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Chapter 1: Introduction

Quantum field theory has been an outstandingly successful theoretical framework for

describing nature. Essentially, any relativistic and quantum mechanical system of interacting

particles can be described by a quantum field theory [2]. Furthermore, on distance scales

larger than the Compton wavelength of a given particle, there exists an effective description

without that particle which is again a quantum field theory. Such a theory is called an

effective field theory (EFT). Conversely, on short enough distance scales, a given EFT will

often break down, signaling that it must be replaced by a new EFT that incorporates new

physics.

Contrary to what the popular literature may suggest, the gravitational field can be

quantized as an EFT just as well as any other field. The result is simply the EFT of

interacting spin-2 particles. As with most EFTs, gravitational EFT breaks down and must be

replaced at some small scale, which in this case is called the Planck scale. However, this

is where the problem of quantizing gravity actually shows up. On distances scales smaller

than the Planck scale, the entire quantum field theory framework must break down and it is

not possible to replace gravitational EFT with any other EFT [3]. String theory provides a

replacement theory in terms of a perturbative expansion in the string coupling. For a long

time, there was only this perturbative definition string theory. In other words, there was no
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non-perturbative theory whose expansion was equal to the string perturbation series.

Surprisingly (and perhaps ironically), it turned out that almost any quantum field theory

secretly knows how to sum the string perturbation series and provide a non-perturbative

definition of string theory in certain classes of spacetimes. This is the AdS/CFT duality [4–6].

AdS/CFT was discovered in the process of trying to understand the quantum mechanics

of black holes. Basically, by decreasing the value of the string coupling, a black hole

disintegrates and the system is described by the quantum mechanics of its constituents. In

special cases, this back and forth was used to explicitly account for the microstates that

comprised black hole entropy [7]. Various other calculations eventually led to the realization

that underlying this back and forth was really an exact duality between the non-gravitational

interactions of the black hole constituents and string theory in the near-horizon AdS region

of an extremal black hole. The non-gravitational interactions are described by a conformal

field theory (CFT) in fewer spacetime dimensions than that in which the black hole lives,

giving rise to the name holography.

The reason black holes were being studied so intensively was because of the black hole

information problem [8]. Basically, black hole evaporation requires one of three things, 1)

non-unitary evolution, 2) superluminal propagation of information, or 3) tiny Planck-sized

objects with an infinite amount of entropy. Since the dual CFT is a standard quantum

mechanical system with a finite density of states, 1) and 3) are ruled out. Furthermore,

the holographic nature of the duality made 2) seem like the perfect match. However, there

was never any explicit description on the gravitational side of the superluminal propagation

of information. Various failed attempts to construct such a description resulted in the

currently infamous no-go theorem [9–11] known as the firewall paradox. Basically, [9–11]
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convincingly argued that it is impossible to have the needed superluminal propagation

of information without also having an infalling observer experiencing large violations of

gravitational effective field theory or of quantum mechanics in general.

This remains the current state of affairs. Although many possible scenarios to avoid the

firewall paradox have been proposed, all remain problematic. Furthermore, some scenarios

involving seemingly arbitrary CFT constructions are hinting that the non-perturbative defini-

tion of string theory via AdS/CFT has its limitations. We will likely need an independent

non-perturbative gravitational definition of quantum gravity in order to come to a satisfactory

answer. However, instead of directly working on this highly ambitious goal, most of the

current effort by those who think about the firewall paradox is actually spent on doing

concrete calculations involving entanglement entropy, quantum information, or conformal

field theories. These subfields are rapidly evolving, and hopefully the stage will soon be

set for a large conceptual breakthrough. Perhaps the current situation is akin to the time

just before AdS/CFT was discovered, when there was also a flurry of concrete calculations,

which at that time involved various properties of black holes in string theory.

As with the work just mentioned, this thesis does not directly attack the problem

of constructing a non-perturbative definition of quantum gravity that is independent of

AdS/CFT. Instead, the main focus is in gaining a better understanding of AdS/CFT along

with some possible phenomenological consequences of quantum gravity in general. What

follows is the plan of the thesis, with a summary of each chapter and how it fits into the

broader introduction just given.
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Plan of the Thesis

In chapter 2, we investigate black holes in three spacetime dimensions. We propose a

scenario in which the black hole interior is encoded in the correlation functions of certain

non-local CFT operators. Due to the simplicity of three dimensions, we are able to give

explicit expressions for these non-local operators. In particular, the three dimensional black

hole is an orbifold of empty AdS. Motivated by the fact that local boundary correlators in

empty AdS can be suitably interpreted as bulk scattering amplitudes, we define orbifolded

versions of these correlators that have the interpretation of particles scattering behind the

horizon. The dual construction involves the aforementioned non-local operators in the CFT.

These non-local operators differ from the more standard ones used in bulk reconstruction.

Perhaps most intriguingly, they are defined without reference to bulk perturbation theory.

In chapter 3, we consider the possibility that not all gravitational EFTs can be consistently

completed by a non-perturbative theory of quantum gravity. The set of theories that cannot

arise from a complete theory of quantum gravity has been termed the “swampland.” In

particular, many models of cosmic inflation involve a dynamical scalar field rolling down

a potential in field space. The resulting field displacement is often larger than the Planck

scale. This has raised concern because there have been arguments suggesting that any theory

with transplanckian field transits must reside in the swampland. More specifically, the

argument is twofold. First, the claim is that any theory which violates the “ weak gravity

conjecture” (WGC) must resides in the swampland. Second, the claim is that any model

of transplanckian field transits must violate the WGC. In this chapter, we prove that the

second claim is false by providing an explicit counterexample. Our model involves axions
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and extra-dimensions, but reduces to natural inflation with small corrections during inflation.

Although these small corrections do not ruin inflation, they potentially give rise to distinct

observable signals in the CMB.

Chapter 4 was originally motivated by the above claim that any gravitational EFT which

violates the WGC must reside in the swampland. The idea was to translate this claim

into CFT language, and investigate its validity using the newly developed tools of the

conformal bootstrap. We eventually realized that such an undertaking was too large and

the project morphed into a non-gravitational investigation using the bootstrap. In terms

of the introduction, this chapter is a concrete CFT calculation for the purpose of better

understanding our tools. Now, a CFT is so constrained by symmetry that all its correlation

functions are completely determined by its set of 2- and 3-point functions, which are in

turn determined by a discrete set of numbers, known as the conformal data of the CFT. In

order for the conformal data to consistently determine all higher-point functions, they must

satisfy a highly nontrivial set of consistency conditions, known as the conformal bootstrap

equations. It has recently been discovered that numerical methods can efficiently identify

large regions in the space of conformal data that are inconsistent with the bootstrap equations.

Using these methods, we give evidence that the 2D Ising CFT is the only CFT with a Z2

symmetry and two relevant operators. This shines a new light on the concept of universality

in the study of critical phenomena.
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Chapter 2: Holography of the BTZ Black Hole, Inside and Out

2.1 Introduction

Nearly a century after the discovery of the Schwarzschild metric,

ds2 D
�
1 �

rS

r

�
dt2 �

dr2

1 � rS
r

� r2
�
d�2 C sin2 � d�2

�
; (2.1)

black holes remain a source of mystery and fascination. In theoretical physics, they provide

key insights for our most ambitious attempts to unify gravity, relativity and quantum

mechanics. Viewed from the outside as robust endpoints of gravitational collapse, and

decaying subsequently via Hawking radiation, black holes pose the information paradox.

Falling inside, the roles of "time", � , and "space", r , apparently trade places, the horizon now

encompassing a universe within, with the future singularity its "big crunch". Understanding

these dramatic phenomena seems tantalizingly close to our grasp, just beyond the horizon, a

region comprised of familiar, smooth patches of spacetime. And yet, the local simplicity of

the horizon belies its global subtlety, which still lacks an explicit inside/outside description

within a fundamental framework for quantum gravity (as exemplified by the recent "firewall"

paradox [9–11]1) regarding evaporating black holes. Nevertheless, powerful ideas and results

1See also [12] for a prediction similar to firewalls from different assumptions.
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in holography [13] [14], complementarity [15], string theory and AdS/CFT duality [4] [5] [6]

(reviewed in [16] [1] [17]), have combined with gravitational effective field theory (EFT) to

give us a much clearer picture of the central issues (reviewed in [18] [19]).

In such a situation, it is natural to look for an "Ising model", a special case that enjoys so

many technical advantages that we can hope to solve it exactly, and whose solution would

test and crystalize tentative grand principles, and brings new ones to the fore. For this

purpose, the 2C1-dimensional BTZ black hole [20,21] is, in many ways, an ideal candidate.

The BTZ geometry solves Einstein’s Equations with negative cosmological constant in 2C1

dimensions, and is given in Schwarzschild coordinates by,

ds2BTZ D
r2 � r2S
R2AdS

d�2 �
R2AdS

r2 � r2S
dr2 � r2d�2 .�� � � � �; r > 0/; (2.2)

not that dissimilar from (2.1). The geometry asymptotes for large r to that of global anti-de

Sitter spacetime, AdS3 global, with radius of curvature RAdS and AdS boundary at r D 1.

The horizon is at the Schwarzschild radius, r D rS . It is the simplest of the "large" AdS

Schwarzschild black holes, eternal in that they do not decay via Hawking radiation, but

rather are in equilibrium with it [22]. It retains many of the key interesting features of black

holes in general. In what follows it will be more convenient to rescale coordinates,

RAdS

rS
r ! r

rS

RAdS
� ! � � � rS�; (2.3)
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and to switch to RAdS � 1 units, so the metric becomes

ds2BTZ D .r
2
� 1/d�2 �

dr2

r2 � 1
� r2d�2 .��rS � � � �rS ; r > 0/ : (2.4)

The horizon is now at r D 1.

Although pure 2C 1-dimensional general relativity does not contain propagating gravi-

tons, it does have gravitational fluctuations and backreactions, and coupled to propagating

matter the EFT is non-renormalizable as in higher dimensions (in fact, it may be a compacti-

fication of higher dimensions, and contain propagating Kaluza-Klein gravitons), requiring

UV completion. It also shares with higher-dimensional eternal AdS Schwarzschild black

holes, the central consequence of AdS/CFT duality: as an object inside AdSglobal the black

hole inherits a holographic dual in terms of a "hot" conformal field theory (CFT) (for BTZ,

a 1 C 1 CFT on a spatial circle), the CFT temperature being dual to the BTZ Hawking

temperature. More precisely [23] (see also the earlier steps and insights of [24] [25] [26]),

the duality is framed in terms of the Kruskal extension of BTZ,

ds2 D
4dudv

.1C uv/2
�

�
1 � uv

1C uv

�2
d�2 .juvj < 1/: (2.5)

The horizon, "singularity" and AdS boundaries are now as follows:

boundary: uv D �1

horizon: u D 0 or v D 0

singularity: uv D 1:

(2.6)
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Figure 2.1: The Penrose diagram of the extended BTZ black hole spacetime. The vertical
lines represent the boundaries of two asymptotically AdS regions.

The Penrose diagram of this spacetime is shown in Fig. 2.1. BTZ is seen to interpolate

between two distinct asymptotically-AdSglobal boundary regions. The holographic dual is

then given by two CFTs, dynamically decoupled, but in a state of "thermofield" [27–33]

entanglement,

j‰iBTZ �
X
n

e��Enj Nni ˝ jni: (2.7)

The entangled state is dual to the Hartle-Hawking choice of vacuum [34] for the BTZ black

hole.

There remains the puzzle of detailing just how this CFT description incorporates pro-

cesses inside the BTZ horizon. We know that in asymptotic AdS spacetimes, the set of local

boundary correlators gives a beautiful diffeomorphism-invariant quantum gravity description

of scattering which generalizes the S-matrix construction of asymptotic Minkowski space-

times, and, in the sense described in [35], is even richer in structure. Furthermore, these

boundary correlators have a non-perturbative and UV-complete description in terms of corre-

lators of local CFT operators "living" on the AdS boundary, @AdS. But in AdS-Schwarzchild

spacetimes like BTZ it is not apparent what CFT questions give a diffeomorphism-invariant

and non-perturbative description of scattering inside the horizon: one can send in wavepack-
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ets from outside the horizon aimed to scatter within, but the products of any scattering

must causally end up at the singularity rather than returning to the exterior AdS boundaries.

While one can connect Witten diagrams from interaction points in the interior of the (future)

horizon to the boundaries shown in Fig. 2.1, these connections cannot sharply capture the

fate of such interactions since they are at best spacelike.

This does not mean that the interior of the horizon is out of bounds to the CFT description.

In a sense, what is required is a set of "out states" consisting of approximately decoupled

bulk particles located on a spacelike hypersurface before the (future) singularity, with which

one can compute the overlap with the state resulting from the scattering process. Even in (the

simpler) AdS spacetime, particles inside the bulk are described by non-local disturbances

of the CFT, so one can anticipate that any holographic description of scattering inside the

horizon will necessarily involve correlators of non-local CFT operators. But specifically

which non-local CFT operators correspond to the simplest basis of "out states", so that

their correlators (with other CFT operators) provide a sharp diagnostic of scattering inside

the horizon? In this chapter, we identify such non-local CFT operators and demonstrate

that they correspond to the intuitive notion of scattering inside the horizon. Our proposal

is precisely and non-perturbatively framed. We test it by applying it to scattering inside

the horizon but far from the singularity where, at short distances� RAdS, the behavior is

very much like scattering outside the horizon or in flat spacetime, and so we know what

to expect. We then show how to apply our proposal to probe the more mysterious regime

near the singularity, where EFT breaks down and even perturbative string theory may be

blind to important non-perturbative effects (see for example, [23]). Since the interior of the

horizon is a cosmological spacetime, finding the non-local CFT operators can be thought of
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as giving the holographic description of a quantum cosmology with singularity, a signficant

step beyond the more familiar holography of static AdS.

2.2 Overview and Organization

2.2.1 Diffeomorphism invariance in Non-perturbative Formulation

The issue of diffeomorphism invariance, and the challenge it poses for a description of the

interior of the horizon, may seem unfamiliar to those who routinely use local field operators

to sharply describe processes in the real world (which of course includes quantum gravity in

some form). This would naively suggest that in the BTZ context we should use local bulk

operators acting on the Hartle-Hawking state to create "in/out" states inside the horizon, and

then translate these operators to (non-local) operators of the CFT. However, fundamentally

all local fields (composite or elementary) violate the diffeomorphism gauge symmetry of

quantum gravity (their spacetime argument at least is not generally coordinate-invariant),

just as the local electron and gauge fields violate gauge invariance in QED. Of course, we

are used to using gauge non-invariant local operators within a gauge-fixed formalism, but

these are, in essence, non-local constructions in the gauge-invariant data. For example

in electromagnetism, the gauge-invariant data (in Minkowski spacetime) are provided by

specifying some field strength, F��.x/, subject to the Bianchi identity, �����@�F��.x/ D 0.

This uniquely determines a "local" gauge potential, A�.x/ W @�A� � @�A� D F�� , once we

stipulate some gauge-fixing condition (and behavior at infinity), such as

@�A� D c.x/: (2.8)
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A�.x/ is thereby a non-local functional of F��.y/. In this way, gauge-fixing is seen as

a method for giving non-local gauge-invariant operators a superficially local (and useful)

form. In gravity, the gauge-fixing approach is useful for perturbatively small fluctuations

of the metric, but not when there are violent fluctuations of the metric (or when the notion

of spacetime geometry itself breaks down). And yet it is precisely large fluctuations of

the metric that we are interested in when we are concerned with non-perturbative effects

(in GNewton) saving us from information loss (see discussion in [23]), or in the approach to

the singularity. Therefore, in the non-perturbative framing of our proposal we avoid the

intermediate step of gauge-fixed local bulk fields, instead exploiting the greater simplicity

of BTZ over other black holes to directly identify the (diffeomorphism-invariant) CFT

observables.

Nevertheless, it is useful to see how our approach reduces to gauge-fixed EFT of bulk

fields, when that is valid, and this also provides an arena for testing the proposal. To

this end, we will show that correlators of local field operators inside the horizon can be

re-expressed as correlators of non-local EFT observables outside the horizon (in principle

accessible to an outside observer). Even though this "dictionary" is between gravitational

EFT descriptions, the "translating" operation is non-perturbative in form. It resonates with

the ideas of complementarity [15], where the interior of the horizon is not independent of

the exterior, but rather a very different probe of it.
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(a) The two boundary operators at the
top are timelike separated from the scat-
tering event.

(b) Boundary operators on the left and
right Rindler wedges are spacelike sepa-
rated from the scattering event.

Figure 2.2: Boundary operators in the future region are needed to sharply probe scattering
behind the horizon.

2.2.2 Strategy for BTZ

BTZ is particularly well-suited to address the above issues for two reasons. First, the

enhanced conformal symmetry of 1C 1-dimensional CFTs over higher dimensions provides

us with a better understanding of their properties. The second reason is that BTZ can be

realized as a quotient of AdS spacetime itself, by identifying points related by a discrete

AdS isometry [20, 21]. At the technical level, BTZ Green functions can be easily obtained

from the highly symmetric AdS Green functions using the method of images [36] [37]. Most

importantly, the BTZ horizon emerges as the quotient of a "mere" Rindler horizon, as would

be seen by a class of accelerating observers in AdS [38]. (See [39] for a related discussion,

and [40] for a higher-dimensional discussion.) The Rindler view of AdS, the BTZ "black

string", is given by (2.2) and (2.4) again, but now with non-compact � 2 .�1;C1/,

rS �1. Our approach is based on a novel reanalysis of Rindler AdS/CFT [23] [40], in a

manner that can then be straightforwardly quotiented to the BTZ case of interest.
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The central issue from the Rindler view can be seen in Fig. 2.2a, depicting the Poincaré

patch of AdS, where the intersecting planes are the Rindler horizons, light rays travel at 45

degrees to the vertical time axis, the boundary is at z D 0, and

x˙ � t ˙ x (2.9)

are boundary (1 C 1 Minkowski) lightcone coordinates. Two particles are seen to enter

the future horizon, scatter inside, and then the resultant particle lines "measured" by local

boundary correlators ending in the boundary region inside the horizon. Such correlators can

sharply diagnose the results of the scattering because the endpoints are causally connected

to the scattering point (or region). In Minkowski CFT these endpoints correspond to local

operators in the "Milne" wedge inside the Rindler horizon. However, the dual Rindler

CFT picture corresponds to two CFTs "living" only in the left and right regions outside the

horizon (entangled with each other in the thermofield state), so that correlators of local CFT

operators correspond to boundary correlators only ending in the boundary regions outside

the horizon. As seen in Fig. 2.2b, such local Rindler CFT correlators correspond to boundary

correlators with endpoints at best spacelike separated from the scattering point, not useful

for a sharp diagnosis of the scattering (as we already saw from the Penrose diagram of

Fig. 2.1).

However, the desired local operators of the Minkowski CFT (as opposed to the Rindler

CFTs) inside the horizon have the form,

O.t; x/ � eiHMinktO.0; x/e�iHMinkt ; jt j > jxj; (2.10)
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where the operator at t D 0 is now within the Rindler region and equivalent to a local Rindler

CFT operator. The Minkowski CFT Hamiltonian HMink is also some operator on the tensor

product of the Hilbert spaces of the two Rindler CFTs (D Hilbert space of the Minkowski

CFT, as is apparent at t D 0), so O.t; x/ must also be some operator of the Rindler CFTs.

But because HMink ¤ HRindler, O.t; x/ is not simply a local Heisenberg operator of the

Rindler CFTs, but rather non-local from the Rindler perspective. We conclude that non-local

correlators of the Rindler CFTs are able to sharply capture scattering inside the Rindler

horizon, the same way that local correlators of the Minkowski CFT ending inside the horizon

do. The problem in taking the BTZ quotient of this nice story is that the quotient of HMink

does not exist: the associated t -translation isometry is broken by quotienting.

An important result of ours is to reproduce the correlators of (2.10), which sharply

capture scattering inside the Rindler horizon, with a new set of non-local Rindler CFT

operators,

Onon-local � e
�
2
.HRindler�PRindler/Olocale

��
2
.HRindler�PRindler/; (2.11)

constructed from local Rindler CFT operators Olocal and the Rindler Hamiltonian and

momentum, HRindler; PRindler. Note that we are not equating these new non-local operators

with those of (2.10); they will have different matrix elements within generic states. We

only show that they have the same matrix elements in a fixed, special state, namely the

thermofield state of the two Rindler CFTs, namely j‰i for rS D 1. This suffices to

capture scattering inside the Rindler horizon. But unlike (2.10), the new operators are

straightforwardly "quotiented" to the CFT dual of BTZ. Indeed, this quotient is simply the

compactification of the spatial Rindler direction, so that PRindler becomes the conserved
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Figure 2.3: These lightcones becomes the singularity of the BTZ black hole after the
quotient.

angular momentum of the thermofield CFTs on a spatial circle, and HRindler becomes their

Hamiltonian. We will show that the resulting non-local operators in the thermofield CFTs

have correlators which provide some sharp probes of scattering inside the BTZ horizon.

This conclusion is certainly subtle and delicate, as illustrated in Fig. 2.3. After quotient-

ing AdS to BTZ, the lightcones in Fig. 2.3 become the future and past singularities. So it

would appear that the quotient construction of correlators to "see" the scattering inside the

horizon will correspond to the analog of Fig. 2.2a in BTZ, a diagram that necessarily tra-

verses the singularity. This raises the question of whether the quotienting procedure outlined

above is straightforward and trustworthy. Indeed we claim it is, but to double-check this

requires studying the singularity more closely, and Feynman diagrammatics in its vicinity.

2.2.3 Through the Singularity: the "Whisker" Regions

Purely at the level of the spacetime geometry (before any dynamics is considered),

the quotient construction gives BTZ a perfectly smooth passage (with finite curvature)

through the "singularity", the quotient of the lightcones of Fig. 2.3 (r D 0 or uv D 1 in
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Schwarzchild and Kruskal coordinates respectively). However, after the quotient the regions

inside these lightcones contain closed timelike curves, dubbed "whiskers" in [41]. (In the

Rindler limit, rS !1, these closed curves become infinitely long and the whiskers revert

to just ordinary parts of AdS.) The smoothness of the quotient geometry is also deceptive,

and the singularity well deserves its name once one makes any attempt to physically probe

it. After quotienting the lightcones of Fig. 2.3, they are comprised of closed lightlike

curves where even small (quantum) fluctuations [42] [43] can backreact divergently with

divergent curvatures, and general considerations imply the breakdown of ordinary (effective)

field theory [44]. See [45] for a concise review of these general considerations. Similar

singularities have also been studied in the context of string theory. Attempts to scatter

through the singularity in string theory failed to obtain well-defined amplitudes (see [46] for

a concise review and original references). Ref. [47] found that stringy effects involving the

twisted sector smoothed out the large backreactions, but so as to isolate the spacetime regions

outside the singularity from the whisker (and other) regions beyond the singularity. In any

case, much of the literatures suggests that the whisker regions are both wildly unphysical

and inaccessible because of the singularity. This seems at odds with our claim that diagrams

ending in the whisker regions are the dual of the non-local CFT correlators described above,

and that these capture scattering inside the horizon.

However, we will show that local boundary correlators with some endpoints in the

whisker regions are in fact well-defined, and a protected sub-class are dominated within

EFT, parametrically insensitive to what happens very close to the singularity, even when the

associated (Witten) diagrams traverse the singularity. This protected sub-class is specified
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by first noting that the maximal extension of the BTZ black hole spacetime is given by [21]

BTZ D AdSglobal=�; (2.12)

where � is a quotient discrete isometry group of AdS. An intermediate extension of the black

hole spacetime is then given by replacing AdSglobal with just the Poincaré patch, AdSPoincaré.

This still includes the entire Kruskal extension of BTZ as well as two whisker regions,

BTZ Kruskal � AdSPoincaré=�: (2.13)

The protected class of boundary correlators is precisely the set confined to AdSPoincaré=� ,

rather than all of AdSglobal=� . For this reason, we confine ourselves in this chapter to

AdSPoincaré=� , and simply identify it in what follows as the "BTZ spacetime". We will return

in future work to a treatment of the boundary correlators of the maximally extended BTZ

spacetime given by AdSglobal=� [48].

Technically, in the AdSPoincaré=� realization of BTZ, naive divergences appear when

Witten diagram interaction vertices approach the singularity, but are rendered finite by (a)

using and tracking the correct "i�" prescription in BTZ propagators, following from AdS

propagators by the method of images, and (b) including the whiskers in the integration

region for interaction vertices. Roughly,

Z r2>0

r1<0

dr
lnp r
rq
!

Z r2>0

r1<0

dr
lnp.r C i�/
.r C i�/q

<1; (2.14)

where r is the Schwarzchild radial coordinate for r > 0 and a related coordinate inside the
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whisker region for r < 0. Clearly, the finiteness of such expressions as � ! 0 requires

integrating into the whisker region, r < 0. (Similar cancellations were noted in [49]).

More strongly, we will show that many of the BTZ local boundary correlators are

well-approximated by the analogous diagrams in (unquotiented) AdSPoincaré itself, where the

interpretation in terms of scattering behind the (Rindler) horizon is unambiguous. This is

the basis of our claim that we have found a class of correlators sensitive to scattering behind

the BTZ horizon.

2.2.4 Space$ Time inside the Horizon

Despite these good features, correlators in regions with timelike closed curves seem at

odds with a physical interpretation and connection to the standard thermofield CFT dual.

Relatedly, it is puzzling why we are lucky enough that the associated Witten diagrams

should be insensitive to what is happening close to the singularity. We show that these

correlators can be put into a more canonical form by performing a well-defined "space

$ time" transformation which takes local operators inside the horizon into non-local

operators outside the horizon (and thereby make them accessible to external observers). This

transformation is particularly plausible in the dual 1C 1 CFT where the causal (lightcone)

structure is symmetric between space and time, and indeed we show that the transformation

can be viewed as a kind of "improper" conformal transformation. It is this transformation

that ultimately leads to the non-local operators arising from local ones, seen in (2.11).

Such a symmetry seems much less manifest from the AdS perspective where there is no

such isometry, but we prove that it indeed exists as an unexpected symmetry of boundary
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correlators, by a careful Witten-diagrammatic analysis.

In more detail, the transformation is also accompanied by complex phases that are

necessary for ensuring relativistic causality constraints in correlators, naively threatened

because "spacelike $ timelike".) We thereby interpret our results as having found (i)

non-local CFT operators that simply describe scattering inside the BTZ horizon (but outside

the singularity), and (ii) an auxiliary but bizarre spacetime extension of the BTZ black hole,

"whiskers", in which these non-local CFT operators are rendered as local operators, and

in which some of their properties become more transparent. Whether or not one thereby

considers the whiskers to be "physical" regions is left to the reader.

2.2.5 Comparing Whiskers and Euclidean space as auxiliary spacetimes

The notion of an auxiliary spacetime grafted onto the physical spacetime, where one

uses path integrals and operators in the former to implant certain types of wavefunctionals in

the latter, is already familiar when the auxiliary spacetime is Euclidean. For example, such

constructions are used to create the Hartle-Hawking wavefunctional [34] or its perturbations

in the physical spacetime, and can have a non-perturbative CFT dual [23]. Indeed, they

too can be used to create quite general bulk states in the interior of BTZ, in principle

including the kind of "out states" for scattering that we seek. However, the simple Euclidean

constructions yield physical states at the point of time symmetry, uC v D 0 (or � D 0).

We would need to evolve these states to late time and take superpositions in order to find

"out states" that consist of several approximately free bulk particles. The problem then is

that identifying such superpositions is equivalent to solving the scattering dynamics itself!
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By contrast, the virtue of our Lorentzian auxiliary spacetime "whisker" is that it allows

us to create simple out states with simply defined operators. In this way, we can pose

explicit (non-local) CFT correlators which capture the fate of scattering inside the horizon.

A well-programmed "CFT computer" would then output the answers to such questions

without first requiring equally difficult computations as input.

2.2.6 Whisker correlators as generalizing "in-in" correlators

It is not simply fortuitous that Witten diagrams are insensitive to the singularity, even

with some endpoints on the boundary of the whisker regions. Rather, we will show that the

approach to the singularity in the bulk EFT is given by

� � �U �e�
�
2
.H��P� /U � � � ; (2.15)

where U is a time evolution approaching the (future, say) singularity, and H� ; P� are the

isometry generators corresponding to � and � translations in Schwarzschild coordinates.

(Of course, � represents a spacelike direction near the singularity, and therefore H� is really

a "momentum" here, despite the notation.) The U � factor arises from the whisker region.

The exponential weight is a non-trivial consequence of our "space$ time" transformation,

where the timelike circles become standard spacelike circles. One can think of the whisker-

related factor, � � �U �e�
�
2
.H��P� /, as setting up a useful "out" state inside the horizon of the

physical region.

If there are no sources (endpoints of correlators) in the vicinity of the singularity, the

time evolution U commutes with the isometry generators, H� ; P� and hence cancels against
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U �. This cancellation, which also can be seen non-perturbatively in the CFT description, is

the deep reason behind the insensitivity of boundary correlators to the details of UV physics.

It matches the cancellations in Witten diagrams (before massaging by space$ time) in the

manner of (2.14). Such U �U cancellation in the far future is reminiscent of what happens

for correlators in the "in-in" formalism [50,51] (see [52] for a modern discussion and review).

Indeed, we will show using the space$ time transformation that local boundary correlators

traversing the singularity are equivalent to a generalization of in-in correlators involving

non-local operators, where all time evolution takes place after the past singularity and before

the future singularity.

2.2.7 Studying the Singularity

Our ability to discover and check our proposal for describing scattering inside the BTZ

horizon rests on the existence of the protected set of local boundary correlators, which we

can prove in a simple way are insensitive to the singularity. However, the ultimate goal

is not to merely describe scattering inside the horizon far from the singularity, since such

scattering is approximately the same as scattering in a static spacetime. This regime is only

useful to vet our proposal, precisely because we know the answers already, dominated by

EFT. Rather the goal is to use our non-perturbative CFT proposal to describe scattering

close to the singularity where cosmological blueshifts take us out of the EFT domain, and

where even perturbative string theory may miss important features. This interesting kind of

sensitivity to the singularity is not outright absent from the protected set of correlators, but it

is suppressed by � 1=blueshift. However, one can study processes with kinematics chosen
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such that they would not proceed but for such cosmological blueshifts (that is, they would

not proceed for rS D1), in which case the leading effects are sensitive to the singularity.

Furthermore, more general (gauge-fixed EFT) bulk correlators are order one sensitive to

the singularity and UV physics, but not mathematically divergent. The same is also true for

local boundary correlators in the more extended AdSglobal=� realization of BTZ, as we will

discuss in [48].

2.2.8 Relation to the literature

Several earlier attacks have been made on more explicitly extending holography into

the black hole interior, some specific to BTZ, while others apply also to higher-dimensional

eternal black holes. The most direct approach has been to study the thermofield CFT

formulation carefully, and to identify those subtle, non-local features that might encode

key aspects of the black hole interior [53] [54] [23] [55] (see [56] for higher-dimensional

discussion). Our work is certainly in the same spirit, but we claim our non-local CFT

operators more sharply and more knowably probe the interior. Another general direction is

to try and construct the CFT dual of interior field operators [57] [58] [59], in part by using

the gravitational EFT equations of motion to evolve exterior field operators in "infaller" time

into the interior. This is necessarily restricted to situations in which the bulk metric fluctuates

modestly, whereas we propose a non-perturbative formulation. Yet another general approach

is to try to enter the horizon by a variety of analytic continuations of external (Lorentzian

or Euclidean) correlators [60] [49] [61] [62] [63]. Our work has this aspect to it, but it is

governed and understood from a physical perspective in which analytic continuation merely
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provides an efficient means of calculation, rather than a first principle. The symmetry-

quotient structure of BTZ has led to attempts to construct a "symmetry-quotient" form of a

dual CFT [25]. Another BTZ-specific approach is to take advantage of being able to follow

the BTZ geometry beyond the "singularity", where further AdS-like boundary regions exist.

One then tries to make sense of CFT on the various boundary regions and how they connect

together [64] [60]. Our work furthers these directions, of making sense of the quotient

structure from the CFT perspective, and using it to show how different boundary regions are

entangled. A number of variants of BTZ have also been constructed and studied [65, 66].

2.2.9 Organization of chapter

We start from the symmetry quotient construction of BTZ from AdSPoincaré, and try to

make sense of the idea of a "quotient CFT" dual. In Section 2.3, we review the quotient

construction of BTZ geometry from AdSPoincaré and how this extends the spacetime smoothly

past the singularity, although gravitational EFT diagrams ending at the singularity do diverge.

In Section 2.4, we identify the boundary regions of the BTZ spacetime, outside the horizon

and inside the whiskers. We point out the central challenges for formulating a dual CFT

on the boundary of BTZ, related to the presence of lightlike and timelike closed curves. In

Section 2.5 we explore the BTZ singularity with the simplest examples, before beginning a

more general attempt to formulate a CFT dual. The relevant BTZ correlators, with end points

inside and outside the singularity and horizon, are obtained by the method of images applied

to AdSPoincaré. We illustrate how naive divergences encountered as interaction vertices

approach the singularity in fact cancel to give mathematically well-defined correlators. In
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Section 2.6, in order to massage the CFT on the BTZ boundary into a non-perturbatively

well-defined form, we introduce the transformation switching time and space inside the

horizon, arriving in (2.58) at our central result, a generalization of the thermofield CFT

formulation allowing probes of physics inside the horizon. Eq. (2.58) is manifestly well-

defined and manifestly respects the symmetry construction of BTZ. In Section 2.7, we

recast (2.58) in canonical thermofield form, resulting in (2.64), with probes inside the

horizon appearing as non-local probes of the thermofield-entangled CFTs. Many of our

manipulations in sections 2.6 and 2.7 are formally based on the CFT path integral. But for

concrete confirmation we must turn to the dual AdS diagrammatics.

In Section 2.8 we study the Rindler AdS/CFT correspondence (rS D 1) in detail, and

prove the above results in this limit in bulk EFT, allowing us to probe inside the Rindler

horizon by studying specific non-local correlators outside the horizon. We check that our

proposal reproduces the AdSPoincaré correlators everywhere. In Section 2.9, we finally check

that Eq. (2.58) does indeed act as the dual of BTZ by showing that it gives the associated

local boundary correlators, including the whisker regions, and that these correlators are finite

and dominated by EFT (despite traversing the singularity). This follows from the analogous

Rindler proof in Section 2.8 by applying the method of images in EFT. We explain how

these local boundary correlators are generally insensitive to the breakdown of EFT near

the singularity, allowing us to use EFT to check our CFT proposal is sharply sensitive

to scattering inside the horizon just as in the Rindler (rS D 1) limit. In Section 2.10,

we demonstrate that bulk correlators are sensitive to the singularity and UV physics there,

although still mathematically finite. We also show how to design special boundary correlators

where the near-singularity UV physics dominates, so that our CFT proposal is needed to
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describe them. In Section 2.11, we comment on our derivations and some aspects of the

physical picture that emerges from our work, and outline future directions.

2.3 BTZ as Quotient of AdSPoincaré

In higher-dimensional black holes, the Kruskal extension into the interior ends at a

curvature singularity. In the BTZ case however, uv D 1 in (2.5) does not represent a

true curvature singularity and the geometry can be smoothly extended beyond it. Such an

extension is most simply given by a quotient of the Poincaré patch of AdS (AdSPoincaré) [67]

[38] [68],

ds2 D
dxCdx� � dz2

z2
.z > 0/; (2.16)

where x˙ � t ˙ x and we identify points related by the discrete rescaling

.x˙; z/ � .erSx˙; erSz/: (2.17)

As straightforwardly checked, the Poincaré coordinates are related to the Kruskal coordinates

by

xC D
2e�v

1 � uv
x� D

2e�u

1 � uv
z D

1C uv

1 � uv
e� ; (2.18)
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and to the Schwarzschild coordinates by

x˙ D

8̂̂̂<̂
ˆ̂:
˙

q
1 � 1

r2
e˙�

˙

; if r > 1;q
1
r2
� 1 e˙�

˙

; if r < 1

z D
e�

r

�˙ � � ˙ �:

(2.19)

The horizon, singularity and asymptotic AdS boundaries now reside at:

boundary: z D 0

horizon: x˙ D 0

singularity: z2 � xCx� D 0:

(2.20)

The true nature of the apparent black hole singularity becomes clearer. While the BTZ black

hole spacetime has locally AdS geometry and finite curvature everywhere, the singularity

surface consists of closed lightlike curves, given by x D t cos 
 , z D t sin 
 , parametrized

by 
 . The region inside this surface consists of closed timelike curves, which we will call

the "whisker" region similarly to [41].

The presence of such curves does not in itself constitute a geometric singularity2, but it

does pose a conceptual challenge for physical interpretation, and on general grounds implies

the breakdown of quantum (effective) field theory in the vicinity of the closed lightlike

curves [44]. See [45] for a concise review, and [42] [43] for computations of stress-tensor

divergences at the BTZ singularity. Similar features have also been studied in string theory

2In the BTZ realization as a quotient of AdSglobal the singularity also includes a breakdown of the spacetime
manifold (Hausdorff) structure itself. But the points at which this further complication takes place are pushed
off to infinity in our Poincaré patch realization of BTZ. This breakdown is relevant to some of the studies in the
literature but not to the correlators discussed in this chapter. We will more thoroughly clarify this point in [48].
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(as reviewed in [46].) We illustrate the basic problem by looking at an EFT amplitude for a

scalar field in the BTZ background. Following [49] we focus on the scalar propagator from

a point on an AdS boundary, x˙, external to the black hole to a point inside the horizon and

near the "singularity", .y˙; z/. Because BTZ is a quotient of AdSPoincaré, we can easily work

out this propagator by the method of images applied to the boundary-bulk propagator of

AdSPoincaré [37] [49]:

KBTZ.x
˙; y˙; z/ D

X
n2Z

.enrSz/�

Œe2nrSz2 � .xC � enrSyC/.x� � enrSy�/�
�

(2.21)

where m2 D �.� � 2/ and we have summed over images of the bulk point. Generically,

the image sum clearly converges, the summand behaving asymptotically as � e�jnjrS�.

The exception is the singular surface z2 � yCy� D 0, where the summand becomes n-

independent for large n, and the series diverges. (We omit a discussion of the i� prescription

in the propagator as it does not avoid the divergence as � ! 0, although it will play

an important role later in the chapter.) This feature is general for correlators with some

points ending on the surface z2 � yCy� D 0, the perturbative incarnation of divergent

backreactions that justifies this surface being called the "singularity". A subtler question is

whether one can propagate or scatter through the singularity within gravitational EFT. If

so, one can just avoid probes (correlator endpoints) very near the singularity and trust EFT

calculations elsewhere. This question is particularly relevant for correlators ending on the

full BTZ boundary (including inside the whiskers) since these would define local operator

correlators of a possible CFT dual to BTZ. Before tackling this question, we first study the

BTZ boundary itself.
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2.4 The Extended BTZ Boundary and Challenges for the CFT Dual

Since BTZ is at least locally AdS-like, it seems very natural to guess that BTZ quantum

gravity has a holographic dual given by a 1 C 1 dimensional CFT "living" on the BTZ

boundary. Within the Kruskal extension, this boundary, uv D �1, consists of the two disjoint

solutions with u > 0, v < 0 or u < 0, v > 0, corresponding to the two asymptotically

AdSglobal regions outside the horizon, as in higher-dimensional AdS black holes. This is

then consistent with the now-standard thermofield picture of two CFTs living on two copies

of the boundary of AdSglobal, namely two separate CFTs each living on a spatial circle �

infinite time, but in an entangled state. However, this Kruskal boundary corresponds in

our AdSPoincaré coordinates to z D 0, xCx� < 0, whereas in the AdSPoincaré realization the

boundary is straightforwardly all of z D 0. The regions z D 0, xCx� > 0 are missed in the

Kruskal extension because they lie inside the singularity, while the Kruskal extension stops

there. The question then arises whether these inside-singularity boundary regions play an

important role in the CFT dual of BTZ (the view taken in [64] [60]), even for "projecting"

the part of BTZ outside the singularity but inside the horizon. We will show that there are in

fact two equivalent formulations of the CFT dual of BTZ, one in which the entire boundary

region is needed for the CFT, and a second one in terms of two entangled CFTs on just the

disjoint boundary regions outside the horizon.

2.4.1 BTZ Boundary as Disconnected Cylinders

We begin by identifying the full boundary region of BTZ, @BTZ, within the AdSPoincaré

realization, regardless of where this takes us with respect to the singularity. Even the simple
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identification of @BTZ as z D 0 is subtle because of the quotienting. Naively this would

yield 1C1Minkowski spacetime with the identification x˙ � erSx˙. Such an identification

does not make straightforward sense because rescaling is not an isometry of Minkowski

space. The subtlety is that the boundary geometry is only determined from the bulk geometry

up to a Weyl transformation [6], which conformally invariant dynamics cannot distinguish.

Therefore more precisely,

ds2@BTZ D f .x
˙/dxCdx�; (2.22)

where f is a Weyl transform of 1 C 1 Minkowski spacetime, with the identifications

x˙ � erSx˙ and hence f -periodicity f .x˙/ D e2rSf .erSx˙/.

Two choices of f will prove insightful. The first is

f D
1

jxCx�j
: (2.23)

It is useful to break up the 1C 1 Minkowski plane into the four regions,

Right (R) xC > 0; x� < 0

Future (F ) x˙ > 0

Left (L) xC < 0; x� > 0

Past (P ) x˙ < 0:

(2.24)

We will refer to R;L as Rindler wedges and F;P as Milne wedges. We can adapt
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Rindler-like coordinates for each wedge,

x˙ D

8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂:

˙e˙�
˙

; x 2 R

e˙�
˙

; x 2 F

�e˙�
˙

; x 2 L

�e˙�
˙

; x 2 P;

�˙ � � ˙ � (2.25)

so that the quotienting and Weyl transformation take the simple forms

� � � C 2�rS

f D e�2� :

(2.26)

We can simply restrict � to the fundamental region ��rS � � � �rS . We see that @BTZ is

then given by four disjoint spacetime cylinders,

ds2@BTZ D

8̂̂̂<̂
ˆ̂:
Cd�Cd��; R, L spacelike circle � infinite time

�d�Cd��; F, P infinite space � timelike circle!

(2.27)

The cylinders in the Rindler wedges are just the boundaries of the AdSglobal asymptotics

outside the horizon described above. But the cylinders in the Milne wedges are the boundary

region inside the singularity.3 The Weyl transform maps the cylinders to the four shaded

regions of 1C 1 Minkowski spacetime in Fig. 2.4a. In this way we can think of the shaded

region as a fundamental region for the quotienting procedure on the CFT-side.

3These four disjoint boundary components are the AdSPoincaré subset of the larger set of boundary compo-
nents arising in the further extension of BTZ as a quotient of AdSglobal.
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(a) The fundamental region in
� mapped to the Minkowski
plane by the Weyl transformation
(2.23)

(b) The fundamental region in
˛ mapped to the Minkowski
plane by the Weyl transformation
(2.28)

Figure 2.4: Two different choices of fundamental region for the BTZ boundary

We see that the four cylinders present two challenges for hosting a dual CFT. The

first is that they remain disjoint and therefore we need some sort of generalization of the

thermofield entanglement of two CFTs with which to connect them. For related early work

in this direction, see [60]. The second issue is that the Milne wedge cylinders have circular

time.

2.4.2 Connected View of @BTZ

To guess how to move forward we use a different choice of Weyl transformation, which

gives us a different view of @BTZ (the CFT being insensitive to such choices),

f D
1

.xC/2 C .x�/2
: (2.28)
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Figure 2.5: The Lorentzian torus contains closed timelike (red), lightlike (yellow), and
spacelike (blue) curves. The inner and outer edges of the annulus are identified after Weyl
transformation (2.28) to make the Lorentzian torus of (2.30).

Using "polar" coordinates on the Minkowski plane,

t D e˛ sin � x D e˛ cos �; (2.29)

with the usual identification � � �C2� and the BTZ quotient identification ˛ � ˛C2�rS ,

we find (Fig. 2.4b):

ds2@BTZ D cos 2�.d�2 � d˛2/C 2 sin 2� d�d˛ (2.30)

D Lorentzian Torus!

This geometry [69] is smooth and connected, but still contains alarming features

(Fig. 2.5). There are still timelike circles in the Milne wedges �
4
< � < 3�

4
; ��
4
> � > �3�

4
,

oriented in the ˛-direction. (There are still only spacelike closed curves in the Rindler

wedges.) The "joints", � D �3�
4
; ��
4
; �
4
; 3�
4

, while smoothly connecting the geometries of

the different wedges, are themselves light-like circles in ˛. So it does not appear that a CFT

on this boundary region will allows us to evade the difficult problem of doing field theory
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at lightlike circles presented by the BTZ singularity [44] [45]. (For discussion of a very

similar 1C 1 context see [70]).) If we try to excise these lightlike circles we are left with

the disjointedness of the boundary and the CFT living on it.

Before making any interpretation, we will first try to simply define local operator

correlators of the CFT on the full @BTZ, using the method of images applied to AdSPoincaré

boundary correlators. However, we must check that these are even mathematically well-

defined in the face of the BTZ singularity. Therefore we first study simple examples and then

general features of how the singularity enters into correlators. We then show that boundary

correlators on all of @BTZ are mathematically well-defined, although the singularity does

represent a breakdown of gravitational EFT.

2.5 Boundary Correlators and the Singularity

In this section we study the simplest examples which illustrate the implications of the

singularity for defining correlators within gravitational EFT, and for identifying them with

equivalent CFT correlators. For this purpose we will not need to study these BTZ correlators

in a UV-complete framework such as string theory, although we assume such a framework

exists. We will compute these BTZ correlators using the method of images. It is convenient

to define

� � erS ; (2.31)
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so that the quotient identification (2.17) can be written

.x˙; z/ � .�x˙; �z/: (2.32)

2.5.1 Approaching Singularity from Outside

We start by noting the full i� structure of the bulk-boundary propagator of AdSPoincaré,

which is important for what follows here:

KAdS D

�
z

z2 � .xC � yC/.x� � y�/C i�.x0 � y0/2

��
: (2.33)

This structure for LorentzianK is most easily derived from the well-known EuclideanK [6]

by analytic continuation in time. The boundary point, x˙; z0 D 0 can be in any of the

boundary regions, L;R; F; P . The analogous BTZ propagator is given by summing over

images of the bulk point, enrSy˙; enrSz, as in (2.21). It is important that the i� is also

thereby imaged. To study the near singularity region it is useful to follow [49] and switch to

AdS Schwarzschild coordinates, where the bulk point is at �; �; r , and the boundary point is

given by � 0; � 0; r 0 D 1. We can zoom in on the region where the bulk point approaches the

singularity, r ! 0, and the image sum divergence for positive large n dominates:

KBTZ �
r!0;

X
n > 0 large

�
1

e�
0C
e�� � e��

0�
e� C e�r�n C i��n

��
�

�
1

e�
0C
e�� � e��

0�
e�

��
ln .e�r C i�/ :

(2.34)

35



The approximation in the first line is to drop terms even more subdominant for large n > 0.

In the second line we noted that the �n-dependent terms are subdominant for small r for

the first � ln.�=.e�r// terms in n > 0, with the sum rapidly converging for larger n.

Therefore, the sum is given by the n-independent constant multiplied by � ln.e�r/, for

small r . Crucially, the i� appears inside the logarithm by the first line’s analyticity in

e�r C i�.

2.5.2 Flawed attempt to Scatter through Singularity

Let us now explore the possibility that a dual CFT resides on @BTZ, as identified in

the previous section, by trying to construct the leading in 1=NCFT planar contribution to a

3-point local operator correlator in terms of a tree level BTZ diagram:

h QO.xF /O.xR1/O.xR2/iCFT @BTZ � h
QO.xF /O.xR1/O.xR2/itree BTZ EFT; (2.35)

where as usual, on the left-hand side the operators are defined operationally as limits of bulk

fields,

O D lim
z!0

�.x˙; z/

z�
: (2.36)

We choose two scalar primary operators to be on theR Rindler wedge, and the remaining

operator to be in the F Milne wedge, so that the diagram is forced to pass through the

singularity and we can test what difficulties it poses. In this section, we will seek to

understand if such a correlator is even mathematically well-defined, not yet addressing its

physical interpretation, given that one operator lies inside the singularity where there are
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time-like closed curves. In subsection 2.7.2 we will give a physical interpretation of the

F endpoint as associated to a conceptually straightforward but non-local operator in a hot

(thermofield) CFT. For convenience, we have chosen the F scalar primary to be different

from the R operators with different scale dimension, Q� ¤ �, so that there are two dual

scalar fields in BTZ. We consider a typical non-renormalizable interaction term in BTZ EFT,

Lint D
p
g Q� gMNBTZ @M�@N�: (2.37)

It is straightforward to then write the resulting 3-point correlator in terms of KBTZ and

an integral over a fundamental region of our quotient for the above bulk interaction vertex,

and see that it receives divergent contributions as the interaction vertex approaches the

singularity (Fig. 2.6),

h QOFOR1OR2i D

Z
fund.
d 2ydz

p
gKBTZ.xF ; y; z/g

MN@MKBTZ.x1; y; z/@NKBTZ.x2; y; z/

�
r!0

Z 1
0

dr

Z rS=2

�rS=2

d�

Z
d� .function of � , �/ � r

ln.r C i�/
.r C i�/2

���!
�!0

1:

(2.38)

Ref. [49] earlier worked through a very similar calculation. Naively, this blocks us from

defining such correlators. However, this calculation is in error.

2.5.3 Approaching Singularity from Inside

Schwarzschild coordinates are useful for cleanly separating out the direction of approach

to the singularity from the direction which is being imaged, but they are restricted to only the

outside of the singularity, z2 � y2 > 0. We should also include the asymptotic contributions
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Figure 2.6: Interaction vertex approaching the singularity as seen in the AdSPoincaré covering
space. The singularity is the half-cone x2 C z2 D t2 with z > 0. All lines end on the
boundary z D 0.

as the interaction vertex approaches the singularity from inside it, z2�y2 < 0. This requires

new Schwarzschild-like coordinates for z2 � y2 < 0:

y˙ D

q
1
Qr2
C 1 e˙�

˙

. Qr > 0/

z D
e�

Qr
.�˙ real/

ds2 D �. Qr2 C 1/d�2 �
d Qr2

Qr2 C 1
C Qr2d�2:

(2.39)

Both sets of Schwarzschild coordinates together cover half of AdSPoincaré, xC > 0. (We can

obviously cover xC < 0 analogously, but will not need to.)

We can now repeat the analysis of near-singularity asymptotics forKBTZ but approaching

from inside. For example, considering the boundary point in KBTZ to be in the R wedge for

concreteness (since the asymptotics will not distinguish other choices), we have

KBTZ �
r!0

X
n > 0 large

�
1

e�
0C
e�� � e��

0�
e� � e� Qr�n C i��n

��
�

�
1

e�
0C
e�� � e��

0�
e�

��
ln .�e� Qr C i�/ :

(2.40)
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2.5.4 Proper account of Scattering through Singularity

Putting this together with the near-singularity asymptotics from the outside, we obtain

the correct behavior,

h QOFOR1OR2i D

Z
fund.
d 2ydz

p
gKBTZ.xF ; y; z/g

MN@MKBTZ.x1; y; z/@NKBTZ.x2; y; z/

�
r!0

Z 1
0

dr

Z
d�d� r

ln.r C i�/
.r C i�/2

�

Z 1
0

d Qr

Z
d�d� Qr

ln.�Qr C i�/
.�Qr C i�/2

D
r��Qr

Z r0

�r0

dr

Z
d�d� r

ln.r C i�/
.r C i�/2

;

(2.41)

where we have defined r � �Qr for r < 0, and r0 is small enough that we trust our

asymptotics. It is straightforward to see that the r integral converges near the singularity,

r � 0. For example, the integral can clearly be deformed into the upper half complex

r-plane, completely avoiding r D 0. In this way, our 3-point correlator is mathematically

well-defined despite having to traverse the singularity. (As mentioned earlier, we will give

a physical interpretation in subsection 2.7.2.) For a similar BTZ correlator, [49] found a

similar cancellation of divergence from positive and negative r , although the r < 0 region in

this case arose from the past singularity, so that the cancellation was non-local in spacetime.

For us however, the cancellation is local, just from the two sides very close to the future

singularity surface.

In fact, there is a technically simpler way, directly in Poincaré coordinates, to see the

above finiteness. It is not quite as physically transparent as the local and Lorentzian account

above, but it will generalize to other correlators, and it will arise very naturally in our final

dual CFT construction. The trick is to note that one can rotate the interaction z coordinate
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in the complex plane whenever y˙ is in the F , P wedges, before doing the image sums. In

our example,

h QO.xF /O.xR1/O.xR2/i D
X
k;m;n

Z
F fund.

d 2ydz
1

z

�
z�k

z2�2k � .xF � �ky/2 C i�

� Q�
� �MN@M

�
z�m

z2�2m � .xR1 � �
my/2 C i�

��
@N

�
z�n

z2�2n � .xR2 � �
ny/2 C i�

��
C other wedges; (2.42)

where we integrate over a fundamental region in .y; z/ for each wedge, and �MN is the 2C1

Minkowski metric. We can combine one sum, say
P
k , and

R
fund. into

R
over all AdSPoincaré,

so that after re-naming the other image indices, m! mC k; n! nC k,

h QOFO1O2iBTZ D
X
m;n

Z
AdSPoincaré F -wedge

d 2ydz
1

z

�
z

z2 � .xF � y/2 C i�

� Q�
� �MN@M

�
z�m

z2�2m � .xR1 � �
my/2 C i�

��
@N

�
z�n

z2�2n � .xR2 � �
ny/2 C i�

��
C other wedges: (2.43)

Note the m, n summand is analytic in z for Re z; Im z > 0 so that we can rotate the z

contour to the imaginary axis. In general we do this only in the F , P wedges, but not in

the L, R wedges. Here, we just track the F wedge integration region explicitly for the
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interaction vertex:

h QOFO1O2iBTZ D
X
m;n

Z
F

d 2y

Z 1
0

dz
1

z

�
iz

�z2 � .xF � y/2 C i�

� Q�
� �MN@M

�
iz�m

�z2�2m � .xR1 � �
my/2 C i�

��
@N

�
iz�n

�z2�2n � .xR2 � �
ny/2 C i�

��
C other wedges: (2.44)

With this rotated z, it is straightforward to see that y2 C z2 ¤ 0 since y2 > 0 in F , so the

image sums can now be safely performed and will converge.

The finiteness of correlators with endpoints at the BTZ boundary generalizes to finiteness

of bulk correlators with endpoints away from the singular surface. The deeper reason for such

finiteness will emerge in Section 2.9. This does not mean the singularity has disappeared. As

we saw straightforwardly in the discussion of (2.21), there are divergences when correlators

end on the singularity. Furthermore, we will demonstrate in Section 2.10 one can isolate

UV-sensitive effects even at significant distances/times away from the singular surface (but

< RAdS � 1).

In [48], we will give a more detailed account of 2 ! 2 "scattering" through the

singularity into the whisker region, in a manner that allows more direct comparison with

related studies in the literature, in string theory and EFT (reviewed in [46]). We will

reproduce the pathologies in the literature related to the singularity, but also point out how

the whisker regions play an important role in resolving them.
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2.5.5 Matching to CFT on @BTZ

In the above sequence of operations, rotating the z contours before doing the sum over

two of the images, the method of images applied to AdSPoincaré correlators does seem to

provide us with well-defined boundary correlators in BTZ, which in turn can be interpreted

as defining local primary correlators for a dual CFT "living" on the Lorentzian torus @BTZ.

Indeed if one were to directly define a CFT 3-point correlator on the Lorentzian torus

by viewing it as a quotient of 1 C 1 Minkowski spacetime, it would be given in planar

approximation by the analogous correlator in Minkowski space, but with image sums over

two of the positions of the three local operators, with one position kept fixed. One can

then use AdSPoincaré tree diagrams to compute these Minkowski correlators. Eqs. (2.43) and

(2.44) can be put in precisely this form by dividing imaged numerators and denominators by

�2m or �2n. This gives

h QOFO1O2iBTZ D
X
m;n

Z
AdSPoincaré F -wedge

d 2ydz
1

z
�m��n�

�
z

z2 � .xF � y/2 C i�

� Q�
� �MN@M

�
z

z2 � .�mxR1 � y/
2 C i�

��
@N

�
z

z2 � .�nxR2 � y/
2 C i�

��
C other wedges; (2.45)
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before rotating z, and

h QOFO1O2iBTZ D
X
m;n

Z
F

d 2y

Z 1
0

dz
1

z
�m��n�

�
iz

�z2 � .xF � y/2 C i�

� Q�
� �MN@M

�
iz

�z2 � .�mxR1 � y/
2 C i�

��
@N

�
iz

�z2 � .�nxR2 � y/
2 C i�

��
C other wedges; (2.46)

after rotating z into the manifestly summable form. We have also re-definedm; n! �m;�n

above.

The summands now have the forms of 1 C 1 Minkowski CFT correlators computed

by AdS/CFT, at images of the operator positions, x. The x themselves are chosen from a

fundamental region. Given the universal form of these 3-point CFT correlators, we have

h QOFO1O2iBTZ D
X
m;n

�m��n�

.�mxR1 � �
nxR2/

2�� Q�.�mxR1 � xF /
Q�.�nxR2 � xF /

Q�
: (2.47)

This has precisely the form of a correlator for a CFT "living" on the boundary of BTZ,

computed in the planar limit of a 1=NCFT expansion using the method of images, where

Minkowski spacetime is interpreted as the covering space of the BTZ boundary modulo

a Weyl transformation as discussed in subsection 2.4.1. The powers of �m�; �n� in the

numerator are accounted for now as the local primary operator responses to this Weyl-

rescaling. In this form, it is straightforward to check that the sums over images converge as

long as the CFT local operators do not lie exactly on the lightlike circles of @BTZ.

We could proceed to generalize in this direction but instead prefer to first reformulate
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our whole problem in a way that makes the non-perturbative (in 1=NCFT) structure clear.

2.6 Space$ Time Inside the Horizon

We now describe a strategy for making sense of the boundary regions and their inter-

connections, and thereby framing the CFT dual non-perturbatively. The central observation

is that in 1C 1 dimensions, and in particular in conformal field theory, there is very little

to distinguish "time" from "space". Indeed we can view the switch x $ t , or equivalently

x˙ !˙x˙, as an "improper" conformal transformation, in that it changes the metric only

by an overall factor (the defining feature of conformal transformations), but that factor is �1:

ds2 D dt2 � dx2 ! dx2 � dt2 D �.dt2 � dx2/: (2.48)

This makes it a plausible symmetry of CFT. If we can make the switch x $ t in just the

Milne wedges, then the timelike circles would be turned into ordinary spacelike circles, as

already the case in the Rindler wedges.

2.6.1 x $ t in Free CFT

Eventually, we will have to check this proposition for CFTs with good AdS duals, but

let us first gain intuition by studying free scalar CFT and seeing in what concrete sense

x $ t is a symmetry of the theory. Let us focus on the path integral for correlators in

1C 1 Minkowski spacetime for the primary operators of the form eiq�.x
˙/, with scaling

dimension � D q2=2, and scalar field �. If these operators transform as "primaries" with
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respect to the improper conformal transformation, x˙ !˙x˙, then we expect that

Z
D�ei

R
dtdx .@t�/

2�.@x�/
2

eiq1�.x
˙
1 / � � � eiqn�.x

˙
n /

D

Z
D O�ei

R
dtdx .@x O�/

2�.@t O�/
2

.�1/
�1
2 eiq1 O�.˙x

˙
1 / � � � .�1/

�n
2 eiqn O�.˙x

˙
n /

D

Z
D O�e�i

R
dtdx .@t O�/

2�.@x O�/
2

eiq1 O�.˙x
˙
1 / � � � eiqn O�.˙x

˙
n /.�1/

�nC���C�n
2 ;

(2.49)

where �.x˙/ � O�.˙x˙/ and the qj satisfy charge conservation,
P
j qj D 0. Formally, the

powers of �1 are the standard powers of @ Ox�=@x� for scalar primaries, although here there

is clearly an ambiguity in how to take fractional powers. Comparing the first and last lines

we arrive at the equivalent statement for the n-point Greens function,

Gq1;��� ;qn.x
˙
1 ; � � � ; x

˙
n / D .�1/

�nC���C�n
2 G��q1;��� ;�qn.˙x

˙
1 ; � � � ;˙x

˙
n /: (2.50)

It is straightforward to check this guess, since G is known explicitly (reviewed in [71]):

G D
Y
i>j

"
1

.xCi � x
C

j /.x
�
i � x

�
j /C i�.ti � tj /

2

#qiqj
2

D

Y
i>j

e
�i�qi qj

2

"
1

.xCi � x
C

j /.�x
�
i � .�x

�
j // � i�.xi � xj /

2

# .�qi /.�qj /
2

D

Y
k

e
i��k
2 G��q1;��� ;�qn.˙x

˙
1 ; � � � ;˙x

˙
n /:

(2.51)

The trade of .xi � xj /2 for .ti � tj /2 in the second line follows because the i� only matters

when the rest of the denominator vanishes, which is where these two expressions coincide.
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The product of phase factors in the second and third lines coincide by charge conservation,

0 D

 X
i

qi

!2
D

X
ij

qiqj D 2
X
i>j

qiqj C
X
k

q2k

H)

X
k

q2k D
X
k

2�k D �2
X
i>j

qiqj :

(2.52)

We see that this resolves the ambiguity of fractional powers of �1 in our formal derivations,

e
i��k
2 � .�1/

�k
2 .

In [72], we will prove the x $ t property for time-ordered correlators with up to

four external points for a general 1C 1 CFT, using the conformal bootstrap approach. In

Section 2.8 of this chapter, we prove (a refinement of) this property on the dual AdS side

within EFT for any number of external points.

2.6.2 x $ t in Milne Wedges and Reconnecting to Rindler Wedges

Having made this plausible case for x $ t symmetry, we will apply the transformation

on the F Milne wedge to make it more R-Rindlerlike. More generally, we also compound it

with x˙ ! �x˙ as required to make all four wedges appear R-Rindlerlike, so that we can

use R-Rindler coordinates in all of them:

˙e˙�
˙

D e˛.sin � ˙ cos �/ D

8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂:

x0˙R D x˙R

x0˙F D ˙x
˙
F x $ t

x0˙L D �x
˙
L x; t;$ �x;�t

x0˙P D �x
˙
P x $ �t;

(2.53)
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where j� j � �
4

. Now let us take seriously that the dual CFT lives on the Lorentzian torus,

say as prescribed by a CFT path integral on this spacetime. After the above space/time

interchanges, the path integral on each wedge separately corresponds to a canonical quantum

mechanical time evolution (in �) for the CFT on a spacelike circle (in ˛). Tentatively, the

overall connected toroidal structure suggests that the initial and final states of each wedge

evolution are to be identified with those of adjacent wedges, and then summed over. (This

neglects any concern that the joints themselves are lightlike circles where field theory is

expected to be pathological, but we will be more careful about this below.)

It thereby appears that the full torus path integral is the CFT-trace of the product of

quantum evolution operators for the four separate wedges, akin to the thermal trace structure

of finite temperature field theory and its equivalence to the thermal path integral in cyclic

Euclidean time. However, we have neglected to take into account that adjacent wedges have

differing space/time interchanges, so that the initial/final state of a particular wedge has to

be reinterpreted before being "handed off" to an adjacent wedge. For example, consider

the x� ! �x� transformation in passing from the R to F wedge. Noting that under the

standard CFT symmetry operator eiˇ.S�K/, where S;K are the generators of x˙ dilatations

and boosts respectively,

x� ! e2ˇx�

xC ! xC;

(2.54)

it is natural to guess that under e
�
2
.S�K/,

x� ! ei�x� D �x�

xC ! xC:

(2.55)
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It has the form of an analytic continuation [60] around the complex x� plane (by �) and

therefore makes sense if the x˙ dependence in states/amplitudes is analytic enough at the

"joints" of the torus. Let us continue to hope for the best and take e
�
2
.S�K/ as the requisite

operator to reinterpret states at the hand-off between the R and F wedges. Similar operators

can be constructed to act at the other "joints" of the torus.

Although we are inspired by the connectedness of the Lorentzian torus, and could

proceed directly in this language, it is more convenient to implement the above insights

using our first realization of @BTZ as four disjoint cylindrical spacetimes, with the standard

Rindler coordinates, �˙. The CFT should be indifferent to these different realizations by

different Weyl transformations. We do this for three reasons. Firstly, after the space/time

exchanges above, all the four cylindrical spacetimes have the same very simple geometry,

ds2 D d�Cd��, with circular � and infinite time. Secondly, this form of R and L wedges

is just the standard home of the CFTs in the thermofield proposal for the black hole dual,

so it will make translation of our results into thermofield language easier. Thirdly, the

CFT operators involved in the hand-off of states between wedges are simply energy and

momentum in Rindler coordinates,

P
.�/
˙
�
H .�/ � P .�/

2
D
K.x/ ˙ S .x/

2
; (2.56)

where the K;S are to be interpreted here as (consistently) restricted to the R wedge.
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Figure 2.7: The direction of � in each wedge with respect to Minkowski x˙ as given in
(2.53).

2.6.3 CFT on @BTZ as a Trace

We thereby arrive at a precise and well-defined CFT proposal for interpreting the torus

path integral, as the dual of BTZ quantum gravity:

ZŒJL;R;F;P � D lim
T!1

tr
n
U
�
P e
��P�ULe

��PCU
�
F e
��P�URe

��PC

o
where U D T� e�i

R T
�T d� .HCFT�JO/:

(2.57)

Here, each U is the time evolution operator within each wedge, with possible source terms

for CFT operators O in any wedge. T� denotes time-ordering with respect to � (Fig. 2.7). In

order to be careful about the joins between wedges we regulate the evolutions to finite but

very large final/initial times � D ˙T , and assume that sources, J , vanish outside these times.

We then take the limit as T !1 in order to obtain the Weyl-equivalent of the full torus

path integral, except that (just) the lightlike circles have been delicately excised (Fig. 2.8). It

is straightforward to see that this limit exists once we write the Dyson series expansion for

the source terms, since all e˙iHCFTT factors cancel between the different wedges (using the
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Figure 2.8: Closed lightlike curves are avoided by a limiting process indicated by the arrows.
Closed timelike curves are avoided by formally transforming t $ x in the F and P wedges.

fact that H and P commute for the CFT on the cylinder):

Z D tr.T� OUP /�e��P�.T� OUL/e��PC.T� OUF /�e��P�.T� OUR/e��PC

OU � e�i
R1
�1 d�d� JOH :

(2.58)

Here OH is the Heisenberg operator (with respect to HCFT) related to the Schrödinger

operator O.

Finally, notice that we have chosen specific signs for our exponents in the e��P˙

operators, even though formally rotations by � and �� are equivalent in the x˙ complex

planes. These choices ensure convergence of the sum over CFT states implied by the trace,

in the face of these exponential weights. To see this, note that

e��P˙ D
X
n

e�
�
2
.En�pn/

jnihnj; (2.59)

for a complete set of energy-momentum CFT eigenstates. We expect En > jpnj for such

states, and this certainly follows if the CFT is supersymmetric. Therefore we always have

exponential damping of excited states in the trace formula, equation (2.58).
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We have arrived at a non-perturbatively well-defined formulation of a partition functional

in terms of a CFT living on a spatial circle � time. It remains to show that it is a hologram

of the extended BTZ black hole if the same CFT on Minkowski space has a low-curvature

AdS dual. If so, it necessarily must UV complete the approach to the BTZ singularity and

gravitational EFT.

2.7 CFT Dual in Thermofield Form

In this section we translate the trace form of the CFT partition functional motivated

above into the thermofield language of two entangled CFTs. This will be useful for proving

that its large-NCFT diagrammatic expansion reproduces the tree-level (classical) BTZ EFT

diagrammatics, and in making contact with the standard framework outside the horizon.

2.7.1 Special Case of Purely Rindler Wedge Sources

Let us first restrict our sources to local operators in the Rindler wedges, L and R, which

corresponds to the part of the BTZ boundary lying outside the horizon. We check that the

standard picture [23] emerges straightforwardly from our trace formula.

In this special case, JF;P D 0 and (2.58) becomes

Z D tr e��H .T OUL/e��H .T OUR/

D

X
n;m

e��.EnCEm/hnjT OULjmihmjT OURjni

D

X
n;m

e��.EnCEm/h NmjT OULj NnihmjT OURjni;

(2.60)
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where j N�i � CPT j�i for arbitrary ket j�i. Note that h NmjT OULj Nni is still T-ordered with

respect to the argument of O, since (taking x01 � x
0
2 � � � � � x

0
n without loss of generality),

h jTO1.x1/ � � �On.xn/j�i D h jO1.x1/ � � �On.xn/j�i

D h N�jCPT
�
O1.x1/ � � �On.xn/

�� CPT�1 j N i

D h N�jCPTO�
n.xn/CPT�1 � � �CPTO�

1.x1/CPT�1 j N i

D h N�jOn.�xn/ � � �O1.�x1/j N i

D h N�jTOn.�xn/ � � �O1.�x1/j N i:

(2.61)

The second line is true for any antiunitary operator, while the second-to-last line is how O,

which we take as Lorentz scalar (primary) for simplicity, transforms under CPT. (A more

general irreducible representation of the Lorentz group simply receives additional factors of

.�1/.)

Thus we arrive at standard thermofield form,

Z D h‰jT OUL ˝ T OURj‰i; (2.62)

with

j‰i �
X
n

e��Enj Nni ˝ jni (2.63)

being an entangled state of two otherwise decoupled CFTs on a spatial circle.
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2.7.2 General Case of Arbitrary Sources

Having warmed up as above, let us move to the general case of sources JL;R;F;P ¤ 0,

and even possibly non-local sources in these wedges. By inserting complete sets of energy-

momentum eigenstates again, we can translate our trace formula,

Z D tr e��He�P�.T OUP /�e��P�.T OUL/e��He�P�.T OUF /�e��P�.T OUR/

D

X
n;m

e��.EnCEm/h Nmj.T OUL/e��P�.T OUP /�e�P�j Nnihmje�P�.T OUF /�e��P�.T OUR/jni

D h‰j.T OUL/e��P�.T OUP /�e�P� ˝ e�P�.T OUF /�e��P�.T OUR/j‰i;
(2.64)

using P˙j Nni D P˙jni D pn˙jni, which follows from CPTO CPT�1 rules. Note that even

if the source terms consist of products of local CFT operators, the terms,

e��P�.T OUP /�e�P� �
�

T e�i
R
J e�P�OH e��P�

��
(2.65)

will be products of non-local operators, e�P�OHe��P� , since e��P� is non-local. Never-

theless, the general partition functional has now been put into thermofield form.

In order to verify that this CFT formula reproduces BTZ gravitational EFT, it is very

useful to separate the Rindler wedges from the F and P wedges by insertions of a complete

set of states, jN i, of CFT˝ CFT (in contrast to states jni of a single CFT). We do this as

follows. First we write our thermofield formula in the (obviously equivalent) factorized
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form,

Z D h‰j
h
1˝ e�P�.T OUF /�e��P�

i h
.T OUL/˝ .T OUR/

i h
e��P�.T OUP /�e�P� ˝ 1

i
j‰i:

(2.66)

We insert the resolution of the identity,

1 D
X
N

�
eiHT

˝ e�iHT �
jN ihN j

�
e�iHT

˝ eiHT � ; (2.67)

between the first pair of square brackets, and again between the second pair of (2.66). Note

that the eiHT ˝ e�iHT jN i form a complete orthonormal basis of CFT˝ CFT if the jN i

do because eiHT ˝ e�iHT is unitary (and just the boost symmetry operation in Minkowski

spacetime language). We thereby get

Z D
X
N;M

h‰j
h
1˝ e�P�.T OUF /�e��P�

i �
eiHT

˝ e�iHT �
jN i

hN j
�
e�iHT

˝ eiHT � h.T OUL/˝ .T OUR/i �eiHT
˝ e�iHT �

jM i

hM j
�
e�iHT

˝ eiHT � he��P�.T OUP /�e�P� ˝ 1
i
j‰i:

(2.68)

We can view the states jN i; jM i as being located on the spacelike hypersurface shown in

Fig. 2.9.

Finally, we massage the exponential weights for our later convenience using 1 D
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Figure 2.9: Spacelike hypersurface (blue dashed line) where jN i and jM i are located.

e��P�e�P� D e�P�e��P� ,

Z D
X
N;M

h‰j
h
e��P�e�P� ˝ e�P�.T OUF /�e��P�

i �
eiHT

˝ e�iHT �
jN i

hN j
�
e�iHT

˝ eiHT � h.T OUL/˝ .T OUR/i �eiHT
˝ e�iHT �

jM i

hM j
�
e�iHT

˝ eiHT � he��P�.T OUP /�e�P� ˝ e�P�e��P�i j‰i
D

X
N;M

h‰j
h
1˝ .T OUF /�

i �
e�P� ˝ e��P�

� �
eiHT

˝ e�iHT �
jN i

hN j
�
e�iHT

˝ eiHT � h.T OUL/˝ .T OUR/i �eiHT
˝ e�iHT �

jM i

hM j
�
e�iHT

˝ eiHT � �e��P� ˝ e�P�� h.T OUP /� ˝ 1
i
j‰i;

(2.69)

where to get the last equality we have used

e�P� ˝ e��P�j‰i D
X
n

e�p
n
�e��p

n
�j Nni ˝ jni D j‰i: (2.70)

Note that the above invariance of j‰i can just be thought of as the repeated application
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of the infinitesimal symmetry invariances of CFT˝ CFT,

.1˝ P˙ � P˙ ˝ 1/ j‰i D 0;

1˝H �H ˝ 1 � Minkowski Boost � K

1˝ P � P ˝ 1 � Minkowski Dilatation � S:

(2.71)

Time and space translations in �˙-space correspond to boosts and dilatations in x˙-space.

The negative sign on the second P is due to the parity operation in CPT. Even though we are

compactifying Minkowski spacetime, we are doing it by quotienting by a discrete dilatation

(after a Weyl transformation), which does not break these boost and dilatation symmetries.

In this section and the last, we have made a series of natural guesses to frame the

trace formula (2.57), (2.58) for the partition functional. In the next sections we use bulk

diagrammatics for explicit verification, beginning with the non-quotiented limit, rS !1.

2.8 rS D1: Rindler AdS/CFT

In the limiting case of rS D 1, we are no longer quotienting AdS to get BTZ, we

simply have AdS. In this case we know that there is a CFT dual on 1 C 1 Minkowski

spacetime. Nevertheless all our considerations and derivations above apply for any rS ,

including rS D 1, and therefore (2.69) should give us a second, very different looking,

dual description. It is a non-trivial check of our proposal for these two dual descriptions to

agree and holographically "project" quantum gravity and matter on AdS. In this section, we

verify this at EFT tree level.
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We begin with AdS EFT, with bulk sources,

Sources D
Z
d 2xdz

p
gAdS J .x˙; z/�.x˙; z/: (2.72)

For simplicity, we consider AdS scalar fields explicitly, but we can clearly generalize our

discussion to higher spin fields, including gravitational fluctuations about AdS (as long as

we do this in the context of diffeomorphism gauge-fixing, as discussed in the Introduction).

We can break up AdS into four wedges, F , P , R, L, just based on x˙ and extending for all

z.

2.8.1 Special Case of Purely Rindler Wedge Sources

We will warm up with the special case of only Rindler wedge sources, JF;P D 0. The

usual Rindler construction for any field theory on a spacetime containing a (warped) 1C 1

Minkowski spacetime factor implies [73, 74] [75, 76] [77]

Z D h0jT OUL OURj0i

D h‰jT� OUL T� OURj‰i:

(2.73)

On the first line we just have correlators for the Dyson series in the source perturbations in

the AdS vacuum, where

OU D ei
R
d2xdz

p
gAdS J� : (2.74)
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On the second line, we have replaced the AdS vacuum by its Rindler description (for a

general non-conformal field theory),

j‰i �
X
k

e��Kk j Nki ˝ jki D j0iAdS; (2.75)

where Kk and jki are boost eigenvalues and eigenstates, respectively. Since OL and OR

commute by their spacelike separation, the T-ordering factorizes into separate T-ordering

on the L and R operators. We can take the T-ordering on the second line to be with respect

to the Rindler time, � , since the �-direction is timelike. We use T� to denote ordering with

respect to � and T for time ordering with respect to Minkowski time, t .

We change to coordinates in which the AdSPoincaré boost symmetry becomes �-time

translation symmetry, and the symmetry of rescaling x˙; z becomes a spatial � translation

symmetry,

x˙ D

8̂̂̂<̂
ˆ̂:
�

q
1 � 1

r2
e���; x 2 L

˙

q
1 � 1

r2
e˙�

˙

; x 2 R

z D
e�

r
; .r > 1/: (2.76)

The new coordinates cover each Rindler wedge, L;R, which now look precisely like the

rS !1 limit of the exterior of the BTZ black hole in Schwarzschild coordinates (2.19),

namely the BTZ black string (since � is not compact now). But it is also just the Rindler

coordinate view of the R (or L) wedge of AdSPoincaré. We will refer to the portion of

AdSPoincaré covered by these coordinates for r > 1 as "AdSRindler", and to r , �˙ as "AdSRindler
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coordinates." We can write the Dyson series for the Rindler wedge source perturbations as

OUL D e
i
R
d2�

R1
1 dr

p
gAdSRindler JL�

OUR D e
i
R
d2�

R1
1 dr

p
gAdSRindler JR� :

(2.77)

Because AdSPoincaré boosts correspond to˙ AdSRindler time (� ) translations, we now have

j‰i D
X
k

e��E
k
AdSRindler j Nki ˝ jki D j0iAdSPoincaré; (2.78)

where EkAdSRindler
and jki are eigenvalues and eigenstates of the AdSRindler Hamiltonian.

2.8.2 Comparison with Dual CFT

Now let us invoke standard AdS/CFT duality. For greater familiarity, first specialize our

AdS side further to just boundary sources,

Z
d 2xdz

p
gJ � !

Z
d 2x J lim

z!0

�.x; z/

z�
D

Z
d 2x JOprimary: (2.79)

Comparing with the dual CFT expression,

j0iAdS D
X
k

e��E
k
Rindlerj Nki ˝ jki

D

X
n

e��E
n
CFTj Nni ˝ jni D j0iCFT;

(2.80)

we see that the AdSRindler spacetime must be interpreted as a coarse-grained, classical (planar

in large NCFT) description of an excited stationary CFT state which dominates the thermal
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sum over states. In the thermofield gravity description, one can think of it as a large

excitation of the gravitational field, turning the AdSPoincaré vacuum

ds2 D
1

z2

�
d�2 � d�2 � dz2

�
.z > 0/ (2.81)

into

ds2 D
1

z2

�
d�2 � .1C z2/d�2 �

dz2

1C z2

�
; (2.82)

where we have rewritten (2.4) using z � 1=
p
r2 � 1, for r > 1. We must also sum

over metric and other EFT fluctuations away from this dominant state, and these are dual

to the CFT deviations from the dominant CFT state. In the gravity description, these

deviations from the AdSRindler geometry include Unruh radiation (in the language where we

are just seeing AdSPoincaré from the Rindler observer viewpoint) or Hawking radiation (in the

language where we view the dominant geometry as the BTZ black string with horizon). For

simplicity, we are making the following approximations on the gravity side of the duality:

X
quantum

gravity states

�

X
gravitational
EFT states

�

X
scalar � fluctuations on
fixed AdSRindler metric

: (2.83)

That is, in the sum over metrics we are keeping the dominant AdSRindler metric but dropping

fluctuations of it. Instead, we are keeping just scalar field fluctuations about this geometry

as the simplest illustration of how more general fluctuations will work.
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2.8.3 General Case of Arbitrary Sources

Having interpreted the special status of the AdSRindler metric, let us return to the case

of sources in all regions, JL;R;F;P ¤ 0. We now take the gravity dual of our proposed

construction of CFTMink correlators in terms of jCFTRindleri ˝ jCFTRindleri, and show that

there is a perfect and non-trivial match. With AdSRindler as the dominant CFT state in the

thermofield sum, the gravity dual of our proposed construction on jCFTRindleri˝jCFTRindleri,

(2.69), is given by the analogous construction on j‰i D j0iAdS 2 jAdSRindleri ˝ jAdSRindleri,

namely

Z D
X
N;M

h‰j
h
1˝ .T� OUF /�

i �
e�P� ˝ e��P�

� �
eiHT

˝ e�iHT �
jN i

� hN j
�
e�iHT

˝ eiHT � h.T� OUL/˝ .T� OUR/i �eiHT
˝ e�iHT �

jM i

� hM j
�
e�iHT

˝ eiHT � �e��P� ˝ e�P�� h.T� OUP /� ˝ 1
i
j‰i:

(2.84)

Here, j‰i is given by (2.78) and all operators relate to excitations on AdSRindler. P˙ are

conjugate to �˙ as before. H refers to the EFT Hamiltonian in the AdSRindler background,

HAdSRindler .

The jN i, jM i are excitations of j‰i. Converting to AdSPoincaré coordinates, the time

evolution specified localizes these excitations to the spacelike hypersurface illustrated in

Fig. 2.10. We will refer to this as the "T -hypersurface". We can think of jN i, jM i as being

given by (multiple) scalar field operators on the T -hypersurface acting on j‰i.

We now massage and reinterpret the various matrix elements in (2.84) in AdSPoincaré
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Figure 2.10: Bulk spacelike hypersurface (blue plane) where jN i and jM i are located.

language. Let us first focus on the F matrix element

h‰j
h
1˝ .T� OUF /�

i �
e�P� ˝ e��P�

� �
eiHT

˝ e�iHT �
jN i

� hN j
�
e�iHT

˝ eiHT � �e�P� ˝ e��P�� h1˝ .T� OUF /i j‰i�: (2.85)

Note that

1˝ .T� OUF / D 1˝ T� ei
R
d�d�

p
gAdSRindler JF .�˙;�/�.�˙;�/

D T ei
R
d2xdz

p
gAdSPoincaré JF .x0˙F ;Z/�.x0˙F ;z/

D T ei
R
d2x0dz

p
g 0AdSPoincaré

JF .x0˙F ;Z/�.x0˙F ;z/

D T OUF :

(2.86)

In particular we have replaced Rindler time-ordering by Poincaré time-ordering because

these agree up to operators with spacelike separations as usual. In the last two lines we have

switched to Poincaré notation rather than the tensor product Rindler2 notation of the first

line. Also note that JF .x0˙; z/ ¤ 0 only for both x˙ > 0, which is equivalent to x0C > 0

and x0� < 0. (See x0 definition in (2.53)). So we have sources for � in the R-wedge. Of

course this better not be the full answer since this source term should be for correlators of

points in the F -wedge, and indeed we must still take into account (and translate to Poincaré
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language) the non-local operation

�
e�P� ˝ e��P�

�
� e

�
2
.S�K/ (2.87)

Using (2.71), (2.86), and (2.87), (2.85) becomes

hN j
�
e�iHT

˝ eiHT � �e�P� ˝ e��P�� h1˝ .T� OUF /i j‰i� D hN je�iKT e
�
2
.S�K/ T OUF j‰i�

(2.88)

2.8.4 Diagrammatic Analysis of Thermofield Formulation

To get oriented let us first neglect the operation e
�
2
.S�K/ in our matrix element (2.88)

altogether. Then (2.88) has the following very general AdSPoincaré diagrammatic form:

hN je�iKT T OUF j‰i� !
Z hY

AdS-Propagators � .�i couplings/
i�
; (2.89)

the complex conjugate of AdS diagrams, with external lines ending on the T -hypersurface,

corresponding to connecting to the jN i states, or to � in the R-wedge where JF .x0; z/ ¤ 0.

The integral(s) indicated are over internal interaction vertices.

Now consider the effect of e
�
2
.S�K/ acting on jN i. We can break this up in the form�

e
�
2k
.S�K/

�k
for some large number k. Then as long as the above AdS-diagrams (AdS

propagators) are analytic enough in their x�; z dependence for the locations of scalar

particles in the jN i state (where external lines attach), the action of each e
�
2k
.S�K/ is to just

analytically continue the diagram, x� ! e
i�
k x� and z ! e

i�
2k z. One can repeat such small
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analytic continuations many times to analytically continue x� ! eiˇx� and z ! e
iˇ
2 z as

long as the diagram (propagator) remains analytic along the neighborhood of the path traced

out thereby in the complex x�; z planes, ultimately arriving after k iterations to x� ! �x�

and z ! iz.

This is indeed the case, as we now check. The bulk AdSPoincaré propagator has the

form [78] [79],

GAdS.x
˙; zIy˙; z0/ D ��F.�2/; (2.90)

where F.�2/ � F.�
2
; �
2
C

1
2
I�I �2/ is a hypergeometric function which is analytic in the

complex �2-plane with a cut along .1;1/, and where

� �
2zz0

z2 C z02 � .xC � yC/.x� � y�/C i�.x0 � y0/2
: (2.91)

Because of the branch cuts inF and �� we must be very careful in any analytic continutations

we perform. Our first step will be to simply rotate all z coordinates in the diagrams of

(2.89),

z ! e
iˇ
2 z; from ˇ D 0 to ˇ D � � �: (2.92)

It is straightforward to check that � never passes through a branch cut of GAdS in such a

rotation.

Let us interpret this move. If z corresponds to a point on the T -hypersurface, then

this rotation is just part of the action of e
�
2
.S�K/ acting on jN i, as discussed above. The

e
�
2
.S�K/ is also supposed to rotate the associated x�, but since we are taking T very large,
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and well to the future/past of our sources, x� � 0 along this hypersurface. Therefore the

action of e
�
2
.S�K/ on it is trivial. If instead, z corresponds to an interaction vertex, then

this move corresponds to a (passive) contour rotation of the integral over the interaction

vertex location. The only other possibility is that z corresponds to a source point, where

J ¤ 0. For a source localized to the AdS boundary, necessarily z D 0, which is insensitive

to the rotation. For a bulk source which is analytic enough in z, the above move would

again correspond to (passively) rotating the contour of the z-integral over the source region.

We will discuss subtleties of boundary and bulk source terms further in subsections 2.8.5

and 2.8.6, respectively, but proceed with allowing rotation of source points for these broad

reasons.

After completing the above rotation of all z coordinates in the diagrams of (2.89), at

ˇ D � � � it is straightforward to check that we end up with

�.x˙; e
i.���/
2 zIy˙; e

i.���/
2 z0/ D

2zz0

z2 C z02 C .xC � yC/.x� � y�/ � i�.x1 � y1/2

D ��.˙x˙; zI˙y˙; z0/:

(2.93)

From this, and the fact that the hypergeometric function in terms of which G is given

satisfies F.��2/ D F �.�2/, we obtain the simple but non-trivial identity,

G
�
x˙; e

i.���/
2 zIy˙; e

i.���/
2 z0

�
D G�.˙x˙; zI˙y˙; z0/: (2.94)

The contour rotations of interaction vertices for real to (nearly) imaginary z results in the
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change of integration measure,

Z
d 2x

Z 1
0

dz

z3
� � � ! i

Z
d 2x

Z 1
0

dz

i3z3
� � � ; (2.95)

resulting in the replacement in diagrams

.�i couplings/! .Ci couplings/: (2.96)

We see that both propagators and interactions are thereby complex-conjugated, and the

sign of every x� is flipped in the diagrams corresponding to (2.89). This all happened as

a consequence of a single active move, namely to act with e
�
2
.S�K/ on the points ending

on the T -hypersurface. The complex conjugation simply undoes the conjugation already

appearing in (2.89). For interaction vertices x� ! �x� is clearly irrelevant since it is

integrated, and for points ending on the T -hypersurface we are insensitive to x� ! �x�

because x� � 0 there. Therefore, x� ! �x� is only significant for source points. This

now corrects the naive "wrong", that we started with F -wedge sources for � in the R-wedge,

as noted below (2.86). The action of e
�
2
.S�K/ has performed this "correction".

We are now poised to recover all AdSPoincaré correlators from our thermofield formula,

but must carefully consider boundary versus bulk source options.
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2.8.5 Testing Boundary Localized Correlators (in all regions)

Let us first study the familiar case of sources localized to @AdS. Since

O D lim
z!0

�.x˙; z/

z�
; (2.97)

we are not integrating z. Therefore rotating such z as we prescribe in the previous subsection

will not be a passive move, but will result in an extra factor of 1=i� from the above limit.

This is easily corrected by multiplying the correlator from the trace formula by i� for each

external boundary point in the F (P ) region. Then, for boundary sources, the diagrammatic

analysis of the previous subsection proves that (2.88) is

hN je�iKT e
�
2
.S�K/ T OUF j‰i� D h‰j

�
T OUF

ˇ̌̌
x�!�x�

�
eiKT
jN i: (2.98)

As discussed below (2.96), the x� ! �x� applies to all source points in OUF , correcting

the naive "wrong" of starting with F -wedge sources for � in the R-wedge. A completely
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analogous analysis can be made for the P wedge. Eq. (2.84) thereby takes the form,

ZRindler Thermofield D
X
N;M

h‰j
�

T OUF
ˇ̌̌
x�!�x�

�
eiKT
jN i

� hN je�iKT T OUL OUReiKT
jM i

� hM je�iKT
�

T OUP
ˇ̌̌
x�!�x�

�
j‰i

D h‰j
�

T OUF
ˇ̌̌
x�!�x�

�
T OUL OUR

�
T OUP

ˇ̌̌
x�!�x�

�
j‰i

D h‰jTf OUF OUL OUR OUP gj‰i
ˇ̌̌
fx�F ;x

�
P g!f�x

�
F ;�x

�
P g

D ZPoincaré;

(2.99)

where we used the orthonormality of jN i to get to the second equality, and the fact that all

future and past operators lie to the future and past of the L, R wedges respectively, and that

L wedge operators commute with those of the R wedge, to get to the third equality. Again,

the fx�F ; x
�
P g ! f�x

�
F ;�x

�
P g applies only to source points in OUF and OUP , correcting the

naive "wrong." We have thereby demonstrated that our trace formula and its thermofield

equivalent correctly reproduce arbitrary (local) CFT correlators in Minkowski space as

captured by the dual AdS EFT.

The i� factors needed to achieve the above agreement may seem unusual, but they are

just what one should expect of a conformal transformation law of a scalar primary O, given

our improper conformal transformation,

O0 D
�
dxC

dx0C

��
2
�
dx�

dx0�

��
2

O; (2.100)

x0 D t , t 0 D x or x0C D xC, x0� D �x�. Equivalently, in the F wedge, local operators O
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in the trace formula are reinterpreted as

e
�
2
.K�S/O.x˙/e �2 .S�K/ D e� i��2 O.˙x˙/; (2.101)

inside T -ordered matrix elements. Therefore there is a perfect match between our trace

formula and the Minkowski/Poincaré formulation once these transformation factors are

included.

In detail, we see that the F;P source terms in the trace formula must have extra i�

factors in order to yield a desired set of AdSPoincaré source terms. If we think of source terms

as perturbations of the CFT Hamiltonian, then hermiticity of such perturbations implies that

J is real for hermitian O. Clearly, to get such sources for the AdSPoincaré correlators, we must

start with complex sources (i�� real) in the trace formula, corresponding to non-hermitian

CFT perturbations there. This appears to be an essential part of our construction following

from the improper nature of the conformal transformation switching x and t . We will see a

generalization of this feature for bulk sources.

2.8.6 Testing General Bulk Correlators

Finally, consider bulk source terms in F . As mentioned in subsection 2.8.4, this case is

easiest if we have a bulk source which is analytic in z. Suppose our goal is to end up with a

bulk correlator with a F region source

Z
d 2x dy

z3
J � D

Z 1
0

dz

z
e
� 1

a2
.log z�log Nz/2

�.t D Nt ; x D Nx; z/ (2.102)
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where

J .t; x; z/ D ı.t � Nt /ı.x � Nx/z2e�
1

a2
.log z�log Nz/2 (2.103)

This is a nice Gaussian function of proper distance in the z direction, with size set by a,

which can be as small as desired. Note that this source term is analytic in z throughout

the set of rotated values in (2.92), and falls off rapidly as jzj ! 0;1. To obtain such a

source for our AdSPoincaré correlator, we have seen in subsection 2.8.4 that we must begin in

the trace formula with a source which analytically continues to the target source above, as

z ! iz. That is, in the trace formula we must begin with

Z
d 2x dy

z3
J � D

Z 1
0

dz

z
e
� 1

a2
.log z�log Nz�i �

2 /
2

�.t D Nx; x D Nt ; z/ (2.104)

where

J .t; x; z/ D ı.t � Nx/ı.x � Nt /z2e�
1

a2
.log z�log Nz�i �

2 /
2

(2.105)

As discussed earlier, the trading of Nx and Nt will be fixed by the action of e
�
2
.S�K/. The

analytic z integrand clearly becomes the target source integrand upon performing the z ! iz

move of (2.92).

Again, what is unusual about such a source term for a real bulk field � is that it is

not real, and therefore corresponds to a non-hermitian perturbation of a (diffeomorphism

gauge-fixed) bulk Hamiltonian. Of course, one can break up such complex sources into real

and imaginary parts, so that we reproduce our target AdSPoincaré correlators/sources by taking

straightforward complex linear combintations of the corresponding trace formula correlators.

With this slightly non-trivial matching of source terms, the results of subsection 2.8.4 again
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translate into the trace formula reproducing the AdSPoincaré correlators (integrated against the

target sources).

The non-trivial matching of sources is to be expected once we take into account that the

trace formula reinterprets x $ t in the CFT in the F region (and similarly for P ), the result

of e
�
2
.K�S/O.x˙/e �2 .S�K/ for any operator O whether local or non-local. When a bulk field

operator (in some diffeomorphism gauge-fixed formulation of quantum gravity), �.x˙; z/,

corresponds to some kind of non-local CFT operator by AdS/CFT duality, it should be

reinterpreted in the trace formula as

e
�
2
.K�S/�.x˙; z/e

�
2
.S�K/

D �.˙x˙; iz/; (2.106)

if it lies in F , inside T -ordered matrix elements. Of course the bulk field for imaginary z on

the right-hand side is not a priori well-defined, so this equation should be thought of as a

short-hand for our main result: for analytic sources the AdSPoincaré sources match the trace

formula sources via continuation z ! �iz for F /P regions.

2.9 Finite rS : BTZ/CFT

2.9.1 Finiteness of BTZ EFT correlators

We consider bulk or boundary correlators of the BTZ black hole, with sources anywhere

in the extended spacetime (including inside the horizon, or even beyond the singularity

in the whiskers), as long as bulk sources are analytic in z in the manner discussed in

subsection 2.8.6. In the gravitational EFT these BTZ correlators are obtained by the method
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of images applied to AdSPoincaré, in particular the (scalar) propagator in BTZ has the form,

GBTZ.x
˙; zIy˙; z0/ D

1X
nD�1

GAdS.�
nx˙; �nzIy˙; z0/

D

1X
nD�1

��n F.�
2
n/;

(2.107)

where, as in Section 2.5, we define for convenience

� � erS : (2.108)

The second line of (2.107) follows from (2.90) and (2.91), where

�n �
2�nzz0

�2nz2 C z02 � .�nxC � yC/.�nx� � y�/C i�.�nx0 � y0/2
: (2.109)

A central question is the mathematical finiteness of such EFT correlators, given that the

associated Feynman diagrams generally traverse the singularity. This can be understood by

looking at the large image-number contributions in the above sum, where

�n ���!
n!1

2zz0

�n.z2 � xCx� C i�.x0/2/CO.1/
(2.110)

implies that for generic points the summand / ��n�F.0/ for large n and hence the sum

converges rapidly. However, at the singular surface, z2 � xCx� D 0, if we neglect the i�,

we see that �n and hence the summand, become n-independent for large n, and the sum

diverges. This is the diagrammatic root of the singularity. Once we take into account the i�

term we see that we always get a convergent sum again, but for diagrams to remain finite
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after the ultimate � ! 0 requires major cancellations before that limit is taken. We studied

the simplest examples of this situation and such cancellations in Section 2.5, but in general

correlators the requisite cancellations are not immediately apparent. Nevertheless they do

take place, as we now show in a simple and general way.

Let us again perform the complex rotation of all z coordinates as we did in (2.92), but

now stopping at an intermediate value of ˇ D �=2,

z !
1C i
p
2
z; z > 0: (2.111)

As discussed in Section 2.8, this simply represents a passive deformation of z-integration

contours in the complex plane for interaction vertices and bulk endpoints (with analytic

sources as in subsection 2.8.6), and multiplication by some phases for boundary endpoints.

Therefore this "move" does not affect the finiteness of the correlator. But now we see that

for all points in BTZ, we have

�n ���!
n!1

2izz0

�n.iz2 � xCx�/CO.1/
; (2.112)

so that the propagator summand/ ��n�F.0/ always for large n, the sum converges, and the

correlator is indeed finite (even as � ! 0). It is crucial to note that this finiteness required

integrating over all z > 0 in the first place, so that inside the horizon we are integrating both

inside and outside the singularity. Therefore finiteness required inclusion of the whisker

regions.

The relationship between BTZ and the covering spacetime AdSPoincaré diagrammatics
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is most straightforwardly seen in the (leading) tree-level diagrams of EFT, as illustrated in

Fig. 2.11. We draw the BTZ spacetime as filling in the Lorentzian torus, to topologically

make a solid torus with the Lorentzian torus surface as its boundary. In order to view BTZ

like this we have switched the roles of the two circles of the Lorentzian torus with respect to

Fig. 2.4. Specifically, we generalize (2.29) to the bulk,

t D e˛ sin � sin � x D e˛ sin � cos � z D e˛ cos �
�
0 � � � �

2

�
: (2.113)

We compare diagrams in the solid torus with diagrams in AdSPoincaré, which we view in the

above coordinates as a solid Lorentzian cylinder by first removing the origin. Its boundary,

the surface of that cylinder, is interpreted as 1C 1 Minkowski spacetime with the origin

removed in ˛; � coordinate space. In this representation, the solid torus is simply the

quotient of the solid cylinder by a discrete ˛ translation, periodizing the direction along

the cylinder’s length. Figs. 2.11b and 2.11d show tree diagrams on AdSPoincaré (as the solid

cylinder) where the endpoints of both diagrams are (examples of) images of the same set

of endpoints for a BTZ (solid torus) correlator. Wrapping the AdS diagrams onto BTZ in

Figs. 2.11a and 2.11c, the two AdSPoincaré diagrams appear as different contributions to the

same BTZ correlator, but with different image terms for one of the propagators. In this way,

by adding up all connected tree AdSPoincaré diagrams with end points being images of the

desired BTZ correlator, we get the tree-level BTZ diagram, where every BTZ propagator is

a sum over AdS image propagators.
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(a) (b) (c) (d)

Figure 2.11: Relationship between bulk tree level BTZ diagrams and the corresponding
diagrams on the AdSPoincaré covering space. The dark gray lines are to be interpreted as
propagators inside the gray solids (although they may end on the surface).

2.9.2 Local boundary correlators: EFT dominance and scattering behind

the horizon

While EFT correlators are finite in BTZ, as described above, this in itself does not

prove that these finite correlators dominate the true correlators, which may also include the

contributions of heavy states of the UV complete quantum gravity. It is also not immediately

obvious that these BTZ correlators sharply probe scattering processes inside the horizon

in the same way that AdSPoincaré correlators probe scattering behind the Rindler horizon.

However, both these properties are indeed true of the "protected" set of local boundary

correlators of BTZ realized as a quotient of AdSPoincaré. (Bulk correlators contain extra UV

sensitivity, as do the more general boundary correlators in the BTZ realization as a quotient

of AdSglobal [48].)

We first demonstrate that for � � erS � 1, local boundary EFT correlators are

dominated by n D 0 in the sum over images in each propagator, (2.107). This follows after
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rotating z by ˇ D �=2 in the complex plane, (2.111), so that for large � and x˙; z; y˙; z0 �

O.1/ in propagators, all other terms are � O.��jnj�/. The scaling, x˙; z; y˙; z0 � O.1/

in � follows, even though these arguments are being integrated, if the boundary endpoints

x˙i (which determine the region of convergence of the integrals) are chosen O.1/. That

is, after rotation of z, it is as if there were no singularity, just a very large but compact �

direction, and the resulting diagrams are dominated by the equivalent un-imaged diagrams

in the covering AdSPoincaré spacetime. In particular, since these un-imaged diagrams describe

scattering behind the Rindler horizon, the BTZ correlators must describe scattering behind

the quotient of the Rindler horizon, namely the black hole horizon.

Because we are limiting ourselves to the Poincaré patch of AdS and its quotient, we

are restricted in how "sharp" scattering processes can be when initiated and detected from

the boundary. The reason is that we have to send and receive scattering waves from the

boundary at z D 0, naively suggesting a violation of z-momentum conservation. Indeed,

z-translation invariance is broken by warping but this does not allow us to scatter waves with

z-wavelengths much smaller than the AdS radius of curvature using boundary correlators.

On the other hand, there is no similar obstruction to how small the x-wavelength can be.

Wavepackets with z-wavelengths of order RAdS and much smaller x-wavelengths can be

aimed so that scattering definitely only takes place inside the horizon, and predominantly

away from the singularity. They thereby give us access to reasonably sharp probes of inside-

horizon scattering, but obviously not the most general scattering processes. In short, the

sharpness of BTZ boundary correlators is the same as for AdSPoincare boundary correlators.

Since we are dominated by the un-imaged AdSPoincaré correlators, with O.e�jnjrS�/

corrections to ensure BTZ compactness (in � ), it follows that EFT dominates the boundary
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correlators as it does in AdSPoincaré. Even if we included a very heavy particle into the

Feynman rules, it can be integrated out in the leading n D 0 contribution as in AdS,

inducing only contact effective interactions among the light EFT states. We will see that this

UV-insensitivity is not the case for the subleading O.e�jnjrS�/ effects in Section 2.10, and

that the effects of large cosmological blueshifts near the singularity are indeed present.

It may appear that bulk correlators are similarly protected by the above reasoning, but it

is important to understand why this is not the case. The subtlety is that the above analysis

required first performing the complex rotation of (2.111). As we have seen, this only

changes Witten diagram contributions to boundary correlators by complex phase factors,

so that estimates for the magnitudes of different contributions apply straightforwardly to

the original correlator before rotation. However, this is not the case for bulk correlators,

where bulk sources have to be analytically continued to accomplish (2.111), as discussed

in subsection 2.8.6. In general, such analytic continuations will completely change the

magnitudes of different contributions. Therefore estimates performed after (2.112) do not

apply to the original BTZ correlators before (2.112). Indeed we will give an example of

bulk correlator UV sensitivity in Section 2.10.

If the � circle were always very large there would be no surprise that the correlators

approximate those of non-compact � , namely AdSPoincaré. But it is at first surprising here that

the n ¤ 0 corrections are small even for Witten diagrams passing through the singularity,

where the physical size of the � circle is going to zero, as seen in the Schwarzchild metric

of (2.4). We will see the deeper reason for this in subsection 2.9.5.
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2.9.3 Method of Images applied to Rindler AdS/CFT

We now use the method of images to go to the finite rS (compact � direction) analog of

(2.84), relating local EFT correlators anywhere in BTZ to (non-local) EFT correlators in

two copies of the outside-horizon BTZ with thermofield entanglement:

ZBTZ D HHh‰j
h
1˝ .T� OUF /�

i �
e�P� ˝ e��P�

�
�

h
.T� OUL/˝ .T� OUR/

i �
e��P� ˝ e�P�

� h
.T� OUP /� ˝ 1

i
j‰iHH: (2.114)

The left-hand side is the generating functional of the bulk or boundary correlators of the

BTZ black hole discussed above, with any bulk sources being analytic in z. The right-hand

side is written in terms of the thermofield state formed by two copies of the outside-horizon

(r > 1) portion of the Schwarzschild view of the BTZ black hole. (Of course these two

copies can then be thought of as the outside-horizon portions of a single extended BTZ

black hole.) This outside-horizon geometry is just the quotient of the AdSRindler wedge of

AdSPoincaré. The time and space translation generators on the right-hand side are with respect

to the �; � directions of the Schwarzschild coordinates for the BTZ black hole, and the fields

in all source terms on the right-hand side live only outside the horizon.

The derivation of (2.114) from (2.84) is more transparent when the right-hand side is

written in trace form,

ZBTZ D troutside.T� OUL/e��PC.T� OUF /�e��P�.T� OUR/e��PC.T� OUP /�e��P�; (2.115)
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where the trace is over the Hilbert space on one copy of the outside-horizon region. This

equation is just the quotient of the analogous non-compact statement, where the left-hand

side is the generating functional for AdSPoincaré correlators and the right-hand side is a trace

over the Hilbert space on AdSRindler. On both sides, the compact result follows by imaging the

relevant type of propagator and keeping coordinates within a fundamental region. As pointed

in the discussion below (2.59), the exponential weights in (2.115) are a net suppression of

high energy excitations of the Schwarzchild spacetime (outside the horizon), and therefore

the right-hand sides of (2.114) and (2.115) are mathematically well-defined, matching the

good behavior we have found for the left-hand side.

As discussed below (2.64), one can think of local correlators ending inside the horizon

(including whiskers) on the left-hand side of (2.114) as being equal to correlators outside

the horizon for non-local operators of the form e�P�Olocale
��P� on the right-hand side. So

far we have established that local boundary correlators in BTZ are EFT-dominated and finite,

but we still have not given a physical interpretation of such correlators when they end in

the whiskers, problematic due to the time-like closed curves. However, for local boundary

correlators, the right-hand side of (2.114) gives such a simple interpretation. Defining states,

j‰P ioutside �
�
e��P� ˝ e�P�

� h
.T� OUP /� ˝ 1

i
j‰ioutside

j‰F ioutside �
�
e��P� ˝ e�P�

� h
.T� OUP /� ˝ 1

i
j‰ioutside;

(2.116)

Eq. (2.114) can be re-written

ZBTZ D h‰F j.T� OUL/˝ .T� OUR/j‰Li (2.117)
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That is, the correlators including possible endpoints in the whisker boundaries are equal

to correlators with endpoints only on the boundaries outside the horizon, but with the ther-

mofield state being replaced by the modified j‰P;F i states. Given that we have established

that such correlators are dominated by the non-compact AdSPoincaré EFT correlators (image

terms being subdominant), we can readily interpret these new states. In non-compact corre-

lators, endpoints in the F (say) boundary just act to "detect" the results of earlier scattering

inside the Rindler horizon, or evolving backwards, they set up "out" states, j‰F i which

sharply probe the results of the scattering process. The same must therefore be true after quo-

tienting to BTZ, where the F boundary is the whisker boundary. In summary, the whisker

regions can be thought of as an auxiliary spacetime in which the local boundary correlator

endpoints encode non-local operators that sculpt the thermofield state into a variety of "in"

and "out" states that probe the results of scattering inside the horizon, very much as do F /P

boundary correlators in AdSPoincaré. Furthermore, the local boundary correlators of BTZ are

diffeomorphism invariants of quantum gravity.

2.9.4 Connecting to CFT Dual on @BTZ

It remains to connect (2.114) to the CFT thermofield form of (2.64), (2.69), or equiv-

alently the CFT on the Lorentzian torus � @BTZ. The diagrammatic expansion in the

bulk theory is dual to a large-NCFT expansion in a CFT gauge theory. At infinite rS , tree

diagrams such as Fig. 2.11b capture the same physics as the planar diagrams of Fig. 2.12b in

the dual CFT, by standard AdS/CFT duality. Just as Fig. 2.11b maps to contributions to BTZ

correlators for specific fixed images in Fig. 2.11a, Fig. 2.12b maps to planar diagrams of
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(a) (b)

Figure 2.12: Relationship between planar CFT diagrams in double-line notation (reviewed
in [1]) on the Lorentzian torus and its covering space, the Lorentzian cylinder. These CFT
"gluon" lines are to be interpreted as propagating on the boundary surfaces of the gray solids
in Fig. 2.11. The black dots represent local CFT operators.

the CFT on the Lorentzian torus in Fig. 2.12a , as discussed in more detail for the example

of subsection 2.5.5. Equivalently, we have seen that we can use the right-hand side of

(2.114) for BTZ tree amplitudes, and these are then identified with the careful construction

of (2.57), (2.58) for the CFT on the Lorentzian torus at planar order. That is, the method of

images straightforwardly identifies the bulk tree amplitudes to planar CFT amplitudes, either

directly on (@)BTZ or in equivalent thermofield form. The value in the CFT construction of

(2.57), (2.58) however is that it includes a UV-complete and non-perturbative (in 1=NCFT )

description of the approach to the singularity, even when bulk EFT eventually completely

breaks down.

Naively, at the same planar order in the CFT there are also diagrams which "wrap"

around the torus in the ˛ direction, such as Fig. 2.13a, which do not descend from cylinder

(Minkowski) planar diagrams by the method of images, and yet are of the same order

in NCFT . These diagrams necessarily break up a minimal color singlet combination of

"gluons" and send some of them to an operator and the remainder to its image (Fig. 2.13b).

81



(a) (b)

Figure 2.13: Naively, there are diagrams at leading order in NCFT, such as (a), but which
unwrap to diagrams in Minkowski space, such as (b), which violate gauge invariance (for
example, gauge non-singlets are created by different images of the same operator). Such
contributions vanish by gauge invariance.

But in the full gauge-invariant path integral on the torus such diagrams are constrained to

vanish. This is a familiar fact if we think of the ˛ direction as "time" (now that we are

acclimatized to choosing the "time" direction for our convenience): the non-abelian Gauss

Law constraint says that only gauge-invariant states propagating around the ˛ direction

are physical, whereas any part of of a minimal color singlet cannot be gauge-invariant.

Closely analogous to this, in equilibrium thermal gauge theory it is the Gauss Law constraint

that enforces that only gauge invariant states can circle around compact imaginary time

(equivalently, the thermal trace is only over gauge-invariant states).

At nonplanar order in the CFT, there are subleading diagrams that can be identified

with the loop-level bulk diagrams that unitarize the tree-level contributions. But there are

also new CFT contributions not of this form, namely creation and destruction of finite-

energy Wilson-loop states winding around the compact � direction. These have no analog

in the non-compact case. In BTZ, these are dual to quantum gravity states, generically

finite-energy "strings", that wind around the bulk � circle, but which have no analog in non-

compact AdSPoincaré. The effects of such extended objects cannot be captured by the simple
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diagrammatic method of images we have followed for BTZ. If the extended objects have

tension then the winding states will ordinarily be extremely heavy for large rS , and thereby

give exponentially suppressed virtual contributions to correlators between well-separated

source points. But approaching the singularity, the physical �-circumference approaches

zero, as seen in the Schwarzchild metric, (2.4), and the winding states can become light.

They are then part of the normally-UV physics which becomes important near the singularity.

See [47] for discussion within string theory. We expect this physics to be contained in our

CFT proposal for the non-perturbative BTZ dual, but not part of the EFT checks we have

performed in the regime where we argued EFT should dominate.

Finally, beyond any order in 1=NCFT , the CFT correlators will have effects, not matching

bulk EFT or even perturbative string theory. They may well play an important role near the

singularity.

2.9.5 Deeper reason for insensitivity to singularity

Our diagrammatic derivations have non-trivially confirmed our formal CFT expectations

for local correlators set forth in (2.64). But this does not explain why EFT is well-behaved

despite the singularity, why technically there was a way to deform the contour for interaction

vertex integrals so as to avoid the perturbative face of the singularity in image sums, and

for boundary correlators why these image sums converge so rapidly. We might also worry

that EFT misses important UV physics near the singularity, such as heavy particles or the

winding states mentioned above. In general, we therefore want to understand whether to trust

EFT at all for boundary correlators, especially when some endpoints are in the whiskers.
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Figure 2.14: The dashed curves represent two spacelike hypersurfaces that are related by
bulk diffeomorphisms.

We begin with non-compact AdSPoincaré where we understand the diagrammatic expan-

sion. We have formally motivated and then diagrammatically derived the Rindler AdS/CFT

result of (2.84) and more compactly, (2.64). The typical local boundary correlator of

AdSPoincaré is thereby re-expressed on the right-hand sides using (2.65),

h‰jf1˝ T � Œ.e
�P�OF

1 e
��P�/::::.e�P�OF

nF
e��P�/�g

�fT� ŒOL
1 ::::OL

nL
�˝T� ŒOR

1 ::::OR
nR
�gf1˝T � Œ.e

�P�OP
1 e
��P�/::::.e�P�OF

nP
e��P�/�gj‰i;

(2.118)

where the O are local Heisenberg operators of the CFT or local boundary operators of AdS.

The operators of the form e�P�Oe��P� are then non-local, but only in the spatial sense.

Time evolution, implicit in the Heisenberg operators, ranges between the earliest and latest

times that appear in any of the O operators above, �early; �late, say. It is important to note

that this time evolution does not go all the way from � D �1 to � D C1. This is no

surprise because we have a (generalized) in-in formalism [50, 51] (see [52] for a modern

discussion and review) in the thermofield form for correlators. We represent this situation in

the Penrose diagram of Fig. 2.14, where the symmetry � direction is omitted, but is now non-
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compact �1 < � <1. The spacelike hypersurfaces are pinned on the boundary by the

boundary time evolution, but their form in the bulk is otherwise arbitrary by diffeomorphism

invariance. What is not immediately obvious from the figure, but straightforwardly verified

by the AdSPoincaré metric, is that all such hypersurfaces pinned to the boundary outside

the (Rindler) horizon cannot go beyond the jagged lines at any point. This is the only

significance of the jagged lines in Fig. 2.14 since there is of course no singularity in AdS.

We have depicted the simplest choice of such hypersurfaces.

The central point when we move to the compact BTZ case for such correlators, as in

(2.114), is that Fig. 2.14 still holds, but now with the omitted � direction of course being

compact, and the jagged lines depicting the location of the singularity. What we see is

that in deriving (2.114) from (2.84) we are only trusting the diagrammatic expansion and

the method of images to compactify � away from the singularity. As long as �early/late are

not too early or late, the physical circumference of the � circle can be taken to be large

throughout the time evolution and it is not surprising if our correlators are dominated by

the non-compact limit and insensitive to the UV physics of the singularity. In particular,

winding states will be very massive throughout this evolution.

2.10 Sensing Near-Singularity Physics

A good part of this chapter has been concerned with the validity and use of bulk EFT

and the diagrammatic expansion in order to capture scattering processes behind the BTZ

horizon. This has allowed us to test our proposed non-perturbative CFT formulation under

conditions where we already know what to expect. However, the real importance of such a
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CFT formulation is that it allows us to study processes close to the singularity, where large

cosmological blue-shifts make the physics very UV sensitive and EFT breaks down. In this

section, we want to demonstrate that the UV-sensitive physics near the singularity is certainly

present in the BTZ quantum gravity and that whisker correlators and their CFT duals can

detect this. To do this, we will show under what circumstances we become sensitive to

heavy states beyond EFT, and yet without such sensitivity invalidating our derivations.

We know that we see divergences if correlator endpoints are right on the singularity, as

simply illustrated just by (2.21). But EFT should come with some effective cutoff length,

below which we do not ask questions. If we simply move correlator endpoints more than

the cutoff length away from the singularity they are finite and the cosmological blueshifts

are more modest. But mathematical finiteness is not necessarily the same as insensitivity to

heavy states. We begin by demonstrating that even at distances/times of order RAdS away

from the singularity, correlators are sensitive to the UV heavy states outside BTZ EFT. To

do this we move the point in the F wedge of our Section 2.5 example correlator from the

boundary to the interior and consider

h Q�F .xF ; z
0/O.xR1/O.xR2/itree BTZ

D

Z
fund.

d 2ydz
p
g QGBTZ.xF ; z

0
Iy; z/gMN@MK.xR1Iy; z/@NK.xR2Iy; z/: (2.119)

We assume from now on that Q� � 1 and corresponds (via Qm2 D Q�. Q� � 2/) to some

heavy particle of BTZ quantum gravity that is more massive than the cutoff of BTZ EFT

("string excitations"). We are going to show that we are sensitive to such states at order RAdS

separations from the singularity.
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Choose xF , z0 to have timelike geodesic to some points on the singularity, with proper

times to these points < RAdS.� 1/, but much larger than the cutoff length. For example,

x˙F D ˙.z
0 � ı/, ı < 1 and near-singularity points .y˙ � ˙z0; z � z0/ are related in this

way. For such small separations, the bulk propagator can be approximated by its 2C 1 local

Minkowski equivalent,

QGAdS �
z0ei

�
z0

p
.xF�y/2�.z�z0/2�i�.x

0
F�y

0/2q
.xF � y/2 � .z � z0/2 � i�.x

0
F � y

0/2
; (2.120)

where z0 is the approximately constant redshift of the inertial 2C 1 Minkowski patch. QGBTZ

is of course obtained by images of .y; z/ from QGAdS. Combining this sum with integration

of interaction points over the fundamental region to get integration over all AdSPoincaré,

similarly to (2.43),

h Q�O1O2i �

Z
AdS
d 2ydz

p
g

z0ei
�
z0

p
.xF�y/2�.z�z0/2�i�.x

0
F�y

0/2q
.xF � y/2 � .z � z0/2 � i�.x

0
F � y

0/2
gMN@MK1@NK2C� � � :

(2.121)

The ellipsis corresponds to integration over interaction points outside RAdS of .x˙F ; z/ and

interaction points spacelike separated from .x˙F ; z/. For either of these, the Minkowski-

dominance approximation breaks down, but precisely so as to suppress these contributions

for very large Q�. We are therefore correctly focused on the small timelike separation region.

We again zoom in on the contribution from .y; z/ near the singularity and switch to
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Schwarzschild coordinates:

h Q�O1O2i �
r!0

Z r0

�r0

drd�d� r

.r C i�/2
ei
Q�
p
2�2rr 0 cosh.��� 0/C.r2Cr 02�2/ cosh.��� 0/p

2 � 2rr 0 cosh.� � � 0/C .r2 C r 02 � 2/ cosh.� � � 0/

�

Z r0

�r0

drd�d� r

.r C i�/2
ei
Q�
p
.r 0�r/2�.��� 0/2p

.r 0 � r/2 � .� � � 0/2
;

(2.122)

with .� � � 0/, .� � � 0/, r , r 0 all small, but only r ! 0. As r ! 0, timelike separation to

.xF ; z/ requires r 02 > .� � � 0/2, so

h Q�O1O2iBTZ �

Z r0

�r0

drd�d�

r C i�
e˙i

Q�.r�r 0/: (2.123)

The behavior at˙r0 is smooth so we are basically computing the Fourier transform of 1
rCi�

.

As � ! 0, we have unsuppressed Fourier components and there is no suppression for large

Q�. In other words the particles sent in from the R wedge are able to produce cutoff scale

heavy particles that can propagate far away from singularity. Therefore these heavy states

cannot simply be integrated out by r 0, even though lcutoff �
1
Q�
� r 0 < 1. So EFT cannot be

trusted at r 0.

We can contrast this situation with with the analogous AdSPoincaré correlators (not BTZ):

h Q�.xF ; z
0/OR1OR2iAdS D

Z
d 2ydz

p
g QGAdSg

MN
AdS @MK

AdS
1 @NK

AdS
2 : (2.124)

Without any infinite image sums, the K’s are smoothly varying on RAdS � 1 length scales,

except on light cones from x1;2. We take .x˙F ; z
0/ to be away from these lightcones. For

Q� � 1 not to be the exponent of a suppression, .y; z/ must be timelike separated with
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separation < RAdS. Therefore in looking for unsuppressed contributions, .y; z/ can also be

taken away from x1;2 lightcones. But then QG rapidly oscillates on 1
Q�

lengths, so its integral

with the smooth @K@K is highly suppressed. This is the standard reason for why we can

integrate out heavy Q� in long-wavelength processes. In AdSPoincaré we do not see the kind of

breakdown of gravitational EFT that we see in BTZ.

It is important to note that the BTZ sensitivity to heavy particles, just illustrated, takes

place in a correlator with one bulk endpoint. Thus it is not in contradiction with our general

observation that the purely local boundary correlators are dominated by EFT. But it is

the local boundary correlators that are most straightforwardly matched non-perturbatively

to CFT correlators and ideally we want to use just these to detect the UV physics near

the singularity. Fortunately, while we have shown that EFT dominates local boundary

correlators, and even more strongly that the non-compact limit (AdSPoincaré) dominates, this

does not preclude the UV physics from residing in the small corrections to these leading

approximations. The key then is to look at boundary correlators that vanish at the leading

approximation, so that the small UV-sensitive effects dominate.

In the process we have considered that creates a heavy particle near the singularity using

the large cosmological blueshift there, and propagates it into the whisker, the obvious way to

get a purely local boundary correlator is to attach two light particle lines to the bulk point in

Fig. 2.15a and then connect these to the whisker boundary, as in Fig. 2.15b. Using the ability

to choose the boundary sources for the four boundary points, we can insist that the incoming

beams are softer than the threshold for heavy particle production unless one takes into

account the cosmological blueshifts, that is unless one looks at large image numbers in the

propagators and not just n D 0 in the notation of (2.107). Similarly, we can choose sources
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(a) (b)

Figure 2.15: Sensitivity to the singularity. The cone marks the location of the singularity
and the dashed line represents a heavy particle. The lower black lines represent two
incoming particles that are initially subthreshold. The heavy particle can be produced due to
blueshifting as the singularity is approached. In (b), the heavy particle subsequently decays
and its decay products are received at the boundary.

for the boundary whisker points to be "looking" for hard particles coming from a point away

from the singularity. In this way, we have chosen the boundary correlator to vanish at the

usual leading approximation of the non-compact limit, but clearly the full correlator captures

the heavy particle production near the singularity and its distant propagation. In fact it might

seem that this UV sensitive BTZ boundary correlator is order one, in violation of our general

result. But it is easy to see the source of suppression: if it were not for the warp factor we

would expect z-momentum to be conserved, in which case the heavy particle produced from

light particle beams originating at z D 0 would not "decay" into light particle beams which

return to z D 0. Instead we would expect the final light particle beams to escape to large z

and not contribute to this purely boundary correlator. The warp factor can indeed violate

z-momentum conservation, but it is a very mild effect for hard incoming beams. This is the

source of suppression of the boundary correlator that is in keeping with our general result.

Therefore, the four-point correlator depicted in Fig. 2.15b is small, but the UV-sensitivity
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dominates this small correlator. Using (2.64) and (2.114), we can write this correlator as a

non-perturbatively well-defined CFT thermofield correlator. Of course there might be other

UV physics which is harder to model, which would be picked up in similar fashion by our

non-perturbative formulation. This is the central payoff of our work.

2.11 Comments and Conclusions

We have made a precise proposal for the non-perturbative CFT dual of quantum gravity

and matter on a BTZ black hole, in terms of 1C 1 Minkowski CFTs with weakly-coupled,

low-curvature AdSPoincaré duals, and provided several non-trivial checks. It extends the now-

standard duality by making sense of a CFT "living" on the full BTZ boundary realized as a

quotient of AdSPoincaré, which includes "whisker regions" beyond the singularity containing

timelike closed curves. We did this by observing that there are well-defined non-local

generalizations, e��P˙ , of the familiar Boltzmann weight, e�ˇH , which effectively switch

the roles of space and time inside the horizon, and turn the timelike circles into familiar

spacelike circles. We then gave an equivalent thermofield construction of our CFT dual in

which non-local correlators in the entangled CFTs are responsible for capturing the results

of scattering inside the horizon, giving a concrete realization of complementarity.

We chose to realize BTZ as a quotient of AdSPoincaré, rather than of AdSglobal, based on

its greater technical simplicity, and because the set of local boundary correlators in this

smaller spacetime are "protected", in the sense of being dominated by gravitational effective

field theory even when the contributing Witten diagrams traverse the singularity. This

construction gave us the minimal extension of BTZ beyond the singularity to make contact
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with boundary components within and to explore the role they play, even in just ensuring

the mathematical finiteness of bulk amplitudes. But both AdSPoincaré, and the portion of

the extended BTZ spacetime it covers, are geodesically incomplete. Our CFT proposal

"projects" this geodesically incomplete portion of BTZ in an analogous manner to the way in

which CFT on Minkowski spacetime "projects" quantum gravity on geodesically incomplete

AdSPoincaré. Our CFT dual of BTZ lives on the Lorentzian torus, which is also incomplete

because of geodesics that can "escape" by passing close to the lightlike circles. But in our

careful construction we are cutting out thin wedges around the lightlike circles so this does

not arise. Alternatively phrased, in our final construction we only use CFT on spacetime

"pieces" of the cylindrical form circle � time. We will address the maximally extended BTZ

spacetime arising from the quotient of AdSglobal in future work.

While analytic continuation played a role in this chapter, we believe it was a matter of

calculational efficiency, rather than as a conceptual tool. For example, in subsection 2.5.4

studying scattering through the singularity, we arrived at the same conclusion by direct

computation of BTZ diagrams and by rotating the interaction integral contour of the z-

coordinate. In Section 2.8, we used analytic continuations as the simplest way of computing

the non-local consequence of the e��P˙ "generalized Boltzmann weights". In principle one

could directly do the integral over such weights without any continuations but it would be

technically much harder. We have checked that the direct computation in free CFT gives the

same result as analytic continuation.

We believe our approach should be closely generalizable to quotients of higher-dimensional

AdS spacetimes [80] [81] [82]. These yield interesting black objects with horizons and

singularities. Of course it would be a greater technical feat to obtain the dual of higher-
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dimensional black holes or higher-dimensional cosmologies, without the advantage of a

quotient construction from AdS, and with even worse (looking) singularities. It remains of

great interest to understand the dual of evaporating black holes. We hope that the "Ising

model" of black holes, BTZ, shares enough in common with other systems with horizons

and singularities to provide hints on how to proceed.

In the chapter, we have viewed the whisker regions, in particular their boundary, as an

auxiliary spacetime grafted onto the physical spacetime which is useful in defining states

on the physical region, much as Euclidean spacetime grafts are useful in defining Hartle-

Hawking states on physical spacetime. However, since the whiskers do have Lorentzian

signature, it is intriguing to also see if they can be accorded any more direct physical reality.

Once the whisker boundaries are added to the usual boundary regions outside the horizon,

we saw that we arrive at a Lorentzian torus. Because of the existence of circular time in the

whisker boundaries, the CFT path integral does not have a canonical quantum mechanical

interpretation, in that we cannot simply specify any initial state in a Hilbert space and let it

evolve. Instead the path integral gives us an entire quantum spacetime which we can ask

questions of, in the form of correlations of Hermitian observables. In this sense, it has the

form of a kind of wavefunction of the Universe.

Alternatively, we can think of our results as simply demonstrating that the extended

black hole is a robust emergent phenomenon within a (single) "hot" CFT. For instance,

we saw in subsection 2.7.1 that with sources restricted to being outside the horizon, in

either exterior region L or R, our trace formula reduces to (2.60), which is equivalent to the

standard thermofield description, (2.62), (2.63). Local sources in L can be thought of as
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specific non-local sources in R, so that there is a single CFT in a thermal heat bath,

ZŒJL;R� D tr
n
e�ˇH

�
e�HULe

��H
�
UR

o
where ˇ � 2� .

(2.125)

This is just a re-writing of the thermofield description as a thermal trace in a single CFT,

rather than pure quantum mechanical evolution in two copies of the CFT. To describe

observables in L, we see we have to take standard observables and "smear" them between

e�H and e��H . In other words, local L observables are secretly just non-local observables

in R. In this view there is only the R CFT in a heat bath, and the L is an "emergent"

description to track certain non-local correlators. This is related to the discussion of the

emergence of "doubling" of CFTs in subsection 5.1 of [59]. Now, the results of our chapter,

in particular the last line of (2.64), has shown that the UF;P probes of the inside-horizon

F;P regions can be thought of as "emerging" from non-local probes in the outside-horizon

R and L regions, arising from "smearing" standard R;L observables between e�P� and

e��P� . Putting all these observations together, we can think of probes anywhere in the

extended black hole spacetime as emerging from non-local correlators in a single CFT with

thermal density-matrix: Eq. (2.57) can be re-expressed as

ZŒJL;R;F;P � D tr
n
e�ˇH

h
e�H .e�P�U

�
P e
��P�/ULe

��H
i
.e�P�U

�
F e
��P�/UR

o
where ˇ � 2� .

(2.126)

Non-local correlators in the thermal density matrix "project" the extended black hole,

including the singularity. This follows from our results. In this way, there is a modest
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"landscape" of regimes of the gravitational dual, connected by horizons. Possibly other

non-local operators, not of the forms above, may project other parts of the "landscape" of

the quantum gravity dual.
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Chapter 3: Natural Inflation and Quantum Gravity

3.1 Introduction

The success of modern cosmology is founded on the simplifying features of homogeneity,

isotropy and spatial flatness of the Universe on the largest distances. In this limit, spacetime

evolution is given in terms of a single scale-factor, a.t/, and its Hubble expansion rate,

H � Pa=a. Homogeneity and flatness are themselves puzzling, constituting very special

“initial” conditions from the viewpoint of the Hot Big Bang (HBB). But they become more

robust if the HBB is preceded by an even earlier era of Cosmic Inflation, exponential

expansion of the Universe driven by the dynamics of a scalar field � (the “inflaton”) coupled

to General Relativity (see [83] for a review):

H 2
D
8�GN

3

�
1
2
P�2 C V.�/

�
R� C 3H P� C V 0 D 0: (3.1)

(We work in fundamental units in which ~ D c D 1. GN is Newton’s constant.) If

“slow roll” is achieved for a period of time, P� subdominant and V.�/ � constant, we

get a / eHt ;H � constant, after which the potential energy is released, “reheating” the

Universe to the HBB. Phenomenologically, Ne-folds > 40 � 60 are required to understand
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the degree of homogeneity/flatness we see today.

Remarkably, quantum fluctuations during inflation can seed the inhomogeneities in the

distribution of galaxies and in the Cosmic Microwave Background (CMB). In particular, the

CMB temperature-fluctuation power-spectrum,

�S.k/ / k
ns.k/; k � wavenumber; ns � spectral index; (3.2)

is generically predicted by inflation to be approximately scale-invariant, ns � 1, and is

measured to be ns � 0:96 [84, 85].

Slow roll itself requires an unusually flat potential, suggesting that the inflaton � is

a pseudo-Nambu-Goldstone boson of a spontaneously broken global U.1/ symmetry, an

“axion". If there is a weak coupling that explicitly violates U.1/ symmetry by a definite

amount of charge, one can generate a potential,

V.�/ D V0

�
1 � cos

�

f

�
; (3.3)

where f is a constant determined by the spontaneous breaking dynamics, while V0 is a

constant proportional to the weak coupling. This is the model of “Natural Inflation” [86].1 It

can be successfully fit to data, and in particular for Ne-folds > 50; ns � 0:96, one finds [85]

f > 2 � 1019 GeV � 10Mpl

V0 > .2 � 10
16 GeV/4 � .10�2Mpl/

4:

(3.4)

1The fine-tuning of the two terms in Eq. (3.3) to obtain a (nearly) vanishing vacuum energy relates to the
notorious Cosmological Constant Problem [87], which we do not address here.
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The Planck scale Mpl � 1=
p
8�GN D 2 � 1018 GeV is the energy scale above which

Quantum Gravity (QG) effects become strong, and effective field theory (EFT) must break

down in favor of a more fundamental description such as superstring theory [88].

The very high energy scale V 1=40 � 0:01Mpl is without precedent in observational

physics and implies sensitivity to new exotic phenomena. For such large inflationary energy

densities, quantum graviton production during inflation gives rise to a tensor/scalar ratio

of the CMB power spectrum of r � 0:1. Indeed, the BICEP2 CMB experiment has

claimed a signal at this sensitivity [89], although there is still serious concern over possible

contamination by foreground dust [90, 91]. Regardless, cosmological observations have the

potential to provide information about physics at the highest energy scales in the near future.

However, the proximity of the QG scale raises concerns about the validity of effective

field theory treatments of inflation and susceptibility to poorly-understood QG effects. There

are broadly two approaches to addressing such QG uncertainties in high-scale inflation

models. One is to derive inflationary models directly within known superstring constructions,

which provide reasonably explicit UV descriptions of QG. Such constructions feature many

moduli fields (for example, describing the size and shape of several extra dimensions) which

must be stabilized and which also receive time-dependent back-reaction effects during the

course of inflation. Consistently constructing and analyzing models of this type can be

an involved and difficult task, and there is as yet no fully realistic top-down derivation.

Nevertheless, considerable qualitative progress has been made on possible shapes and

field-ranges of inflaton potentials in string theory and their effects [92–100].

Alternatively, one can try to construct bottom-up effective field theory models, in-

corporating simple mechanisms that shield the inflationary structure from unknown QG
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corrections, aspects of which have been previously explored in e.g. [101–110]. However,

studies of robust quantum properties of large black hole solutions in General Relativity, as

well many string theory precedents, strongly suggest that there are non-trivial constraints on

effective field theory couplings in order for them to be consistent with any UV completion

incorporating QG, which make inflationary model-building challenging. In this chapter,

we will discuss the impact of such black-hole/QG considerations in the context of Natu-

ral Inflation, in particular the role of the Weak Gravity Conjecture (WGC) [111]. While

these considerations rule out some inflationary models, we demonstrate for the first time

that there do exist simple and predictive effective theories of natural inflation, consistent

with the WGC, where the inflaton arises from components of higher-dimensional gauge

fields. The advantage of the effective field theory approach is two-fold: (i) the models

have relatively few moving parts, whose dynamics can be analyzed quite straightforwardly

and comprehensively, and (ii) one can achieve full realism. We believe that such a higher-

dimensional realization yields the most attractive framework for cosmic inflation to date.

Further elaboration of our work will be presented in [112].

3.2 Quantum Gravity Constraints

Classical black holes can carry gauge charges, observable by their gauge flux outside the

horizon, but not global charges. Studies of black hole formation and Hawking evaporation,

combined with the statistical interpretation of their entropy, then imply that such quantum

processes violate global charge conservation [113, 114]. By the Uncertainty Principle this

holds even for virtual black holes, implying that at some level global symmetries such as
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those desired for Natural Inflation cannot co-exist with QG. Of course, global symmetries

are seen in a variety of experimental phenomena, but these are accidental or emergent

at low energies, while Natural Inflation only achieves slow roll for f > Mpl! A loop-

hole is that 1=f may represent a weak coupling and low-scale symmetry breaking rather

than very high scale breaking. The mechanism of “Extranatural Inflation" [101] precisely

exploits this loop-hole, realizing � as a low-energy remnant of a U.1/ gauge symmetry. The

model is electrodynamics, but in 4+1-dimensional spacetime, with the usual dimensions,

x�D0�3, augmented by a very small extra-dimensional circle, x5 2 .��R; �R�. The 3+1-

dimensional inflaton is identified with the phase of the gauge-invariant Wilson loop around

the circle,

�.x�/ �
1

2�R

I
dx5A5.x

�; x5/: (3.5)

Classically, the masslessness of the Maxwell field, AMD�;5, matches onto V.�/ D 0 in the

long distance effective theory� R. But 4+1D charged matter, with charge g5, mass m5,

and spin S , corrects the quantum effective potential [115, 116],

ıV .�/ D
3.�1/S

4�2
1

.2�R/4

X
n2Z

cne
�2�nRm5 Re ein�=f

cn.2�Rm5/ D
.2�Rm5/

2

3n3
C
2�Rm5

n4
C
1

n5
; (3.6)

where .e�2�Rm5/=R4 is a typical (Yukawa-suppressed) extra-dimensional Casimir energy

density, and the phase captures an Aharonov-Bohm effect around the circle. We have written
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this in terms of the emergent scale,

f �
1

2�Rg
; (3.7)

where g is the effective 3+1 coupling which matches onto g5 in the UV. We see that

Natural Inflation structure (with innocuous harmonics), with f > Mpl, can emerge at a

sub-Planckian compactification scale, 1=R � Mpl, by choosing weak gauge coupling

g � 1. After reaching the minimum of its potential the inflaton can “reheat” the Universe

to a radiation-dominated phase by decaying into the charged matter.

The requirement g � 1 seems suspiciously close to g D 0, the limit in which the

U.1/ gauge symmetry effectively reverts to an exact global symmetry, at odds with QG.

Indeed, Extranatural Inflation runs afoul of a subtle QG criterion known as the Weak

Gravity Conjecture [111]. (For related work see e.g. [117–123].) The WGC again uses

universal features of black holes to provide insights into QG constraints on EFT. In brief,

one argument is as follows. (We will discuss this and other motivations for the WGC at

greater length in [112].) Ref. [114] has shown that in EFTs containing both a Maxwell

gauge field and General Relativity, the associated gauge group must be compact U.1/, in

the sense that electric charges must be quantized in integer multiples of the coupling g, in

order to avoid other exact global symmetries and related negative consequences. Then, there

exist large black hole solutions to the Einstein-Maxwell Equations carrying both electric

and magnetic charges. These solutions are quantum-mechanically consistent if they obey

the Dirac quantization condition, whereby magnetic charges are quantized in units of 2�=g.

All precedent in General Relativity and string theory research (e.g. [7,124–126]) suggests
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that black holes are themselves coarse-grained EFT descriptions of gravitational bound

states of more basic components (see [127, 128] for reviews). In particular, magnetically

charged black holes should be “made out of" fundamental magnetic charges which are

themselves not black holes. And yet, this is impossible for sufficiently small g � 1. The

reason is that Maxwell EFT cannot describe electric and magnetic charges which are both

light and pointlike. Instead, the magnetic charges must be heavy solitons, with a size 1=ƒ,

where ƒ < Mpl is the UV energy cutoff of the EFT. The magnetostatic self-energy in the

region outside the 1=ƒ-sized “core”, where EFT applies, is then �ƒ=.2g2/ � ƒ; 2 the

mass mcore within the core is expected to be at least comparable to this. In order for the

soliton to be larger than its horizon radius 2GNmcore, to avoid being a black hole itself, we

must have

ƒ . 2
p
2gMpl: (3.8)

Here the “." reminds us of the O.1/ uncertainties in this argument. This is the WGC. When

testing theories of inflation for parametric control these O.1/ uncertainties will be irrelevant,

but we will be subject to them when fitting models to precision data.

Requiring the compactification scale to be below the EFT cutoff, 1=R < ƒ, then implies

f < Mpl, by Eq. (3.7), spoiling minimal Extranatural Inflation [111, 129]. Note that even

with the O.1/ uncertainty in the WGC, we cannot get parametrically large f=Mpl (ie. large

Ne�folds/.

2By comparison, for weakly coupled electrically-charged point particles, the length scale that sets the
electrostatic self-energy is played by the Compton wavelength, which is then a small perturbation of the mass,
g2m=.8�/� m.
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3.3 Bi-Axion Models

We now show that we can achieve inflation subject to the constraints of the WGC by

generalizing to bi-axion (extra-)natural inflation, with two axions, A, B [130–135]. Consider

the potential

V D V0

�
1 � cos

A

fA

�
C QV0

�
1 � cos

�
NA

fA
C
B

fB

��
; (3.9)

where N 2 Z by A-periodicity, following from its Nambu-Goldstone status. For sufficiently

large N � 1, we get two hierarchical eigenmodes. At lower energies than the higher mass,

the second term enforces the constraint

NA

fA
C
B

fB
� 0: (3.10)

Plugging back into V gives an effective potential for the light mode, � � B ,

Veff.�/ D V0

�
1 � cos

�

feff

�
; feff D NfB : (3.11)

This model is straightforwardly realized from 4+1 electrodynamics of two U.1/ gauge

fields [135], AM , BM , 3 with charges .N; 1/ and .1; 0/, and 4+1 masses less than 1=R.

Aharonov-Bohm effects analogous to (3.6) then give rise to (3.9), for effective 3+1 scalars,

A;B defined analogously to (3.5), with V0 � QV0 and fA D 1=.2�RgA/, fB D 1=.2�RgB/.

It is clear that the WGC, (3.8), can be satisfied for both gauge interactions, with fA; fB �

3Ref. [122] claims that there are additional constraints from the WGC in theories with multiple U.1/ fields,
though this does not follow from our arguments. If there are n U.1/’s all with a common coupling, then [122]
claims that WGC bounds become stronger by a factor of

p
n, which is O.1/ in our examples.

103



Mpl, while still obtaining feff � Mpl, provided N is large enough. Large N also ensures

that quantum tunneling of the fields through the potential barrier from the second term of

Eq. (3.9) is extremely suppressed.

But in non-renormalizable 4+1D QED, the UV scale of strong coupling (and EFT

breakdown), ƒgauge, falls rapidly as N increases,

ƒgauge D
8�

N 2g2
1

R
: (3.12)

Minimally, both this cutoff and the WGC cutoff should be above the compactification scale,

1=R, to remain in theoretical control. Given that for Natural Inflation, feff &
p
Ne-foldsMpl,

it is easy to check that the bi-axion model can give parametrically large Ne-folds provided N

and MplR are taken sufficiently large while keeping Ng fixed.

3.4 Radius Stabilization

When 4+1 General Relativity is taken into account, R is not an input parameter, but

rather the expectation of a dynamical effective 3+1 (“radion”) field, �.x�/,

R DMple
p

2
3
h�.x/i=Mpl : (3.13)

We show that MplR� 1 can arise naturally, and that the extra dimension is effectively rigid

during inflation. A suitable � potential can arise simply via Goldberger-Wise stabilization

[136], in the case where the extra-dimensional circle is further “orbifolded" in half, down

to an interval. (This has the added benefit of projecting out the unnecessary 3+1 vector

104



components of the gauge field, without otherwise affecting our earlier discussion.) The

stabilization mechanism requires adding a 4+1 neutral scalar field, �. The energy in this

field depends on R, providing an effective potential for � ,

Vradion � m
2
�M

3
5

�
c1e

2�Rm� C c2e
�2�Rm�

�
H) 2�R �

1

m�
; (3.14)

where c1;2 � O.1/ are determined by � boundary conditions at the ends of the interval, and

M5 is the 4+1 Planck scale. Large R clearly requires small m�. This (and the small 4+1

cosmological constant that has been neglected above) can both be natural if the 4+1 “bulk"

spacetime preserves supersymmetry (to a high degree). The potential also gives the radion a

mass,

m2� �
1

.2�R/2
� H 2; (3.15)

so that it is not excited during and after inflation.

3.5 Precision CMB Observables

CMB observables are sensitive to even small corrections to the inflationary potential. An

attractive feature of the extra-dimensional realizations are that the structure of subleading

corrections is controlled by the higher gauge symmetry. Eq. (3.6) shows that massive charges

decouple exponentially from the potential, with the extra dimension effectively acting as a

“filter" of unknown UV physics, but they can have observable effects if not too heavy. Since
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our effective theory has cutoffs on its validity given by the WGC, (3.8), and strong coupling

in the UV, (3.12), in general new physics will appear by (the lower of) these cutoffs,� ƒ.

This may include new particles with 5D mass M � ƒ carrying charges .nA; nB/, where

each charge is plausibly in the range jnj . N . Such charges will create an Aharonov-Bohm

correction to the potential, which after imposing the IR constraint, (3.10), yields

ıV � V0
.2�RM/2

3
e�2�RM cos .NnB � nA/

�

feff
: (3.16)

If NnB � nA � 1, this “higher harmonic” gives a modulating correction to the slow-roll

parameter � �
M2

pl

2

�
V 0

V

�2
,

ı�

�
D 2.NnB � nA/

.2�RM/2

3
e�2�RM sin.NnB � nA/

�

feff
: (3.17)

For this to not obstruct inflation itself requires ı�=� < 1. However, the parameter ı�=� also

controls corrections to the temperature power-spectrum in the slow-roll limit, where the

modulating part of the potential is almost constant during a Hubble time. Such periodic

modulations of the inflationary potential have been searched for in the CMB data [137–142],

most recently motivated by the possibility of such signals in axion monodromy inflation [93,

139,142]. These results place more stringent bounds, requiring ı�=� . 1�5%, forNnB�nA

in a realistic range of � O.10 � 100/.

Parametrically, it is easy to check that ı�=� can be made arbitrarily small while still

satisfying theoretical constraints, and consistent with large Ne-folds. But this is accomplished

at the expense of taking MplR parametrically large. However, as seen in (3.6), 1=R sets the
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scale of V0 in Natural Inflation, which is bounded by current observations. For example, we

can fit the data, (3.4), with N D 42, g D 0:08, MplR D 8. Then if we have new particles at

the cutoff,M D ƒ and charges .nA � O.N /; nB � O.1//, we have ı�=� � 3%. Of course,

the charges at the cutoff may have a different pattern, and from (3.17), we are exponentially

sensitive to order one uncertainties in determining ƒ from (3.8) and (3.12), but we see that

our parametric success is also numerically plausible in the real world. Our estimates clearly

motivate searching for such modulation in the CMB power spectrum.

3.6 Tri-Axion Models

Our discussion can be straightforwardly extended to tri-axion models [131, 135, 143],

where smaller charge ratios are possible in the extranatural realization [135]. We find that

such models can also satisfy the WGC, both parametrically and numerically in realistic

models, with a higher and safer EFT cutoff. Consider 3 gauge fields A;B;C and 3 particles

with charges .1; 0; 0/, .NA; 1; 0/, .0;NB ; 1/. NA; NB � 1 implies only one light field, �,

with

feff D
NANB

2�RgC
: (3.18)

We can now fit the data with smaller charges and lower corrections to the slow-roll parameter;

e.g. taking NA;B D 8, gA;B;C D 0:12, MplR D 8 we obtain ı�=� � 3 � 10�4.

3.7 Chern-Simons Model

The need for specific, large charges for light 4+1 matter may seem somewhat contrived.

Arbitrary light charges would have effects similar in form to (3.16) but without Yukawa
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suppression, spoiling inflation. To explore this issue we modify our extra-dimensional

approach so that these large quantum numbers become outputs of the model rather than fixed

input parameters. For simplicity, we first focus on the single Maxwell field, AM , and replace

its coupling to explicit light charged matter by a Chern-Simons coupling to a non-abelian

Yang-Mills (YM) gauge sector (say with SU.2/ gauge group),

ıLCS, 4+1 D
N

64�2
�LMNPQGaLMG

a
NPAQ: (3.19)

At this stage N is still an input parameter, its quantization enforced now by invariance under

large gauge transformations. In general, Chern-Simons couplings allow gauge fluxes to play

the role of gauge currents; in this case YM fluxes act as an AM current. YM instantons can

then replace the role of virtual Aharonov-Bohm effects. This is best seen by first passing to

the 3+1 effective theory,

ıLCS, 3+1 D
N

64�2
A

f
�����Ga��G

a
�� : (3.20)

This is very similar to the coupling of the Peccei-Quinn axion to QCD in order to solve the

Strong CP Problem: upon YM confinement [144] we obtain

ıL4D eff D OV0F
�
NA

f

�
; (3.21)

where F is an order-one 2�-periodic function replacing the second cosine in (3.9), and OV0

is set by the YM confinement scale. Similar generalizations F.NA/! F.NAC B/ can

replace (3.9). In this way, we recover Natural Inflation via bi-axion or tri-axion models.
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A virtue of the 4+1 Chern-Simons model is that it can be extended to 6+1 field theory

with a Chern-Simons coupling, which may be written compactly in differential form notation

as

ıLCS;7D D
1

32�2
dA ^ A ^G ^G; (3.22)

such that N does not appear as an input coupling. Instead, we take the 6th, 7th dimensions

to form a small 2-sphere, on which quantized F D dA gauge flux can be trapped. We will

quantize about classical solutions with N flux quanta,

I
S2
F D

N

2�
: (3.23)

In this way, N defines discrete selection sectors of the 6+1 theory, a “landscape” of per-

turbatively stable vacuua. Plugging this condition into (3.22) reduces it to the 4+1 model,

(3.19).

This basic mechanism can be extended to bi-/tri-axion models. For example, the second

term of (3.9) can be produced if the A field has a 6+1 Chern-Simons coupling as in (3.22)

while the B field has only a 4+1 coupling of the form in (3.19) to the same YM gauge

sector. This could occur e.g. if the B field is localized to a 4-brane defect. In [112] we will

demonstrate that these 6+1 models are also parametrically controlled while being consistent

with the WGC and Ne-folds � 1. A key new feature in the analysis is the dynamical role

N plays in stabilizing the size of the 6-7 sphere. Note that obtaining many e-foldings of

inflation does not require a very specific, “tuned” choice of N ; large Ne-folds can in fact be
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generic within this landscape of solutions.

Let us summarize. Black hole processes and properties provide a unique window into

quantum gravity, placing tight constraints, such as the Weak Gravity Conjecture, on effective

field theories of inflation. We have demonstrated that a parametrically large number of

e-foldings of high-scale inflation can be realized by simple multi-axion generalizations of

Extranatural Inflation, consistent with these constraints. The resulting models achieve large

gravitational wave signals of r � 0:1 while remaining realistic and theoretically controlled,

and predict potentially observable modulations of the scalar power spectrum.

110



Chapter 4: The Conformal Bootstrap and Critical Universality

4.1 Introduction

Consider the phase diagram of water shown in figure 4.1. The curve separating the liquid

and gas phases ends at a critical point. Beyond that point, there is no longer any distinction

between the two phases. The modern form of the renormalization group was developed by

Ken Wilson [145–147] in order to understand these critical points, and he was awarded the

Nobel Prize for this work. One may wonder why such points are so interesting. This has to

do with the concept of universality.

Near the critical temperature Tc of water, the specific heat CV behaves as

CV / jT � Tcj
�˛; (4.1)

critical point
Solid

Liquid

Gas

Temperature

Pr
es

su
re

Figure 4.1: Phase diagram of water
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where ˛ � 0:11. Similarly, the compressibility �T also exhibits power-law behavior:

�T / jT � Tcj
�
 (4.2)

where 
 � 1:22. In fact, many other quantities exhibit power-law behavior as well, and

their exponents are called critical exponents.

Besides water, there are obviously many other substances that can undergo a liquid-

gas phase transition, and a corresponding set of critical exponents can also be defined.

The remarkable thing is that every such substance has the same set of critical exponents

(˛ � 0:11, 
 � 1:22, etc.). Even more remarkable is that systems with phase transitions that

are completely unrelated to liquid/gas can also exhibit the same set of critical exponents. For

example, magnets have a phase transition in which they lose their magnetization at a high

enough temperature. In the specific case of a uniaxial ferromagnet, the critical exponents

match those of water. This phenomena of universal behavior is called universality, and

systems that have the same set of critical exponents are said to be in the same universality

class.

In the language of the renormalization group (RG), a universality class is associated

with a fixed point of the RG flow. The fixed point has a basin of attraction. Tuning a

system to its critical point means that its RG initial condition lies in the basin of attraction

(figure 4.2). Different members of the universality class, when tuned to their critical points,

will start their RG at different points in the basin of attraction. However, all these different

initial conditions flow to the same point, and therefore they describe the same long-distance

physics. This is the explanation of universality. For reviews, see [148, 149]
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(a) View of flows on the basin
of attraction.

(b) View of flows off the basin
of attraction.

Figure 4.2: Renormalization group flows near a critical point. The dotted line in B represents
different initial conditions as an external parameter is tuned.

Each step of the RG consists of a course-graining in which short distance degrees of

freedom are integrated over, followed by a rescaling so that the “grains” return back to their

previous size. As a result, any intrinsic length scale of the system, such as a correlation

length, shrinks on each RG step. However, at the fixed point, the system is invariant under

the RG, and hence any length scale must be such that it remains the same after a rescaling.

Of course, this is impossible unless the length scale is either zero or infinity. Therefore, the

fixed point theory actually has no length scales, and is thus a scale-invariant theory. Now, in

a wide variety of cases, it turns out that scale-invariant theories also happen to be invariant

under RG transformations that are non-uniform in space. In other words, the course graining

is finer in some places and courser in others. Such a theory is called a conformal field theory

(CFT).

All properties of a universality class are encoded in its corresponding scale-invariant

fixed point theory. In this chapter, we will only deal with scale-invariant theories that are

also conformal. Because of this, recently developed tools in conformal field theory can be

used to understand an unexplained but striking feature about universality: there are only
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very few universality classes. Specifically, the classes are generally distinguished by only

three properties: the number of dimensions, the global symmetry group of the Hamiltonian,

and the number of experimental “knobs” that need to be tuned to reach the critical point. A

priori, the RG would allow multiple universality classes with those same three properties,

but that is not what is found in nature. A CFT explanation for this striking feature has been

suggested by the work of [150–153]. They present evidence that in three dimensions, there

is only one theoretically consistent CFT with a specified global symmetry group and number

of relevant operators.1 In this chapter, we extend their results on the Ising universality class

to two dimensions. Specifically, we give evidence that the CFT describing the 2D Ising

universality class is the only Z2-symmetric unitary CFT in two dimensions with exactly two

relevant operators.

In this chapter, we give a review of conformal field theory and the conformal bootstrap,

independent of its relation to critical phenomena. For more detailed reviews and references

to the literature, see [154, 155]. We then apply the conformal bootstrap to the concept of

universality as just reviewed. The sections are organized as follows. In section 4.2, we define

a CFT in terms of the behavior of its correlation functions under Weyl transformations. In

section 4.3, we argue that a CFT has a convergent operator product expansion. In section 4.4,

we describe how all local correlators can be determined by a CFT’s conformal data, which

are the set of numbers that determine the 2-point and 3-point functions. In section 4.5, we

derive the conformal bootstrap equations, which are the severe consistency conditions that

the conformal data must satisfy . In section 4.6, we derive additional constraints on the

1The relevant operators correspond to directions away from the fixed point’s basin of attraction, which
correspond to experimental knobs that need to be tuned.
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conformal data imposed by unitarity. In section 4.7, we show how numerical methods can

efficiently identify large regions in the space of putative conformal data that are inconsistent

with the bootstrap equations. In section 4.8, we improve the numerical methods. In

section 4.9, we return to the concept of universality. In section 4.10, we present the new 2D

Ising results.

The main novelty of the conformal bootstrap is the use of computers to prove rigorous

theorems in conformal field theory. The author acknowledges the University of Mary-

land supercomputing resources (http://www.it.umd.edu/hpcc) made available for

conducting the research reported in this chapter.

4.2 Conformal Field Theory

In this section, we define conformal field theory (CFT), being careful to explain the rela-

tionship between scale transformations, Weyl transformations, conformal transformations,

and diffeomorphisms. We also derive the exact 2-point and 3-point correlation functions in

a CFT.

As mentioned in the introduction, at a fixed point of the RG, the theory is scale invariant.

This means that correlation functions behave very simply under a uniform rescaling of

positions:

hO1.�x1/ � � �On.�xn/i D �
��1 � � ����nhO1.x1/ � � �On.xn/i: (4.3)

We can always choose a basis of operators so that this equation is true. Operators in this basis

are called scaling operators, and we will work exclusively with them. The number �i is an
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intrinsic property of Oi called its scaling dimension (or simply “dimension”). Furthermore,

Oi can transform under a finite dimensional representation of the Lorentz group, though we

will mostly consider scalars for simplicity.

Now, instead of rescaling all positions x ! �x, we could equally well keep the positions

fixed and rescale the background flat space metric ��� ! �2���:

hO1.�x1/ � � �On.�xn/i� D hO1.x1/ � � �On.xn/i�2�: (4.4)

Here h� � �ig denotes the correlator calculated in the background metric g. Therefore, scale

invariance can be phrased as

hO1.x1/ � � �On.xn/i�2� D �
��1 � � ����nhO1.x1/ � � �On.xn/i�: (4.5)

Remarkably, for reasons still not fully understood [156–159], scale invariance is very

often enhanced to Weyl invariance. This means that for a certain class of operators, the

constant scale factor � in (4.5) can be replaced by an arbitrary function of position � !

�.x/:

hO1.x1/ � � �On.xn/i�.x/2� D �.x1/
��1 � � ��.xn/

��nhO1.x1/ � � �On.xn/i�: (4.6)

This is the defining property of a conformal field theory.2 The operators for which (4.6) is

true are called primary operators. In flat space, these are the set of operators that are not

2In even dimensions there is a Weyl anomaly. However, it cancels out in correlation functions provided
correlators are normalized by the partition function. We will take this to be the case.
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total derivatives. Total derivatives are called descendants, and their correlators can be simply

found by taking appropriate derivatives of the correlators of primary operators. We will

therefore now use O to denote primary operators only.

A Weyl transformation generally transforms a flat manifold into a curved one. However,

we often want to remain in flat space and instead have relations between correlators evaluated

at different points. We will now show how Weyl invariance combined with diffeomorphism

invariance allows us to obtain powerful transformation properties of flat space correlators.

By diffeomorphism invariance, we mean that correlation functions are invariant under

diffeomorphisms of the background spacetime manifold.3 Specifically, under the combined

replacement,

x� ! Qx�.x/ (4.7)

��� ! Qg��. Qx/ D
@x˛

@ Qx�
@xˇ

@ Qx�
�˛ˇ (4.8)

correlators are invariant for arbitrary Qx�.x/:

hO1.x1/ � � �On.xn/i� D hO1. Qx1/ � � �On. Qxn/i Qg : (4.9)

Now, there is a restricted class of diffeomorphisms x ! Qx.x/ that leave the metric ���

invariant up to an overall multiplicative factor:

@ Qx˛

@x�
@ Qxˇ

@x�
�˛ˇ D �.x/

2���: (4.10)

3Diffeomorphism invariance can be used to derive the Ward Identity for the conservation of the stress
tensor.
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These are called conformal transformations. We see from (4.8), that for conformal transfor-

mations, Qg��. Qx/ D �.x/�2��� .4 Thus, (4.9) becomes

hO1.x1/ � � �On.xn/i� D hO1. Qx1/ � � �On. Qxn/i�.x/�2� (4.11)

D �.x1/
�1 � � ��.xn/

�nhO1. Qx1/ � � �On. Qxn/i�; (4.12)

where we then used the defining Weyl invariance of the CFT (4.6) in the last line to return

the metric back to ��� . Therefore,

hO1. Qx1/ � � �On. Qxn/i D �.x1/
��1 � � ��.xn/

��nhO1.x1/ � � �On.xn/i: (4.13)

These are the powerful transformation properties of flat space correlators (with background

metric ���) mentioned earlier. To summarize, we arrived at (4.13) by using the subgroup of

Weyl and diffeomorphism transformations that leaves the metric ��� invariant.

We will now use (4.13) to completely fix the form of 2-point and 3-point functions.

The defining property of conformal transformations is (4.10). Clearly, Poincaré and scale

transformations are of this form. In dimensions d > 2, there is actually only one other

independent conformal transformation.5 These are inversions:

Qx� D
x�

x2
: (4.14)

All conformal transformations can be obtained by composing Poincaré transformations with

4Note the minus sign in the exponent. The conventions were arranged to give a Weyl factor of � D �

under x ! �x.
5In d D 2, there are an infinite number of independent conformal transformations.
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inversions.

Using conformal transformations, we can fix three points to have whatever value we

want. To see this, we will move an arbitrary configuration of three points x1, x2, and x3 to

the points 0, 1, and1 along some arbitrarily chosen axis. First, translate x3 to the origin,

followed by an inversion to move it to infinity. Next, translate x1 to the origin. Finally, use

rotations and scale transformations to move x2 to the point 1. Therefore, the 2-point and

3-point functions are completely determined by (4.13) and their values at any one point. We

will write the explicit expressions for primaries since correlators of descendents are just

derivatives of these expressions as already mentioned. For the 2-point function of scalar

primaries, we find

hOi.x1/Oj .x2/i D

8̂̂̂̂
<̂
ˆ̂̂:
0; if �i ¤ �j

Zij

x2�12
if �i D �j � �

(4.15)

where xpij �
�
.xi � xj /

2
�p=2. In section 4.6, we will see that the symmetric matrix Zij is

positive definite in a unitary theory. Therefore, we can always choose a basis of operators

such that Zij D ıij . We will also need the 2-point function of operators with spin-l (i.e.

traceless symmetric tensors of rank l):

hO�1����l .x/O�1����l .0/i D
I .�1�1.x/ � � � I

�l /
�l .x/

x2�
� traces; (4.16)

where

I��.x/ D ı
�
� � 2

x�x�

x2
: (4.17)
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Moving on to the 3-point function:

hOi.x1/Oj .x2/Ok.x3/i D
�ijk

x
�iC�j��k
12 x

�jC�k��i
23 x

�kC�i��j
31

: (4.18)

Note that once the 2-point functions has been normalized so that Zij D ıij , then the �ijk

are unambiguous data of the CFT. We will also see later that by unitarity they must be real

numbers.

Now for the 4-point function. Since we can only fix three points, the 4-point function is

not completely fixed by conformal symmetry. In particular, given four points x1; � � � x4, the

combinations

u D
x212x

2
34

x213x
2
24

and v D
x214x

2
34

x223x
2
24

(4.19)

are invariant under all conformal transformations. Therefore, the 4-point function can

naively contain an arbitrary function of u and v:

hOi.x1/Oj .x2/Ok.x3/Ol.x4/i D
1

x
�iC�j
12 x

�kC�l
34

�
x24

x14

��ij �x14
x13

��kl
Gijkl.u; v/;

(4.20)

where �ij � �i ��j and Gijkl.u; v/ is the arbitrary function of u and v. We will see in

section 4:4 that G is actually completely fixed if we know the entire spectrum of operators

in the CFT plus the complete set of 3-point function coefficients �ijk.
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4.3 Operator Product Expansion

In this section, we will argue that a CFT has an operator product expansion (OPE) that

converges at finite separation. We will do this by Weyl transforming from Euclidean Rd to

the cylinder Sd�1 �R. The convergent OPE will result from applying the standard rules of

quantum mechanics to the CFT on the cylinder. For more details, see [160].

In polar coordinates, the flat space metric is

ds2 D dr2 C r2d�2d�1 (4.21)

D e2�
�
d�2 C d�2d�1

�
; (4.22)

where r D e� . In the last line, the term in the parenthesis is the metric for the cylinder

Sd�1 � R. Thus, we see that flat Euclidean space is Weyl equivalent to the cylinder.

Therefore, we can simply map the CFT to the cylinder via transformation (4.6) with� D e�� .

Now, we will assume that after Wick rotating to Lorentzian time on the cylinder, the standard

rules of quantum mechanics apply. In particular,

1. There is a complete Hilbert Space of normalizable states.

2. The Hamiltonian is diagonalizable.

3. The energy eigenstates form a basis.

As usual, states on the cylinder can be given a path integral construction. Suppose

that our CFT is given by a path integral over the scalar field ˆ. Let '.Ex/ denote field

configurations on the sphere Sd�1. Then, for example, the ground state wavefunctional
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Figure 4.3: There is a one-to-one correspondence between functionals on Rd and wavefunc-
tionals on the cylinder.

‰0Œ'� in the basis of field eigenstates j'i can be constructed as

‰0Œ'� � h'j0i D

Z
ˆ.�;Ex/D'.Ex/

��0

Dˆe�SŒˆ�: (4.23)

This is the Euclidean path integral over the field ˆ.�; Ex/ on the half cylinder (� � 0) with

the boundary condition ˆ.0; Ex/ D '.Ex/. Excited states j‰i can be constructed by inserting

additional operators in the path integral:

‰Œ'� � h'j‰i D

Z
ˆ.�;Ex/D'.Ex/

��0

Dˆe�SŒˆ�O1 � � �On: (4.24)

We can also transform the path integral back to Rd . There, the region of integration is a solid

ball with boundary conditions on its Sd�1 boundary. The path integral over the interior of

the ball as a function of its boundary conditions also defines a functional e‰Œ'�. There is thus

a one-to-one correspondence between this functional e‰Œ'� on Rd and the wavefunctional

‰Œ'� on the cylinder (figure 4.3). We will use this correspondence heavily below.

By assumption, any state j‰i on the cylinder can be expanded in a complete set of
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energy eigenstates j�ii:

j‰i D
X
i

ci j�ii: (4.25)

We labeled the energies by � since time translations on the cylinder corresponds to scale

transformations on Rd (quantizing this way goes by the name “radial quantization”). Having

seen in (4.24) how operators can create states on the cylinder, we will now show that the

converse is also true. Namely, for each j�ii on the cylinder, we can define a local operator

Oj�i i on Rd . We will define Oj�i i by defining its correlation functions. As argued in

the previous paragraph, the wavefunctional ‰j�i iŒ'� D h'j�ii corresponds in Rd to a

functional e‰j�i iŒ'� defined over a sphere Sd�1. Correlators of Oj�i i can now be defined by

cutting a solid ball out of the path integral on Rd and gluing in the functional e‰j�i iŒ'�. By

gluing, we mean do the path integral outside the solid ball with the boundary condition ' on

the the boundary. Then integrate over the boundary condition weighted by e‰j�i iŒ'�.

hOj�iOj�iOj�ii � (4.26)

We are now ready to derive the OPE. In Rd , consider two operators Oi.x/Oj .0/ inside

a ball. The path integral inside the ball defines a functional e‰ on the boundary. This

functional has a corresponding cylinder wavefunctional ‰Œ'� D h'j‰i. Expand the state

j‰i D
P
k ckj�ki. Finally, each j�ki maps back to an operator Oj�ki in Rd . In the end,
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we have

Oi.x/Oj .0/ D
X
k

ck.x/Oj�ki; (4.27)

This is the OPE. Our derivation makes it clear that the OPE converges anytime a sphere can

be drawn around two operators with out enclosing any others. Note that neither of the two

operators needs to be located at the center of the sphere.

4.4 Conformal Data

The conformal data of a CFT consists of its spectrum of primary operators f�i ; lig,

together with the corresponding set of 3-point function coefficients f�ijkg. In this section, we

will show that a CFT’s conformal data completely determines all the correlations functions

of its local operators.

We begin with the OPE (4.27) from last section, reorganizing it as a sum over only the

primaries and writing the sum over the descendants explicitly,

Oi.x/Oj .0/ D
X
k

ak.x/Ok.0/C b
�

k
.x/@�Ok.0/C c

��

k
.x/@�@�Ok.0/C � � � : (4.28)

For simplicity, consider only scalar operators in what follows. We will now show that

for each k, conformal invariance completely fixes the coefficient functions up to a single
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constant. To see this, use the OPE to evaluate the 3-point function:

hOi.x/Oj .0/Ok.y/i D
X
k0

�
ak0.x/C b

�

k0
.x/@� C c

��

k0
.x/@�@� C � � �

�
hOk0.0/Ok.y/i

(4.29)

D
�
ak.x/C b

�

k
.x/@� C c

��

k
.x/@�@� C � � �

� 1

y2�k
: (4.30)

The sum over k0 collapsed due to the orthonormality of the 2-point function. On the other

hand, we know the exact form of the 3-point function,

hOi.x/Oj .0/Ok.y/i D
�ijk

x�iC�j��ky�kC�j��i jx � yj�kC�i��j
(4.31)

D
�ijk

x�iC�j��ky2�k

�
1 �

2x �y

y2
C
x2

y2

��j��k��i
2

: (4.32)

By expanding the term in parenthesis for small x and comparing with (4.30), we can

determine all the OPE coefficient functions ak.x/, b
�

k
.x/, etc. For example,

ak.x/ D
�ijk

x�iC�j��k
(4.33)

b
�

k
.x/ D

�ijk

x�iC�j��k

�i ��j C�k

2�k
x�: (4.34)

Up to the 3-point function constant �ijk, we see that the OPE coefficient functions are

completely fixed by the dimensions (and spins) of the three operators involved. Because of
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this the, �ijk are commonly called OPE coefficients. We can now write the OPE as,

Oi.x/Oj .0/ D
X
k

�ijkPijk.x; @/Ok.0/; (4.35)

where P is a differential operator completely fixed by conformal symmetry.

The OPE can be used recursively to turn any n-point function into a sum of .n�1/-point

functions:

hO1.x1/O2.x2/O3.x3/ � � �On.xn/i D
X
k

�12kP12k.x12; @2/hOk.x2/O3.x3/ � � �On.xn/i:

(4.36)

We can keep doing this until we are left with a sum of 2-point functions, which we already

know.6 Therefore, by using the OPE, all n-point functions are completely determined once

the conformal data is known.

4.5 Conformal Bootstrap Equations

In this section, we derive the conformal bootstrap equations. These are the central

equations used in practically all studies of conformal field theory in the last eight years. As

we saw in the previous section, the conformal data of a CFT is an efficient way of specifying

all its local correlators. In fact, the modern point of view attempts to take the conformal data

as an algebraic definition of a CFT. Of course, we are not free to just randomly specify a set

of f.�i ; li/; �ijkg and claim that we have defined a CFT. There are severe constraints that

this data must satisfy, and these are encapsulated in the conformal bootstrap equations.

6We could equally well stop at 3-point functions, but we will be stopping at 2-point functions later.
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The constraints arise because there are many different ways of pairing together operators

when using the OPE to recursively reduce n-point functions down to a convergent sum of

2-point functions. The resulting expressions can look very different, however they must all

sum to the same answer. For example, consider one way of pairing a 4-point function of

identical scalars �:

h�.x1/�.x2/�.x3/�.x4/i

D

X
O;O0

���O���O0P
a
��O.x12; @2/P

b
��O0.x34; @4/hOa.x2/Ob.x3/i (4.37)

D
1

x
2��
12 x

2��
34

X
O

�2��O

"
x
2��
12 x

2��
34 P a��O.x12; @2/P

b
��O.x34; @4/

I ab.x24/

x
�O
24

#
;

(4.38)

where a; b are previously suppressed collective spin indices (�1 � � ��l ) and I ab is the tensor

from (4.16). Having stripped off the necessary position factors to account for the conformal

transformation properties of the 4-point function (compare with (4.19)), the factor in brackets

is now only a function of the conformal cross-ratios u and v. As we can see, this factor is

completely determined by conformal symmetry and is only a function of the dimensions and

spins of the five operators involved. In other words, for each set of dimensions and spins,

it only needs to be calculated once and then it can be used for all CFTs. These functions

are called conformal blocks and will be denoted by g�;l.u; v/,7 where the � and l refer

to the exchanged operator while the dependence on the external operators is suppressed.

7Recombined with the factors of x that were stripped off, they are also called conformal partial waves due
to being the conformal group analog of partial waves for the rotation group
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Figure 4.4: The conformal bootstrap equations

Therefore, the 4-point function can be written as

h�.x1/�.x2/�.x3/�.x4/i D
1

x
2��
12 x

2��
34

X
O

�2��Og�O;lO.u; v/: (4.39)

This was just one way of pairing the operators in the 4-point function. By pairing them

in a different way, we get a different conformal block expansion of the same 4-point function.

Within their overlapping region of convergence, the two expansions must be equal:

h�.x1/�.x2/�.x3/�.x4/i D h�.x1/�.x2/�.x3/�.x4/i: (4.40)

The set such equations for all 4-point functions is called the conformal bootstrap equations

(figure 4.4).

Note that in our case of four identical scalars, the RHS of (4.40) is simply equal to (4.39)

with x1 $ x3. After a little rearranging, (4.40) becomes

v��
X
O

�2��Og�O;lO.u; v/ D u
��
X
O

�2��Og�O;lO.v; u/: (4.41)

We will separate out the contribution of the identity operator 1 because we know that

���1 D g0;0 D 1. This can be determined by using the OPE to evaluate the 2-point function
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h��i. Therefore, (4.41) can be written as

1 D
X
O

�2��OF��O.u; v/; (4.42)

where

F��O.u; v/ �
v��g�O;lO.u; v/ � u

��g�O;lO.v; u/

u�� � v��
: (4.43)

Equation (4.42) is the conformal bootstrap equation for four identical scalar operators.

To be concrete, the closed form expression for the conformal blocks in the (12)(34)

channel of hO1O2O3O4i is [161]

g�;l.u; v/

D

h
zh2F1.h � h12; hC h34I 2h; z/ � Nz

Nh
2F1. Nh � Nh12; NhC Nh34I 2 Nh; Nz/

i
C .z $ Nz/;

(4.44)

where 2F1 is the hypergeometric function,� D hC Nh, l D h� Nh, u D z Nz, v D .1�z/.1�Nz/,

hij D hi � hj , and Nhij D Nhi � Nhj .

Remarkably, once the bootstrap equations are satisfied for all 4-point functions, there

are no further consistency conditions imposed by higher point functions. The reason this

works is that the ability to arbitrarily pair up operators in a correlation function amounts to

requiring that the OPE is associative:

O1O2O3 D O1O2O3: (4.45)
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Taking the correlator of both sides with a fourth operator O4 results in the conformal

bootstrap equation.

Going back to the modern attempt at an algebraic definition of a CFT mentioned at the

beginning of this section: a CFT is defined as a set of conformal data that satisfies OPE

associativity. Equivalently, a CFT is a set of conformal data that satisfies the conformal

bootstrap equations for all 4-point functions. An ultimate goal would be to classify all

CFTs analogously to the way finite-dimensional Lie algebras are classified starting from the

Jacobi identity. This algebraic definition of a CFT is still tentative, and there will likely be

additional data and new constraints to be discovered.8 However, for our purposes, we only

need the fact that the conformal bootstrap equations are a necessary condition on CFTs.

4.6 Unitarity

In this section, we derive constraints on the conformal data imposed by unitarity. Specif-

ically, we derive lower bounds on operator dimensions as well as the condition that the OPE

coefficients �ijk are real.

In Lorentzian signature, a Heisenberg operator is defined as

OL.t/ D eiHtO0e
�iHt ; (4.46)

where we suppressed the spatial index. For Hermitian O0, we thus have O�
L.t/ D OL.t/.

On the other hand, the Euclidean operator OE .�/ is defined via analytic continuation of

8For example, there is surely additional data associated with non-local operators, and probably additional
constraints from requiring that the CFT be consistent on manifolds that are not conformally flat.
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OL.t/:

OE .�/ D OL.�i�/ D eH�O0e
�H� : (4.47)

Therefore, we instead have O�
E .�/ D OE .��/. Conjugation causes a reflection in the

Euclidean time direction. Now define the state

h j D h0jO.�1/ � � �O.�n/ (4.48)

where �1 � �2 � � � � � �n. In order to have a consistent Hilbert space interpretation,

h j i � 0. This condition is called unitarity in the literature.9 Therefore, by (4.48),

h j i D h0jO.�1/ � � �O.�n/O.��n/ � � �O.��1/j0i � 0: (4.49)

The correlator is a standard time-ordered correlator. Note that the operators are arranged

symmetrically about � D 0. Conversely, all correlators that are symmetric about an axis can

be interpreted as computing the norm of some state and therefore must be positive. This

condition is called reflection positivity.

As an example, consider the 2-point function of the operator @2O, where O is a scalar:

h@2O.x/@2O.y/i D @2x@2y
1

.x � y/2�
: (4.50)

Requiring this to be reflection positive gives the constraint � � d�2
2

. Furthermore, by

considering the two point function of @�1O�1;:::�s , where O�1;:::�s is an operator of spin s

9This meaning of unitarity is a logically distinct and more primitive concept then that of time evolution
with a unitary operator.
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(a traceless symmetric tensor of rank s), we get bounds for operators with spin. Altogether,

the unitarity bounds are

s D 0 � �
d � 2

2
(4.51)

s > 0 � � s C d � 2: (4.52)

Finally, we need to derive the condition that �2
ijk
� 0. This constraint is extremely

crucial for the numerical bootstrap program. Its proof is simple. First, we are always

working in a basis in which all operators are Hermitian in Lorentzian signature. Now,

consider a Lorentzian correlator of three operators at equal time. Since they commute, we

have

h0jOi.0; x1/Oj .0; x2/Ok.0; x3/j0i
�
D h0jOi.0; x1/Oj .0; x2/Ok.0; x3/j0i: (4.53)

Using the expression for the 3-point function (4.18), we see that the �ijk are real and

therefore

�2ijk � 0: (4.54)

4.7 Numerical Bounds

In this section, we will illustrate how general theorems can be proved about CFTs

through the use of numerical methods. The goal is to show that even though the methods

are numerical (as opposed to analytical), the results are still rigorous. Currently, the lofty

goal of classifying all solutions to the bootstrap equations is completely intractable. There
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are an infinite number of equations (one for each 4-point function) and an infinite number of

variables (the conformal data). Furthermore, the dimensions and spins enter the equations in

a highly nonlinear way. The breakthrough came in 2008 when [162] realized that instead

of using the bootstrap to find CFTs, they could instead use it to rule out putative CFTs by

showing that their conformal data do not satisfy the bootstrap equations.

As we derived in the last section, the bootstrap equation for four scalars (4.42) is

1 D
X
�;l

�2�;lF�;l.u; v/; (4.55)

where we rewrote the sum over O as a sum over the dimensions � and spins l of O, and we

also suppressed the dependence on the external operators �. In what follows, assume that

we have picked a specific numerical value for �� . The numerical analysis must be done

separately for each value of �� . We now begin with a very simple algorithm which shows

the essential way numerical methods are used.

1. Propose a set of f.�; l/; ��;lg.

2. Pick values of u; v, and numerically evaluate the RHS of (4.55).

3. If the RHS ¤ 1, then a CFT with such an OPE does not exist.

Numerical methods are used only in evaluating the functions F�;l . The situation is like the

common algebra homework problem of proving the inequality �e < e� . While in this case,

there exist analytic proofs using various identities involving e and � , one can also simply

cheat and use a calculator to check. Our current situation is like this homework problem but

without any known identities that can be used for an analytic proof.
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Moving on, it would be more powerful if we did not have to specify a given set of

conformal data so exclusively. Fortunately, unitarity allows us to inclusively rule out large

regions of conformal data parameter space. Specifically, as shown in section 4.6, unitarity

requires that the ��;l’s are real and therefore �2
�;l
� 0. We can use this to improve our

primitive algorithm so that we don’t even have to specify the OPE coefficients.

1. Propose just a spectrum f�; lg of operators that can appear in the � � � OPE.

2. Pick values of u; v, and numerically evaluate F�;l.u; v/.

3. If, for any u; v, we find that F�;l.u; v/ � 0 for all �; l in the spectrum, then a CFT

with such an OPE does not exist.

By using unitarity, we can thus rule out an operator spectrum regardless of the ��;l ’s. Note

that unitarity allows the ��;l ’s to vanish. Therefore, the operators in the proposed spectrum

do not actually have to appear in the � � � OPE. More precisely, this algorithm rules out

CFTs whose operators only come from the operators in the proposed spectrum. In other

words, it rules out CFTs without operators that are not in the proposed spectrum.

By thinking geometrically, we can further improve the previous algorithm. In step (2),

pick n values of u; v and label them ui ; vi , i D 1; : : : ; n. Obviously, (4.55) must hold for

each i . Arrange the n separate equations into a single vector equation:

0BBBBBBBBBB@

1

1

:::

1

1CCCCCCCCCCA
D

i
�;l

�2�;l

0BBBBBBBBBB@

F�;l.u1; v1/

F�;l.u2; v2/

:::

F�;l.un; vn/

1CCCCCCCCCCA
: (4.56)

134



(a) No solution. (b) Extremal case. (c) There exist a solution.

Figure 4.5: Geometry of the conformal bootstrap equations.

Since each F�;l.ui ; vi/ is a known number (found using numerical methods), (4.56) can be

viewed as a system of equations for �2
�;l

. Crucially, since �2
�;l
� 0, the space of all possible

RHS’s forms a convex cone in n-dimensions. The question is simply whether the vector of

1’s on the LHS falls inside or outside the cone. If it falls inside, then there is a solution, and

otherwise, there is not (figure 4.5). In other words, if all the vectors in the sum on the RHS

of (4.56) point in one direction, while the vector on the LHS points in the other, then there

is no solution. Mathematically, if this is the case, we can then find a vector En such that

En �

0BBBBBBBBBB@

1

1

:::

1

1CCCCCCCCCCA
< 0 and En �

0BBBBBBBBBB@

F�;l.u1; v1/

F�;l.u2; v2/

:::

F�;l.un; vn/

1CCCCCCCCCCA
� 0: (4.57)

If we can find such a vector, then the corresponding CFT does not exist.

In practice, instead of evaluating (4.55) at various points, derivatives about u D v D 1
4
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are used: 0BBBBBBBBBBBBBB@

1

0

0

:::

0

1CCCCCCCCCCCCCCA
D

i
�;l

�2�;l

0BBBBBBBBBBBBBB@

F�;l

@uF�;l

@vF�;l

:::

@mu @
n
vF�;l

1CCCCCCCCCCCCCCA

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
uDvD 1

4

; (4.58)

for some chosen m; n. Then, an appropriate vector En can again be searched for. In general,

both methods can be phrased in terms of a linear functional ˛ acting on both sides of the

bootstrap equation (4.55):

˛.1/ D
X
�;l

�2�;l˛.F�;l/: (4.59)

In the case of (4.58), the linear functional is

˛.f / D
X

mCn�ƒ

amn@
m
u @

n
vf juDvD 1

4
: (4.60)

Therefore, the final algorithm is:

1. Propose a spectrum of f�; lg of operators that can appear in the � � � OPE.

2. Search for a linear functional ˛ such that ˛.1/ < 0 and ˛.F�;l/ � 0 for all �; l in

the proposed spectrum.

3. If such an ˛ is found, then a CFT with such an OPE does not exist.

In practice, the search over linear functionals ˛ amounts to a search for the coefficients amn

in (4.60) satisfying the linear inequalities in step (2) of this final algorithm. This type of
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search is a problem in linear algebra called a linear programming problem, and efficient

numerical methods exist to solve such problems.

Let us now consider the prototypical example. In the language of perturbation theory,

the question is: what is the maximum dimension of the operator �2 as of function of the di-

mension of �? In perturbation theory, the answer is always��2 D 2��C small corrections.

However, in a strongly interacting theory, �2 can obtain a large anomalous dimension. In

fact, the operator �2 really has no a priori meaning. We will simply define it to be the lowest

dimension scalar operator in the � � � OPE.

Now let us apply the algorithm. The proposed spectrum is:

l > 0 all operators consistent with unitarity bounds (� � l C d � 2)

l D 0 all operators with � > �gap

Now, we need to search for an ˛ of the form (4.60) such that ˛.1/ < 0 and ˛.F�;l/ � 0 for

all �; l in the proposed spectrum.

Unfortunately, before we can put it on a computer, there is one more issue that we need

to deal with. Since there are a continuous infinity of �; l in the proposed spectrum, the

inequalities ˛.F�;l/ � 0 are a continuously infinite number of inequalities. To make further

progress, we simply truncate and discretize the values of � and l in the spectrum, leaving

us with a finite number of inequalities. However, once a functional is found, we can then

verify that the inequalities are satisfied on the remainder of the spectrum. If they are, then

the CFT is ruled out. The results for this example in 2D are plotted in figure 4.6.

As an aside, the original motivation of [162] was phenomenological, in which they were
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Figure 4.6: The maximum value of ��2 as a function of �� in two dimensions. The shaded
region is ruled out.

attempting to rule out a proposed solution to the hierarchy problem [163]. The hierarchy

problem is simply the puzzle as to why the standard model of particle physics appears to be

finely tuned extremely close to a critical point. The relevant operator in question is H �H ,

where H is the Higgs field. Reference [163] proposed that, due to new strongly coupled

conformal dynamics, the composite operator H �H has dimension close to 4, making it

much less relevant and thus requiring much less tuning. On the other hand, due to other

issues concern flavor physics, the dimension of H needed to be close to 1. Therefore, [162]

developed the numerical bootstrap in an attempt to show that such a scenario was impossible.

In [164], the simplest “flavor-generic” versions of conformal technicolor was ruled out.

4.8 Multiple Correlators

The results from last section came from analyzing just a single 4-point function. However,

the consistency conditions imposed by OPE associativity requires that the infinite set of

4-point functions satisfy the conformal bootstrap equations. In this section, we move a little

in that direction by preparing for the analysis of a system of three crossing equations.
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To begin, we will need to analyze 4-point functions of non-identical operators. Until now,

we have only looked at 4-point functions of the same operator. Naively, 4-point functions of

non-identical operators pose problems for the numerical bootstrap. For example, consider

the crossing equation for h����i, where � and � are non-identical scalars:

h����i D (4.61)

After some rearranging, the analog of (4.41) is

X
O

���O���O gO.u; v/ D
X
O0
�2��O0 QgO0.v; u/; (4.62)

where gO and QgO are the appropriate conformal blocks after absorbing some additional

factors of u and v. The problem is that while �2��O � 0, the product of two different

OPE coefficients ���O���O can have either sign. Therefore, we cannot simply apply linear

functionals to both sides of (4.62) and derive results as in the last section.

In order to obtain some kind of positivity condition, [150] combined the crossing

equation for h����i with the crossing equations for h����i and h����i,

1 D
X
O

�2��OFO (4.63)

1 D
X
O

�2��OFO: (4.64)
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The combined equation can be written as

X
O

�
���O ���O

�0BB@FO gO

gO FO

1CCA
0BB@���O
���O

1CCA �X
O0
�2��O0 QgO0.v; u/ D 0; (4.65)

where the identity operator 1 has been included in the sum. Now consider a linear functional

˛ such that 0BB@˛.FO/ ˛.gO/

˛.gO/ ˛.FO/

1CCA � 0; (4.66)

where � means that the 2 � 2 matrix is positive semidefinite. By definition, a positive

semidefinite matrix satisfies

�
���O ���O

�0BB@˛.FO/ ˛.gO/

˛.gO/ ˛.FO/

1CCA
0BB@���O
���O

1CCA � 0 (4.67)

for all ���O and ���O. Therefore, by applying ˛ to both sides of (4.65) and also requiring

˛. QgO0/ � 0, we can again rule out putative CFTs.

Note that searching for ˛’s subject to the positive semidefiniteness constraint (4.66)

is no longer a linear programming problem. However, there are still efficient numerical

algorithms for such “semidefinite programming” problems. In particular, [151] has been

optimized specifically for the bootstrap and is used in this work.
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4.9 Application to Universality

In this section, we describe how we will use the numerical methods just reviewed in

order to investigate the concept of universality.

Let us review our question. As mentioned in the introduction, in critical phenomena,

members of a universality class generally have only three properties in common: the

number of dimensions, the global symmetry group of the Hamiltonian, and the number of

experimental “knobs” that need to be tuned in order to reach the critical point. The question

is: why only three? Why is there not multiple universality classes with the same set of those

three properties? This would be consistent with the renormalization group. Now, due to

the severe consistency conditions imposed by the conformal bootstrap equations, a possible

answer has emerged. The work of [150–153] suggests the answer is that there only exists a

single CFT with any fixed set of those properties. Their evidence was in three dimensions.

We give the analogous evidence in two dimensions for the case of the 2D Ising universality

class.

We will formulate this question so that it can be investigated with the final numerical

bootstrap algorithm presented in section 4.7. We want to show that the 2D Ising universality

class is the only universality class that:

1. is in two dimensions

2. has a Z2 global symmetry

3. has exactly two relevant operators (one even and one odd under the Z2)

The relevant operators correspond to directions away from the fixed point’s basin of at-
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traction, which correspond to experimental knobs that need to be tuned. The two relevant

operators in the Ising case correspond to the temperature and magnetic field in the magnetic

transition or to the temperature and pressure in the liquid-vapor transition.

Denote the two relevant operators by � and �, where � is Z2-odd and � is Z2-even. The

symmetry structure of the OPE is

� � � � Z2-even (4.68)

� � � � Z2-even (4.69)

� � � � Z2-odd (4.70)

This allows us to make separate proposals about the spectrum of Z2-even and Z2-odd

operators.

As in section 4.8, we will consider the combined set of 4-point functions, h����i,

h����i, and h����i. Now, we need to propose a spectrum of operators that can appear in

the above OPEs. The spectrum will be as follows:

l D 0; Z2-odd: � D �� or � > 2

l D 0; Z2-even: � D �� or � > 2

l > 0 all operators consistent with unitarity bounds (� � l)

This means that the only relevant scalar operators we are allowing in the OPE are those with

� D �� and with � D ��. All others must have have � > 2, and therefore be irrelevant
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Figure 4.7: Multiple correlator results in 2D superimposed on the single correlator curve
from figure 4.6. This time, everything except the red region is ruled out. The 2D Ising model
has the exact values of �� D 1

8
and �� D 1. This figure has �� 0 D 4 and ��0 D 3. A

zoomed-in view of the red region is in figure 4.8
.

since we are in two dimensions.

Having specified everything we need for the numerical bootstrap algorithm, all that

remains now is to is pick numerical values of�� ; �� and then search for a functional ˛. The

ideal result would be that as we scan over �� and ��, we keep finding that the bootstrap

equations cannot be satisfied (i.e. by finding the appropriate functional ˛) except for when

�� D
1
8

and �� D 1, which are their values in the 2D Ising CFT. This would be very strong

evidence that no other universality class exists with the stated properties (see the end of the

following section for caveats).

4.10 Results

In this section, we present our numerical evidence that the CFT describing the 2D Ising

universality class is the only Z2-symmetric CFT in two dimensions with exactly two relevant

operators. The results in this section have not appeared in the literature previously.

Unfortunately, we were unable to attain the ideal numerical results mentioned at the
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(a) Zoom in of red region in figure 4.7
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(b) Zoom in of blue region in figure 4.8a

Figure 4.8: Zooming in on the red region of figure 4.7. The progressively smaller islands
corresponds to increasing the number of derivatives ƒ in the functional ˛ defined in (4.60),
where ƒ D 9; 11; 13; 15; 17. The 2D Ising model has the exact values of �� D 1

8
and

�� D 1.

end of last section. However, we did attain a similar but weaker result by making slightly

stronger assumptions about the proposed spectrum. Specifically, we modified our proposed

scalar spectrum to be

l D 0; Z2-odd: � D �� or � � �� 0

l D 0; Z2-even: � D �� or � � ��0

where �� 0; ��0 � 2. In other words, we assumed a larger gap to the irrelevant operators.

Now, with �� 0 & 3:3 and ��0 & 2:6, we were indeed able to show that no CFT exists

except for �� and �� very close to their Ising values. For �� 0 D 4 and ��0 D 3, the results

are shown in figures 4.7 and 4.8. In figure 4.7, the results are superimposed on the single

correlator bound that we found earlier in figure 4.6. Up to the sampling grid size, everything

except the tiny region in red is ruled out. Figure 4.8 shows two progressively zoomed in

versions of the same results. The increasingly smaller islands corresponds to increasing the

number of derivativesƒ in the functional ˛ defined in (4.60), whereƒ D 9; 11; 13; 15; 17. It
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appears that perhaps the island could shrink to zero size around the Ising values as ƒ!1.

To avoid confusion, let us be clear on what results are rigorous and what results have

strong evidence, but were not rigorously established. First the rigorous part. We claim that

the algorithm in section 4.7 rigorously rules out putative CFTs. Once a functional is found,

it is merely a matter of numerical evaluation to show that the conformal bootstrap equation

(4.42) cannot be satisfied. On the other hand, we then used this tool to provide evidence

for a claim about universality. There are loopholes in this evidence. First, we sampled

�� and �� on a grid surrounding their Ising values and checked one-by-one whether a

functional exists or not. We did not check the continuously infinite number of values of

�� and ��. Furthermore, there are infinitely many operators besides � and �. These are

the irrelevant operators that have various subleading effects in critical phenomena such as

finite-size corrections and corrections to scaling. Perhaps those could consistently differ

between universality classes.10 Finally, we were only focusing on universality classes

that are described by unitary CFTs. Unitarity required the squared OPE coefficients to

be positive, which was absolutely crucial to the whole numerical bootstrap program. It is

currently completely unknown how to relax the constraint of unitarity.

In conclusion, in this chapter, we used the recently developed tools of the conformal

bootstrap to provide strong evidence that the 2D Ising CFT is the unique unitary CFT in two

dimensions with a Z2 symmetry and two relevant operators.

10However, there is also strong evidence that this is not the case [165–167].
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