for bands three, fourand �ve.The primary use of AVHRR data is to determine the land cover in a region on the ground, socommon queries correspond to geo-political regions of world (e.g.India, Taiwan, Korea, Africa). Usingindividual �les as units of data storage and retrieval is likely to result in much more I/O than necessary.On the other hand, retrieving the data in very small units (e.g., individual scan lines) is not e�cient.A good compromise can be achieved by using the smallest data unit that can be retrieved from diske�ciently. Another factor that should be taken into consideration for selecting the data layout is thegeometry of individual data units; square groups of pixels provide better indexing than more elongateddata units.From [1], we know that for our SP-2 con�guration the best I/O performance is achieved for blockslarger than 128 KB. We chose to partition the AVHRR data in tiles of 204x204 pixels. The tilescontaining data from band one and two contain about 187 KB of data, including about 21 KB of geo-location data, used for navigating the pixels. For tiles containing data from band three, four and �ve,the tile size is about 270 KB, also including the geo-location data. To minimize disk seek time, alltiles with band 1-2 data are stored contiguously on disk, as are all tiles with band 3-4-5 data. Thisscheme allows queries with the common patterns described earlier to access multiple tiles sequentiallyfrom disk.3.2 DeclusteringThe key motivation for declustering is to exploit disk parallelism by distributing database �les acrossmultiple processors and/or disks, aiming to minimize the number of data blocks fetched from a singledisk and thereby minimizing query processing time. Numerous declustering methods have been reportedin the literature. For multidimensional datasets, such declustering methods can be classi�ed into twoapproaches: grid-based [3, 6, 9] and graph-theoretic [10, 20, 21]. Grid-based methods have been developedto decluster Cartesian product �les, while graph-theoretic methods are aimed at declustering more6



general spatial access structures such as grid �les [25] and R-trees [14]. A survey of declustering methodscan be found in [23].Since the Titan index is similar in behavior to an R-tree (see Section 4), we have adopted a graph-theoretic algorithm { Moon et al. 'sMinimax spanning tree algorithm [21]. This algorithm was originallyproposed for declustering grid �les on a large disk farm, and has been shown to outperform Fang etal. 's Short Spanning Path algorithm [10] for that task. Other graph-theoretic algorithms such as Fanget al. 's Minimal Spanning Tree (MST) [10] and Liu et al. 's iterative partitioning (ITP) algorithmswere not selected because (1) MST does not guarantee that the partitions are balanced in size, whichmeans some partitions may be impractically large, and (2) ITP is based on a multi-pass Kernighan-Lin algorithm [17], which requires no fewer than O(N2 � p) operations, where N is the number ofdata blocks and p is the number of passes. Even though the number of passes, p, is usually low, thecomplexity is not polynomial bounded. The Minimax declustering algorithm requires O(N2) operationsand achieves perfectly balanced partitions (i.e., each disk is assigned at most dN=Me data blocks whereM is the number of disks).To apply the Minimax algorithm, a complete graph is generated with data blocks as the vertices.Every edge has an associated cost, which represents the probability that two vertices (i.e., data blocks)will be accessed together in a single query. To generate the edge costs, we have chosen the proximity indexproposed by Kamel and Faloutsos [16]. The alternative we considered, Euclidean distance is suitable forpoint objects that occupy zero area in the problem space but does not capture the distinction amongpairs of partially overlapped spatial objects of non-zero area or volume2.The key idea of the Minimax declustering algorithm is to extend Prim's minimal spanning treealgorithm [27] to construct as many spanning trees as there are disks in the disk farm, and then assignall the blocks associated with a single spanning tree to a single disk.Prim's algorithm expands a minimal spanning tree by incrementally selecting the minimum costedge between the vertices already in the tree and the vertices not yet in the tree. This selection policydoes not ensure that the increment in the aggregate cost (i.e., the sum of all edge weights inclusive tothe group of vertices associated with the spanning tree) due to a newly selected vertex is minimized.Instead, the Minimax spanning tree algorithm uses a minimum of maximum costs policy. For every2By partially overlapped objects we mean two disjoint d-dimensional objects whose projected images on at least anyone of d dimensions intersect. 7
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Figure 1: Illustration of expanding spanning treesvertex that has not yet been selected, the algorithm computes a maximum of all edge weights betweenthe vertex and the vertices already selected. The selection procedure picks the vertex that has thesmallest such value.For example, in Figure 1, the minimum of minimum costs policy will pick up the vertex w and addit to the spanning tree Gi, because the weight of the edge (w; v) is the minimum. However, this decisionleads to putting the vertices w and u, which are connected by an edge with a very heavy weight, in thesame vertex group represented by the spanning tree Gi. On the other hand, the minimum of maximumcosts policy will pick up the vertex x and add it to the spanning tree Gi, because the weight of the edge(x; v) is the minimum of maximum costs.In summary, the Minimax algorithm:� Seeds M spanning trees by choosing M vertices instead of choosing a single vertex.� Expands M spanning trees in round-robin fashion.� Uses a minimum of maximum costs policy for edge selection, instead of a minimum of minimumcosts policy.A detailed description of the Minimax declustering algorithm is given in [21].3.3 ClusteringIn addition to maximizing disk parallelism by declustering, it is important to reduce the number ofdisk seeks by suitably ordering the data blocks assigned to a single disk. To achieve a good clusteringof multidimensional datasets, we have considered clustering techniques based on Hilbert space-�llingcurves [22] and the Short Spanning Path (SSP) algorithm [10]. Both methods can be used to mapmultidimensional objects onto the one-dimensional disk space.8



It is widely believed that the Hilbert curve achieves the best clustering among space-�lling curves [15,22]. The advantage of using space-�lling curves is that the linearization mapping is of linear cost in thenumber of objects, while SSP is a quadratic algorithm. In [21], however, we have empirically shownthat the SSP algorithm achieves better declustering than a Hilbert curve-based algorithm. Giventhat clustering is the dual of declustering, we conjecture that the SSP algorithm will achieve betterclustering. In addition, since the remotely sensed image database is static and Minimax declustering isalso a quadratic algorithm, the SSP algorithm was the selected as the clustering method.Finding the shortest spanning path is NP-complete [11]. Therefore, the SSP algorithm employs aheuristic to generate a path that is short, but not necessarily the shortest. The algorithm works by �rstpicking a vertex randomly from a given set of N vertices. Now suppose we have generated a partialpath covering k vertices v1; : : : ; vk, where k < N . Then pick another vertex u randomly from the vertexset, and �nd a position in the path at which the vertex u should be placed by trying the k+1 positionsin the path, such that the length of the resulting path is minimized. Once again the proximity index isused to measure the distance between vertices.4 Indexing SchemeThe Titan index contains spatio-temporal bounds and retrieval keys for the coarse-grained data blocksdescribed in Section 3. For expediency and due to the relatively small number of blocks in the database,we have implemented the index as a simpli�ed R-tree [14]. The index is a binary tree whose interiornodes are bounding quadrilaterals for their children. Leaf nodes in the index correspond to data blocksand contain spatial and temporal extent, meta-data such as sensor type and satellite number, and theposition on disk for each data block. The position of a data block is described by a [disk,o�set] pair.The leaf nodes are arranged in a z-ordering [26] before the index is built. Sorting the leaves spatiallyallows access to the index as a range tree. Furthermore, it allows interior node keys in the index to betterapproximate the spatial extent of their children, and reduces the overlap between di�erent interior nodekeys at the same level in the tree. As a result, searching the index becomes more e�cient.We use quadrilaterals instead of rectangles to achieve a better �t for spatial bounds. We chose abinary tree for its simplicity and because the entire index is held in memory, making disk e�ciency inthe index unimportant. This scheme provides adequate performance for our system, however data blockindexing should be more closely examined for a large-scale implementation. We report no performanceresults for the index. 9



Using a coarse-grained index has several advantages. First, the index supports e�cient retrieval ofdata from disks. Second, the index supports quick winnowing of large portions of the data base whenpresented with localized queries. Third, the index allows query previews that enable users to quicklyre�ne their queries, without forcing large volumes of data to be retrieved from disks [5]. Finally, theindex is extensible { it is easy to include data from other sensors without re-engineering the indexingscheme or re-indexing existing data.5 Query ProcessingAs described in Section 2, Titan consists of a front-end and a set of back-end nodes. The front-enduses the query from a client to search the index described in Section 4, and identi�es all data blocksthat intersect with the spatial and temporal extent of the given query. The front-end also partitionsthe given query evenly among all back-end nodes.For each of the data blocks selected by the index, the front-end generates a block request. A blockrequest consists of a disk id and an o�set, both obtained from the position information stored in theindex, and a list of all back-end nodes whose assigned part of the result image intersects with the spatialextent of the associated data block. We refer to those back-end nodes as the consumers of the datablock. The consumers of each data block can be easily identi�ed, since the front-end has completepartitioning information for the result image.The front-end then computes, for each back-end node, the number of data blocks the node is ex-pecting to receive from each of the other back-end nodes. This information, along with a description ofthe assigned part of the result image and the set of associated block requests, is communicated to eachback-end node.When a back-end node receives all the information from the front-end, it computes a schedule. Aschedule is a set of lists of block requests. Each list is identi�ed by a [local-disk-id, back-end-node-id]pair. For every block request that a back-end node receives from the front-end, one of the consumersis chosen as its representative. The disk id of the block request, together with the node id of itsrepresentative, identi�es the list in the schedule that the block request joins. The representative of ablock request is chosen as follows. If the block request has only one consumer, that consumer is therepresentative. If the block request has multiple consumers, there are two cases:1. if the local node is one of the consumers, the local back-end node is the representative;10



2. otherwise, a back-end node is chosen randomly from the consumers of the data block to be therepresentative.The schedule for a back-end node e�ectively partitions the set of block requests among the [disk,representative consumer] queues. This allows the local node to issue read requests to all its local disks ina balanced fashion, to make full use of the available disk bandwidth. The scheme also allows a back-endnode to schedule read requests for each local disk, so that all back-end nodes get a fair share of the diskbandwidth, allowing the entire system to make global progress.Once a schedule is generated, each back-end node asynchronously executes a loop whose bodyconsists of �ve phases { a disk read phase, a block send phase, a block receive phase, a remote blockread phase, and a block consume phase { as shown in Figure 2. Each back-end node also generates anempty result image for its assigned partition.Our implementation is motivated by the observation that to answer a query under the Titan datadeclustering and query partitioning schemes, a signi�cant amount of data is read from disks and trans-ferred across the network. To hide the large latency incurred from I/O accesses and interprocessorcommunication, Titan back-end nodes issue multiple asynchronous operations to both the �le systemand the network interface, so that I/O, communication, and computation may all be overlapped. Bykeeping track of various pending operations, and issuing more asynchronous operations when necessary,the back-end nodes can move data blocks from their disks to the memory of the consuming back-endnodes in a pipelined fashion. In addition, while I/O and communication are both proceeding, eachback-end node can process data blocks as they arrive from either its own local disks or the network.During the disk read phase, the back-end issues as many asynchronous reads to the disks as possible.An asynchronous read requires pre-allocated bu�er space to hold the returned data. The number ofasynchronous reads that can be issued during each execution of this phase is thus limited by the numberof available bu�ers. The disks also provide an upper bound on the number of outstanding requests thatare allowed, since little or no bene�t is gained from too many outstanding asynchronous reads per disk.In the block send phase, the back-end checks for completion of asynchronous sends issued in theblock consume phase, which will be described shortly. The sends are for data blocks that reside on localdisks, but are required for processing on other nodes. When all asynchronous sends for a data blockcomplete, the bu�er space is released. In the block receive phase, the back-end node posts multipleasynchronous receives to receive data blocks to be processed on the local node but stored on othernodes. A bu�er needs to be reserved for each pending receive.11



while (not all activities are done)/* disk read phase */issue as many asynchronous disk reads for blocks as possible;/* block send phase */check all pending block sends, freeing send bu�ers for completed ones;/* block receive phase */check pending block receives, and for each completed one:add the receive bu�er to the list of bu�ers that must be processed locally;if (more non-local blocks must be obtained) issue another asynchronous receive;/* remote block read phase */check pending disk reads that retrieve blocks to be processed only by remote back-end nodes, andfor each completed one, generate asynchronous sends to the remote nodes;/* block consume phase */if (a block is already available for processing)process the block - perform mapping and compositing operations for all readings in the block;else check pending disk reads for blocks used by the local node, and possibly by remote back-endnodes as well, and for the �rst completed read found, if any :generate asynchronous sends to the remote consuming nodes;process the block;endifendwhile Figure 2: Main loop for overlapping computation, I/O and communication.In the remote block read phase, disk reads issued for data blocks that reside on the local disks butare only processed by remote nodes are checked for completion. Asynchronous sends are generated forall such disk reads that have completed.In the block consume phase, the back-end node processes a ready data block that is obtained eitherfrom the network or from a local disk. If the ready data block arrived from the network, the node12



performs the required mapping and composition operations for the block, and exits the block consumephase. Otherwise, the node polls the pending disk reads issued for blocks to be processed locally, andpossibly by remote back-end nodes as well. If a pending disk read has completed, an asynchronous sendis posted for each remote consumer of the data block. In addition, the ready data block is processed, andthe block consume phase is exited. At most one ready data block is processed within the block consumephase per iteration. This policy prevents the system from failing to monitor the various outstandingasynchronous operations, while processing many ready data blocks.6 Experimental ResultsTitan currently runs on an IBM SP-2 at the University of Maryland. The SP-2 consists of 16 RS6000/390processing nodes (so-called thin nodes), running AIX 4.1.4. Titan dedicates one node for the front-end and uses the other 15 nodes as the back-end. The current database stores approximately twomonths of AVHRR Level 1B Global Area Coverage data, containing about 24 GB of data stored on60 disks distributed across the 15 back-end nodes. Titan uses the IBM MPL library for interprocessorcommunication, and is compiled with the IBM C and C++ compilers, mpcc and mpCC, version 3.1,with optimization level -O2.6.1 Declustering and ClusteringIn this section, we evaluate the performance of the Minimax spanning tree algorithm and the Shortspanning path algorithm used as declustering and clustering methods, respectively. We compare thesemethods with random block assignment using both static measurements and simulation experimentswith synthetically generated query sets.6.1.1 Static measurementsWe have selected the following static measures to evaluate the declustering and clustering methods:� The number of k-nearest neighbor blocks placed on the same disk, for declustering.� The aggregate probability that any pair of adjacent data blocks are fetched together, for clustering.These measures depend only on the actual data placement and are independent of the distribution, sizesand shapes of queries. 13



k-nearest neighbors 1 5 15 30 59Random assignment 923 4643 13969 27933 55190Minimax declustering 280 1848 6434 13586 28832Improvement (%) 70 60 54 51 48Table 1: The number of k-nearest neighbor blocks assigned to the same diskWe counted the number of k-nearest neighbor data blocks assigned to the same disk unit, varyingk from 1 to 59, since the total of 55,602 data blocks were distributed over the 60 disks on the 15 SP-2nodes that make up the back-end of Titan. The results are summarized in Table 1 for some of thek values. The closer a pair of blocks are to each other, the higher the chance that they are accessedtogether. Therefore, the reduction of 48 to 70 percent in this measure indicates a potential substantialperformance improvement through declustering.We also computed the aggregate probability that any pair of adjacent data blocks on the same diskunit are fetched together. More precisely, this value is measured asPN�1i=1 proximity index(Blocki; Blocki+1),where N is the number of blocks assigned to a disk and Blocki and Blocki+1 are a pair of adjacentblocks on the disk. We call this measure the probability path length of fBlock1; : : : ; BlockNg on thedisk. A high probability path length indicates that data blocks are clustered well on the disk and hencewill require a small number of disk seeks for retrieval. When the Short spanning path algorithm wasused to cluster data blocks on each disk, the average probability path length was 23.7, which is almosttwice as high as the value of 13.3 when random block assignment was used.6.1.2 Simulation with synthetic queriesMetrics of InterestThe metrics of interest are block transfer time and seek time. The models of these metrics are formallyde�ned as follows, and we call the metrics model block transfer time and model seek time, respectively.Definition 1 The model block transfer time of a query q is de�ned as maxMi=1fNi(q)g, where Mis the number of disks used and Ni(q) is the number of data blocks fetched from disk i to answer thequery q.Since the disks are assumed to be independently accessible, De�nition 1 implies that the time requiredto fetch the blocks in the answer set of the query q is maxMi=1fNi(q)g units, with each unit being the14



Figure 3: Bounding boxes covering 12 land massestime required for one disk access to retrieve a block. Ignoring the e�ects of disk caching, the maximumnumber of data blocks fetched from the same disk (i.e., maxMi=1fNi(q)g) is considered a plausible measureof the actual block transfer time [6, 21].Definition 2 A cluster of blocks is a group of data blocks that are contiguous on disk. 3 Then, givena query q, the model seek time is de�ned to be the number of clusters in the answer set of q.The metric given in De�nition 2 was originally proposed in [15] and used to analyze the clusteringproperties of space-�lling curves [15, 22]. As was pointed out in [15], small gaps between fetched blocksare likely to be immaterial. Therefore, later in this section we use the total distance to be traveled bythe disk arm, as well as the model seek time, to evaluate the clustering scheme.Experimental resultsBased on the common query patterns identi�ed by earth science researchers [7, 12, 18], we generatedsynthetic queries that uniformly cover the land masses of the world. We divided the land masses into 12disjoint regions as shown in Figure 3. The synthetic queries are all 3-dimensional, including a temporaldimension (e.g., 60 days), and the sizes of queries are governed by a selectivity factor (0 < r < 1). Theselectivity factor r denotes the percentage of the total area (in space and time) that the synthetic query3Contiguous data blocks may be considered to have contiguous logical block numbers, assuming that logical blocknumbers represent the relative locations of physical data blocks.15



Selectivity 1 percent 10 percent 20 percentDeclustering Random Minimax Impr.(%) Random Minimax Impr.(%) Random Minimax Impr.(%)Land region A 10.9 7.9 28 27.6 20.6 25 38.3 28.5 26Land region B 10.4 7.6 27 23.4 18.7 20 31.6 25.8 19Land region C 11.2 8.1 27 26.8 22.0 18 36.5 31.0 15Land region D 8.6 6.1 29 19.1 14.7 23 25.4 20.1 21Land region E 55.3 46.3 16 119.9 105.0 12 150.4 136.0 10Land region F 65.5 56.3 14 145.1 129.1 11 182.8 168.3 8Table 2: Model block transfer timeSelectivity 1 percent 10 percent 20 percentClustering Random SSP Impr.(%) Random SSP Impr.(%) Random SSP Impr.(%)Land Region A 7.8 7.5 4 19.9 18.2 9 27.4 24.0 12Land Region B 7.6 7.3 3 18.4 16.8 9 25.1 21.7 13Land Region C 8.1 7.7 4 21.3 18.7 12 29.5 24.5 17Land Region D 6.0 5.8 4 14.3 13.1 9 19.8 17.2 13Land Region E 43.7 35.5 19 93.5 51.7 45 117.1 49.8 57Land Region F 52.4 44.2 16 110.7 64.2 42 136.4 61.9 55Table 3: Model seek timecovers from the total area of the land region (also in space and time). For example, a spatio-temporalquery into a region of size LLat�LLong �LT ime requires a query of size LLat 3pr�LLong 3pr�LT ime 3prto achieve a query selectivity of r. To simulate processing the synthetic queries, we accessed the Titanindex described in Section 4 and computed the model block transfer time and model seek time for eachof the queries, without retrieving the data blocks. In the experiments, r was varied from 1 to 10 to 20percent.Table 2 and Table 3 show the experimental results from some of the individual land regions, withthree query selectivities. For each land region and each query selectivity, we averaged the model blocktransfer time and model seek time over 500 synthetic range queries. In Table 2, for each of threeselectivities, the �rst two columns show the average model transfer time with random block assignmentand the Minimax declustering method, respectively. The third column displays the improvement shownby the Minimax method. The model transfer time for Minimax was always less than that of randomassignment, and we observed 8 to 33 percent performance improvements for all the experiments.In Table 3, for each of three selectivities, the three columns show the average model seek timesand improvement ratio. Minimax declustering was applied for both the cases to isolate the e�ects ofclustering blocks on each disk unit. That is, in both the cases, data blocks were declustered over 6016



disk units by the Minimax algorithm. Then, for the Random case, data blocks were randomly arrangedon each disk, while data blocks were clustered using the Short spanning path algorithm for the SSPcase. SSP clustering achieved a 3 to 57 percent improvement (i.e., reduction in disk seeks) relative torandom assignment in the experiments. We also measured the average distance over which the disk armneeds to move for each synthetic query. The disk arm travel distance is modeled by (highest o�set -lowest o�set) among the blocks in the answer set of a given query. For all the experiments, we observedan 11 to 97 percent improvement in the disk arm travel distance for SSP clustering relative to randomblock assignment.6.2 PreprocessingA preprocessing phase must be executed once to load the entire database. Preprocessing includessegmenting raw AVHRR GAC �les into blocks, building an index from the bounding boxes of thoseblocks, determining the placement of blocks onto disks using the declustering and clustering algorithms,and writing the blocks to the appropriate locations on disks. For the sample 24 GB data set, allpreprocessing takes about four hours on the SP-2. Raw �le segmenting, index construction, and runningthe declustering/clustering algorithm are tasks that were performed using a single node of the SP-2.Of these tasks, the majority of the time was spent in the declustering/clustering algorithm, which tookabout three hours to process over 55,000 data blocks. The �nal step that moves data from the rawAVHRR GAC �les to blocks in disk locations speci�ed by the declustering algorithm takes about �venode-hours. In other words, each node in the server takes about twenty minutes to �nd, process, andwrite out the blocks that have been assigned to its disks.6.3 Query ProcessingTo evaluate the end-to-end performance of Titan, we ran a set of sample queries. Each of these queriesgenerates a 10-day composite image, using the sensor measurements from bands 1 and 2. For simplicity,these sample queries are speci�ed as rectangular boxes that cover several land masses, namely theUnited Kingdom and Ireland, Australia, Africa, North America, and South America. In addition, wealso ran a global query, spatially covering the entire globe. The resolution of the output images for allthe sample queries was 100=128 degrees of longitude by 100=128 degrees of latitude.The sample queries were run under several di�erent system con�gurations. The con�gurationsallowed us to selectively disable one or more of the three system components, namely I/O, interprocessor17



communication, and computation, to observe how those components interact with each other.First, we disabled all but one of the 15 back-end nodes, and resolved the global query with onlyone back-end node. Only data stored on the local disks of the one active back-end node is retrievedto answer the global query, so this e�ectively disables the interprocessor communication component ofTitan. We then ran the global query with the computation component both turned on and o�, in twoseparate experiments. With the computation turned on, the back-end node performs the mapping andcompositing operations for the data blocks read from its local disks, as described in Section 2. Withthe computation turned o�, the back-end throws away retrieved data blocks without performing anycomputation. Turning o� the computation allowed us to measure the e�ective disk bandwidth seen bya back-end node. Comparing this e�ective disk bandwidth to the disk bandwidth measured by a diskbenchmark program should reveal the amount of software overhead for I/O added by Titan. However,even with the computation turned on, the output images generated with this con�guration are notcomplete, because only about 1=15th of the data stored in the database is retrieved.Figure 4 shows the results for answering the global query on one node. The left and right bars showthe execution times with the computation turned o� and on, respectively. With the computation turnedon, the total time spent in performing computation is measured separately, and is shown in the rightbar as the area labeled computation. The remaining time represents non-overlapped I/O.To resolve the global query, the back-end node retrieved 619 data blocks, or 116.2 MB, and thee�ective disk bandwidth observed by the back-end node is 9.2 MB/sec. Comparing this value to theaggregate application-level disk bandwidth of 10.6 MB/sec achievable on an SP-2 node, as measuredby a micro-benchmark using the UNIX �lesystem interface [1], the results show that very little I/Ooverhead is incurred by Titan. The di�erence between the heights of the left bar and the I/O part ofthe right bar indicates the amount of overlap between disk operations and computation on the node.The overlap is about 8 sec, which means that about 65% of the time spent doing asynchronous diskreads overlaps with computation.For the next experiment, we ran all the queries on all the back-end nodes. Table 4 shows the totalamount of data read from disk and communicated between processors to resolve the sample queries.To use all 15 back-end nodes, data blocks read from disks must be forwarded to their consumerback-end nodes, as described in Section 5. This e�ectively enables the interprocessor communicationcomponent of Titan. We ran the sample queries, with the computation turned on and o�, as for theprevious experiment. With the computation turned on, Titan back-end nodes perform the mapping and18
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Figure 4: Resolving the global query using a single back-end node.sample query total data read total data communicated(# data blocks) (# messages)global 9263 (1700 MB) 13138 (2500 MB)Africa 1087 (203.3 MB) 2005 (374.9 MB)North America 2147 (401.5 MB) 4313 (806.5 MB)South America 896 (167.6 MB) 1740 (325.4 MB)Australia 375 (69.9 MB) 997 (186.4 MB)United Kingdom 97 (18.1 MB) 602 (112.6 MB)Table 4: The total number of data blocks read and communicated to resolve the sample queries.compositing operations for the data blocks read from disks. Since all the data blocks needed to resolvethe queries are retrieved and processed, Titan returns complete result images for that con�guration.Therefore, the execution times obtained with the computation turned on are the end-to-end results forcompletely resolving the sample queries. On the other hand, with the computation turned o�, Titanback-end nodes read the necessary data blocks from disks and forward the data blocks to the consumerback-end nodes, but the data blocks are discarded by the consumers.Figure 5 shows the execution times for resolving the sample queries using all 15 back-end nodes, withthe computation turned on and o�. In the �gure, each query is shown with three bars. For comparison,the disk read time, using an estimated bandwidth of 10 MB/sec per back-end node, is plotted for eachquery in the leftmost bar. The middle and right bars show, respectively, the execution times with thecomputation turned o� and on, broken down into I/O, interprocessor communication and computationcomponents.By comparing the heights of the I/O parts of the two leftmost bars for each sample query, we see19



0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

100
ti

m
e 

(s
ec

)

computation
communication
I/O

0

1

2

3

4

5

6

7

8

9

1 0

computation
communication
I/O

0

0.5

1

1.5

2

2.5

3

3.5

4

computation
communication
I/Oglobal N. America Africa S. America Australia United KingdomFigure 5: Resolving the sample queries with 15 back-end nodes.that when the query is large enough a signi�cant part of the asynchronous disk read time is overlappedwith interprocessor communication. When the query is small, however, each back-end node only reads afew data blocks from its disks, so cannot achieve maximum disk bandwidth. That is why the estimatedI/O times (at 10 MB/sec) for the Australia and United Kingdom queries are less than the measuredtimes left for performing the non-overlapped I/O.The rightmost bars in Figure 5 also show that the computation component does not overlap well withthe other components. However, since the previous experiment showed that disk reads overlap quitewell with the computation, we can conclude that the interprocessor communication component doesnot overlap well with the computation. We have found that the lack of overlap between communicationand computation on an SP-2 processor is mainly because of the current implementation of the IBMMPL communication library. In MPL, the processor participates in the communication protocol to copymessages between user space and the network adapter. This memory copy operation is a major memorybandwidth bottleneck on a thin SP-2 node, leaving no time for the processor to perform computationwhile interprocessor communication takes place [30]. Snir et al. did, however, report that better overlapbetween computation and communication can be achieved with wide SP-2 nodes [30], which have highermemory bandwidth.7 EvaluationThe experimental results presented in Section 6 show that Titan delivers good performance for bothsmall and large queries. In particular, Titan provides interactive response times for local queries. Thedeclustering and clustering schemes allow Titan to e�ectively utilize the high aggregate I/O bandwidthavailable from the disk farm. Good data placement coupled with a post-processing algorithm that20



overlaps I/O, interprocessor communication,and computation causes Titan query processing to becomemainly a computation-bound task. However, there is still room for improvement.Our current implementation uses an equal partitioning of the output image to partition the workload among all back-end nodes. Data blocks retrieved by a back-end node must be forwarded to allconsuming back-end nodes, resulting in a large amount of interprocessor communication, which hasbecome a major performance bottleneck. The communication problem becomes more pronounced whensmall queries are resolved, or if more back-end nodes are to be employed by the system. The problemworsens in those cases because when the spatial extent of each sub-image is comparable to, or smallerthan, that of a single data block, each data block is very likely to intersect with more than one sub-image, and therefore must be forwarded to multiple back-end nodes. As can be seen in Table 4, onaverage each data block retrieved from disks on one back-end node is sent to about 1.4 other nodes forthe global query, about 1.8 other nodes for the Africa query, and about 6.2 other nodes for the UnitedKingdom query.The communication problem stems from a con
ict between the declustering strategy for partitioningthe blocks of satellite data across processors and the strategy for partitioning the workload, which isbased on a straightforward partitioning of the pixels in the output image. These choices force almost allof the data blocks a back-end node requires to compute its portion of the output image to be retrievedfrom disks on other back-end nodes. The problem is ampli�ed on the IBM SP-2 where the experimentswere run, because of lack of overlap between communication and computation.Another performance issue is that an equal partitioning of the output image across the back-endnodes does not correspond to an equal partitioning of the input data to be processed on each back-endnode. This is particularly true when the data blocks are not uniformly distributed within the entirespatial extent of the database. The AVHRR satellite data that Titan currently stores has this property.Table 5 shows, for each of the sample queries from Section 6.3, the minimum and maximum numbersof data blocks read and processed by a back-end node. As the table shows, the declustering algorithmachieves reasonable I/O load balance across the back-end nodes, but the workload partitioning schemeresults in a very imbalanced computational workload among the back-end nodes. The back-end nodewith the most data blocks to process is therefore likely to becomes a bottleneck during query processing.We are currently working on a new scheme for partitioning computational workload, based on thedeclustering of the input image. The proposed scheme has each processor process all data blocksretrieved from its local disks in response to a query. This e�ectively requires the output image to be21



query data blocks read data blocks processedmin max min maxglobal 599 632 634 1095Africa 65 79 117 151North America 137 151 172 430South America 50 66 89 148Australia 19 28 56 80United Kingdom 5 9 35 48Table 5: The number of data blocks read and processed by the back-end nodes.replicated, and then combined across all processors in a �nal step after all data blocks are processed. Ifthe output image is too large to be replicated in the memories of all processors, the output image can bepartitioned and produced one piece at a time, with all processors working on the same part of the outputimage at any given time. This scheme should signi�cantly reduce interprocessor communication; the onlycommunication required is to combine the results in the output image. In addition, such a partitioningscheme should also improve computational load balance, since the workload of each processor will bedirectly proportional to the amount of data that is stored on its local disk. With the help of a gooddeclustering algorithm, such as Minimax, the new scheme should produce good computational loadbalance.8 Conclusions and Future WorkWe have presented the design and evaluation of Titan, a high performance image database for e�cientlyaccessing remotely sensed data with spatial non-uniformity. Titan partitions the data into coarse-grainedchunks, and distributes the chunks across a disk farm using declustering and clustering algorithms.The system consists of both a front-end, for doing query partitioning, and a back-end, for performingdata retrieval and post-processing. The back-end runs in parallel, and coordinates I/O, interprocessorcommunication and computation over all processors to allow for overlap among all three operations.The experimental results show that Titan provides good performance for queries of widely varying sizes.We are currently investigating techniques for e�ciently handling multiple concurrent queries intothe image database. The issues that must be addressed include resource management and data reuse.Resource management issues arise from trying to optimize use of the limited amount of bu�ering spaceavailable on a processing node. Data reuse refers to scheduling processing of queries that overlap in22
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