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Deep learning is the new electricity, which has dramatically reshaped people’s

everyday life. In this thesis, we focus on two emerging applications of deep learning

- fashion and forensics.

The ubiquity of online fashion shopping demands effective search and rec-

ommendation services for customers. To this end, we first propose an automatic

spatially-aware concept discovery approach using weakly labeled image-text data

from shopping websites. We first fine-tune GoogleNet by jointly modeling cloth-

ing images and their corresponding descriptions in a visual-semantic embedding

space. Then, for each attribute (word), we generate its spatially-aware representa-

tion by combining its semantic word vector representation with its spatial represen-

tation derived from the convolutional maps of the fine-tuned network. The resulting

spatially-aware representations are further used to cluster attributes into multiple

groups to form spatially-aware concepts (e.g., the neckline concept might consist of

attributes like v-neck, round-neck, etc). Finally, we decompose the visual-semantic



embedding space into multiple concept-specific subspaces, which facilitates struc-

tured browsing and attribute-feedback product retrieval by exploiting multimodal

linguistic regularities. We conducted extensive experiments on our newly collected

Fashion200K dataset, and results on clustering quality evaluation and attribute-

feedback product retrieval task demonstrate the effectiveness of our automatically

discovered spatially-aware concepts.

For fashion recommendation tasks, we study two types of fashion recommen-

dation: (i) suggesting an item that matches existing components in a set to form a

stylish outfit (a collection of fashion items), and (ii) generating an outfit with mul-

timodal (images/text) specifications from a user. To this end, we propose to jointly

learn a visual-semantic embedding and the compatibility relationships among fash-

ion items in an end-to-end fashion. More specifically, we consider a fashion outfit

to be a sequence (usually from top to bottom and then accessories) and each item

in the outfit as a time step. Given the fashion items in an outfit, we train a bidirec-

tional LSTM (Bi-LSTM) model to sequentially predict the next item conditioned on

previous ones to learn their compatibility relationships. Further, we learn a visual-

semantic space by regressing image features to their semantic representations aim-

ing to inject attribute and category information as a regularization for training the

LSTM. The trained network can not only perform the aforementioned recommen-

dations effectively but also predict the compatibility of a given outfit. We conduct

extensive experiments on our newly collected Polyvore dataset, and the results pro-

vide strong qualitative and quantitative evidence that our framework outperforms

alternative methods.



In addition to searching and recommendation, customers also would like to

virtually try-on fashion items. We present an image-based VIirtual Try-On Network

(VITON) without using 3D information in any form, which seamlessly transfers a

desired clothing item onto the corresponding region of a person using a coarse-

to-fine strategy. Conditioned upon a new clothing-agnostic yet descriptive person

representation, our framework first generates a coarse synthesized image with the

target clothing item overlaid on that same person in the same pose. We further

enhance the initial blurry clothing area with a refinement network. The network

is trained to learn how much detail to utilize from the target clothing item, and

where to apply to the person in order to synthesize a photo-realistic image in which

the target item deforms naturally with clear visual patterns. Experiments on our

newly collected dataset demonstrate its promise in the image-based virtual try-on

task over state-of-the-art generative models.

Interestingly, VITON can be modified to swap faces instead of swapping cloth-

ing items. Conditioned on the landmarks of a face, generative adversarial networks

can synthesize a target identity on to the original face keeping the original facial

expression. We achieve this by introducing an identity preserving loss together with

a perceptually-aware discriminator. The identity preserving loss tries to keep the

synthesized face presents the same identity as the target, while the perceptually-

aware discriminator ensures the generated face looks realistic. It is worth noticing

that these face-swap techniques can be easily used to manipulated people’s faces,

and might cause serious social and political consequences.

Researchers have developed powerful tools to detect these manipulations. In



this dissertation, we utilize convolutional neural networks to boost the detection

accuracy of tampered face or person in images. Firstly, a two-stream network is

proposed to determine if a face has been tampered with. We train a GoogLeNet to

detect tampering artifacts in a face classification stream, and train a patch based

triplet network to leverage features capturing local noise residuals and camera char-

acteristics as a second stream. In addition, we use two different online face swapping

applications to create a new dataset that consists of 2010 tampered images, each of

which contains a tampered face. We evaluate the proposed two-stream network on

our newly collected dataset. Experimental results demonstrate the effectiveness of

our method.

Further, spliced people are also very common in image manipulation. We

describe a tampering detection system containing multiple modules, which model

different aspects of tampering traces. The system first detects faces in an image.

Then, for each detected face, it enlarges the bounding box to include a portrait

image of that person. Three models are fused to detect if this person (portrait) is

tampered or not: (i) PortraintNet: A binary classifier fine-tuned on ImageNet pre-

trained GoogLeNet. (ii) SegNet: A U-Net predicts tampered masks and boundaries,

followed by a LeNet to classify if the predicted masks and boundaries indicating the

image has been tampered with or not. (iii) EdgeNet: A U-Net predicts the edge

mask of each portrait, and the extracted portrait edges are fed into a GoogLeNet

for tampering classification. Experiments show that these three models are comple-

mentary and can be fused to effectively detect a spliced portrait image.
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Chapter 1: Introduction and Motivation

Recent years have witnessed the increasing demands of online shopping for

fashion items. Online apparel and accessories sales in US are expected to reach 123

billion in 2022 from 72 billion in 2016 [4]. Despite the convenience online fashion

shopping provides, a major cost in online clothing shopping is the high return rate

of nearly 50%. This can be effectively addressed by better recommendation and

browsing systems, and virtual try-on techniques. In this dissertation, we will first

describe the deep learning tools we developed to tackle these problems.

In Chapter 2, we introduce a spatially-aware concept discovery approach to

automatically group attributes describing the same fashion characteristics into clus-

ters. The discovered concepts can be used to project a large collection of fashion

items onto a 2D plane based on customized criteria for structured product browsing.

Moreover, this approach also enables attribute-feedback product retrieval that can

help customers to refine their initial search results.

Chapter 3 studies the problem of fashion recommendation. In contrast to

existing methods that mainly utilize a Siamese network to model the compatibility

of two items [5, 6], we consider an outfit as a sequence of fashion items and use

an RNN-type model to model multiple items’ compatibility beyond just focusing
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on pairs. The proposed method can not only recommend suitable items based

on existing ones provided by the users, but can also adaptively adjust the results

conditioned on multimodal specifications.

The last fashion application we will present is an image-base virtual try-on

system without using an 3D information (Chapter 4). We introduce a coarse-to-fine

framework. In the coarse stage, we first leverage a generative model to produce

photo-realistic new image by overlaying a product image onto the corresponding

region of a clothed person. This synthesized image is then refined by warping the

target clothing and compose the warped image to the coarse result. Our approach

generates realistic and appealing virtual try-on results and outperforms state-of-the-

art image synthesis methods.

At the same time, deep learning also leads to sophisticated tools for image

and video manipulation [7–9]. In Chapter 5, we present how to use a Generative

Adversarial Network to change the identity of faces (face-swap). To preserve the

desired identity, we inject target identity in an encoder-decoder generator. And we

further propose a more powerful discriminator to obtain more realistic face-swap

results.

However, techniques like this will cause serious social and political conse-

quences if not use in appropriate scenarios. In Chapter 6 of this dissertation, we will

introduce several models that leverage both low-level and high-level information for

determining if a face or person in an image is a result of a manipulation.

Finally, we summarize this dissertation and discuss on potential research di-

rections in Chapter 7.
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Chapter 2: Automatic Spatially-aware Fashion Concept Discovery

2.1 Introduction

The exponential growth of online fashion shopping websites has encouraged

techniques that can effectively search for a desired product from a massive collec-

tion of clothing items. However, this remains a particularly challenging problem

since, unlike generic objects, clothes are usually subject to severe deformations and

demonstrate significant variations in style and texture, and, most importantly, the

long-standing semantic gap between low-level visual features and high-level intents

of customers is very large. To overcome the difficulty, researchers have proposed

interactive search to refine retrieved results with humans in the loop. Given can-

didate results, customers can provide various feedback, including the relevance of

displayed images [10, 11], or tuning parameters like color and texture, and then re-

sults are updated correspondingly. However, relevance feedback is limited due to its

slow convergence to meet the customer requirements. In addition to color and tex-

ture, customers often wish to exploit higher-level features, such as neckline, sleeve

length, dress length, etc.

Semantic attributes [12], which have been applied effectively to object cate-

gorization [13, 14] and fine-grained recognition [15] could potentially address such
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Figure 2.1: (a) We propose a concept discovery approach to automatically cluster

spatially-aware attributes into meaningful concepts. The discovered spatially-aware

concepts are further utilized for (b) structured product browsing (visualizing images

according to selected concepts) and (c) attribute-feedback product retrieval (refining

search results by providing a desired attribute).

challenges. They are mid-level representations that describe semantic properties.

Recently, researchers have annotated clothes with semantic attributes [16–20] (e.g.,

material, pattern) as intermediate representations or supervisory signals to bridge

the semantic gap. However, annotating semantic attributes is costly. Further, at-

tributes conditioned on object parts have achieved good performance in fine-grained

recognition [21,22], confirming that spatial information is critical for attributes. This

also holds for clothing images. For example, the neckline attribute usually corre-
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Figure 2.2: Overview of our approach. Our approach mainly contains three parts:

1. Joint embedding space training. A joint visual-semantic embedding space is

trained using clothing images and their product descriptions. 2. Spatially-aware

concept discovery. We use neural activations provided by global pooling (GAP) layer

to generate attribute activation maps (AAMs) of attributes. The AAM captures

the spatial information of attributes (i.e., what is the spatial location an attribute

usually refers to). By combining attributes’ spatial information and their semantic

representations obtained from a word2vec model, we cluster attributes into concepts.

3. Concept subspace learning. For each discovered concept, we further train a sub-

network to effectively measure the similarity of images according to this concept

only.
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sponds to the top part in images while the sleeve attribute ordinarily relates to the

left and right side of images.

To address the above limitations, we jointly model clothing images and their

product descriptions with a visual-semantic embedding, and propose a novel ap-

proach that automatically discovers spatially-aware concepts, each of which is a

collection of attributes describing the same characteristic (e.g., if the concept is

color then the attributes could contain yellow and blue, as shown in Figure 2.1(a)).

In addition, we learn a subspace embedding for each discovered concept to facilitate

a structured exploration of the dataset based on the concept of interest (Figure

2.1(b)). More importantly, inspired by [23], we leverage the learned visual-semantic

space to exploit multimodal linguistic regularities for attribute-feedback product

retrieval. For example, an image of a “white sleeveless dress” − “sleeveless” +

“long-sleeve” would be near images of “white long-sleeve dress”. In contrast to [23]

which requires explicitly specifying the attribute to remove, we implicitly remove

corresponding attributes based on the discovered concepts (Figure 2.1(c)).

Figure 2.2 provides an overview of the framework. Specifically, our frame-

work contains the following three steps (1) we first train a joint visual-semantic

embedding space using clothing images and their product descriptions. Given an

image, we compute its features with GoogleNet, which are further projected into

the embedding space to minimize the distance to its product description encoded

by bag-of-words of attributes. By fine-tuning GoogleNet in an end-to-end fashion,

we train a discriminative model that contains localization information of attributes;

(2) we then obtain the spatial representation for each attribute, indicating where
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in images the attribute mostly corresponds to, from the attribute activation maps.

These spatial representations are further utilized to augment their corresponding

semantic word representations (word vectors) produced from a skip-gram model.

Further, clustering is performed to discover concepts, each of which contains seman-

tically related attributes (e.g., maxi, midi, mini are all different dress length); (3) we

further disentangle the trained visual-semantic embedding by training a subspace

embedding for each discovered concept, in which the similarities among items can

be measured based on the corresponding concept only. The transformation of im-

ages into a subspace embedding facilitates attribute-feedback clothing search and

structured browsing of fashion images.

Given the fact that existing datasets only contain images and annotated at-

tributes (which are often very sparse) rather than image and product description

pairs, we constructed the Fashion200K dataset, which contains more than 200,000

clothing images of five categories (dress, top, pants, skirt and jacket) and their asso-

ciated product descriptions from online shopping websites. These five classes are the

most important verticals in fashion due to their various styles and occasions. Thus,

we focus on these categories in our dataset, but our method is applicable to any

fashion categories. We conduct extensive experiments on this dataset to validate

the efficacy of the automatically discovered concepts in attribute-feedback product

retrieval as well as structured fashion image browsing.

Our main contributions are two-fold. First, we demonstrate that the augmen-

tation of semantic word vectors for attributes with their spatial representations can

be used to effectively cluster attributes into semantically meaningful and spatially-
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aware concepts. Second, we leverage semantic regularities in the visual-semantic

space for attribute-feedback clothing retrieval.

2.2 Related Work

Interactive image search. Extensive studies have been conducted on inter-

active image search, aiming to improve retrieved results from search engines with

user feedback [10,11,20] (See [24] for a comprehensive review). The basic idea is to

refine the results by incorporating feedback from users, including the relevance of

the candidates, and tuning low-level parameters like color and texture. In practice,

relevance feedback requires a large number of iterations to converge to user intent.

Also, it requires manual annotations to define the relative attributes, which limits

its scalability. In addition, when searching clothing images, customers generally fo-

cus on certain higher-level characteristics, such as neckline, sleeve length, etc., thus

rendering relevance feedback less useful.

Attributes for clothing modeling. There have been numerous works focus-

ing on utilizing semantic attributes as mid-level representations for clothing model-

ing. For instance, Chen et al. [17] learned semantic attributes for clothing on the

human upper body. Huang et al. [18] built tree-structured layers for all attribute

categories to form a semantic representation for clothing images. Veit et al. [25]

learned visually relevant semantic subspaces using a multi-query triplet network.

Kovashka et al. [20] utilized relative attributes with ranking functions instead of

using binary feedback for retrieval tasks. In contrast, we propose a novel concept
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discovery framework, in which a concept is a collection of automatically identified

attributes derived by jointly modeling image and text.

Visual concept discovery. To exploit the substantial amounts of weakly

labeled data, researchers have proposed various approaches to discover concepts.

Sun et al. [26] combined visual and semantic similarities of concepts to cluster con-

cepts while ensuring their discrimination and compactness. Vittayakorn et al. [27]

and Berg et al. [28] verified the visualness of attributes, and [27] also uses neural

activations to learn the characteristics of each attribute. Vaccaro et al. [29] utilized

a topic model to learn latent concepts and retrieve fashion items based on textual

specifications. Singh et al. [30] discovered pair-concepts for event detection and dis-

card irrelevant concepts by the co-occurrences of concepts. Recently, some works

discovered the spatial extents of concepts. Xiao and Lee [31] discovered visual chains

for locating the image regions that are relevant to one attribute. Singh and Lee [32]

introduced a deep network to jointly localize and rank relative attributes. However,

these approaches involve training a single model for each individual attribute, which

is not scalable.

Visual-semantic joint embedding. Our work is also related to visual-

semantic embedding models [23, 33–36]. Frome et al. [33] recognize objects with a

deep visual-semantic embedding model. Kiros et al. [23] adopted an encoder-decoder

framework coupled with a contrastive loss to train a joint visual-semantic embed-

ding. Wang et al. [34] combined cross-view ranking loss and within-view structure

preservation loss to map images and their descriptions. Beyond training a joint

visual-semantic embedding with image and text pairs as in these works, we further
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decompose the trained embedding space into multiple concept-specific subspaces,

which facilitates structured browsing and attribute-feedback product retrieval by

exploiting multimodal linguistic regularities.

2.3 Fashion200K Dataset

There have been several clothing datasets collected recently [18, 19, 36–38].

However, none of these datasets are suitable for our task because they do not contain

descriptions of images. This prevents us from learning semantic representations for

attributes using word2vec [39]. Thus, we collected the Fashion200K dataset and

automatically discover concepts from it.

We first crawled more than 300,000 product images and their product descrip-

tions from online shopping websites and removed the ones whose product descrip-

tions contain fewer than four words, resulting in over 200,000 images. We then split

them into 172,049 images for training, 12,164 for validation, and 25,331 for testing.

For cleaning product descriptions, we deleted stop words, symbols, as well as words

that occur fewer than 5 times. Each remaining word is regarded as an attribute.

Finally, there are 4,404 attributes for training the joint embedding.

Example clothing image and description pairs are shown in Figure 2.3. Since

we wish to automatically discover concepts from this noisy dataset and learn concept-

level subspace features, we do not conduct any manual annotations for this dataset.

Note that as a preprocessing step, we trained a detector using the MultiBox model

[40] for all five categories and run them on all images. Only the detected foregrounds
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Blue destoryed
boyfriend jeans

Multicolor ¾-sleeve 
square neck dress

Beige v-neck
bell-sleeve top

Figure 2.3: Examples of the image-text pairs in Fashion200K.

are cropped and used as input to our model.

2.4 Fashion Concept Discovery

In this section, we present the key components of the proposed concept dis-

covery approach shown in Fig. 2.2, including visual-semantic embedding learning,

spatially-aware concept discovery and concept subspace learning. Since our method

leverages spatial information of an attribute, and the same attribute in different

types of clothing (e.g., “short” in “short dress” and “short pants”) will have dif-

ferent spatial characteristics, we train an individual model for each category in our

dataset. For simplicity in notation and illustration, we only show the concept discov-

ery approach for dresses, while the same pipeline is applied to other categories in the

same fashion. Results of all categories are shown and evaluated in our experiments.
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2.4.1 Visual-semantic Embedding

To fully explore the substantial weakly labeled web data for mining concepts,

we first train a joint visual-semantic embedding model with image-text pairs by

projecting a product image and its associated text into a joint embedding space.

Following [23], we also utilize a stochastic bidirectional contrastive loss to achieve

good convergence.

More formally, let I denote an image and S = {w1, w2, ..., wN} its correspond-

ing text, where wi is the i-th attribute (word) in the product description. Let WI

denote the image embedding matrix, and WT denote the attribute embedding ma-

trix. We first represent the i-th word wi with one-hot vector ei, which is further

encoded into the embedding space by vi = WT · ei. We then represent the prod-

uct description with bag-of-words v = 1
N

∑
i vi. Similarly, for the image I, we first

compute its feature vector f ∈ R2048 with a GoogleNet model [41] parameterized

by weights V after the global average pooling (GAP) layer as shown in Figure 2.2.

Then we project the feature vector into the embedding space, in which the original

image is represented as x = WI · f .

The similarity between an image and its description is computed with cosine

similarity, i.e., d(x,v) = x ·v, where x and v are normalized to unit norm. Finally,

the joint embedding space is trained by minimizing the following contrastive loss:

min
Θ

∑
x,k

max(0,m− d(x,v) + d(x,vk))+

∑
v,k

max(0,m− d(v,x) + d(v,xk)),

(2.1)
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where Θ = {WI,WT,V} contains the parameters to be optimized, and vk de-

notes non-matching descriptions for image x while xk are non-matching images for

description v. By minimizing this loss function, the distance between x and its

corresponding text v is forced to be smaller than the distance from unmatched de-

scriptions vk by some margin m. Vice versa for description v. In this dissertation,

the feature vector f is extracted with the GoogleNet model [41] after the global

average pooling (GAP) layer as shown in Figure 2.2.

2.4.2 Spatially-aware Concept Discovery

The training process of a joint visual-semantic embedding will lead to a dis-

criminative CNN model, which contains not only the semantic information (i.e., the

last embedding layer) but also important spatial information that is hidden in the

network. We now discuss how to obtain spatially-aware concepts from the network.

Attribute spatial representation. Spatial information of an attribute is

crucial for understanding what part of a clothing item the attribute refers to. Mo-

tivated by [42], we generate embedded attribute activation maps (EAAM), which

can localize the salient regions of attributes for an image by a single forward pass

with the trained network.

Given an image I, let qk(i, j) be the activation of unit k in the last convolutional

layer at location (i, j). After the global average pooling (GAP) operation, fk =∑
i,j qk(i, j) is the k-th dimension feature of the image representation f . For a given

attribute a, the cosine distance d(x,Wa) between image embedding x and attribute
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embedding Wa indicates the probability that attribute a is present in this image.

If we plug fk into the cosine distance we obtain:

d(x,Wa) =
∑
m

W a
mxm =

∑
m

W a
m

∑
k

WIm,k
fk

=
∑
m

W a
m

∑
k

WIm,k

∑
i,j

qk(i, j)

=
∑
i,j

∑
m

W a
m

∑
k

WIm,k
qk(i, j)

(2.2)

where W a
m and WIm,k

are entries of the attribute embedding Wa and image em-

bedding matrix WI, respectively. Thus, the embedded attribute activation map

(EAAM) for attribute a of image I can be defined as:

MI
a(i, j) =

∑
m

W a
m

∑
k

WIm,k
qk(i, j) (2.3)

Since d(x,Wa) =
∑

i,j MI
a(i, j), MI

a(i, j) indicates how likely the attribute appears

at spatial location (i, j).

Figure 2.4 shows sample EAAMs of images. We can see the activation maps

indicate where the joint embedding model looks to identify an attribute. Product

images on shopping websites usually have clean backgrounds and are displayed in

an aligned frontal view. Thus, for a particular attribute a and its positive training

set (i.e., images whose product descriptions contain a) Pa, we average EAAMs for

all images in Pa to generate an activation map Aa. We refer to it as the attribute

activation map (AAM) of a:

Aa =
1

|Pa|
∑
I∈Pa

MI
a (2.4)
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Figure 2.4: Embedding attribute activation map for a given attribute. The gener-

ated activation maps successfully highlight the discriminative regions for the given

attribute.

Figure 2.5 shows AAMs of some attributes for the dress category. From this

figure, we can discover that for attributes that have clear spatial information in a

dress image, their AAMs capture the spatial patterns. For example, belt is most

likely to occur in the middle part of dress images, long-sleeve often occurs on two

sides of dress images, and off-shoulder is around the shoulder region of a dress.

However, for some attributes whose locations are not certain for different dress

images, like floral, stripe, and colors, their AAMs span almost the entire image.

Therefore, for each attribute in a clothing category, its AAM can serve as
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off-shoulder belt asymmetric long-sleeve floral stripe 

Figure 2.5: Attribute activation map for a given attribute of the dress category. The

most frequency locations an attribute corresponds to in an image are highlighted.

a spatial representation. If two attributes describe the similar spatial part of a

clothing category, e.g., sleeveless and long-sleeve, or v-neck and mockneck, their

spatial information should also be similar.

Attribute semantic representation. Only using spatial information is

not sufficient for effective concept discovery, especially for those attributes that

do not have a discriminative spatial representation. Thus, we train a skip-gram

model [39] on the descriptions of clothing products to obtain the semantic represen-

tations (Word2vec vectors) for all attributes in our dataset. We denote the semantic

representation of attribute a as Ea.

Attribute clustering. Ideally, attributes belonging to the same concept

describe the same characteristic of a clothing category; that means they should

be both spatially consistent and semantically similar. Thus, for an attribute a, by

simply flattening its spatial representation Aa and concatenating it with its semantic
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concepts discovered by our method

dress

dress length: maxi, midi, mini

neckline: v, plunge, deep, high, scoop

shoulder : off-the-shoulder, one-shoulder, strapless, ...

top

decoration: lace, embellished, embroidered, beaded, ...

sleeve length: sleeveless, long-sleeve, short-sleeve, ...

sleeve shape: kimono, cap, dolman, bell, flutter, ...

pants

color : black, blue, multicolor, gray, white, green, ...

pant cut : straight-leg, slim-leg, tapered-leg, bootcut, ...

pattern: check, geometric, leopard, palm, abstract, ...

Table 2.1: Concept discovered by our method. Each row contains the attributes

belong to one concept. Ellipsis is used when the attribute list is too long to show.

representation Ea, we can generate a feature vector:

Fa = [vec(Aa),Ea] (2.5)

where vec(·) is vectorization operation and we normalize vec(Aa) and Ea to have

unit norm before concatenation. As a result, this attribute feature is aware of the

spatial information of the attribute and can also capture its semantic meaning. K-

means clustering algorithm is then used to cluster all the attributes into attribute

groups, such that the attributes within a group form a concept. Unlike [26], we do

not directly use visual similarity between attributes because attributes describing

the same characteristic might be visually dissimilar. For example, blue and red are
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both color attributes, but they are visually very different.

Table 2.1 presents some concepts discovered by our method for different cat-

egories. We find that the attributes describing the same characteristic are grouped

into one cluster. For example, all attributes describing colors are in one concept

because they are very close in the semantic embedding space (they are often the

first word in product descriptions) and their AAMs do not provide much useful in-

formation (the right two AAMs in Figure 2.5). Thus, the semantic representations

of those attributes dominate in this case and place them in the same concept. Dif-

ferent kinds of sleeves also form a concept, since their AAMs are very similar (along

with the two sides of dresses or tops) and their word vectors are also close. We

also observe that our method can successfully group noisy (not visually perceptible)

attributes together, because the semantic and spatial information of these attributes

is not discriminative. These noisy clusters will be discovered by our method and

not affect the attribute-feedback, since customers will not provide an attribute with

low visualness for retrieval. We will further evaluate the quality of the discovered

concepts in the experiments.

2.4.3 Concept Subspace Learning

The discovered concepts are further utilized to refine the learned joint visual-

semantic space, so that similarities between items can be measured by each indi-

vidual concept (e.g., color and neckline could result in different similarities). This

is crucial for cases when customers want to modify attributes to refine the search
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results or hope to browse products based on a particular concept. Therefore, given

the concepts discovered by the attribute clustering process, we further train a sub-

network for each concept, constructing a concept-specific subspace.

For a concept C = {a1, a2, ..., an} where ai is an attribute in this concept, we

build a fully-connected layer and a softmax layer on top of the image embedding

features to classify the ai. The number of neurons in the softmax layer is n+1 (each

attribute corresponds to one neuron with an additional one for none-of-above). This

network is trained only on images with ai in their product descriptions plus a small

number of randomly sampled negative images. We denote SC(x) to be the softmax

output of the sub-network for concept C given the input image x.

After the subspace training stage, the concept subspace features (hidden layer

representations) are aware of the attributes of this particular concept, and hence

enable the similarity measurement among images based only on this concept. For

example, a “blue maxi dress” is more similar to a “blue mini dress” than a “red

maxi dress” in the color subspace. However, a “red maxi dress” is closer to “blue

maxi dress” in dress length subspace. As a result, customers can choose the desired

similarity measure during online shopping so they can better explore the clothing

gallery.

2.4.4 Attribute-feedback Product Retrieval

Based on the discovered concepts and learned concept subspaces, we lever-

age multimodal linguistic regularities to help perform attribute-feedback product
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retrieval task. Some example results can be found in Figure 2.7.

Given a retrieved image (“red sleeveless mini dress”, for example), customers

may want to change one attribute of the image while keeping others fixed, say

“I want this dress to have long-sleeves”. As we already trained a visual-semantic

embedding (VSE), a baseline method would be sorting database images based on

their cosine distances with the query image + query attribute (long-sleeve). In this

way, the retrieved images have a high score for the query attribute and are similar

to the query image at the same time. For a query image xq and a query attribute

wp, the attribute-feedback retrieval task to find image xo is defined as:

xo = arg max
x

(xq + wp) · x (2.6)

However, one problem with this approach is that it retrieves images which are closest

to “red sleeveless long-sleeve mini dress” instead of “red long-sleeve mini dress”. To

overcome this, we note that by providing a query attribute, customers implicitly

intend to remove an existing attribute (sleeveless in this case) that describes the

same characteristic of the product as the query attribute. Since the attributes

within one discovered concept describe the same characteristic, we detect the implicit

negative attribute wn and use it to search image xo:

wn = arg max
w∈C

SC(xq)

xo = arg max
x

(xq + wp −wn) · x

(2.7)

where C is the concept to which wp belongs and SC(xq) is the softmax output of

the sub-network for C. Thus, wn is the attribute in C that is most likely to be
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Figure 2.6: Top-k retrieval accuracy of different methods for attribute-feedback

product retrieval for dresses, tops, pants, skirt, and jacket.

present in the query image xq. By subtracting the detected negative attribute wn

from the query embedding, we remove the negative attribute to avoid two visually

contradictory attributes (e.g., sleeveless and long-sleeve) hurting the retrieval per-

formance. Eqn. 2.7 indicates that our method actually uses multimodal linguistic

regularities [23] with automatic negative attribute detection.

Because the subspace networks are trained with a none-of-above class, it might

predict that xq does not have any attributes in concept C. In this case, our method

degenerates to the baseline method.
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2.5 Experimental Results and Discussions

2.5.1 Experiment Setup

Clothing detection. Some works have shown that using detected clothing

segmentations instead of entire images can achieve better performance in various

tasks [18,38], so we also train a detector for each clothing category using MultiBox

model [40] to detect and crop clothing items in our dataset. Because the product

images on shopping websites have clean backgrounds, the detectors work very well.

Visual-semantic embedding. We use GoogleNet InceptionV3 model [41] for

the image CNN. Its global average pooling (GAP) layer after the last convolutional

layer enables us to directly use it without changing the structure of the network

as in [42]. We use the 2048D features right after GAP as the image features. The

dimension of the joint embedding space is set to 512, thus WI is a 2048×512 matrix,

and WT is an M × 512 matrix, where M is the number of attributes. We set the

margin m = 0.2 in Eqn. 2.1. The initial learning rate is 0.05 and is decayed by a

factor of 2 after every 8 epochs. The batch size is set to 32. Finally, we fine-tune

all layers of the network pretrained on ImageNet.

Spatiallly-aware concept discovery. The feature map size of the last con-

volutional layer in the InceptionV3 model is 8× 8× 2048, hence the attribute acti-

vation map is of size 8 × 8. After vectorizing the activation map, an attribute will

have a 64D feature vector as its spatial representation. We also set the dimension of

word vectors to 64 to have the same dimentionality when training the Word2vec [39]
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model. The window size is set to 1 because a product name is usually around 5-8

words, we do not want the attributes in one product name to use the attributes in

other product names as positive context to train the word vectors. During concept

clustering, instead of using all attributes, we only use 300 attributes that occur most

frequently for each category, because we need enough positive training images for

AAM to have a meaningful spatial representation. Also, the lower-ranked attributes

often have lower visualness (e.g., reversible, more, london) or have the same mean-

ing as higher-ranked attributes (e.g., longsleeved vs long-sleeve, stripe vs stripes).

In the experimental results, we find that even only using the top 300 attributes can

achieve better retrieval performance than the model without the proposed concept

discovery approach. The number of clusters is fixed to 50.

Subspace feature learning. We set the hidden layer of each concept sub-

space to have 128 neurons. The learning rate is fixed to be 0.1 and we stop training

after 10 epochs. Note that during training subspace networks, the visual-semantic

embedding weights are fixed, only the parameters after the image embedding layer

are updated.

2.5.2 Evaluation of Discovered Concepts

To evaluate the quality of our discovered concepts, a fashion professional man-

ually assigned around 300 attributes into different categories (e.g., color, pattern,

neckline, sleeve, etc.). We use this information as ground truth concept assignments

of the attributes and compare our approach with the following methods: Automatic

23



Homogeneity Completeness V-measure

ACD [26] 0.770 0.527 0.626

Word2vec 0.765 0.534 0.629

Ours AAM 0.680 0.447 0.540

Ours Joint 0.794 0.561 0.658

Table 2.2: Comparison among concept discovery methods. Homogeneity, complete-

ness and V-measure [1] are between 0 and 1, higher is better.

Concept Discovery (ACD) [26], only using semantic representations of attributes

for clustering (Word2vec [39]) and only using spatial information (Our AAM). In

all methods, we set the number of clusters to 50. Homogeneity, completeness and

V-measure [1] are used to evaluate the clustering quality.

Results are shown in Table 2.2. Only using semantic information gives rea-

sonable results. However, just relying on spatial information performs worst, since

for many attributes, their spatial information is not discriminative and thus fails to

discover informative concepts. ACD performs similarly to Word2vec because it com-

bines semantic and visual similarities of attributes but visually dissimilar attributes

may also describe the same characteristic. By jointly clustering the semantic and

spatial representations of attributes, our concept discovery approach outperforms

other methods by 0.03 in V-measure.
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2.5.3 Attribute-feedback Product Retrieval

To evaluate how the discovered concepts help attribute-feedback product re-

trieval, we collected 3,167 product pairs from the test set. The two products in each

pair have one attribute that differs in their product descriptions, e.g., “blue geomet-

ric long-sleeve shirt” vs. “blue paisley long-sleeve shirt”, “blue off-shoulder floral

dress” vs. “blue one-shoulder floral dress”, etc. In each pair, we use the image of

one product and the differing attribute in their descriptions as the query to retrieve

the images of the other product. Top-k retrieval accuracy is used for evaluation.

As shown in Figure 2.6, we compare our full method for all five categories with

other methods. We also include the baseline method (VSE w/o concept discovery

as in Eqn. 2.6), where no negative attribute is used.

We can see that using only attribute activation maps (AAM) significantly

reduces performance of retrieval due to lack of semantic information. Only using

semantic information (Word2vec) helps for most categories, but is worse than the

baseline when retrieving tops. By adding visual information, ACD performs slightly

worse than Word2vec because the visual similarity of attributes is not suitable for

discovering concepts. After combining both semantic and spatial information, our

concept discovery approach achieves the highest retrieval accuracy for all five cat-

egories, especially for the categories top, dress and jacket whose attributes have

strong spatial information (e.g., collar shape, sleeve length, sleeve shape). However,

for clothing items like pants, whose attributes do not present informative spatial

cues, our method only yields a marginal improvement over Word2vec.
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+ strapless =
(- one-shoulder) 

+ pink =
(- purple) 

+ cap-sleeve =
(- sleeveless) 

Figure 2.7: Examples of our attribute-feedback product retrieval results. Sleeve

type changes from sleeveless to cap-sleeve in the first example, and shoulder changes

from one-shoulder to strapless in the third example, according to customer feedback

attributes. The attributes in parentheses are the negative attributes automatically

detected by our method.

Figure 2.7 illustrates some examples which show that our retrieval model can

accurately detect the negative attribute and give satisfying results with the desired

attributes added to the original results.

2.5.4 Structured Browsing of Products

Figure 2.8, 2.9 use t-SNE [43] to visualize two subspace embeddings based on

two discovered concepts. In Figure 2.8, the subspace network is trained to distin-

guish {maxi, midi, mini} for dresses, and it learns a continuous representation of the
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Dress length decreases

Maxi dress

Mini dress

Midi dress

Figure 2.8: Subspace embedding corresponding to concept {maxi, midi, mini} for

dresses. Images are mapped to a grid for better visualization.

White top

Red top

Black top 

Blue top

Figure 2.9: Subspace embedding corresponding to concept {black, blue, white, red,

gray, green, purple, beige, ...} for tops.
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length of dresses - dress length decreases from left to right on the 2D visualization

plane. Figure 2.9 illustrates the embedding corresponding to the attributes describ-

ing colors for tops. Tops with different colors are well separated in the embedding

subspace. Although Veit et al. [25] also learns concept subspaces based on an at-

tention mechanism, they heavily rely on richly annotated data, while our method is

fully automatic and annotation free.

By training a subspace embedding for each discovered concept, we can project

images into the appropriate subspace and explore the images according to this spe-

cific concept, while a general embedding (like the visual-semantic embedding) cannot

automatically adjust its representations based on user-specified characteristics.

Thus, the subspace features enable structured browsing during online shop-

ping. For example, when a customer finds a mini dress and wants to see other

dresses that share similar length with this dress, she may choose the subspace of

{maxi, midi, mini}, so she can find the other mini dresses near her initial choice and

as she explores the left side of the subspace, she can find dresses with longer length.

We should note that it is also possible to concatenate subspace embeddings

of two concepts, hence clothing items sharing the same characteristics according to

two concepts will be close in the concatenated subspace.

2.6 Conclusion

We automatically discover spatially-aware concepts with clothing images and

their product descriptions. By projecting images and their attributes into a joint
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visual-semantic embedding space, we are able to learn attribute spatial represen-

tations. We then combine spatial representations and semantic representations of

attributes, and cluster attributes into spatially-aware concepts, such that the at-

tributes in one concept describe the same characteristic. Finally, a subspace em-

bedding is trained for each concept to capture the concept-specific information. Ex-

periments on clustering quality evaluation and attribute-feedback product retrieval

for five clothing categories show the effectiveness of the discovered concepts and the

learned subspace features.
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Chapter 3: Learning Fashion Compatibility with Bidirectional LSTMs

3.1 Introduction

Fashion plays an increasingly significant role in our society due to its capacity

for displaying personality and shaping culture. Recently, the rising demands of on-

line shopping for fashion products motivate techniques that can recommend fashion

items effectively in two forms (1) suggesting an item that fits well with an existing set

and (2) generating an outfit (a collection of fashion items) given text/image inputs

from users. However, these remain challenging problems as they require modeling

and inferring the compatibility relationships among different fashion categories that

go beyond simply computing visual similarities.

Extensive studies have been conducted on automatic fashion analysis in the

multimedia community. However, most of them focus on clothing parsing [44, 45],

clothing recognition [19], or clothing retrieval [46, 47]. Although, there are a few

works that investigated fashion recommendation [46,48,49], they either fail to con-

sider the composition of items to form an outfit [46] or only support one of the two

recommendation categories discussed above [48,49]. In addition, it is desirable that

recommendations can take multimodal inputs from users. For example, a user can

provide keywords like “business”, or an image of a business shirt, or a combination
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   A. B. C. D.

?

Task 1: Fill in the blank

Task 2: Outfit generation given texts or images

What to dress 
for a biz
 meeting?

(a)

(b)

Task 3: Compatibility prediction

Score: 0.7

Figure 3.1: We focus on three tasks of fashion recommendation. Task 1: recom-

mending a fashion item that matches the style of an existing set. Task 2: generating

an outfit based on users’ text/image inputs. Task 3: predicting the compatibility of

an outfit.

of images and text, to generate a collection of fashion items for a business occasion.

However, no prior approach supports multimodal inputs for recommendation.

Key to fashion recommendation is modeling the compatibility of fashion items.

We contend that a compatible outfit (as shown in Figure 3.3) should have two key

properties: (1) items in the outfit should be visually compatible and share similar
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LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

softmax softmax softmax softmax softmax
pumpswool jumper wool-silk skirtbelted wool coat

visual-embedding
        space

gold-tone sunglass

Figure 3.2: An overview of the proposed framework. We treat a given outfit as a

sequence of fashion items (jumper, coat, skirt, pumps, sunglasses). Then we build a

bidirectional LSTM (Bi-LSTM) to sequentially predict the next item conditioned on

previously seen items in both directions. For example, given the jumper and coat,

predict the skirt. Further, a visual-semantic embedding is learned by projecting

images and their descriptions into a joint space to incorporate useful attribute and

category information, which regularizes the Bi-LSTM and empowers recommenda-

tion with multimodal inputs.

style; (2) these items should form a complete ensemble without redundancy (e.g., an

outfit with only a shirt and a pair of jeans but no shoes is not compatible, neither is

an outfit containing two pairs of shoes). One possible solution is to utilize semantic

attributes [46], for example, “sweat pants” matches well with “running shoes”. But

annotating these attributes is costly and unwieldy at scale. To mitigate this issue,

researchers have proposed to learn the distance between a pair of fashion items

using metric learning [50] or a Siamese network [5]. However, these works estimate
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pairwise compatibility relationships rather than an outfit as a whole. One could

measure the compatibility of an outfit with some voting strategy using all pairs in

the set, but this would incur high computational cost when the set is large and would

fail to incorporate coherence among all items in the collection. On the other hand,

some recent works [37, 49] attempted to predict the popularity or “fashionability”

of an outfit, but they fail to handle the outfit generation task. In contrast, we

are interested in modeling compatibility relationships of fashion items using their

dependencies embedded in the entire outfit.

To address the above limitations, we propose to jointly learn a visual-semantic

embedding and the compatibility relationships among fashion items in an end-to-end

framework. Figure 3.2 gives an overview of the proposed approach. More specifi-

cally, we first adopt the Inception-V3 CNN model [51] as the feature extractor to

transform an image to a feature vector. Then we utilize a one-layer bidirectional

LSTM (Bi-LSTM) with 512 hidden units on top of the CNN model. Bi-LSTM [52]

is a variant of Recurrent Neural Networks (RNNs) with memory cells and different

functional gates governing information flow, and has have been successfully applied

to temporal modeling tasks such as speech recognition [53], and image and video

captioning [54,55]. The intuition of using Bi-LSTM is that we can consider a collec-

tion of clothing items as a sequence with a specific order - top to bottom and then

on to accessories (e.g., shirt, pants, shoes and sunglasses) - and each image in the

collection as a time step. At each time step, given the previous images, we train the

Bi-LSTM model to predict the next item in the collection. Learning the transitions

between time steps serves as a proxy for identifying the compatibility relationships
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of fashion items. Furthermore, in addition to predicting the next image, we also

learn a visual-semantic embedding by projecting the image features into a semantic

representation of their descriptions. This not only provides semantic attribute and

category information of the current input as a regularization for training the LSTM,

but also enables the generation of an outfit with multimodal inputs from users. Fi-

nally, the model is trained end-to-end to jointly learn the compatibility relationships

as well as the visual-semantic embedding.

Once the model is trained, we evaluate our network on three tasks as shown in

Figure 3.1: (1) Fill-in-the-blank: given an outfit with one missing item, recommend

an item that matches well with the existing set; (2) Outfit generation: generate a

fashion outfit with multimodal inputs from the user; (3) Compatibility prediction:

predict the compatibility of a given fashion outfit. We conduct experiments on a

newly collected Polyvore dataset, and compare with state-of-the-art methods. The

main contributions of this work are summarized as follows:

• We jointly learn compatibility relationships among fashion items and a visual-

semantic embedding in an end-to-end framework to facilitate effective fashion

recommendation in two forms.

• We employ a Bi-LSTM model to learn the compatibility relationships among

fashion items by modeling an outfit as a sequence.

• Through an extensive set of experiments, we demonstrate our network out-

performs several alternative methods with clear margins.
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3.2 Related Work

We discuss multiple streams of works that are closely related to our approach.

Fashion Recognition and Retrieval. There is a growing interest in identifying

fashion items in images due to the huge potential for commercial applications. Most

recent works utilize standard segmentation methods, in combination with human

pose information, to parse different garment types [56, 57] for effective retrieval.

Liu et al. proposed a street-to-shop application that learns a mapping between

photos taken by users with product images [58]. Hadi et al. further utilized deep

learning techniques to learn the similarity between street and shop images [38].

Wang et al. used a robust contrastive loss to improve the retreival performance [59].

Recently, Liu et al. introduced FashionNet to learn fashion representations that

jointly predicts clothing attributes and landmarks [19]. In contrast to these works

focusing on retrieval tasks, our goal is to learn the visual compatibility relationships

of fashion items in an outfit.

Fashion Recommendation. As discussed previously, there are a few approaches

for recommending fashion items [46,48,49]. Liu et al. introduced an occasion-based

fashion recommendation system with a latent SVM framework that relies on man-

ually labeled attributes [46]. Hu et al. proposed a functional tensor factorization

approach to generate an outfit by modeling the interactions between user and fashion

items [48]. Recently, Li et al. trained an RNN to predict the popularity of a fashion

set by fusing text and image features [49]. Then they constructed a recommendation

by selecting the item that produces the highest popularity score when inserted into
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a given set. In contrast to these approaches, our method learns the compatibility re-

lationships among fashion items together with a visual-semantic embedding, which

enables both item and outfit recommendation.

Visual Compatibility Learning. In the context of fashion analysis, visual com-

patibility measures whether clothing items complement one another across visual

categories. For example, “sweatpants” are more compatible with “running shoes”

than “high-heeled shoes”. Simo-Serro et al. implicitly learned the compatibility of

an outfit by predicting its “fashionability” [37]. McAuley et al. learned a distance

metric between clothes with CNN features to measure their compatibilities [50].

Veit et al. further improved the distance metric learning with a Siamese network [5].

Recently, Oramas et al. mined mid-level elements to model the compatibility of

clothes [60]. In this dissertation, we consider the visual compatibility of an entire

outfit – items in a fashion collection are expected to share similar styles, forming

a stylish composition. To this end, we leverage a Bi-LSTM model to learn the

compatibility relationships for outfits, capturing the dependencies among fashion

items.

Sequential Learning with LSTM. Compared with traditional RNNs, an LSTM is

able to model long-range temporal dependencies across time steps without suffering

the “vanishing gradients” effect. This results from the use of a memory cell regulated

by different functional gates, which assist the LSTM to learn when to forget previous

information and when to memorize new things. LSTM models have been successfully

applied to capture temporal dependencies in sequences such as speech [53] and

videos [55,61,62], etc. In this work, we employ an LSTM to capture the compatibility
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Off-White	
Rose-Embroidered	

Sweatshirt

Dark	Blue	
Denim	Shorts

White	Leather	Stripe
New	Ace	Sneakers

Leather	Knotted	
Saddle	Bag

Intense	Color	Nail	Lacquer/0.3	Oz.

Figure 3.3: A sample outfit from the Polyvore website. A typical outfit contains a

fashion item list, i.e., pairs of fashion images and their corresponding descriptions.

relationships of fashion items by considering an outfit as a sequence from top to

bottom and then accessories and images in the collection as individual time steps.

3.3 Polyvore Dataset

Polyvore (www.polyvore.com) is a popular fashion website, where users create

and upload outfit data as shown in Figure 3.3. These fashion outfits contain rich

multimodal information like images and descriptions of fashion items, number of

likes of the outfit, hash tags of the outfit, etc. Researchers have utilized this infor-

mation for various fashion tasks [29,48,49]. However, their datasets are not publicly

available.
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Therefore, we collected our own dataset from Ployvore containing 21,889 out-

fits. These outfits are split into 17,316 for training, 1,497 for validation and 3,076

for testing. Following [49], we also use a graph segmentation algorithm to ensure

there are no overlapping items between two splits. For outfits that contain too

many fashion items, we only keep the first 8 for simplicity. The resulting Polyvore

dataset contains 164,379 items (each item contains a pair - product image and a

corresponding text description). The average number of fashion items in an outfit

is 6.5. To clean the text descriptions, we remove words appearing fewer than 30

times, leading to a vocabulary of size 2,757. We choose a large threshold when

filtering words because the text descriptions are very noisy and lower-ranked words

have very low visualness. Note that the fashion items in an outfit on Polyvore.com

are usually organized in fixed order - tops, bottoms, shoes, and the accessories.

The orders of the tops and accessories are also fixed - for tops, shirts and t-shirts

come before outwears; accessories are usually in the order of handbags, hats, glasses,

watches, necklaces, earrings, etc. This enables an RNN model like an LSTM to learn

“temporal” information. This dataset will be released for research purposes.

3.4 The Proposed Fashion Compatibility Modeling Approach

We next introduce the key components of the framework shown in Figure 3.2,

consisting of a bidirectional LSTM for fashion compatibility modeling and a visual-

semantic embedding to capture multimodal information.
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3.4.1 Fashion Compatibility Learning with Bi-LSTM

The recurrent nature of LSTM models enables them to learn relationships

between two time steps, and the use of memory units regulated by different cells

facilitates exploiting long-term temporal dependencies. To take advantage of the

representation power of LSTM, we treat an outfit as a sequence and each image in

the outfit as an individual time step, and employ the LSTM to model the visual

compatibility relationships of outfits.

Given a fashion image sequence F = {x1,x2, ...,xN}, xt is the feature repre-

sentation derived from a CNN model for the t-th fashion item in the outfit. At each

time step, we first use a forward LSTM to predict the next image given previous

images; learning the transitions between time steps serves as a proxy for estimating

the compatibility relationships among fashion items. More formally, we minimize

the following objective function:

Ef (F; Θf ) = − 1

N

N∑
t=1

logPr(xt+1|x1, ...,xt; Θf ), (3.1)

where Θf denotes the model parameters of the forward prediction model and Pr(·),

computed by the LSTM model, is the probability of seeing xt+1 conditioned on

previous inputs.

More specifically, the LSTM model maps an input sequence {x1,x2, . . . ,xN}

to outputs via a sequence of hidden states by computing the following equations
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recursively from t = 1 to t = N :

it = σ(Wxixt + Whiht−1 + Wcict−1 + bi),

ft = σ(Wxfxt + Whfht−1 + Wcfct−1 + bf ),

ct = ftct−1 + it tanh(Wxcxt + Whcht−1 + bc),

ot = σ(Wxoxt + Whoht−1 + Wcoct + bo),

ht = ot tanh(ct),

where xt,ht are the input and hidden vectors of the t-th time step, it, ft, ct,ot are

the activation vectors of the input gate, forget gate, memory cell and output gate,

Wαβ is the weight matrix between vector α and β (e.g., Wxi is weight matrix from

the input xt to the input gate it), bα is the bias term of α and σ is the sigmoid

function.

Following [63] that utilizes softmax output to predict the next word in a sen-

tence, we append a softmax layer on top of ht to calculate the probability of the

next fashion item conditioned on previously seen items:

Pr(xt+1|x1, ...,xt; Θf ) =
exp(htxt+1)∑
x∈X exp(htx)

, (3.2)

where X contains all images (in multiple outfits) from the current batch. This

allows the model to learn discriminative style and compatibility information by

looking at a diverse set of samples. Note that one can choose X to be the whole

vocabulary [64] as in sentence generation tasks; however this is not practical during

training our model due to the large number of images and high-dimensional image

representations. Therefore, we set X to be all possible choices in the batch of xt+1
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to speed up training, instead of choosing from hundreds of thousands of images from

the training data.

Given a fashion item, it makes intuitive sense that predicting the next item

can be performed in the reverse order also. For example, the next item for “pants”

could be either “shirts” or “shoes”. Therefore, we also build a backward LSTM to

predict a previous item given the items after it:

Eb(F; Θb) = − 1

N

0∑
t=N−1

logPr(xt|xN , ...,xt+1; Θb), (3.3)

and

Pr(xt|xN , ...,xt+1; Θb) =
exp(h̃t+1xt)∑
x∈X exp(h̃t+1x)

, (3.4)

where h̃t+1 is the hidden state at time t+ 1 of the backward LSTM, and Θb denotes

the backward prediction model parameters. Note that we add two zero vectors x0

and xN+1 in F so that the bidirectional LSTM learns when to stop predicting the

next item.

Since an outfit is usually a stylish ensemble of fashion items that share similar

styles (e.g., color or texture), by treating an outfit as an ordered sequence, the Bi-

LSTM model is trained explicitly to capture compatibility relationships as well as

the overall style of the entire outfit (knowledge learned in the memory cell). This

makes it a very good fit for fashion recommendation.
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3.4.2 Visual-semantic Embedding

Fashion recommendation should naturally be based on multimodal inputs (ex-

emplar images and text describing certain attributes) from users. Therefore, it is

important to learn a multimodal embedding space of texts and images. Instead of

annotating images with labels or attributes, which is costly, we leverage the weakly-

labeled web data, i.e., the informative text description of each image provided by the

dataset, to capture multimodal information. To this end, we train a visual-semantic

embedding by projecting images and their associated text into a joint space, which

is widely used when modeling image-text pairs [23].

Given a fashion image from an outfit, its description is denoted as S =

{w1, w2, ..., wM} where wi represents each word in the description. We first rep-

resent the i-th word wi with one-hot vector ei, and transform it into the embedding

space by vi = WT · ei where WT represents the word embedding matrix. We then

encode the description with bag-of-words v = 1
M

∑
i vi. Letting WI denote the im-

age embedding matrix, we project the image representation x into the embedding

space and represent it as f = WI · x.

In the visual-semantic space, we estimate the similarity between an image

and its description with their cosine distance: d(f ,v) = f · v, where f and v are

normalized to unit norm. Finally, the images and descriptions are embedded in the

joint space by minimizing the following contrastive loss:
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Ee(Θe) =
∑

f

∑
k

max(0,m− d(f ,v) + d(f ,vk))+

∑
v

∑
k

max(0,m− d(v, f) + d(v, fk)),

(3.5)

where Θe = {WI,WT} are the model parameters, and vk denotes non-matching

descriptions for image f while fk are non-matching images for description v. By

minimizing this loss function, the distance between f and its corresponding descrip-

tion v is forced to be smaller than the distance from unmatched descriptions vk by

some margin m. Vice versa for description v. During the training, all non-matching

pairs inside each mini batch are selected to optimize Eqn. 3.5. As such, fashion

items that share similar semantic attributes and styles will be close in the learned

embedding space.

3.4.3 Joint Modeling

Given a fashion output, the Bi-LSTM is trained to predict the next or pre-

vious item by utilizing the visual compatibility relationships. However, this is not

optimal since it overlooks the semantic information and also prevents users from

using multimodal input to generate outfits. Therefore, we propose to jointly learn

fashion compatibility and the visual-semantic embedding with an aim to incorporate

semantic information in the training process of the Bi-LSTM. The overall objective

function is described as follows:

min
Θ

∑
F

(Ef (F; Θf ) + Eb(F; Θb)) + Ee(Θe), (3.6)
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where Θ = {Θf ,Θb,Θe}. The first two terms in Eqn. 3.6 are the Bi-LSTM objective

functions, and the third term computes the visual-semantic embedding loss. The

framework can be easily trained by Back-Propagation through time (BPTT) [52] in

an end-to-end fashion, in which gradients are aggregated through time. The only

difference compared to a standard Bi-LSTM model during back-propagation is that

the gradients of the CNN model now stem from the average of two sources (See

Figure 3.2), allowing the CNN model to learn useful semantic information at the

same time. The visual-semantic embedding not only serves as a regularization for

the training of Bi-LSTM but also enables multimodal fashion recommendation as

will be demonstrated in the next section.

3.5 Experiment

In this section, we first introduce the experiment settings. Then we conduct an

extensive set of experiments to validate the effectiveness of the proposed approach on

three tasks, including fill-in-the-blank fashion recommendation (Sec. 3.5.3), fashion

compatibility prediction (Sec. 3.5.4) and fashion outfit generation (Sec. 3.5.5).

3.5.1 Implementation Details

Bidirectional LSTM. We use 2048D CNN features derived from the GoogleNet

InceptionV3 model [51] as the image representation, and transform the features into

512D with one fully connected layer before feeding them into the Bi-LSTM. The

number of hidden units of the LSTM is 512, and we set the dropout rate to 0.7.
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Visual-semantic Embedding. The dimension of the joint embedding space is set

to 512, and thus WI ∈ R2048×512 and WT ∈ R2757×512, where 2757 is the size of the

vocabulary. We fix the margin m = 0.2 in Eqn. 3.5.

Joint Training. The initial learning rate is 0.2 and is decayed by a factor of 2 every

2 epochs. The batch size is set to 10, and thus each mini batch contains 10 fashion

outfit sequences, around 65 images and their corresponding descriptions. Finally,

we fine-tune all layers of the network pre-trained on ImageNet. We stop the training

process when the loss on the validation set stabilizes.

3.5.2 Compared Approaches

To demonstrate the effectiveness of our approach for modeling the compati-

bility of fashion outfits, we compare with the following alternative methods:

SiameseNet [5]. SiameseNet utilizes a Siamese CNN to project two clothing items

into a latent space to estimate their compatibility. To compare with SiameseNet, we

train a network with the same structure by considering fashion items in the same

outfit as positive compatible pairs and items from two different outfits as negative

pairs. The compatibility of an outfit is obtained by averaging pairwise compatibility,

in the form of cosine distance in the learned embedding, of all pairs in the collection.

For fair comparisons, the embedding size is also set to 512. We also normalize the

embedding with `2 norm before calculating the Siamese loss, and set the margin

parameter to 0.8.

SetRNN [49]. Given a sequence of fashion images, SetRNN predicts the fashion
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set popularity using an RNN model. We use the popularity prediction of SetRNN

as the set compatibility score.

Visual-semantic Embedding (VSE). We only learn a VSE by minimizing Ee in

Eqn. 3.5 without training any LSTM model. The resulting embeddings are used to

measure the compatibility of an outfit, similar to SiameseNet.

Bi-LSTM. Only a bidirectional LSTM is trained without incorporating any seman-

tic information.

F-LSTM+VSE. Jointly training the forward LSTM with visual-semantic embed-

ding, i.e., minimizing Ef + Ee.

B-LSTM+VSE. Similarly, only a backward LSTM is trained with visual-semantic

embedding, i.e. minimizing Eb + Ee.

Bi-LSTM+VSE. Our full model by jointly learning the bidirectional LSTM and

the visual-semantic embedding.

The first two approaches are recent works in this line of research and the

remaining methods are used for ablation studies to analyze the contribution of each

component in our proposed framework. The hyper-parameters in these methods are

chosen using the validation set.

3.5.3 Fill-in-the-blank Fashion Recommendation

Recently, several fill-in-the-blank (FITB) datasets [65–68] have been created

and evaluated to bridge visual and semantic information. However, no existing

dataset deals with image sequence completion (i.e., given a sequence of images and
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a blank, fill in the blank with a suitable image). Thus, we introduce the problem of

filling-in-the-blank questions from multiple choices as shown in Task 1 of Figure 3.1.

In this task, a sequence of fashion items are provided and one needs to choose an

item from multiple choices that is compatible with other items to fill in the blank.

This is a very practical scenario in real life, e.g., a user wants to choose a pair of

shoes to match his pants and coat.

To this end, we create a fill-in-the-blank dataset using all outfits in the Polyvore

test set. For each outfit, we randomly select one item and replace it with a blank,

and then select 3 items from other outfits along with the ground truth item to

obtain a multiple choice set. We believe that a randomly selected item should be

less compatible than the one chosen by experienced designers on Polyvore. Thus, it

is reasonable to evaluate fashion recommendation methods on such multiple-choice

questions. Once our Bi-LSTM+VSE is trained, we solve the fill-in-the-blank task

based on the following objective function:

xa = arg max
xc∈C

Pr(xc|x1, ...,xt−1) + Pr(xc|xN , ...,xt+1) (3.7)

= arg max
xc∈C

exp(ht−1xc)∑
x∈C exp(ht−1x)

+
exp(h̃t+1xc)∑
x∈C exp(h̃t+1x)

(3.8)

where C is the choice set, and t is the position of the blank we aim to fill in.

Hence, during inference time, forward and backward LSTMs independently predict

the probability of one candidate belonging to the outfit, and the candidate having

the highest total probability is selected as the answer.

The middle column of Table 3.1 shows the results of our method compared
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Figure 3.4: Examples of our method on the fill-in-the-blank task. Green bounding

boxes indicate the correct answers, while red box shows a failure case. Prediction

score of each choice is also displayed.
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Method FITB accuracy Compatibility AUC

SetRNN [49] 29.6% 0.53

SiameseNet [5] 52.0% 0.85

VSE 29.2% 0.56

F-LSTM + VSE 63.7% 0.89

B-LSTM + VSE 61.2% 0.88

Bi-LSTM 66.7% 0.89

Bi-RNN + VSE 63.7% 0.85

Bi-GRU + VSE 67.1% 0.89

Bi-LSTM + VSE (Ours) 68.6% 0.90

Table 3.1: Comparison between our method and other methods on the fill-in-the-

blank (FITB) and compatibility prediction tasks.

with alternative approaches on this task. From this table, we make the following

observations: 1) SetRNN and VSE perform similar to random guess (25%); thus

they are not suitable for this task. SetRNN predicts popularity of an outfit, but

popularity does not always indicate good compatibility. Similar retrieval accuracy

is also observed in the SetRNN paper [49]. VSE does not work very well due to

the noises in text labels, and also its failure to model the relationships of items in

one outfit. 2) SiameseNet works better than VSE and SetRNN but still worse than

LSTM based methods, since it mainly considers pairwise relationships rather than

the compatibility of the entire outfit; thus it sometimes chooses a candidate with a
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category that is already in the outfit though the styles are indeed similar. 3) F-LSTM

outperforms B-LSTM. We attribute this to the fact that the last several items in

most of the outfits are accessories, and it is harder for the backward LSTM to predict

clothing items based on accessories than the other way around. The combination of

LSTMs in these two directions offers higher accuracy than one directional LSTM.

4) We further jointly learn the Bi-LSTM with the visual-semantic embedding, and

the resulting full model achieves the best performance with an accuracy of 68.6%,

1.9 percentage points higher than Bi-LSTM alone. This verifies the assumption the

visual-semantic embedding can indeed assist the training of Bi-LSTM by providing

semantic clues like classes and attributes. 5) We also investigate different RNN

architectures by replacing LSTM cells with gated recurrent unit (GRU) and basic

RNN cells. GRU and LSTM are better than basic RNN by better addressing the

“vanishing gradients” effect and better modeling the temporal dependencies. The

choice between LSTM and GRU depends heavily on the dataset and corresponding

task [69]; our experiments demonstrate that LSTM is more suitable for modeling

compatibility of fashion items.

In Figure 3.4, we visualize sample results of our method for the filling-in-

the-blank task. Combining Bi-LSTM and visual-semantic embedding can not only

detect what kinds of fashion item is missing (e.g., coat is missing in the second

example of the Figure 3.4), but also selects the fashion item that is most compatible

to the query items and matches their style as well (e.g., running shoes are more

compatible with the sporty outfit in the third example of Figure 3.4).
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Figure 3.5: Results of our method on the fashion outfit compatibility prediction

task. Scores are normalized to be between 0 and 1 for better visualization.

3.5.4 Fashion Compatibility Prediction

In addition to recommending fashion items, our model can also predict the

compatibility of an outfit. This is useful since users may create their own outfits

and wish to determine if they are compatible and trendy. Even though minimizing

Eqn. 3.6 does not explicitly predict compatibility, since our model is trained on the

outfit data generated on Polyvore which are usually fashionable and liked by a lot

of users, it can be used for this purpose. Given an outfit F, we simply utilize the
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value of the first two terms in Eqn. 3.6 (Bi-LSTM prediction loss) as an indicator

of compatibility.

To compare with alternative methods, similarly to the filling-in-the-blank

dataset, we created 4,000 incompatible outfits by randomly selecting fashion items

from the test set. The performance is evaluated using the AUC of the ROC curve.

Results are presented in the third column of Table 3.1. Our method obtains the

best performance among all methods, outperforming recent works [5, 49] by clear

margins. Particularly, it is interesting to see that our method, designed to learn

the compatibility relationships by predicting the next item conditioned on previous

items, is significantly better than SetRNN, which is directly trained to predict set

popularity. In addition, we also observe that one directional LSTM is good enough

for compatibility prediction.

Figure 3.5 shows qualitative results of our method. From this figure, we can

observe that our method can predict if a set of fashion items forms a compatible

(stylish) outfit. For example, the outfit in the first row contains purple/black items

with the same style and thus has a high compatibility score; all the items in the

third row have different colors, which makes them somewhat incompatible to form

an outfit; the fourth outfit contains 4 pairs of shoes without a bottom, and the last

one contains two dresses but no shoes; thus they are both incompatible outfits.
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Query items:

Bi-LSTM generates an outfit using the first item

endstart

endstart

(b) Insert	next	query	by	nearest neighbor.

(a) Bi-LSTM based outfit generation.

(c) Fill in the blanks.

(d) Bi-LSTM based outfit completion.

nearest
neighbor

Figure 3.6: Given query fashion images, our method can generate a compatible

outfit.

3.5.5 Fashion Outfit Generation

We now discuss how to utilize our proposed framework to generate an outfit

with multimodal specifications (images/text) from users.

Generate Outfits from Query Images. Figure 3.6 gives an overview of this

process. We first consider a degenerate scenario where users provide a single image

and wish to obtain an entire outfit with consistent style. This can be accomplished
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Figure 3.7: Fashion outfit recommendation given query items. Each row contains a

recommended outfit where query images are indicated by green boxes.
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simply by running the trained Bi-LSTM in two directions as shown in Figure 3.6 (a).

When users provide more than one item, we first utilize the first item to generate an

initial outfit and then find and replace the nearest neighbor of the next query item

(Figure 3.6 (b)). If the two items are contiguous, we can perform inference in both

directions to produce an outfit. Otherwise, we fill in all the blanks between these

two items to achieve coherence before performing inference (Figure 3.6 (c)). This

ensures the subsequence used to generate the entire outfit is visually compatible.

When more input images are available, this process can be repeated recursively.

Finally, the outfit is generated by running the Bi-LSTM model in both directions

on the subsequence (Figure 3.6 (d)). We can see that many fashion items are visually

compatible with the white pants, and the initial outfit generated in Figure 3.6 (a) has

a casual style. When incorporating the black/red handbag, our model first predicts

a pair of black/red shoes that match both items, and automatically generates an

outfit with a slightly more formal style accordingly.

We demonstrate sample outfit generation results given one to three image

inputs in Figure 3.7. It is clear that our method can produce visually compatible

and complete outfits. Note that we only show qualitative results of our method

since SiameseNet [5], SetRNN [49] and VSE cannot tackle this task.

Generate Outfits from Multimodal Queries. Since we jointly learn a visual-

semantic embedding together with the Bi-LSTM, our method can also take an aux-

iliary text query and generate an outfit that is not only visually compatible with the

given query fashion items, but also semantically relevant to the given text query.

This can be done by first generating an initial outfit using Bi-LSTM based on the
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+ denim =

+ floral =

denim

casual

lace dress
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red pump

jeans
+

converse
sneaker + floral =

+ denim =

Figure 3.8: Fashion outfit recommendation given query items and text input. Query

images are indicated by green boxes. Outfits on the top are generated without using

the text input. When a text query is provided the outfits are adjusted accordingly.

given fashion items. Then, given the semantic representation of the text query vq,

each non-query item fi in the initial outfit is updated by arg minf d(f , fi+vq). Thus,

the updated item is both similar to the original item and also close to the text

query in the visual-semantic embedding space. Figure 3.8 shows two examples of

our recommended fashion outfits when multimodal queries are provided. Our model
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casual
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jeans
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converse
sneaker + floral =
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Figure 3.9: Fashion outfit recommendation given text input. The input can either

be an attribute or style (e.g., denim, casual) or descriptions of fashion items (e.g.,

lace dress + red pump).

effectively generates visually compatible and semantically relevant outfits.

Generate Outfits from Text Queries. In addition to combining images and text

inputs, our model is also capable of generating outfits given only text inputs. We

can take two kinds of text inputs from users - an attribute or style that all items are

expected to share, or descriptions of items the generated outfit should contain. In

the first scenario, the nearest image to the text query is chosen as the query image,

and then the Bi-LSTM model can produce an outfit using this image. Then, the
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outfit is updated in the same manner as when both image and text inputs are given

(the first two examples in Figure 3.9). In the other scenario, a fashion item image

is retrieved using each description, and all images are treated as query images to

generate the outfit (the last two examples in Figure 3.9).

3.6 Conclusion

In this part of dissertation, we propose to jointly train a Bi-LSTM model and

a visual-semantic embedding for fashion compatibility learning. We consider an

outfit as a sequence and each item in the outfit as an time step, and we utilize a

Bi-LSTM model to predict the next item conditioned on previously seen ones. We

also train a visual-semantic embedding to provide category and attribute informa-

tion in the training process of the Bi-LSTM. We conducted experiments on different

types of fashion recommendation tasks using our newly collected Polyvore dataset,

and the results demonstrate that our method can effectively learn the compatibility

of fashion outfits. Since fashion compatibility might vary from one person to an-

other, modeling user-specific compatibility and style preferences is one of our future

research directions.
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Chapter 4: VITON: An Image-based Virtual Try-on Network

4.1 Introduction

Recent years have witnessed the increasing demands of online shopping for

fashion items. Online apparel and accessories sales in US are expected to reach 123

billion in 2022 from 72 billion in 2016 [4]. Despite the convenience online fashion

shopping provides, consumers are concerned about how a particular fashion item in

a product image would look on them when buying apparel online. Thus, allowing

consumers to virtually try on clothes will not only enhance their shopping experi-

ence, transforming the way people shop for clothes, but also save cost for retailers.

Motivated by this, various virtual fitting rooms/mirrors have been developed by dif-

ferent companies such as TriMirror, Fits Me, etc. However, the key enabling factor

behind them is the use of 3D measurements of body shape, either captured directly

by depth cameras [70] or inferred from a 2D image using training data [71,72]. While

these 3D modeling techniques enable realistic clothing simulations on the person,

the high costs of installing hardwares and collecting 3D annotated data inhibit their

large-scale deployment.

We present an image-based virtual try-on approach, relying merely on plain

RGB images without leveraging any 3D information. Our goal is to synthesize a
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Figure 4.1: Virtual try-on results generated by our method. Each row shows a

person virtually trying on different clothing items. Our model naturally renders the

items onto a person while retaining her pose and preserving detailed characteristics

of the target clothing items.

photo-realistic new image by overlaying a product image seamlessly onto the corre-

sponding region of a clothed person (as shown in Figure 4.1). The synthetic image is

expected to be perceptually convincing, meeting the following desiderata: (1) body

parts and pose of the person are the same as in the original image; (2) the clothing
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item in the product image deforms naturally, conditioned on the pose and body

shape of the person; (3) detailed visual patterns of the desired product are clearly

visible, which include not only low-level features like color and texture but also com-

plicated graphics like embroidery, logo, etc. The non-rigid nature of clothes, which

are frequently subject to deformations and occlusions, poses a significant challenge

to satisfying these requirements simultaneously, especially without 3D information.

Conditional Generative Adversarial Networks (GANs), which have demon-

strated impressive results on image generation [73, 74], image-to-image transla-

tion [75] and editing tasks [76], seem to be a natural approach for addressing this

problem. In particular, they minimize an adversarial loss so that samples generated

from a generator are indistinguishable from real ones as determined by a discrimina-

tor, conditioned on an input signal [73,75,77,78]. However, they can only transform

information like object classes and attributes roughly, but are unable to generate

graphic details and accommodate geometric changes [79]. This limits their ability

in tasks like virtual try-on, where visual details and realistic deformations of the

target clothing item are required in generated samples.

To address these limitations, we propose a virtual try-on network (VITON), a

coarse-to-fine framework that seamlessly transfers a target clothing item in a prod-

uct image to the corresponding region of a clothed person in a 2D image. Figure 4.2

gives an overview of VITON. In particular, we first introduce a clothing-agnostic

representation consisting of a comprehensive set of features to describe different

characteristics of a person. Conditioned on this representation, we employ a multi-

task encoder-decoder network to generate a coarse synthetic clothed person in the
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same pose wearing the target clothing item, and a corresponding clothing region

mask. The mask is then used as a guidance to warp the target clothing item to

account for deformations. Furthermore, we utilize a refinement network which is

trained to learn how to composite the warped clothing item to the coarse image

so that the desired item is transfered with natural deformations and detailed vi-

sual patterns. To validate our approach, we conduct a user study on our newly

collected dataset and the results demonstrate that VITON generates more realistic

and appealing virtual try-on results outperforming state-of-the-art methods.

4.2 Related Work

Fashion analysis. Extensive studies have been conducted on fashion analysis due

to its huge profit potentials. Most existing methods focus on clothing parsing [45,57],

clothing recognition by attributes [19], matching clothing seen on the street to online

products [38,58], fashion recommendation [48], visual compatibility learning [5,36],

and fashion trend prediction [80]. Compared to these lines of work, we focus on

virtual try-on with only 2D images as input. Our task is also more challenging

compared to recent work on interactive search that simply modifies attributes (e.g.,

color and textures) of a clothing item [20, 47, 81], since virtual try-on requires pre-

serving the details of a target clothing image as much as possible, including exactly

the same style, embroidery, logo, text, etc.

Image synthesis. GANs [82] are one of most popular deep generative models

for image synthesis, and have demonstrated promising results in tasks like image
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generation [83, 84] and image editing [76, 85]. To incorporate desired properties

in generated samples, researchers also utilize different signals, in the form of class

labels [77], text [73], attributes [86], etc., as priors to condition the image generation

process. There are a few recent studies investigating the problem of image-to-image

translation using conditional GANs [75], which transform a given input image to

another one with a different representation. For example, producing an RGB image

from its corresponding edge map, semantic label map, etc., or vice versa. Recently,

Chen and Kolton [87] trained a CNN using a regression loss as an alternative to

GANs for this task without adversarial training. These methods are able to produce

photo-realistic images, but have limited success when geometric changes occur [79].

Instead, we propose a refinement network that pays attention to clothing regions

and deals with clothing deformations for virtual try-on.

In the context of image synthesis for fashion applications, Yoo et al. [88] gen-

erated a clothed person conditioned on a product image and vice versa regardless

of the person’s pose. Lassner et al. [74] described a generative model of people in

clothing, but it is not clear how to control the fashion items in the generated results.

A more related work is FashionGAN [89], which replaced a fashion item on a person

with a new one specified by text descriptions. In contrast, we are interested in the

precise replacement of the clothing item in a reference image with a target item,

and address this problem with a novel coarse-to-fine framework.

Virtual try-on. There is a large body of work on virtual try-on, mostly conducted

in computer graphics. Guan et al. proposed DRAPE [90] to simulate 2D clothing

designs on 3D bodies in different shapes and poses. Hilsmann and P. Eisert [91]
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retextured the garment dynamically based on a motion model for real-time visual-

ization in a virtual mirror environment. Sekine et al. [70] introduced a virtual fitting

system that adjusts 2D clothing images to users through inferring their body shapes

with depth images. Recently, Pons-Moll et al. [92] utilized a multi-part 3D model

of clothed bodies for clothing capture and retargeting. Yang et al. [72] recovered a

3D mesh of the garment from a single view 2D image, which is further re-targeted

to other human bodies. In contrast to relying on 3D measurements to perform pre-

cise clothes simulation, in our work, we focus on synthesizing a perceptually correct

photo-realistic image directly from 2D images, which is more computationally ef-

ficient. In computer vision, limited work has explored the task of virtual try-on.

Recently, Jetchev and Bergmann [93] proposed a conditional analogy GAN to swap

fashion articles. However, during testing, they require the product images of both

the target item and the original item on the person, which makes it infeasible in

practical scenarios. Moreover, without injecting any person representation or ex-

plicitly considering deformations, it fails to generate photo-realistic virtual try-on

results.

4.3 Virtual Try-on Network

The goal of VITON is, given a reference image I with a clothed person and

a target clothing item c, to synthesize a new image Î, where c is transferred natu-

rally onto the corresponding region of the same person whose body parts and pose

information are preserved. Key to a high-quality synthesis is to learn a proper trans-
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Figure 4.2: An overview of VITON. VITON consists of two stages: (a) an encoder-

decoder generator stage (Sec 4.3.2), and (b) a refinement stage (Sec 4.3.3).
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formation from product images to clothes on the body. A straightforward approach

is to leverage training data of a person with fixed pose wearing different clothes and

the corresponding product images, which, however, is usually difficult to acquire.

In a practical virtual try-on scenario, only a reference image and a desired

product image are available at test time. Therefore, we adopt the same setting

for training, where a reference image I with a person wearing c and the product

image of c are given as inputs (we will use c to refer to the product image of c in

the following sections). Now the problem becomes given the product image c and

the person’s information, how to learn a generator that not only produces I during

training, but more importantly is able to generalize at test time – synthesizing a

perceptually convincing image with an arbitrary desired clothing item.

To this end, we first introduce a clothing-agnostic person representation (Sec 4.3.1).

We then synthesize the reference image with an encoder-decoder architecture (Sec 4.3.2),

conditioned on the person representation as well as the target clothing image. The

resulting coarse result is further improved to account for detailed visual patterns

and deformations with a refinement network (Sec 4.3.3). The overall framework is

illustrated in Figure 4.2.

4.3.1 Person Representation

A main technical challenge of a virtual try-on synthesis is to deform the target

clothing image to fit the pose of a person. To this end, we introduce a clothing-

agnostic person representation, which contains a set of features (Figure 4.3), includ-
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Figure 4.3: A clothing-agnostic person representation. Given a reference image I,

we extract the pose, body shape and face and hair regions of the person, and use

this information as part of input to our generator.

ing pose, body parts, face and hair, as a prior to constrain the synthesis process.

Pose heatmap. Variations in human poses lead to different deformations of cloth-

ing, and hence we explicitly model pose information with a state-of-the-art pose

estimator [94]. The computed pose of a person is represented as coordinates of 18

keypoints. To leverage their spatial layout, each keypoint is further transformed to

a heatmap, with an 11 × 11 neighborhood around the keypoint filled in with ones

and zeros elsewhere. The heatmaps from all keypoints are further stacked into an

18-channel pose heatmap.

Human body representation. The appearance of clothing highly depends on

body shapes, and thus how to transfer the target fashion item depends on the

location of different body parts (e.g., arms or torso) and the body shape. A state-

of-the-art human parser [95] is thus used to compute a human segmentation map,

where different regions represent different parts of human body like arms, legs, etc.

We further convert the segmentation map to a 1-channel binary mask, where ones
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indicate human body (except for face and hair) and zeros elsewhere. This binary

mask derived directly from I is downsampled to a lower resolution (16×12 as shown

in Figure 4.3) to avoid the artifacts when the body shape and target clothing conflict

as in [89].

Face and hair segment. To maintain the identity of the person, we incorporate

physical attributes like face, skin color, hair style, etc. We use the human parser [95]

to extract the RGB channels of face and hair regions of the person to inject identity

information when generating new images.

Finally, we resize these three feature maps to the same resolution and then

concatenate them to form a clothing-agnostic person representation p such that

p ∈ Rm×n×k, where m = 256 and n = 192 denote the height and width of the

feature map, and k = 18 + 1 + 3 = 22 represents the number of channels. The

representation contains abundant information about the person upon which convo-

lutions are performed to model their relations. Note that our representation is more

detailed than previous work [78,89].

4.3.2 Multi-task Encoder-Decoder Generator

Given the clothing-agnostic person representation p and the target clothing

image c, we propose to synthesize the reference image I through reconstruction

such that a natural transfer from c to the corresponding region of p can be learned.

In particular, we utilize a multi-task encoder-decoder framework that generates a

clothed person image along with a clothing mask of the person as well. In addition to
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guiding the network to focus on the clothing region, the predicted clothing mask will

be further utilized to refine the generated result, as will be discussed in Sec 4.3.3. The

encoder-decoder is a general type of U-net architecture [96] with skip connections

to directly share information between layers through bypassing connections.

Formally, let GC denote the function approximated by the encoder-decoder

generator. It takes the concatenated c and p as its input and generates a 4-channel

output (I ′,M) = GC(c, p), where the first 3 channels represent a synthesized image

I ′ and the last channel M represents a segmentation mask of the clothing region as

shown at the top of Figure 4.2. We wish to learn a generator such that I ′ is close to

the reference image I and M is close to M0 (M0 is the pseudo ground truth clothing

mask predicted by the human parser on I). A simple way to achieve this is to train

the network with an L1 loss, which generates decent results when the target is a

binary mask like M0. However, when the desired output is a colored image, L1 loss

tends to produce blurry images [75]. Following [97–99], we utilize a perceptual loss

that models the distance between the corresponding feature maps of the synthesized

image and the ground truth image, computed by a visual perception network. The

loss function of the encoder-decoder can now be written as the sum of a perceptual

loss and an L1 loss:

LGC
=

5∑
i=0

λi||φi(I ′)− φi(I)||1 + ||M −M0||1, (4.1)

where φi(y) in the first term is the feature map of image y of the i-th layer in

the visual perception network φ, which is a VGG19 [100] network pre-trained on

ImageNet. For layers i > 1, we utilize ‘conv1 2’, ‘conv2 2’, ‘conv3 2’, ‘conv4 2’,
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‘conv5 2’ of the VGG model while for layer 0, we directly use RGB pixel values.

The hyperparameter λi controls the contribution of the i-th layer to the total loss.

The perceptual loss forces the synthesized image to match RGB values of the ground

truth image and their activations at different layers in a visual perception model as

well, allowing the synthesis network to learn realistic patterns. The second term in

Eqn. 4.1 is a regression loss that encourages the predicted clothing mask M to be

the same as M0.

By minimizing Eqn. 4.1, the encoder-decoder learns how to transfer the target

clothing conditioned on the person representation. While the synthetic clothed

person conforms to the pose, body parts and identity in the original image (as

illustrated in the third column of Figure 4.5), details of the target item such as text,

logo, etc. are missing. This might be attributed to the limited ability to control

the process of synthesis in current state-of-the-art generators. They are typically

optimized to synthesize images that look similar globally to the ground truth images

without knowing where and how to generate details. To address this issue, VITON

uses a refinement network together with the predicted clothing mask M to improve

the coarse result I ′.

4.3.3 Refinement Network

The refinement network GR in VITON is trained to render the coarse blurry

region leveraging realistic details from a deformed target item.

Warped clothing item. We borrow information directly from the target clothing

70



Shape Context
TPS Warp

TPS
Transformation

Clothing Mask

Target Clothing Warped Clothing c0

Figure 4.4: Warping a clothing image. Given the target clothing image and a

clothing mask predicted in the first stage, we use shape context matching to estimate

the TPS transformation and generate a warped clothing image.

image c to fill in the details in the generated region of the coarse sample. However,

directly pasting the product image is not suitable as clothes deform conditioned on

the person pose and body shape. Therefore, we warp the clothing item by estimating

a thin plate spline (TPS) transformation with shape context matching [101], as

illustrated in Figure 4.4. More specifically, we extract the foreground mask of c and

compute shape context TPS warps [101] between this mask and the clothing mask

M of the person, estimated with Eqn. 4.1. These computed TPS parameters are

further applied to transform the target clothing image c into a warped version c′. As

a result, the warped clothing image conforms to pose and body shape information

of the person and fully preserves the details of the target item. The idea is similar
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Process
Reference Image Target Clothing Coarse Result Clothing Mask Warped Clothing Composition Mask Refined Result

Figure 4.5: Output of different steps in our method. Coarse sythetic results gener-

ated by the encoder-decoder are further improved by learning a composition mask

to account for details and deformations.

to recent 2D/3D texture warping methods for face synthesis [102, 103], where 2D

facial keypoints and 3D pose estimation are utilized for warping. In contrast, we

rely on the shape context-based warping due to the lack of accurate annotations

for clothing items. Note that a potential alternative to estimating TPS with shape

context matching is to learn TPS parameters through a Siamese network as in [104].

However, this is particularly challenging for non-rigid clothes, and we empirically

found that directly using context shape matching offers better warping results for

virtual try-on.

Learn to composite. The composition of the warped clothing item c′ onto the

coarse synthesized image I ′ is expected to combine c′ seamlessly with the clothing
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region and handle occlusion properly in cases where arms or hair are in front of the

body. Therefore, we learn how to composite with a refinement network. As shown

at the bottom of Figure 4.2, we first concatenate c′ and the coarse output I ′ as

the input of our refinement network GR. The refinement network then generates

a 1-channel composition mask α ∈ (0, 1)m×n, indicating how much information is

utilized from each of the two sources, i.e., the warped clothing item c′ and the coarse

image I ′. The final virtual try-on output of VITON Î is a composition of c′ and I ′:

Î = α� c′ + (1− α)� I ′, (4.2)

where � represents element-wise matrix multiplication. To learn the optimal com-

position mask, we minimize the discrepancy between the generated result Î and the

reference image I with a similar perceptual loss Lperc as Eqn. 4.1:

Lperc(Î , I) =
5∑
i=3

λi||φi(Î)− φi(I)||1, (4.3)

where φ denotes the visual perception network VGG19. Here we only use ‘conv3 2’,

‘conv4 2’, ‘conv5 2’ for calculating this loss. Since lower layers of a visual perception

network care more about the detailed pixel-level information of an image instead of

its content [105], small displacements between I and Î (usually caused by imperfect

warping) will lead to a large mismatch between the feature maps of lower layers

(‘conv1’ and ‘conv2’), which, however, is acceptable in a virtual try-on setting.

Hence, by only using higher layers, we encourage the model to ignore the effects of

imperfect warping, and hence it is able to select the warped target clothing image

and preserve more details.

73



We further regularize the generated composition mask output by GR with

an L1 norm and a total-variation (TV) norm. The full objective function for the

refinement network then becomes:

LGR
= Lperc(Î , I)− λwarp||α||1 + λTV ||∇α||1, (4.4)

where λwarp and λTV denote the weights for the L1 norm and the TV norm, re-

spectively. Minimizing the negative L1 term encourages our model to utilize more

information from the warped clothing image and render more details. The total-

variation regularizer ||∇α||1 penalizes the gradients of the generated composition

mask α to make it spatially smooth, so that the transition from the warped region

to the coarse result looks more natural.

Figure 4.5 visualizes the results generated at different steps from our method.

Given the target clothing item and the representation of a person, the encoder-

decoder produces a coarse result with pose, body shape and face of the person

preserved, while details like graphics and textures on the target clothing item are

missing. Based on the clothing mask, our refinement stage warps the target clothing

image and predicts a composition mask to determine which regions should be re-

placed in the coarse synthesized image. Consequentially, important details (material

in the 1st example, text in 2nd example, and patterns in the 3rd example) “copied”

from the target clothing image are “pasted” to the corresponding clothing region of

the person.
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4.4 Experiments

4.4.1 Dataset

The dataset used in [93] is a good choice for conducting experiments for virtual

try-on, but it is not publicly available. We therefore collected our own dataset. We

first crawled around 19,000 frontal-view woman and top1 clothing image pairs and

then removed noisy images with no parsing results, yielding 16,253 pairs. The

remaining images are further split into a training set and a testing set with 14,221

and 2,032 pairs respectively. Note that during testing, the person should wear a

different clothing item than the target one as in real-world scenarios, so we randomly

shuffled the clothing product images in these 2,032 test pairs for evaluation.

4.4.2 Implementation Details

Training setup. Following recent work using encoder-decoder structures [84, 93],

we use the Adam [106] optimizer with β1 = 0.5, β2 = 0.999, and a fixed learning rate

of 0.0002. We train the encoder-decoder generator for 15K steps and the refinement

network for 6K steps both with a batch size of 16. The resolution of the synthetic

samples is 256× 192.

Encoder-decoder generator. Our network for the coarse stage contains 6 convo-

lutional layers for encoding and decoding, respectively. All encoding layers consist

1Note that we focus on tops since they are representative in attire with diverse visual graphics

and significant deformations. Our method is general and can also be trained for pants, skirts,

outerwears, etc.
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comparison

Reference Image Target Clothing PRGAN [32,51] CAGAN [21] CRN [6] Encoder-Decoder Non-parametric VITON (ours)

Figure 4.6: Qualitative comparisons of different methods. Our method effectively

renders the target clothing on to a person.

of 4×4 spatial filters with a stride of 2, and their numbers of filters are 64, 128, 256,

512, 512, 512, respectively. For decoding, similar 4 × 4 spatial filters are adopted

with a stride of 1/2 for all layers, whose number of channels are 512, 512, 256, 128,

64, 4. The choice of activation functions and batch normalizations are the same as

in [75]. Skip connections [96] are added between encoder and decoder to improve the

performance. λi in Eqn. 4.1 is chosen to scale the loss of each term properly [87].

Refinement network. The network is a four-layer fully convolutional model. Each

of the first three layers has 3× 3× 64 filters followed by Leaky ReLUs and the last
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layer outputs the composition mask with 1× 1 spatial filters followed by a sigmoid

activation function to scale the output to (0, 1). λi in Eqn. 4.4 is the same as in

Eqn. 4.1, λwarp = 0.1 and λTV = 5e− 6.

Runtime. The runtime of each component in VITON: Human Parsing (159ms),

Pose estimation (220ms), Encoder-Decoder (27ms), TPS (180ms), Refinement (20ms).

Results other than TPS are obtained on a K40 GPU. We expect further speed up

of TPS when implemented in GPU.

4.4.3 Compared Approaches

To validate the effectiveness of our framework, we compare with the following

alternative methods.

GANs with Person Representation (PRGAN) [78,89]. Existing methods that

leverage GANs conditioned on either poses [78] or body shape information [89] are

not directly comparable since they are not designed for the virtual try-on task. To

achieve fair comparisons, we enrich the input of [78,89] to be the same as our model

(a 22-channel representation, p + target clothing image c) and adopt their GAN

structure to synthesize the reference image.

Conditional Analogy GAN (CAGAN) [93]. CAGAN formulates the virtual

try-on task as an image analogy problem - it treats the original item and the target

clothing item together as a condition when training a Cycle-GAN [79]. However, at

test time, it also requires the product image of the original clothing in the reference

image, which makes it infeasible in practical scenarios. But we compare with this
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approach for completeness. Note that for fairness, we modify their encoder-decoder

generator to have the same structure as ours, so that it can also generate 256× 192

images. Other implementation details are the same as in [93].

Cascaded Refinement Network (CRN) [87]. CRN leverages a cascade of re-

finement modules, and each module takes the output from its previous module and

a downsampled version of the input to generate a high-resolution synthesized im-

age. Without adversarial training, CRN regresses to a target image using a CNN

network. To compare with CRN, we feed the same input of our generator to CRN

and output a 256× 192 synthesized image.

Encoder-decoder generator. We only use the network of our first stage to gen-

erate the target virtual try-on effect, without the TPS warping and the refinement

network.

Non-parametric warped synthesis. Without using the coarse output of our

encoder-decoder generator, we estimate the TPS transformation using shape context

matching and paste the warped garment on the reference image. A similar baseline

is also presented in [89].

The first three state-of-the-art approaches are directly compared with our

encoder-decoder generator without explicitly modeling deformations with warping,

while the last Non-parametric warped synthesis method is adopted to demonstrate

the importance of learning a composition based on the coarse results.
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Our MethodReference Image Target Clothing Without Body Shape

Our MethodReference Image Target Clothing Without Pose

Figure 4.7: Effect of removing pose and body shape from the person representation.

For each method, we show its coarse result and predicted clothing mask output by

the corresponding encoder-decoder generator.

4.4.4 Qualitative Results

Figure 4.6 presents a visual comparison of different methods. CRN and encoder-

decoder create blurry and coarse results without knowing where and how to render

the details of target clothing items. Methods with adversarial training produce

shaper edges, but also cause undesirable artifacts. Our Non-parametric baseline di-

rectly pastes the warped target image to the person regardless of the inconsistencies

between the original and target clothing items, which results in unnatural images.

In contrast to these methods, VITON accurately and seamlessly generates detailed

virtual try-on results, confirming the effectiveness of our framework.

However, there are some artifacts around the neckline in the last row, which
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results from the fact that our model cannot determine which regions near the neck

should be visible (e.g., the neck tag should be hided in the final result, see supple-

mentary material for more discussions). In addition, pants, without providing any

product images of them, are also generated by our model. This indicates that our

model implicitly learns the co-occurrence between different fashion items. VITON

is also able to keep the original pants if the pants regions are handled in the similar

way as face and hair (i.e., extract pants regions and take them as the input to the

encoder). More results and analysis are present in the supplementary material.

Person representation analysis. To investigate the effectiveness of pose and

body shape in the person representation, we remove them from the representation

individually and compare with our full representation. Sampled coarse results are

illustrated in Figure 4.7. We can see that for a person with a complicated pose,

using body shape information alone is not sufficient to handle occlusion and pose

ambiguity. Body shape information is also critical to adjust the target item to the

right size. This confirms the proposed clothing-agnostic representation is indeed

more comprehensive and effective than prior work.

Failure cases. Figure 4.8 demonstrates two failure cases of our method due to

rarely-seen poses (example on the left) or a huge mismatch in the current and target

clothing shapes (right arm in the right example).

In the wild results. In addition to experimenting with constrained images, we

also utilize in the wild images from the COCO dataset [107], by cropping human

body regions and running our method on them. Sample results are shown in Figure

4.9, which suggests our method has potentials in applications like generating people
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failure

Figure 4.8: Failure cases of our method.

Figure 4.9: In the wild results. Our method is applied to images on COCO.

in clothing [74].
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Method IS Human

PRGAN [78,89] 2.688 ± 0.098 27.3%

CAGAN [93] 2.981 ± 0.087 21.8%

CRN [87] 2.449 ± 0.070 69.1%

Encoder-Decoder 2.455 ± 0.110 58.4%

Non-parametric 3.373 ± 0.142 46.4%

VITON (Ours) 2.514 ± 0.130 77.2%

Real Data 3.312 ± 0.098 -

Table 4.1: Quantitative evaluation on dataset.

4.4.5 Quantitative Results

We also compare VITON with alternative methods quantitatively based on

Inception Score [108] and a user study.

Inception Score. Inception Score (IS) [108] is usually used to quantitatively eval-

uate the synthesis quality of image generation models [77, 78, 109]. Models produc-

ing visually diverse and semantically meaningful images will have higher Inception

Scores, and this metric correlates well with human evaluations on image datasets

like CIFAR10.

Perceptual user study. Although Inception Score can be used as an indicator

of the image synthesis quality, it cannot reflect whether the details of the target

clothing are naturally transferred or the pose and body of the clothed person are
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preserved in the synthesized image. Thus, simialr to [87, 110], we conducted a user

study on the Amazon Mechanical Turk (AMT) platform. On each trial, a worker

is given a person image, a target clothing image and two virtual try-on results

generated by two different methods (both in 256×192). The worker is then asked to

choose the one that is more realistic and accurate in a virtual try-on situation. Each

AMT job contains 5 such trials with a time limit of 200 seconds. The percentage

of trials in which one method is rated better than other methods is adopted as the

Human evaluation metric following [87] (chance is 50%).

Quantitative comparisons are summarized in Table 4.1. Note that the human

score evaluates whether the virtual try-on results, synthetic images with a person

wearing the target item, are realistic. However, we don’t have such ground-truth

images - the same person in the same pose wearing the target item (IS measures the

characteristics of a set, so we use all reference images in the test set to estimate the

IS of real data).

According to this table, we make the following observations: (a) Automatic

measures like Inception Score are not suitable for evaluating tasks like virtual try-

on. The reasons are two-fold. First, these measures tend to reward sharper image

content generated by adversarial training or direct image pasting, since they have

higher activation values of neurons in Inception model than those of smooth images.

This even leads to a higher IS of the Non-parametric baseline over real images.

Moreover, they are not aware of the task and cannot measure the desired properties

of a virtual try-on system. For example, CRN has the lowest IS, but ranked the

2nd place in the user study. Similar phenomena are also observed in [87, 98]; (b)
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Person representation guided methods (PRGAN, CRN, Encoder-Decoder, VITON)

are preferred by humans. CAGAN and Non-parametric directly take the original

person image as inputs, so they cannot deal with cases when there are inconsis-

tencies between the original and target clothing item, e.g., rendering a short-sleeve

T-shirt on a person wearing a long-sleeve shirt; (c) By compositing the coarse result

with a warped clothing image, VITON performs better than each individual com-

ponent. VITON also obtains a higher human evaluation score than state-of-the-art

generative models and outputs more photo-realistic virtual try-on effects.

To better understand the noise of the study, we follow [78,87] to perform time-

limited (0.25s) real or fake test on AMT, which shows 17.18% generated images are

rated as real, and 11.46% real images are rated as generated.

4.5 Conclusion

We presented a virtual try-on network (VITON), which is able to transfer a

clothing item in a product image to a person relying only on RGB images. A coarse

sample is first generated with a multi-task encoder-decoder conditioned on a detailed

clothing-agnostic person representation. The coarse results are further enhanced

with a refinement network that learns the optimal composition. We conducted

experiments on a newly collected dataset, and promising results are achieved both

quantitatively and qualitatively. This indicates that our 2D image-based synthesis

pipeline can be used as an alternative to expensive 3D based methods.
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Chapter 5: Face-swap with a Perceptually-aware Discriminator

5.1 Introduction and related works

Generative networks (e.g., encoder-decoder neural networks) [75,82] have been

proven very effective in synthesizing novel images with desired properties given var-

ious input conditions like class labels [77], text [73], attributes [86], poses [78], etc.

In this part of the dissertation, we investigate how to utilize generative adversar-

ial networks for fast face-swap - changing an input face to a target identity. Two

face-swap examples are illustrated in Figure 5.1.

This problem is original proposed and addressed in [111]. Given an input face,

they select a target face forming a large face library that has the similar resolution,

image blur, lighting, and seam signature to the input face. Then the color and

lighting are further adjusted for the target face and used to replace the input face.

This technique can be used to applications like face de-identification, composite

group photographs, and other creative scenarios. However, one cannot control the

target identity and the facial expression present in the synthesized image.

To tackle these two limitations, Korshunova et al. [8] borrow the idea used in

artistic style transfer [97, 105, 112] and regard each target identity as a new style

and train a convolutional neural network for swapping faces. More specifically, for
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Input image Target identity Face swap

Figure 5.1: Our goal is to replace the face in the input image to a target identification

while keeping its original facial expressions. The first column is the input image,

our alogrithm swap the identity in the second column to the input image.

each individual target identity (style), they train a feed-forward neural network

to enforce the output have similar identity as the target, they further propose a

lighting loss to match the lighting conditions between faces. This method still have

two drawbacks: firstly, it needs to train a separate neural network for each target

identity, which limits their scalability; secondly, without using identity reserving loss

and adversarial training, the results sometimes look unrealistic and lose the target

identity information.

In this chapter, we propose a GAN based method for generating realistic and

identity guided face-swapping results. The framework of our method is shown in
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Face swapInput image

Target identity

concatenate
one-hot id vectorFace masked out

Landmarks

Pixel reconstruction loss

Identity
loss

Real or Fake?

Face verification network

Perceptually-aware
discriminator

Generator

Figure 5.2: Training framework of our proposed face-swap method. For an input

face, its key facial landmarks and face mask are extracted as input to an encoder-

decoder generator. The target identity is encoded as a one-hot vector and con-

catenated to the bottleneck of the generator to inject guidance of identity in the

generation process. An L1 pixel loss encourages good reconstruction of the input

image, and an identity loss built on a pre-trained face verification network makes

the generated face perceptually similar to the input image. The representations of

intermediate layers of the face verification network are then concatenated to the

discriminator to ensure the results look realistic by incorporating some face-specific

features.

Figure 5.2. During training, given an input face, we input its landmarks and face

mask (extracted by [113]) to our face generator. We then embed the target identity

by a one-hot vector concatenated to the bottleneck of the generator to guide the

generation process. Three different losses are utilized to generate satisfactory results:

(1) an L1 pixel reconstructs the input image; (2) a perceptual loss that uses a
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network trained for large-scale face classification as a feature extractor, and penalizes

the feature distances of different layers for the input and generated faces; (3) an

adversarial loss that is modeled by a discriminator, in which intermediate layer

features are concatenated to corresponding feature maps of the discriminator to

incorporate higher level perceptual information into the network. At test time, the

input and target identity are different, and our network will synthesize the target

identity on to the input face.

The proposed method is highly related to recent advances developed to syn-

thesize face images using GANs. Recently, Huang et al. [9] propose a dual-path

generative adversarial network that jointly synthesizes a whole frontal face and dif-

ferent local patches on the face. The identity of the generated face is then preserved

by a face verification network. Zhao et al. [114] leverage two discriminators, one

classifies the identity and the other distinguishes fake faces from real ones. They

use the generated faces of different view angles to achieve state-of-the-art perfor-

mance on face verification tasks. Tran et al. [115] disentangle the pose and identity

of a face in a GAN to rotate faces. However, these methods are still not able to

control the target identity.

It is interesting to note that our work share the similar problem settings as

VITON [116] described in the previous chapter. In VITON, we try to swap a

target clothing item on to a person while keep the person’s pose unchanged, which

is achieved by giving the target clothing item and pose keypoints as priors to the

network. For face-swap task, we also inject facial keypoints and identity information

to the network and swap faces rather than clothing. The main difference is that
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people’s vision system is much more sensitive to faces than clothing, thus a more

carefully designed discriminator is needed for generating photorealistic results.

The contributions of our approach are two-folds: First, by utilizing a GAN

framework, our method can replace a face with desired identity by one forward pass

of the generator, while traditional approaches cannot control the swapped identity

or need to train an individual network for each target identity. Moreover, in contrast

to existing work that directly feeds an image to a discriminator to evaluate if an

image looks realistic, we propose a perceptually-aware discriminator where mid-level

and high-level perceptual information is considered by including features of different

layers of the pre-trained face verification network in the discriminator.

5.2 GAN with Perceptually-aware Discriminator

There are three main parts in our proposed model: a face generator, a pre-

trained face verification network, and a perceptually-aware discriminator. We will

describe them in details.

5.2.1 Face Generator

Inspired by recent advances of GAN and its variations [73,75,78,116], we also

employ an encoder-decoder [96] generator (denoted as G) for training the synthe-

sizing network. To be specific, given an aligned face image x, we first extract its 68

keypoints using Dlib library [117] based on [113]. Similar to [116], there should be

no identity information in the input of the generator since during testing we want
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to swap faces. To this end, we use the extracted keypoints to compute two crucial

identity-agnostic representations of x:

Masked out face. When synthesizing a face we want to keep the information

like skin color, hair style, etc., the same as the input face, so we use the convex hull

of the face landmarks to erase the face regions and retain the other parts including

forehead, hairs. Given this information, the network can learn to inpaint the missing

part naturally.

Face landmarks. Since we want to preserve the face expression and view

point of the input face after swapping, we also include 7 key landmarks of the input

face in the input to the generator - two are the centers of two eyes, one for the nose,

and 4 (left, right, top, bottom) points at the mouth contour. We do not use all 68

landmarks because using all landmarks will affect synthesizing the desired identity.

For example, there are 6 landmarks around an eye, which contain the information

about the shape of eyes. If this information is used in the generator, the generator

will enforce the generated eye have the same shape as the input person and hurt the

synthesizing performance. In sum, these 7 landmarks give guidance to the locations

of eyes/nose/mouth position and the view point of the face, so the generator can

preserve the input facial expression.

For effectively controlling the generated identity, we follow [115] and encode

the target identity as a one-hot identity vector then concatenate it to the latent

feature space of the generator. The length of this vector equals to the number of

identities used during training (denoted as Ni). As a result, the network learns

to generate different identities according to the given target identity vector. We
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denote the generated image as G(x, v), where v is the target identity vector. During

training, the identity vector v corresponds to the input identity in x, i.e. v = vx.

The generator minimizes the following pixel L1 loss:

Lpixel = ||G(x, vx)− x||1, (5.1)

The generator is similar to the one used in the previous chapter [116] except

that the input size is changed to 256× 256 and there a concatenated vector in the

bottleneck.

5.2.2 Face Verification Network

The most crucial property of a face-swap system is that the generated face

should present the desired identity, so only focusing on reconstructing the face in

pixel domain by Eqn. 5.1 is not enough. Thus, we need to minimize the distance of

output face and target face in an embedding space which accurately measures the

identity information. Inspired by perceptual loss [97] that uses a pre-trained network

and minimizes the distance of intermediate layer features of the input and output

image to maintain the content of the output, [9] utilizes the similar technique for

preserving identity when synthesizing frontal faces. Similarly, we use a ResNet50

face verification network trained on a large face dataset [118] as the perceptual

network, and then enforce the identity to be preserved by minimizing:

Lid =
5∑
i=3

λi||φi(G(x, vx))− φi(x)||1, (5.2)

91



where φi(y) the feature representation of face x of the i-th layer in the face veri-

fication network φ, we utilize ‘conv3’, ‘conv4’, ‘conv5’ of the ResNet model. The

balancing weights λi controls the contribution of the i-th layer to the total loss.

By minimizing Eqn. 5.2, the encoder-decoder learns to generate the target identity

conditioned on v. These features of the synthesized image are further utilized to

incorporate rich information in the discriminator.

5.2.3 Perceptually-aware Discriminator

A discriminator is used in GANs to help generate realistic images. The dis-

criminator network D takes a real face image x as input and tries to classify it as

real. While given a synthesized image x̂ = G(x, v) from the generator, D aims to

classify it as a fake image. This is achieve by minimizing the adversarial loss:

Ladv = Ex∼pdata(x)[logD(x)] + Ex̂∼pG(x̂)[log(1−D(x̂))], (5.3)

However, it is worth noting that the traditional discriminator simply takes an

image as input without incorporating any prior knowledge about faces. This hurts

the performance of face-swap, where face/identity specific features are needed to

enforce realism and preserve the desired identity. Hence, we leverage the high-level

perceptual information in the pre-trained face classification network φ by concate-

nating representations of φ’s layers to the corresponding layers (layers with same

feature map resolutions) of a traditional discriminator. Orange and gray blocks in

Figure 5.2 illustrate this design. Now, our adversarial loss becomes:
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Ladv = Ex∼pdata(x)[logD(x, φ(x))] + Ex̂∼pG(x̂)[log(1−D(x̂, φ(x̂))], (5.4)

By minimizing this loss D takes not only the pixel-level value of an image

but also multi-scale and multi-level face-specific features to better distinguish fake

faces from real ones. This pyramid design is very common in object detection [119]

or semantic segmentation [120] but has not well explored in a GAN setting. Our

experiments show that this design helps create more realistic and identity-preserving

faces. Note that the parameters of φ are fixed in our approach.

5.2.4 Loss Function

Finally, our face-swap approach optimizes the following objective function:


LG = −Ladv + λidLid + λpixelLpixel

LD = Ladv

, (5.5)

which is optimized by alternatively minimizing LG and LD. Note that φ, present

both in the generator and discriminator loss, injects face and identity related features

into our framework.

5.3 Experimental Evaluation

5.3.1 Experimental Settings

Dataset. We train our face-swap network on VGGFace2 [118] dataset. VG-

GFace2 contains 3.31M images of 9,131 subjects (8,631 for training, 500 for testing).
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Since images of high resolution work better to train a GAN, we select the subjects

containing more than 100 faces that are larger than 256 × 256. This results 403

subjects and 51,811 faces larger than 256 × 256, in which we use 39,004 images of

303 subjects (i.e., Nid = 303) for training, and 12,807 images of 100 subjects for

testing. At test time, the target identity one-hot vector corresponds to one random

chosen identity in the 303 training identities.

Since there are few work on this task, we compare our method with our baseline

- a traditional GAN without our proposed perceptually-aware discriminator. We use

face classification accuracy for evaluating the identity preservation performance.

Implementation details. The training setup is almost identical to [116],

we train our network with Adam [106] optimizer with β1 = 0.5, β2 = 0.999 and

learning rate is set to 0.0002. Training takes 60K steps to converge. The input faces

are aligned using [113] and resized to 256 × 256 before inputing into the network,

and the output face size is also 256× 256.

The generator network contains 7 convolutional layers for encoding and de-

coding, respectively. All encoding layers consist of 4× 4 spatial filters with a stride

of 2, and their numbers of filters are 64, 128, 256, 512, 512, 512, 512, respectively.

For decoding, similar 4× 4 spatial filters are used for deconvolution, whose number

of channels are 512, 512, 512, 256, 128, 64, 3. Leaky ReLu and batch normalizations

are the same as in [75, 116]. Skip connections [96] are added between encoder and

decoder to improve the performance.

The face verification network is a ResNet50 network [121], whose ‘conv3’,

‘conv4’ and ‘conv5’ layers produce feature maps of size 32 × 32 × 512, 16 × 16 ×
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1024, and 8 × 8 × 2048 with a 256 × 256 input image. We use a publicly available

implementation 1 trained on VGGFace2 dataset.

The discriminator also have 7 convolutional layers with a similar structure

as the encoder of the generator, whose numbers of output channels are 64, 128,

256, 512, 512, 512, 1. The output of its 3th, 4th, 5th layers are concatenated with

‘conv3’ (512 channels), ‘conv4’ (1024 channels), ‘conv5’ (2048 channels) layers of

ResNet50 as the input to the 4th, 5th and 6th layers respectively. As a result, the

input channels of the 4th, 5th and 6th layers in the discriminator layers are 1024

(512+512), 1536 (512+1024), and 2564 (512+2048).

5.3.2 Qualitative Results

Perceptually-aware discriminator improves the quality. A vanilla dis-

criminator used in traditional GANs merely takes the pixel values of an image and

tries to distinguish fake ones from real ones. This leads to loss of face-specific infor-

mation and sometimes yields unrealistic faces and unsatisfactory artifacts. In Figure

5.3, we can find that without perceptual information in the discriminator, a vanilla

GAN produces unrealistic faces. For example, as shown in the second column of

Figure 5.3, some asymmetric eye artifacts make the results unappealing. In the first

two examples, left eye is larger than the right eye; and in the last example, eyes

have different colors. In contrast, our method eliminates these artifacts by telling

the discriminator what a natural and real face should look like.

Figure 5.4 represents more visual results of our approach, in which we can find

1https://github.com/rcmalli/keras-vggface
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Input image Target identity Face swap Input image Vanilla Discriminator PA-Discriminator

Figure 5.3: Visual comparison of our GAN with and without perceptually-aware

discriminator. A traditional discriminator losses face-specific information and cre-

ates artifacts like asymmetric eyes. By incorporating rich features learned from a

face verification network into the discriminator, our proposed perceptually-aware

(PA-discriminator) generator effectively avoids these artifacts.
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Input image Target Identity Face Swap Result Input image Target Identity Face Swap Result

Figure 5.4: Examples of our face-swap results. Note that target identity is illustrated

by an example image of that identity for the sake of visualization, and our system

did not take these images as input.

our method can successfully generates realistic and vivid face-swap results.

5.3.3 Identity Preserving Performance

As mentioned, one critical property of a face-swap method is to preserve the

target identity information. We evaluate the identity preservation performance using

a face classification network trained on VGGFace2 dataset. The results are shown

in Table 5.1. From this table, we can see that by using our perceptually-aware

discriminator, our model can generate faces that are more recognizable as the target

identity. Also, we should notice that this is a pretty challenging task, since the face

classification network is trained to classify 8,631 different identity (chance is only

0.0116%). Although our method still has a gap to perfect, we believe our work is
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Table 5.1: Top-k classification accuracy of swapped faces. Our method achieves

higher recognition accuracy than its baseline.

top-1 acc. top-3 acc. top-5 acc.

Regular discriminator 0.347 0.469 0.524

Perceptually-aware discriminator (Ours) 0.371 0.486 0.541

an important step towards perfect face-swap algorithm.

5.4 Conclusion

In this part of the dissertation, we describe how to utilize a generative ad-

versarial network to create realistic and identity preserving face-swap results. We

extract an identity-independent representation of a face as the input to the genera-

tor and embed the target identity information in the bottleneck latent space of the

generator. To ensure the swapped face presents the desired identity and look realis-

tic, we further added a face verification loss and a perceptually-aware discriminator.

Qualitative and quantitative results show that the proposed method can swap faces

while controlling the target identity.
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Chapter 6: Learning high-level and low-level features for tampered

person detection

6.1 Introduction

People post photos every day on popular social websites such as Facebook, In-

stagram and Twitter. A considerable number of these photos are authentic as they

are generated from people’s real life and shared as a part of their social experience.

However, maliciously or not, more and more tampered images, especially ones in-

volving face regions, are emerging on the Internet. Image splicing, which is the most

common tampering manipulation, is the process of cutting one part of a source im-

age, such as the face or body regions, and inserting it in the target image. To make

the tampered result more realistic, adjustments on the shape, boundary, illumina-

tion and scaling are necessary, which make tamper detection challenging. Given

advances in face detection and recognition techniques, anyone is able to swap faces

with low cost using mobile applications [122] or open-source software [7]. Besides

face-swap, spliced person (portrait) images are also very common among manipu-

lated images using Photoshop or other photo editing tools. Some tampered image

examples generated from commercial software are shown in Figure 6.1. Even after
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(a) (b)

(c) (d)

(e) (f)

Figure 6.1: Examples of tampered faces. (a) original image. (b) Tampered image.

The face in the middle has been tampered. (c) Original image. (d) Tampered image.

The face on the right has been tampered. (e) Original image. (f) Tampered image.

The person on the left is copied and pasted from anthoer image.
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close inspection, people mistake the tampered images as original. The consequence

would be even more serious if manipulated images are used for political or commer-

cial purposes.

Even though image tampering detection has been an active research area dur-

ing the last decade, limitations still exist for current approaches since they focus on

a particular source of tampering evidence [123–126]. For example, local noise anal-

ysis fails to deal with tampered images constructed using careful post processing

and Color Filter Array (CFA) models cannot deal with resized images. To avoid

focusing on specific tampering evidence and achieve robust tampering detection,

we proposed to learn both high-level and low-level tampering artifacts. According

to different manipulation categories, we focuses on two tasks: (1) Tampered face

detection and (2) spliced portrait detection.

6.1.1 Tampered face detection

For tampered face detection, we propose a two-stream network architecture

to capture both tampering artifact evidence and local noise residual evidence as

shown in Figure 6.2. This is inspired by recent research on CNNs showing the

potential to learn tampering evidence [127–129] and rich models [130–133], which are

models of the noise components that produce informative features for steganalysis

and we call the features produced by these models “steganalysis features” in the

rest of this dissertation, showing good performance on tampering detection. One

of our streams is a CNN based face classification stream and the other one is a
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steganalysis feature based triplet stream. The face classification stream, based on

GoogLeNet [134], is trained on tampered and authentic images and serves as a

tampered face classifier. The patch triplet stream, based on patch level steganalysis

features [130, 133], captures low-level camera characteristics like CFA pattern and

local noise residuals. Instead of utilizing steganalysis features directly, we train a

triplet network after extracting steganalysis features to allow the model to refine

steganalysis features. Combining the two streams reveals both evidence of high-

level tampering artifacts and low-level noise residual features, and yields very good

performance for face tamper detection.

To train and evaluate our approach, we created a new face tampering dataset.

The new dataset overcomes the drawback of existing datasets [126, 135–137] that

are either small or in which the tampering is easily distinguishable even through

visual inspection. We chose two face swapping apps to create two parallel sets of

tampered images where the same target face is swapped with the same source face,

but using different swapping algorithms. Only tampered images of good quality

were retained. There are 1005 tampered images for each tampering technique (2010

tampered images in total) and 1400 authentic images for each subset.

6.1.2 Tampered portrait detection

However, for spliced portrait detection, the aforementioned two-stream net-

work cannot be directly applied. The reason behind it is that a tampered face

usually occupies a small region of an image, and a large portion of the image are au-
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thentic, thus training a triplet network on patches can be used to tell the probability

of a patch comes from the image by comparing its representation in the embedding

space with other patches. However, spliced portrait regions usually have similar

area as the background, which makes the patch triplet stream less effective.

To address this limitation, we propose to detect tampered portraits by model-

ing different traces in an image. The framework is shown in Figure 6.3. Three models

are fused to detect if a portrait has been manipulated or not: (i) PortraintNet: A

binary classifier fine-tuned on ImageNet pre-trained GoogLeNet, which is similar as

the face classification stream in the two-stream tampered face detection framework;

(ii) SegNet: A U-Net predicts tampered masks and boundaries, followed by a LeNet

(not shown in the figure) to classifier if the predicted masks and boundaries indi-

cating the image has been tampered with or not; (iii) EdgeNet: A U-Net predicts

the edge mask of a portrait, and the extracted edges goes through a GoogLeNet for

tampering classification. Similar to tampered faces, there are actually few dataset

that focuses on spliced portrait detection, so we created a dataset using foreground

of a portrait matting dataset [3] and Adobe Photoshop for testing purposes.

Our contribution is two-fold. First, by explicitly modeling different possible

aspects of tampering, our method learns both tampering artifacts and local noise

residual features. In addition, we create new challenging datasets specific to face

and person region tampering detection and conduct extensive experiments on these

datasets to demonstrate the effectiveness of our proposed methods.
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Steganalysis
feature
extractor

Triplet
Loss SVM

Two stream
Fusion

Face Classification Stream

Patch Triplet Stream

Figure 6.2: Illustration of our two-stream network. The face classification stream

models visual appearance by classifying a face is tampered or not. The patch triplet

stream is trained on steganalysis features to ensure patches from the same image are

close in the embedding space, and an SVM trained on the learned features classifies

each patch. Finally, the scores of two streams are fused to recognize a tampered

face.

6.2 Related Work

There is growing research activity on tampering detection and localization.

Prior methods can be classified according to the image features that they target,

such as local noise estimation [123], double JPEG localization [125], CFA pattern

analysis [124], illumination model [126] and steganalysis feature classification [138].

Recently, some methods based on Convolutional Neural Networks (CNN) [127–129]

have achieved very good results.

The premise behind local noise estimation based techniques is that the dif-

ference between global noise characteristics and local noise characteristics reveals
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Figure 6.3: Illustration of our portrait detection approach. It contains three main

modules. PortraitNet is a binary CNN captures visual appearance by classifying

a portrait image is tampered or not. SegNet aims to predict tampered masks and

edges for manipulated and predict blank images for authentic ones. The EdgeNet

extract edges of the portrait and forces the network to only look at edges for making

decision. Finally, the scores of each models are fused to obtain a detection score of

a portrait.

the hidden tampered regions. For example, Lyu et al. [139] cast noise statistic

estimation as a closed-form optimization problem. By exploiting the property of

kurtosis of natural images in band-pass domains and the relationship between noise

characteristics and kurtosis, they reveal the inconsistency between global noise and

local noise. However, the assumption that local noise is inconsistent with global

noise fails if post processing techniques like filtering or image blending are applied
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after splicing. In contrast, our method learns local noise residuals that provide more

reliable features for detection.

Double JPEG localization techniques can be classified into aligned double

JPEG compression and non-aligned double JPEG compression, depending on whether

or not the quantization factors align well after two applications of JPEG compres-

sion to the same image. The assumption is that the background regions undergo

double JPEG compression while the tampered regions do not. For example, Bianchi

et al. [125] presented a probability model that estimates DCT coefficients together

with quantization factors. The advantage of this method is that it can be used for

both aligned double JPEG and non-aligned double JPEG. However, this kind of

technique strongly depends on the double JPEG assumption.

CFA localization based methods assume that the CFA pattern differs between

tampered regions and authentic regions, due to the use of different imaging devices

or other low-level artifacts introduced by the tampering process. By estimating

the CFA pattern for the tampered image, it is possible to distinguish the tampered

regions and authentic regions from each other. For example, Ferrara et al. [124]

proposed an algorithm that estimates the camera filter pattern based on the fact

that the variance of prediction error between CFA present regions (authentic regions)

and CFA absent regions (tampered regions) is different. After a Gaussian Mixture

Model (GMM) classification, the tampered regions can be localized. However, the

assumption might not hold true if the tampered region has similar CFA pattern

or the whole image is resized (whole resizing destroys the original camera CFA

information and introduces new noise).
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Illumination based methods aim to detect illumination inconsistencies between

tampered regions and authentic regions. For example, the tampered face and an-

other face in the background may have different light source directions. Carvalho

et al. [140] were able to estimate the light source direction for objects in an image,

and thus use the light inconsistency to locate the tampered regions. De et al. [126]

extracted the illumination features from image and use a Support Vector Machine

(SVM) classifier for tampering classification. For face tamper detection, the perfor-

mance can degrade as some applications only modify a small region of the tampered

face, leaving the global illumination features of the face relatively unaltered.

Steganalysis feature [130] based methods extract diverse low-level information

like local noise residuals. The steganalysis feature is a local descriptor based on

cooccurrence statistics of nearby pixel noise residuals obtained from multiple linear

and non-linear filters. Cozzolino et al. [138] used simplified steganalysis features and

built a single Gaussian model to identify tampered regions. An improved method

is [132], which treated tamper detection as anomaly detection and used a discrimi-

native learning autoencoder outlier removing method based on steganalysis features.

These methods show that steganalysis features are quite useful as low-level features

which can be used in tamper detection. Goljan et al. [133] showed that this ste-

ganalysis model can also be utilized to estimate and extract CFA features, which

extends their application.

Recently, methods based on CNNs have been developed. For example, by

adding an additional median filter layer before the first convolutional layer, Chen

et al. [129] achieved good performance in median filtering tampering. Bayar et
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al. [127] designed an adaptive filter kernel layer to estimate the filter kernel used

in the tampering process, detecting various filtering tampered contents. However,

the performance degrades significantly when multiple post processing techniques are

applied to tampered regions. Rao et al. [128] combined a CNN with steganalysis

features by initializing the kernel of the first convolution layer with steganalysis filter

kernels.

Anchor

Positive
Negative

Anchor

Positive
Negative

Learning

Figure 6.4: Illustration of weakly-supervised triplet network. By minimizing the

triplet loss, the distance between patches from the same image (anchor and positive

patches in the left image) in the learned embedding space becomes smaller than

distance between two patches from different images (anchor patch in the left image

and negative patch in the right image). Two boxes and circles of the same color

represent a patch and its corresponding embedding, respectively.
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6.3 Two-Stream Neural Networks for Tampered Face Detection

Figure 6.2 shows our two stream framework. The face classification stream is

a CNN trained to classify whether a face image is tampered or authentic. Thus,

it learns the artifacts created by the tampering process. The patch triplet stream,

which is trained on steganalysis features [133] of image patches with a triplet loss,

models the traces left by in-camera processing and local noise characteristics.

6.3.1 Face Classification Stream

Since face tampering often creates artifacts (strong edges near lips, blurred

areas on forehead, etc.), the visual information present in the tampered face plays

an important role in tampered face detection. We adapt a deep convolutional neural

network [134] trained for large-scale image recognition task, and fine-tune it to

classify if a face is tampered or not. Given a face qi, we denote the tampering score

of this CNN as F (qi).

6.3.2 Patch Triplet Stream

In addition to modeling the visual appearance of tampered faces, we also lever-

age informative clues hidden in the in-camera processing for accurate tampered face

detection. Recent research has shown that co-occurrence based local features (e.g.,

steganalysis features [133]) can capture this hidden information and are effective in

image splicing detection [132, 138]. In contrast to previous works that directly use

these features, we refine the steganalysis features by a data-driven approach based
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Figure 6.5: Demonstration of SVM training process. Suppose we want to test on

the left face in the test image in a sliding window fashion. Green boxes are the test

face patches; red boxes are randomly selected patches from other images and used

as positive samples; blue boxes are the negative samples indicating patches from the

same image. After SVM prediction, green boxes are more likely to be the ones from

other images and thus the left face in the test image is classified to be a tampered

face.

on a triplet loss [141]. By training this triplet network, we ensure that a pair of

patches from the same image are closer in the learned embedding space, while the

distance between a pair of patches from two different images is large, as shown in

Figure 6.4.

Formally, given an image patch xa (anchor patch), a patch xp (positive patch)

from the same image, and xn (negative patch) from a different image, we enforce

that the distance between xa and xp is smaller than that between xa and xn by some

margin m:
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d(f(r(xa)), f(r(xp))) +m < d(f(r(xa)), f(r(xn))) (6.1)

where r(x) is the steganalysis features of patch x, f(r(x)) is the embedding of x we

want to learn, and d() is the sum of squares distance measure. We model f by a

two layer fully connected neural network.

This constraint is then converted into minimizing the following loss function:

L(f) =
∑
a,p,n

max(0,m+ d(fa, fp)− d(fa, fn)) (6.2)

where we use fa to denote f(r(xa)) for simplicity. Instead of generating hard neg-

atives in an online fashion [141], we randomly sample 15000 patch triplets from

authentic images. Each triplet contains three 128 × 128 patches (one anchor, one

positive, and one negative patch). We do not use hard negative sampling because

our method is weakly supervised - for an anchor patch, its negative patches might

be from the images taken from the same camera, thus have the same camera char-

acteristics. During hard negative mining, these pseudo negatives will be treated as

true hard negatives and the model will eventually project all patches into the same

point in the embedding space in order to minimize L.

The triplet network is designed to determine whether or not two patches come

from the same image. Face tampering detection works in a similar way. All the

patches in an authentic region are from the same image and have small distances

between each other in triplet embedding space, while the patches in tampered face

regions have large distance from those authentic patches in the triplet embedding
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space because they are from another image. For each tampered image, the tampered

regions have different characteristics from the authentic regions.

Therefore, we treat the tampered and authentic regions in each image as two

different classes and train a classifier for each image to predict the tampered re-

gions. We choose SVM as our classifier and train it for each test face on-the-fly.

This process is shown in Figure 6.5. The SVM samples are obtained by extracting

the triplet features on each patch through sliding windows. We treat the features

extracted from non-face-region patches as negative samples because they are from

the same image. To balance the negative samples, we randomly select the features

extracted from other image patches as positive samples. Only the features from the

automatically detected face regions in an image are treated as test samples. (e.g.,

the left face of the test image in Figure 6.5). If a face region has been tampered,

then the extracted features should have similar characteristics with positive samples;

otherwise they should be similar to negative samples. For a patch x, the prediction

of this SVM model S(x) indicates the probability that x is from another image, and

thus is equivalent to the probability of tampering. As a face might contain multiple

patches, we then take the average score for the patches in the face region as the final

score for the face.

6.3.3 Two-stream Score Fusion

At test time, the final score for a face q is obtained by simply combining the

output scores of the two streams:
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F (q) + λ
1

Nq

∑
x∈q

S(x) (6.3)

where Nq is the number of patches inside face q. λ is a balance factor that ensures

the two scores are at similar scale.

6.4 Experiments of Two-Stream Neural Networks

In this section, we introduce our newly collected SwapMe and FaceSwap

dataset, and then evaluate our method on it. Furthermore, we visualize the detec-

tion results of our method to better understand the proposed two-stream network.

Finally, different training and test protocols are discussed.

6.4.1 SwapMe and FaceSwap Dataset

Even though datasets for image tampering detection exist [126,135–137], they

are not well suited for large scale face tamper detection. Columbia Image Splicing

dataset [135] and CASIA [136, 137] are large but most of the tampered regions

are not human faces. DSI-1 dataset [126] focuses on face tampering but the total

number of tampered images is only 25. Moreover, it is difficult to train deep learning

methods on these datasets for face tamper detection.

To this end, we created a dataset utilizing one iOS app called SwapMe [122]

and an open-source face swap application called FaceSwap [7]. Given a source face

and a target face, they automatically replace the target face with the source face.

Then, post processing such as boundary blurring, resizing and blending is applied to
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the tampered face, which makes it very difficult to visually distinguish the tampered

from authentic images. Some examples created by SwapMe and FaceSwap are shown

in Figure 6.6.

We selected 1005 target-source face pairs, and generated 1005 images with

one tampered face in each image for each of the two applications. We further split

these 1005 images into 705 for training and 300 for testing. The 705 training images

together with another 1400 authentic images form the training set. The 300 test

images are combined with 300 authentic images as the test set. For each test image,

two faces are sampled for testing (one tampered and one authentic for a tampered

image, and two authentic faces for an authentic image). Thus, in total, for each

application, we have 705 tampered faces and 1400 authentic faces for training, and

900 authentic faces and 300 tampered faces for testing. Note that the selected images

cover diverse events (e.g., holidays, sports, conferences) and identities of different

ages, genders and races. When needed, the face bounding boxes are generated using

Dlib [117] face detection.

Our dataset has the following advantages: 1) It is a large dataset focus on

face regions and is specifically designed for face tamper detection. 2) The quality of

tampering is very good and the tampered faces look realistic. Generally, only face

regions like the mouth, skin or eyes are tampered. 3) Since we use two different

tampering techniques, we avoid learning the artifacts of one swapping algorithm,

which may not be predictive when testing on the other.
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(a) (b)

(c) (d)

Figure 6.6: Examples of tampered images using SwapMe and FaceSwap. (a) Source

image. The red bounding box shows the face moved to the tampered images. (b)

Target image. The red bounding box shows the face before tampering. (c) Tampered

image using SwapMe. (d) Tampered image using FaceSwap.

6.4.2 Experiment Setup

Training and Test Protocol. In order to avoid learning application-specific

features, we train our model on one dataset and test on the other dataset. We

train on FaceSwap training subset and test on SwapMe test subset. This is because

tampering quality of FaceSwap is not as good as SwapMe. We do this for two
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ROC curve on SwapMe test set

IDC [4] (0.543)
CFA pattern [14] (0.618)
Steganalysis features [16] + SVM (0.794)
Face classification stream (0.854)
Patch triplet stream (0.875)
Two-stream network (0.928)

Figure 6.7: Face-level ROC comparison between our two-stream network and other

methods.
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reasons. On one hand, it might take attackers considerable effort to improve the

tampered image in order to confuse the viewer. On the other hand, tamper detection

algorithms typically will not know the specific technique attackers used to tamper

images. We use the 705 FaceSwap tampered images and 1400 authentic images for

training, and 300 SwapMe tampered images together with 300 authentic images for

testing. The face-level tampering detection ROC curve and corresponding AUC are

used for evaluation.

Face Classification Stream. We use GoogLeNet Inception V3 model [134]

for training the tampered face classifier. Faces are resized to 299×299 and provided

as input to the CNN. We set the initial learning rate to 0.1 and decrease it by a

factor of 2 every 8 epochs. The batch size is set to 32. Finally we fine-tune all layers

of the CNN pre-trained on ImageNet and stop the training process after 16k steps.

Patch Triplet Stream. Each triplet contains 3 128×128 patches, and 5514D

steganalysis features [133] are extracted for each patch. We randomly sample 15000

such triplets from authentic training images, of which 12000 are used for training

and 3000 for validation. The triplet network contains two fully connected layers,

the first layer contains 1024 neurons and the second one contains 512 neurons. The

output of this network is then L2 normalized. During training, the initial learning

rate is set to 0.1 and decreased by 2 every 8 epochs. The margin m in Eqn. 6.1 is

fixed to 0.04. During testing, we extract image patches in a sliding window fashion

(window size = 128, stride = 64). The 512D learned representation is extracted for

each patch then used for training a linear SVM using liblinear [142] with C = 100.

Finally, we apply the trained SVM on face patches, and the average score of face
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Methods AUC

IDC [125] 0.543

CFA pattern [124] 0.618

Steganalysis features [133] + SVM 0.794

Face classification stream 0.854

Patch triplet stream 0.875

Two-stream network (Ours) 0.927

Table 6.1: AUC of face-level ROC for different methods.

patches is used as the face-level score.

6.4.3 Comparison with other methods

We compare our method with prior work on the SwapMe test set. The code

for prior work is either provided by the authors or obtained from publicly available

implementations on GitHub 1 [143]. The details of the methods and baselines are

as follows.

Face classification stream. Only the output of the face classification CNN

is used as the face tampering detection score.

Patch triplet stream. Only the patch triplet stream is used for detection of

tampered faces.

Steganalysis features [133] + SVM. We train a linear SVM model di-

rectly on the features extracted from the steganalysis model [133]. This method is

1https://github.com/MKLab-ITI/image-forensics
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equivalent to removing the triplet network from our patch triplet stream.

CFA pattern [124]. This method estimates the CFA pattern and uses a

GMM algorithm to classify the variance of prediction error using the estimated

CFA pattern. The output of this method is a local level tampering probability map.

For the face region, an average probability is calculated as the final score.

Improved DCT Coefficient (IDC) [125]. This method estimates the DCT

coefficients for all the regions in the given image to find the singly JPEG compressed

regions and classifies them as tampered regions. The output of this method is a

probability map indicating tampering. To calculate the ROC curve, we take an

average of the heat map score in the face region.

Figure 6.7 and Table 6.1 show the results on the SwapMe test set. CFA

pattern [124] does not achieve good performance. Because images in the SwapMe

dataset have been resized and the nearby pixel information is lost, this method

fails to make correct predictions. The assumption of IDC [125] is that tampered

regions are singly JPEG compressed while the authentic regions are doubly JPEG

compressed. This is not the case in SwapMe, as both tampered regions and authentic

regions have been doubly JPEG compressed. Steganalysis features + SVM performs

reasonably well.

By refining steganalysis features, our patch triplet stream generates more in-

formative features and obtains better result than steganalysis features + SVM (AUC

improved from 0.794 to 0.875). By combining the patch triplet stream with the face

classification stream, our full method models both high-level visual artifacts and low-

level local features and thus is robust to post processing like resizing and boundary
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Figure 6.8: Class Activation Maps (CAMs) obtained from the face classification

network. Each row shows the original image, the corresponding tampered face, the

CAM, and a smoothing CAM overlaid with the tampered face for better visualiza-

tion. In CAMs, red denotes high probability of tampering, and blue denotes low

probability of tampering. We can observe that our face classification stream learns

important artifacts created by the application during face tampering, such as stitch-

ing artifacts near face boundaries, strong edges around lips, and blurring effect when

glasses are involved.

smoothing. As a result, it outperforms all other methods by a large margin.

120



SwapMe test FaceSwap test

SwapMe train 0.995 0.829

FaceSwap train 0.854 0.998

SwapMe + FaceSwap train 0.995 0.999

Table 6.2: AUC of face classification stream comparison using different training and

test splits. The row is the training dataset and the column is the test dataset.

6.4.4 Discussion

Class Activation Map of Tampered Faces. To better understand what

visual clues the face classification stream relies on to detect a tampered face, we

follow the method used in [144] to generate Class Activation Maps (CAMs) from

the GoogLeNet, which are shown in Figure 6.8. Since the last feature map before

the global average pooling layer in GoogLeNet is of size 8× 8× 2048, the CAM for

each face is of size 8× 8. As shown in Figure 6.8, it is clear that our method learns

the tampering artifacts created by the applications. The network is able to detect

the stitching artifacts near the boundary of faces (as in the first two examples),

strong edges near lips (as in the third example), and some blurring effect near eyes

when glasses are involved during the tampering (last example). This visualization

indicates that our approach is able to learn reasonable features that are useful for

tampering detection.

Effectiveness of Two-stream Fusion. By fusing the detection scores of two

streams, our method achieves better performance than each individual stream by a
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Original Tampered CAM SVM score map

Figure 6.9: Heat map visualization of our two-stream network. Each row contains

the original and tampered face, the corresponding CAM generated in the face clas-

sification stream in and SVM score map derived from the SVMs in the patch triplet

stream. the In CAMs, red denotes high probability of tampering, and blue denotes

low probability of tampering. In SVM score maps, red regions are more likely to be

from different images other than the tampered images. In the first example, both

streams can detect the tampered face. In the second and third examples, one stream

fails while the other stream works, and fusing two streams successfully detects the

tampered faces. Last row shows a failure case when the input face is small.
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large margin. In Figure 6.9, we show some examples to visualize the detection results

of both streams. In the first example, both streams can detect the tampered face -

the face classification stream detects the unnatural edges near the mouth and beard,

and the patch triplet network discovers the different noise residual distributions of

the tampered region. In the second and third examples, only one stream is able

to detect the tampering; however, with our two-stream fusion scheme, combining

two streams detects the tampered face effectively. Our method fails to detect very

small tampered faces as shown in the last example in Figure 6.9. In this example,

the face is only of size 50 × 50. Since our face classification stream needs to resize

the input face to 299× 299, the upsampling of small faces loses some crucial visual

information for tampering detection. Moreover, the patch size of our patch triplet

stream is 128 × 128, which makes our method less robust when the tampered face

is small because a large portion of the input patch will be authentic regions.

Tampered Face Detection in Different Protocols. In addition to training

on FaceSwap and testing on SwapMe, we report the results of different protocols in

Table 6.2. The row is the training dataset and the column is the test dataset. We

use 705 tampered + 1400 authentic images for training and 300 tampered + 300

authentic images for test when both training and testing are from the same dataset.

We use 705 × 2 + 1400 images for training and 300 tampered + 300 authentic

images for test when training on both SwapMe and FaceSwap and testing on one

of them. The near perfect performance on either SwapMe or FaceSwap test set

when training on common datasets indicates that our face classification stream has

learned application-specific features.
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6.5 Spliced Portrait Detection

However, one assumption of the aforementioned patch triplet stream is that the

majority of the images are authentic, so the tampered detection can be regarded

as an outlier removal task and we can use an SVM trained on the fly to detect

tampered patches. However, this is not true for spliced portrait scenarios, where

the tampered regions take a large portion of the image. To verify this, we run

the patch triplet stream that achieves 0.875 AUC on our tampered face dataset

(Table 6.1) on the spliced portrait dataset, where it only gives 0.607 AUC. This

unsatisfactory performance drop of the triplet network motivates us to propose new

models for this challenging task. In this section, we will introduce three modules

that are complementary to each other that can be used together for effective spliced

portrait detection.

6.5.1 PortraitNet

Similar to face tampering, spliced portraits also present visual artifacts like

unnatural edges, inconsistent illumination of foreground and background. Thus, we

utilize the same deep neural network [134] and fine-tune it to classify if a portrait

is tampered or not. We call this model PortraitNet.

6.5.2 SegNet

Ideally, a model should be able to accurately segment the tampered regions

from the background. Many segmentation based image manipulation methods (e.g.,
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[145]) use a segmentation network to directly predict the tampered masks or edges.

Although in this dissertation, we focus on tampered portrait detection instead of

pixel-level tampered detection (classifying each pixel in an image to tampered or

authentic), we explore how the pixel-level tampering detection can help our task.

Specifically, we adapt a U-Net [96] as our segmentation network due to its good

balance between speed and performance. Given a portrait image, our U-Net predicts

a two-channel segmentation map (one channel for mask and the other for edges). If

this portrait is from another image (tampered), the U-Net predicts the mask and

edges of its tampered region; while for authentic images, the U-Net outputs all zero

maps as shown in the second branch of Figure 6.3.

After obtaining the predicted tampered masks and edges, the simplest way to

obtain an image-level score is to compute the sum of pixel values as an indicator of

tampering. However, this heuristic will cause suboptimal results since the area of

tampered regions may vary a lot for different images. Thus, we utilize a tiny neural

network (i.e., LeNet [146]), which takes the predicted maps as input and classify if

the portrait is tampered or not.

6.5.3 EdgeNet

Justing training a binary classifier is not enough for accurate tampering detec-

tion. So we give more guidance to a neural network and let it focus more on specific

tampering artifact. Due to the fact that a spliced portrait is directly cropped from

another image and paste on the source image, there will always be some tamping
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Figure 6.10: Common artifacts near the splicing boundaries. Left: halo artifacts on

the edges. Right: unnatural hair boundaries due to imperfect splicing.

traces left near the slicing boundaries especially when the background are cluttered

or there are sophisticated hair styles as shown in Figure 6.10. Base on this observa-

tion, we want the network to focus on the edges of the spliced part. To this end, we

leverage U-Net [96] as an image segmentation model to predict the edge of a por-

trait. The predicted edge map is then multiplied with the image to produce an edge

image and then we feed it into a network for tampering classification. This process

is illustrated in the last branch in Figure 6.3, which we denote as EdgeNet. Ed-

geNet can be regarded as a hard attention model, whose attention mask is explicitly

extracted by a segmentation network.

These three models, focusing different aspects of tampering artifacts, are fi-

nally fused to produce a tampering detection score of a portrait. The score fusion

strategy is similar to that of the two-streams for detecting tampered faces, where

a weight is multiplied to each score to normalize them to the same scale and then

added together.
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6.6 Experiments of Spliced Portrait Detection

6.7 Dataset

Similar to tampered face detection, there are few datasets that contain a rea-

sonable number of spliced person images for training a CNN-based model. Therefore,

we create a Portrait Dataset for this purpose. Thanks to recent work on image mat-

ting and segmentation [3,147,148], some datasets providing foreground of portraits

can be used to create tampered portrait images. In this dissertation, we use the

dataset of [3]. This dataset contains 2,000 portrait images with high-quality mat-

tes, which are then split into training (1,700 images) and testing sets (300 images).

Some examples can be found in the first two columns in Figure 6.11. We create test

tampered images using Photoshop based on the process described in Figure 6.11.

The test set contains a total 100 images and 269 portrait (person), which has 103

tampered portraits and 166 authentic portraits. During creating the dataset, we

try to ensure that it looks real and the configurations of people are natural. Note

that creating such images are pretty time-consuming (around 2 minutes/image),

making it infeasible to generate a training data with thousands of images. Thus,

for training our network, we simply paste the remaining portrait foreground to ran-

dom background to obtain positive (tampered) images as shown in Figure 6.12. In

total, we have 900 positives (tampered) and 900 negatives to train our model. Our

experiments show that generating training data this way can still give reasonable

results.
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Portrait Image Portrait Matte Background Image Tampered Image

Figure 6.11: Generation of our tampered portrait dataset. The first and second

columns are the portrait images and their mattes from [3]. We use these images and

mattes to extract portrait foreground and insert them into a source image (third

column) to generate tampered images (forth column) by Adobe Photoshop.

6.8 Implementation details

PortraitNet. The PortraitNet is fine-tuned from an ImageNet pre-trained

Inception-V3 model. The hyperparameter settings are the same to the model used

in the face classification stream for tampered face detection.

SegNet. The U-Net structure used in the SegNet are identical to the one used
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Portrait Image Portrait Matte Background Image Tampered Image

Figure 6.12: We paste the portrait foreground to random background as positive

(tampered) samples as shown in the bottom row, and negative images are authentic

samples from [3] in the top row.

in Chapter 5, the input is resized to 256× 256 and pass through a series of encoder

and decoders. The output masks are of size 256× 256 and then fed into the LeNet

for scoring. Also, the same Adam optimizer is used for training both the U-Net and

the LeNet.

EdgeNet. The U-Net to extract edges is the same as the one used in SegNet.

The binary CNN to classify the portrait edges is also fine-tuned from an ImageNet

pre-trained Inception-V3 model with the same setting.

For training, our model directly trains on the tampered and authentic por-

traits, while during test time, we first run a face detector on the test images, and

slightly enlarge the detection bounding box to include the portrait, and feed it into
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our model.

6.9 Experimental Results

The performance is evaluated using the AUC of the ROC curve. We shows

the experimental results and ablation study in Table 6.3. In the forth column of

Table 6.3, we show the AUC on our newly collected dataset when the model takes

RGB images as input. Note that the three modules we propose are complementary

and the fusion performance is significantly better than each individual module.

Further, it is shown in [2] that adding a noise residual features can improve the

performance of tampering detection. Thus, follow [2], we concatenate three noise

residual channels to the original RGB input and the results are further boosted as

shown in Table 6.3.

6.10 Conclusion

We described a two-stream tampered face detection model and a multi-module

spliced portrait detection model. In both models, we focus on multi-level image

features like noise residual inconsistencies, tampered edges, and high-level semantic

tampered artifacts. To evaluate our approach, we created two new datasets - one for

each task, and the experimental results show that our approach outperforms other

methods and baselines.
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Table 6.3: AUC of ROC of different modules of our method on tampered portrait

dataset. RGB input means directly using RGB images as input, and RGB+noise

represents the input of the network use the concatenation of RGB and noise residual

features [2] as input.

PortraitNet SegNet EdgeNet RGB input RGB+noise input

X 0.760 0.760

X 0.729 0.759

X 0.744 0.772

X X 0.796 0.808

X X 0.785 0.806

X X X 0.809 0.826
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Chapter 7: Conclusions and Future Research Directions

In this dissertation, we mainly focus on how to use deep learning based tools for

various applications in fashion and forensics. In the first three chapters, we proposed

different tools to facilitate customers’ online shopping experience. Specifically, we

introduced a weakly supervised concept discovery approach for effective shopping

browsing and retrieval, an LSTM-based sequential modeling model for fashion item

recommendation, and a virtual try-on method using a generative neural network to

synthesize target clothing onto a person.

For the fashion item recommendation task (Chapter 3), one future research

direction will be investigating more sophisticated models to better explore the rela-

tionships among fashion items. For example, one can combine Siamese Network [5]

and LSTM model, which should properly address the problem that the information

of the first several units in LSTM will vanish in the last several steps. Alternatively,

a graph LSTM [149] may also properly address this problem. Further, since fashion

recommendation and compatibility are highly subject - different customers will have

different opinions on the compatibility of an outfit. Thus, one interesting direction

to explore is to customize the fashion recommendation. This can be realized by

extract some customer preference representation and incorporate this information
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in the model.

One drawback of the virtual try-on network in Chapter 4 is that it cannot

be trained and tested in an end-to-end fashion because the TPS transformation is

estimated by a parameterized approach. This affects the training and testing speed.

One solution is to replace the TPS transformation estimation step with a neural

network that predict the transform parameters. Of course, a more straight-forward

and effective way to improve this is to develop better encoder-decoder network to

model geometry change and preserve the details of target clothing, in such way, we

do not need the refinement stage.

In Chapter 5, we adapted Generative Adversarial Networks to swap faces. The

proposed method takes an identity independent representation as input and gener-

ates identity preserving and realistic face-swap results by an identity preservation

loss and a perceptually-aware discriminator. However, as shown in the experiments,

the proposed method sometimes cannot generate desired identity due to the fact

that face space is too large for a CNN to model. Also, it is still not clear how to

generate high quality face-swap results for arbitrary target identity. One simple so-

lution might be training the model with more images and more identity. But there

should be better models to address these problems.

Finally, we investigated how deep learning can be used to detect tampering

images in Chapter 6. This task is extremely challenging and only few papers have

been focused on it. The natural question to ask is ‘Can state-of-the-art CNN tech-

niques used for this task?’. For example, how can object detection and semantic

segmentation models used to detect the tampered regions? Can adversarial train-
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ing used to help train better tampering detector? What are the most important

features to distinguish manipulated regions from authentic ones, and how can we

learn these features? All these questions need to be properly answered if we want

to build powerful and accurate forensics tools.
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[76] Jun-Yan Zhu, Philipp Krähenbühl, Eli Shechtman, and Alexei A Efros. Gen-
erative visual manipulation on the natural image manifold. In ECCV, 2016.

[77] Augustus Odena, Christopher Olah, and Jonathon Shlens. Conditional image
synthesis with auxiliary classifier gans. In ICML, 2017.

[78] Liqian Ma, Xu Jia, Qianru Sun, Bernt Schiele, Tinne Tuytelaars, and
Luc Van Gool. Pose guided person image generation. arXiv preprint
arXiv:1705.09368, 2017.

[79] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired
image-to-image translation using cycle-consistent adversarial networks. In
ICCV, 2017.

[80] Ziad Al-Halah, Rainer Stiefelhagen, and Kristen Grauman. Fashion forward:
Forecasting visual style in fashion. In ICCV, 2017.

[81] Bo Zhao, Jiashi Feng, Xiao Wu, and Shuicheng Yan. Memory-augmented
attribute manipulation networks for interactive fashion search. In CVPR,
2017.

140



[82] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adver-
sarial nets. In NIPS, 2014.

[83] Alexey Dosovitskiy, Jost Tobias Springenberg, and Thomas Brox. Learning
to generate chairs with convolutional neural networks. In CVPR, 2015.

[84] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representa-
tion learning with deep convolutional generative adversarial networks. arXiv
preprint arXiv:1511.06434, 2015.

[85] Guim Perarnau, Joost van de Weijer, Bogdan Raducanu, and Jose M Álvarez.
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