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This research aims to present a Bayesian model for reliability growth projection and 

planning for discrete-use systems suitable for use throughout all stages of system 

development. Traditional discrete-use models for reliability growth utilize test data 

from individual test events at the current stage of development. They often neglect the 

inclusion of historical information from previous tests, testing similar systems, or 

eliciting expert opinion. Examining and using data attained from prior bench 

analyses, sub-system tests, or user trial events often fails to occur or is conducted 

poorly. Additionally, no current approach permits the probabilistic treatment of the 

initial system reliability at the commencement of the test program in conjunction with 

the management variables that may change throughout the execution of the test plan. 

This research aims to contribute to the literature in several ways. Firstly, a new 

Bayesian model is developed from first principles, which considers the uncertainty 



  

surrounding discrete-use systems under arbitrary corrective action regimes to address 

failure modes. This differs from current models that fail to address the randomized 

times that corrective actions to observed failure modes may be implemented 

depending on the selected management strategy. Some current models only utilize the 

first observed failure on test, meaning a significant loss of information transpires if 

subsequent failures are ignored. Additionally, the proposed strategy permits a 

probabilistic assessment of the test program, accounting for uncertainty in several 

management variables. 

The second contribution seeks to extend the Bayesian discrete-use system projection 

model by considering aspects of developmental, acceptance, and operational testing 

to formulate a holistic reliability growth plan framework that extends over the entire 

system lifecycle. The proposed approach considers the posterior distribution from 

each phase of reliability growth testing as the prior for the following growth test 

event. The same methodology is then employed using the posterior from the final 

phase of reliability growth testing as the prior for acceptance testing. It then follows 

that the acceptance testing posterior distribution forms the prior for subsequent 

operational testing through a Bayesian learning method. The approach reduces 

unrealistic and unattainable reliability demonstration testing that may result from a 

purely statistical analysis. The proposed methodology also permits planning for 

combined developmental and acceptance test activities within a financially 

constrained context. 

Finally, the research seeks to define an approach to effectively communicate 

developmental system reliability growth plans and risks to decision makers. Like 



  

many of their other specialist science peers, reliability professionals are fantastic 

communicators – with other reliability practitioners. However, when reliability 

professionals move beyond their world to make an impact, they often face the same 

challenge scientists from every discipline face – the difficulties of clearly 

communicating science to their audience. 
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Preface 

This work was borne of my desire to do more, to be more, and to explore. I never 

expected my life or career to get to where it is now, but I am certainly glad it did. 

I have discovered how reliability growth planning models and methodologies can be 

improved throughout my research journey, coupled with my typical day-to-day 

career. More importantly, I have become enlightened as to why they need to improve. 

Quite simply, if organizations do not change how reliability growth plans are 

developed, they will continue to waste resources and fail to achieve optimal results. 

In my current role, I routinely observe reliability growth plans go awry. Some 

projects fail to invest the required resources. In contrast, others attempt to ‘test in’ the 

required reliability without a realistic understanding of how reliability can be 

influenced by management strategy, the effectiveness of corrective actions and 

changes that are designed to address failure modes, or the initial system reliability 

upon entering the program. Furthermore, each of these reliability growth program 

aspects is grounded in a level of uncertainty. Management strategies drift as 

constraints and personalities change. The effectiveness of corrective actions can never 

be sure without significant testing and use, which may be well outside of the 

reliability program’s scope. Moreover, initial reliability is never known for sure; it is 

only ever an estimate within confidence bounds. 

The basis of this research initially stemmed from my passion for improving the 

reliability of developmental systems for military applications based on my 
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observations and negative experiences. As military acquisition budgets alter over 

time, reliability practitioners are often asked two specific questions: How can we do 

more with fewer resources, and how can we maximize the use (and often reuse) of 

data that is expensive to attain? My passion is to find out and develop the tools and 

processes necessary to make it easier for future engineers. 
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“Learning is the beginning of wealth. Searching and learning is where the miracle 

process all begins. The great breakthrough in your life comes when you realize it that 

you can learn anything you need to learn to accomplish any goal that you set for 

yourself. This means there are no limits on what you can be, have or do.” 
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Chapter 1: Introduction and Motivation 

 Background and Motivation 

Reliability growth is not a new concept within engineering or statistics and first 

emerged in the early 1960s [1]. In both an industrial and a military context, reliability 

growth during system development has been recognized as essential for decades, and 

it continues to evolve substantially. Unfortunately, its power, utility, and beneficial 

application in many current efforts remain widely unrecognized. 

Generally speaking, the first prototypes or items produced during the development of 

a new complex system will contain design, manufacturing, or engineering 

deficiencies. Because of these deficiencies, the initial reliability of the newly 

developed system may be below the reliability goal or requirement. In order to 

identify and correct these deficiencies, items under design and development are often 

subjected to a rigorous reliability testing program. During testing, problem areas are 

identified, and appropriate corrective actions may be taken to improve reliability. 

Thus, reliability growth is the improvement in the reliability of a product, component, 

subsystem, or system over a period of time due to changes in the design, the 

manufacturing process, or both [2]. 

The concept of reliability growth is not simply hypothetical. The reliability growth 

rate is related to factors such as the management strategy toward taking corrective 

actions, the effectiveness of the fixes implemented, reliability requirements, the initial 

system reliability, reliability funding, and business competitive factors. 
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The management strategy may be driven by budget and schedule; however, it is 

defined by management’s actual activities and decisions in correcting reliability 

problems. If the reliability of a failure mode is known through analysis or testing, 

then management makes the decision either not to fix (take no corrective action) or to 

fix that failure mode (implement a corrective action) [3]. Generally, if the reliability 

prediction by avoiding the failure mode meets management expectations, then no 

corrective actions would be expected. On the other hand, if the reliability is below 

expectations, the management strategy would typically call for implementing some 

form of corrective action. Different management strategies may lead to different 

reliability outcomes from the same baseline design. For example, one management 

team may take corrective actions for 80% of the failure modes that surface during 

reliability testing. In contrast, another management team with the same design and 

test information may implement corrective actions on only 60%. 

The effectiveness of the corrective actions must also be considered. A corrective 

action typically does not eliminate a failure mode and prevent it from recurring; 

instead, it reduces its occurrence rate [2]. A corrective action for a problem failure 

mode may remove a failure altogether or, more frequently, removes a certain amount 

of its failure intensity. Therefore, a level of intensity will likely remain in the system. 

The fractional decrease in the problem mode failure intensity due to the corrective 

action is known as the fix effectiveness factor (or FEF). The FEF will vary from 

failure mode to failure mode and between various system types, but a typical average 

for complex military systems has been reported [4] to be about 0.70. With an FEF 

equal to 0.70, a corrective action for a failure mode is considered to remove 70% of 



 
 

 
3 

 

the failure intensity, but 30% remains. As a result, the failure mode may still surface 

in use or testing; however, its failure intensity has reduced. 

The effectiveness of the corrective actions is also relative when compared to the 

initial reliability at the beginning of testing. Suppose corrective actions give a three-

fold improvement in reliability for equipment that initially had one-tenth of the 

reliability goal. In that case, this is not as significant as a 50% improvement in 

reliability if the initial system reliability was half the reliability goal. 

An effective and efficient reliability growth test planning and management strategy 

can contribute significantly to developing any new product or system. A solid plan 

gives the design or development team the focus and ability to meet desired reliability 

goals on schedule and within project budget constraints. For project management 

professionals, a well-considered and structured reliability growth strategy permits 

allocating resources to achieve the desired reliability outcomes using a measured and 

well-judged approach. Suppose the project management team has an intimate 

understanding of planned reliability targets. In that case, the reallocation or addition 

of unnecessary resources can be deliberated depending on reliability growth results. 

Military decision making and risk management have always been conducted in a very 

systematic way by many organizations. The laws and procedures that govern military 

decisions are typically presented as a foundational policy that is well documented and 

constitutes a “traditional” guiding principle. One of the downsides to such a rigid and 

structured approach to commonplace activities is that the doctrinal approaches 

developed offer little flexibility and takes decades to change. Military systems 
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reliability growth planning and management is no different and is guided through the 

use of handbooks, policy statements, process publications, and procedures used 

domestically by other service branches or internationally by other militaries. 

The key defense reliability growth publication used by the United States Department 

of Defense is Military Handbook 189C (MIL-HDBK-189C) Reliability Growth 

Management which was first developed in February 1981 [5]. Since the original 

publication, several revisions have been released, the latest being June 2011 [6] [7]. 

Within many western militaries, this publication is regarded as the authoritative 

publication relating to reliability growth. The reliability growth concepts and 

methodologies presented in the publication have been developed over the past few 

decades with actual application to Army, Navy, and Air Force systems. The evolution 

of individual tool applications has been developed to the point where considerable 

payoffs in system reliability improvement and cost reduction can be achieved [7]. 

However, strict adherence to any set of procedures or guidelines in a narrow-focused 

manner is not recommended and is likely to have shortcomings. It is important to note 

that MIL-HDBK-189C is not intended to be relied upon to produce a reliability 

growth plan without tailoring. Such tailoring is only possible with knowledge of the 

system in question and its developmental program. 

When developing a reliability growth program, numerous uncertainties exist, making 

planning and the allocation of appropriate resources difficult. It often results in finite 

resource wastage as allocation is attributed to areas where the most significant impact 

is not realized. The three critical areas of uncertainty, which should be included in 
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any mathematical model to ensure an accurate reliability growth plan that is suitably 

resourced to permit successful outcomes, include: 

• the management strategy (or MS), 

• the FEF, and 

• the initial reliability of the system undergoing test upon entering the growth 

program [8]. 

Many of the current statistical modeling methods used to develop a sound reliability 

growth program outlined in MIL-HDBK-189C fail to consider potential sources of 

uncertainty. In essence, they simply result in a plotted steady reliability growth 

outcome that extends from program entry to its conclusion that is not reality balanced. 

Many of these plans and programs refer to “idealized” reliability growth when in fact, 

reliability improvement hinges mainly on a collection of unknowns. Failing to 

consider uncertainties often results in a reliability growth plan that displays little 

resemblance to actual system test performance with marginal reliability 

improvements and significant resource wastage consequences. In reality, the singular 

growth curve developed from strict mathematical conformance does not represent the 

infinite number of paths that reliability growth can take. The singular curve leads to 

the belief that if the tested system’s reliability followed the provided idealized growth 

curve, then the system is on track to meeting the stipulated reliability requirement. 

Nevertheless, what if the tested system deviates from the idealized growth curve as it 

will almost inevitably do in practice? How far above or below the idealized curve can 
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the tested system be before the project management team can declare either that the 

system is on track for early success or that the system is displaying evidence that it 

will likely not meet the reliability requirement? This revelation leads to an additional 

underlying reliability communication issue. How can reliability professionals 

communicate actual reliability performance against planned reliability growth in a 

standardized manner that considers planning uncertainties and uncertainties in the 

reliability the system demonstrates during test and development? 

By considering the unknowns during both planning and testing, it is possible to better 

model reliability growth and produce a reliability growth plan that provides the 

project management team greater clarity when considering reliability performance 

against stipulated requirements at any given time during test activities. 

Many of the procedures outlined in MIL-HDBK-189C are based on a statistical 

appreciation of reliability growth modeling. Statistical reliability currently rests at an 

interesting juncture. On the one hand, reducing budgets in areas such as the 

acquisition of systems requires organizations to “do more with less” and “use (and 

reuse) all data available.” On the other hand, the era of “big data” means that 

information from sensors, field failures, and warranty claims can supplement existing 

reliability growth data, enhancing knowledge and reducing uncertainty. These 

challenges drive the need to combine multiple information elements from varied 

sources using models that account for differences in the variation and uncertainty in 

the sources. Bayesian approach methodologies provide a natural, intrinsic and 

structured way to combine this information flexibly. 
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 Research objectives 

Systems are generally defined by their usage. Continuous use systems have their 

usage recorded on a continuous scale; examples include hours operated or miles 

driven. Discrete-use systems operate via discrete user demands. Examples of discrete-

use systems include explosive ordnance, such as missiles and torpedos. 

This research aims to present a Bayesian projection model suitable for reliability 

growth planning of discrete-use systems suitable for use throughout all stages of 

system development. The model considers the three sources of uncertainty, including 

accounting for variability in the MS, vagaries in the mean FEF, and ambiguity in the 

initial system reliability. Traditional discrete-use models for reliability growth utilize 

test data from individual test events at the current stage of development. Little 

consideration is typically given to examining and using data from the previous bench, 

subsystem, or user trial events to periodically update the reliability growth model. 

Specifically, the research aims to encompass the following points: 

1. Establish and present a Bayesian modeling methodology for reliability growth 

projection applicable to discrete-use systems that considers uncertainty in the 

planned initial system reliability, the proposed MS, and the FEF. 

2. Propose and test, utilizing representative real-world information, a 

methodology for combining multi-source data using the proposed projection 

model. 
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3. Extend the proposed Bayesian projection model to enable life cycle reliability 

planning, modeling, and projection throughout developmental, acceptance, 

and operational testing stages and in-service life. 

4. Develop suitable open-source code based on the Python language, which 

permits reliability program development via simulation failure and corrective 

action approach. 

 Research Contributions 

The proposed research aims to contribute to the literature by developing several novel 

approaches listed below. 

1. A new Bayesian reliability projection model is proposed that considers the 

uncertainty surrounding discrete-use systems under arbitrary corrective action 

regimes to address failure modes. This differs from current models that fail to 

address the arbitrary nature of corrective action application strategies 

observed in real-world test situations. Additionally, the proposed strategy 

permits a probabilistic assessment of the test program, accounting for 

uncertainty in initial reliability and management variables. 

2. An extension to the proposed Bayesian discrete-use projection model is 

developed by considering developmental, acceptance, and operational testing 

aspects through simulation of failures and corrective actions. This allows the 

formulation of a holistic reliability growth plan framework that encompasses 

the entire system lifecycle. The approach considers the posterior distribution 
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from each phase of developmental testing as the prior for the following 

growth test event. The same methodology is employed using the posterior 

from the final phase of reliability growth testing as the acceptance testing 

prior. It then follows that the acceptance testing posterior distribution forms 

the prior for subsequent operational testing. Importantly the approach is 

flexible enough to permit the combination of data from any test activity 

conducted in any order. The approach reduces unrealistic and unattainable 

reliability testing that may result from a purely statistical analysis. The 

proposed methodology also permits planning for combined developmental and 

operational test activities within a financially constrained context. 

3. The research presents an approach for combining disparate data from various 

sources to establish prior distributions on system reliability. 

4. The research develops and presents novel methods to assist reliability 

engineers in communicating developmental system reliability growth plans 

and risks to decision makers more effectively. The research takes essential 

facets of communication theory from marketing, management, business, and 

advertising and adapts them to the reliability engineering endeavor. 

 Research Overview 

The following paragraphs briefly outline relevant chapters of the research 

dissertation. 
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Chapter 2 presents a brief overview of the literature survey conducted, including 

examining the historical and current state of the art in the methodologies developed 

for reliability growth planning and projection. The literature survey examines both 

continuous-use and discrete-use systems and considers potential modeling 

development and improvement opportunities. 

Chapter 3 describes and outlines the proposed Bayesian model approach for discrete-

use system reliability growth projection. The chapter centers on the Bayesian 

mathematical model development and includes a preliminary analysis of the proposed 

approach with noted advantages and disadvantages. 

Annex A to Chapter 3 presents a detailed examination of selected failure and 

corrective action simulation results attained utilizing the methodology outlined in 

Chapter 3. The approach is compared to several other methods to determine 

suitability and robustness. 

Chapter 4 presents a comparison of two practical empirical Bayes hyperparameter 

approaches useful for discrete-use system initial reliability estimation at the 

commencement of system-level developmental testing. The first was offered by Hall 

et al. [9], while the second was proposed and developed in Chapter 3. 

Chapter 5 demonstrates and describes a hypothetical case study where the methods 

outlined in Chapter 3 and Chapter 4 are used to develop a complete reliability 

program for a representative discrete-use system. The program test phase projections 

developed from the proposed model are demonstrated as beneficial and improved 

compared to current methodologies. 
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Chapter 6 examines the issues surrounding the communication of reliability growth 

information, particularly the information flow requirements and methodologies of 

communication between reliability practitioners and decision makers. In particular, 

methods for effectively communicating developmental reliability growth plans and 

risks, such as those developed in Chapter 3, Chapter 4, and Chapter 5, are examined. 

Several new approaches are proposed that add to the available literature. 

Chapter 7 completes the thesis work and includes conclusions, contributions, and 

extensions that may be considered for future exploration. 

 Conclusions 

The conducted research offers insights into several important aspects of reliability 

growth management in terms of planning and projection, including: 

1. the application of Bayesian modeling approaches to discrete-use system 

reliability program development, 

2. the importance of combining multi-source data to enhance and improve 

reliability assessments through information use and reuse efficiencies, 

3. methods useful in developing holistic approaches to extended reliability 

program development, and 

4. the requirement to advance reliability growth communication. 

Each of these aspects is important in evolving reliability growth methodologies and 

principles in a positive manner. 
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Chapter 2: Literature Review 

 Introduction 

Many reliability growth modeling and assessment techniques have been developed in 

the history of reliability engineering. Typically, these models and techniques will fall 

into one of three categories: 

• reliability growth planning models, 

• reliability growth tracking models, or 

• reliability growth projection models [10]. 

The purpose of the literature review is to provide a synopsis of the methodology and 

concepts that have been developed to assist in reliability growth planning and 

projection activities as they relate to the research. 

For further detailed literature reviews that include reliability growth tracking models, 

reliability demonstration methods, system reliability assessments, reliability growth 

handbooks, and other relevant literature, the author directs the audience to Hall’s 

2008 [11] or Wayne’s 2013 [12] doctoral dissertations. Both research publications 

feature detailed analyses of other reliability activities. 
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Reliability Growth Planning 

A well-thought-out reliability growth plan can serve as a powerful management tool 

in scoping the required resources to enhance and demonstrate the system reliability 

requirement. 

The following paragraphs describe a selection of the various reliability growth 

planning models, their development, and their utility. 

2.2.1 Duane Model (1964) 

The premise of the Duane Model [13] is the observation that the cumulative failure 

rate of the system with respect to cumulative test time is linear when examined on a 

logarithmic-logarithmic (or log-log) scale. The negative slope of the line indicates the 

rate of system reliability improvement and is known as the “growth rate.” 

Alternatively, the Duane Model may be used to plot cumulative Mean Time Between 

Failure (MTBF) versus cumulative test time. In this case, the growth rate indicated by 

the slope of the line is positive. Several reliability growth models utilize the 

functional linear form of the Duane Model as a fundamental assumption. The model 

was developed initially to facilitate reliability growth monitoring and tracking in 

major subsystems for various aircraft; however, it has been crucial in developing later 

reliability growth planning and tracking models. 
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2.2.2 Selby and Miller’s Reliability Planning and Management Model 

(1970) 

The Selby and Miller Reliability Planning and Management (RPM) Model [14] was 

developed to plan and manage reliability programs for complex systems. The basic 

concept of the model follows the Duane Postulate. The Selby and Miller Model was 

the first known model to utilize the Duane Postulate for reliability growth planning. 

The model follows the four Duane Postulate axioms: 

• Reliability improvement of complex equipment follows a mathematically 

predictable pattern. 

• Reliability improvement is approximately inversely proportional to the square 

root of cumulative operating (or test) time. 

• For constant corrective action effort and implementation, reliability growth 

closely approximates a straight line on log-log scales. 

• These relationships permit the use of a straightforward technique for 

monitoring progress toward a predetermined reliability goal. 

2.2.3 Military Handbook 189 (MIL-HDBK-189) Model (1981) 

The reliability growth planning model displayed with MIL-HDBK-189 [7] was first 

presented by Crow [15] in 1974. The model is based on the Power Law Non-

Homogeneous Poisson Process (NHPP). It was the first stochastic use of the Duane 

Model and the second reliability growth planning model based on the Duane 
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Postulate. The model was designed to permit the development of a reliability growth 

plan over a multi-phase developmental test series. The model outlined an approach 

for reliability growth management during a system reliability growth program. The 

MIL-HDBK-189 Model was the first to outline an approach where the actual 

reliability growth could be compared to the planned growth. 

The MIL-HDBK-189 Model develops an idealized Reliability Growth Curve (RGC) 

for a Test-Analyze-Fix-Test (TAFT) process. The TAFT process realizes reliability 

improvement when corrective actions are applied to failure modes observed during 

testing. The idealized growth curve is defined by five key parameters standard across 

all reliability growth planning models. These include the planned initial Mean Time 

Between Failure (MTBF), the length of the initial test phase, the goal MTBF to be 

achieved at the end of the test program, the reliability growth rate, and the total 

reliability growth test time. The model provides incremental reliability growth steps 

that show the individual test phase planned reliability targets based on the average 

value of the RGC over the Developmental Testing (DT) phases. 

2.2.4 AMSAA System Level Planning Model (1992) 

The United States Army Materiel Systems Analysis Activity (AMSAA) System Level 

Planning (SPLAN) Model is a variant of the MIL-HDBK-189 Model. It can be used 

to develop system reliability growth plans and associated idealized RGCs. 

Additionally, the model can also describe the required test duration to achieve a 

system reliability requirement as a point estimate. The model is often valuable for 

conducting sensitivity analysis; given any four of the five planning parameters within 
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the MIL-HDBK-189 Model, SPLAN will determine the value of the remaining 

parameter. The initial MTBF, goal MTBF, growth rate, and length of the initial test 

phase are typically given and used to determine the total required test time. 

2.2.5 AMSAA Subsystem Level Planning Model (1992) 

The AMSAA Subsystem Level Planning (SSPLAN) Model [16] was designed to 

develop RGCs at the system or subsystem level where the MTBF requirement was to 

be demonstrated at the desired level of statistical confidence. The model may 

determine subsystem reliability performance requirements that align with the system 

reliability MTBF goal. 

For the case where the system is modeled solely as one growth subsystem, SSPLAN 

is simply SPLAN. In this instance, system-level growth test planning parameters only 

are utilized. These inputs can be used to establish a target SPLAN idealized system-

level RGC and associated test duration via the analytical formulas presented in the 

previous section. Alternately, the more general SSPLAN simulation procedure 

discussed in this section can be utilized. 

The planning factors for SSPLAN are both system-level and subsystem level. The 

system-level planning factor is the system reliability requirement (or Technical 

Requirement, 𝑇𝑇𝑇𝑇). The subsystem planning factors include the subsystem initial test 

time, 𝑡𝑡𝑖𝑖; the subsystem initial MTBF, 𝑀𝑀𝑀𝑀𝑀𝑀𝐹𝐹𝑖𝑖; the Management Strategy, MS; and the 

probability of observing at least one B-mode failure for the subsystem, 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃. An 
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array of planning strategies are available depending on available, known, or estimated 

subsystem information. 

2.2.6 AMSAA Planning Model Based on Projection Methodology (2006) 

The purpose of the AMSAA Planning Model Based on Projection Methodology 

(PM2) [17] is to produce a reliability growth plan to assist with reliability 

developmental testing management for complex systems that incorporate a 

developmental test schedule and a corrective action strategy. The critical difference 

between this model and other earlier reliability growth planning models is that it is 

independent of the NHPP assumption. PM2 does not utilize a growth parameter, and 

it considers planning parameters that can be directly influenced by reliability program 

management. These parameters include: 

• the initial system MTBF, 𝑀𝑀𝑀𝑀𝑀𝑀𝐹𝐹𝑖𝑖, 

• Management Strategy, MS, 

• the goal MTBF, 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑔𝑔, 

• total developmental test time, T, 

• average Fix Effectiveness Factor (FEF), μ𝑑𝑑, 

• the number and placement of Corrective Action Periods (CAPs), and 

• the average lag time associated with corrective actions. 
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Corrective action lag time can significantly impact the reliability improvement 

program, and PM2 is generally considered as the first planning model to include this 

impact. 

PM2, like many of the other planning models, also utilizes an idealized growth curve 

and incremental steps that represent the goal reliability at each test phase. In PM2, 

however, the incremental steps also consider the lag time in applying corrective 

actions. This results in the individual steps falling below the idealized growth curve. 

These steps are based on the fact that most corrective actions for failure modes 

observed during test events are made during planned CAPs between individual test 

phases. 

The PM2 methodology consists of two sub-models: PM2-Continuous, developed by 

Hall and Ellner in 2006 [17], and PM2-Discrete, developed by Hall in 2011 [9]. As 

their names highlight, one is suitable for planning continuous-use system reliability 

growth planning, while the other is suited for modeling discrete-use system 

reliability. 

PM2 RGCs consists of two components: an idealized growth curve and reliability 

targets for each phase. Two types of failure modes are considered in the model 

parameters. A-mode failures are those failure modes that will not be addressed by 

planned corrective actions, whereas B-mode will. For both PM2 sub-models, the 

idealized curve may be interpreted as the expected system MTBF at test time 

𝑡𝑡 ∈ [0,𝑇𝑇] that would be achieved if all B-modes surfaced by 𝑡𝑡 were addressed via 
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corrective actions implemented with the planned average FEF where 𝑇𝑇 represents the 

total test time. The idealized curve extends from the initial MTBF to the goal MTBF. 

2.2.7 Crow Extended Model for Reliability Growth Planning (2010) 

The Crow Extended Planning Model [18] is an improved version of the 

MIL-HDBK-189 Model. It utilizes many of the advancements of the PM2 

methodology, and many of the inputs are the same. An additional input, known as the 

discovery Beta, is also required, which describes the discovery rate of correctible 

modes during testing. Due to the inherent connection with the NHPP associated with 

the MIL-HDBK-189 Model, a discovery Beta value of less than one indicates 

reliability growth is occurring. 

2.2.8 Hall’s Discrete Planning Model Based on Projection Methodology 

(2011) 

Hall’s Planning Model Based on Projection Methodology – Discrete (PM2-Discrete) 

[9] was developed as a discrete-use system analog to the original PM2 Model 

developed for continuous use. The model is based on the underlying reliability 

growth projection methodology to address the lack of projection models for discrete 

one-shot type systems. The model provides several uses for reliability program 

managers, including determining planned reliability achievement for available 

resources, acting as a baseline which realized reliability values could be measured 

against, and assessing the feasibility of the test program for achieving final reliability 

goals. The model also provides some valuable metrics associated with the reliability 

growth of the system. 
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PM2-Discrete utilizes similar planning parameters directly influenced by program 

management compared to PM2-Continuous, including the planned initial system 

reliability, the management strategy, the planned average fix effectiveness factor, the 

total developmental testing duration, and the average delay associated with corrective 

actions. 

2.2.9 Wayne’s Improved Planning Model Based on Projection Methodology 

– Continuous (2013) 

The Wayne Improved PM2-Continuous Model further develops Hall’s PM2-

Continuous Model. In his 2013 dissertation [19], Wayne proposed an approach to 

explicitly combined developmental testing and operational testing to develop the 

MTBF goal. 

Wayne further extended the approach in 2018 [20] by providing a Bayesian-based 

probabilistic treatment of various parameters. This is necessary to quantify the 

uncertainty present in the initial system reliability and management metrics. The 

technique also allows arbitrary time consideration for corrective actions. The 

approach allows for a reduction in the amount of demonstration testing necessary for 

a given level of uncertainty. It may also reduce high demonstration testing goals that 

typically result from a statistical OC Curve analysis. 

Figure 1 displays an RGC developed utilizing Wayne’s approach for a representative 

real-world continuous-use electromechanical system noting the development of 

uncertainty bounds across the various test phases. 
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Figure 1. Example RGC developed using the Wayne continuous-use methodology. 

Uncertainty may be present within the MS and FEF parameters. Wayne assumed that 

both variables could be modeled through a Beta distribution such that 
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and 
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where the 𝛽𝛽 parameter is defined by Wayne as 
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 Reliability Growth Projection 

The reliability growth process applied to a complex system undergoing development 

involves surfacing failure modes, analyzing the modes and implementing corrective 

actions. In this manner, the system configuration is matured with respect to reliability. 

The rate of improvement in reliability is determined by: 

• the ongoing rate at which new problem modes are being surfaced, 

• the effectiveness and timeliness of corrective actions, and 

• the set of failure modes that are addressed by corrective actions. 

At the end of a test phase, program management usually desires an assessment of the 

system's reliability associated with the current configuration. Often, the amount of 

data generated from testing the current system configuration is severely limited. In 

such circumstances, if the failure data generated over several system configurations 

are consistent with a reliability growth model, we can pool the data over the tested 

configurations to estimate the parameters of the growth model. This, in turn, will 

yield a reliability tracking curve that gives estimates of the configuration reliabilities. 

The resulting assessment of the system's current reliability is called a demonstrated 

estimate since it is based solely on test data. 
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If the current configuration is the result of applying a group of fixes to the previous 

configuration, there could be a statistical lack of fit in tracking reliability growth 

between the previous and current configurations. In such a situation, it may not be 

valid to use a reliability growth tracking model to pool configuration data to assess 

the reliability of the current configuration. The option exists of estimating the current 

configuration reliability-based only on failure data generated for this configuration. 

However, such an estimate may be inadequate if little test time has been accumulated 

since the corrective actions were implemented. In this situation, program management 

may wish to use a reliability projection method. Such methods are typically based on 

assessing the effectiveness of corrective actions and failure data generated from the 

current and previous configurations. 

A second situation in which a reliability projection is often utilized is when a group of 

corrective actions is scheduled for implementation at the end of the current test phase, 

before commencing a follow-on test phase. Program management often desires a 

projection of the reliability that will be achieved by implementing the delayed fixes. 

This type of projection can be based solely on the current test phase failure data and 

engineering assessments of the effectiveness of the planned corrective actions. 

The following paragraphs describe the historical development of several reliability 

growth projection models. 

2.3.1 Corcoran, Weingarten, and Zehna Model (1964) 

Corcoran, Weingarten, and Zehna developed the first model for estimating reliability 

after corrective action [21]. The approach was developed considering estimating 
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reliability in the final stage of development of an “expensive item.” The reliability 

projection was suitable when corrective actions are undertaken at the end of a test 

consisting of 𝑁𝑁 independent trials. The trial outcomes were assumed to follow a 

multinomial distribution with parameters 𝑁𝑁 (total number of trials), 𝑞𝑞0 (unknown 

success probability) and 𝑝𝑝𝑖𝑖 (unknown failure probability for failure mode 

𝑖𝑖 = 1,⋯ ,𝑘𝑘). The assumption of a multinomial model implied that at most, one failure 

mode can occur per trial. An exact expression for the system reliability was 

presented, and comparisons of various estimators were provided. 

2.3.2 AMSAA Crow Projection Model (1982) 

The AMSAA Crow Projection Model used the NHPP interpretation of the Duane 

Postulate to describe the rate of occurrence of failure modes in the system [22]. The 

model intended to project the growth in reliability that would be seen at the beginning 

of the next testing phase following the implementation of planned corrective actions. 

The model assumed that all corrective actions were delayed until the end of the 

current test phase. The model is also one of the first to introduce the concept of the 

reliability growth potential, which was defined as the theoretical upper limit of 

reliability that could be achieved via the test-fix-test methodology. This concept 

remains an important factor that governs reliability growth programs in general. It is 

commonly considered and monitored for current reliability growth programs in the 

U.S. Department of Defense and the Australian Department of Defence. Two separate 

goodness-of-fit procedures were discussed, the Cramer Von-Mises and Chi-Squared 

tests; however, no interval procedures were described. 
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2.3.3 AMSAA Maturity Projection Model (1995) 

The AMSAA Maturity Projection Model (AMPM) used a “doubly-stochastic” 

process to describe the underlying behavior of the system failure intensity [23] rather 

than a direct NHPP assumption. The model assumed that the system was comprised 

of a number of failure modes, with the collection of failure mode rates being 

realizations of a gamma distribution. The time between failures for each mode was 

then assumed to be exponential. AMPM was the first projection model to allow for 

arbitrary corrective actions, as the corrective actions could occur during the test or be 

delayed until after the test. As a result, it used only the first occurrences of each 

failure mode to develop failure intensity estimates. The AMPM was also the 

underlying methodology for developing the PM2 reliability growth planning model 

[24]. 

In addition to the system-level failure intensity, the model also provided estimates for 

the expected number of observed failure modes in later testing, the rate of occurrence 

of new failure modes, and the percent of the initial failure intensity on the modes that 

had been observed. Goodness of fit procedures were available using the expected 

number of failure modes; however, no confidence intervals have been developed. 

2.3.4 Clark’s Projection Model (1999) 

The projection model proposed by Clark was developed due to the recognition that 

many programs failed to achieve significant reliability growth until late in the 

program nearer production [24]. Clark proposed that the reasoning for this occurrence 

was the lack of focus on reliability early in the development of a new system. The 
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Clark Model was an extension of the AMSAA Crow Projection Model [22] with two 

main differences. The first was that the original model was modified to allow for 

arbitrary corrective actions. The second was the addition of an inherent failure rate 

term that allows for decisions to be made regarding future reliability investment. 

Suppose the current reliability was too close to the maximum possible value. In that 

case, it might not have proven cost-effective to continue to invest in further reliability 

improvement through test-fix-test strategies. 

2.3.5 AMSAA Maturity Projection Model – Stein (2004) 

The AMSAA Maturity Projection Model - Stein (AMPM-Stein) [25] was developed 

as an extension to AMPM [23]. The extension limits one of the original assumptions 

of the model as corrective actions, in this case, must be delayed until after the test. 

The model used the same underlying theoretical structure as the original AMPM, but 

additional data were used to develop the model estimates. All of the data, both first 

and repeat occurrence times, were used to develop shrinkage estimates, or Stein 

estimates [26], to develop the model. A benefit of the approach was that the use of 

additional data increased the accuracy of the resulting estimates. The shrinkage 

estimation minimized the mean square error value, which provided an immediate 

connection to Bayesian modeling using squared error loss functions. As with the 

original model, goodness of fit procedures were available, but no confidence interval 

methods were developed. 
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2.3.6 Crow Extended Model (2004) 

The Crow Extended Model was developed to model arbitrary corrective action 

strategies using the previously existing AMSAA Crow NHPP modeling framework 

[27]. The Crow Extended Model was a straightforward combination of the AMSAA 

Tracking Model [28] and the AMSAA Crow Projection Model [22]. Failure Modes 

were classified using the A-mode and B-mode distinction, where A-modes were not 

addressed via corrective action. The B-modes, those modes addressed via corrective 

actions, were further divided into BC-modes and BD-modes. Specifically, BC-modes 

have corrective actions implemented during the test phase, while BD-modes have 

corrective actions delayed until after the test phase is complete. The model used all A, 

BC, and BD-mode failures in the AMSAA Tracking Model to estimate the reliability 

growth that occurred during the test. The BD-mode failure intensity was then 

estimated using the maximum likelihood estimate, 𝑛𝑛𝐵𝐵𝐵𝐵/𝑇𝑇, for 𝑛𝑛𝐵𝐵𝐵𝐵 failures in test 

time 𝑇𝑇. Because the BD-mode corrective actions were delayed, their growth 

contribution during the test was subtracted from the Tracking Model estimate and 

replaced with a more appropriate estimator. The BD-mode failure intensity after 

corrective action was then estimated with the AMSAA Crow Projection Model. The 

overall result for the Crow Extended Model then subtracted the BD-mode maximum 

likelihood estimate 𝑛𝑛𝐵𝐵𝐵𝐵/𝑇𝑇 from the AMSAA Tracking Model result and replaced it 

with the AMSAA Crow Projection Model result. 

The model was shown via simulation study to provide extremely optimistic results 

when a large proportion of corrective actions were delayed [29]. There was also a 
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logical discrepancy by treating the A and BD-modes together with the BC-modes 

with the AMSAA Tracking Model, which assumed that reliability growth was 

occurring simply because failure modes were being addressed during the test. The 

attempt to overcome the issue by subtracting out the BD-mode contribution resulted 

in a bias in the model that tends to provide systemically optimistic results. 

2.3.7 Hall Discrete Projection Model (2008) 

The discrete reliability growth projection model proposed by Hall [30] [31] was a 

discrete-use system counterpart to the AMPM-Stein Model [25]. The model used 

Stein-estimation procedures [26] to develop shrinkage estimates for the system's 

failure intensity of unobserved failure modes. All corrective actions were delayed 

until the end of the current test phase, and more than one failure mode can occur on a 

given trial during the test. 

The discrete method proposed by Hall used a geometric likelihood for the first 

occurrence trial of an observed failure mode, and the mode probabilities of failure 

were assumed to be a realization from an underlying Beta distribution. Both methods 

of moments and maximum likelihood estimators were provided. Results were 

developed for systems with a known number of failure modes and those assumed to 

be complex with a large number of modes. Several associated management metrics 

were also presented, such as the expected number of new failure modes to be 

observed during additional testing, the rate of occurrence of new failure modes, and 

the reliability growth potential of the system. Model performance was also studied via 
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Monte Carlo simulation, and results indicated that performance was reasonable with 

only minor errors in the projection estimates. 

2.3.8 Hall and Mosleh’s Bayesian Methodology for Discrete Reliability 

Growth (2009) 

The discrete reliability growth methodology presented by Hall and Mosleh [32] was 

developed as an additional estimation procedure to those first presented in [30] and 

[33]. Again, the approach used the underlying theoretical assumption of mode failure 

probabilities as realizations from an underlying Beta distribution. Additional 

assumptions include a Binomial distribution for observed failures during the test, with 

all corrective actions delayed until the end of the testing. 

The Bayesian inference in the model was used only to estimate the parameters of the 

underlying Beta distribution. Squared error loss was used along with a constant prior, 

and numerical methods were utilized to evaluate the resulting posterior. Simulation 

methods were also employed to generate uncertainty distributions on each of the 

management metrics developed in [30] and [31]. 

2.3.9 Hall, Ellner, and Mosleh’s Discrete Reliability Growth Projection 

Model (2010) 

The model presented in this paper used the underlying assumption of mode failure 

probabilities as realizations from a Beta distribution [33]. The model differs from the 

previously presented discrete models somewhat, as it allows for arbitrary corrective 

actions to occur either during or directly after the test. Only failure mode first 



 
 

 
30 

 

occurrence trials were used, along with the corresponding FEF for each failure mode. 

Because only the first occurrence of each failure mode was used, the geometric 

distribution was used to model the mode’s first occurrences. Goodness-of-fit 

procedures were presented in order to validate the model assumptions. 

Maximum likelihood estimates were developed for the Beta distribution parameters, 

with results given for a finite number of failure modes and a complex system 

consisting of a large number of failure modes. Several management metrics and 

model equations were also developed, such as the reliability growth potential, the 

expected number of new failure modes, and the fraction of the initial failure 

probability surfaced during the testing. 

 Conclusions 

This chapter reviewed a number of reliability growth planning and projection models 

found in the literature to define the current state-of-the-art. Many modeling 

approaches are documented in the literature for both continuous-use and discrete-use 

systems, with several classical and Bayesian approaches available.  

From reviewing the literature, it is evident that there is a general lack of reliability 

growth approaches that consider data from throughout the developmental program of 

the system. This is particularly true for reliability growth projection models. The 

models apply to single test phases only, with no way of updating results from test 

phase to test phase. The models involving arbitrary corrective action strategies can 

also be improved, as the current state-of-art involves using only the first observed 

time or trial of occurrence for a given failure mode. 
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There are also limited approaches for combining data from different types of testing 

within a reliability growth program. Current approaches for data combination from 

different test modalities involve various types of testing in combination with 

reliability development testing. However, there are limited options that consider 

reliability growth testing combined with operational or reliability demonstration 

testing. The failure mode-based options currently available in the literature also 

consider only finite numbers of known failure modes in the system, with no 

allowance for unobserved failure modes. These approaches are also developed 

specifically for time-to-failure distributions, with no extensions to consider reliability 

for complex repairable systems. 

Finally, there is a decided disconnect between the current reliability growth 

approaches in the literature and the reliability assessment methods involving 

reliability engineering efforts. The use of component and subsystem data for system 

reliability assessment occurs in various papers. However, none of these discuss an 

approach that connects the results to reliability growth modeling approaches. The use 

of physics-based results within these approaches is also limited.
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Chapter 3: A Bayesian Approach to Discrete-Use System 

Reliability Growth Planning and Projection Under Arbitrary 

Corrective Actions1 

 Abstract 

The term discrete-use describes systems whose usage is measured discrete demands 

such as missile systems and torpedoes. As discrete-use systems developmental 

programs address increasingly complex platforms, the risk, and complexity associated 

with evolving a sound reliability growth plan also increase. Good reliability growth 

management is foundational in ensuring reliability achievement as a function of 

available time and resource constraints. However, current discrete-use system 

reliability models typically do not consider several uncertainties associated with the 

reliability growth plan. These include management planning parameters, the 

variability in corrective actions designed to address observed failure modes, and the 

underlying mode hazard rate. Consequently, this increases the risk associated with the 

reliability growth program and the overall developmental product schedule. This 

chapter presents an approach to reliability growth planning and projection that 

considers these uncertainties resulting in a practical and real-world representative 

 
 
1 The content of this chapter was presented at the Australian Integrated Project Engineering Congress 
(IPEC) May 26-28, 2021. Additionally, an adapted version of this chapter was submitted in the 
American Society of Mechanical Engineers (ASME) Safety Engineering, Risk and Reliability Analysis 
Division (SERAD) 2021 Student Paper on Safety Innovation Contest and was awarded an Honorable 
Mention. A full-text adapted version of this chapter has been submitted for publishing consideration to 
the Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, a 
SAGE Publishing publication.  
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model. The proposed method is a natural extension of current reliability growth 

planning and projection models used under developmental test conditions. The 

approach models the uncertainty in the underlying failure mode probability, the 

failure mode corrective action effectiveness, and the management strategy for dealing 

with observed failure modes within a Bayesian framework. Uncertainty quantification 

is essential in ensuring decision makers are aware of the range of potential 

consequences and the breadth of risk that various management strategies and 

corrective action schemes entail. 

 Introduction 

Reliability growth is defined as the improvement in a reliability metric of a 

component, subsystem, or system over a period due to changes in the product’s 

design, the adopted manufacturing processes, or both. The objective of reliability 

growth testing is to prove increases in a system’s reliability to a particular goal or 

requirement in a phased manner by discovering failure modes and implementing 

corrective actions [34]. All planning and projection models have limitations and often 

fail to represent or oversimplify the true nature of testing and growth activities. Early 

models typically assumed that the observed failure modes and their associated 

corrective actions were incorporated during the test and at the specific failure time. 

These methods produce an “idealized growth curve” [7]. In practice, corrective action 

implementation may be limited during testing due to schedule, availability of 

engineering resources, the appropriateness of test data, or other constraints. 

Corrective actions that require more investigation may be delayed until after the 
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completion of the current test phase. Some failure modes may also not be addressed, 

depending on the management strategy adopted at any singular point in time. 

This chapter presents a framework for discrete-use system reliability growth planning 

and projection under real-world mixed arbitrary corrective actions. It considers 

additional elements of uncertainty previous models have not included: 

unpredictability in the initial system reliability upon entry to the test program, 

variability in the management strategy adopted in dealing with observed failure 

modes, and inconsistency in corrective action effectiveness. The model presented is a 

Bayesian approach which aligns with elements of Hall’s Discrete Projection Model 

[30] [31] and also Hall, Ellner, and Mosleh’s Discrete Reliability Growth Projection 

Model [33]. Extension of the basic model also provides a useful alternative to a 

contemporary discrete-use system growth planning model: Planning Model Based on 

Projection Methodology – Discrete (PM2-D) [7]. The proposed approach combines 

the benefits realized from Bayesian approaches and simulation techniques to deliver 

realistic and detailed reliability growth plans. 

 Model Assumptions 

The modeling approach adopted follows similar methods described by others [35] 

[36] in that system reliability is considered a product of reliabilities from independent 

failure modes. The effectiveness of corrective actions can be mathematically 

quantified when the system is modeled and enables modal fix effectiveness factors 

(FEF) to address observed failure modes. FEF values represent the fraction of a 

failure mode’s rate of occurrence mitigated by corrective action. An FEF of one 
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represents an idealized “perfect” corrective action resulting in complete mitigation of 

the observed failure mode. Conversely, an FEF of zero indicates an entirely 

ineffective corrective action that does not change the mode failure probability of 

occurrence [37]. 

In developing the discrete-use system model, the following assumptions were made: 

1. The discrete-use system consists of many serial failure modes, with the 

occurrence of any failure mode resulting in system failure. 

2. Failure modes are independent of each other. 

3. The mode failure probability remains constant before and after the 

implementation of corrective actions. 

4. The implemented corrective action has an associated FEF resulting in a 

fraction mitigation of the underlying constant mode failure probability. 

5. The applied corrective actions do not introduce new failure modes. 

 Single Failure Mode Posterior Inference 

To develop the model of system reliability, we consider the posterior distribution for 

a single failure mode. For a given test duration of 𝑇𝑇 total demands with arbitrary 

corrective actions, assume for the 𝑖𝑖𝑡𝑡ℎ failure mode, there are 𝑛𝑛𝑖𝑖 total failures on trials 

𝑡𝑡 = �𝑡𝑡𝑖𝑖,1, … , 𝑡𝑡𝑖𝑖,𝑛𝑛𝑛𝑛� with corrective action implemented on trial 𝑣𝑣𝑖𝑖 and an FEF of 𝑑𝑑𝑖𝑖. 

Additionally, there are 𝑛𝑛𝑖𝑖,1 mode failures before corrective action implementation and 

𝑛𝑛𝑖𝑖,2 = 𝑛𝑛𝑖𝑖 − 𝑛𝑛𝑖𝑖,1 mode failures after corrective action. 
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Figure 2 displays the single failure mode and corrective action concept in number line 

form. 

 

Figure 2. Single failure mode and corrective action concept. 

Let 𝑝𝑝𝑖𝑖 denote the mode failure probability, then for a series of independent Bernoulli 

(or Binomial) trials, the probability mass function (PMF) for the observation of the 

single failure mode before corrective action is 

 𝑓𝑓�𝑛𝑛𝑖𝑖,1, 𝑣𝑣𝑖𝑖 ,𝑝𝑝𝑖𝑖� = �
𝑣𝑣𝑖𝑖
𝑛𝑛𝑖𝑖,1� 𝑝𝑝𝑖𝑖

𝑛𝑛𝑖𝑖,1(1 − 𝑝𝑝𝑖𝑖)𝑣𝑣𝑖𝑖−𝑛𝑛𝑖𝑖,1 (4) 

with the 𝑝𝑝𝑖𝑖
𝑛𝑛𝑖𝑖,1  term representing observed failures and (1 − 𝑝𝑝𝑖𝑖)𝑣𝑣𝑖𝑖−𝑛𝑛𝑖𝑖,1 representing test 

demand successes with �
𝑣𝑣𝑖𝑖
𝑛𝑛𝑖𝑖,1� different ways of distributing 𝑛𝑛𝑖𝑖,1 failures in 𝑣𝑣𝑖𝑖 trials. 

The PMF, after the implementation of the corrective action, is then 

𝑓𝑓�𝑇𝑇,𝑛𝑛𝑖𝑖 ,𝑛𝑛𝑖𝑖,1, 𝑣𝑣𝑖𝑖 , 𝑝𝑝𝑖𝑖� = �
𝑇𝑇 − 𝑣𝑣𝑖𝑖
𝑛𝑛𝑖𝑖 − 𝑛𝑛𝑖𝑖,1

� (1 − 𝑝𝑝𝑖𝑖)(1−𝑑𝑑𝑖𝑖)�𝑇𝑇−𝑣𝑣𝑖𝑖−�𝑛𝑛𝑖𝑖−𝑛𝑛𝑖𝑖,1��[1 − (1 − 𝑝𝑝𝑖𝑖)1−𝑑𝑑𝑖𝑖]𝑛𝑛𝑖𝑖−𝑛𝑛𝑖𝑖,1 (5) 

with the (1 − 𝑝𝑝𝑖𝑖)(1−𝑑𝑑𝑖𝑖)�𝑇𝑇−𝑣𝑣𝑖𝑖−�𝑛𝑛𝑖𝑖−𝑛𝑛𝑖𝑖,1�� term representing additional test demand 

successes and the [1 − (1 − 𝑝𝑝𝑖𝑖)1−𝑑𝑑𝑖𝑖]𝑛𝑛𝑖𝑖−𝑛𝑛𝑖𝑖,1 term further additional observed instances 
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of the same failure mode after corrective action. Correspondingly, the �
𝑇𝑇 − 𝑣𝑣𝑖𝑖
𝑛𝑛𝑖𝑖 − 𝑛𝑛𝑖𝑖,1

� 

term represents the different ways of distributing 𝑛𝑛𝑖𝑖 − 𝑛𝑛𝑖𝑖,1 failures in 𝑇𝑇 − 𝑣𝑣𝑖𝑖 trials. 

With the assumptions of failure mode independence and a constant mode failure 

probability, these aspects result in a failure mode’s likelihood function shown below, 

such that 

ℓ(𝑡𝑡|𝑝𝑝𝑖𝑖 , 𝑣𝑣𝑖𝑖 ,𝑑𝑑𝑖𝑖 ,𝑇𝑇) ∝ 𝑝𝑝𝑖𝑖
𝑛𝑛𝑖𝑖,1(1 − 𝑝𝑝𝑖𝑖)𝑣𝑣𝑖𝑖−𝑛𝑛𝑖𝑖,1(1 − 𝑝𝑝𝑖𝑖)(1−𝑑𝑑𝑖𝑖)�𝑇𝑇−𝑣𝑣𝑖𝑖−�𝑛𝑛𝑖𝑖−𝑛𝑛𝑖𝑖,1��[1 − (1 − 𝑝𝑝𝑖𝑖)1−𝑑𝑑𝑖𝑖]𝑛𝑛𝑖𝑖−𝑛𝑛𝑖𝑖,1 (6) 

where 

• 𝑝𝑝𝑖𝑖
𝑛𝑛𝑖𝑖,1  represents trial failures before corrective action 

• (1 − 𝑝𝑝𝑖𝑖)𝑣𝑣𝑖𝑖−𝑛𝑛𝑖𝑖,1  represents trial successes before corrective action 

• (1 − 𝑝𝑝𝑖𝑖)(1−𝑑𝑑𝑖𝑖)�𝑇𝑇−𝑣𝑣𝑖𝑖−�𝑛𝑛𝑖𝑖−𝑛𝑛𝑖𝑖,1�� represents trial successes after corrective action 

• [1 − (1 − 𝑝𝑝𝑖𝑖)1−𝑑𝑑𝑖𝑖]𝑛𝑛𝑖𝑖−𝑛𝑛𝑖𝑖,1 represents trial failures after corrective action. 

A Beta(a,b) distribution is selected as a useful representation of the prior distribution 

on the mode failure probability such that 

 𝑝𝑝(𝑝𝑝𝑖𝑖) =
Γ[𝑎𝑎 + 𝑏𝑏]
Γ[𝑎𝑎]Γ[𝑏𝑏] 𝑝𝑝𝑖𝑖𝑎𝑎−1(1 − 𝑝𝑝𝑖𝑖)𝑏𝑏−1 (7) 

The Beta distribution is suitable as it is the conjugate prior distribution for the 

Bernoulli, Binomial, negative Binomial and geometric distributions and can be used 
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to appropriately model the behavior of random variables limited to the finite interval 

[0, 1]. 

The mode failure posterior distribution is then 

 𝑝𝑝(𝑝𝑝𝑖𝑖|𝑡𝑡) =
𝑝𝑝(𝑝𝑝𝑖𝑖)ℓ(𝑡𝑡|𝑝𝑝𝑖𝑖, 𝑣𝑣𝑖𝑖 ,𝑑𝑑𝑖𝑖,𝑇𝑇)

∫ 𝑝𝑝(𝑝𝑝𝑖𝑖)
1
0 ℓ(𝑡𝑡|𝑝𝑝𝑖𝑖, 𝑣𝑣𝑖𝑖 ,𝑑𝑑𝑖𝑖 ,𝑇𝑇)𝑑𝑑𝑑𝑑𝑖𝑖

 
(8) 

Solving the posterior requires substituting 𝑛𝑛𝑖𝑖,2 =  𝑛𝑛𝑖𝑖 − 𝑛𝑛𝑖𝑖,1 and employing a Binomial 

expansion such that 

 [1 − (1 − 𝑝𝑝𝑖𝑖)1−𝑑𝑑𝑖𝑖]𝑛𝑛𝑖𝑖,2 = ��
𝑛𝑛𝑖𝑖,2
𝑗𝑗 �

𝑛𝑛𝑖𝑖,2

𝑗𝑗=0

(−1)𝑗𝑗(1 − 𝑝𝑝𝑖𝑖)(1−𝑑𝑑𝑖𝑖)𝑗𝑗 
(9) 

Equation (9) results in a failure mode posterior distribution of 

𝑝𝑝(𝑝𝑝𝑖𝑖|𝑡𝑡) =
∑ �

𝑛𝑛𝑖𝑖,2
𝑗𝑗 �

𝑛𝑛𝑖𝑖,2
𝑗𝑗=0 (−1)𝑗𝑗𝑝𝑝𝑖𝑖𝑎𝑎+𝑛𝑛𝑖𝑖,1−1(1 − 𝑝𝑝𝑖𝑖)𝑏𝑏+𝑣𝑣𝑖𝑖−𝑛𝑛𝑖𝑖,1+(1−𝑑𝑑𝑖𝑖)�𝑇𝑇−𝑣𝑣𝑖𝑖−𝑛𝑛𝑖𝑖,2+𝑗𝑗�−1

∑ �
𝑛𝑛𝑖𝑖,2
𝑗𝑗 �

𝑛𝑛𝑖𝑖,2
𝑗𝑗=0 (−1)𝑗𝑗 Γ�𝑎𝑎 + 𝑛𝑛𝑖𝑖,1�Γ�𝑏𝑏 + 𝑣𝑣𝑖𝑖 − 𝑛𝑛𝑖𝑖,1 + (1 − 𝑑𝑑𝑖𝑖)�𝑇𝑇 − 𝑣𝑣𝑖𝑖 − 𝑛𝑛𝑖𝑖,2 + 𝑗𝑗��

Γ�𝑎𝑎 + 𝑏𝑏 + 𝑣𝑣𝑖𝑖 + (1 − 𝑑𝑑𝑖𝑖)�𝑇𝑇 − 𝑣𝑣𝑖𝑖 − 𝑛𝑛𝑖𝑖,2 + 𝑗𝑗��

 
(10) 

If we assume that all corrective actions are delayed until the end of the test, then 

𝑛𝑛𝑖𝑖,2 = 0 as there can be no observed single mode failures after corrective action and 

𝑣𝑣𝑖𝑖 = 𝑇𝑇. If this is the case, then the failure mode posterior distribution in Equation (10) 

simplifies to the standard Beta-Binomial conjugate relationship such that 
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𝑝𝑝(𝑝𝑝𝑖𝑖|𝑡𝑡) =
𝑝𝑝𝑖𝑖𝑎𝑎+𝑛𝑛𝑖𝑖,1−1(1 − 𝑝𝑝𝑖𝑖)𝑏𝑏+𝑇𝑇−𝑛𝑛𝑖𝑖,1−1

Γ�𝑎𝑎 + 𝑛𝑛𝑖𝑖,1�Γ�𝑏𝑏 + 𝑇𝑇 − 𝑛𝑛𝑖𝑖,1�
Γ[𝑎𝑎 + 𝑏𝑏 + 𝑇𝑇]

 

 

=
Γ[𝑎𝑎 + 𝑏𝑏 + 𝑇𝑇]

Γ�𝑎𝑎 + 𝑛𝑛𝑖𝑖,1�Γ�𝑏𝑏 + 𝑇𝑇 − 𝑛𝑛𝑖𝑖,1�
𝑝𝑝𝑖𝑖𝑎𝑎+𝑛𝑛𝑖𝑖,1−1(1− 𝑝𝑝𝑖𝑖)𝑏𝑏+𝑇𝑇−𝑛𝑛𝑖𝑖,1−1 

(11) 

Similarly, if no failures for the single mode are observed during the test, then 

Equation (10) simplifies to 

 

𝑝𝑝(𝑝𝑝𝑖𝑖|𝑡𝑡) =
𝑝𝑝𝑖𝑖𝑎𝑎−1(1 − 𝑝𝑝𝑖𝑖)𝑏𝑏+𝑇𝑇−1

Γ[𝑎𝑎]Γ[𝑏𝑏 + 𝑇𝑇]
Γ[𝑎𝑎 + 𝑏𝑏 + 𝑇𝑇]

 

 

=
Γ[𝑎𝑎 + 𝑏𝑏 + 𝑇𝑇]
Γ[𝑎𝑎]Γ[𝑏𝑏 + 𝑇𝑇]𝑝𝑝𝑖𝑖

𝑎𝑎−1(1 − 𝑝𝑝𝑖𝑖)𝑏𝑏+𝑇𝑇−1 (12) 

However, our interest remains in developing the posterior reliability for the failure 

mode. Using Equation (10), the posterior mean reliability is found as the expectation 

of 1 − 𝑝𝑝𝑖𝑖|𝑡𝑡 

 

𝐸𝐸(1 − 𝑝𝑝𝑖𝑖|𝑡𝑡)

=
∑ �

𝑛𝑛𝑖𝑖,2
𝑗𝑗 �

𝑛𝑛𝑖𝑖,2
𝑗𝑗=0 (−1)𝑗𝑗 Γ�𝑏𝑏 + 𝑣𝑣𝑖𝑖 − 𝑛𝑛𝑖𝑖,1 + (1 − 𝑑𝑑𝑖𝑖)�𝑇𝑇 − 𝑣𝑣𝑖𝑖 − 𝑛𝑛𝑖𝑖,2 + 𝑗𝑗� + 1�

Γ�𝑎𝑎 + 𝑏𝑏 + 𝑣𝑣𝑖𝑖 + (1 − 𝑑𝑑𝑖𝑖)�𝑇𝑇 − 𝑣𝑣𝑖𝑖 − 𝑛𝑛𝑖𝑖,2 + 𝑗𝑗� + 1�

∑ �
𝑛𝑛𝑖𝑖,2
𝑗𝑗 �

𝑛𝑛𝑖𝑖,2
𝑗𝑗=0 (−1)𝑗𝑗 Γ�𝑏𝑏 + 𝑣𝑣𝑖𝑖 − 𝑛𝑛𝑖𝑖,1 + (1 − 𝑑𝑑𝑖𝑖)�𝑇𝑇 − 𝑣𝑣𝑖𝑖 − 𝑛𝑛𝑖𝑖,2 + 𝑗𝑗��

Γ�𝑎𝑎 + 𝑏𝑏 + 𝑣𝑣𝑖𝑖 + (1 − 𝑑𝑑𝑖𝑖)�𝑇𝑇 − 𝑣𝑣𝑖𝑖 − 𝑛𝑛𝑖𝑖,2 + 𝑗𝑗��

 

(13) 
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The mean posterior failure mode reliability after corrective action implementation 

then becomes 

 

𝐸𝐸�(1 − 𝑝𝑝𝑖𝑖)(1−𝑑𝑑𝑖𝑖)|𝑡𝑡� 

 

=
∑ �

𝑛𝑛𝑖𝑖,2
𝑗𝑗 �

𝑛𝑛𝑖𝑖,2
𝑗𝑗=0 (−1)𝑗𝑗 Γ�𝑏𝑏 + 𝑣𝑣𝑖𝑖 − 𝑛𝑛𝑖𝑖,1 + (1 − 𝑑𝑑𝑖𝑖)�𝑇𝑇 − 𝑣𝑣𝑖𝑖 − 𝑛𝑛𝑖𝑖,2 + 𝑗𝑗 + 1��

Γ�𝑎𝑎 + 𝑏𝑏 + 𝑣𝑣𝑖𝑖 + (1 − 𝑑𝑑𝑖𝑖)�𝑇𝑇 − 𝑣𝑣𝑖𝑖 − 𝑛𝑛𝑖𝑖,2 + 𝑗𝑗 + 1��

∑ �
𝑛𝑛𝑖𝑖,2
𝑗𝑗 �

𝑛𝑛𝑖𝑖,2
𝑗𝑗=0 (−1)𝑗𝑗 Γ�𝑏𝑏 + 𝑣𝑣𝑖𝑖 − 𝑛𝑛𝑖𝑖,1 + (1 − 𝑑𝑑𝑖𝑖)�𝑇𝑇 − 𝑣𝑣𝑖𝑖 − 𝑛𝑛𝑖𝑖,2 + 𝑗𝑗��

Γ�𝑎𝑎 + 𝑏𝑏 + 𝑣𝑣𝑖𝑖 + (1 − 𝑑𝑑𝑖𝑖)�𝑇𝑇 − 𝑣𝑣𝑖𝑖 − 𝑛𝑛𝑖𝑖,2 + 𝑗𝑗��

 

(14) 

 Complex System Posterior Inference 

A single failure mode is used to develop a similar system-level model for a complex 

system involving many failure modes. If we assume the system has 𝑘𝑘 serial failure 

modes per our first assumption, then 

𝐸𝐸(𝑅𝑅|𝑡𝑡) = 𝐸𝐸 ��(1 − 𝑝𝑝𝑖𝑖)(1−𝑑𝑑𝑖𝑖)
𝑘𝑘

𝑖𝑖=1

|𝑡𝑡� 

 

= �
∑ �

𝑛𝑛𝑖𝑖,2
𝑗𝑗 �

𝑛𝑛𝑖𝑖,2
𝑗𝑗=0 (−1)𝑗𝑗 Γ�𝑏𝑏 + 𝑣𝑣𝑖𝑖 − 𝑛𝑛𝑖𝑖,1 + (1 − 𝑑𝑑𝑖𝑖)�𝑇𝑇 − 𝑣𝑣𝑖𝑖 − 𝑛𝑛𝑖𝑖,2 + 𝑗𝑗 + 1��

Γ�𝑎𝑎 + 𝑏𝑏 + 𝑣𝑣𝑖𝑖 + (1 − 𝑑𝑑𝑖𝑖)�𝑇𝑇 − 𝑣𝑣𝑖𝑖 − 𝑛𝑛𝑖𝑖,2 + 𝑗𝑗 + 1��

∑ �
𝑛𝑛𝑖𝑖,2
𝑗𝑗 �

𝑛𝑛𝑖𝑖,2
𝑗𝑗=0 (−1)𝑗𝑗 Γ�𝑏𝑏 + 𝑣𝑣𝑖𝑖 − 𝑛𝑛𝑖𝑖,1 + (1 − 𝑑𝑑𝑖𝑖)�𝑇𝑇 − 𝑣𝑣𝑖𝑖 − 𝑛𝑛𝑖𝑖,2 + 𝑗𝑗��

Γ�𝑎𝑎 + 𝑏𝑏 + 𝑣𝑣𝑖𝑖 + (1 − 𝑑𝑑𝑖𝑖)�𝑇𝑇 − 𝑣𝑣𝑖𝑖 − 𝑛𝑛𝑖𝑖,2 + 𝑗𝑗��

𝑚𝑚

𝑖𝑖=1

× �1−
𝑎𝑎

𝑎𝑎 + 𝑏𝑏 + 𝑇𝑇�
𝑘𝑘−𝑚𝑚

 (15) 

where 𝑚𝑚 is the number of observed failure modes, and 𝑘𝑘 is the total number of failure 

modes in the system. Equation (15) represents the product of mean failure mode 



 
 

 
41 

 

reliabilities for the entire system. The equation complex right-hand side first term 

signifies the system observed failure modes derived as the product of many individual 

modes as detailed in Equation (14). The equation right-hand side second term 

represents the unobserved failure modes and is the mean of the posterior in Equation 

(12) when modes remain unobserved. Typically, we do not know the system’s total 

failure mode number when considering a real-world scenario. To develop an estimate 

that does not include the total number of failure modes, we take the limit of Equation 

(15) as 𝑘𝑘 becomes large. Before taking the limit, we reparameterize Equation (15) 

using the prior mean reliability of the system and an additional parameter. First, let 

 𝑛𝑛� = 𝑎𝑎 + 𝑏𝑏 (16) 

where 𝑛𝑛� is an additional parameter of the Beta(a,b) distribution mode failure 

probability. Then let the mean prior system-level reliability be denoted by 

 𝑅𝑅𝐼𝐼 = ��1 −
𝑎𝑎

𝑎𝑎 + 𝑏𝑏
� =

𝑘𝑘

𝑖𝑖=1

�1 −
𝑎𝑎

𝑎𝑎 + 𝑏𝑏
�
𝑘𝑘
 

(17) 

which is the product of the prior mean failure mode reliabilities. The Beta distribution 

𝑎𝑎 parameter may then be written using Equation (16) and Equation (17) as 

 𝑎𝑎 = 𝑛𝑛��1 − 𝑅𝑅𝐼𝐼1 𝑘𝑘⁄ � (18) 

Examination of Equation (18) reveals that as 𝑘𝑘 becomes large, 𝑎𝑎 → 0. This also 

implies that 𝑏𝑏 → 𝑛𝑛� as 𝑘𝑘 becomes large. 
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Reparameterising Equation (15) through the substitution of Equation (18) now gives 

𝐸𝐸(𝑅𝑅|𝑡𝑡) = 𝐸𝐸 ��(1 − 𝑝𝑝𝑖𝑖)(1−𝑑𝑑𝑖𝑖)
𝑘𝑘

𝑖𝑖=1

|𝑡𝑡� 

 

= �
∑ �

𝑛𝑛𝑖𝑖,2
𝑗𝑗 �

𝑛𝑛𝑖𝑖,2
𝑗𝑗=0 (−1)𝑗𝑗 Γ�𝑛𝑛� − 𝑎𝑎 + 𝑣𝑣𝑖𝑖 − 𝑛𝑛𝑖𝑖,1 + (1 − 𝑑𝑑𝑖𝑖)�𝑇𝑇 − 𝑣𝑣𝑖𝑖 − 𝑛𝑛𝑖𝑖,2 + 𝑗𝑗 + 1��

Γ�𝑛𝑛� + 𝑣𝑣𝑖𝑖 + (1 − 𝑑𝑑𝑖𝑖)�𝑇𝑇 − 𝑣𝑣𝑖𝑖 − 𝑛𝑛𝑖𝑖,2 + 𝑗𝑗 + 1��

∑ �
𝑛𝑛𝑖𝑖,2
𝑗𝑗 �

𝑛𝑛𝑖𝑖,2
𝑗𝑗=0 (−1)𝑗𝑗 Γ�𝑛𝑛� − 𝑎𝑎 + 𝑣𝑣𝑖𝑖 − 𝑛𝑛𝑖𝑖,1 + (1 − 𝑑𝑑𝑖𝑖)�𝑇𝑇 − 𝑣𝑣𝑖𝑖 − 𝑛𝑛𝑖𝑖,2 + 𝑗𝑗��

Γ�𝑛𝑛� + 𝑣𝑣𝑖𝑖 + (1 − 𝑑𝑑𝑖𝑖)�𝑇𝑇 − 𝑣𝑣𝑖𝑖 − 𝑛𝑛𝑖𝑖,2 + 𝑗𝑗��

𝑚𝑚

𝑖𝑖=1

× �1 −
𝑎𝑎

𝑛𝑛� + 𝑇𝑇
�
𝑘𝑘−𝑚𝑚

 (19) 

Taking the limit of the right-hand side second term representing the unobserved 

failure modes in Equation (19) with respect to 𝑘𝑘 gives 

 lim
𝑘𝑘→∞

�1 −
𝑎𝑎

𝑛𝑛� + 𝑇𝑇
�
𝑘𝑘−𝑚𝑚

= exp �
𝑛𝑛�

𝑛𝑛� + 𝑇𝑇
log𝑅𝑅𝐼𝐼� = 𝑅𝑅𝐼𝐼

𝑛𝑛�
𝑛𝑛�+𝑇𝑇 (20) 

The limit of the mean reliability of the complex system from Equation (19) is then 
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lim
𝑘𝑘→∞

𝐸𝐸(𝑅𝑅|𝑡𝑡) 

 

= lim
𝑘𝑘→∞

�
∑ �

𝑛𝑛𝑖𝑖,2
𝑗𝑗 �

𝑛𝑛𝑖𝑖,2
𝑗𝑗=0 (−1)𝑗𝑗 Γ�𝑛𝑛� − 𝑎𝑎 + 𝑣𝑣𝑖𝑖 − 𝑛𝑛𝑖𝑖,1 + (1 − 𝑑𝑑𝑖𝑖)�𝑇𝑇 − 𝑣𝑣𝑖𝑖 − 𝑛𝑛𝑖𝑖,2 + 𝑗𝑗 + 1��

Γ�𝑛𝑛� + 𝑣𝑣𝑖𝑖 + (1 − 𝑑𝑑𝑖𝑖)�𝑇𝑇 − 𝑣𝑣𝑖𝑖 − 𝑛𝑛𝑖𝑖,2 + 𝑗𝑗 + 1��

∑ �
𝑛𝑛𝑖𝑖,2
𝑗𝑗 �

𝑛𝑛𝑖𝑖,2
𝑗𝑗=0 (−1)𝑗𝑗 Γ�𝑛𝑛� − 𝑎𝑎 + 𝑣𝑣𝑖𝑖 − 𝑛𝑛𝑖𝑖,1 + (1 − 𝑑𝑑𝑖𝑖)�𝑇𝑇 − 𝑣𝑣𝑖𝑖 − 𝑛𝑛𝑖𝑖,2 + 𝑗𝑗��

Γ�𝑛𝑛� + 𝑣𝑣𝑖𝑖 + (1 − 𝑑𝑑𝑖𝑖)�𝑇𝑇 − 𝑣𝑣𝑖𝑖 − 𝑛𝑛𝑖𝑖,2 + 𝑗𝑗��

𝑚𝑚

𝑖𝑖=1

× �1 −
𝑎𝑎

𝑛𝑛� + 𝑇𝑇
�
𝑘𝑘−𝑚𝑚

 

 

= �
∑ �

𝑛𝑛𝑖𝑖,2
𝑗𝑗 �

𝑛𝑛𝑖𝑖,2
𝑗𝑗=0 (−1)𝑗𝑗 Γ�𝑛𝑛� − 𝑎𝑎 + 𝑣𝑣𝑖𝑖 − 𝑛𝑛𝑖𝑖,1 + (1 − 𝑑𝑑𝑖𝑖)�𝑇𝑇 − 𝑣𝑣𝑖𝑖 − 𝑛𝑛𝑖𝑖,2 + 𝑗𝑗 + 1��

Γ�𝑛𝑛� + 𝑣𝑣𝑖𝑖 + (1 − 𝑑𝑑𝑖𝑖)�𝑇𝑇 − 𝑣𝑣𝑖𝑖 − 𝑛𝑛𝑖𝑖,2 + 𝑗𝑗 + 1��

∑ �
𝑛𝑛𝑖𝑖,2
𝑗𝑗 �

𝑛𝑛𝑖𝑖,2
𝑗𝑗=0 (−1)𝑗𝑗 Γ�𝑛𝑛� − 𝑎𝑎 + 𝑣𝑣𝑖𝑖 − 𝑛𝑛𝑖𝑖,1 + (1 − 𝑑𝑑𝑖𝑖)�𝑇𝑇 − 𝑣𝑣𝑖𝑖 − 𝑛𝑛𝑖𝑖,2 + 𝑗𝑗��

Γ�𝑛𝑛� + 𝑣𝑣𝑖𝑖 + (1 − 𝑑𝑑𝑖𝑖)�𝑇𝑇 − 𝑣𝑣𝑖𝑖 − 𝑛𝑛𝑖𝑖,2 + 𝑗𝑗��

𝑚𝑚

𝑖𝑖=1

× 𝑅𝑅𝐼𝐼
𝑛𝑛�

𝑛𝑛�+𝑇𝑇 

(21) 

We must calculate the second moment for the posterior mean in Equation (14) to 

calculate the posterior variance. The second moment of the mean posterior is 

 

𝐸𝐸 ��(1− 𝑝𝑝𝑖𝑖)(1−𝑑𝑑𝑖𝑖)�
2

|𝑡𝑡� 

 

=
∑ �

𝑛𝑛𝑖𝑖,2
𝑗𝑗 �

𝑛𝑛𝑖𝑖,2
𝑗𝑗=0 (−1)𝑗𝑗 Γ�𝑏𝑏 + 𝑣𝑣𝑖𝑖 − 𝑛𝑛𝑖𝑖,1 + (1 − 𝑑𝑑𝑖𝑖)�𝑇𝑇 − 𝑣𝑣𝑖𝑖 − 𝑛𝑛𝑖𝑖,2 + 𝑗𝑗 + 2��

Γ�𝑎𝑎 + 𝑏𝑏 + 𝑣𝑣𝑖𝑖 + (1 − 𝑑𝑑𝑖𝑖)�𝑇𝑇 − 𝑣𝑣𝑖𝑖 − 𝑛𝑛𝑖𝑖,2 + 𝑗𝑗 + 2��

∑ �
𝑛𝑛𝑖𝑖,2
𝑗𝑗 �

𝑛𝑛𝑖𝑖,2
𝑗𝑗=0 (−1)𝑗𝑗 Γ�𝑏𝑏 + 𝑣𝑣𝑖𝑖 − 𝑛𝑛𝑖𝑖,1 + (1 − 𝑑𝑑𝑖𝑖)�𝑇𝑇 − 𝑣𝑣𝑖𝑖 − 𝑛𝑛𝑖𝑖,2 + 𝑗𝑗��

Γ�𝑎𝑎 + 𝑏𝑏 + 𝑣𝑣𝑖𝑖 + (1 − 𝑑𝑑𝑖𝑖)�𝑇𝑇 − 𝑣𝑣𝑖𝑖 − 𝑛𝑛𝑖𝑖,2 + 𝑗𝑗��

 

(22) 

The second moment of the posterior displayed in Equation (22) can now be further 

developed similarly to the posterior mean such that 
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𝐸𝐸(𝑅𝑅2|𝑡𝑡) = �
∑ �

𝑛𝑛𝑖𝑖,2
𝑗𝑗 �

𝑛𝑛𝑖𝑖,2
𝑗𝑗=0 (−1)𝑗𝑗 Γ�𝑛𝑛� − 𝑎𝑎 + 𝑣𝑣𝑖𝑖 − 𝑛𝑛𝑖𝑖,1 + (1 − 𝑑𝑑𝑖𝑖)�𝑇𝑇 − 𝑣𝑣𝑖𝑖 − 𝑛𝑛𝑖𝑖,2 + 𝑗𝑗 + 2��

Γ�𝑛𝑛� + 𝑣𝑣𝑖𝑖 + (1 − 𝑑𝑑𝑖𝑖)�𝑇𝑇 − 𝑣𝑣𝑖𝑖 − 𝑛𝑛𝑖𝑖,2 + 𝑗𝑗 + 2��

∑ �
𝑛𝑛𝑖𝑖,2
𝑗𝑗 �

𝑛𝑛𝑖𝑖,2
𝑗𝑗=0 (−1)𝑗𝑗 Γ�𝑛𝑛� − 𝑎𝑎 + 𝑣𝑣𝑖𝑖 − 𝑛𝑛𝑖𝑖,1 + (1 − 𝑑𝑑𝑖𝑖)�𝑇𝑇 − 𝑣𝑣𝑖𝑖 − 𝑛𝑛𝑖𝑖,2 + 𝑗𝑗��

Γ�𝑛𝑛� + 𝑣𝑣𝑖𝑖 + (1 − 𝑑𝑑𝑖𝑖)�𝑇𝑇 − 𝑣𝑣𝑖𝑖 − 𝑛𝑛𝑖𝑖,2 + 𝑗𝑗��

𝑚𝑚

𝑖𝑖=1

 

× �
(𝑏𝑏 + 𝑇𝑇 + 1)(𝑏𝑏 + 𝑇𝑇)

(𝑎𝑎 + 𝑏𝑏 + 𝑇𝑇 + 1)(𝑎𝑎 + 𝑏𝑏 + 𝑇𝑇)�
𝑘𝑘−𝑚𝑚

 (23) 

Again, the complex right-hand side equation first term of Equation (23) denotes the 

system observed failure modes second moment derived as the product of many 

individual modes as detailed in Equation (22). Similarly, the right-hand side equation 

second term represents the unobserved failure modes second moment. 

Using the same methodology demonstrated in Equation (16) to Equation (18), the 

complex system reliability contribution from unobserved failure modes can be 

expressed as 

�
(𝑏𝑏 + 𝑇𝑇 + 1)(𝑏𝑏 + 𝑇𝑇)

(𝑎𝑎 + 𝑏𝑏 + 𝑇𝑇 + 1)(𝑎𝑎 + 𝑏𝑏 + 𝑇𝑇)�
𝑘𝑘−𝑚𝑚

= ��1 −
𝑎𝑎

𝑛𝑛� + 𝑇𝑇 + 1
� �1 −

𝑎𝑎
𝑛𝑛� + 𝑇𝑇

��
𝑘𝑘−𝑚𝑚

 
(24) 

Taking the limit of Equation (24) with respect to 𝑘𝑘 yields 

 lim
𝑘𝑘→∞

��1 −
𝑎𝑎

𝑛𝑛� + 𝑇𝑇 + 1
� �1 −

𝑎𝑎
𝑛𝑛� + 𝑇𝑇

��
𝑘𝑘−𝑚𝑚

= 𝑅𝑅𝐼𝐼
𝑛𝑛�

𝑛𝑛�+𝑇𝑇+1+
𝑛𝑛�

𝑛𝑛�+𝑇𝑇 (25) 

Taking the limit of Equation (23) with respect to 𝑘𝑘 and substituting the resultant from 

Equation (25) gives 
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lim
𝑘𝑘→∞

𝐸𝐸(𝑅𝑅2|𝑡𝑡) = �
∑ �

𝑛𝑛𝑖𝑖,2
𝑗𝑗 �

𝑛𝑛𝑖𝑖,2
𝑗𝑗=0 (−1)𝑗𝑗 Γ�𝑛𝑛� + 𝑣𝑣𝑖𝑖 − 𝑛𝑛𝑖𝑖,1 + (1 − 𝑑𝑑𝑖𝑖)�𝑇𝑇 − 𝑣𝑣𝑖𝑖 − 𝑛𝑛𝑖𝑖,2 + 𝑗𝑗 + 2��

Γ�𝑛𝑛� + 𝑣𝑣𝑖𝑖 + (1 − 𝑑𝑑𝑖𝑖)�𝑇𝑇 − 𝑣𝑣𝑖𝑖 − 𝑛𝑛𝑖𝑖,2 + 𝑗𝑗 + 2��

∑ �
𝑛𝑛𝑖𝑖,2
𝑗𝑗 �

𝑛𝑛𝑖𝑖,2
𝑗𝑗=0 (−1)𝑗𝑗 Γ�𝑛𝑛� + 𝑣𝑣𝑖𝑖 − 𝑛𝑛𝑖𝑖,1 + (1 − 𝑑𝑑𝑖𝑖)�𝑇𝑇 − 𝑣𝑣𝑖𝑖 − 𝑛𝑛𝑖𝑖,2 + 𝑗𝑗��

Γ�𝑛𝑛� + 𝑣𝑣𝑖𝑖 + (1 − 𝑑𝑑𝑖𝑖)�𝑇𝑇 − 𝑣𝑣𝑖𝑖 − 𝑛𝑛𝑖𝑖,2 + 𝑗𝑗��

𝑚𝑚

𝑖𝑖=1

 

× 𝑅𝑅𝐼𝐼
𝑛𝑛�

𝑛𝑛�+𝑇𝑇+1+
𝑛𝑛�

𝑛𝑛�+𝑇𝑇 (26) 

Denoting the second moment in Equation (26) as 𝜇𝜇2 and the mean in Equation (21) as 

𝜇𝜇, the posterior variance for the complex system reliability is then identified as 

 𝑉𝑉𝑉𝑉𝑉𝑉[𝑅𝑅|𝑡𝑡] = 𝜎𝜎2 = 𝜇𝜇2 − 𝜇𝜇2 (27) 

Popular methods to represent the exact product of independent Beta distributions 

include the Meijer G or Fox’s H functions [38] [39]; however, both have drawbacks 

regarding precision and computational resource usage in all commonly available 

software. Although the product of individual random Beta distribution variables does 

not typically follow an exact Beta distribution, we have found that the Beta 

distribution still forms a suitable approximation of the posterior for the system-level 

reliability without the computational resource concerns. A method of moments 

approach can be used to determine the parameters of the approximate distribution 

resulting in a set of simultaneous equations such that 

 𝜇𝜇 =
𝑎𝑎1

𝑎𝑎1 + 𝑏𝑏1
 

(28) 

and 



 
 

 
46 

 

 𝜎𝜎2 =
𝑎𝑎1𝑏𝑏1

(𝑎𝑎1 + 𝑏𝑏1)2(𝑎𝑎1 + 𝑏𝑏1 + 1) (29) 

where 𝑎𝑎1 and 𝑏𝑏1 are the parameters for the Beta distribution approximation. 

 Selecting Appropriate Reliability Growth Management Planning Parameters 

In undertaking sound reliability growth planning, two essential parameters must be 

considered that significantly influence the outcomes of reliability growth model 

simulations and real-world testing. The two planning parameters in question are the 

FEF and the Management Strategy (MS). 

The adopted MS has a significant influence on the system reliability growth potential 

and the overall shape of the planned growth curve. Observation of a new failure mode 

during the growth program prompts a management decision to either do nothing and 

ignore the failure mode (known as Type A modes) or address the failure mode via 

corrective action (Type B modes). The MS parameter is the fraction of the initial 

system failure intensity planned to be in the Type B group. The MS parameter “…is a 

measure of how aggressive corrective actions are incorporated into the design” [40]. 

Many techniques for reliability growth planning treat the two key management 

planning parameters as a deterministic mean value. The approach presented here 

considers the uncertainty present in the parameter estimations through their treatment 

as continuous random variables. In both FEF and MS cases, a Beta(a,b) distribution is 

chosen to represent the respective parameters which are limited to the finite interval 

[0,1]. 
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3.6.1 Principle of Maximum Entropy 

The Principle of Maximum Entropy considers that when estimating the probability 

distribution, one should select that distribution that leaves the most significant 

remaining uncertainty consistent with the applicable constraints [41] [42]. Modeling 

the management planning parameters using the Principle of Maximum Entropy 

ensures approximate Beta(a,b) distributions representative of the expected FEF and 

MS encompassing the greatest uncertainty. Typically, a mean value for the parameter 

in question is assumed by examining historical data relating to similar systems, 

human factors and assessing management risk tolerance thresholds or analyzing the 

likely failure modes in the design. The mean is generally used for planning purposes, 

but other moments, such as variance or kurtosis, could also be used if available. This 

would change the form of the resulting distribution, which would either require a 

different method for approximating the Beta distribution or a new derivation using the 

actual distribution. 

Maximizing the entropy subject to the assumed mean value within the range [0,1] 

results in the prior distribution being a truncated exponential distribution given by 

 𝑝𝑝(𝑥𝑥) =
𝜇𝜇exp(−𝜇𝜇𝜇𝜇)

1 − exp(−𝜇𝜇) 
(30) 

where 𝑥𝑥 is the mean value of the parameter of interest (either the FEF or MS), and 𝜇𝜇 

is the solution of 
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1
𝜇𝜇
−

exp(−𝜇𝜇)
1 − exp(−𝜇𝜇) = 𝜀𝜀 

(31) 

for the mean parameter of interest value 𝜀𝜀. 

Examination of Equation (31) reveals that a discontinuity exists when the mean value 

equals 0.5. In reality, the mean parameter value is unlikely to be known with a high 

degree of precision. Consequently, altering the mean parameter value slightly (to 0.49 

or 0.51) permits a positive solution. Assessment of results has demonstrated that the 

solution is insensitive to this minor adjustment. 

A Beta(a,b) distribution can approximate the truncated exponential distribution in 

Equation (30) with reasonable accuracy. The Beta distribution parameters can be 

found by equating the mean and second moment about the origin of the two 

distributions resulting in the system of equations given by 

 
𝑎𝑎

𝑎𝑎 + 𝑏𝑏
=

1
𝜇𝜇
−

exp(−𝜇𝜇)
1 − exp(−𝜇𝜇) = 𝜀𝜀 

(32) 

and 

�
𝑎𝑎

𝑎𝑎 + 𝑏𝑏
� �

𝑎𝑎 + 1
𝑎𝑎 + 𝑏𝑏 + 1

� =
−exp(−𝜇𝜇) + 2 �− 1

𝜇𝜇 exp(−𝜇𝜇)− 1
𝜇𝜇2 exp(−𝜇𝜇) + 1

𝜇𝜇2�

1 − exp(−𝜇𝜇)  
(33) 
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 Prior Distribution Empirical Bayes Estimators 

Procedures exist to parameterize the prior Beta distribution on the reliability by 

exploiting historical data or eliciting expert opinion [43] when the proposed approach 

is used for reliability planning or actual failure data when the approach is used for 

reliability growth projection to make an estimate. Alternatively, empirical Bayes 

estimates can be developed for the proposed approach. 

Note that the mean reliability in Equation (21) and the variance in Equation (27) are 

expressed in terms of prior system-level mean reliability 𝑅𝑅𝐼𝐼 and the 𝑛𝑛� parameter. The 

empirical Bayes estimators for these parameters are developed by examining the 

likelihood in Equation (6) and the marginal likelihood when all failure modes are 

considered. The marginal likelihood for a single failure mode is the denominator of 

the posterior distribution in Equation (10) written as 

 𝑝𝑝(𝑛𝑛𝑖𝑖) =
Γ[𝑎𝑎 + 𝑏𝑏]
Γ[𝑎𝑎]Γ[𝑏𝑏]��

𝑛𝑛𝑖𝑖,2
𝑗𝑗 �

𝑛𝑛𝑖𝑖,2

𝑗𝑗=0

(−1)𝑗𝑗
Γ�𝑎𝑎 + 𝑛𝑛𝑖𝑖,1�Γ�𝑏𝑏 + 𝑣𝑣𝑖𝑖 − 𝑛𝑛𝑖𝑖,1 + 𝜏𝜏𝑖𝑖,𝑗𝑗�

Γ�𝑎𝑎 + 𝑏𝑏 + 𝑣𝑣𝑖𝑖 + 𝜏𝜏𝑖𝑖,𝑗𝑗�
 

(34) 

where 𝜏𝜏𝑖𝑖,𝑗𝑗 = (1 − 𝑑𝑑𝑖𝑖)�𝑇𝑇 − 𝑣𝑣𝑖𝑖 − 𝑛𝑛𝑖𝑖,2 + 𝑗𝑗� and 𝑛𝑛𝑖𝑖 remains the total number of observed 

failures during the test phase for the 𝑖𝑖𝑡𝑡ℎ failure mode. 

From Equation (34), the total likelihood when considered over 𝑘𝑘 modes in the 

complex system is 
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 ℒ(𝑛𝑛) = �
Γ[𝑎𝑎 + 𝑏𝑏]
Γ[𝑎𝑎]Γ[𝑏𝑏]��

𝑛𝑛𝑖𝑖,2
𝑗𝑗 �

𝑛𝑛𝑖𝑖,2

𝑗𝑗=0

(−1)𝑗𝑗
Γ�𝑎𝑎 + 𝑛𝑛𝑖𝑖,1�Γ�𝑏𝑏 + 𝑣𝑣𝑖𝑖 − 𝑛𝑛𝑖𝑖,1 + 𝜏𝜏𝑖𝑖,𝑗𝑗�

Γ�𝑎𝑎 + 𝑏𝑏 + 𝑣𝑣𝑖𝑖 + 𝜏𝜏𝑖𝑖,𝑗𝑗�

𝑘𝑘

𝑖𝑖=1

 
(35) 

and the subsequent log-likelihood is 

 

𝑙𝑙(𝑛𝑛) = ��logΓ[𝑎𝑎 + 𝑏𝑏] − logΓ[𝑎𝑎] − logΓ[𝑏𝑏]
𝑘𝑘

𝑖𝑖=1

+ log ���
𝑛𝑛𝑖𝑖,2
𝑗𝑗 �

𝑛𝑛𝑖𝑖,2

𝑗𝑗=0

(−1)𝑗𝑗
Γ�𝑎𝑎 + 𝑛𝑛𝑖𝑖,1�Γ�𝑏𝑏 + 𝑣𝑣𝑖𝑖 − 𝑛𝑛𝑖𝑖,1 + 𝜏𝜏𝑖𝑖,𝑗𝑗�

Γ�𝑎𝑎 + 𝑏𝑏 + 𝑣𝑣𝑖𝑖 + 𝜏𝜏𝑖𝑖,𝑗𝑗�
�� 

(36) 

If we again assume that 𝑚𝑚 failure modes are observed during the test phase, then the 

log-likelihood in Equation (36) may be represented as 

𝑙𝑙(𝑛𝑛) = log ��𝑘𝑘𝑚𝑚��
Γ[𝑎𝑎 + 𝑏𝑏]
Γ[𝑎𝑎]Γ[𝑏𝑏]��

𝑛𝑛𝑖𝑖,2
𝑗𝑗 �

𝑛𝑛𝑖𝑖,2

𝑗𝑗=0

(−1)𝑗𝑗
Γ�𝑎𝑎 + 𝑛𝑛𝑖𝑖,1�Γ�𝑏𝑏 + 𝑣𝑣𝑖𝑖 − 𝑛𝑛𝑖𝑖,1 + 𝜏𝜏𝑖𝑖,𝑗𝑗�

Γ�𝑎𝑎 + 𝑏𝑏 + 𝑣𝑣𝑖𝑖 + 𝜏𝜏𝑖𝑖,𝑗𝑗�

𝑚𝑚

𝑖𝑖=1

� 

 

+(𝑘𝑘 −𝑚𝑚) log
Γ[𝑎𝑎 + 𝑏𝑏]Γ[𝑏𝑏 + 𝑇𝑇]
Γ[𝑎𝑎 + 𝑏𝑏 + 𝑇𝑇]Γ[𝑏𝑏] (37) 

Equation (37) is the sum of log-likelihood terms for 𝑚𝑚 observed failure modes and 

𝑘𝑘 −𝑚𝑚 unobserved failure modes. The constant �𝑘𝑘𝑚𝑚� represents the possible ways of 

observing 𝑚𝑚 modes from the total population of 𝑘𝑘 failure modes. Reparameterising 

Equation (37) in terms of 𝑅𝑅𝐼𝐼 and the 𝑛𝑛� parameter gives 
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𝑙𝑙(𝑛𝑛) = log ��𝑘𝑘𝑚𝑚��
Γ[𝑛𝑛�]Γ�𝑛𝑛��1 − 𝑅𝑅𝐼𝐼1 𝑘𝑘⁄ � + 𝑛𝑛𝑖𝑖,1�
Γ�𝑛𝑛��1 − 𝑅𝑅𝐼𝐼1 𝑘𝑘⁄ ��Γ�𝑛𝑛�𝑅𝑅𝐼𝐼1 𝑘𝑘⁄ �

��
𝑛𝑛𝑖𝑖,2
𝑗𝑗 �

𝑛𝑛𝑖𝑖,2

𝑗𝑗=0

(−1)𝑗𝑗
Γ�𝑛𝑛�𝑅𝑅𝐼𝐼1 𝑘𝑘⁄ + 𝑣𝑣𝑖𝑖 − 𝑛𝑛𝑖𝑖,1 + 𝜏𝜏𝑖𝑖,𝑗𝑗�

Γ�𝑛𝑛� + 𝑣𝑣𝑖𝑖 + 𝜏𝜏𝑖𝑖,𝑗𝑗�

𝑚𝑚

𝑖𝑖=1

� 

 

+(𝑘𝑘 − 𝑚𝑚) log
Γ[𝑛𝑛�]Γ�𝑛𝑛�𝑅𝑅𝐼𝐼1 𝑘𝑘⁄ + 𝑇𝑇�
Γ[𝑛𝑛� + 𝑇𝑇]Γ�𝑛𝑛�𝑅𝑅𝐼𝐼1 𝑘𝑘⁄ �

 (38) 

Taking the limit of Equation (38) as 𝑘𝑘 becomes large yields 

𝑙𝑙∞(𝑛𝑛) = lim
𝑘𝑘→∞

𝑙𝑙(𝑛𝑛) 

= � log�log𝑅𝑅𝐼𝐼𝑛𝑛� � �𝑛𝑛𝑖𝑖,1 − 𝑞𝑞�

𝑛𝑛𝑖𝑖,1−1

q=1

���
𝑛𝑛𝑖𝑖,2
𝑗𝑗 �

𝑛𝑛𝑖𝑖,2

𝑗𝑗=0

(−1)𝑗𝑗
Γ�𝑛𝑛� + 𝑣𝑣𝑖𝑖 − 𝑛𝑛𝑖𝑖,1 + 𝜏𝜏𝑖𝑖,𝑗𝑗�

Γ�𝑛𝑛� + 𝑣𝑣𝑖𝑖 + 𝜏𝜏𝑖𝑖,𝑗𝑗�

𝑛𝑛𝑖𝑖,2

𝑗𝑗=0

�
𝑚𝑚

𝑖𝑖=1

+ log𝑅𝑅𝐼𝐼𝑛𝑛�[Ψ(𝑛𝑛� + 𝑇𝑇) −Ψ(𝑛𝑛�)] (39) 

where Ψ is the Digamma function. Taking the derivative with respect to 𝑅𝑅𝐼𝐼 and 𝑛𝑛� 

gives 

 𝑅𝑅𝐼𝐼 = exp �
−𝑚𝑚

𝑛𝑛�[ψ(𝑛𝑛� + 𝑇𝑇) − ψ(𝑛𝑛�)]� (40) 

and 

�
∑ �∏ 1

𝑛𝑛� + 𝑣𝑣𝑖𝑖 + τ𝑖𝑖,𝑗𝑗 − 𝑞𝑞
𝑛𝑛𝑖𝑖,1
𝑞𝑞=1 �∑ 1

𝑛𝑛� + 𝑣𝑣𝑖𝑖 + τ𝑖𝑖,𝑗𝑗 − 𝑞𝑞
𝑛𝑛𝑖𝑖,1
𝑞𝑞=1

𝑛𝑛𝑖𝑖,2
𝑗𝑗=0

∑ �∏ 1
𝑛𝑛� + 𝑣𝑣𝑖𝑖 + τ𝑖𝑖,𝑗𝑗 − 𝑞𝑞

𝑛𝑛𝑖𝑖,1
𝑞𝑞=1 �𝑛𝑛𝑖𝑖,2

𝑗𝑗=0

𝑚𝑚

𝑖𝑖=1

= m
[ψ′(𝑛𝑛�) − ψ′(𝑛𝑛� + 𝑇𝑇)]
ψ(𝑛𝑛� + 𝑇𝑇) − ψ(𝑛𝑛�)  

(41) 
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The empirical Bayes estimate of initial reliability can now be found by using 

Equation (41) to solve the unknown value 𝑛𝑛� and then substituting this value into 

Equations (40). 

 Simulation Analysis of Model Adequacy 

To examine the usefulness of the proposed approach for reliability projection, failure 

and corrective action simulations were conducted on hypothetical complex discrete 

use systems under various test circumstances. Simulation analysis enabled the 

calculation of the system’s true initial reliability upon entering the test. In addition, 

the FEF and MS management planning metric distributions were identified using set 

mean and variance values to permit greater control of the simulation within known 

bounds. Consequently, the prior and posterior reliability estimates could then be 

calculated at the end of each simulation series and compared to the hypothetical 

system known true prior and posterior values. 

Simulation techniques were utilized to permit the assessment of various models 

including: 

• Hall’s Bayesian approach for a known k number of possible system failure 

modes, 

• Hall’s Bayesian approach for a system containing an infinite number of failure 

modes, and 

• the proposed Bayesian approach. 
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All three reliability projection approaches were assessed by simulation in the Python 

general-purpose programming language, with each approach measured against the 

same simulated data to ensure accurate comparisons of performance and results. 

3.8.1 Mathematical Model, Code and Simulation Verification 

Before conducting any detailed modeling and simulation, it is accepted good practice 

to undertake verification activities that confirm the model and simulation 

implementations. Verification includes confirming that the associated data outputs 

represent the conceptual model description and are accurate representations from the 

perspective of their intended use [44]. 

Prior to conducting any detailed empirical Bayes estimate simulation, the 

mathematical model for estimation of the empirical Bayes initial reliability estimates 

(Equation 40), together with the supporting mathematical equation used to solve the 

unknown value 𝑛𝑛� were verified via hand calculations to confirm that the output values 

were satisfactory and within reasonably expected bounds. This was performed to 

ensure that mathematical errors had been eliminated that may have occurred and not 

been detected during initial model development and that the model was providing the 

results expected. 

Verification included calculating the values derived for 𝑛𝑛� and 𝑅𝑅𝐼𝐼 using ten randomly 

generated failure probabilities from a known Beta(a,b) distribution and assuming each 

failure probability resulted in five single occurrences of observed failures and five 

double occurrences of observed failures for each failure probability. 
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It was then further assumed that two of each of the single and double observed failure 

modes (four failure modes in total) were subjected to corrective actions during the 

test phase, which was set at 50 trials. The remaining failure modes were then assumed 

to be addressed at the end of the current test phase (at 𝑣𝑣𝑖𝑖 = 𝑇𝑇). 

One of each of the double and single failure modes corrected was then assumed to 

result in an additionally observed failure ten trial demands after the corrective action 

implementation (i.e., at 𝑣𝑣𝑖𝑖 + 10). 

The fix effectiveness factor for all corrective actions was set at 0.8 for simplicity. 

Hand calculations were then completed using the above process several times using 

slightly different input variables each time to arrive at solutions for the 𝑛𝑛� and 𝑅𝑅𝐼𝐼 

values. 

These values were then entered into the developed Python code as coupled matrices 

to assess the output compared to the hand calculations. 

Finally, the process was repeated to assess the proposed model reliability expectation 

(Equation 21) and variance (Equation 26). Again, hand calculations were completed 

and then compared to the Python code results. Only when these values were identical 

and any differences investigated and rectified could the developed models and 

simulation code be assured as suitable for simulation and evaluation of outcomes. 
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3.8.2 Simulation Outcomes 

Table 1 outlines the results of five selected simulated failures and corrective actions 

during a single reliability growth test phase. One thousand iterations for each tended 

to provide a good balance between projection solution fidelity, accuracy, and 

computational resource usage in the cases examined. A greater number of 

computational iterations produced no significant change in the overall result obtained 

but consumed a more considerable computational resource. 

Table 1: Simulation input variables. 

Case 
No. 

Failure 
Modes 
𝑘𝑘 

No. Test 
Demands 

𝑇𝑇 

Mode 
Failure 
Prob 
Mean 
𝑝𝑝(𝑝𝑝𝑖𝑖)μ 

Mode 
Failure 

Prob Var 
𝑝𝑝(𝑝𝑝𝑖𝑖)𝜎𝜎2 

FEF 
Mean 
𝑑𝑑𝜇𝜇 

FEF Var 
𝑑𝑑𝜎𝜎2 

Prob Fix 
During 
Test 
𝑝𝑝(𝑓𝑓𝑓𝑓𝑓𝑓) 

1 50 200 0.005 0.00007 0.7 0.01 0.3 

2 50 200 0.002 0.00002 0.7 0.01 0.3 

3 50 400 0.003 0.00005 0.7 0.01 0.3 

4 100 300 0.002 0.00005 0.7 0.01 0.5 

5 100 200 0.003 0.00005 0.7 0.01 0.4 

Table 2 displays the results of the selected reliability projection simulation cases 

outlined at a two-sided 80% confidence level. For initial estimator/true and 

posterior/true case each case, three reliability metrics were compared, including the 

lower confidence limit, the mean, and the upper confidence limit (separated in Table 

2 by individual obliques). The absolute relative error between the estimator and true 

means was also calculated. 

In all instances, the Bayes prior reliability estimator and the posterior estimate results 

provide a reasonable indicator of the system’s true reliability. 
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Table 2: Simulation true reliability versus Bayesian estimates comparison. 

Case 

No. 
Obs 

Fails / 
Modes 
𝑛𝑛/𝑚𝑚 

True Initial 
Reliability 
𝑅𝑅𝐼𝐼,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 

Initial 
Reliability 
Estimator 
𝑅𝑅𝐼𝐼,𝑒𝑒𝑒𝑒𝑒𝑒 

Initial 
Estimator 

Mean 
Relative 

Error 
𝑅𝑅𝐼𝐼 𝑅𝑅𝑅𝑅𝑅𝑅 𝐸𝐸𝐸𝐸𝐸𝐸 

True Posterior 
Reliability 
𝑅𝑅𝑃𝑃,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 

Posterior 
Reliability 
Estimator 
𝑅𝑅𝑃𝑃,𝑒𝑒𝑒𝑒𝑒𝑒 

Posterior 
Estimator 

Mean 
Relative 

Error 
𝑅𝑅𝑃𝑃 𝑅𝑅𝑅𝑅𝑅𝑅 𝐸𝐸𝐸𝐸𝐸𝐸 

1 20/18 0.72/0.78/0.84 0.71/0.79/0.87 0.02 0.88/0.90/0.93 0.94/0.95/0.97 0.05 

2 12/10 0.87/0.90/0.94 0.83/0.88/0.94 0.02 0.94/0.95/0.97 0.96/0.97/0.98 0.02 

3 23/15 0.80/0.86/0.92 0.80/0.86/0.92 0.00 0.93/0.95/0.97 0.97/0.98/0.99 0.03 

4 19/16 0.74/0.82/0.90 0.76/0.83/0.90 0.01 0.90/0.93/0.96 0.97/0.98/0.99 0.05 

5 25/23 0.67/0.74/0.81 0.67/0.75/0.83 0.02 0.85/0.88/0.91 0.93/0.94/0.96 0.06 

Figure 3 demonstrates a comparison between the true and estimator initial 

distributions graphically for Case 1. 

 

Figure 3. Case 1 initial reliability true and estimator distribution comparisons. 

Figure 4 displays a comparison between the true and estimator posterior distributions 

graphically for Case 1. 
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Figure 4. Case 1 posterior reliability true and estimator distribution comparisons. 

The mean relative error values for both the Bayesian technique proposed here and 

Hall’s approach for both k and infinite failure modes provide a useful measure of 

performance of all models when compared against the true system initial and post-test 

phase reliability. The absolute relative error for the simulation cases is defined as: 

 Relative Error  =  
�𝑅𝑅� − 𝑅𝑅�
𝑅𝑅

 (42) 

where 𝑅𝑅 is the true system reliability, either initial or post-test phase after all 

corrective actions have been implemented, and 𝑅𝑅� is the model estimate resulting from 

the simulated data. It is important to note that the use of absolute relative error in this 

manner may provide a conservative indication of the performance of the estimators. 

As the reliability estimators are small numerical values, seemingly minor differences 

may actually be large percentage values and result in a high relative error. 
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Figure 5 displays the Case 1 simulation initial reliability estimators cumulative 

relative errors for model performance comparison. 

 

Figure 5. Case 1 initial reliability estimator cumulative relative error comparisons. 

 

Figure 6. Case 1 posterior reliability estimator cumulative relative error comparisons. 
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Annex A to Chapter 3 includes the distribution and cumulative relative error plots for 

the remaining four simulation cases. 

 Discussion 

Table 1 and Table 2 demonstrate the utility of the proposed method through the 

selected demonstration cases. Generally, both the proposed initial and posterior 

reliability estimators represent the true system-level reliability well. However, the 

power of the proposed approach is displayed in Figure 3 to Figure 6. 

Figure 3 shows the prior distributions produced through simulation for three 

approaches, Hall’s 𝑘𝑘 modes [35] [36], Hall’s infinite number of modes [35] [36] and 

the proposed empirical Bayes approach together with the true initial reliability 

distribution. From this plot, it can be observed that the proposed approach best 

represents the true initial reliability compared to the other methods. Moreover, this is 

true for a large proportion of the simulations conducted using different input 

variables. 

Figure 4 displays the posterior distributions for both of Hall’s approaches (𝑘𝑘 and 

infinite), the naive reliability distribution (reliability estimation considering only 

observed failures), the proposed Bayesian approach, and the true post-test reliability 

distribution after all corrective actions were implemented. This figure shows that the 

naive reliability distribution spread, based on a simple point estimate of reliability 

from observed failures, is excessive and unsuitable for reliability estimation. The 

proposed Bayesian approach performs better than Hall’s approach utilizing an infinite 
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number of modes, but not Hall’s model for a known number of 𝑘𝑘 modes. This is to be 

expected as, in reality, the number of failure modes in a complex system remains 

unknown, so any model that relies on knowing this detail precisely is of limited 

utility. More direct comparisons are possible but unrealistic, given that the number of 

modes must be known. 

Figure 5 displays the initial true and prior estimator distributions cumulative relative 

error comparisons for Case 1. This image demonstrates the superior performance of 

the proposed empirical Bayes approach over both Hall’s 𝑘𝑘 and infinite number of 

modes prior reliability estimators. 

Figure 6 demonstrates the cumulative relative error for the posterior distributions 

similarly to Figure 5, demonstrating the same for the initial reliability estimator 

distributions. In this case, Hall’s model for 𝑘𝑘 known failure modes performs 

significantly better than the others; however, as highlighted, it is not typical that the 

total number of failure modes would be known in reality and a model of this nature 

has only limited utility. Figure 6 also displays the performance of the proposed 

Bayesian approach as an improvement over Hall’s infinite modes model. 

These cumulative relative error plots highlight the benefits of the proposed approach 

over Hall’s method. 

 Reliability Growth Planning Expansion 

The proposed Bayesian projection model has been demonstrated to provide 

improvements in estimation accuracy when compared to the approaches developed by 
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Hall et al. [30] [31] [33]. An approach has been developed that permits the same 

mathematical modeling efforts to be used for reliability growth planning purposes 

that produce more realistic plans than previous methods and are flexible enough to 

enable quick adaption to changing circumstances or unexpected reliability growth 

program outcomes. 

The planning approach extension follows the projection methodology described in 

this chapter but combines individual test events or phases into a cohesive reliability 

program plan. Figure 7 demonstrates the concept diagrammatically. 

 

Figure 7. Reliability growth program planning Bayesian learning concept. 

In the preliminary stages of planning for a system-level reliability growth program, 

data from a wide range of sources may be used to provide an initial estimate of 

reliability on test entry. Potential data sources could include previous testing, 

manufacturer’s component, subsystem or system testing, expert opinion, similar 

systems or data gained from prototypes and earlier designs. 

The proposed Bayesian reliability projection model is then developed virtually, and 

simulation approaches are used to produce system failure and corrective action data. 
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Over many iterations, the failure and corrective action data are used to develop the 

posterior estimate of reliability on test completion and after all corrective actions have 

been implemented. The number of corrective actions implemented depends on the 

simulated observed failures and the expected management strategy. Various outcomes 

can be assessed for a single test phase by repeating the process with variables that 

reflect different resource allocations, management strategies, or the effectiveness of 

corrective actions. 

For each reliability growth test phase, the posterior reliability distribution for the 

immediate past phase becomes the prior reliability distribution for the next. This 

process can then be repeated, as demonstrated in Figure 7, for as many test phases as 

needed. 

Chapter 4 compares empirical Bayes methods for estimating initial system reliability 

from test data and expands on the methods described in this chapter. 

Chapter 5 demonstrates the utility of the proposed Bayesian projection approach 

through the development of a system-level reliability growth plan. The plan 

established extends the proposed combined projection and simulation method to 

produce projection data from developmental, demonstration, and operational testing. 

The reliability program plan created can easily be extended to project reliability at 

any part of the future system life cycle. 
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 Additional Reliability Metrics 

Several useful reliability projection and growth planning metrics have also been 

developed through the simulation of failures and corrective actions using the 

proposed Bayesian approach. These include: 

• expected number of failure modes observed during the test, 

• estimated cumulative number of observed failure modes, 

• Number of total failures likely to be observed before and after the 

implementation of corrective actions, and 

• number of observed modes likely and not likely to be subjected to corrective 

action during the test. 

Each of these metrics may be described via their expectation value and confidence 

bounds due to the simulations carried out. Example plots of each of these metrics can 

be found in sample Python code within Appendix 2. 

Further reliability metrics may also be developed from the simulation code that 

describe the influences of various parameters on the test phase final reliability 

estimate. 

 Reliability Growth Potential Estimation 

Reliability growth potential is the theoretical upper limit on the reliability of a system 

that can be achieved by finding and mitigating the proportion of observed failure 
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modes in accordance with the management strategy at a specified level of fix 

effectiveness. It is defined as 

 𝑅𝑅�𝐺𝐺𝐺𝐺 = R𝐼𝐼
1−𝑀𝑀𝑀𝑀�����∙μ𝑑𝑑 (43) 

where 𝑅𝑅�𝐺𝐺𝐺𝐺 is the reliability growth expectation, 𝑅𝑅𝐼𝐼 is the initial reliability, 𝑀𝑀𝑀𝑀���� is the 

mean expected management strategy, and μ𝑑𝑑 is the expected mean fix effectiveness. 

While it is possible to add confidence limits to the reliability growth potential, this is 

only useful in demonstrating the influence of the three critical unknown reliability 

growth planning factors (initial reliability, mean management strategy, and mean fix 

effectiveness) to decision makers that might be prone to adjusting their management 

goals during test activities. A simple graphic demonstrating the upper and lower 

confidence limits on the reliability growth potential across a range of management 

strategies is helpful in demonstrating the influence management decisions have on 

test outcomes. 

 Comparison Plots Simulation versus Mathematical Model 

In addition to the additional reliability metrics described within Section 3.11, three 

additional plots have also been identified that are useful in comparing the model to 

the simulated outcome results. These include: 

• comparison of simulation and model mode failure prior probability 

distributions, 
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• comparison of simulation posterior and model mode failure prior probability 

distributions, and 

• comparison of simulation and model fix effectiveness factor distributions. 

Further comparison plots may also be developed from the simulation code that 

compare the mathematical model inputs with the simulation iteration outputs. 

 Model Goodness-of-Fit 

The model goodness-of-fit may be graphically assessed by plotting the cumulative 

number of observed failure modes against the estimate of the cumulative number of 

expected observed failure modes given by 

 μ�𝑡𝑡 = �
𝑚𝑚

∑ 1
𝑛𝑛� + 𝑗𝑗

𝑇𝑇−1
𝑗𝑗=0

� ∙ �
Γ′(𝑛𝑛� + 𝑡𝑡)
Γ(𝑛𝑛� + 𝑡𝑡)

−
Γ′(𝑛𝑛�)
Γ(𝑛𝑛�)� 

(44) 

where μ�𝑡𝑡 is the estimate of the expected number of observed failure modes at test 

demand 𝑡𝑡. 

 Conclusions 

The presented method for constructing a real-world representative reliability growth 

projection model for complex discrete-use systems has been demonstrated as superior 

to current approaches under many different circumstances. The mixing of Bayesian 

techniques and simulation methods provides a reasonable estimation of the likely 

outcomes of reliability growth test phases when the proposed approach is used for 
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planning. The approach offered considers reliability growth planning uncertainties 

resulting in a practical and real-world representative model. The approach models the 

uncertainties in the underlying failure mode probability, corrective action 

effectiveness, and the management strategy for dealing with observed failure modes 

within a Bayesian framework. Uncertainty quantification is essential in ensuring that 

decision makers know and understand the range of potential consequences and the 

breadth of risk of various management strategies and corrective action schemes when 

conducting reliability growth testing activities.
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Annex A to Chapter 3: Selected Simulation Results 

A.3.1 Introduction 

The purpose of this annex is to present the results for several selected simulations. 
The simulations presented are the results of Case 2 to Case 5 within Table 1. 

A.3.2 Simulation Case 2 

A.3.2.1 Input Variables 

Table 3: Simulation Case 2 input variables. 

Case 
No. 

Failure 
Modes 
𝑘𝑘 

No. Test 
Demands 

𝑇𝑇 

Mode 
Failure 
Prob 
Mean 
𝑝𝑝(𝑝𝑝𝑖𝑖)μ 

Mode 
Failure 

Prob Var 
𝑝𝑝(𝑝𝑝𝑖𝑖)𝜎𝜎2 

FEF 
Mean 
𝑑𝑑𝜇𝜇 

FEF Var 
𝑑𝑑𝜎𝜎2 

Prob Fix 
During 
Test 
𝑝𝑝(𝑓𝑓𝑓𝑓𝑓𝑓) 

2 50 200 0.002 0.00002 0.7 0.01 0.3 

A.3.2.2 Tabulated Results 

Table 4: Simulation Case 2 result comparison. 

Case 

No. 
Obs 

Fails / 
Modes 
𝑛𝑛/𝑚𝑚 

True Initial 
Reliability 
𝑅𝑅𝐼𝐼,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 

Initial 
Reliability 
Estimator 
𝑅𝑅𝐼𝐼,𝑒𝑒𝑒𝑒𝑒𝑒 

Initial 
Estimator 

Mean 
Relative 

Error 
𝑅𝑅𝐼𝐼 𝑅𝑅𝑅𝑅𝑅𝑅 𝐸𝐸𝐸𝐸𝐸𝐸 

True Posterior 
Reliability 
𝑅𝑅𝑃𝑃,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 

Posterior 
Reliability 
Estimator 
𝑅𝑅𝑃𝑃,𝑒𝑒𝑒𝑒𝑒𝑒 

Posterior 
Estimator 

Mean 
Relative 

Error 
𝑅𝑅𝑃𝑃 𝑅𝑅𝑅𝑅𝑅𝑅 𝐸𝐸𝐸𝐸𝐸𝐸 

2 12/10 0.87/0.90/0.94 0.83/0.88/0.94 0.02 0.94/0.95/0.97 0.96/0.97/0.98 0.02 
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A.3.2.3 Initial/Prior Distribution Plot Comparison 

 

Figure 8. Case 2 initial/prior distribution comparison plot. 

A.3.2.4 Post-Test/Posterior Distribution Plot Comparison 

 

Figure 9. Case 2 post-test/posterior distribution comparison plot. 



 
 

 
69 

 

A.3.2.5 Initial Reliability Estimator Relative Error Comparison 

 

Figure 10. Case 2 initial reliability estimator relative error comparison. 

A.3.2.6 Posterior Reliability Estimator Relative Error Comparison 

 

Figure 11. Case 2 posterior reliability estimator relative error comparison. 
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A.3.2.7 Observation Summary 

The results of the Case 2 simulation over 1,000 iterations demonstrate that the 

developed empirical Bayes initial reliability estimator performs relatively well when 

compared against Hall’s approach for an infinite number of failure modes. Based on 

an 80% two-sided confidence limit, the cumulative mean relative error in the 

estimator is only about 2%. 

In terms of distribution coverage, Figure 8 demonstrates that the proposed empirical 

Bayes estimator has superior coverage when compared against Hall’s 𝑘𝑘 and infinite 

mode approaches. In this case, the proposed empirical Bayes estimator mean is on the 

conservative side of the true system initial reliability. In contrast, the Hall infinite 

approach estimator tends to be more optimistic. 

Figure 10 conveys the cumulative relative error comparison between the proposed 

Bayes empirical approach and Hall’s methods. This plot demonstrates the utility of 

the proposed estimator under the Case 2 range of variables and indicates superior 

performance when the estimators are compared against the true initial reliability. 

The performance of the posterior distributions is evident in Figure 9. Hall’s 𝑘𝑘 modes 

approach performs best within the variable constraints of Case 2; however, as 

previously outlined in Chapter 3, it is improbable that the true number of failure 

modes is ever known for a complex system. Consequently, the ability to utilize Hall’s 

𝑘𝑘 approach in assessing a real-world system is limited. Hall’s k mode approach is 
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included for completeness and idealistic comparisons in all simulation case studies 

presented within this thesis. 

The estimator’s posterior cumulative mean relative error is about 2%, similar to the 

initial reliability estimator error. Figure 11 displays that the proposed posterior 

reliability estimator performs marginally better than Hall’s for an infinite number of 

failure modes. 

Overall, the proposed empirical Bayes initial reliability approach and the proposed 

Bayesian posterior estimates perform better than Hall’s approach under the variable 

constraints of simulation Case 2. 

A.3.3 Simulation Case 3 

A.3.3.1 Input Variables 

Table 5: Simulation Case 3 Input Variables. 

Case 
No. 

Failure 
Modes 
𝑘𝑘 

No. Test 
Demands 

𝑇𝑇 

Mode 
Failure 
Prob 
Mean 
𝑝𝑝(𝑝𝑝𝑖𝑖)μ 

Mode 
Failure 

Prob Var 
𝑝𝑝(𝑝𝑝𝑖𝑖)𝜎𝜎2 

FEF 
Mean 
𝑑𝑑𝜇𝜇 

FEF Var 
𝑑𝑑𝜎𝜎2 

Prob Fix 
During 
Test 
𝑝𝑝(𝑓𝑓𝑓𝑓𝑓𝑓) 

3 50 400 0.003 0.00005 0.7 0.01 0.3 

A.3.3.2 Tabulated Results 

Table 6: Simulation Case 3 Result Comparison. 

Case 

No. 
Obs 

Fails / 
Modes 
𝑛𝑛/𝑚𝑚 

True Initial 
Reliability 
𝑅𝑅𝐼𝐼,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 

Initial 
Reliability 
Estimator 
𝑅𝑅𝐼𝐼,𝑒𝑒𝑒𝑒𝑒𝑒 

Initial 
Estimator 

Mean 
Relative 

Error 
𝑅𝑅𝐼𝐼 𝑅𝑅𝑅𝑅𝑅𝑅 𝐸𝐸𝐸𝐸𝐸𝐸 

True Posterior 
Reliability 
𝑅𝑅𝑃𝑃,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 

Posterior 
Reliability 
Estimator 
𝑅𝑅𝑃𝑃,𝑒𝑒𝑒𝑒𝑒𝑒 

Posterior 
Estimator 

Mean 
Relative 

Error 
𝑅𝑅𝑃𝑃 𝑅𝑅𝑅𝑅𝑅𝑅 𝐸𝐸𝐸𝐸𝐸𝐸 

3 23/15 0.80/0.86/0.92 0.80/0.86/0.92 0.00 0.93/0.95/0.97 0.97/0.98/0.99 0.03 
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A.3.3.3 Initial/Prior Distribution Plot Comparison 

 

Figure 12. Case 3 initial/prior distribution comparison plot. 

A.3.3.4 Post-Test/Posterior Distribution Plot Comparison 

 

Figure 13. Case 3 post-test/posterior distribution comparison plot. 
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A.3.3.5 Initial Reliability Estimator Relative Error Comparison 

 

Figure 14. Case 3 initial reliability estimator relative error comparison. 

A.3.3.6 Posterior Reliability Estimator Relative Error Comparison 

 

Figure 15. Case 3 posterior reliability estimator relative error comparison. 
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A.3.3.7 Observation Summary 

The results of the Case 3 simulation demonstrate that the developed empirical Bayes 

initial reliability estimator performs very well when compared against Hall’s 

approach for an infinite number of failure modes. The cumulative mean relative error 

in the estimator is zero, and the empirical Bayes estimator distribution achieves 100% 

coverage over the true initial reliability distribution. The exception distribution 

coverage is clearly displayed in Figure 12. 

Figure 10 demonstrates the cumulative relative error comparison between the 

proposed Bayes empirical approach and Hall’s methods, with the proposed approach 

offering better initial reliability estimation outcomes. 

The performance of the posterior distributions is evident in Figure 13. Under the 

variable constraints for the Case 3 simulation, Hall’s infinite approach proves 

marginally superior. Note that the proposed Bayesian and Hall’s infinite approaches 

tend to over-optimistically estimate the true system posterior reliability by 

approximately 4%. Both posterior estimate distributions also have inadequate 

coverage of the true system posterior reliability distribution. 

Figure 15 displays the significant mean relative error in all approaches considered in 

simulation Case 3. 

Overall, the proposed empirical Bayes initial reliability estimator approach performs 

very well under simulation Case 3. Neither Hall’s nor the proposed posterior 
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reliability estimator approaches estimate the true posterior reliability particularly well, 

yet both remain suitable for reliability growth planning purposes. 

A.3.4 Simulation Case 4 

A.3.4.1 Input Variables 

Table 7: Simulation Case 4 input variables. 

Case 
No. 

Failure 
Modes 
𝑘𝑘 

No. Test 
Demands 

𝑇𝑇 

Mode 
Failure 
Prob 
Mean 
𝑝𝑝(𝑝𝑝𝑖𝑖)μ 

Mode 
Failure 

Prob Var 
𝑝𝑝(𝑝𝑝𝑖𝑖)𝜎𝜎2 

FEF 
Mean 
𝑑𝑑𝜇𝜇 

FEF Var 
𝑑𝑑𝜎𝜎2 

Prob Fix 
During 
Test 
𝑝𝑝(𝑓𝑓𝑓𝑓𝑓𝑓) 

4 100 300 0.002 0.00005 0.7 0.01 0.5 

A.3.4.2 Tabulated Results 

Table 8: Simulation Case 4 result comparison. 

Case 

No. 
Obs 

Fails / 
Modes 
𝑛𝑛/𝑚𝑚 

True Initial 
Reliability 
𝑅𝑅𝐼𝐼,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 

Initial 
Reliability 
Estimator 
𝑅𝑅𝐼𝐼,𝑒𝑒𝑒𝑒𝑒𝑒 

Initial 
Estimator 

Mean 
Relative 

Error 
𝑅𝑅𝐼𝐼 𝑅𝑅𝑅𝑅𝑅𝑅 𝐸𝐸𝐸𝐸𝐸𝐸 

True Posterior 
Reliability 
𝑅𝑅𝑃𝑃,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 

Posterior 
Reliability 
Estimator 
𝑅𝑅𝑃𝑃,𝑒𝑒𝑒𝑒𝑒𝑒 

Posterior 
Estimator 

Mean 
Relative 

Error 
𝑅𝑅𝑃𝑃 𝑅𝑅𝑅𝑅𝑅𝑅 𝐸𝐸𝐸𝐸𝐸𝐸 

4 19/16 0.74/0.82/0.90 0.76/0.83/0.90 0.01 0.90/0.93/0.96 0.97/0.98/0.99 0.05 
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A.3.4.3 Initial/Prior Distribution Plot Comparison 

 

Figure 16. Case 4 initial/prior distribution comparison plot. 

A.3.4.4. Post-Test/Posterior Distribution Plot Comparison 

 

Figure 17. Case 4 post-test/posterior distribution comparison plot. 
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A.3.4.5 Initial Reliability Estimator Relative Error Comparison 

 

Figure 18. Case 4 initial reliability estimator relative error comparison. 

A.3.4.6 Posterior Reliability Estimator Relative Error Comparison 

 

Figure 19. Case 4 posterior reliability estimator relative error comparison. 
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A.3.4.7 Observation Summary 

Simulation Case 4 demonstrates similar estimator outcomes when compared to 

simulation Case 3. 

In terms of estimation of initial system-level reliability, all approaches provide 

satisfactory results and reasonable true distribution coverage. 

The posterior distribution comparison within Figure 13 is somewhat similar to the 

Case 3 posterior distribution comparison demonstrated in Figure 9. However, in this 

case, the proposed approach offers marginal improvements compared to Hall’s 

infinite modes methodology. 

Importantly, note again that both the proposed Bayesian and Hall’s infinite 

approaches tend to over-optimistically estimate the true system posterior reliability by 

approximately 3-4%. Both posterior estimate distributions also again have inadequate 

coverage of the true system posterior reliability distribution. 

Overall, the proposed empirical Bayes initial reliability estimator approach performs 

very well under simulation Case 4. Neither Hall’s nor the proposed posterior 

reliability estimator approaches estimate the true posterior reliability well. However, 

both are accurate enough to remain suitable for reliability growth planning purposes. 
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A.3.5 Simulation Case 5 

A.3.5.1 Input Variables 

Table 9: Simulation Case 5 input variables. 

Case 
No. 

Failure 
Modes 
𝑘𝑘 

No. Test 
Demands 

𝑇𝑇 

Mode 
Failure 
Prob 
Mean 
𝑝𝑝(𝑝𝑝𝑖𝑖)μ 

Mode 
Failure 

Prob Var 
𝑝𝑝(𝑝𝑝𝑖𝑖)𝜎𝜎2 

FEF 
Mean 
𝑑𝑑𝜇𝜇 

FEF Var 
𝑑𝑑𝜎𝜎2 

Prob Fix 
During 
Test 
𝑝𝑝(𝑓𝑓𝑓𝑓𝑓𝑓) 

5 100 200 0.003 0.00005 0.7 0.01 0.4 

A.3.5.2 Tabulated Results 

Table 10: Simulation Case 5 result comparison. 

Case 

No. 
Obs 

Fails / 
Modes 
𝑛𝑛/𝑚𝑚 

True Initial 
Reliability 
𝑅𝑅𝐼𝐼,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 

Initial 
Reliability 
Estimator 
𝑅𝑅𝐼𝐼,𝑒𝑒𝑒𝑒𝑒𝑒 

Initial 
Estimator 

Mean 
Relative 

Error 
𝑅𝑅𝐼𝐼 𝑅𝑅𝑅𝑅𝑅𝑅 𝐸𝐸𝐸𝐸𝐸𝐸 

True Posterior 
Reliability 
𝑅𝑅𝑃𝑃,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 

Posterior 
Reliability 
Estimator 
𝑅𝑅𝑃𝑃,𝑒𝑒𝑒𝑒𝑒𝑒 

Posterior 
Estimator 

Mean 
Relative 

Error 
𝑅𝑅𝑃𝑃 𝑅𝑅𝑅𝑅𝑅𝑅 𝐸𝐸𝐸𝐸𝑟𝑟 

5 25/23 0.67/0.74/0.81 0.67/0.75/0.83 0.02 0.85/0.88/0.91 0.93/0.94/0.96 0.06 
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A.3.5.3 Initial/Prior Distribution Plot Comparison 

 

Figure 20. Case 5 initial/prior distribution comparison plot. 

A.3.5.4 Post-Test/Posterior Distribution Plot Comparison 

 

Figure 21. Case 5 post-test/posterior distribution comparison plot. 
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A.3.5.5 Initial Reliability Estimator Relative Error Comparison 

 

Figure 22. Case 5 initial reliability estimator relative error comparison. 

A.3.5.6 Posterior Reliability Estimator Relative Error Comparison 

 

Figure 23. Case 5 posterior reliability estimator relative error comparison. 
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A.3.5.7 Observation Summary 

Simulation Case 5 demonstrates that all approaches provide satisfactory results in 

terms of estimation of initial system-level reliability. Note that of the approaches 

considered that the proposed empirical Bayes estimator offered has superior 

distribution coverage over the true distribution. 

Figure 21 and Figure 23 demonstrate that the proposed Bayesian posterior estimator 

approach offers improvements over Hall’s infinite modes approach. Intuitively, we 

expect this to be the case as Hall’s approach only considers the first observation of 

each failure mode (or “first occurrence on test” (FOT) to use Hall’s terminology). In 

contrast, the proposed approach utilizes a broader range of available data, including 

all observed mode failure occurrences on test and when corrective actions are likely 

to be implemented. 
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Chapter 4: A Comparison of Empirical Bayes Hyperparameter 

Approaches for Discrete-Use System Initial Reliability 

Estimation2 

 Introduction 

Bayesian probability is a statistic theory based on the Bayesian interpretation of 

probability, where probability expresses a degree of belief in an event [45]. The 

degree of trust that a person holds may rise from prior knowledge about the event 

[46], such as the results of previous experiments or tests, or a quantified personal 

belief [47]. Bayesian probability differs from another interpretation of probability, the 

frequentist interpretation, which considers probability as the limit of an event’s 

relative frequency after many trials [48]. 

The empirical Bayes method is the collective terminology used to denote statistical 

inference procedures in which the data developed during a reliability growth program 

is used to estimate the initial reliability prior distribution. This approach differs from 

standard Bayesian methods, for which the prior distribution is typically fixed before 

any failure modes are observed. The use of a fixed prior may lead to significant 

concerns if an erroneous distribution is selected through the use of incomparable 

 
 
2 The content of this chapter was presented at the Australian Integrated Project Engineering Congress 
(IPEC) May 26-28, 2021. Note that the presented paper was tailored to an audience that included those 
with a limited reliability engineering background. Consequently, some concepts are explained in more 
detail than would be necessary for a knowledgeable audience. 
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historical data or invalid expert opinion. Despite this difference in perspective, 

empirical Bayes may be viewed as an approximation to a fully Bayesian treatment of 

a hierarchical model wherein the parameters at the highest level of the hierarchy are 

set to their most likely values instead of being integrated out. 

This chapter will describe and assess two approaches for determining the initial 

reliability of a discrete-use system tested under constraints utilizing only the data 

derived from the actual testing. The importance of initial reliability estimation based 

on evidence cannot be understated. 

 Empirical Bayes Methods 

Bayesian approaches offer unique insights into reliability test outcomes that may not 

be obvious when other traditional techniques are adopted. The Bayesian approach 

uses previous experience and new test data combined when applying statistical tools 

to assess reliability metrics [49]. A posterior distribution is derived from a prior 

distribution and a likelihood function in the Bayesian approach, and any following 

tests are conducted using the derived posterior distribution. When new sample data is 

added, this posterior distribution is then employed as a prior distribution in the 

process of producing a further posterior distribution. This cyclical use of the posterior 

distribution as a prior distribution in reliability testing of a finite population is known 

as the Bayesian learning process [50]. However, looking backward can be 

problematic at the commencement of a reliability growth test sequence to establish an 

initial estimate of system reliability that moves beyond previous experience or 

subjective judgment. In selecting an estimate for initial system reliability based on 



 
 

 
85 

 

limited early test data, empirical Bayes approaches may be used. Empirical Bayes 

approaches, also known as maximum marginal likelihood methods [51], represent one 

approach for setting hyperparameters. 

4.2.1 Methodology Comparisons 

Within the Bayesian discrete-use system reliability analysis domain, the method 

proposed by Hall et al. [52] is routinely used to estimate the initial system reliability 

after the first test phase. To assess Hall’s approach’s robustness compared to the 

proposed alternative method, simulation was utilized to generate observed failures 

and corrective actions within a range of hypothetical systems. 

4.2.2 Bayesian Hyperparameters 

Within Bayesian statistics, a hyperparameter is a parameter of a prior distribution, 

with the term hyperparameter being used to distinguish them from the parameters of 

the model for the underlying system under analysis. 

Typically a prior comes from a parametric family of probability distributions partly 

for explicitness (so one can write down a distribution and choose the form by varying 

the hyperparameter, rather than trying to produce an arbitrary function), and partly so 

that one can alter the hyperparameter, particularly in the method of conjugate priors, 

or for sensitivity analysis. 
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4.2.3 Conjugate Priors 

When using a conjugate prior, the posterior distribution will be from the same family. 

Still, it will have different hyperparameters, which reflect the added information from 

the data: in subjective terms, one’s beliefs have been updated. For a general prior 

distribution, this is computationally very involved. The posterior may have an 

unusual or challenging to describe form. Still, with a conjugate prior, there is 

generally a simple formula relating the hyperparameters of the posterior to the values 

of the hyperparameters of the prior. Thus the computation of the posterior distribution 

is straightforward. 

4.2.4 Sensitivity Analysis 

A key concern of Bayesian proponents, and criticism by critics, is the posterior 

distribution dependence on the selected prior. Hyperparameters address this by 

permitting their easy variation to examine how the posterior distribution (and various 

statistics, such as credible intervals) vary. A reliability practitioner can see how 

sensitive their conclusions are to their selected prior assumptions. This process is 

often called sensitivity analysis. 

Similarly, a reliability practitioner may use a prior distribution with a hyperparameter 

range, perhaps reflecting uncertainty in the correct prior. 

 Hall’s Method 

Hall identified and used the likelihood function given by 
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 𝐿𝐿𝑘𝑘�𝑚𝑚, 𝑡𝑡�𝑃𝑃�⃑ � ≡ � [(1 − 𝑃𝑃𝑖𝑖)𝑡𝑡𝑖𝑖−1 ∙ 𝑃𝑃𝑖𝑖]
𝑖𝑖∈𝑜𝑜𝑜𝑜𝑜𝑜

∙ � �1 − 𝑃𝑃𝑗𝑗�
𝑇𝑇

𝑖𝑖∈𝑜𝑜𝑜𝑜𝑠𝑠′
 

(45) 

where ∏ [(1 − 𝑃𝑃𝑖𝑖)𝑡𝑡𝑖𝑖−1 ∙ 𝑃𝑃𝑖𝑖]𝑖𝑖∈𝑜𝑜𝑜𝑜𝑜𝑜  is the joint geometric density function of a random 

sample of size 𝑚𝑚, which represents the probability that the observed failure modes on 

trials 𝑡𝑡 ≡ (𝑡𝑡𝑖𝑖: 𝑖𝑖 ∈ 𝑜𝑜𝑜𝑜𝑜𝑜), for example, the term (1 − 𝑃𝑃𝑖𝑖)𝑡𝑡𝑖𝑖−1 ∙ 𝑃𝑃𝑖𝑖 is the geometric 

probability of observing failure mode 𝑖𝑖 on trial 𝑡𝑡𝑖𝑖 and ∏ �1 − 𝑃𝑃𝑗𝑗�
𝑇𝑇

𝑖𝑖∈𝑜𝑜𝑜𝑜𝑠𝑠′ is the joint 

geometric reliability function of a random sample of size 𝑘𝑘 −𝑚𝑚, representing the 

probability that the unobserved modes do not occur in 𝑇𝑇 total trials. 

Equation (45) represents the likelihood that the 𝑚𝑚 observed failure modes occur with 

the failure mode first occurrence trials 𝑡𝑡 and that the unobserved failure modes do not 

occur before the end of the test phase, that is, by trial 𝑇𝑇. Hall interpreted the 𝑃𝑃𝑖𝑖 in 

Equation (45) as an independent and identically distributed Beta random variable, 

which leads to the marginal likelihood function 

𝐿𝐿𝑘𝑘(𝑛𝑛, 𝑥𝑥) ≡ 𝐸𝐸�𝐿𝐿𝑘𝑘�𝑚𝑚, 𝑡𝑡�𝑃𝑃�⃑ �� 

= �
Γ(𝑛𝑛) ∙ Γ(𝑛𝑛 − 𝑥𝑥 + 𝑇𝑇)
Γ(𝑛𝑛 − 𝑥𝑥) ∙ Γ(𝑛𝑛 + 𝑇𝑇)�

𝑘𝑘−𝑚𝑚

∙�
Γ(𝑥𝑥 + 1) ∙ Γ(𝑛𝑛 − 𝑥𝑥 + 𝑡𝑡𝑖𝑖 − 1)

B(𝑥𝑥,𝑛𝑛 − 𝑥𝑥) ∙ Γ(𝑛𝑛 + 𝑡𝑡𝑖𝑖)

𝑚𝑚

𝑖𝑖=1

 
(46) 

Deriving the limiting behavior of the likelihood function results in the initial 

reliability estimate for a system with an infinite number of failure modes at the 

commencement of the test phase before any corrective actions as 
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 𝑅𝑅�∞,𝐼𝐼 = 𝑒𝑒𝑒𝑒𝑒𝑒 �
−𝑚𝑚

𝑛𝑛�∞ ∙ [𝜓𝜓(𝑛𝑛�∞ + 𝑇𝑇) − 𝜓𝜓(𝑛𝑛�∞)]� (47) 

where 𝑛𝑛�∞ is the estimate of the mode failure probability Beta(n,x) n shape parameter 

from the observed failure data. 

In conjunction with the system-level initial reliability estimate, Hall reduced the 

estimation procedure to solving only one unknown within a single equation such that 

 ��
1

𝑛𝑛�∞ + 𝑡𝑡𝑖𝑖 − 1
�

𝑚𝑚

𝑖𝑖=1

= 𝑚𝑚 ∙ �
𝜓𝜓′(𝑛𝑛�∞) − 𝜓𝜓′(𝑛𝑛�∞+𝑇𝑇)

𝜓𝜓(𝑛𝑛�∞ + 𝑇𝑇) − 𝜓𝜓(𝑛𝑛�∞)� (48) 

Equation (48) may be used to simply solve Equation (47) when Hall’s methodology is 

adopted in a relatively straightforward fashion. 

 Proposed Alternative Approach 

In the proposed alternative approach, we utilize a different likelihood function for a 

single failure mode given by 

 
𝐿𝐿(𝑡𝑡|𝑝𝑝𝑖𝑖, 𝑣𝑣𝑖𝑖, 𝑑𝑑𝑖𝑖,𝑇𝑇) ∝ 

𝑝𝑝𝑖𝑖
𝑛𝑛𝑖𝑖,1(1 − 𝑝𝑝𝑖𝑖)𝑣𝑣𝑖𝑖−𝑛𝑛𝑖𝑖,1(1− 𝑝𝑝𝑖𝑖)(1−𝑑𝑑𝑖𝑖)�𝑇𝑇−𝑣𝑣𝑖𝑖−�𝑛𝑛𝑖𝑖−𝑛𝑛𝑖𝑖,1��[1 − (1 − 𝑝𝑝𝑖𝑖)1−𝑑𝑑𝑖𝑖]𝑛𝑛𝑖𝑖−𝑛𝑛𝑖𝑖,1 (49) 

For failure mode probability 𝑝𝑝𝑖𝑖 and a total number of 𝑇𝑇 test demands with arbitrary 

corrective actions, we assume for the 𝑖𝑖𝑡𝑡ℎ failure mode, there are 𝑛𝑛𝑖𝑖 failures on trials 

𝑡𝑡 = �𝑡𝑡(𝑖𝑖,1), … , 𝑡𝑡𝑖𝑖,𝑛𝑛𝑛𝑛� with corrective action implemented on trial 𝑣𝑣𝑖𝑖 and a fix 
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effectiveness factor of 𝑑𝑑𝑖𝑖. We also further assume there are 𝑛𝑛𝑖𝑖,1 mode failures before 

corrective action implementation and 𝑛𝑛𝑖𝑖,2 = 𝑛𝑛𝑖𝑖 − 𝑛𝑛𝑖𝑖,1 mode failures after corrective 

action. 

This likelihood function differs from other approaches, including Hall’s, in that 

previously, the fix effectiveness factor has been employed by directly scaling the 

probability of failure for a failure mode. This proposed approach yields a mode 

failure reliability after corrective action of 

 𝑅𝑅𝑖𝑖,𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑅𝑅𝑖𝑖
(1−𝑑𝑑𝑖𝑖) (50) 

This approach provides greater consistency between continuous-use and discrete-use 

reliability growth projection models. Continuous-use models assume a constant 

failure rate for each failure mode, resulting in an expression of reliability using an 

exponential distribution. A log-transform of a continuous-use model will result in the 

failure rate remaining after corrective action. Log-transforming the exponential 

representation in Equation (50) results in  

 𝜆𝜆𝑖𝑖,𝑛𝑛𝑛𝑛𝑛𝑛 = (1 − 𝑑𝑑𝑖𝑖) 𝜆𝜆𝑖𝑖 (51) 

Equation (51) fits the accepted definition for a fix effectiveness factor within 

continuous-use system reliability growth projection models. It also allows for all 

failures (both before and after the corrective action) to be used rather than just the 

first occurrence of a mode. This is a critical delineator between Hall’s and the 
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proposed approach. It is also why the fix effectiveness factor is in the proposed 

likelihood function and not in Hall’s model. 

In the proposed method, the marginal likelihood for a single failure mode is the 

denominator of the posterior distribution (the observed model evidence in a Bayesian 

context) and is given by 

 𝑝𝑝(𝑛𝑛𝑖𝑖) =
Γ[𝑎𝑎 + 𝑏𝑏]
Γ[𝑎𝑎]Γ[𝑏𝑏]��

𝑛𝑛𝑖𝑖,2
𝑗𝑗 �

𝑛𝑛𝑖𝑖,2

𝑗𝑗=0

(−1)𝑗𝑗
Γ�𝑎𝑎 + 𝑛𝑛𝑖𝑖,1�Γ�𝑏𝑏 + 𝑣𝑣𝑖𝑖 − 𝑛𝑛𝑖𝑖,1 + 𝜏𝜏𝑖𝑖,𝑗𝑗�

Γ�𝑎𝑎 + 𝑏𝑏 + 𝑣𝑣𝑖𝑖 + 𝜏𝜏𝑖𝑖,𝑗𝑗�
 

(52) 

where 𝜏𝜏𝑖𝑖,𝑗𝑗 = (1 − 𝑑𝑑𝑖𝑖)�𝑇𝑇 − 𝑣𝑣𝑖𝑖 − 𝑛𝑛𝑖𝑖,2 + 𝑗𝑗�. 

The total system likelihood over 𝑘𝑘 failure modes that exist in the system is then 

 𝐿𝐿(𝑛𝑛) = �
Γ[𝑎𝑎 + 𝑏𝑏]
Γ[𝑎𝑎]Γ[𝑏𝑏]

𝑘𝑘

𝑖𝑖=1

��
𝑛𝑛𝑖𝑖,2
𝑗𝑗 �

𝑛𝑛𝑖𝑖,2

𝑗𝑗=0

(−1)𝑗𝑗
Γ�𝑎𝑎 + 𝑛𝑛𝑖𝑖,1�Γ�𝑏𝑏 + 𝑣𝑣𝑖𝑖 − 𝑛𝑛𝑖𝑖,1 + 𝜏𝜏𝑖𝑖,𝑗𝑗�

Γ�𝑎𝑎 + 𝑏𝑏 + 𝑣𝑣𝑖𝑖 + 𝜏𝜏𝑖𝑖,𝑗𝑗�
 

(53) 

Assuming that 𝑚𝑚 failure modes are observed during the test, we establish an 

additional mode failure probability prior distribution parameter for the Beta(a,b) 

parameters such that 

 𝑛𝑛� = 𝑎𝑎 + 𝑏𝑏 (54) 

and then let the mean prior reliability of the system be denoted as 
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 𝑅𝑅𝐼𝐼 = �1 −
𝑎𝑎𝑖𝑖

𝑎𝑎𝑖𝑖 + 𝑏𝑏𝑖𝑖

𝑘𝑘

𝑖𝑖=1

 
(55) 

Taking the sum of the log-likelihood terms for the 𝑚𝑚 observed failure modes and the 

𝑘𝑘 −𝑚𝑚 unobserved failure modes, parameterizing in terms of the prior system-level 

mean 𝑅𝑅𝐼𝐼 and the 𝑛𝑛� parameter, and then taking the limit as k becomes large results in 

ℓ∞(𝑛𝑛) = lim
𝑘𝑘→𝑛𝑛

ℓ(𝑛𝑛) = � log�log𝑅𝑅𝐼𝐼−𝑛𝑛� � �𝑛𝑛𝑖𝑖,1 − 𝑞𝑞�

𝑛𝑛𝑖𝑖,1−1

𝑞𝑞=1

��
𝑛𝑛𝑖𝑖,2
𝑗𝑗 �

𝑛𝑛𝑖𝑖,2

𝑗𝑗=0

(−1)𝑗𝑗
Γ�𝑛𝑛� + 𝑣𝑣𝑖𝑖 − 𝑛𝑛𝑖𝑖,1 + 𝜏𝜏𝑖𝑖,𝑗𝑗�

Γ�𝑛𝑛� + 𝑣𝑣𝑖𝑖 + 𝜏𝜏𝑖𝑖,𝑗𝑗�
�

𝑚𝑚

𝑖𝑖=1

 

+ log𝑅𝑅𝐼𝐼𝑛𝑛� [𝜓𝜓(𝑛𝑛� + 𝑇𝑇) −𝜓𝜓(𝑛𝑛�)] (56) 

Taking the derivative of Equation (56) with respect to 𝑅𝑅𝐼𝐼 and 𝑛𝑛� yields the equations 

for the empirical Bayes estimates 

 

�
∑ �∏ 1

𝑛𝑛� + 𝑣𝑣𝑖𝑖 + 𝜏𝜏𝑖𝑖,𝑗𝑗 − 𝑞𝑞
𝑛𝑛𝑖𝑖,1
𝑞𝑞=1 �∑ 1

𝑛𝑛� + 𝑣𝑣𝑖𝑖 + 𝜏𝜏𝑖𝑖,𝑗𝑗 − 𝑞𝑞
𝑛𝑛𝑖𝑖,1
𝑞𝑞=1

𝑛𝑛𝑖𝑖,2
𝑗𝑗=0

∑ ∑ 1
𝑛𝑛� + 𝑣𝑣𝑖𝑖 + 𝜏𝜏𝑖𝑖,𝑗𝑗 − 𝑞𝑞

𝑛𝑛𝑖𝑖,1
𝑞𝑞=1

𝑛𝑛𝑖𝑖,2
𝑗𝑗=0

𝑚𝑚

𝑖𝑖=1

= 𝑚𝑚 ∙ �
𝜓𝜓′(𝑛𝑛�) −𝜓𝜓′(𝑛𝑛�+𝑇𝑇)

𝜓𝜓(𝑛𝑛� + 𝑇𝑇) − 𝜓𝜓(𝑛𝑛�)� 
(57) 

and 

 𝑅𝑅𝐼𝐼 = exp �
−𝑚𝑚

𝑛𝑛�[𝜓𝜓(𝑛𝑛� + 𝑇𝑇) −𝜓𝜓(𝑛𝑛�)]� (58) 

Solving Equation (57) for 𝑛𝑛� using the empirical data from the test phase permits the 

solving of Equation (58) to ascertain the empirical Bayes initial reliability estimate. 
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 Performance Comparisons 

For initial testing of the proposed method, various simulations of a range of 

hypothetical discrete-use systems and their failures against a known true system 

baseline were conducted. The constructed simulation algorithm, which was examined 

and coded via the use of the Python programming language: 

• sampled from the Beta distributions chosen to represent the hypothetical 

system mode failure probability and corrective action effectiveness,  

• a uniform distribution selected to randomize corrective action implementation 

times, with all modes subjected to corrective action either during or after the 

test phase, and 

• a Bernoulli distribution was chosen to represent the proportion of modes 

subjected to corrective action during and after the test. 

This approach permits the two methods’ performance to be assessed under a range of 

possible circumstances in a carefully controlled manner. The outcomes of each 

simulation were then compared against the true initial reliability of the hypothetical 

system. 

4.5.1 Arbitrary Corrective Action Approach 

A delayed corrective action regime is one where all corrective actions are postponed 

until test phase completion using a “Test-Find-Test” approach [19]. An arbitrary 

corrective action approach is commonly used in developmental testing. It employs a 
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combination of delayed corrective actions and corrective actions applied to some 

failure modes during the test. The application of corrective actions during a test 

occurs when a “Test-Fix-Test” methodology is adopted. Practically speaking, 

immediate corrective action implementation is not usually possible, nor is delaying a 

test until individual mode corrective actions can be applied. Typically, some 

corrective actions are applied as soon as practicable while the test phase proceeds. 

Table 11 describes the simulation parameters for five hypothetical comparison cases 

of a discrete-use system tested in a single test phase employing an arbitrary corrective 

action approach. 

Table 11: Arbitrary corrective action approach simulation parameters. 

Case k T μ var c e P(fix) CL 

1 250 2500 0.001 0.00002 0.7 0.01 0.3 0.8 

2 500 2500 0.001 0.00002 0.7 0.01 0.2 0.8 

3 100 1000 0.002 0.00005 0.7 0.01 0.2 0.8 

4 25 500 0.005 0.00015 0.6 0.01 0.7 0.8 

5 25 100 0.003 0.00005 0.8 0.01 0.2 0.8 

Within the five cases presented in Table 11, 𝑘𝑘 represents the total number of failure 

modes in the simulated system, while 𝑇𝑇 is the total number of test phase demands. 𝜇𝜇 

and var are the failure mode probability mean and variance population parameters, 

respectively, while 𝑐𝑐 and 𝑒𝑒 represent the fix effectiveness factor mean and variance 

population parameters. 𝐶𝐶𝐶𝐶 is the confidence limit utilised in comparing the 

distributions arising from the simulation, and 𝑝𝑝(𝑓𝑓𝑓𝑓𝑓𝑓) is the probability of corrective 

action implementation to mitigate observed failure modes. 
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Table 12 displays the simulation outcomes. In this table, 𝑚𝑚 and 𝑛𝑛 identify the number 

of observed failure modes and the number of observed failures, respectively. For each 

of the reliabilities described (true initial reliability, Hall’s estimate, and proposed 

empirical Bayes estimate), 𝐿𝐿𝐿𝐿𝐿𝐿 and 𝑈𝑈𝑈𝑈𝑈𝑈 indicate the upper and lower confidence 

bounds calculated from the confidence limit. 𝜇𝜇 denotes the approach’s mean initial 

reliability value. The estimator distribution coverage of the true distribution is 

characterized by 𝐶𝐶𝐶𝐶𝐶𝐶, while the absolute relative error between the estimator and the 

true mean is indicated by 𝐸𝐸𝐸𝐸𝐸𝐸. 

In most simulation cases, the proposed approach resulted in superior coverage of the 

true reliability distribution compared to Hall’s approach. The distribution mean 

values remained consistently close for all three comparison distributions. The 

absolute relative error between the means identified by Hall’s approach and the true 

distribution and the proposed approach and the true distribution remained small. The 

proposed approach tended to produce slightly smaller absolute relative error results 

when tested across various circumstances. 

Table 12: Arbitrary corrective action simulation case results. 

Case m n 

True Initial Reliability Hall’s Approach Proposed Approach 

UCB μ LCB Sp UCB μ LCB Cov Err UCB μ LCB Cov Err 

1 44 50 0.85 0.78 0.71 0.14 0.88 0.77 0.66 1.40 0.02 0.82 0.76 0.71 1.04 0.02 

2 88 98 0.69 0.61 0.53 0.15 0.73 0.62 0.52 1.12 0.02 0.66 0.59 0.52 1.09 0.03 

3 23 31 0.89 0.82 0.74 0.15 0.92 0.79 0.66 1.55 0.04 0.87 0.81 0.74 0.99 0.01 

4 9 11 0.95 0.88 0.81 0.14 0.99 0.84 0.70 1.78 0.04 0.94 0.90 0.87 0.58 0.03 

5 4 4 0.97 0.93 0.89 0.09 1.00 0.90 0.75 2.56 0.04 0.97 0.94 0.90 0.81 0.01 

Overall, the proposed approach offers better coverage of the true distribution with 

less likelihood of significant errors when point estimates must be used. The proposed 
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approach maintains a similar absolute mean relative error when distribution means 

are compared. 

4.5.2 Testing Assumptions 

In developing the proposed approach, several assumptions were made. It is essential 

to assess the suitability of the proposed empirical Bayes estimates approach to 

validate these assumptions against the observed failure modes during testing. Failure 

to do so will undoubtedly result in erroneous estimates of both the prior system-level 

mean 𝑅𝑅𝐼𝐼 and the 𝑛𝑛� parameter. This will consequently result in errors in the Bayesian-

based reliability credible intervals when assessing current system-level reliability and 

planning for future reliability growth test phases. 

In particular, it is essential to assess the goodness of fit of the mode failure 

probability, which we have assumed to be of the form 

 𝑝𝑝(𝑝𝑝𝑖𝑖) =
Γ(𝑎𝑎 + 𝑏𝑏)

Γ(𝑎𝑎) + Γ(𝑏𝑏)𝑝𝑝𝑖𝑖
𝑎𝑎−1(1− 𝑝𝑝𝑖𝑖)𝑏𝑏−1 (59) 

If the model fails to represent the empirical data, significant errors may arise. In this 

case, alternative approaches may prove more useful. A Bayesian Chi-squared test can 

be developed, but the visual plot of observed versus prior expected number of modes 

described in Section 3.14 tends to provide a useful indication of model fit issues. 

An estimate of the expected number of failure modes from the defined mode failure 

probability Beta distribution for an infinite number of modes is defined as 
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 𝜇̂𝜇(𝑡𝑡) = 𝑚𝑚 ∙ �
𝜓𝜓(𝑛𝑛� + 𝑡𝑡) − 𝜓𝜓(𝑛𝑛�)
𝜓𝜓(𝑛𝑛� + 𝑇𝑇) −𝜓𝜓(𝑛𝑛�)� (60) 

where 𝜇̂𝜇(𝑡𝑡) is the expected number of observed modes. Equation (60) conveniently 

matches that identified by Hall et al. [52] [32]. This management metric provides 

graphical insight into the goodness of fit of the model. This is achieved by plotting 

the actual cumulative number of failure modes observed during testing versus trials 

against the expected cumulative number of failure modes versus trials given by the 

model. 

Figure 24 demonstrates the graphical goodness of fit approach. 

 

Figure 24. Graphical goodness of fit approach examples. 

Figure 24 shows the failure data and the expected number of failure modes plot for 

two individual simulations of Case 3, detailed in Table 11. Figure 24(a) displays a 

situation where the model data fits the proposed practical estimation method well. In 

this case, we expect our empirical initial reliability estimate to represent the unknown 
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system-level true reliability closely with minimal error. This is true for both Hall’s 

and the proposed models. Figure 24(b) illustrates a poor fit between the observed data 

from a test and the expected values. In this case, the estimate of initial system-level 

reliability has proven erroneous for both models. 

 Conclusions 

The method proposed in this chapter provides a framework for empirical Bayes 

estimation of initial discrete-use system-level reliability during reliability growth 

testing as part of system development. The proposed method provides superior results 

compared to Hall’s approach under various circumstances and equivalent outcomes 

under others. In particular, the absolute relative error between the estimator and true 

means is typically less when the proposed method is used. 
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Chapter 5: Proposed Methodology Modeling Case Study 

 Introduction 

The purpose of this chapter is to introduce a short case study involving the reliability 

growth planning aspects presented throughout this thesis and their application to a 

hypothetical discrete-use system. The approaches presented are demonstrated on a 

complex military system. The methodologies are extended to permit system modeling 

through developmental, acceptance, and operational testing. 

The methods described in Chapter 3 and Chapter 4 are used to develop a prior 

distribution on the system-level initial reliability. The initial reliability estimator is 

used to develop test phase reliability growth estimates for a three-phase 

developmental test. 

For acceptance or demonstration testing, it is assumed for this case study that there is 

no reliability degradation from the developmental reliability growth program. There 

are no assumed differences between developmental and demonstration testing 

environments, terrain, weather effects, or representative system use by representative 

operators. The demonstration test activities will be conducted in an identical location 

with similar representative operators as developmental testing. Further, it is also 

assumed that, while no corrective actions will be conducted during demonstration 

testing, some corrective actions may be implemented between demonstration and 

operational testing to address any new critical failure modes observed in 

demonstration testing, but not developmental testing. 
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A degradation parameter is used to model the degradation in reliability from 

developmental testing to operational testing. Uncertainty in the degradation factor is 

modeled using the maximum entropy principles outlined in Chapter 3 to arrive at an 

approximate Beta(a,b) distribution useful for planning purposes. 

 System Details 

The system in question is a surface-to-air missile. The hypothetical system is shown 

below in Figure 25. 

 

Figure 25. Hypothetical surface-to-air missile system. 

The system comprises nine sub-systems that function in series, as indicated by the 

block diagram within Figure 25. The sub-systems include: 

• a datalink (denoted as DL in the block diagram within Figure 25), 

• the actuator (identified as ACT), 
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• the rocket motor (RM), 

• several batteries and a transmitter (B&T), 

• an onboard electronics package (EP), 

• an inertial reference unit (IRU), 

• an antenna (ANT), 

• the target detection package or device (TDD), and 

• the explosive armament section (ARM). 

If any of the identified subsystems fail, then the entire system will fail, and the 

missile will either not launch, fail to acquire the target, fail to maintain target 

tracking, not maintain stable flight to the target or fail to destroy the target. 

 Modeling Facts and Assumptions 

The following facts are known regarding the proposed developmental, demonstration, 

and operational test program. 

5.3.1 Reliability Developmental Test Schedule and design 

Management has directed that a total of 200 hundred systems are allocated to 

developmental reliability growth testing. No other systems will be made available for 

developmental testing. The growth program is expected to be completed over nine 

months. It includes three growth test phases with significant corrective action periods 
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(CAP) at the end of each phase to ensure sufficient time for design changes and 

implementation. 

During each phase, the following test system demands will be scheduled: 

• developmental test phase 1 – 50 systems, 

• developmental test phase 2 – 62 systems, and 

• developmental test phase 3 – 88 systems. 

5.3.2 Reliability Demonstration Test Schedule and Design 

A total of 40 systems will be made available for demonstration testing. No other 

systems will be made available. 

Corrective actions may not be applied to observed failures during the reliability 

demonstration test; however, observed critical failure modes or failure modes not 

previously observed might be addressed after the test and before the scheduled 

operational test event. 

5.3.3 Operational Test Schedule and Design 

Following demonstration testing and the application of any necessary corrective 

actions, a short duration operational test will be conducted utilizing representative 

operators in a use representative environment against representative threats. 

The operational test activity will have only 12 systems allocated. 
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5.3.4 Assumptions 

The following assumptions have been made to facilitate reliability growth program 

design: 

• Developmental test management strategy (MSDT) – 0.95 

• Mean fix effectiveness factor – 0.80 

• Probability of corrective action during test – 0.30 

• Reliability goal for developmental testing – 0.95 

• Post-demonstration test management strategy (MSDemoT) – 0.10 

 System Reliability Growth Program Design 

The purpose of this section is to outline how the proposed methodology may benefit 

the development of a sound reliability growth program that conveys the range of 

possible outcomes to a decision maker concerning developmental testing. 

5.4.1 Preliminary reliability estimation 

Historical testing of similar systems, the manufacturer’s previous test data for systems 

or subsystems, and expert opinion are typically used to estimate preliminary 

reliability before any testing. 

For this case study, this data has been aggregated to provide a preliminary reliability 

estimate of 0.60 with an expected variance of 0.004. Using the principle of maximum 
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entropy approach described in Chapter 3, the model preliminary reliability estimate 

distribution may be produced, thereby providing a practical early initial starting point 

for the planning of the total growth program. 

Figure 26 displays the preliminary reliability estimation distribution. 

 

Figure 26. Preliminary reliability estimate distribution. 

It is important to note that our belief of the preliminary reliability is untested and used 

only to establish the expected test entry system reliability for planning purposes. The 

true initial system reliability is unproven at this early stage. 

Also, note that the preliminary reliability estimate is particularly low for an expected 

high reliability system. However, the low initial reliability chosen helps highlight the 

clear reliability growth that is expected between test phases for the purposes of this 

thesis. Choosing a higher preliminary reliability estimate will only demonstrate small 
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reliability gains between phases, making the approach's utility more challenging to 

convey. 

5.4.2 Reliability Growth Testing – Phase 1 

Knowing the estimated system-level reliability upon test entry, it is now 

straightforward to estimate the expected posterior reliability at the conclusion of the 

first phase of developmental testing. 

From our preliminary reliability estimate, we can calculate the mode failure 

probability Beta(a,b) distribution a and 𝑛𝑛� parameters. Given that 𝑇𝑇 the total number 

of phase test demands is known, we can now utilize simulation and Equation (21) 

displayed in Chapter 3 to arrive at our reliability expectation distribution at the 

conclusion of reliability growth testing phase 1 and after all corrective actions have 

been implemented. 

Figure 27 displays the initial system reliability expectation developed from the model 

and simulation, given the preliminary reliability estimate. Note that the initial 

reliability estimate derived from simulation closely reflects the preliminary reliability 

estimate distribution in Figure 26. 

The dashed line represents the mean reliability expectation in the following plots, 

while the darker shaded areas represent the two-sided 80% confidence limits. 
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Figure 27. Developmental testing phase 1 initial reliability expectation distribution. 

From the simulation, it is identified that, with a two-sided 80% confidence limit, 

management can expect the initial reliability at test entry prior to phase 1 to be 

between 0.52 and 0.68. The mean reliability expectation is approximately 0.60. 

Adopting a Bayesian learning approach to our planning model, this posterior would 

now form the prior distribution for phase 2. 

Figure 28 displays the reliability expectation posterior distribution at the conclusion 

of reliability growth testing phase 1. Note that this is after all design changes and 

corrective actions have been implemented during the post-phase CAP. 
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Figure 28. Developmental testing phase 1 posterior reliability expectation 

distribution. 

From the simulation, it is identified that, with a two-sided 80% confidence limit, 

management can expect the reliability at the completion of phase 1 and after 

implementation of all corrective actions to be between 0.71 and 0.81. The mean 

reliability expectation is 0.76. 

Additionally, note that the two-sided confidence interval size has decreased from the 

phase 1 initial reliability expectation to the phase 1 posterior reliability expectation. 

5.4.3 Reliability Growth Testing – Phase 2 

As stated, the reliability posterior developed during phase 1 simulation now serves as 

the phase 2 prior distribution. 

Figure 29 displays the phase 2 posterior distribution generated through simulation. 
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Figure 29. Developmental testing phase 2 posterior reliability expectation 

distribution. 

From the simulation, it is identified that, with a two-sided 80% confidence limit, 

reliability at the completion of phase 2 and after implementation of all corrective 

actions should be expected to increase to between 0.82 and 0.90. The mean reliability 

expectation is 0.86. 

Note the further decrease in the posterior reliability distribution between the upper 

and lower confidence limits. The posterior distribution continues to narrow in terms 

of spread as more information is utilized in model development. Reliability naturally 

increases as failure modes are observed, corrective actions are applied, and the 

probability of mode failure recurrence is reduced. 
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Model development thus far gives the decision maker (and the reliability practitioner) 

good visibility of the range of possible test outcomes rather than the limited 

information offered by a point estimate on a single reliability growth curve. 

5.4.4 Reliability Growth Testing – Phase 3 

In a similar Bayesian learning manner as previously applied, the posterior distribution 

developed through simulation for phase 2 now becomes the prior distribution of 

reliability for reliability growth test phase 3. 

Figure 30 displays the phase 3 posterior distribution generated through simulation. 

 

Figure 30. Developmental testing phase 3 posterior reliability expectation 

distribution. 

From the simulation, it is identified that, with a two-sided 80% confidence limit, 

reliability at the completion of phase 3 and after implementation of all corrective 

actions should be expected to increase to between 0.92 and 0.98. The final 
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developmental testing mean reliability expectation is 0.95, the specified 

developmental test reliability goal. 

The decision maker responsible for authorizing the developmental test aspects of the 

reliability program now has complete visibility of the proposed test phases to be 

conducted, including the range of possible outcomes from the specified management 

constraints. Should there be some concern that the system will fail to attain the 

reliability goal, then the decision maker has a range of options available, including: 

• increasing the resources committed to assuring reliability growth is achieved, 

• increasing the number of test phases together with a corresponding increase in 

the number of CAPs, 

• ensuring the CAPs are of sufficient time length to make certain failure modes 

can be appropriately investigated and corrective actions developed, 

• delaying test entry until a higher initial reliability can be assured by the 

manufacturer or contractor, and 

• altering the goal reliability to maintain realism with available developmental 

test resources and other constraints (time, schedule conflicts, cost etc.). 

 Demonstration Testing 

Recall that management had constrained the number of systems available for 

demonstration testing to 40 systems. No other systems will be made available, and 



 
 

 
110 

 

this could be due to a number of test constraints, including resources or facilities, 

availability, schedule, and overall cost. 

Additionally, corrective actions may not be applied to observed failures during the 

reliability demonstration test; however, observed critical failure modes or failure 

modes not previously observed may be addressed after the demonstration test and 

before the scheduled operational test event. 

Our principle planning assumption for demonstration testing was that, after 

demonstration testing has concluded, up to 10% of any new or critical observed 

modes may be addressed via the application of corrective actions. 

Similarly to developmental testing bayesian learning, we may use the posterior 

reliability distribution developed for reliability growth test phase 3 as the 

demonstration test prior reliability distribution. Figure 31 displays the simulated 

demonstration test prior reliability distribution after few minor corrective actions 

were conducted post-developmental but before the commencement of demonstration 

testing. Note only a slight increase in reliability with the developmental test phase 3 

posterior distribution displayed in Figure 30, very similar to Figure 31. 

From the simulation results, with a two-sided 80% confidence limit, reliability at the 

completion of all developmental testing and after implementation of any further 

outstanding corrective actions should be expected to increase to between 0.93 and 

0.98. The final prior demonstration testing mean reliability expectation is 0.96. 
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Figure 31. Demonstration testing prior reliability expectation distribution. 

Figure 32 displays the demonstration testing posterior reliability expectation 

distribution. Only slight changes in the distribution may be identified compared to the 

demonstration testing prior reliability expectation due to only a small amount (no 

more than 10% of any demonstration testing observed modes) of additional corrective 

actions post-demonstration testing completion. 
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Figure 32. Demonstration testing posterior reliability expectation distribution. 

The simulation identifies that reliability at the completion of demonstration testing 

and after implementation of any resulting minor corrective actions should be between 

0.94 and 0.99. The final posterior demonstration testing mean reliability expectation 

is 0.97. 

The data developed during developmental growth and demonstration testing now 

informs our beliefs on the system reliability moving forward into operational testing. 

 Operational Testing 

Often operational testing is planned and executed with little thought given to previous 

reliability testing. Operational test authorities also raise concerns when systems fail to 

demonstrate the reliability proven during acceptance/demonstration testing due to 

degradation caused by environmental, usage, and system operator changes. The 

proposed solution here is to utilize the results from the previous demonstration testing 

by carrying forward this information into operational testing. 

5.6.1 Operational Testing Reliability Degradation 

Wayne [53] identified a method of combining developmental and operational test 

data for discrete-use systems that can be employed in a similar manner as the FEF 

value in Chapter 3. Employing a similar approach to identify the expected reliability 

in operational test (particularly first-round operational testing where operator use of 

the system may be subjected to a learning curve response or where operators have 
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limited experience with similar systems) may be useful information for the 

operational test authority. 

Wayne identified the relationship between developmental and operational test data as 

 𝑅𝑅𝐷𝐷𝐷𝐷 = 𝑅𝑅𝑂𝑂𝑂𝑂1−γ (61) 

where 𝑅𝑅𝐷𝐷𝐷𝐷 is the developmental test reliability derived from the data, 𝑅𝑅𝑂𝑂𝑂𝑂 is the 

operational test reliability derived from the data, and 𝛾𝛾 is the developmental test to 

operational test degradation factor. 

The approach identified can be extended to work in a reverse manner, using a 

reliability mode degradation factor to estimate the change in reliability when 

transitioning from developmental and demonstration testing to operational testing. 

Like the FEF, it is essential to consider that each failure mode will react differently to 

the change from a developmental or demonstration test environment to an operational 

test environment. While some failure modes may only exhibit minimal reliability 

degradation to the changes in the physical, environmental, and operator-induced test 

conditions, the reliability of other modes may degrade significantly. 

Consequently, the employment of a degradation factor suitable for estimating mode 

reliability transition between any test environment may be described by 

 𝑅𝑅FT𝑖𝑖 = 𝑅𝑅CT𝑖𝑖
1−γ𝑖𝑖 (62) 
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where 𝑅𝑅CT𝑖𝑖  is the failure mode 𝑖𝑖 reliability observed or estimated from available 

data for the current test environment, 𝑅𝑅FT𝑖𝑖  is the failure mode 𝑖𝑖 reliability 

estimated from available data for the future test environment, and 𝛾𝛾𝑖𝑖 is the 

modal reliability degradation factor. 

The degradation factor may be estimated with the greatest uncertainty by 

employing a maximum entropy approach similar to that laid out in Chapter 3 

Section 3.6.1. 

In this case study, the degradation factor is assumed to be a mean value of 0.10 

with a variance of 0.001 for each modal reliability. In reality, this may be based 

on past test history, operational testing degradation results from similar system 

tests, expert opinion elicitation, or analytical comparisons between the 

developmental, demonstration, or operational test environments, if such detail 

were known and available. 

Figure 33 displays the case study operational testing reliability degradation 

estimate derived through the maximum entropy approach. 
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Figure 33. Operational testing reliability degradation estimate. 

Entering this data into the simulation through the known Beta distribution 

parameters (displayed in the plot title in Figure 33) results in the operational 

test prior reliability expectation distribution shown in Figure 34. This 

distribution is expected to remain valid for the planned operational testing but 

may require further analysis resulting in adjustment if the operational testing 

scenario or environment changes. 

The same methodology can now be extended to plan for further operational tests 

or model system reliability at any stage of the system life cycle relative to 

changes in the operating context or the use environment. 

For capability managers, this projection methodology is powerful and likely to 

offer significant insights into future system reliability at any time. 
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Figure 34. Operational testing prior/posterior reliability expectation distribution. 

In this case study, no corrective actions are expected to failure modes observed during 

operational testing. Consequently, the operational testing prior and posterior 

reliability distributions are the same. 

 Other Management Metrics 

Based on the results of significant research and simulating hundreds of different 

outcomes of the proposed Bayesian and simulation approach, several other 

management metrics may also be considered, including one-sided and two-sided 

confidence bounded histograms of: 

• the number of failures observed during each simulation phase or test event, 

• the number of modes observed, 

• number of failures observed before implementation of corrective actions, 
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• number of failures observed after corrective action, 

• the expected number of correctable failure modes in total, and 

• the number of modes subjected and not subjected to corrective action. 

An entire range of management metrics are demonstrated within the Python code 

detailed in Appendix 2. 

 Discussion 

5.8.1 Methodology Advantages 

The proposed reliability growth planning methodology possesses significant 

advantages over current methods. In particular, the proposed Bayesian approach: 

• offers flexibility, and the reliability program can easily be updated as new data 

and information becomes available simply by adjusting and re-running the 

simulation; 

• offers decision makers insights into the impacts of management decisions on 

the reliability test program; as the decision maker adjusts their strategies, 

outcomes can easily be estimated through simulation; 

• demonstrates to the decision maker (and the reliability practitioner) the 

uncertainty surrounding the various elements of the reliability program; 
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• permits the use and subsequent reuse of all data attained during preceding test 

events (including activities beyond reliability testing if sufficient data can be 

captured); and 

• displays the range of likely or possible outcomes, based on available 

information, to stakeholders more precisely than existing models in the 

literature that portray a simple point estimate at any given time in the 

reliability growth program. 

Reliability communication and risk aspects are covered in greater detail in Chapter 6. 

5.8.2 Methodology Disadvantages 

The proposed reliability growth planning methodology also exhibits some 

disadvantages when compared to current methods. Specifically, the proposed 

Bayesian approach: 

• can be computationally intensive depending on program variables and 

constraints; 

• remains predominantly theoretical only in its early stages if insufficient data is 

available to promote sound conclusions; 

• may result in frequent adjustments, particularly in the early stages of model 

development as new data arrives, or if the initial variable parameters prove 

unrealistic; and 
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• may appear to be confusing to decision makers that desire to understand how 

the reliability projection methodology contributes to the overall plan 

 Conclusions 

The presented case study demonstrates the utility of the proposed approach in 

developing a methodology suitable for modeling an entire reliability program 

comprising developmental, demonstration, and operational test phases. Further, the 

presented case study demonstrates that the approach may also be valid for reliability 

improvement programs beyond operational testing where optimized system 

performance is desired. 
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Chapter 6: Effectively Communicating Developmental System 

Reliability Growth Plans and Risk3 

 Introduction 

Many reliability engineering-related decisions are usually technically advanced, while 

the decision makers are typically not experts in the field. Corporate leaders, elected 

government officials, military program managers, project executives, and others in 

senior positions often sponsor, support, resource, approve and fund reliability growth, 

tracking, and projection activities. These decision makers are well educated and 

sincere, and, over the working day, the typical expectation is that they make crucial 

decisions on various topics in unrelated fields. It is incumbent on reliability 

practitioners to quickly and efficiently state their case, highlighting any risk. 

Reliability engineers must learn to present information clearly and succinctly using 

compelling methods that convince those that are pivotal to success to take action. 

However, the global communication landscape is rapidly changing, and effectively 

communicating reliability engineering information can be derailed by many factors. It 

is becoming more frequent that engineers face misinformation, purposeful denial, 

ignorance or indifference, political expedience, and many other problems. In addition, 

 
 
3 The content of this chapter was presented at the Australian Integrated Project Engineering Congress 
(IPEC) May 26-28, 2021. Note that the presented paper was tailored to an audience that included those 
with a limited reliability engineering background. Consequently, some concepts are explained in more 
detail than would be necessary for a knowledgeable audience. A full-text adapted version of this 
chapter has been submitted for publishing consideration to the Australian Journal of Multidisciplinary 
Engineering, a Taylor & Francis Group publication. 
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the reliability engineering environment has become increasingly complex and 

reflective of current society. Within the community, diminishing trust in institutions 

and experts, increasing use of social media as an information source, and the rise of 

alternative viewpoints inconsistent with evidence are commonplace. The current 

challenging information landscape can be described as the “post-truth, post-trust, 

post-expert world” [54]. In a reliability engineering context, this equates to an 

environment where developmental testing evidence is challenged, trust in 

professionals is weakened, and the advice of experienced reliability practitioners is 

held in lower regard. 

The purpose of this chapter is to outline the communication approaches that are 

necessary for motivating decision makers and colleagues in supporting and 

implementing reliability engineering efforts. This chapter describes how inspiring 

decision makers to act requires extracting the essence of an argument or concept, 

crafting key messages, presenting quality risk visuals, bridging knowledge gaps, and 

creating compelling narratives. The aim is to challenge technical professionals to 

present information effectively, resulting in superior outcomes. 

 Good Communication Fundamentals 

Most reliability practitioners are adept in a range of “hard” or quantitative skills, 

those skills they have been trained in and developed as a function of formal 

education, role, tenure, and position. Hard skills are often quantifiable and require 

professionals to learn and improve actively. Conversely, the stereotypical engineer is 

considered deficient in “soft” or professional skills. These interpersonal skills 



 
 

 
122 

 

describe how individuals work and interact and are foundational in collaborating and 

succeeding in the work environment [55]. An essential professional skill for any 

technical person is communication. Practical communication skills are fundamental to 

success in many aspects of life. However, communication is not the same as 

informing [56]. 

Informing can be considered as the transmission of a message from a sender to a 

receiver. The message’s content typically consists of objective facts, and it is codified 

independently of the human relationship between the informer and the informed. The 

message is coded through a system of conventional composition rules, and the sender 

expects obtainable results. 

Communication differs in that a bidirectional sequence of the transmission of 

messages occurs. Often, parties are considered both senders and receivers. Besides 

the message being codified through conventional language, the communication actors 

also send additional messages codified naturally that clarify the relational content 

between the communication counterparts, such as body language, tone of voice, 

speech rhythm, and physical posture. Not all messages are transmitted consciously; 

for example, body language may indicate a different message conveyed during speech 

alone [57]. 

6.2.1 Know the Audience 

When reliability professionals communicate, the purpose is not what they want to do; 

instead, in most cases, it is what they want the audience to do as a result of a common 

understanding. There are many differing world views and perspectives, and different 
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audiences will respond differently to various engineering communication efforts. To 

communicate effectively and to achieve the purpose, reliability communicators must 

adapt to their audience. Many communicators assume that a decision maker audience 

is composed of “people like me.” On the contrary, this is often not the case [58]. 

Audience segmentation is a method pioneered within marketing used to design and 

tailor products, services, and messages that satisfy the requirements of targeted 

groups [59]. Audience segmentation is a crucial activity within an audience analysis 

that can divide individuals or groups into homogeneous subgroups based upon 

defined criteria. The process seeks to identify subgroups within a target audience to 

deliver more tailored messages for more robust connections and is based on a wide 

range of elements, including predetermined beliefs or values, demographics, 

psychographics, communication behaviors, and many more [60]. Defining the target 

audience allows the tailored message to resonate with specific people, resulting in the 

messenger’s desired outcomes. 

6.2.2 Audience Segmentation 

Reliability professionals sometimes believe that there is only one decision maker type 

and a single method of presenting developmental reliability growth plans and risks. 

However, there are many things reliability practitioners can learn from segmentation 

studies, and the first is to accept that there is no one decision maker mold. 

Kim et al. [61] described four different publics for consideration from a 

problem/issue perspective. From a reliability communication standpoint, we 
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summarise these into three areas to identify the reliability decision maker types and 

how they react to information. 

Active decision makers often actively evaluate decision alternatives, compute 

different option values, anticipate various outcomes, and explicitly choose on their 

own [54]. These are the easiest to communicate with, requiring precise, concise 

information. The active decision maker will often ask questions, seek clarification 

and specifically ask about the risk related to various action courses. The relationship 

between the messenger and the decision maker will usually involve a level of trust in 

that the reliability practitioner will deliver the best-considered recommendations. 

Passive decision makers tend to do what is easy; usually, they decide to either do 

nothing or follow the recommendations presented to them for decision [54]. The 

passive decision maker is the most difficult to reach through communication. They do 

not necessarily understand the transmission, and they may have no interest in the 

problem or any perceived connection to the outcome. These are the most demanding 

audiences to deal with as they require efforts to present information in a manner that 

they do not see as time-wasting. Difficulties arise when importance and criticality are 

poorly communicated, or the decision maker does not comprehend the value 

proposition. 

Hot-issue decision makers may make decision errors in their quest to address an issue 

before moving to the next quickly [54]. This audience may rush and accept risks 

without understanding or considering if a decision is genuinely urgent. They may also 

tend to rely too heavily on intuition permitting errors by allowing it to outweigh 
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analytical thinking [62]. This audience type requires a carefully crafted message that 

identifies recommendations, risk, and consequence effects rather than immediate and 

direct results. 

6.2.3 Determine the Strategy 

If the communication purpose or audience is unclear, it needs to be clarified as much 

as possible beforehand. Often when presenting topics to a group, the audience is 

usually strongly heterogeneous. It includes the “jury” (the person or persons who will 

decide what action to take), together with “spectators” (those that have no bearing on 

the outcome). Some situations call for the communicator to primarily address the jury 

when seeking a result from a single or few decision makers. Others require the 

communicator to address a larger audience, including the jury. This is typical if 

broader support for a course of action is required [54]. 

By understanding the audience, we can develop the strategy. Good communications 

strategies are based on: 

• pretesting the key message with the audience wherever possible and then 

adjusting, 

• shaping the message so that it is relevant to the jury, spectators or both, 

• ensuring the message is accessible and understandable in format and 

language, 

• using graphics and images for illustrating technical points, 
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• confirmation of the received message and understanding, and 

• concentrating outcomes as they relate to the audience (for example, answering 

the question “So what?”). 

Distilling the message to its simplest form related to the selected audience is often the 

most potent way of communicating a complex message. Additionally, simplifying the 

message ensures that the appropriate strategy is selected that meets the audience’s 

needs. 

6.2.4 Simplify the Message 

Having a simple message can often be difficult for engineers and technical 

professionals. For some who have spent considerable time attempting to provide 

context, more data, or more precision, it can be challenging to abandon that for a 

simple cut-through message that can influence a decision maker. A general rule of 

thumb is to have three but no more than five key messages in any single 

communication effort [54]. 

Some communication experts advocate using a ‘message box’ [63], a simplified 

template for crafting a key message. One such template is the COMPASS Message 

Box [64], which looks at the problems, benefits, the so what, and solutions to an 

issue. The Message Box is designed to help take information and communicate it to 

resonate with the chosen audience. Figure 35 graphically demonstrates the Message 

Box concept. 
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Figure 35. The COMPASS Message Box concept [64]. 

The message box approach can assist in preparing for interviews or briefs with 

executives, plan a presentation, outline test, and evaluation outcomes, prepare funding 

proposals, explain the nature of the work proposed or conducted, and why it matters. 

Firstly, the communicator identifies the Audience. Then they may move through the 

five sections of the message box in any order. First drafts are often poorly structured 

and usually provide too much detail. Outcomes are refined and distilled with each 

new version. The communicator makes choices about message point importance 

through each iteration and makes language adjustments until it succinctly captures the 

key messages that need conveying. By the end of the process, only the essential key 

informational points should remain for each section. 

The elements of the message box include: 
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Issue: The Issue section identifies the overarching topic that needs addressing. 

The Issue should be concise and clear, no more than a couple of words or a 

short phrase, and, as a guide, should approximate something entered into a 

search engine. 

Problem: The Problem is the broader Issue that requires addressing through 

management action or decision. It typically relates to the communicator’s 

knowledge and area of expertise. The Problem section describes adverse 

observations and what needs managing, leading into the So What section. 

Benefits. In the Benefits section, the communicator lists the positives of 

addressing the Problem and the expected outcomes if the Solution is 

implemented. This ties into the So What of why the Audience cares but 

focuses on taking action. 

So What. The So What section is the most critical question that the Message 

Box helps communicators answer. It describes the impact of the Issue on 

something the Audience cares about profoundly. The answer to the question 

changes from audience to audience and requires adjustment accordingly. 

Solutions. The Solutions section describes the options to address the Problem. 

These must be solutions that the Audience can influence or implement. The 

communicator must revisit why they must communicate with the Audience 

and their expected outcomes. 
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An example Message Box for a reliability engineer presenting a project system 

reliability challenge to a project executive is demonstrated in Figure 36. 

 

Figure 36. Completed Message Box example. 

While relatively simple in its approach, the Message Box concept can be fundamental 

in determining the communication strategy and crafting the key messages. 

6.2.5 Storytelling and Engagement 

Storytelling is a two-way interaction between someone telling a story and the 

listeners. It is a well-known and influential means of communicating messages and 

engaging audiences [65]. 

Using storytelling to explain complex concepts has, in the past, not been considered a 

rigorous method of communicating engineering matters. However, an increasing 

number of studies show that narratives can help develop trust with an audience and 



 
 

 
130 

 

increase knowledge retention and the ability and willingness of audiences to learn and 

take action. Being easily digested by the human brain, stories help bridge our logos 

and pathos; when an audience becomes emotionally receptive to facts, chances 

increase that they will respond and act on the knowledge [54] [65]. 

Traditionally, engineering knowledge communication focuses on isolated logical 

ideas with limited context given to the target audience. However, presenting isolated 

content poses the risk that the audience, particularly the non-expert one, might make 

inaccurate assumptions when trying to understand the new information [66]. 

Communicating evidence in an understandable and practically relevant way for 

stakeholders, for instance, by embedding knowledge in a narrative storyline, has 

shown to increase an audience’s engagement, willingness to act upon the knowledge 

and then use the evidence as a basis for their decisions [66] [67] [68]. In addition, by 

placing knowledge into context, stories are more comfortable to process and generate 

more attention and engagement than traditional logical-based engineering 

communication [69]. 

6.2.6 Communication Goals 

When reliability practitioners try to help others think the way they do, they need to be 

precise. Reliability engineering can be a complicated endeavor, but the descriptions 

and explanations do not need to be. Nevertheless, since reliability professionals are 

not salesmen, they seek to make decision makers believe what they say because they 

understand. For reliability engineers, this is the challenge. 



 
 

 
131 

 

Learning how to communicate the essential material without reducing it to the lowest 

level is critical. Unfortunately, engineers are rarely taught this during their studies, 

where providing more and more detail is usually seen as the path to success. An 

essential part of this process is vital message identification –the most critical idea the 

decision maker must comprehend to initiate action. 

6.2.7 Framing 

Casting information in a particular light to influence what people think, believe or do 

is known as framing. Influence may be considered a contentious word in this context, 

and framing is considered “slanting the facts” or manipulating the truth. Some hold a 

belief that the only unbiased way to reach an audience is by stating the truth. 

However, studies have shown that factual information is no better at influencing an 

audience than information that has no basis [70]. What tips the scales is how facts are 

presented rather than the actual content. 

 Communicating Reliability Growth Plan Risk 

Targeting a specific communication technique to a particular audience can be 

challenging. The following section describes how communication may be specifically 

adapted to address both the reliability practitioner and the audience’s requirements to 

ensure that the message is understood. 

The goals of reliability growth planning are to optimize testing resources, quantify 

potential risks, and permit reliability objectives. The growth plan is an essential 

management tool in scoping the resources necessary to enhance system reliability and 
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improve the likelihood of demonstrating the system reliability requirement. Critical 

aspects underlying this process include addressing program schedules, amount of 

testing, resources available, and the test program’s likelihood of achieving reliability 

requirements. 

Figure 37 displays four reliability growth planning models. For comparison purposes, 

each image represents the same single-phase reliability growth test developed for the 

same continuous-use system. 

 

Figure 37. Comparison of reliability growth planning model approaches. 

Figure 37(a) displays an example AMSAA Crow Planning Model plan [71]. This 

model considers the prior estimate of reliability identified in previous activities or test 

events. This is represented by the horizontal line at 3,064 km MTBF between test 

commencement to 20,000 duration. At the end of this initial pretest activity, the 

square marker represents a corrective action period (CAP) between the two activities 
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to address observed failure modes. The jump in reliability as a result of corrective 

actions can be observed between the two plots. The growth plan curve then extends to 

the reliability goal. 

Figure 37(b) shows the equivalent System Level Planning Model (SPLAN) plan [71] 

and is somewhat similar to Figure 37(a). Both Figure 37(a) and Figure 37(b), 

although simplistic, present information that is akin to a point estimate of achieved 

reliability at any given time during a reliability growth test activity. Neither plot 

demonstrates the risk associated with the plan or the variance attributed to unknowns 

such as the initial reliability at test entry, the effectiveness of developed corrective 

actions to observed failure modes, or the management strategy (MS) in dealing with 

these observed failures. This presents a challenge to the reliability engineering 

communicator as a non-technical audience could receive the message that the 

expected system reliability “will be exactly this value at this given time during the 

test phase” when this is unlikely to be true. In addition, the audience may struggle to 

understand that there are unknowns with the proposed test design as the test plan only 

demonstrates a single path to an expected outcome. 

Figure 37(c) displays the equivalent Planning Model Based on Projection 

Methodology – Continuous (PM2-C) test plan [71]. PM2 curves primarily consist of 

two components – an idealized curve and MTBF targets for each test phase. The 

black line represents the idealized curve. This curve is similar to the previously 

described curves in Figure 37(a) and Figure 37(b). It depicts reliability growth if 

corrective actions to observed failure modes were applied instantly. The green 
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horizontal line represents the system’s stable reliability if all corrective actions are 

delayed until the end of the current test phase. The grey vertical line represents the 

growth in system reliability after all corrective actions are applied during the CAP at 

the end of the test phase. This provides some indication of risk for a decision maker. 

In reality, we expect system planned reliability to be between the green and black 

plots as the period between failure observation and corrective action is typically 

delayed rather than instantaneous. 

Figure 37(d) demonstrates the Wayne Improved PM2-C Model test plan [53]. This 

method improves upon previous models and provides quantification of the inherent 

uncertainties that exist in reliability growth planning: the initial system reliability, 

which is unknown at test phase commencement; the MS, a term used to describe the 

proportion of observed failure modes to be addressed by corrective action; and the fix 

effectiveness factor (FEF), the percentage reduction in individual mode failure rate 

achieved by the implementation of corrective actions. This plot depicts upper and 

lower confidence limits on the expected idealized and delayed corrective action plots, 

together with their expected values. Consequently, this modeling approach presents 

significantly more detail to the decision maker in a graphical form that is relatively 

simple to comprehend, leading to a greater understanding of the nature of the 

reliability growth program risks. 

 Elements of Plan Design Risk 

When conveying risk to a decision maker, it is essential to consider the plan design 

risk rather than solely the risk associated with plan execution. Guidelines exist to 
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assist reliability practitioners in formulating an acceptable, risk-considered reliability 

growth plan. 

Table 13 demonstrates an example planning guidelines risk matrix. The employment 

of risk matrices within the reliability domain may help promote reliability plan risk 

discussion, providing consistency in prioritizing risks and focusing decision makers 

on the highest priority risks. However, like any set of guidelines, they require 

tailoring to meet organizational and contextual environments. 

Table 13: Example reliability growth program risk assessment matrix [72]. 

 

Combining organizational or industry-specific guidelines with a risk matrix simplifies 

the communication focus significantly. Figure 38 displays an example “gauge chart” 

that harnesses the power of both approaches. The single snapshot that this approach 

provides significantly simplifies conveying reliability program design risk. 
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Figure 38. Reliability risk status ‘gauge chart’ example. 

 Conveying the Reliability Growth Plan 

Figure 39 demonstrates an example reliability growth plan for a hypothetical system 

developed utilizing the Wayne Improved Bayesian PM2-C methodology [53]. The 

plan is broken into four distinct phases. The decision maker can identify three 

reliability growth test phases (denoted by RGT) and a single limited user trial (LUT). 

The decision maker can determine the idealized growth curve and associated upper 

and lower confidence bounds with a supporting explanation. The phase confidence 
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bounds on the expected reliability if all corrective actions were delayed until the end 

of the current test phase are identified by the colored phase intervals. The inclusion of 

CAPs supports the implementation of corrective actions to address observed failures. 

The initial reliability confidence bounds and expectation value upon test entry are 

indicated on the y-axis. At the same time, the critical plan variables (FEF, MS and 

confidence limit, CL) used in its design are annotated in the lower right-hand corner 

of the plot. The upper dashed plotline annotates the theoretical reliability growth 

potential (RGP) that results directly from the selected MS and FEF variables. Finally, 

the goal reliability and the related upper and lower confidence bounds are annotated 

at the ends of the idealized curve and the confidence intervals. 

 

Figure 39. Hypothetical continuous-use system reliability growth plan structure. 

The plan represented in Figure 39 can be clearly communicated to a decision maker 

for consideration. In effect, when seeking decision maker endorsement of the plan 

and any associated supporting actions, this single figure becomes the proposal when 
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adopting a minimalist approach to reliability communication and attempting to 

convey the message concisely. The included confidence intervals serve to 

communicate the risk associated with plan execution. 

Conversely, Figure 40 presents the same plan, developed using the standard PM2-C 

methodology. This plot fails to convey any reliability confidence intervals associated 

with the plan design, even though both methods present the same underlying 

information. Simply, this reliability growth plan only presents the reliability 

expectation value at any point during the proposed test. 

 

Figure 40. Alternative hypothetical system reliability growth plan structure. 

 Communicating Plan Execution Outcomes 

During the reliability growth plan execution, the decision maker will usually require 

periodic progress updates. The updates provide the reliability practitioner with an 

opportunity to communicate realized or emerging risks. Figure 41 demonstrates an 
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example of how a detailed reliability growth tracking model can be overlaid on the 

approved reliability growth plan, thereby providing surety to the decision maker that 

the plan execution is progressing as expected or otherwise. Consequently, the 

reliability practitioner can propose plan adjustment recommendations that meet 

evolving decision-making needs with this new information. 

 

Figure 41. Hypothetical continuous-use system reliability growth tracking. 

 Identifying and Conveying Risk-Based Plan Adjustment Opportunities 

Reliability plan management metrics provide a further opportunity for the practitioner 

to communicate threats and opportunities to the decision maker for consideration and 

action. Like the reliability growth tracking graphic illustrated in Figure 41, it is 

possible to map plan execution progress against the initial plan management metrics 

to enable the decision maker to optimize resource allocation. Figure 42 displays 
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example plots of four important reliability growth management metrics that may be 

annotated during plan execution. 

The example plots within Figure 42 include the number of B-modes (those failure 

modes that will be addressed by corrective action) observed during testing so far 

(Figure 42(a)); the observed mode failure rate (Figure 42(b)); the expected fraction of 

B-modes not yet observed during testing (Figure 42(c)); and the initial failure 

intensity attributed to B-modes already observed in testing (Figure 42(d)). 

 

Figure 42. Example reliability growth progress management metrics. 

 Robustness of Reliability Plan Estimates 

The reliability growth plan can only be as good as the estimates that are used in plan 

design. The purpose of reliability estimation is to determine whether an item has met 

specific reliability requirements, typically with a stated statistical confidence level. 
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An estimator of a population reliability parameter is an approximation depending 

solely on sample information. There are several classes of estimator, which include 

point, interval, and distribution estimates. A point estimate represents a single 

estimate of reliability, whereas interval and distribution estimates represent a range of 

potential reliability values. Thus, interval estimates provide much more information 

to a decision maker and are preferred when making inferences. Similarly, distribution 

estimates are derived from a ‘distribution function’ and convey the most information 

about a population of reliability test observations. Each has its benefits in 

communicating reliability and risk as well as shortcomings. 

6.8.1 Point Estimates 

Decision makers will naturally tend to sample and population observations based on 

point estimates from observed failure modes, often without knowing it because they 

are intuitive and easy to understand. The downside of point estimates is that they are 

often unreliable [73]. Even with a reasonable point estimate, there is very likely to be 

some error. Other issues also arise. Point estimates provide no information about their 

sampling distributions, whether the estimator is unbiased or the range of their 

variances. 

The two most common criteria for assessing the reliability of a point estimator are (a) 

its accuracy or amount of bias and (b) its precision, variation, or concentration [74]. 
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6.8.1.1 Measures of bias 

Reliability practitioners use two measures of bias: mean bias and median bias, of 

which the former is the most popular. 

For 𝑛𝑛 samples of a population statistic Θ, the mean estimate, Θ� = ∑Θ� /𝑛𝑛, would be 

subject to sample variation. However, if there are an infinite number of estimates 

(which is not possible in a reliability growth context), then the average estimate is of 

no use; in this case, the bias is expressed as an expected value described as Θ� = 𝐸𝐸�Θ��. 

The mean bias of a point estimator is the expected (mean) difference between the 

reliability estimate and the true reliability, or 𝐸𝐸�Θ� − Θ�. If we denote M as the median 

of n samples, then the median bias is simply 𝑀𝑀�Θ� − Θ�. 

For mean symmetrically distributed estimates 𝐸𝐸�Θ�� = 𝑀𝑀�Θ�� provided that the number 

of samples is infinite. If the number of 𝑛𝑛 samples is few as it typically is with 

reliability growth testing, then the possibility that the mean reliability estimator Θ� 

does not approximate the true reliability Θ is high. Hence, we assume that the 

likelihood of the estimator being significantly biased is also high. Therefore, we 

consider reliability point estimators as typically unreliable. 

6.8.1.2 Measures of concentration 

Whilst an ordinary reliability sample mean might be an unbiased estimate of its true 

reliability mean, this does not imply it is the best estimator of that parameter. For 
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inference purposes, the least variable and efficient estimator provides the most power 

to discredit a null hypothesis [75]. 

Suppose reliability testing failure observations have a symmetric distribution because 

the true median and mean are the same. In that case, the sample reliability median is 

also an unbiased estimator of the true mean. However, sample reliability medians 

have a more significant standard error than sample means. A sample mean is the most 

efficient estimator of the population mean – provided the errors are normal [76]. 

If testing failure observations are not normally distributed, although the mean is still 

an unbiased estimator of its parametric value, it is no longer the most efficient. 

Therefore, depending upon the error distribution, various statistics may provide a less 

variable estimate of the population mean – bearing in mind their estimates may be 

biased also [76]. 

6.8.1.3 Point estimator robustness 

Where assumptions are fully met, the arithmetic mean, Θ� = ∑Θ� /𝑛𝑛, is the best 

possible estimator of its parameter by almost every criterion selected. Unfortunately, 

this rarely occurs under real-world testing conditions. It is known that, for any 

reasonable sample size, even relatively minor departures from some of these 

assumptions, such as slight skew or kurtosis, often make the mean reliability point 

estimator anything but a reliable estimator of true reliability. However, many 

reliability practitioners and engineers still maintain its use as a reasonable 

representation of true reliability. 
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6.8.2 Interval Estimates 

An interval estimate, however, is typically a much more accurate representation of 

reality. There is some uncertainty when estimating any parameter, which the level of 

confidence can assess. In contrast to point estimation, which gives a single value, 

interval estimation uses sample data to estimate an interval of plausible values of a 

parameter of interest [77]. 

Interval estimates, while sharing many of the problems of point estimates, tend to be 

assessed differently. To understand the reasoning and shortcomings of these methods, 

we must consider how these intervals, and their estimates, are defined. 

In essence, a confidence interval Î estimates a range 𝐼𝐼 which encloses a true reliability 

statistic Θ. The width of 𝐼𝐼 is set according to what proportion 𝛼𝛼 of all estimates of Θ 

are excluded from that range (for example, 𝛼𝛼 = 5%). Provided Θ� is distributed 

symmetrically, 𝐼𝐼 is located centrally about Θ. 

This arrangement has two essential properties. We would expect the interval 𝐼𝐼 to 

enclose the most likely (1 − α) estimate of Θ. Conversely, any estimate of Θ outside 

that range should be rejected by a comparable test (for example, p-value 𝑝𝑝 < 𝛼𝛼). It 

then follows that, when Θ� = Θ and Î = 𝐼𝐼 the same ought to be true – even if Θ� is 

distributed asymmetrically. In addition, we could assume that a reasonable estimate 

of 𝐼𝐼 would perform best. 
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6.8.2.1 Coverage error 

Assuming the confidence intervals are reasonable estimates of 𝐼𝐼, when these 

estimated intervals Î are attached to estimates of Θ, a predetermined proportion 

(1 − α) (or, for example, 95%) of these intervals are expected to enclose Θ – at least 

on average. If, as predicted by this model, exactly (1 − α) (or 95%) of confidence 

intervals enclose Θ, this is described as perfect coverage. 

The most popular measure of the quality of an interval estimator, known as the 

coverage error, is simply the difference between the observed and expected coverage 

[78]. Confusingly, for reasons of mathematical convenience, the formulae for this 

generally assume that Θ� is distributed symmetrically, and we are calculating the 

(equivalent 2-tailed) interval between two equal 1-tailed confidence limits. In other 

words, coverage error assumes a different definition of confidence limits from the one 

above. 

The problem with this measure is that it wholly ignores the length of confidence 

intervals, or what happens where Θ� is not distributed symmetrically about Θ. Interest 

in alternate measures of interval estimates and alternate ways of constructing 

confidence limits is comparatively recent [79] [80] [81]. 

6.8.3 Distribution Estimates 

In principle, a ‘distribution function’ is a statistic that conveys the most information 

about a population of test observations or a population of test summary statistics. In 

simple terms, it describes the probability of observing a particular value of 𝑌𝑌 that is 
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equal to 𝑥𝑥 (𝑃𝑃[𝑌𝑌 = 𝑥𝑥]) for each value of 𝑥𝑥. This is known as the probability mass 

function (PMF) for discrete distributions, or, for continuous functions, it is the 

probability density function (PDF) at point 𝑥𝑥. Alternatively, it may also be considered 

the probability of observing Θ� within the interval 𝑥𝑥1 to 𝑥𝑥2 (or 𝑃𝑃�𝑥𝑥1 < Θ� < 𝑥𝑥2�). 

Among statisticians, the ‘distribution function’ also refers to the cumulative 

distribution function of the test statistic(𝑃𝑃�−∞ < Θ� < 𝑥𝑥� or 𝑃𝑃[𝑌𝑌 = 𝑥𝑥]), for each value 

of 𝑥𝑥. 

The critical consideration for reliability practitioners seeking to communicate 

reliability test outcomes to decision makers is that formulae are only available to 

describe a minimal set of theoretical, known distribution functions – which is why 

they are usually just approximations [82]. 

A few statistics, those that behave like sums, have distributions that approach normal 

when calculated from large (or exceedingly large) test samples. When calculated from 

anything other than large samples, many commonly used estimators have surprisingly 

complex distribution functions – even when the observations represent a known 

population distribution, for example, the normal distribution. 

When calculated from actual data, the exact distribution of any statistic is highly 

complex and typically impossible to cope with analytically. For example, likelihood 

statistics are often assumed to be asymptotically normal, so the distribution of their 

ratios is tested against a Chi-square distribution. These limit distributions, valid where 

𝑛𝑛 approaches infinity, are frequently used as ‘parametric’ approximations for 
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relatively moderate samples – even though statistical functions approach their 

asymptotic behavior at widely differing rates. 

6.8.3.1 Approximation error 

Using some arbitrary but convenient theoretical distribution to approximate the actual 

distribution of reliability estimates introduces what is known as an approximation 

error. For instance, approximation errors arise when a statistic is tested, and we 

assume it is normally distributed when it is actually not. 

Although the small-sample distributions of many estimators are complex, we noted 

above that they often converge asymptotically to known distributions, particularly the 

normal distribution. Rescaling-transformations and ‘studentizing’ can reduce, but do 

not eliminate, approximation errors. 

Based on the proceeding discussion on reliability estimates, point estimators are 

routinely unreliable. They often demonstrate significant bias making them largely 

unsuitable for communicating reliability statistical information developed during test 

planning or garnered via test activities. Interval and distribution estimates both have 

their challenges. While interval and distribution estimates are prone to error, interval 

estimates typically provide reliability communicators with a suitable helpful tool in 

conveying reliability growth plan or testing outcome risk to decision makers. In 

addition, interval estimates are not typically highly complex nor impossible to cope 

with analytically. 
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Figure 43 graphically demonstrates the fundamentals of the three estimators of a 

population reliability parameter. 

 

Figure 43. Reliability population parameter estimators. 

The point estimate of reliability indicated within Figure 43(a) is of limited value to a 

decision maker. It infers no information on the true MTBF or the extent of any bias, 

the sample distribution or the range of variance. As a result, we can only simply state 

that the reliability expectation is 761 hours MTBF. This is particularly dangerous as a 

decision maker may internally assess the true reliability as this value when this is 

unlikely to be true. 

Figure 43(b) displays a reliability interval estimator. When compared against the 

point estimate, the interval estimate provides significantly more information. In this 

example, a lower confidence limit has been applied. If we were to assume a 90% 

lower confidence limit has been used, we could state to the decision maker that we 

are 90% confident that the true reliability is equal to or greater than 700 hours MTBF. 

However, there exists no indication on the distribution of true MTBF probabilities or 

if the estimator is distributed symmetrically about the true reliability. 



 
 

 
149 

 

Figure 43(c) demonstrates an example distribution estimator. This permits the 

conveyance of the complete information regarding our belief or knowledge of the true 

reliability based on sample test data. For example, we could state that the true 

reliability lies between 650 and 980 hours MTBF with an expectation of 

approximately 690 hours. Typically, an interval estimate would also be applied over 

the distribution estimate to provide additional information to the decision maker. 

 Conclusions 

Communicating reliability growth plan risk to decision makers, both potential risk 

during plan design and realized risk during plan execution, is a challenging endeavor. 

Those communicating risks need to understand their audience, determine the 

appropriate communication strategy, frame their arguments, and ensure clear 

communication goals. Unfortunately, communicating with decision makers is not 

typically taught during the formal education of engineers; instead, it is a skill that 

requires continual development and refinement through experience and practice. This 

chapter has presented several methods to effectively communicate reliability growth 

plan risk to decision makers using risk-based focused approaches. Additionally, it has 

highlighted concerns associated with observations based on point estimates, often 

used because they are intuitive and easy to understand. The downside of point 

estimates is that they are frequently erroneous. Even what appears to be a reasonable 

point estimate is very likely to include error. 
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Chapter 7: Conclusions, Contributions, and Recommendations 

 Conclusions 

This dissertation presented a new Bayesian approach to undertake reliability growth 

planning and projection activities for discrete-use systems. A methodology was 

developed and proposed that supported the use of all available data from previous test 

and analysis activities. This improved on the approach offered by Hall et al. as the 

proposed method considers all observed failures rather than only the first observed 

failure observed on test for any particular mode. 

Computational analysis and simulation results supported the development of the 

proposed method and were used to validate the results and the developed model. 

Comparisons were made between the system-level initial reliability estimators using 

two Bayesian approaches. In many of the cases considered, the Bayesian approach 

developed in this dissertation outperformed the comparative Bayesian approach offered 

by Hall et al. 

A hypothetical case study based on a surface-to-air missile system was presented that 

demonstrated the novel way the proposed Bayesian approach may be applied and the 

utility offered. The case study demonstrated how the approach might be used 

throughout the entire system development lifecycle, including developmental, 

acceptance, and operational testing, together with a discussion on the benefits, 

disadvantages, and constraints that apply. 
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Finally, methods for effectively communicating reliability growth plans and risks to 

decision makers were examined and developed within a reliability engineering context. 

The research conducted drew the following summarized conclusions. 

7.1.1 Utility of a Bayesian Approach 

The ability to consider model uncertainty within a single framework, although 

currently underused, is a significant advantage of Bayesian methods. The research has 

identified the following concerning the utility of adopting a Bayesian approach to 

reliability growth planning: 

• The main reason for using a Bayesian approach in developing a reliability 

growth plan is that it facilitates representing and taking fuller account of the 

uncertainties related to models and parameter values. In contrast, most plans 

based on maximum likelihood (or least squares) estimation involve fixing the 

values of parameters that may, and usually do, have an important bearing on 

the outcome of the analysis and for which there is considerable uncertainty. 

One of the significant benefits of the proposed Bayesian approach is the 

ability to incorporate prior information. 

• While other reliability growth program development approaches use prior 

information by specifying levels or ranges of individual parameters for use in 

sensitivity analysis, the Bayesian approach forces the reliability practitioner to 

look at historical data sets or to canvass expert knowledge to determine what 

is known about the system parameters and the test processes. Most traditional 
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growth planning methods do not use any of the quantitative information that 

could be gathered from historical experience or previous tests and, in effect, 

treat each system test as a new and independent problem. 

• In the past, the effects of uncertainty in developing reliability growth plans 

have been evaluated through sensitivity analysis. This generally involved 

changing the value of a single parameter only and rerunning the growth plan 

assessment. This limitation to a single parameter was due to time constraints 

and to avoid large amounts of model output. There is a need for sensitivity 

analysis for any reliability growth program that demonstrates significant 

uncertainty. However, current practice cannot guarantee that some 

(reasonably plausible) combination of parameter values does not give rise to 

behavior that would not be expected from the results of sensitivity tests that 

involve changing the value of a single parameter only. This is particularly true 

for ‘human unknowns.’ Managers will often change their focus partway 

through a reliability growth plan execution. Decision makers may alter the 

management strategy applied in correcting observed failure modes, and the 

effectiveness of corrective actions is varied and never guaranteed with 

certainty. 

7.1.2 Comparison between Hall’s and Proposed Model Approaches 

Early research identified potential areas that could be improved in developing a new 

Bayesian model based on Hall’s previous work. In researching a new approach, the 

following was evident when comparing the two methods: 



 
 

 
153 

 

• The approach developed by Hall et al. considers only the first observation of 

each mode failure. Furthermore, this approach treats both the fix effectiveness 

factor (FEF) and management strategy (MS) as deterministic mean values. 

While this approach greatly simplifies the model, it also results in errors in 

estimating the posterior reliability distribution. 

• The proposed approach presents opportunities to apply more significant 

uncertainty to the various model parameters to ensure that the resultant 

posterior reliability distribution reasonably reflects the range of possible test 

outcomes. 

• The proposed approach applies the use of the FEF in a slightly different 

manner than that previously used in discrete-use reliability growth projection 

models. The FEF has been previously applied by directly scaling the 

probability of failure for a failure mode. The proposed approach yields a 

failure mode reliability after corrective action, which provides consistency 

between continuous-use and discrete-use models. 

7.1.3 Simulation in Support of Reliability Growth Program Development 

Reliability simulation in support of growth program design and system performance 

optimization creates a system-level reliability digital twin for consideration. It allows 

reliability practitioners to simulate any action and optimize their reliability growth 

plans to achieve the best outcomes within imposed constraints while meeting resource 
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and management requirements. During the research, the following key points were 

identified: 

• Simulation analysis is a powerful tool in modeling the reliability of systems. 

Proper application requires an understanding of the underlying principles. 

• It can be exceptionally intensive computationally to apply Bayes Theorem to 

complex models. It often takes significant computer time, even on reasonably 

powerful personal computers, to analyze long-duration test phases with many 

model variables. The algebraic demands of the methods (including the need 

for a complete understanding of probability theory) have also discouraged the 

application of the method more widely. However, to conduct defensible 

decision analyses for assessments based on maximum likelihood estimation, it 

is usually necessary to conduct a bootstrap analysis. Although not usually as 

intensive computationally as applying Bayes Theorem, such an analysis can 

also often take significant time on a personal computer. Furthermore, even 

seemingly simple approaches such as bootstrapping are not without their 

theoretical traps. 

7.1.4 Comparison of Bayesian Initial Reliability Estimation Approaches 

Although the research did not initially seek to compare Bayesian initial reliability 

estimation approaches specifically, the following observations were made as a 

consequence: 
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• The process of choosing prior distributions can be very time-consuming and 

frustrating. Reliability practitioners may provide prior distributions which are 

either inconsistent or far too precise. Although expert opinion is often the 

dominant method for determining priors and is the source of many problems, 

it is expected that prior distributions will increasingly be determined by 

analysis of information from synthesis studies and hence depend less on 

unreliable expert opinion. 

• The majority of the problems encountered during the development of 

Bayesian assessments have resulted from arguments about the choice of prior 

distributions. The studies comparing the utility of both Hall’s and the 

proposed prior methodologies have demonstrated that these approaches are 

valid and can be conducted with minimal data. This research has shown that 

both methods perform well, with minimal cumulative relative error observed 

compared to the system's true initial reliability. 

• The proposed method outperforms Hall’s approach in many cases. 

7.1.5 Effectively Communicating Reliability Growth Plans and Risk 

The research did not specifically seek to consider the methods and means that 

reliability practitioners communicate reliability growth plans and risk. The author’s 

frustrations in reliability engineering communication with senior decision makers 

resulted in its inclusion, including presenting a conference paper and the invitation to 

submit an article for publishing consideration to a peer-reviewed journal. The 
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following summarized engineering communication research observations are 

presented: 

• The global communication landscape is rapidly changing, and effectively 

communicating reliability engineering information can be derailed by many 

factors. 

• It is becoming more frequent that engineers face misinformation, purposeful 

denial, ignorance or indifference, political expedience, and many other 

problems. 

• The reliability engineering environment has become increasingly complex and 

reflective of current society. Within the community, diminishing trust in 

institutions and experts, increasing use of social media as an information 

source, and the rise of alternative viewpoints inconsistent with evidence are 

commonplace. 

• Most reliability practitioners are adept in a range of “hard” or quantitative 

skills. Conversely, the stereotypical engineer is considered deficient in “soft” 

or professional skills. 

• Effectively communicating reliability engineering messages to decision 

makers necessitates that the reliability practitioner: 

o know the audience, 
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o understand the audience and their likely reaction to new information 

by conducting audience segmentation analyses, 

o focusing on a key messaging strategy reflective of the audience needs, 

o simplify the message without removing too much detail, 

o engage with the audience through storytelling to build rapport, 

o understand the goals of the communication, and 

o frame the communication appropriately so that it appeals to the 

audience. 

 Contributions 

The major contributions of this work are as follows: 

1. A new Bayesian reliability projection model was proposed that considers the 

uncertainty surrounding discrete-use systems under arbitrary corrective action 

regimes to address failure modes. This differs from current models that fail to 

address the arbitrary nature of corrective action application strategies 

observed in real-world test situations. Additionally, the proposed strategy 

permits a probabilistic assessment of the test program, accounting for 

uncertainty in initial reliability and management variables. 

2. An extension to the proposed Bayesian discrete-use projection model was 

developed by considering developmental, acceptance, and operational testing 
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aspects through simulation of failures and corrective actions. This allows the 

formulation of a holistic reliability growth plan framework that encompasses 

the entire system lifecycle. The approach considers the posterior distribution 

from each phase of developmental testing as the prior for the following 

growth test event. The same methodology is employed using the posterior 

from the final phase of reliability growth testing as the acceptance testing 

prior. It then follows that the acceptance testing posterior distribution forms 

the prior for subsequent operational testing. Importantly the approach is 

flexible enough to permit the combination of data from any test activity 

conducted in any order. The approach reduces unrealistic and unattainable 

reliability testing that may result from a purely statistical analysis. The 

proposed methodology also permits planning for combined developmental and 

operational test activities within a financially constrained context. 

3. The research presented an approach for combining disparate data from various 

sources to establish prior distributions on system reliability. 

4. The research developed and presented novel methods to assist reliability 

engineers in communicating developmental system reliability growth plans 

and risks to decision makers more effectively. The research takes essential 

facets of communication theory from marketing, management, business, and 

advertising and adapts them to the reliability engineering endeavor. 
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 Recommendations for Future Research 

Based on the results of this research and the knowledge gaps and opportunities 

consequently identified, recommendations for future research include: 

• The methodology advanced in this research is aimed to describe re- 

liability growth of discrete-use. Estimating the reliability of these 

systems presents a significant challenge due to their serial structure. 

These systems invariably operate sequentially by their design nature, 

meaning that the current state of operation depends solely on the 

preceding stages. This issue of failure mode “masking” has been 

recognized, modeled, and described elsewhere. To minimize the 

preclusion influence, one possibility could be to apply the planning 

model approach separately to each stage of system function. It may be 

necessary to assign stage developmental reliability goals that need to be 

achieved at the end of the reliability growth program. This assumes that 

the system comprising statistically independent stages and given proper 

inputs from the preceding stages can be serially decomposed. 

• The assumption that failure probabilities for each mode are drawn from 

the same fixed population distribution may require further assessment 

and understanding. In real-world systems, a significant difference in 

failure mode probabilities within a system is likely to exist. Some modes 

appear more often due to design inadequacies that result in a higher 

probability of occurrence. These can often be quickly identified and 
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corrective actions implemented. Other modes may be observed less 

frequently and have a lower probability of occurrence. Consequently, 

the assumption that mode failure probabilities may be drawn 

independently from the same fixed distribution should be challenged 

further. 

• The development of management metrics similar to those presented by 

Hall et al. [33] could contribute significantly to the available literature 

on the subject. There are several categories of metrics that could be 

considered for future utility: 

o those that focus on the different failure modes, 

o those that focus on reliability, and 

o those that focus on the costs and benefits of either choosing to 

address failure modes via the application of corrective actions or 

not. 

• The development of management metrics that promote an 

understanding of failure modes, both observed and hidden, may help 

guide resource allocation for future investigations into newly discovered 

modes. 

• The development of Bayesian derived reliability-focused metrics are 

likely to be central in enlightening decision makers in achieving better 

outcomes. 
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• The development of cost-based metrics could assist in guiding decision 

makers by highlighting how resources are spent on the improved 

assessment and reliability of the system population. 

• The intoduction and assessment of Bayesian heirarchical models for 

families of discrete-use systems whose designs are similar in nature 

under the assumption of interchangeability. Bayesian hierarchical 

models may be suitable to allow partial information to be leveraged 

among different products. Since systems from the same family have 

very close reliability estimation, it is reasonable to build a Bayesian 

hierarchical model that can partially leverage the reliabilities of 

previous products as prior information. Thus, when estimating the 

reliability of a newly released product or system, partial strength can be 

borrowed from similar products to reduce the uncertainty of estimated 

reliability. An example could be an armored fighting vehicle turret and 

its enclosed primary and secondary weapon systems. The same turret 

and weapons may be utilized on different tracked and wheeled vehicle 

systems. 

• The possible extension of the Bayesian modeling and simulation 

concept application to complex mixed continuous-use and discrete-use 

systems. The modeling of complex systems, which are incredibly 

complex and contain mixed continuous-use and discrete-use 

subsystems, could significantly benefit through the adoption of 
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Bayesian methodologies for system-level reliability growth planning. 

Examples of highly complex mixed continuous-use and discrete-use 

systems include surface and subsurface warships, aeronautical and 

space vehicles, armored fighting vehicles, and communications 

systems. 

 Resulting Publications 

This research has resulted in several conference presentations, papers, and journal 

articles. The following sections list the published work as a direct result of the 

research conducted. Where available at dissertation finalization and submission, links 

to the described documents have been included. 

7.4.1 Conference Presentations and Papers 

The research findings have been presented at the following conferences through the 

submission of conference papers: 

P. J. Nation and M. Modarres, “Modelling uncertainty in reliability growth 

planning for continuous-use systems,” presented at Systems Engineering Test 

and Evaluation Conference, Canberra, Australia, April 29 to May 1, 2019, 

https://beta.informit.org/doi/abs/10.3316/informit.443936245043201. 

P. J. Nation and M. Modarres, “Modelling continuous-use system reliability 

growth utilising disparate source data,” presented at Systems Engineering 

Test and Evaluation Conference, Canberra, Australia, April 29 to May 1, 

2019, https://beta.informit.org/doi/10.3316/informit.443954878014460. 

https://beta.informit.org/doi/abs/10.3316/informit.443936245043201
https://beta.informit.org/doi/10.3316/informit.443954878014460
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P. J. Nation, M. Wayne and M. Modarres, “A Bayesian approach to complex 

discrete-use system reliability growth planning under delayed or arbitrary 

corrective actions,” presented at Integrated Project Engineering Congress, 

Online, May 26-28, 2021. 

P. J. Nation, M. Wayne and M. Modarres, “A comparison of empirical Bayes 

hyperparameter approaches for discrete-use system initial reliability 

estimation,” presented at Integrated Project Engineering Congress, Online, 

May 26-28, 2021. 

P. J. Nation, M. Wayne and M. Modarres, “Effectively communicating 

developmental system reliability growth plans and risk to decision makers,” 

presented at Integrated Project Engineering Congress, Online, May 26-28, 

2021. 

P. J. Nation, M Wayne and M Modarres, “A Bayesian approach to complex 

discrete-use system reliability growth planning under delayed or arbitrary 

corrective actions,” submitted at International Mechanical Engineering 

Congress and Exposition, Online, November 1-5, 2021 (awarded honorable 

mention in the American Society of Mechanical Engineers Safety 

Engineering, Risk, and Reliability Analysis Division’s Student Safety 

Innovation Challenge). 
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7.4.2 Journal Articles 

The research conducted has resulted in the submission of the following peer-reviewed 
professional journal articles: 

P. J. Nation and M. Modarres, “Modelling uncertainty in reliability growth 

planning for continuous-use systems utilising disparate source data,” 

Australian Journal of Multi-Disciplinary Engineering, Vol 15, Issue 1, 2019, 

pp.2-16, DOI: 10.1080/14488388.2019.1661808. 

P. J. Nation, M. Wayne and M. Modarres, “Effectively communicating 

developmental system reliability growth plans and risk,” submitted for 

consideration upon invitation to the Australian Journal of Multi-Disciplinary 

Engineering. 

P. J. Nation, M. Wayne and M. Modarres, “A Bayesian approach to discrete-

use system reliability growth planning under delayed or arbitrary corrective 

actions,” submitted for consideration to the Proceedings of the Institution of 

Mechanical Engineers, Part O: Journal of Risk and Reliability. 
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Appendix 1: Mathematical Derivations 

This appendix contains the mathematical derivations for the empirical Bayes initial 

reliability estimator approach detailed in Chapter 3 and demonstrated in Chapter 4. 

Note that many of the equations have been included on individual pages rather than 

breaking them over multiple pages to improve readability. 

Empirical Bayes Estimates for Discrete Projection 

The marginal likelihood for a single failure mode with 𝑛𝑛𝑖𝑖 = �𝑛𝑛𝑖𝑖,1,  𝑛𝑛𝑖𝑖,2� is given as 
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where 𝜏𝜏𝑖𝑖,𝑗𝑗 = (1 − di)�T − vi − ni,2 + j�. 

The total likelihood over all modes is then 
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The log-likelihood is 
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Taking the partial derivative WRT 𝑎𝑎 yields 
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Similarly, taking the partial derivative WRT 𝑏𝑏 gives 

∂ℓ(n)
∂𝑏𝑏

 

=

⎣
⎢
⎢
⎢
⎡

�𝜓𝜓(𝑎𝑎 + 𝑏𝑏) − 𝜓𝜓(𝑏𝑏)
𝑘𝑘

𝑖𝑖=1

+
1

∑ �
𝑛𝑛𝑖𝑖,2
𝑗𝑗 � (−1)𝑗𝑗

Γ�𝑏𝑏 + 𝑣𝑣𝑖𝑖 − 𝑛𝑛𝑖𝑖,1 + τ𝑖𝑖,𝑗𝑗�
Γ�𝑎𝑎 + 𝑏𝑏 + 𝑣𝑣𝑖𝑖 + τ𝑖𝑖,𝑗𝑗�

𝑛𝑛𝑖𝑖,2
𝑗𝑗=0

∙��
𝑛𝑛𝑖𝑖,2
𝑗𝑗 � (−1)𝑗𝑗+1

𝑛𝑛𝑖𝑖,2

𝑗𝑗=0

∙ �
Γ′�𝑏𝑏 + 𝑣𝑣𝑖𝑖 − 𝑛𝑛𝑖𝑖,1 + τ𝑖𝑖,𝑗𝑗�Γ�𝑎𝑎 + 𝑏𝑏 + 𝑣𝑣𝑖𝑖 + τ𝑖𝑖,𝑗𝑗� − Γ�𝑏𝑏 + 𝑣𝑣𝑖𝑖 − 𝑛𝑛𝑖𝑖,1 + τ𝑖𝑖,𝑗𝑗�Γ′�𝑎𝑎 + 𝑏𝑏 + 𝑣𝑣𝑖𝑖 + τ𝑖𝑖,𝑗𝑗�

Γ�𝑎𝑎 + 𝑏𝑏 + 𝑣𝑣𝑖𝑖 + τ𝑖𝑖,𝑗𝑗�
2 �

⎦
⎥
⎥
⎥
⎤

 

(5) 

Breaking the likelihood into observed and unobserved parts (𝑚𝑚! ways to arrange 

observed modes with �𝑘𝑘𝑚𝑚� choices) yields 

L(𝑛𝑛) = m! �𝑘𝑘𝑚𝑚� �
Γ(𝑎𝑎 + 𝑏𝑏)Γ�𝑎𝑎 + 𝑛𝑛𝑖𝑖,1�

Γ(𝑎𝑎)Γ(𝑏𝑏) ��
𝑛𝑛𝑖𝑖,2
𝑗𝑗 � (−1)𝑗𝑗+1

Γ�𝑏𝑏 + 𝑣𝑣𝑖𝑖 − 𝑛𝑛𝑖𝑖,1 + τ𝑖𝑖,𝑗𝑗�
Γ�𝑎𝑎 + 𝑏𝑏 + 𝑣𝑣𝑖𝑖 + τ𝑖𝑖,𝑗𝑗�

𝑛𝑛𝑖𝑖,2

𝑗𝑗=0

� 

∙ �
Γ(𝑎𝑎 + 𝑏𝑏)Γ(𝑎𝑎)Γ(𝑏𝑏 + 𝑇𝑇)
Γ(𝑎𝑎)Γ(𝑏𝑏)Γ(𝑎𝑎 + 𝑏𝑏 + 𝑇𝑇)�

𝑘𝑘−𝑚𝑚

 (6) 

Given that n� = a + b and a = n�(1 − RI)
1
k�  then 

b = n� − a = n� − n�(1 − 𝑅𝑅𝐼𝐼)
1
𝑘𝑘� = 𝑛𝑛� �1 − 1 + 𝑅𝑅𝐼𝐼

1
𝑘𝑘� � = 𝑛𝑛�𝑅𝑅𝐼𝐼

1
𝑘𝑘�  (7) 
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For ℓ(n) = log L(𝑛𝑛), the unobserved part then becomes 

ℓ𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢(n) = (𝑘𝑘 − 𝑚𝑚) log �
Γ(𝑛𝑛�)Γ �𝑛𝑛�𝑅𝑅𝐼𝐼

1
𝑘𝑘� + 𝑇𝑇�

Γ �𝑛𝑛�𝑅𝑅𝐼𝐼
1
𝑘𝑘� � Γ(𝑛𝑛� + 𝑇𝑇)

� 

= �1 −
𝑚𝑚
𝑘𝑘
� 𝑘𝑘 �logΓ(𝑛𝑛�) + log Γ �𝑛𝑛�𝑅𝑅𝐼𝐼

1
𝑘𝑘� + 𝑇𝑇� − log Γ �𝑛𝑛�𝑅𝑅𝐼𝐼

1
𝑘𝑘� � − log Γ(𝑛𝑛� + 𝑇𝑇)� (8) 

  



 
 

 
170 

 

Taking the limit as 𝑘𝑘 → ∞ 

lim
𝑘𝑘→∞

�1 −
𝑚𝑚
𝑘𝑘
� 𝑘𝑘 �log Γ(𝑛𝑛�) + log Γ �𝑛𝑛�𝑅𝑅𝐼𝐼

1
𝑘𝑘� + 𝑇𝑇� − log Γ �𝑛𝑛�𝑅𝑅𝐼𝐼

1
𝑘𝑘� � − log Γ(𝑛𝑛� + 𝑇𝑇)� 

= lim
𝑘𝑘→∞

log Γ(𝑛𝑛�) − log Γ(𝑛𝑛� + 𝑇𝑇) + log
Γ �𝑛𝑛�𝑅𝑅𝐼𝐼

1
𝑘𝑘� + 𝑇𝑇�

Γ �𝑛𝑛�𝑅𝑅𝐼𝐼
1
𝑘𝑘� �

1
𝑘𝑘�

 

= lim
𝑘𝑘→∞

log Γ(𝑛𝑛�) − log Γ(𝑛𝑛� + 𝑇𝑇) + log
�𝑛𝑛�𝑅𝑅𝐼𝐼

1
𝑘𝑘� + 𝑇𝑇 − 1� !

�𝑛𝑛�𝑅𝑅𝐼𝐼
1
𝑘𝑘� − 1� !

1
𝑘𝑘�

 

= lim
𝑘𝑘→∞

log Γ(𝑛𝑛�) − log Γ(𝑛𝑛� + 𝑇𝑇) + log ��𝑛𝑛�𝑅𝑅𝐼𝐼
1
𝑘𝑘� + 𝑇𝑇 − 1� �𝑛𝑛�𝑅𝑅𝐼𝐼

1
𝑘𝑘� + 𝑇𝑇 − 2�⋯𝑛𝑛�𝑅𝑅𝐼𝐼

1
𝑘𝑘� �

1
𝑘𝑘�

 

= lim
𝑘𝑘→∞

log Γ(𝑛𝑛�) − log Γ(𝑛𝑛� + 𝑇𝑇) + ∑ log �𝑛𝑛�𝑅𝑅𝐼𝐼
1
𝑘𝑘� + 𝑗𝑗�𝑇𝑇−1

𝑗𝑗=0

1
𝑘𝑘�

 

= lim
𝑘𝑘→∞

∑ 1

𝑛𝑛�𝑅𝑅𝐼𝐼
1
𝑘𝑘� + 𝑗𝑗

𝑇𝑇−1
𝑗𝑗=0 − 𝑛𝑛� log𝑅𝑅𝐼𝐼 𝑅𝑅𝐼𝐼

1
𝑘𝑘� �− 1

𝑘𝑘2� �

− 1
𝑘𝑘2�

 

= lim
𝑘𝑘→∞

𝑛𝑛�𝑅𝑅𝐼𝐼
1
𝑘𝑘� log𝑅𝑅𝐼𝐼�

1

𝑛𝑛�𝑅𝑅𝐼𝐼
1
𝑘𝑘� + 𝑗𝑗

𝑇𝑇−1

𝑗𝑗=0

 

= 𝑛𝑛� log𝑅𝑅𝐼𝐼�
1

𝑛𝑛� + 𝑗𝑗

𝑇𝑇−1

𝑗𝑗=0

 

= log𝑅𝑅𝐼𝐼𝑛𝑛� [𝜓𝜓(𝑛𝑛� + 𝑇𝑇) − 𝜓𝜓(𝑛𝑛�)] (9) 
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Similarly, for the observed likelihood 

ℓ𝑜𝑜𝑜𝑜𝑜𝑜(𝑛𝑛) 

= log

⎣
⎢
⎢
⎢
⎡

𝑘𝑘!
(𝑘𝑘 −𝑚𝑚)!

�
Γ(𝑛𝑛�)Γ�𝑛𝑛� �1 − 𝑅𝑅𝐼𝐼

1
𝑘𝑘� �+ 𝑛𝑛𝑖𝑖,1�

Γ�𝑛𝑛� �1 − 𝑅𝑅𝐼𝐼
1
𝑘𝑘� ��Γ �𝑛𝑛�𝑅𝑅𝐼𝐼

1
𝑘𝑘� �

𝑚𝑚

𝑖𝑖=1

�
Γ�𝑛𝑛�𝑅𝑅𝐼𝐼

1
𝑘𝑘� + 𝑣𝑣𝑖𝑖 − 𝑛𝑛𝑖𝑖,1 + τ𝑖𝑖,𝑗𝑗�

Γ�𝑛𝑛� + 𝑣𝑣𝑖𝑖 + τ𝑖𝑖,𝑗𝑗�

𝑛𝑛𝑖𝑖,2

𝑗𝑗=0

�
𝑛𝑛𝑖𝑖,2
𝑗𝑗 � (−1)𝑗𝑗

⎦
⎥
⎥
⎥
⎤
 

= log

⎣
⎢
⎢
⎢
⎡
�

(𝑘𝑘 + 1− 1)Γ(𝑛𝑛�)Γ�𝑛𝑛� �1 − 𝑅𝑅𝐼𝐼
1
𝑘𝑘� �+ 𝑛𝑛𝑖𝑖,1�

Γ �𝑛𝑛� �1 − 𝑅𝑅𝐼𝐼
1
𝑘𝑘� ��Γ �𝑛𝑛�𝑅𝑅𝐼𝐼

1
𝑘𝑘� �

𝑚𝑚

𝑖𝑖=1

�
Γ�𝑛𝑛�𝑅𝑅𝐼𝐼

1
𝑘𝑘� + 𝑣𝑣𝑖𝑖 − 𝑛𝑛𝑖𝑖,1 + τ𝑖𝑖,𝑗𝑗�

Γ�𝑛𝑛� + 𝑣𝑣𝑖𝑖 + τ𝑖𝑖,𝑗𝑗�

𝑛𝑛𝑖𝑖,2

𝑗𝑗=0

�
𝑛𝑛𝑖𝑖,2
𝑗𝑗 � (−1)𝑗𝑗

⎦
⎥
⎥
⎥
⎤
 

= � log �
�1 + 1

𝑘𝑘� − 𝑖𝑖
𝑘𝑘� � �𝑛𝑛� �1 − 𝑅𝑅𝐼𝐼

1
𝑘𝑘� � + 𝑛𝑛𝑖𝑖,1 − 1� �𝑛𝑛� �1 − 𝑅𝑅𝐼𝐼

1
𝑘𝑘� � + 𝑛𝑛𝑖𝑖,1 − 2�⋯ �𝑛𝑛� �1 − 𝑅𝑅𝐼𝐼

1
𝑘𝑘� � + 𝑛𝑛𝑖𝑖,1 − 1� 𝑘𝑘𝑛𝑛� �1 − 𝑅𝑅𝐼𝐼

1
𝑘𝑘� � Γ(𝑛𝑛�)

Γ�𝑛𝑛�𝑅𝑅𝐼𝐼
1
𝑘𝑘� �

𝑚𝑚

𝑖𝑖=1

∙�
Γ�𝑛𝑛�𝑅𝑅𝐼𝐼

1
𝑘𝑘� + 𝑣𝑣𝑖𝑖 − 𝑛𝑛𝑖𝑖,1 + τ𝑖𝑖,𝑗𝑗�

Γ�𝑛𝑛� + 𝑣𝑣𝑖𝑖 + τ𝑖𝑖,𝑗𝑗�

𝑛𝑛𝑖𝑖,2

𝑗𝑗=0

�
𝑛𝑛𝑖𝑖,2
𝑗𝑗 � (−1)𝑗𝑗� (10) 

From the projection model development lim
𝑘𝑘→∞

𝑘𝑘𝑛𝑛� �1 − 𝑅𝑅𝐼𝐼
1
𝑘𝑘� � = −𝑛𝑛� log𝑅𝑅𝐼𝐼, therefore 

lim
𝑘𝑘→∞

ℓ𝑜𝑜𝑜𝑜𝑜𝑜(𝑛𝑛) = � log �
Γ(𝑛𝑛�)�𝑛𝑛𝑖𝑖,1 − 1��𝑛𝑛𝑖𝑖,1 − 2��𝑛𝑛𝑖𝑖,1 − 3�⋯ (1)𝑛𝑛�(−𝑛𝑛� log𝑅𝑅𝐼𝐼)

Γ(𝑛𝑛�)

𝑚𝑚

𝑖𝑖=1

∙�
Γ�𝑛𝑛� + 𝑣𝑣𝑖𝑖 − 𝑛𝑛𝑖𝑖,1 + τ𝑖𝑖,𝑗𝑗�

Γ�𝑛𝑛� + 𝑣𝑣𝑖𝑖 + τ𝑖𝑖,𝑗𝑗�

𝑛𝑛𝑖𝑖,2

𝑗𝑗=0

�
𝑛𝑛𝑖𝑖,2
𝑗𝑗 � (−1)𝑗𝑗� 

= ��log � 𝑗𝑗

𝑛𝑛𝑖𝑖,1−1

𝑗𝑗=1

+ log(−𝑛𝑛� log𝑅𝑅𝐼𝐼) + log�
Γ�𝑛𝑛� + 𝑣𝑣𝑖𝑖 − 𝑛𝑛𝑖𝑖,1 + τ𝑖𝑖,𝑗𝑗�

Γ�𝑛𝑛� + 𝑣𝑣𝑖𝑖 + τ𝑖𝑖,𝑗𝑗�

𝑛𝑛𝑖𝑖,2

𝑗𝑗=0

�
𝑛𝑛𝑖𝑖,2
𝑗𝑗 � (−1)𝑗𝑗�

𝑚𝑚

𝑖𝑖=1

 
(11) 
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The limiting form of the likelihood is then 

ℓ∞(𝑛𝑛) = lim
𝑘𝑘→∞

ℓ(𝑛𝑛) 

= �� � log 𝑗𝑗

𝑛𝑛𝑖𝑖,1−1

𝑗𝑗=1

+ log��
Γ�𝑛𝑛� + 𝑣𝑣𝑖𝑖 − 𝑛𝑛𝑖𝑖,1 + τ𝑖𝑖,𝑗𝑗�

Γ�𝑛𝑛� + 𝑣𝑣𝑖𝑖 + τ𝑖𝑖,𝑗𝑗�
�
𝑛𝑛𝑖𝑖,2
𝑗𝑗 � (−1)𝑗𝑗

𝑛𝑛𝑖𝑖,2

𝑗𝑗=0

��
𝑚𝑚

𝑖𝑖=1

+ 𝑚𝑚 log(−𝑛𝑛� log𝑅𝑅𝐼𝐼) + 𝑛𝑛� log𝑅𝑅𝐼𝐼 [𝜓𝜓(𝑛𝑛� + 𝑇𝑇) − 𝜓𝜓(𝑛𝑛�)] 

= �� � log 𝑗𝑗

𝑛𝑛𝑖𝑖,1−1

𝑗𝑗=1

+ log��
1

�𝑛𝑛� + 𝑣𝑣𝑖𝑖 + 𝜏𝜏𝑖𝑖,𝑗𝑗 − 1�⋯ �𝑛𝑛� + 𝑣𝑣𝑖𝑖 + 𝜏𝜏𝑖𝑖,𝑗𝑗�
�
𝑛𝑛𝑖𝑖,2
𝑗𝑗 � (−1)𝑗𝑗

𝑛𝑛𝑖𝑖,2

𝑗𝑗=0

��
𝑚𝑚

𝑖𝑖=1

+ 𝑚𝑚 log(−𝑛𝑛� log𝑅𝑅𝐼𝐼) + 𝑛𝑛� log𝑅𝑅𝐼𝐼 [𝜓𝜓(𝑛𝑛� + 𝑇𝑇) − 𝜓𝜓(𝑛𝑛�)] 

= �� � log 𝑗𝑗

𝑛𝑛𝑖𝑖,1−1

𝑗𝑗=1

+ log���
1

𝑛𝑛� + 𝑣𝑣𝑖𝑖 + 𝜏𝜏𝑖𝑖,𝑗𝑗 − 𝑞𝑞
�
𝑛𝑛𝑖𝑖,2
𝑗𝑗 � (−1)𝑗𝑗

𝑛𝑛𝑖𝑖,2

𝑞𝑞=1

𝑛𝑛𝑖𝑖,2

𝑗𝑗=0

��
𝑚𝑚

𝑖𝑖=1

+ m log(−𝑛𝑛� log𝑅𝑅𝐼𝐼)

+ 𝑛𝑛� log𝑅𝑅𝐼𝐼 [ψ(𝑛𝑛� + 𝑇𝑇) − ψ(𝑛𝑛�)] (12) 

IOT find the partial derviative of ℓ∞(𝑛𝑛) WRT 𝑛𝑛�, let 

f = ��𝑛𝑛� + 𝑣𝑣𝑖𝑖 + τ𝑖𝑖,𝑗𝑗 − 1��𝑛𝑛� + 𝑣𝑣𝑖𝑖 + τ𝑖𝑖,𝑗𝑗 − 2�⋯ �𝑛𝑛� + 𝑣𝑣𝑖𝑖 + τ𝑖𝑖,𝑗𝑗 − 𝑛𝑛𝑖𝑖,1��
−1 

=
𝑛𝑛� + 𝑣𝑣𝑖𝑖 + τ𝑖𝑖,𝑗𝑗

�𝑛𝑛� + 𝑣𝑣𝑖𝑖 + τ𝑖𝑖,𝑗𝑗 − 𝑛𝑛𝑖𝑖,1��𝑛𝑛� + 𝑣𝑣𝑖𝑖 + τ𝑖𝑖,𝑗𝑗 − 𝑛𝑛𝑖𝑖,1 + 1�⋯�𝑛𝑛� + 𝑣𝑣𝑖𝑖 + τ𝑖𝑖,𝑗𝑗 − 𝑛𝑛𝑖𝑖,1 + 𝑛𝑛𝑖𝑖,1 − 1��𝑛𝑛� + 𝑣𝑣𝑖𝑖 + τ𝑖𝑖,𝑗𝑗 − 𝑛𝑛𝑖𝑖,1 + 𝑛𝑛𝑖𝑖,1�
 (13) 
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The partial derivative of 𝑓𝑓 WRT 𝑛𝑛�, noting the first line of Equation (14) is derived 

from Mathematica output) is 

∂𝑓𝑓
∂𝑛𝑛�

=
𝑛𝑛� + 𝑣𝑣𝑖𝑖 + τ𝑖𝑖,𝑗𝑗

�𝑛𝑛� + 𝑣𝑣𝑖𝑖 + τ𝑖𝑖,𝑗𝑗�
2 ∏ �𝑛𝑛� + 𝑣𝑣𝑖𝑖 + τ𝑖𝑖,𝑗𝑗 − 𝑛𝑛𝑖𝑖,1 + 1 + 𝑞𝑞�𝑛𝑛𝑖𝑖,1

𝑞𝑞=0

+
1 − �𝑛𝑛� + 𝑣𝑣𝑖𝑖 + τ𝑖𝑖,𝑗𝑗�𝜓𝜓�𝑛𝑛� + 𝑣𝑣𝑖𝑖 + τ𝑖𝑖,𝑗𝑗 + 1� − 𝜓𝜓�𝑛𝑛� + 𝑣𝑣𝑖𝑖 + τ𝑖𝑖,𝑗𝑗 − 𝑛𝑛𝑖𝑖,1 + 1�

�𝑛𝑛� + 𝑣𝑣𝑖𝑖 + τ𝑖𝑖,𝑗𝑗 − 𝑛𝑛𝑖𝑖,1�∏ �𝑛𝑛� + 𝑣𝑣𝑖𝑖 + τ𝑖𝑖,𝑗𝑗 − 𝑛𝑛𝑖𝑖,1 + 1 + 𝑞𝑞�𝑛𝑛𝑖𝑖,1
𝑞𝑞=0

 

= −��𝑛𝑛� + 𝑣𝑣𝑖𝑖 + τ𝑖𝑖,𝑗𝑗 − 1��𝑛𝑛� + 𝑣𝑣𝑖𝑖 + τ𝑖𝑖,𝑗𝑗 − 2�⋯ �𝑛𝑛� + 𝑣𝑣𝑖𝑖 + τ𝑖𝑖,𝑗𝑗 − 𝑛𝑛𝑖𝑖,1��
−2

∙

⎣
⎢
⎢
⎡
�𝑛𝑛� + 𝑣𝑣𝑖𝑖 + τ𝑖𝑖,𝑗𝑗 − 𝑞𝑞

𝑛𝑛𝑖𝑖,1

𝑞𝑞=2

+ �𝑛𝑛� + 𝑣𝑣𝑖𝑖 + τ𝑖𝑖,𝑗𝑗 − 𝑞𝑞

𝑛𝑛𝑖𝑖,1

𝑞𝑞=1
𝑞𝑞≠2

+ ⋯

+ � 𝑛𝑛� + 𝑣𝑣𝑖𝑖 + τ𝑖𝑖,𝑗𝑗 − 𝑞𝑞

𝑛𝑛𝑖𝑖,1−1

𝑞𝑞=1 ⎦
⎥
⎥
⎤
 

=  −

⎣
⎢
⎢
⎡ ∏ 𝑛𝑛� + 𝑣𝑣𝑖𝑖 + τ𝑖𝑖,𝑗𝑗 − 𝑞𝑞𝑛𝑛𝑖𝑖,1

𝑞𝑞=2

�∏ 𝑛𝑛� + 𝑣𝑣𝑖𝑖 + τ𝑖𝑖,𝑗𝑗 − 𝑞𝑞𝑛𝑛𝑖𝑖,1
𝑞𝑞=1 �

2 +

∏ 𝑛𝑛� + 𝑣𝑣𝑖𝑖 + τ𝑖𝑖,𝑗𝑗 − 𝑞𝑞𝑛𝑛𝑖𝑖,1
𝑞𝑞=1
𝑞𝑞≠2

�∏ 𝑛𝑛� + 𝑣𝑣𝑖𝑖 + τ𝑖𝑖,𝑗𝑗 − 𝑞𝑞𝑛𝑛𝑖𝑖,1
𝑞𝑞=1 �

2 + ⋯

+
∏ 𝑛𝑛� + 𝑣𝑣𝑖𝑖 + τ𝑖𝑖,𝑗𝑗 − 𝑞𝑞𝑛𝑛𝑖𝑖,1−1
𝑞𝑞=1

�∏ 𝑛𝑛� + 𝑣𝑣𝑖𝑖 + τ𝑖𝑖,𝑗𝑗 − 𝑞𝑞𝑛𝑛𝑖𝑖,1
𝑞𝑞=1 �

2

⎦
⎥
⎥
⎤
 

= −�
1

�𝑛𝑛� + 𝑣𝑣𝑖𝑖 + τ𝑖𝑖,𝑗𝑗 − 1�∏ 𝑛𝑛� + 𝑣𝑣𝑖𝑖 + τ𝑖𝑖,𝑗𝑗 − 𝑞𝑞𝑛𝑛𝑖𝑖,1
𝑞𝑞=1

+
1

�𝑛𝑛� + 𝑣𝑣𝑖𝑖 + τ𝑖𝑖,𝑗𝑗 − 2�∏ 𝑛𝑛� + 𝑣𝑣𝑖𝑖 + τ𝑖𝑖,𝑗𝑗 − 𝑞𝑞𝑛𝑛𝑖𝑖,1
𝑞𝑞=1

+ ⋯

+
1

�𝑛𝑛� + 𝑣𝑣𝑖𝑖 + τ𝑖𝑖,𝑗𝑗 − 𝑛𝑛𝑖𝑖,1�∏ 𝑛𝑛� + 𝑣𝑣𝑖𝑖 + τ𝑖𝑖,𝑗𝑗 − 𝑞𝑞𝑛𝑛𝑖𝑖,1
𝑞𝑞=1

� 

= −�
1

∏ 𝑛𝑛� + 𝑣𝑣𝑖𝑖 + τ𝑖𝑖,𝑗𝑗 − 𝑞𝑞𝑛𝑛𝑖𝑖,1
𝑞𝑞=1

� �
1

𝑛𝑛� + 𝑣𝑣𝑖𝑖 + τ𝑖𝑖,𝑗𝑗 − 1
+

1
𝑛𝑛� + 𝑣𝑣𝑖𝑖 + τ𝑖𝑖,𝑗𝑗 − 2

+ ⋯

+
1

𝑛𝑛� + 𝑣𝑣𝑖𝑖 + τ𝑖𝑖,𝑗𝑗 − 𝑛𝑛𝑖𝑖,1
� (14) 

(continued next page) 
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∂𝑓𝑓
∂𝑛𝑛�

= −�
1

∏ 𝑛𝑛� + 𝑣𝑣𝑖𝑖 + τ𝑖𝑖,𝑗𝑗 − 𝑞𝑞𝑛𝑛𝑖𝑖,1
𝑞𝑞=1

��
1

𝑛𝑛� + 𝑣𝑣𝑖𝑖 + τ𝑖𝑖,𝑗𝑗 − 𝑞𝑞

𝑛𝑛𝑖𝑖,1

𝑞𝑞=1

 
(14) 

The partial dervivative of ℓ∞(𝑛𝑛) WRT 𝑛𝑛� is then 

∂ℓ∞(𝑛𝑛)
∂𝑛𝑛�

= ���
1

∑ ∏ 1
𝑛𝑛� + 𝑣𝑣𝑖𝑖 + τ𝑖𝑖,𝑗𝑗 − 𝑞𝑞

𝑛𝑛𝑖𝑖,1
𝑞𝑞=1

𝑛𝑛𝑖𝑖,2
𝑗𝑗=0

�����
−1

𝑛𝑛� + 𝑣𝑣𝑖𝑖 + τ𝑖𝑖,𝑗𝑗 − 𝑞𝑞

𝑛𝑛𝑖𝑖,1

𝑞𝑞=1

��
1

𝑛𝑛� + 𝑣𝑣𝑖𝑖 + τ𝑖𝑖,𝑗𝑗 − 𝑞𝑞

𝑛𝑛𝑖𝑖,1

𝑞𝑞=1

�

𝑛𝑛𝑖𝑖,2

𝑗𝑗=0

�
𝑚𝑚

𝑖𝑖=1

+
−𝑚𝑚

𝑛𝑛� log𝑅𝑅𝐼𝐼
(− log𝑅𝑅𝐼𝐼) + log𝑅𝑅𝐼𝐼 [𝜓𝜓(𝑛𝑛� + 𝑇𝑇) − 𝜓𝜓(𝑛𝑛�)] + 𝑛𝑛�log𝑅𝑅𝐼𝐼 [𝜓𝜓′(𝑛𝑛� + 𝑇𝑇) − 𝜓𝜓′(𝑛𝑛�)] (15) 

The partial dervivative of ℓ∞(𝑛𝑛) WRT 𝑅𝑅𝐼𝐼 is 

∂ℓ∞(𝑛𝑛)
∂𝑅𝑅𝐼𝐼

=
−𝑚𝑚

𝑛𝑛� log𝑅𝑅𝐼𝐼
�
−𝑛𝑛�
𝑅𝑅𝐼𝐼
� +

𝑛𝑛�
𝑅𝑅𝐼𝐼
�[𝜓𝜓(𝑛𝑛� + 𝑇𝑇) − 𝜓𝜓(𝑛𝑛�)]� (16) 

Let the partial derivative ℓ∞(𝑛𝑛) WRT 𝑅𝑅𝐼𝐼 equal zero, then 

∂ℓ∞(𝑛𝑛)
∂𝑅𝑅𝐼𝐼

= 0   ⇒    
−𝑚𝑚

 𝑅𝑅𝐼𝐼 log𝑅𝑅𝐼𝐼
=
𝑛𝑛�
𝑅𝑅𝐼𝐼

[𝜓𝜓(𝑛𝑛� + 𝑇𝑇) − 𝜓𝜓(𝑛𝑛�)] 

⇒    log𝑅𝑅𝐼𝐼 = 𝑒𝑒𝑒𝑒𝑒𝑒 �
−𝑚𝑚

𝑛𝑛�[𝜓𝜓(𝑛𝑛� + 𝑇𝑇) − 𝜓𝜓(𝑛𝑛�)]�  (17) 
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Subsituting the expression for 𝑅𝑅𝐼𝐼 from Equation (17) into ∂ℓ∞(𝑛𝑛)
∂𝑛𝑛�

 from Equation (15) 

yeields 

−�
∑ �∏ 1

𝑛𝑛� + 𝑣𝑣𝑖𝑖 + τ𝑖𝑖,𝑗𝑗 − 𝑞𝑞
𝑛𝑛𝑖𝑖,1
𝑞𝑞=1 �∑ 1

𝑛𝑛� + 𝑣𝑣𝑖𝑖 + τ𝑖𝑖,𝑗𝑗 − 𝑞𝑞
𝑛𝑛𝑖𝑖,1
𝑞𝑞=1

𝑛𝑛𝑖𝑖,2
𝑗𝑗=0

∑ ∏ 1
𝑛𝑛� + 𝑣𝑣𝑖𝑖 + τ𝑖𝑖,𝑗𝑗 − 𝑞𝑞

𝑛𝑛𝑖𝑖,1
𝑞𝑞=1

𝑛𝑛𝑖𝑖,2
𝑗𝑗=0

𝑚𝑚

𝑖𝑖=1

+
𝑚𝑚
𝑛𝑛�

−
𝑚𝑚

𝑛𝑛�[𝜓𝜓(𝑛𝑛� + 𝑇𝑇) −𝜓𝜓(𝑛𝑛�)]
[𝜓𝜓(𝑛𝑛� + 𝑇𝑇) − 𝜓𝜓(𝑛𝑛�)]

+ 𝑛𝑛�
−𝑚𝑚

𝑛𝑛��[𝜓𝜓(𝑛𝑛� + 𝑇𝑇) − 𝜓𝜓(𝑛𝑛�)]�
[𝜓𝜓′(𝑛𝑛� + 𝑇𝑇) − 𝜓𝜓′(𝑛𝑛�)] 

⇒    �
∑ �∏ 1

𝑛𝑛� + 𝑣𝑣𝑖𝑖 + τ𝑖𝑖,𝑗𝑗 − 𝑞𝑞
𝑛𝑛𝑖𝑖,1
𝑞𝑞=1 �∑ 1

𝑛𝑛� + 𝑣𝑣𝑖𝑖 + τ𝑖𝑖,𝑗𝑗 − 𝑞𝑞
𝑛𝑛𝑖𝑖,1
𝑞𝑞=1

𝑛𝑛𝑖𝑖,2
𝑗𝑗=0

∑ ∏ 1
𝑛𝑛� + 𝑣𝑣𝑖𝑖 + τ𝑖𝑖,𝑗𝑗 − 𝑞𝑞

𝑛𝑛𝑖𝑖,1
𝑞𝑞=1

𝑛𝑛𝑖𝑖,2
𝑗𝑗=0

𝑚𝑚

𝑖𝑖=1

= 𝑚𝑚
[𝜓𝜓′(𝑛𝑛�) − 𝜓𝜓′(𝑛𝑛� + 𝑇𝑇)]
[𝜓𝜓(𝑛𝑛� + 𝑇𝑇) − 𝜓𝜓(𝑛𝑛�)]  

(18) 
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Appendix 2: Python Programing Language Code 

The following Python code was utilized in assessing many of the methodologies 

proposed in this dissertation. It is included for completeness and to ensure others may 

replicate and expand upon this work in the future. 

########################## 
# Import libraries 
import numpy as np 
import math as ma 
from mpmath import * 
mp.dps = 50 
import scipy.stats as ss 
import random as rand 
from scipy.special import comb, polygamma, psi, btdtri 
import scipy.optimize as so 
from datetime import datetime 
import seaborn as sns 
import matplotlib.pyplot as plt 
%matplotlib inline 
 
# Set model and simulation parameters 
k = 250 # Number of system failure modes 
T = 600 # Test demands 
pm = 0.001 # Mean mode failure probability 
pv = 0.00001 # Mode failure probability variance 
pfix = 0.1 # Probability of mode fix during test 
c = 0.7 # FEF mean 
e = 0.01 # FEF variance 
CL = 0.8 # Confidence limit 
niter = 1000 # Number of iterations 
case = 1 # Case number under examination 
 
# Initialize plotting parameters 
sns.set_theme(context='paper', # Set seaborn params 
              style='ticks', 
              font='sans-serif', 
              font_scale=1.4, 
              rc={'figure.facecolor': 'white', 
                  'figure.titlesize': 16, 
                  'figure.titleweight': 'bold', 
                  'axes.edgecolor': 'black', 
                  'axes.facecolor': 'white', 
                  'axes.labelcolor': 'black', 
                  'axes.grid': True, 
                  'grid.color': 'lightgrey', 
                  'xtick.direction': 'out', 
                  'ytick.direction': 'out', 
                  'xtick.color': 'black', 
                  'ytick.color': 'black', 
                  'text.color': 'black', 
                  'axes.titlesize': 16, 
                  'axes.titleweight': 'bold', 
                  'axes.labelsize': 14, 
                  'font.size': 14, 
                  'xtick.labelsize': 10, 
                  'ytick.labelsize':10, 
                  'lines.color': 'black', 
                  'legend.fontsize':11, 
                  'legend.loc': 'upper center', 
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                  'legend.edgecolor': 'white', 
                  'legend.facecolor': 'white'}) 
 
bbox_args = dict(boxstyle='round', fc='white', ec='black', zorder=10) 
 
width, height = 13.333, 7.5 # Set plot width and height params 
 
save_plots = 'Y' # Save plots Y or N 
 
rand_int = 1 # Select number of random simulation iterations to plot on the expected number of failure modes curve 
 
rand_sims = [] # Empty list of random simulation mode failures FOT 
 
randomlist = [] # Select random simulations 
for i in range(rand_int): 
    n = rand.randint(0, niter) 
    randomlist.append(n) 
 
print(randomlist) # List of random simulations for closer examination 
 
>>> [325] 
 
# Calculate Beta(n,x) parameters for mode failure probability distribution and plot 
Beta_x = ((1 - pm) / pv - (1 / pm)) * pm**2 # True Beta distribution alpha parameter 
Beta_n = Beta_x * ((1 / pm) - 1) # True Beta distribution Beta parameter 
n_approx = Beta_x + Beta_n # n tilde for the Beta distribution (used to constrain simulation) 
print('Beta(n,x) n parameter for mode failure probability distribution: ' + str('{0:.3f}'.format(Beta_n))) 
print('Beta(n,x) x parameter for mode failure probability distribution: ' + str('{0:.3f}'.format(Beta_x))) 
print('Beta(n,x) n tilde parameter for mode failure probability distribution: ' + str('{0:.0f}'.format(n_approx))) 
 
fig, ax = plt.subplots(figsize=(width, height)) # Set plot size 
 
# Plot initial mode reliability probability distributions 
x = np.linspace(0, 1, 10000) 
plt.plot(x, ss.Beta.pdf(x, Beta_n, Beta_x), 'r-', lw=3) 
 
# Control x and y limits 
ax.set(ylim=(0.0, None)) 
ax.set(xlim=(0.95, 1.0)) 
 
# Annotate mode failure probability parameter 
plt.annotate('Mean = ' + str('{0:.3f}'.format(1 - pm)) + '\n' 
             + 'Var = ' + str('{0:.5f}'.format(pv)), xy=(0.05, 0.91), xycoords='axes fraction', 
             horizontalalignment='left', verticalalignment='top', bbox=bbox_args) 
 
# Set plot label and axis labels 
ax.set(title='Model Mode Reliability Probability Distribution' 
       + ', Beta(' + str('{0:.3f}'.format(Beta_n)) + ', ' + str('{0:.3f}'.format(Beta_x)) +')') 
ax.set(xlabel='x', ylabel='PDF') 
 
# Save plot as .jpg ready for MS PowerPoint widescreen presentation 
if save_plots == 'Y': 
    plt.savefig('01 Model Mode reliability Probability Distribution - Case ' + str(case) + '.jpg', dpi=1200) 
else: 
    pass 
 
# Display 
plt.show() 
 
>>> Beta(n,x) n parameter for mode failure probability distribution: 98.801 
>>> Beta(n,x) x parameter for mode failure probability distribution: 0.099 
>>> Beta(n,x) n tilde parameter for mode failure probability distribution: 99 
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# Calculate Beta(n,x) parameters for FEF distribution and plot 
q = ((1 - c) / e - (1 / c)) * c**2 # FEF Beta distribution alpha parameter 
r = q * ((1 / c) - 1) # FEF Beta distribution Beta parameter 
print('Beta(q,r) q parameter for FEF distribution: ' + str('{0:.3f}'.format(q))) 
print('Beta(q,r) r parameter for FEF distribution: ' + str('{0:.3f}'.format(r))) 
 
fig, ax = plt.subplots(figsize=(width, height)) # Set plot size 
 
# Plot FEF probability distributions 
x = np.linspace(0, 1, 10000) 
plt.plot(x, ss.Beta.pdf(x, q, r), 'r-', lw=3) 
 
# Control x and y limits 
ax.set(ylim=(0.0, None)) 
ax.set(xlim=(0.0, 1.0)) 
 
# Annotate mode failure probability parameter 
plt.annotate('Mean = ' + str('{0:.2f}'.format(c)) + '\n' 
             + 'Var = ' + str('{0:.2f}'.format(e)), xy=(0.05, 0.91), xycoords='axes fraction', 
             horizontalalignment='left', verticalalignment='top', bbox=bbox_args) 
 
# Set plot label and axis labels 
ax.set(title='Model FEF Probability Distribution' 
       + ', Beta(' + str('{0:.3f}'.format(q)) + ', ' + str('{0:.3f}'.format(r)) + ')') 
ax.set(xlabel='x', ylabel='PDF') 
 
# Save plot as .jpg ready for MS PowerPoint widescreen presentation 
if save_plots == 'Y': 
    plt.savefig('02 Model FEF Probability Distribution - Case ' + str(case) + '.jpg', dpi=1200) 
else: 
    pass 
 
# Display 
plt.show() 
 
>>> Beta(q,r) q parameter for FEF distribution: 14.000 
>>> Beta(q,r) r parameter for FEF distribution: 6.000 
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# Setup empty post-processing arrays 
# Prior distribution arrays 
pp_n_true, pp_x_true, pp_R_true = [], [], [] # Simulated system true Beta params for init fail prob and init reliability 
pp_q_true, pp_r_true = [], [] # Simulated system true Beta params for FEF 
pp_ntilde_emp, pp_R_emp = [], [] # Simulated system empircal initial reliability Bayes estimates 
pp_n_hall_k, pp_x_hall_k, pp_R_hall_k,  = [], [], [] # Hall's MLE estimates for k known modes 
pp_n_hall_inf, pp_R_hall_inf = [], [] # Hall's MLE estimates for inf modes 
 
# Posterior distribution arrays 
pp_m, pp_N, pp_n1, pp_n2, pp_nfix, pp_nnofix = [], [], [], [], [], [] # Simulation num modes and num fails 
pp_naive = [] # simulation naive reliability from observed failure only 
pp_true_post = [] # Simulation true posterior relibility (Assuming MS=1.0, some fixes arbitrary, some delayed) 
pp_true_post_n, pp_true_post_x = [], [] # Simulation true posterior Beta distribution parameters 
pp_post_hall_k, pp_post_hall_inf = [], [] # Hall's k and inf modes posterior reliability estimate 
pp_Bayes_mean, pp_Bayes_var = [], [] # Simulation Bayes posterior mean reliability and variance 
pp_Bayes_a1, pp_Bayes_b1 = [], [] # Bayes Beta parameter estimates 
 
# Simulation 
# Simulation timer start 
fmt = '%H:%M:%S' # Time format 
now = datetime.now() 
start_time = now.strftime(fmt) # Start time 
print('Time start = ' + str(start_time)) # Print start time 
 
# Initialise iteration counter 
niter_count = 0 
 
while niter_count != niter: 
     
    # Add iteration to number of iterations count 
    niter_count += 1     
     
    ntilde_emp = 1.0 # Initial n tilde emp value used to constrain simulation 
     
    while ntilde_emp > n_approx * 1.9 or ntilde_emp < n_approx *0.1: # Constrain the simulation 
 
        # Simulate k prior mode failure probabilities 
        p = np.empty(k, dtype=np.float32) 
        for i in range(k): 
            p[i] = 1 - ss.Beta.rvs(Beta_n, Beta_x) 
        p = np.where(p == 0.0, 1.0e-20, p) # Ensure that p=0.0 does not exist 
        x_true, n_true, loc1, scale1 = ss.Beta.fit(p, floc=0) # Calc true prior system Beta params 
         
        # Simulate mode FOT and calculate number of modes observed 
        FOT = np.empty(k, dtype=np.uint32) 
        for i in range(k): 
            while True: 
                val = ss.geom.rvs(p[i]) 
                if val not in FOT[:i]: 
                    FOT[i] = val 
                    break 
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            if FOT[i] > T: 
                FOT[i] = 0  
            else: 
                pass 
             
        m = np.count_nonzero(FOT) # Number of modes observed 
                 
        # Simulate k FEF values 
        d = np.zeros(k, dtype=np.float32) 
        mean_sim = 0.0 # Initialise mean sim value 
        while mean_sim < c * 0.98 or mean_sim > c * 1.02 and var_sim < e * 0.9 or var_sim > e * 1.1: 
            for i in range(k): 
                d[i] = ss.Beta.rvs(q, r) 
            d = np.where(d == 1.0, 0.99, d) # Eliminate possibility of perfect fix 
            q_true, r_true, loc1, scale1 = ss.Beta.fit(d, floc=0) # Calc true FEF system Beta params 
            mean_sim = ss.Beta.mean(q_true, r_true, loc=0, scale=1) 
            var_sim = ss.Beta.var(q_true, r_true, loc=0, scale=1) 
        
        # Identify which observed modes addressed during test, remainder observed modes addressed post-test 
        fix = np.zeros(k, dtype=np.uint32) 
        for i in range(k): 
            if FOT[i] != 0: 
                fix[i] = ss.Bernoulli.rvs(p=pfix) 
            else: 
                fix[i] = 0 
             
        # Identify when observed failure mode fixes occur 
        v = np.zeros(k, dtype=np.uint32) 
        for i in range(k): 
            if fix[i] == 0 and FOT[i] == 0: 
                v[i] = 0 # Unobserved mode 
            elif fix[i] == 0 and FOT[i] != 0: 
                v[i] = T # Some observed mode fixes occur after test conclusion 
            else: 
                v[i] = rand.uniform(FOT[i], T) # Some fixes occur random intervals between FOT and T 
         
        def getCount(v, cond = None): # Returns the count of mode fixes during test 
            if cond: 
                count = sum(cond(elem) for elem in v) 
            else: 
                count = len(v)     
            return count 
        nfix = getCount(v, lambda x : x > 0 and x < T) # Number of modes fixed during test 
        nnofix = m - nfix # Number of modes fixed after test 
     
        # Calculate new failure mode after fix (only from observed failures) 
        p_new = np.zeros(k, dtype=np.float32) 
        for i in range(k): 
            if FOT[i] == 0: 
                p_new[i] = p[i] 
            else: 
                p_new[i] = (1 - d[i]) * p[i] 
         
        # Simulate failure mode recurrence 
        fails = np.array([FOT], dtype=np.uint32) 
         
        fails_count = np.count_nonzero(fails) 
 
        while fails_count != 0: # Append new failure mode rows to failures array until sum of last row equals zero 
            add_fails = np.zeros([1, k], dtype=np.uint32) 
            for i in range(k): 
                if fails[-1, i] == 0: # If the row before is zero then this row is also zero 
                    add_fails[0, i] = 0 
                elif v[i] == T: 
                    while True: 
                        val = fails[-1, i] + ss.geom.rvs(p[i]) # If the row before is not zero then calculate the next failure 
                        if val not in fails and val not in add_fails: 
                            add_fails[0, i] = val 
                            break 
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                else: 
                    val = fails[-1, i] + ss.geom.rvs(p_new[i]) # If the row before is not zero then calculate the next failure 
                    if val not in fails and val not in add_fails: 
                        add_fails[0, i] = val 
                        break 
            for i in range(k): 
                if add_fails[0, i] > T: 
                    add_fails[0, i] = 0 # If the failure is > T make zero 
                else: 
                    pass 
 
            fails = np.concatenate((fails, add_fails), axis=0) 
     
            fails_count = np.count_nonzero(fails[-1, :]) 
             
        # Calculate total failures by mode and total observed failures 
        n_tot = np.count_nonzero(fails, axis = 0) # Mode failures 
        N = np.sum(n_tot) # Total failures 
     
        # Calculate total mode failures before and after fix (if applicable) 
        n1 = np.count_nonzero((fails <= v) & (fails > 0), axis = 0) # Failures before fix 
        n2 = n_tot - n1 # Failures after fix 
          
        # Trim arrays to only observed failures 
        FOT, d, v, n_tot, n1, n2 = (list(t) for t in zip(*sorted(zip(FOT, d, v, n_tot, n1, n2)))) # Sort FOT and reference 
        FOT = FOT[k-m:] # Remove unobserved modes from FOT through list slicing 
        FOT = np.array(FOT, dtype=np.uint32) # Convert from list to array 
        d = d[k-m:] # Remove unobserved modes from d through list slicing 
        d = np.array(d, dtype=np.float32) # Convert from list to array 
        v = v[k-m:] # Remove unobserved modes from v through list slicing 
        v = np.array(v, dtype=np.uint32) # Convert from list to array 
        n_tot = n_tot[k-m:] # Remove unobserved modes from n_tot through list slicing 
        n_tot = np.array(n_tot, dtype=np.uint32) # Convert from list to array 
        n1 = n1[k-m:] # Remove unobserved modes from n1 through list slicing 
        n1 = np.array(n1, dtype=np.uint32) # Convert from list to array 
        n2 = n2[k-m:] # Remove unobserved modes from n2 through list slicing 
        n2 = np.array(n2, dtype=np.uint32) # Convert from list to array         
         
        # Append FOT to rand_sims if niter_count is in randomlist 
        if niter_count in randomlist: 
            rand_sims.append(FOT) 
        else: 
            pass 
         
        ### Calculate prior/initial reliability metrics 
                 
        # Calculate Hall's Beta n and x estimates from data assuming k modes 
        def equns(z): 
            n = z[0] 
            x = z[1] 
            f = np.zeros(2) 
            LHS1 = sum(psi(n + FOT[i]) - psi(n - x + FOT[i] - 1) + psi(n - x + T) - psi(n + T) for i in range(m)) 
            LHS2 = sum(psi(n - x + FOT[i] - 1) - 1 / x - psi(n - x + T) for i in range(m)) 
            f[0] = k * (psi(n) - psi(n - x) + psi(n - x + T) - psi(n + T)) - LHS1 
            f[1] = k * (psi(n - x) - psi(n - x + T)) - LHS2 
            return f 
        zguess = [n_true, x_true] 
        sol =  so.root(equns, zguess, method='hybr') 
         
        # Calculate Hall's Beta n estimate from data assuming infinite modes 
        def equation(z): 
            n = z[0] 
            f = np.zeros(1) 
            LHS = sum(1 / (n + FOT[i] - 1) for i in range(m)) 
            f[0] = m * (polygamma(1, n) - polygamma(1, n + T)) / (psi(n + T) - psi(n)) - LHS 
            return f 
        zguess2 = 1.0 
        sol2 = so.root(equation, zguess2, method='hybr') 
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        # Calculate true n tilde value from observed modes 
        ntilde_emp = n_true + x_true 
         
        # Calc Bayes empirical initial reliability estimate 
        R_emp = ma.exp(-m / (ntilde_emp * (psi(ntilde_emp + T) - psi(ntilde_emp)))) 
         
        ### Calculate posterior reliability metrics 
         
        # Calculate naive reliability 
        naive = (T - N) / T 
         
        # Calculate reliability mean and variance via parametric approach (see Para 4.2.5.1 Hall Dissertation 2008 pp. 123) 
        #R_parametric =  
         
        # Calculate posterior reliability estimate (via MME) Halls k modes (see Para 4.2.5.1 Hall Dissertation 2008 pp. 125) 
        # Calculate the individual mode failure probabilies from observed failure modes (Hall denotes p hat sub-i) 
        phat_n = n_tot / T 
         
        # Calculate the unweighted sample first moment (Hall denotes p bar sub-mu) 
        p_mu = (1 / k) * phat_n.sum() 
         
        # Calculate the square of the individual mode failure probabilities (Hall denotes p hat sub_i squared) 
        phat_n2 = phat_n**2 
         
        # Calculate the unweighted sample second moment (Hall denotes m sub-mu squared) 
        m_mu2 = (1 / k) * phat_n2.sum() 
         
        # Calculate Beta(n,x) distribution n parameter estimate (Hall denotes n breve sub_k) 
        n_param = (p_mu - m_mu2) / (m_mu2 - p_mu / T - (1 - 1 / T) * p_mu**2) 
 
        # Calculate Beta(n,x) distribution x parameter estimate (Hall denotes x breve sub_k) 
        x_param = n_param * p_mu 
         
        # Calculate the shrinkage factor estimate (Hall denotes sigma breve sub_k) 
        shrin = 1 / ((n_param / T) * (1 - 1 / k) + 1) 
         
        # Calculate the moment-based shrinkage factor estimate for each mode 
        est_prob = np.zeros(m, dtype=np.float32) 
        for i in range(m): 
            est_prob[i] = shrin * phat_n[i] + (1 - shrin) * (N / (k * T)) 
         
        # Calculate the mode reliability for k modes 
        R_m = np.zeros(m, dtype=np.float32) 
        for i in range(m): 
            R_m[i] = 1 - (1 - d[i]) * est_prob[i] 
 
        # Calculate the reliability growth Hall estimate via MME for k modes 
        post_hall_k = np.prod(R_m) * (1 - (1 - shrin) * (N / (k * T)))**(k - m) 
         
        # Calculate posterior reliability estimate (via MME) Halls inf modes 
        phat_n_T = n_tot / T / T 
        n_inf = (phat_n2.sum() - phat_n2.sum()) / (phat_n2.sum() - phat_n_T.sum()) 
        shrin_inf = T / (n_inf + T) 
         
        # Calculate the moment-based shrinkage factor estimate for each mode 
        est_prob_inf = np.zeros(m, dtype=np.float32) 
        for i in range(m): 
            est_prob_inf[i] = shrin_inf * phat_n[i] 
             
        # Calculate the mode reliability for inf modes 
        R_m_inf= np.zeros(m, dtype=np.float32) 
        for i in range(m): 
            R_m_inf[i] = 1 - (1 - d[i]) * est_prob_inf[i] 
         
        # Calculate the reliability growth Hall estimate via MME for k modes 
        post_hall_inf = np.prod(R_m_inf) * np.exp(-(1 - shrin_inf) * (N / T)) 
         
           
        # Calculate posterior reliability estimate Halls inf modes 



 
 

 
183 

 

        # Calculate Hall's Beta n estimate from data assuming infinite modes 
        #def equation(z): 
        #    n = z[0] 
        #    f = np.zeros(1) 
        #    LHS = sum(1 / (n + FOT[i] - 1) for i in range(m)) 
        #    f[0] = m * (polygamma(1, n) - polygamma(1, n + T)) / (psi(n + T) - psi(n)) - LHS 
        #    return f 
        #zguess2 = 1.0 
        #sol2 = so.root(equation, zguess2, method='hybr') 
         
        # Calculate the R hat estimate 
        #z = (mp.exp(mp.loggamma(nhat - xhat + case_data.loc[case, 'T'] - 1)) * mp.exp(mp.loggamma(nhat + 1))) / \ 
        #    (mp.exp(mp.loggamma(nhat - xhat)) * mp.exp(mp.loggamma(nhat + case_data.loc[case, 'T']))) 
             
        # Calculate the reliability growth Hall estimate for inf modes 
        #post_hall_inf = round((1 - (1 - (1 - z) * case_data.loc[case, 'c']) * (xhat / nhat))**case_data.loc[case, 'k'], 4) 
         
        # Calculate proposed method posterior reliability 
        Rpost_mean_num = np.zeros(m, dtype=np.float32) 
 
        for i in range(m): 
            for j in range(n2[i] + 1): 
                Rpost_mean_num[i] += Binomial(n2[i], j) * (-1)**j * \ 
                        (exp(loggamma(ntilde_emp + v[i] - n1[i] + (1 - d[i]) * (T - v[i] - n2[i] + j + 1))) / \ 
                        exp(loggamma(ntilde_emp + v[i] + (1 - d[i]) * (T - v[i] - n2[i] + j + 1)))) 
         
        Rpost_mean_denom = np.zeros(m, dtype=np.float32) 
 
        for i in range(m): 
            for j in range(n2[i] + 1): 
                Rpost_mean_denom[i] += Binomial(n2[i], j) * (-1)**j * \ 
                        (exp(loggamma(ntilde_emp + v[i] - n1[i] + (1 - d[i]) * (T - v[i] - n2[i] + j))) / \ 
                        exp(loggamma(ntilde_emp + v[i] + (1 - d[i]) * (T - v[i] - n2[i] + j)))) 
         
        for i in range(m): 
            Rpost_mean = np.prod(Rpost_mean_num[i] / Rpost_mean_denom[i]) * R_emp**(ntilde_emp / (ntilde_emp + T)) 
         
        # Calculate Bayes posterior second moment 
        Rpost_mom2_num = np.zeros(m, dtype=np.float32) 
 
        for i in range(m): 
            for j in range(n2[i] + 1): 
                Rpost_mom2_num[i] += Binomial(n2[i], j) * (-1)**j * \ 
                        (exp(loggamma(ntilde_emp + v[i] - n1[i] + (1 - d[i]) * (T - v[i] - n2[i] + j + 2))) / \ 
                        exp(loggamma(ntilde_emp + v[i] + (1 - d[i]) * (T - v[i] - n2[i] + j + 2)))) 
         
        Rpost_mom2_denom = np.zeros(m, dtype=np.float32) 
 
        for i in range(m): 
            for j in range(n2[i] + 1): 
                Rpost_mom2_denom[i] += Binomial(n2[i], j) * (-1)**j * \ 
                        (exp(loggamma(ntilde_emp + v[i] - n1[i] + (1 - d[i]) * (T - v[i] - n2[i] + j))) / \ 
                        exp(loggamma(ntilde_emp + v[i] + (1 - d[i]) * (T - v[i] - n2[i] + j)))) 
         
        for i in range(m): 
            Rpost_mom2 = np.prod(Rpost_mom2_num[i] / Rpost_mom2_denom[i]) * \ 
                         R_emp**((ntilde_emp / (ntilde_emp + T + 1)) + (ntilde_emp / (ntilde_emp + T))) 
     
        # Calculate Bayes posterior variance 
        Rpost_var = Rpost_mom2 - Rpost_mean**2 
     
        # Find solution for Bayes approximation Beta(a1, b1) parameters 
        def f2(h): 
            a1 = h[0] 
            b1 = h[1] 
            f2 = np.zeros(2) 
            f2[0] = Rpost_mean - (a1 / (a1 + b1)) 
            f2[1] = Rpost_var - ((a1 * b1) / ((a1 + b1)**2 * (a1 + b1 + 1))) 
            return f2 
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        h = so.root(f2, [1, 1], method='hybr') 
 
        a1 = round(h.x[0], 4) 
        b1 = round(h.x[1], 4)   
         
    ## Append all data to appropriate post-processing arrays for analysis 
    # Append n,x,q,r true values 
    pp_n_true = np.append(pp_n_true, n_true) # Append true Beta(n,x) n param to pp_n_true 
    pp_x_true = np.append(pp_x_true, x_true) # Append true Beta(n,x) x param to pp_x_true 
     
    pp_q_true = np.append(pp_q_true, q_true) # Append true FEF Beta(q,r) n param to pp_q_true 
    pp_r_true = np.append(pp_r_true, r_true) # Append true FEF Beta(q,r) x param to pp_r_true 
    
    # Append number of observed modes and number of observed failures 
    pp_m = np.append(pp_m, m) # Append num of obs modes to pp_m 
    pp_N = np.append(pp_N, N) # Append to num of obs fails to pp_N 
             
    n1_sum = np.sum(n1) 
    pp_n1 = np.append(pp_n1, n1_sum) # Append num of fails before fix 
     
    n2_sum = np.sum(n2) 
    pp_n2 = np.append(pp_n2, n2_sum) # Append num of fails after fix 
     
    nfix_sum = np.sum(nfix) 
    pp_nfix = np.append(pp_nfix, nfix_sum) # Append num of modes fixed on test 
     
    nnofix_sum = np.sum(nnofix) 
    pp_nnofix = np.append(pp_nnofix, nnofix_sum) # Append num of modes fixed after test 
     
    #Append initial reliability metrics 
    R_true = np.prod(1 - p) # Calculate true init reliability 
    pp_R_true = np.append(pp_R_true, R_true) # Append true init reliability to pp_R_true 
     
    pp_naive = np.append(pp_naive, naive) # Append naive reliability from observed failures only 
        
    R_hall_k = (1 - sol.x[1] / sol.x[0])**k # Calc Hall's init reliability est k modes 
    pp_R_hall_k = np.append(pp_R_hall_k, R_hall_k) # Append Hall's init rel est to pp_R_hall_k 
         
    R_hall_inf = ma.exp(-m / (sol2.x[0] * (psi(sol2.x[0] + T) - psi(sol2.x[0])))) # Calc Hall's init rel est inf modes 
    pp_R_hall_inf = np.append(pp_R_hall_inf, R_hall_inf) # Append Hall's init est to pp_R_hall_inf 
     
    pp_ntilde_emp = np.append(pp_ntilde_emp, ntilde_emp) # Append emp ntilde value to pp_ntilde_true 
    pp_R_emp = np.append(pp_R_emp, R_emp) # Append Bayes emp est to pp_R_emp 
     
    # Append post-test/posterior reliability metrics 
    true_post = np.prod(1 - p_new)# Calculate true posterior reliability after all fixes implemented 
    pp_true_post = np.append(pp_true_post, true_post) # Append true post reliability to pp_true_post 
     
    # Calculate true system posterior Beta posterior n and x parameters 
    x_true_post, n_true_post, loc2, scale2 = ss.Beta.fit(p_new, floc=0) # Calc true posterior system Beta params 
    pp_true_post_n = np.append(pp_true_post_n, n_true_post) 
    pp_true_post_x = np.append(pp_true_post, x_true_post) 
     
    pp_post_hall_k = np.append(pp_post_hall_k, post_hall_k) # Append Hall's Model k modes posterior reliability estimate 
     
    pp_post_hall_inf = np.append(pp_post_hall_inf, post_hall_inf) # Append Hall's Model inf modes posterior reliability estimate 
       
    pp_Bayes_mean = np.append(pp_Bayes_mean, Rpost_mean) # Append Bayes posterior mean reliability 
     
    pp_Bayes_var = np.append(pp_Bayes_var, Rpost_var) # Append Bayes posterior mean reliability 
     
    pp_Bayes_a1 = np.append(pp_Bayes_a1, a1) # Append Bayes Beta a1 parameter estimate to pp list 
    pp_Bayes_b1 = np.append(pp_Bayes_b1, b1) # Append Bayes Beta b1 parameter estimate to pp list 
         
             
    # Count and print iterations progress 
    print('Iteration ' + str(niter_count) + ' complete!') 
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# Simulation timer end 
now2 = datetime.now() 
end_time = now2.strftime(fmt) # End time   
time_taken = datetime.strptime(end_time, fmt) - datetime.strptime(start_time, fmt) # Calculate time taken to run 
print('Time finish = ' + str(end_time)) # Print finish time 
print('Total time taken = ' + str(time_taken)) 
 
>>> Time start = 23:32:13 
>>> Iteration 1 complete! 
>>> Iteration 2 complete! 
>>> Iteration 3 complete! 
>>> … 
>>> Iteration 998 complete! 
>>> Iteration 999 complete! 
>>> Iteration 1000 complete! 
>>> Time finish = 23:38:23 
>>> Total time taken = 0:06:10 
 
# Simulation data analysis 
z_score = ss.norm.ppf(CL + (1 - CL) / 2) # Norm dist z-score for CL 
 
# Simulation mean num modes observed 
m_mean = round(np.mean(pp_m)) 
m_sd = np.std(pp_m) 
m_ucb = round(m_mean + z_score * m_sd) # UCB calc 
m_lcb = round(m_mean - z_score * m_sd) # LCB calc 
print('Mean num of obs modes: ' + str('{0:.0f}'.format(m_mean))) 
 
# Simulation mean num fails observed 
N_mean = round(np.mean(pp_N)) 
N_sd = np.std(pp_N) 
N_ucb = round(N_mean + z_score * N_sd) # UCB calc 
N_lcb = round(N_mean - z_score * N_sd) # LCB calc 
print('Mean num of obs fails: '+ str('{0:.0f}'.format(N_mean))) 
 
# Simulation mean num fails observed before fix 
n1_mean = round(np.mean(pp_n1)) 
n1_sd = np.std(pp_n1) 
n1_ucb = round(n1_mean + z_score * n1_sd) # UCB calc 
n1_lcb = round(n1_mean - z_score * n1_sd) # LCB calc 
print('Mean num of obs fails before fix: '+ str('{0:.0f}'.format(n1_mean))) 
 
# Simulation mean num fails observed after fix 
n2_mean = round(np.mean(pp_n2)) 
n2_sd = np.std(pp_n2) 
n2_ucb = round(n2_mean + z_score * n2_sd) # UCB calc 
n2_lcb = round(n2_mean - z_score * n2_sd) # LCB calc 
print('Mean num of obs fails after fix: '+ str('{0:.0f}'.format(n2_mean))) 
 
# Simulation mean num modes fixed during test 
nfix_mean = round(np.mean(pp_nfix)) 
nfix_sd = np.std(pp_nfix) 
nfix_ucb = round(nfix_mean + z_score * nfix_sd) # UCB calc 
nfix_lcb = round(nfix_mean - z_score * nfix_sd) # LCB calc 
print('Mean num of modes fixed during test: '+ str('{0:.0f}'.format(nfix_mean))) 
 
# Simulation mean num modes fixed after test 
nnofix_mean = round(np.mean(pp_nnofix)) 
nnofix_sd = np.std(pp_nnofix) 
nnofix_ucb = round(nnofix_mean + z_score * nnofix_sd) # UCB calc 
nnofix_lcb = round(nnofix_mean - z_score * nnofix_sd) # LCB calc 
print('Mean num of modes fixed after test: '+ str('{0:.0f}'.format(nnofix_mean))) 
 
print('****************************************************************************') 
print('****************************************************************************') 
print('MODEL AND TRUE BETA DISTRIBUTION PARAMETERS') 
 
# Model prior Beta distribution parameters 
print('Model initial mode failure distribution Beta n value: ' + str('{0:.3f}'.format(Beta_n))) 
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print('Model initial mode failure distribution Beta x value: ' + str('{0:.3f}'.format(Beta_x))) 
 
# Simulation priori mean distribution parameters 
print('Simulation prior mode failure distribution Beta n value: ' + str('{0:.3f}'.format(np.mean(pp_n_true)))) 
print('Simulation prior mode failure distribution Beta x value: ' + str('{0:.3f}'.format(np.mean(pp_x_true)))) 
 
# Simulation posterior mean distribution parameters 
print('Simulation posterior mode failure distribution Beta n value: ' + str('{0:.3f}'.format(np.mean(pp_true_post_n)))) 
print('Simulation posterior mode failure distribution Beta x value: ' + str('{0:.3f}'.format(np.mean(pp_true_post_x)))) 
 
print('****************************************************************************') 
print('****************************************************************************') 
print('INITIAL SYSTEM RELIABILITY') 
 
################################################################################## 
# Simulated system true reliability metrics 
true_mean = np.mean(pp_R_true) # Mean Calc 
true_sd = np.std(pp_R_true) # Std dev calc 
true_ucb = true_mean + z_score * true_sd # UCB calc 
true_lcb = true_mean - z_score * true_sd # LCB calc 
true_spread = true_ucb - true_lcb # Spread between CL calc 
print('****************************************************************************') 
print('Simulated system true initial reliability distribution') 
print('UCB: ' + str('{0:.2f}'.format(true_ucb))) 
print('Mean: ' + str('{0:.2f}'.format(true_mean))) 
print('LCB: ' + str('{0:.2f}'.format(true_lcb))) 
print('Spread: ' + str('{0:.2f}'.format(true_spread))) 
 
################################################################################## 
# Hall's initial reliability estimate inf modes 
hall_inf_mean = np.mean(pp_R_hall_inf) # Mean calc 
hall_inf_sd = np.std(pp_R_hall_inf) # Std dev calc 
hall_inf_ucb = hall_inf_mean + z_score * hall_inf_sd # UCB calc 
hall_inf_lcb = hall_inf_mean - z_score * hall_inf_sd # UCB calc 
hall_inf_spread = hall_inf_ucb - hall_inf_lcb # Spread between CL calc 
 
if true_ucb <= hall_inf_lcb or true_lcb >= hall_inf_ucb: # Calculate the coverage of Hall inf versus the true reliability 
    hall_inf_cov = 0 
elif true_ucb > hall_inf_lcb: 
    hall_inf_cov = (true_ucb - hall_inf_lcb) / (true_ucb - true_lcb) 
elif true_lcb < inf_hall_ucb: 
    hall_inf_cov = (hall_inf_ucb - true_lcb) / (true_ucb - true_lcb) 
else: 
    hall_inf_cov = (hall_inf_ucb - hall_inf_lcb) / (true_ucb - true_lcb) 
     
hall_inf_re = abs(hall_inf_mean - true_mean) / true_mean # Calculate abs rel error between means 
 
print('****************************************************************************') 
print('Hall initial reliability estimate distribution - inf modes') 
print('UCB: ' + str('{0:.2f}'.format(hall_inf_ucb))) 
print('Mean: ' + str('{0:.2f}'.format(hall_inf_mean))) 
print('LCB: ' + str('{0:.2f}'.format(hall_inf_lcb))) 
print('Coverage: ' + str('{0:.2f}'.format(hall_inf_cov))) 
print('Means Abs Rel Err: ' + str('{0:.2f}'.format(hall_inf_re))) 
 
################################################################################## 
# Hall's initial reliability estimate k modes 
hall_k_mean = np.mean(pp_R_hall_k) # Mean calc 
hall_k_sd = np.std(pp_R_hall_k) # Std dev calc 
hall_k_ucb = hall_k_mean + z_score * hall_k_sd # UCB calc 
hall_k_lcb = hall_k_mean - z_score * hall_k_sd # LCB calc 
hall_k_spread = hall_k_ucb - hall_k_lcb # Spread between CL calc 
 
if true_ucb <= hall_k_lcb or true_lcb >= hall_k_ucb: # Calculate the coverage of Hall k versus the true reliability 
    hall_k_cov = 0 
elif true_ucb > hall_k_lcb: 
    hall_k_cov = (true_ucb - hall_k_lcb) / (true_ucb - true_lcb) 
elif true_lcb < inf_k_ucb: 
    hall_k_cov = (hall_k_ucb - true_lcb) / (true_ucb - true_lcb) 
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else: 
    hall_k_cov = (hall_k_ucb - hall_k_lcb) / (true_ucb - true_lcb) 
     
hall_k_re = abs(hall_k_mean - true_mean) / true_mean # Calculate abs rel error between means 
 
print('****************************************************************************') 
print('Hall initial reliability estimate distribution - k modes') 
print('UCB: ' + str('{0:.2f}'.format(hall_k_ucb))) 
print('Mean: ' + str('{0:.2f}'.format(hall_k_mean))) 
print('LCB: ' + str('{0:.2f}'.format(hall_k_lcb))) 
print('Coverage: ' + str('{0:.2f}'.format(hall_k_cov))) 
print('Means Abs Rel Err: ' + str('{0:.2f}'.format(hall_k_re))) 
 
################################################################################## 
# Empirical Bayes initial reliability estimate metrics 
emp_mean = np.mean(pp_R_emp) # Mean calc 
emp_sd = np.std(pp_R_emp) # Std dev calc 
emp_ucb = emp_mean + z_score * emp_sd # UCB calc 
emp_lcb = emp_mean - z_score * emp_sd # LCB calc 
emp_spread = emp_ucb - emp_lcb # Spread between CL calc 
 
if true_ucb <= emp_lcb or true_lcb >= emp_ucb: # Calculate the coverage of emp init rel est against true reliability 
    emp_cov = 0 
elif true_ucb > emp_lcb: 
    emp_cov = (true_ucb - emp_lcb) / (true_ucb - true_lcb) 
elif true_lcb < emp_ucb: 
    emp_cov = (emp_ucb - true_lcb) / (true_ucb - true_lcb) 
else: 
    emp_cov = (emp_ucb - emp_lcb) / (true_ucb - true_lcb) 
     
emp_re = abs(emp_mean - true_mean) / true_mean # Calculate abs rel error between means 
 
print('****************************************************************************') 
print('Empirical Bayes initial reliability distribution') 
print('UCB: ' + str('{0:.2f}'.format(emp_ucb))) 
print('Mean: ' + str('{0:.2f}'.format(emp_mean))) 
print('LCB: ' + str('{0:.2f}'.format(emp_lcb))) 
print('Coverage: ' + str('{0:.2f}'.format(emp_cov))) 
print('Means Abs Rel Err: ' + str('{0:.2f}'.format(emp_re))) 
 
print('****************************************************************************') 
print('****************************************************************************') 
print('POST-TEST SYSTEM RELIABILITY') 
 
################################################################################## 
# Simulated system true post-test reliability metrics 
true_mean_post = np.mean(pp_true_post) # Mean Calc 
true_sd_post = np.std(pp_true_post) # Std dev calc 
true_ucb_post = true_mean_post + z_score * true_sd_post # UCB calc 
true_lcb_post = true_mean_post - z_score * true_sd_post # LCB calc 
true_spread_post = true_ucb_post - true_lcb_post # Spread between CL calc 
 
print('****************************************************************************') 
print('Simulated system true post-test reliability distribution') 
print('UCB: ' + str('{0:.2f}'.format(true_ucb_post))) 
print('Mean: ' + str('{0:.2f}'.format(true_mean_post))) 
print('LCB: ' + str('{0:.2f}'.format(true_lcb_post))) 
print('Spread: ' + str('{0:.2f}'.format(true_spread_post))) 
 
################################################################################## 
# Simulated system naive reliability metrics from observed failures only 
naive_mean = np.mean(pp_naive) # Mean Calc 
naive_sd = np.std(pp_naive) # Std dev calc 
naive_ucb = naive_mean + z_score * naive_sd # UCB calc 
naive_lcb = naive_mean - z_score * naive_sd # LCB calc 
naive_spread = naive_ucb - naive_lcb # Spread between CL calc 
print('****************************************************************************') 
print('Simulated system naive reliability distribution') 
print('UCB: ' + str('{0:.2f}'.format(naive_ucb))) 
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print('Mean: ' + str('{0:.2f}'.format(naive_mean))) 
print('LCB: ' + str('{0:.2f}'.format(naive_lcb))) 
print('Spread: ' + str('{0:.2f}'.format(naive_spread))) 
 
################################################################################## 
# Hall's posterior reliability estimate k modes 
post_hall_k_mean = np.mean(pp_post_hall_k) # Mean Calc 
post_hall_k_sd = np.std(pp_post_hall_k) # Std dev calc 
post_hall_k_ucb = post_hall_k_mean + z_score * post_hall_k_sd # UCB calc 
post_hall_k_lcb = post_hall_k_mean - z_score * post_hall_k_sd # LCB calc 
post_hall_k_spread = post_hall_k_ucb - post_hall_k_lcb # Spread between CL calc 
print('****************************************************************************') 
print('Hall posterior reliability estimate distribution - k modes') 
print('UCB: ' + str('{0:.2f}'.format(post_hall_k_ucb))) 
print('Mean: ' + str('{0:.2f}'.format(post_hall_k_mean))) 
print('LCB: ' + str('{0:.2f}'.format(post_hall_k_lcb))) 
print('Spread: ' + str('{0:.2f}'.format(post_hall_k_spread))) 
 
################################################################################# 
# Hall's posterior reliability estimate inf modes 
avg = np.nanmean(pp_post_hall_inf) 
pp_post_hall_inf[np.isnan(pp_post_hall_inf)] = avg # Remove any nan values from list 
post_hall_inf_mean = np.mean(pp_post_hall_inf) # Mean Calc 
post_hall_inf_sd = np.std(pp_post_hall_inf) # Std dev calc 
post_hall_inf_ucb = post_hall_inf_mean + z_score * post_hall_inf_sd # UCB calc 
post_hall_inf_lcb = post_hall_inf_mean - z_score * post_hall_inf_sd # LCB calc 
post_hall_inf_spread = post_hall_inf_ucb - post_hall_inf_lcb # Spread between CL calc 
print('****************************************************************************') 
print('Hall posterior reliability estimate distribution - inf modes') 
print('UCB: ' + str('{0:.2f}'.format(post_hall_inf_ucb))) 
print('Mean: ' + str('{0:.2f}'.format(post_hall_inf_mean))) 
print('LCB: ' + str('{0:.2f}'.format(post_hall_inf_lcb))) 
print('Spread: ' + str('{0:.2f}'.format(post_hall_inf_spread))) 
 
################################################################################## 
# Bayes posterior reliability estimate inf modes 
#h = np.zeros(niter, dtype=np.float32) 
#for i in range(niter): 
#    h[i] = rand.uniform(0.99, 1.02) 
#pp_Bayes_mean = pp_true_post * h 
post_Bayes_mean = np.mean(pp_Bayes_mean) # Mean Calc 
post_Bayes_sd = np.std(pp_Bayes_mean) # Std dev calc 
post_Bayes_ucb = post_Bayes_mean + z_score * post_Bayes_sd # UCB calc 
post_Bayes_lcb = post_Bayes_mean - z_score * post_Bayes_sd # LCB calc 
post_Bayes_spread = post_Bayes_ucb - post_Bayes_lcb # Spread between CL calc 
print('****************************************************************************') 
print('Bayes posterior reliability distribution') 
print('UCB: ' + str('{0:.2f}'.format(post_Bayes_ucb))) 
print('Mean: ' + str('{0:.2f}'.format(post_Bayes_mean))) 
print('LCB: ' + str('{0:.2f}'.format(post_Bayes_lcb))) 
print('Spread: ' + str('{0:.2f}'.format(post_Bayes_spread))) 
 
>>> Mean num of obs modes: 44 
>>> Mean num of obs fails: 65 
>>> Mean num of obs fails before fix: 65 
>>> Mean num of obs fails after fix: 0 
>>> Mean num of modes fixed during test: 4 
>>> Mean num of modes fixed after test: 39 
>>> ****************************************************************************** 
>>> ****************************************************************************** 
>>> MODEL AND TRUE BETA DISTRIBUTION PARAMETERS 
>>> Model initial mode failure distribution Beta n value: 98.801 
>>> Model initial mode failure distribution Beta x value: 0.099 
>>> Simulation prior mode failure distribution Beta n value: 60.270 
>>> Simulation prior mode failure distribution Beta x value: 0.100 
>>> Simulation posterior mode failure distribution Beta n value: 72.046 
>>> Simulation posterior mode failure distribution Beta x value: 0.908 
>>> ****************************************************************************** 
>>> ****************************************************************************** 
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>>> INITIAL SYSTEM RELIABILITY 
>>> ****************************************************************************** 
>>> Simulated system true initial reliability distribution 
>>> UCB: 0.83 
>>> Mean: 0.78 
>>> LCB: 0.73 
>>> Spread: 0.09 
>>> ****************************************************************************** 
>>> Hall initial reliability estimate distribution - inf modes 
>>> UCB: 0.87 
>>> Mean: 0.78 
>>> LCB: 0.69 
>>> Coverage: 1.39 
>>> Means Abs Rel Err: 0.00 
>>> ****************************************************************************** 
>>> Hall initial reliability estimate distribution - k modes 
>>> UCB: 0.87 
>>> Mean: 0.79 
>>> LCB: 0.71 
>>> Coverage: 1.22 
>>> Means Abs Rel Err: 0.02 
>>> ****************************************************************************** 
>>> Empirical Bayes initial reliability distribution 
>>> UCB: 0.80 
>>> Mean: 0.73 
>>> LCB: 0.65 
>>> Coverage: 1.86 
>>> Means Abs Rel Err: 0.07 
>>> ****************************************************************************** 
>>> ****************************************************************************** 
>>> POST-TEST SYSTEM RELIABILITY 
>>> ****************************************************************************** 
>>> Simulated system true post-test reliability distribution 
>>> UCB: 0.93 
>>> Mean: 0.91 
>>> LCB: 0.89 
>>> Spread: 0.04 
>>> ****************************************************************************** 
>>> Simulated system naive reliability distribution 
>>> UCB: 0.94 
>>> Mean: 0.89 
>>> LCB: 0.84 
>>> Spread: 0.10 
>>> ****************************************************************************** 
>>> Hall posterior reliability estimate distribution - k modes 
>>> UCB: 0.96 
>>> Mean: 0.94 
>>> LCB: 0.92 
>>> Spread: 0.03 
>>> ****************************************************************************** 
>>> Hall posterior reliability estimate distribution - inf modes 
>>> UCB: 0.98 
>>> Mean: 0.97 
>>> LCB: 0.95 
>>> Spread: 0.03 
>>> ****************************************************************************** 
>>> Bayes posterior reliability distribution 
>>> UCB: 0.98 
>>> Mean: 0.97 
>>> LCB: 0.97 
>>> Spread: 0.01 
 
# Compare simulation and mode prior failure distributions 
# Set plot size 
fig, ax = plt.subplots(figsize=(width, height)) 
 
# Plot each iteration mode failure rate distribution 
x = np.linspace(0, 1, 10000) 
for i in range(niter): 



 
 

 
190 

 

    plt.plot(x, ss.Beta.pdf(x, pp_n_true[i], pp_x_true[i]), 'b-', lw=0.25) 
 
# Plot initial mode failure rate distribution 
plt.plot(x, ss.Beta.pdf(x, Beta_n, Beta_x), 'r-', lw=3) 
 
# Control x and y limits mode failure distribution plot 
ax.set(ylim=(0.0, 500)) 
ax.set(xlim=(0.98, 1.0)) 
 
# Annotate mode failure probability parameter 
plt.annotate('Niter = ' + str(niter), xy=(0.05, 0.91), xycoords='axes fraction', 
             horizontalalignment='left', verticalalignment='top', bbox=bbox_args) 
 
# Set plot label and axis labels 
ax.set(title='Comparison of Simulation and Model Mode Failure Prior Probability Distributions') 
ax.set(xlabel='x', ylabel='PDF') 
 
# Save plot as .jpg ready for MS PowerPoint widescreen presentation 
if save_plots == 'Y': 
    plt.savefig('03 Comparison of Simulation and Model Mode Failure Prior Probability Distributions - Case ' + str(case) + '.jpg', 
dpi=1200) 
else: 
    pass 
 
# Display 
plt.show() 
 

 
 
# Compare simulation posterior and model mode posterior failure distributions 
# Set plot size 
fig, ax = plt.subplots(figsize=(width, height)) 
 
# Plot each posterior iteration mode failure rate distribution 
for i in range(niter): 
    plt.plot(x, ss.Beta.pdf(x, pp_true_post_n[i], pp_true_post_x[i]), color='darkgrey', linestyle='-', lw=0.25) 
 
# Plot each prior iteration mode failure rate distribution 
for i in range(niter): 
    plt.plot(x, ss.Beta.pdf(x, pp_n_true[i], pp_x_true[i]), 'b-', lw=0.25) 
 
# Plot initial mode failure probability distribution 
plt.plot(x, ss.Beta.pdf(x, Beta_n, Beta_x), 'r-', lw=3, label='Model Prior Mode Reliability') 
   
# Plot mean posterior mode failure probability distribution 
plt.plot(x, ss.Beta.pdf(x, np.mean(pp_true_post_n), np.mean(pp_true_post_x)), 'k:', lw=3, label='Simulation Posterior Mean') 
 
# Control x and y limits mode failure distribution plot 
ax.set(ylim=(0.0, 500)) 
ax.set(xlim=(0.98, 1.0)) 
 
# Annotate mode failure probability parameter 
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plt.annotate('Niter = ' + str(niter), xy=(0.05, 0.91), xycoords='axes fraction', 
             horizontalalignment='left', verticalalignment='top', bbox=bbox_args) 
 
# Set plot label and axis labels 
ax.set(title='Comparison of Simulation Posterior and Model Mode Failure Prior Probability Distributions') 
ax.set(xlabel='x', ylabel='PDF') 
 
# Plot legend and format 
plt.legend(loc='upper center', edgecolor='w', ncol=1) 
 
# Save plot as .jpg ready for MS PowerPoint widescreen presentation 
if save_plots == 'Y': 
    plt.savefig('04 Comparison of Simulation Posterior and Model Mode Failure Prior Probability Distributions - Case ' + str(case) 
+ '.jpg', dpi=1200) 
else: 
    pass 
 
# Display 
plt.show() 
 

 
 
# Compare simulation and model FEF distributions¶ 
# Set plot size 
fig, ax = plt.subplots(figsize=(width, height)) 
 
# Plot each iteration mode FEF distribution 
x = np.linspace(0, 1, 10000) 
for i in range(niter): 
    plt.plot(x, ss.Beta.pdf(x, pp_q_true[i], pp_r_true[i]), 'b-', lw=0.25) 
 
# Plot model mode FEF distribution 
plt.plot(x, ss.Beta.pdf(x, q, r), 'r-', lw=3) 
 
# Control x and y limits mode failure distribution plot 
ax.set(ylim=(0.0, 5.0)) 
ax.set(xlim=(0.0, 1.0)) 
 
# Annotate mode failure probability parameter 
plt.annotate('Niter = ' + str(niter), xy=(0.05, 0.91), xycoords='axes fraction', 
             horizontalalignment='left', verticalalignment='top', bbox=bbox_args) 
 
# Set plot label and axis labels 
ax.set(title='Comparison of Simulation and Model FEF Distributions') 
ax.set(xlabel='x', ylabel='PDF') 
 
# Save plot as .jpg ready for MS PowerPoint widescreen presentation 
if save_plots == 'Y': 
    plt.savefig('06 Comparison of Simulation and Model FEF Distributions - Case ' + str(case) + '.jpg', dpi=1200) 
else: 
    pass 
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# Display 
plt.show() 

 
# Number of Failure Modes Observed Probability Density Function 
# Set plot size 
fig, ax = plt.subplots(figsize=(width, height)) 
 
sns.histplot(pp_m, color='blue', binwidth=1) 
 
plt.axvline(m_mean, lw=2, ls='--') 
plt.axvline(m_ucb, lw=2, ls=':') 
plt.axvline(m_lcb, lw=2, ls=':') 
 
# Plot number of observed modes distribution 
#sns.kdeplot(pp_m, 
#            linestyle='-', 
#            linewidth=3.0, 
#            bw_adjust=2, 
#            color='blue', 
#            shade=True, 
#            alpha=0.3, 
#            label='Bayes Empirical Approach') 
 
# Control x and y limits mode failure distribution plot 
ax.set(ylim=(0.0, None)) 
ax.set(xlim=(np.min(pp_m), np.max(pp_m))) 
 
# Annotate mode failure probability parameter 
plt.annotate('Niter = ' + str(niter), xy=(0.95, 0.91), xycoords='axes fraction', 
             horizontalalignment='right', verticalalignment='top', bbox=bbox_args) 
 
# Annotate LCB, mean, UCB 
plt.annotate(str(m_lcb), xy=(m_lcb + 0.1, 0.95), xycoords=('data','axes fraction'), 
             horizontalalignment='left', verticalalignment='bottom') 
plt.annotate(str(m_mean), xy=(m_mean + 0.1, 0.95), xycoords=('data','axes fraction'), 
             horizontalalignment='left', verticalalignment='bottom') 
plt.annotate(str(m_ucb), xy=(m_ucb + 0.1, 0.95), xycoords=('data','axes fraction'), 
             horizontalalignment='left', verticalalignment='bottom') 
 
# Set plot label and axis labels 
ax.set(title='Number of Failure Modes Observed') 
ax.set(xlabel='Number of Modes', ylabel='Count') 
 
# Save plot as .jpg ready for MS PowerPoint widescreen presentation 
if save_plots == 'Y': 
    plt.savefig('07 Number of Failure Modes Observed - Case ' + str(case) + '.jpg', dpi=1200) 
else: 
    pass 
 
# Display 
plt.show() 
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# Number of Failures Observed Probability Density Function 
# Set plot size 
fig, ax = plt.subplots(figsize=(width, height)) 
 
sns.histplot(pp_N, color='orange', binwidth=1) 
 
plt.axvline(N_lcb, lw=2, ls=':') 
plt.axvline(N_mean, lw=2, ls='--') 
plt.axvline(N_ucb, lw=2, ls=':') 
 
# Plot number of observed modes distribution 
#sns.kdeplot(pp_N, 
#            linestyle='-', 
#            linewidth=3.0, 
#            bw_adjust=2, 
#            color='yellow', 
#            shade=True, 
#            alpha=0.3, 
#            label='Bayes Empirical Approach') 
 
# Control x and y limits mode failure distribution plot 
ax.set(ylim=(0.0, None)) 
ax.set(xlim=(np.min(pp_N), round(N_ucb * 2))) 
 
# Annotate mode failure probability parameter 
plt.annotate('Niter = ' + str(niter), xy=(0.95, 0.91), xycoords='axes fraction', 
             horizontalalignment='right', verticalalignment='top', bbox=bbox_args) 
 
# Annotate LCB, mean, UCB 
plt.annotate(str(N_lcb), xy=(N_lcb + 0.1, 0.95), xycoords=('data','axes fraction'), 
             horizontalalignment='left', verticalalignment='bottom') 
plt.annotate(str(N_mean), xy=(N_mean + 0.1, 0.95), xycoords=('data','axes fraction'), 
             horizontalalignment='left', verticalalignment='bottom') 
plt.annotate(str(N_ucb), xy=(N_ucb + 0.1, 0.95), xycoords=('data','axes fraction'), 
             horizontalalignment='left', verticalalignment='bottom') 
 
# Set plot label and axis labels 
ax.set(title='Number of Total Failures Observed') 
ax.set(xlabel='Number of Failures', ylabel='Count') 
 
# Save plot as .jpg ready for MS PowerPoint widescreen presentation 
if save_plots == 'Y': 
    plt.savefig('08 Number of Total Failures Observed - Case ' + str(case) + '.jpg', dpi=1200) 
else: 
    pass 
 
# Display 
plt.show() 
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# Total Failures Observed Before Fixes Implementation Probability Density Distribution 
# Set plot size 
fig, ax = plt.subplots(figsize=(width, height)) 
 
plt.axvline(n1_lcb, lw=2, ls=':') 
plt.axvline(n1_mean, lw=2, ls='--') 
plt.axvline(n1_ucb, lw=2, ls=':') 
 
sns.histplot(pp_n1, color='red', binwidth=1) 
 
# Plot number of observed modes distribution 
#sns.kdeplot(pp_n1, 
#            linestyle='-', 
#            linewidth=3.0, 
#            bw_adjust=2, 
#            color='red', 
#            shade=True, 
#            alpha=0.3, 
#            label='Bayes Empirical Approach') 
 
# Control x and y limits mode failure distribution plot 
ax.set(ylim=(0.0, None)) 
ax.set(xlim=(np.min(pp_n1), round(n1_ucb * 2))) 
 
# Annotate mode failure probability parameter 
plt.annotate('Niter = ' + str(niter), xy=(0.95, 0.91), xycoords='axes fraction', 
             horizontalalignment='right', verticalalignment='top', bbox=bbox_args) 
 
# Annotate LCB, mean, UCB 
plt.annotate(str(n1_lcb), xy=(n1_lcb + 0.1, 0.95), xycoords=('data','axes fraction'), 
             horizontalalignment='left', verticalalignment='bottom') 
plt.annotate(str(n1_mean), xy=(n1_mean + 0.1, 0.95), xycoords=('data','axes fraction'), 
             horizontalalignment='left', verticalalignment='bottom') 
plt.annotate(str(n1_ucb), xy=(n1_ucb + 0.1, 0.95), xycoords=('data','axes fraction'), 
             horizontalalignment='left', verticalalignment='bottom') 
 
# Set plot label and axis labels 
ax.set(title='Number of Total Failures Observed Before Fixes Implementation') 
ax.set(xlabel='Number of Failures', ylabel='Count') 
 
# Save plot as .jpg ready for MS PowerPoint widescreen presentation 
if save_plots == 'Y': 
    plt.savefig('09 Number of Total Failures Observed Before Fixes Implementation - Case ' + str(case) + '.jpg', dpi=1200) 
else: 
    pass 
 
# Display 
plt.show() 
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# Number of Total Failures Observed After Fixes Implementation 
# Set plot size 
fig, ax = plt.subplots(figsize=(width, height)) 
 
plt.axvline(n2_lcb, lw=2, ls=':') 
plt.axvline(n2_mean, lw=2, ls='--') 
plt.axvline(n2_ucb, lw=2, ls=':') 
 
sns.histplot(pp_n2, color='violet', binwidth=1) 
 
# Plot number of observed modes distribution 
#sns.kdeplot(pp_n2, 
#            linestyle='-', 
#            linewidth=3.0, 
#            bw_adjust=2, 
#            color='violet', 
#            shade=True, 
#            alpha=0.3, 
#            label='Bayes Empirical Approach') 
 
# Control x and y limits mode failure distribution plot 
ax.set(ylim=(0.0, None)) 
ax.set(xlim=(0.0, None)) 
 
# Annotate mode failure probability parameter 
plt.annotate('Niter = ' + str(niter), xy=(0.95, 0.91), xycoords='axes fraction', 
             horizontalalignment='right', verticalalignment='top', bbox=bbox_args) 
 
# Annotate LCB, mean, UCB 
#plt.annotate(str(n2_lcb), xy=(n2_lcb + 0.1, 0.95), xycoords=('data','axes fraction'), 
#             horizontalalignment='left', verticalalignment='bottom') 
plt.annotate(str(n2_mean), xy=(n2_mean + 0.1, 0.95), xycoords=('data','axes fraction'), 
             horizontalalignment='left', verticalalignment='bottom') 
plt.annotate(str(n2_ucb), xy=(n2_ucb + 0.1, 0.95), xycoords=('data','axes fraction'), 
             horizontalalignment='left', verticalalignment='bottom') 
 
# Set plot label and axis labels 
ax.set(title='Number of Total Failures Observed After Fixes Implementation') 
ax.set(xlabel='Number of Failures', ylabel='Count') 
 
# Save plot as .jpg ready for MS PowerPoint widescreen presentation 
if save_plots == 'Y': 
    plt.savefig('10 Number of Total Failures Observed After Fixes Implementation - Case ' + str(case) + '.jpg', dpi=1200) 
else: 
    pass 
 
# Display 
plt.show() 
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# Number of Modes Subjected to Corrective Action During Test 
 
# Set plot size 
fig, ax = plt.subplots(figsize=(width, height)) 
 
plt.axvline(nfix_lcb, lw=2, ls=':') 
plt.axvline(nfix_mean, lw=2, ls='--') 
plt.axvline(nfix_ucb, lw=2, ls=':') 
 
sns.histplot(pp_nfix, color='green', binwidth=1) 
 
# Plot number of observed modes distribution 
#sns.kdeplot(pp_nfix, 
#            linestyle='-', 
#            linewidth=3.0, 
#            bw_adjust=2, 
#            color='green', 
#            shade=True, 
#            alpha=0.3, 
#            label='Bayes Empirical Approach') 
 
# Control x and y limits mode failure distribution plot 
ax.set(ylim=(0.0, None)) 
ax.set(xlim=(0.0, None)) 
 
# Annotate mode failure probability parameter 
plt.annotate('Niter = ' + str(niter), xy=(0.95, 0.91), xycoords='axes fraction', 
             horizontalalignment='right', verticalalignment='top', bbox=bbox_args) 
 
# Annotate LCB, mean, UCB 
plt.annotate(str(nfix_lcb), xy=(nfix_lcb + 0.1, 0.95), xycoords=('data','axes fraction'), 
             horizontalalignment='left', verticalalignment='bottom') 
plt.annotate(str(nfix_mean), xy=(nfix_mean + 0.1, 0.95), xycoords=('data','axes fraction'), 
             horizontalalignment='left', verticalalignment='bottom') 
plt.annotate(str(nfix_ucb), xy=(nfix_ucb + 0.1, 0.95), xycoords=('data','axes fraction'), 
             horizontalalignment='left', verticalalignment='bottom') 
 
# Set plot label and axis labels 
ax.set(title='Number of Observed Modes Subjected to Corrective action During Test') 
ax.set(xlabel='Number of Modes', ylabel='Count') 
 
# Save plot as .jpg ready for MS PowerPoint widescreen presentation 
if save_plots == 'Y': 
    plt.savefig('11 Number of Observed Modes Subjected to Corrective action During Test - Case ' + str(case) + '.jpg', dpi=1200) 
else: 
    pass 
 
# Display 
plt.show() 
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# Number of Modes Not Subjected to Corrective Action During Test 
# Set plot size 
fig, ax = plt.subplots(figsize=(width, height)) 
 
plt.axvline(nnofix_lcb, lw=2, ls=':') 
plt.axvline(nnofix_mean, lw=2, ls='--') 
plt.axvline(nnofix_ucb, lw=2, ls=':') 
 
sns.histplot(pp_nnofix, color='dimgray', binwidth=1) 
 
# Plot number of observed modes distribution 
#sns.kdeplot(pp_nnofix, 
#            linestyle='-', 
#            linewidth=3.0, 
#            bw_adjust=2, 
#            color='dimgray', 
#            shade=True, 
#            alpha=0.3, 
#            label='Bayes Empirical Approach') 
 
# Control x and y limits mode failure distribution plot 
ax.set(ylim=(0.0, None)) 
ax.set(xlim=(0.0, None)) 
 
# Annotate niter 
plt.annotate('Niter = ' + str(niter), xy=(0.95, 0.91), xycoords='axes fraction', 
             horizontalalignment='right', verticalalignment='top', bbox=bbox_args) 
 
# Annotate LCB, mean, UCB 
plt.annotate(str(nnofix_lcb), xy=(nnofix_lcb + 0.1, 0.95), xycoords=('data','axes fraction'), 
             horizontalalignment='left', verticalalignment='bottom') 
plt.annotate(str(nnofix_mean), xy=(nnofix_mean + 0.1, 0.95), xycoords=('data','axes fraction'), 
             horizontalalignment='left', verticalalignment='bottom') 
plt.annotate(str(nnofix_ucb), xy=(nnofix_ucb + 0.1, 0.95), xycoords=('data','axes fraction'), 
             horizontalalignment='left', verticalalignment='bottom') 
 
# Set plot label and axis labels 
ax.set(title='Number of Observed Modes Not Subjected to Corrective action During Test') 
ax.set(xlabel='Number of Modes', ylabel='Count') 
 
# Save plot as .jpg ready for MS PowerPoint widescreen presentation 
if save_plots == 'Y': 
    plt.savefig('12 Number of Observed Modes Not Subjected to Corrective action During Test - Case ' + str(case) + '.jpg', 
dpi=1200) 
else: 
    pass 
 
# Display 
plt.show() 
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# Comparison of Initial Reliability Distributions 
# Set plot size 
fig, ax = plt.subplots(figsize=(width, height)) 
 
# Plot Hall's init reliability estimator distribution (k modes) 
sns.kdeplot(pp_R_hall_k, 
            linestyle='-', 
            linewidth=3.0, 
            bw_adjust=2, 
            color='darkgrey', 
            shade=True, 
            alpha=0.3, 
            label="Hall's Approach (k modes)") 
 
# Plot Hall's init reliability estimator distribution (inf modes) 
sns.kdeplot(pp_R_hall_inf, 
            linestyle='-', 
            linewidth=3.0, 
            bw_adjust=2, 
            color='dimgrey', 
            shade=True, 
            alpha=0.3, 
            label="Hall's Approach (inf modes)") 
 
# Plot true init reliability distribution 
sns.kdeplot(pp_R_true, 
            linestyle='-', 
            linewidth=3.0, 
            bw_adjust=2, 
            color='black', 
            shade=True, 
            alpha=0.3, 
            label='True') 
 
# Plot proposed init reliability estimator distribution 
sns.kdeplot(pp_R_emp, 
            linestyle='-', 
            linewidth=3.0, 
            bw_adjust=2, 
            color='green', 
            shade=True, 
            alpha=0.3, 
            label='Proposed Bayes Empirical Approach') 
 
# Control x and y limits 
ax.set(ylim=(0, None)) 
ax.set(xlim=(0.5, 1)) 
 
# Send grid behind data plots 
ax.grid(zorder=60) 
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# Set plot label 
ax.set(title='Initial/Prior Reliability Distribution Comparisons') 
 
# Set axes labels 
ax.set(xlabel='Reliability', ylabel='PDF') 
 
# Plot legend and format 
plt.legend(loc='upper left', edgecolor='w', ncol=1) 
 
# Save plot as .jpg ready for MS PowerPoint widescreen presentation 
if save_plots == 'Y': 
    plt.savefig('13 Initial_Prior Reliability Distribution Comparisons - Case ' + str(case) + '.jpg', dpi=1200) 
else: 
    pass 
     
plt.show() 
 

 
 
# Comparison of Posterior Reliability Distributions 

# Set plot size 

fig, ax = plt.subplots(figsize=(width, height)) 

 

# Plot naive reliability 
sns.kdeplot(pp_naive, 
            linestyle='-', 
            linewidth=3.0, 
            bw_adjust=2, 
            color='lightgray', 
            shade=True, 
            alpha=0.3, 
            label='Naive') 
 
#sns.histplot(data=pp_post_hall_k) 
 
# Plot Hall's k modes posterior reliability 
sns.kdeplot(pp_post_hall_k, 
                        linestyle='-', 
                        linewidth=3.0, 
                        bw_adjust=2, 
                        color='darkgray', 
                        shade=True, 
                        alpha=0.3, 
                        label="Hall's Approach (k modes)") 
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# Plot Hall's inf modes posterior reliability 
sns.kdeplot(pp_post_hall_inf, 
                        linestyle='-', 
                        linewidth=3.0, 
                        bw_adjust=2, 
                        color='dimgray', 
                        shade=True, 
                        alpha=0.3, 
                        label="Hall's Approach (inf modes)") 
 
# Plot true init reliability distribution 
sns.kdeplot(pp_true_post, 
                        linestyle='-', 
                        linewidth=3.0, 
                        bw_adjust=2, 
                        color='black', 
                        shade=True, 
                        alpha=0.3, 
                        label='True') 
 
#pp_Bayes_mean=pp_Bayes_mean 
sns.kdeplot(pp_Bayes_mean, 
            linestyle='-', 
            linewidth=3.0, 
            bw_adjust=2, 
            color='green', 
            shade=True, 
            alpha=0.3, 
            label='Proposed Bayes Posterior') 
 
# Control x and y limits 
ax.set(ylim=(0, None)) 
ax.set(xlim=(np.min(pp_true_post), 1)) 
 
# Set plot label 
ax.set(title='Posterior Reliability Distribution Comparisons') 
 
# Set axes labels 
ax.set(xlabel='Reliability', ylabel='PDF') 
 
# Plot legend and format 
plt.legend(loc='upper left', edgecolor='w', ncol=1) 
 
# Save plot as .jpg ready for MS PowerPoint widescreen presentation 
if save_plots == 'Y': 
    plt.savefig('14 Posterior Reliability Distribution Comparisons - Case ' + str(case) + '.jpg', dpi=1200) 
else: 
    pass 
     
plt.show() 
 



 
 

 
201 

 

 
 
# Plot Relative Error between Prior Estimates and True Initial Reliability 
# Set plot size 
fig, ax = plt.subplots(figsize=(width, height)) 
 
# Initial reliability relative error using Hall k approach    
hall_k_rel_error = np.empty(niter) 
for i in range(niter): 
    hall_k_rel_error[i] = abs(pp_R_hall_k[i] - pp_R_true[i]) / pp_R_true[i] 
 
# Initial reliability relative error using Hall inf approach 
hall_inf_rel_error = np.empty(niter) 
for i in range(niter): 
    hall_inf_rel_error[i] = abs(pp_R_hall_inf[i] - pp_R_true[i]) / pp_R_true[i] 
     
# Initial reliability relative error using Bayes empirical method 
Bayes_emp_rel_error = np.empty(niter) 
for i in range(niter): 
    Bayes_emp_rel_error[i] = abs(pp_R_emp[i] - pp_R_true[i]) / pp_R_true[i] 
 
# Plot Hall k approach relative error 
sns.ecdfplot(hall_k_rel_error, 
             color='k', 
             linestyle='-', 
             linewidth=2.0, 
             label="Hall's Approach (k modes)") 
 
# Plot Hall inf approach relative error 
sns.ecdfplot(hall_inf_rel_error, 
             color='g', 
             linestyle='-.', 
             linewidth=2.0, 
             label="Hall's Approach (inf modes)") 
 
# Plot Bayes empirical method relative error 
sns.ecdfplot(Bayes_emp_rel_error, 
             color='b', 
             linestyle='--', 
             linewidth=2.0, 
             label='Bayes Empirical Method') 
 
# Control x and y limits 
ax.set(ylim=(0, 1.0)) 
ax.set(xlim=(0, 0.5)) 
 
# Set plot label 
ax.set(title='Initial Reliability Cumulative Absolute Relative Error Comparison') 
 
# Plot legend and format 
plt.legend(loc='lower right', edgecolor='k') 
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# Set axes labels 
ax.set(xlabel='Relative Error', ylabel='CDF') 
 
# Save plot as .jpg ready for MS PowerPoint widescreen presentation 
if save_plots == 'Y': 
    plt.savefig('15 Initial Reliability Cumulative Relative Error Comparison - Case ' + str(case) + '.jpg', dpi=1200) 
else: 
    pass 
 
plt.show() 
 

 
 
# Plot Relative Error between Posterior Estimates and True Posterior Reliability 
# Set plot size 
fig, ax = plt.subplots(figsize=(width, height)) 
 
# Post-test reliability relative error using naive approach    
#naive_rel_error = np.empty(niter) 
#for i in range(niter): 
#    naive_rel_error[i] = abs(pp_naive[i] - pp_true_post[i]) / pp_true_post[i] 
 
# Posterior reliability relative error using Hall k approach    
hall_k_rel_error = np.empty(niter) 
for i in range(niter): 
    hall_k_rel_error[i] = abs(pp_post_hall_k[i] - pp_true_post[i]) / pp_true_post[i] 
 
# Posterior reliability relative error using Hall inf approach 
hall_inf_rel_error = np.empty(niter) 
for i in range(niter): 
    hall_inf_rel_error[i] = abs(pp_post_hall_inf[i] - pp_true_post[i]) / pp_true_post[i] 
     
# Posterior reliability relative error using Bayesian method 
Bayes_emp_rel_error = np.empty(niter) 
for i in range(niter): 
    Bayes_emp_rel_error[i] = abs(pp_Bayes_mean[i] - pp_true_post[i]) / pp_true_post[i] 
 
# Plot naive approach relative error 
#sns.ecdfplot(naive_rel_error, 
#             color='darkgray', 
#             linestyle=':', 
#             linewidth=2.0, 
#             label='Naive Approach') 
 
# Plot Hall k approach relative error 
sns.ecdfplot(hall_k_rel_error, 
             color='k', 
             linestyle='-', 
             linewidth=2.0, 
             label="Hall's Approach (k modes)") 
 
# Plot Hall inf approach relative error 
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sns.ecdfplot(hall_inf_rel_error, 
             color='g', 
             linestyle='-.', 
             linewidth=2.0, 
             label="Hall's Approach (inf modes)") 
 
# Plot Bayes empirical method relative error 
sns.ecdfplot(Bayes_emp_rel_error, 
             color='b', 
             linestyle='--', 
             linewidth=2.0, 
             label='Proposed Bayes Approach') 
 
# Control x and y limits 
ax.set(ylim=(0, 1.0)) 
ax.set(xlim=(0, 0.3)) 
 
# Set plot label 
ax.set(title='Posterior/Post-Test Reliability Cumulative Absolute Relative Error Comparison') 
 
# Plot legend and format 
plt.legend(loc='lower right', edgecolor='k') 
 
# Set axes labels 
ax.set(xlabel='Relative Error', ylabel='CDF') 
 
# Save plot as .jpg ready for MS PowerPoint widescreen presentation 
if save_plots == 'Y': 
    plt.savefig('16 Posterior_Post Test Reliability Cumulative Relative Error Comparison - Case ' + str(case) + '.jpg', dpi=1200) 
else: 
    pass 
 
plt.show() 
 

 
 
# Plot Expected Number of Correctable Failure Modes (From Random Sample) 
 
# Set plot size 
fig, ax = plt.subplots(figsize=(width, height)) 
 
y = np.linspace(1, len(rand_sims[0]), len(rand_sims[0])) 
plt.scatter(rand_sims, y) 
 
# Control x and y limits mode failure distribution plot 
ax.set(ylim=(0.0, None)) 
ax.set(xlim=(0.0, T)) 
 
# Annotate niter 
plt.annotate('Niter = ' + str(niter), xy=(0.05, 0.91), xycoords='axes fraction', 
             horizontalalignment='left', verticalalignment='top', bbox=bbox_args) 
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# Set plot label and axis labels 
ax.set(title='Estimated Cumulative Number of Observed Failure Modes') 
ax.set(xlabel='Test Demand(t)', ylabel='Cumulative Number of Observed Failure Modes') 
 
# Save plot as .jpg ready for MS PowerPoint widescreen presentation 
if save_plots == 'Y': 
    plt.savefig('17 Cumulative Number of Observed Failure Modes versus Expected Number of Correctable Modes - Case ' + 
str(case) + '.jpg', dpi=1200) 
else: 
    pass 
 
# Display 
plt.show() 
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