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Abstract

In this paper, novel parallel architectures for short-time Fourier transform based on adap-
tive time-recursive processing is proposed for efficient VLSI implementation. Only N — 1
multipliers and N 41 adders are required. The proposed approach can be easily extended to
multi-dimensional cases without the transpose operation. Various properties of the proposed

architectures are also presented.

1 Introduction

The short-time Fourier transform (STFT) has played a significant role in digital signal pro-
cessing, including speech, music, and radar/sonar applications [1,5,6]. Due to the demand of
high throughput of these applications, efficient parallel architectures that enable real-time
implementation of the STFT are quite essential [3,4].

The expression for the discrete-time STFT is given by
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X(no,w)= Y z(n)w(ne — n)e 4n (1)
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where w(n) is an analysis window. At each time instant, the STTFT is a discrete-time Fourier
transform or discrete Fourier transform (DFT). Many DFT computing algorithms and ar-
chitectures have been proposed. However, the direct use of the DFT without considering the
special sliding window effect of STFT is not an efficient approach. There are two major ap-
proaches for STFT. One is based on the filter bank approach and another is the FF'T-based
approach [1].

The filter bank approach can be described by the following two convolution sum equa-
tions,

X(n,wp) = [z(n)e™7"] x w(n) (2)

or

X(n,wp) = e"j“"’"[x(n) * w(n)e‘j“"’”], (3)

where * denotes as the convolution sum. Equations (2) and (3) can be implemented as given
in Fig.1.a and Fig.1.b, respectively [1]. It can be seen that each channel of the filter bank
requires a convolution sum that needs O(N?) operations. If the throughput rate is N, then
N multipliers are required. Accordingly, the total number of multipliers required for the
STFT system is on the order of O(N?).

The FFT-based approach is well-known [2]. The major disadvantage is the need of global
interconnections in the butterfly computations. This is a disaster in VLSI implementation,
especially when hundreds (or even thousands) of channels are required in the applications.
Besides, the total number of multipliers is on the order of O(N log N).

Recent advancement of VLSI/ULSI technologies has made it practical to build low-cost
and high-density application-specific integrated circuits (ASIC) to meet the demands of speed
and performance of signal processing. In this paper, novel parallel architectures for STFT

are proposed for efficient VLSI implementation.



2 The Novel Architectures

As mentioned before, the STFT is mainly used in real-time applications where new data keep
arriving so that the on-line computation is definitely essential. Note that the high complexity
in the existing approaches results from the direct computation of each newly windowed
data. Old information is not adequatedly used to reduce the computational complexity. To
reduce the complexity, the concept of adaptive processing can be exploited, especially in the
applications where new data keep arriving.

For simplicity, let us assume a rectangular window first. Suppose X(ng,w) has been

obtained, the relation between X (no + 1,w) and X(ng,w) can be shown to be

no+N )
X(no+1,w) = Z x(n)e—Jw(n~no—1)
n=ng+1
= ej‘*’[X(no,w) — z(no) + x(no + N)e_j“’N]. (4)

If the discrete Fourier transform (DFT) is considered, i.e. wy = 2—]’\}&, k=0,1,---,N—1, then

X(no 4 1,k) = &/ F[X(no, k) + (z(no + N) — 2(ng))], k=0,1,---,N—1.  (5)

The architecture for the above equation is given in Fig.2. The total number of multipliers
required for the STFT system is N — 1 (since the first channel does not need one) and the
numer of adders is V 4+ 1. The throughput rate is 1 to obtain X(ng+1, %) from X(no, k) and
the throughput rate of obtaining non-overlapped windowed STFT is N. A downsampling
can be added as shown in Fig.3 if it is used as a DFT-based analysis filter bank which found
lots of application in subband coding and transform-domain filtering [3,4].

For the two-dimensional (2-D) STFT, suppose the STFT of X (mq,no, k,!) is available

and the window is moving along the m direction as shown in Fig.4, the update relation



between X (mq + 1,n9,k,1) and X (mo, ne, k,[) can be obtained as

N—l s 2T, 2T
X(mo + 1,n0, k, 1) = [X(mo, no, k, 1) + Z (z(mo + N,n) — :c(mo,n))e_Jle] e (6)

n=0

Here a 1-D STFT (with rectangular window) of the error term Az = z(mo + N,n) —
z(mo,n) needs to be computed first. The architecture is given in Fig.5 which contains a 1-D
architecture given in Fig.2 to perform the 1-D STFT and an update loop to obtain the new
2-D transform. There are N linear arrays of size N to store the columns (I =0,1,---, N —1)
of X (mo, no, k,1). The computation of each column spectrum is independent to each other.
An interesting property of this approach is that no transpose operation is required. The
total number of multipliers is 2N — 1 and that of adders is 2N + 1. The throughput rate is
2N for the 2-D STFT.

In general, for a M-D STFT, the update equation is given by

-2mk

X(ﬂlta@) = [X(Mt—la.]i) + FM—I(Ax(m_"l))] el N, (7)

where Fp;_; denotes as a (M — 1)-D STFT. The computational structure from (M — 1)-D
to M-D STFT is the same as in Fig.5.

Equations (2), (3) and (4) involve the multiplication of a complex exponential factor. If
real operations are to be used, the implementations using (2) and (3) as given in Fig.1 are
obtained in Fig.6.a and Fig.6.b respectively [1]. Obviously, each complex channel becomes
two real channels. However, in our approach as shown in Fig.2 using (4), a CORDIC pro-
cessor [10] is enough to handle the case. To see this, denote the input to the multiplier in

Fig.2 as a, + ja; and the output as b, + jb;, we have

27k

b, cos 277{[’3 - sin T a, ®)
b; sin —2]—’\}—’5 cos 277\',1“- a;



This is a simple planer rotation which can be easily carried out by using CORDIC processor
without explicitly performing the multiplication.

This approach can also be viewed as a STFT IIR filtering. The filter, as shown in Fig.2,
consists of two parts: a FIR section and an IIR section. It is because of the IIR part that
simplifies the computational structure of the STFT which is basically a FIR system in nature.

The transfer function of the IIR section is given by
Hk(z):_iﬁ_j”’ k:()’l))N_l (9)

The poles are on the unit circle for all channels. This may cause the instability. Fortunately,
the poles are at cos 0y + jsinfg, k£ =0,1,---, N — 1. Hence, by quantizing the coefficients
cos 0y and sin 0y, we directively quantize the real and imaginary parts of the poles so that
they can be always guaranteed to locate inside the unit circle. Such phenomenon is similar
to that of the normal-form structure of an IIR filter [9].

A disadvantage of the proposed architecture is that not all the well-known windows are
applicable. Equation (5) serves as the most fundamental formula for this approach with
the assumption of rectangular window. If it is not a rectangular window, then there is
no as simple update equation as (5). For windows such as the Hanning window given by

wi(n) = 3[1 — cos %], the relation of the spectrum of the windowed and non-windowed

(rectangular window) data is Xg(k) = —3X(k — 1)+ $X (k) — $X(k +1). Only shift-and-
add operation is needed to modified from X (k) to Xg(k) without explicitly performing the
multiplication, where X (k) is the rectangular-windowed spectrum can be easily obtained.
There are many such kinds of windows that provide excellent performance with only shift-
and-add operation required to modified from X (k) [8]. A shift-and-add network can be
added as shown in Fig.3 to obtain the windowed STFT. The shift-and-add network is locally

interconnected and regular so that is not a problem for VLSI implementation.



3 Conclusions

The proposed architectures are very efficient in term of hardware complexity and throughput
rate. In particular, since the hardware complexity is on the order of N and 2N for 1-D and
2-D STFT, respectively, the architectures are very suited for VLSI implementation of STFT

with large number of channels. The approach is also applicable to multirate signal processing,

especially the DFT-based filter bank.
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Figure 1 Filter bank realization of short-time Fourier transform
(a) Realization of equation (2), (b) realization of (3)
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Figure 2 The new architecture for short-time Fourier transform
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Figure 3 Application to multirate filter bank and windowing obtained
from the shift-add-add netowrk
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Figure 4 The moving window of 2-D short-time Fourier transform
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Figure 5 The parallel architecture for 2-D short-time Fourier transform
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Figure 6 Implementation of equation (2) and (3) using real operations



