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 Supramolecular hydrogels are of current interest for their ease of use, potential 

biocompatibility, and reactivity to stimuli. These gel materials have found use in a 

number of fields ranging from drug delivery and tissue engineering to sensing and 

environmental remediation. For over a century, guanosine (G 1) and its derivatives 

have been known to form hydrogels based on self-assembled G4-quartet structures. 

Recent research has focused on extending the lifetime stability of these hydrogels and 

modifying their properties to better suit the gels for applications in multiple fields. One 

such method involves the mixing of G 1 (or G-derivatives) with 0.5 eq of KB(OH)4, 

which results in the formation of guanosine-borate (GB) diesters. The GB-diesters self-

assemble into G4-quartets stabilized by K+, the G4-quartets then stack to form wires 

that entangle to make a fibrous hydrogel network. This thesis details modifications of 

this GB-hydrogel system and explores applications of the resulting hydrogels. 



  

Modification of the 5ʹ-OH group of G 1 to form 5ʹ-deoxy-5ʹ-iodoguanosine (5ʹ-

IG 2) results in a hydrogel that self-destructs via intramolecular cyclization to 5ʹ-deoxy-

N3,5ʹ-cycloguanosine (5ʹ-cG 3). Guanine analog drugs can be incorporated into this 

hydrogel network and then released upon self-destruction of the gel. 

 Substitution of boric acid with benzene-1,4-diboronic acid (BDBA 4) to form 

hydrogels with G 1 and K+ results in hydrogels that can be crosslinked with Mg2+. 

These G-BDBA-Mg hydrogels have a lower critical gelator concentration (cgc) than 

their non-crosslinked counterparts and can be used for cell growth applications. 

 Utilizing binary mixtures of 8-aminoguanosine (8AmG 5) with G 1 allows for 

the formation of hydrogels with various salts. Hydrogels made of different salts 

preferentially absorb either cationic or anionic dyes from water, making them 

candidates for use in environmental remediation. 

 Other 8-substituted G-analogs, including, 8-bromoguanosine (8BrG 6), 8-

iodoguanosine (8IG 7), and 8-morpholinoguanosine (8morphG 8) can be used in binary 

mixtures with G 1 to form gels at room temperature upon mixing with KB(OH)4. Room 

temperature hydrogels have potential applications in enzyme immobilization, drug 

encapsulation, and environmental cleanup. 

 

 

 

 

 

 

 

 

 



  

 

 

 

 

 

 

 

 

 

 

TAILORING GUANOSINE HYDROGELS FOR VARIOUS FUNCTIONS 

 

 

 

By 

 

 

Taylor N. Plank 

 

 

 

 

 

Thesis submitted to the Faculty of the Graduate School of the  

University of Maryland, College Park, in partial fulfillment 

of the requirements for the degree of 

Doctor of Philosophy 

2018 

 

 

 

 

 

 

 

 

 

 

 

 

Advisory Committee: 

Professor Jeffery T. Davis, Chair 

Professor Daniel E. Falvey 

Assistant Professor Osvaldo Gutierrez 

Associate Professor Paul Paukstelis 

Professor Gregory F. Payne 



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Copyright by 

Taylor N. Plank 

2018 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

ii 

 

ACKNOWLEDGEMNTS 

 There are many people who have helped me in my graduate school journey to 

whom I owe thanks. First and foremost I want to thank Professor Jeffery T. Davis for 

the opportunity to work in the Davis lab for the past five years. Without your guidance, 

support, and understanding graduate school would have been a much less enjoyable 

experience. I have learned so much from you in the lab and in the classroom, thank 

you for pushing me to be a better scientist and teacher. Thank you for ensuring the lab 

worked hard and had fun at the same time. I thoroughly enjoyed all of the lab group 

lunches, baseball games, and our time at the ISMSC in Cambridge. 

Thank you to my committee members, Prof. Daniel Falvey, Prof. Osvaldo 

Gutierrez, Prof. Paul Paukstelis, and Prof. Gregory Payne, for your time and for all 

that I have learned from you over the course of my graduate school career.  

Thanks to the amazing staff at UMD, Dr. Yui-Fai Lam and Dr. Yinde Wang 

for teaching me countless things about NMR and helping me with any experiment I 

had questions on. Thanks also to Dr. Fu Chen for your work in the NMR lab. Thank 

you to Dr. Wen-An Chiou of the UMD NanoCenter for the SEM images, and Dr. 

Richard Ash of the UMD geology department for running ICPMS. Thank you Rishvi 

Jayathilake and Dr. Peter Zavalij for PXRD data. Thanks to Dr. Wonseok Hwang and 

Prof. Lawrence Sita for use of the rheometer and help with rheology. 

To our collaborators at University of Warwick, Prof. Andrew Marsh, Prof. 

Steven P. Brown, and Dr. Manju Reddy, thank you for hosting me and for all of your 

work in our collaboration. To Dr. Mihail Barboiu and his group, and Dr. Alexandru 



 

 

iii 

 

Rotaru and his group, thank you for including me in our collaboration and thank you 

for hosting me in Montpellier. 

During my time in graduate school my research was funded by the Office of 

Basic Energy Sciences of the U.S. Department of Energy by grant DE-FG02-

98ER14888. I was also supported by: the University of Maryland Graduate Student 

Summer Research Fellowship, a GAANN Fellowship from the U.S. Department of 

Education, William Bailey Fellowship, and a Millard & Lee Alexander Fellowship 

from the UMD Department of Chemistry and Biochemistry. In addition I received 

travel funds from The University of Maryland Jacob K. Goldhaber Travel Grant and 

International Conference Student Support Award. Thank you for your support. 

 Thank you to all of my lab mates, past and present, who have made my time 

in the Davis group enjoyable. To Gretchen, thank you for being all around amazing as 

both a lab-mate and a friend. You helped keep me sane through the madness of grad 

school with coffee runs, happy hours, baseball games, and girls’ nights. Thank you for 

always understanding my complaints and emoji filled texts even after you graduated. 

To Soumya, Keith, and Songjun, thank you for all of your insight and for making the 

lab a fun place. To Luke, Brooke, Sabrina, Deiaa, Mitchell, and Sindy, thank you for 

your work in lab and for challenging me to be a better mentor. Lastly, thank you Will, 

for coming back to lab and telling us great stories, and most importantly, thank you 

for your encouragement, job advice, and for encouraging me to apply at Stevenson. 

Thank you to Dr. Lee Friedman for everything I learned from you about 

teaching when I served as your TA and GAANN fellow, and thank you for your career 



 

 

iv 

 

advice and letters of recommendation. Thank you also to Dr. Monique Koppel, for 

giving me the opportunity to teach your class, and for your letters of recommendation. 

To my graduate school friends, Marla, Carmen, and Siobhan, thank you for 

your understanding and for the Wednesday night dinners (and wine). 

To my parents, John and Necia Plank, my grandparents, and the rest of my 

family, thank you for loving me and providing support and encouragement even when 

you had no idea what I was doing in graduate school. I feel so lucky to have such an 

amazing, caring family who unconditionally loves me, thank you. 

To my future in-laws, Bill and Kim, thank you for welcoming me into your 

family and always being interested in what I am doing. 

Last, but most definitely not least, Luke, thank you for everything. Thank you for 

believing in me, even when I don’t believe in myself and for supporting me in 

everything I want to do. Thank you for driving 11 hours both ways to see me when we 

were both poor graduate students and for taking a job in DC so we could be together 

while I finished graduate school. Thank you for enthusiastically listening to every 

practice talk, reading every paper draft, and offering your fake-chemist advice. You 

truly make my world a happier place, I love you.  



 

 

v 

 

TABLE OF CONTENTS 

  

ACKNOWLEDGEMNTS ............................................................................................ ii 

TABLE OF CONTENTS .............................................................................................. v 
LIST OF FIGURES .................................................................................................... vii 
Chapter 1: Introduction ................................................................................................. 1 

 Introduction ................................................................................................... 1 
 Thesis Organization ...................................................................................... 2 

 Introduction to Gels ...................................................................................... 3 
 Boron-Species as Cross-Linkers ................................................................... 5 

 Supramolecular Hydrogels with Boron .................................................... 7 
 Peptide-Based Supramolecular Hydrogels with Boron ............................ 9 

 Summary of Non-Guanosine Supramolecular Hydrogels with Boron ... 12 
 A Brief History of Guanosine Hydrogels ................................................... 12 

 Binary Guanosine Hydrogels .................................................................. 13 
 Stabilizing Guanosine Hydrogels with an Anion.................................... 15 

 Guanosine-Boron Hydrogels with Hemin .............................................. 18 
 Guanosine-Boron Hydrogels for Biological Applications ...................... 19 

 Conclusions ................................................................................................. 22 

Chapter 2: Hydrogels from 5ʹ-Iodo-5ʹ-Deoxyguanosine – Self Destruction for Drug 

Delivery....................................................................................................................... 23 

2.1 Summary ........................................................................................................... 23 
2.2 Introduction ....................................................................................................... 23 
2.3 Hydrogels Made of 5ʹ-IG 2 with KB(OH)4....................................................... 26 

2.4 Formation of 5ʹ-cG 3 ......................................................................................... 27 

2.5 Control of 5ʹ-cG 3 Formation and Influence on Gel Properties ........................ 31 
2.5.1 1H NMR Shows Higher Temperature Increases 5ʹ-cG 3 Formation .......... 32 
2.5.2 Increased 5ʹ-cG 3 Decreases Gel Strength ................................................. 33 

2.5.3 CD Shows Decreased G4-Quartet Signals with More 5ʹ-cG 3 ................... 34 
2.6 Utilizing Gel Self-Destruction for Drug Release .............................................. 35 

2.6.1  5ʹ-IG 2 Continues to Cyclize to 5ʹ-cG 3 After Gel Formation .................. 36 
2.6.2  Drug Incorporation.................................................................................... 37 

2.6.3  Drug Release ............................................................................................. 38 
2.7 Conclusions ....................................................................................................... 39 
2.8  Other Results – Solvent Isotope Effect ............................................................ 40 
2.9  Future Directions ............................................................................................. 43 

Chapter 3:  Guanosine–(Benzene-1,4-Diboronic Acid) Hydrogels for Cell Growth . 44 

3.1 Summary ........................................................................................................... 44 
3.2 Introduction ....................................................................................................... 44 

3.3 Hydrogels from G-BDBA ................................................................................. 46 
3.3.1 NMR Spectroscopy Shows Evidence of G-Boronate Species ................... 47 
3.3.2 PXRD and CD Spectroscopy Show Hydrogels are G4-Quartet Based ...... 49 
3.3.3 Hydrogels Have Solid-Like Rheology with Strength Dependent on Cation

............................................................................................................................. 51 



 

 

vi 

 

3.3.4 Microscopy Shows Gels of Different Cations Have Unique Morphologies

............................................................................................................................. 53 
3.4 Hydrogels are Capable of Supporting Cell Growth .......................................... 54 
3.5 Conclusions ....................................................................................................... 58 

3.6 Future Work ...................................................................................................... 58 
Chapter 4: 8-Aminoguanosine/Guanosine Binary Gels in Environmental Remediation 

– Selective Uptake of Anionic Dyes from Water ....................................................... 59 
4.1 Summary ........................................................................................................... 59 
4.2 Introduction ....................................................................................................... 60 

4.3 Binary Mixtures of 8AmG 5 and G 1 Form Stable Hydrogels ......................... 62 
4.3.1 Hydrogels are G4-Quartet Based ............................................................... 63 
4.3.2 8AmG/G Hydrogels Form with Divalent Cations ..................................... 64 
4.3.3 Less M2+ is Required for Gel Formation Compared to M+........................ 66 

4.3.4 Gel Strength Varies Depending on Cation and Salt................................... 67 
4.4 Dye Uptake Based on Electrostatic Interactions ............................................... 69 

4.4.1 Quantitative Dye Uptake Studies ............................................................... 70 
4.4.2 Qualitative Dye Uptake Studies ................................................................. 72 

4.5 Conclusions ....................................................................................................... 75 
4.6 Other Results – Uptake of Pb2+ ......................................................................... 75 
4.7 Future Directions .............................................................................................. 78 

Chapter 5: Utilizing Binary Mixtures of 8-Substituted Guanosine Derivatives with 

Guanosine for Room Temperature Hydrogelation ..................................................... 79 

5.1 Summary ........................................................................................................... 79 
5.2 Introduction ....................................................................................................... 79 
5.3 Binary Hydrogel Formation with 8-Bromoguanosine and Guanosine ............. 80 

5.3.1 Hydrogels are G4-Quartet Based and Contain Borate Esters ..................... 82 

5.3.2 Both the RT and Heated Hydrogels are Stable and Robust ....................... 84 
5.4 Room Temperature Gelation and Correlation with the Syn/Anti Glycosidic 

Bond Preference and Gelator Solubility ................................................................. 86 

5.4.1 Syn/Anti Glycosidic Bond Conformation and RT Gelation ....................... 88 
5.4.2 Gelator Solubility and RT Gelation ........................................................... 89 

5.5 Differences Between Room Temperature Hydrogels from 8-

Morpholinoguanosine/Guanosine and 8-Bromoguanosine/Guanosine .................. 89 

5.6 Conclusions ....................................................................................................... 90 
5.7 Future Directions .............................................................................................. 91 

Chapter 6: Future Work .............................................................................................. 93 
Chapter 7: Supporting Information ............................................................................. 95 

7.1 General Experimental for Chapters 2-5 ............................................................ 95 

7.2 Supporting Information for Chapter 2 .............................................................. 95 
7.3 Supporting Information for Chapter 3 ............................................................ 101 

7.4 Supporting Information for Chapter 4 ............................................................ 106 
7.5 Supporting information for Chapter 5............................................................. 114 

BIBLIOGRAPHY ..................................................................................................... 118 
 

 

 



 

 

vii 

 

LIST OF FIGURES 

Figure 1.1: When added to aqueous solution of monovalent cation, G 1 self-assembles 

into cation stabilized G4-quartets. This protocol leads to formation of a G-hydrogel. . 1 

 

Figure 1.2: A depiction of the two phases contained within a gel. .............................. 3 
 

Figure 1.3: Chemical gel (top) networks form via covalent bonds, therefore the gels 

swell or shrink in the presence of external stimuli. In contrast, physical gels (bottom) 

form from non-covalent interactions and can dissociate when exposed to stimuli. ..... 4 
 

Figure 1.4: Supramolecular gels form via self-assembly of LMWGs 1D structures with 

subsequent aggregation into 3D networks. ................................................................... 5 

 

Figure 1.5: Borate esters form between boric acid and a 1,2- (top) or 1,3-diol (bottom) 

in the presence of base. These dynamic bonds can be reversed with acid. ................... 6 
 

Figure 1.6: Borate ester cross-linking between two chains of PVA 9. ........................ 6 
 

Figure 1.7: A) The formation of a honeycomb gel network by tHG 10. B) H-bonded 

boronic acid dimer that is part of the gel network C) Structure of DOX 11................. 8 
 

Figure 1.8: A) The formation of a gel network by PO4g 12 with Ca2+. B) The FRET 

donor and acceptor pair. ................................................................................................ 8 
 

Figure 1.9: The self-assembly of BPmoc-F3 15 to form a gel network is shown. This 

gel can be destroyed by H2O2, which causes the degradation of the gelator. ............... 9 
 

Figure 1.10: A) The biomolecules tested. B) A grid showing the gels or solutions 

resulting from the biomolecules present with different oxidase enzymes. Only the gels 

with the oxidase enzyme corresponding to the correct molecules produced H2O2 

resulting in the gel-solution transition. The mismatched systems remained gels. Part B 

of this figure is reproduced with permission from Springer.36 ................................... 10 

 

Figure 1.11: A) The gelating species - a dipeptide derivative. B) The formation of 

boronate esters is accompanied by an acidification of the solution. ........................... 11 
 

Figure 1.12: Hydrogelator BFF 18 is charged at high pH values, resulting in 

solubilization and destruction of hydrogels. ............................................................... 11 
 

Figure 1.13: G 1 forms transparent hydrogels in the presence of KCl, however, over 

time the nucleoside crystallizes, destroying the gel network. ..................................... 13 
 

Figure 1.14: G 1 and G-derivatives used to form binary hydrogels with G 1. .......... 13 
 



 

 

viii 

 

Figure 1.15: Hydrogels or solutions formed with different ratios of G 1: TAcG 20. 

Images of gels reprinted with permission from the American Chemical Society.10 ... 14 
 

Figure 1.16: Images of the RB 21 (structure, top) diffusing through two G 1/BrG 6 

(left 1:1, right 1:2) hydrogels after A) 1 hr, B) 24 hrs, and C) 72 hrs. Pictures reprinted 

with permission from Wiley.11 .................................................................................... 15 
 

Figure 1.17: The gelation mechanism for the formation of GB-hydrogels of G 1 with 

KB(OH)4.
12,13 .............................................................................................................. 16 

 

Figure 1.18: The anionic GB hydrogel selectively absorbs cationic MB 26 from an 

aqueous solution of MB 26 and anionic RB 21.12 ...................................................... 17 
 

Figure 1.19: Substoichiometric amounts of ThT 27 helps to repair a GB-Li+ hydrogel.14

..................................................................................................................................... 17 

 

Figure 1.20: Hemin 28 binds to G4-quartets to be incorporated into a hydrogel network.

..................................................................................................................................... 18 
 

Figure 1.21: In the presence of H2O2 TMB 29 is oxidized in GB-K+ hydrogels with 

hemin 28, however with GB-Pb2+ hydrogels no reaction occurs ................................ 19 
 

Figure 1.22: A) The anti-cancer drug derivative Pt-DA 30 forms a boronate ester (Pt-

Da-B-G 31) with G 1 that can be incorporated into a hydrogel network via G4-quartet 

H-bonding. B) The Pt-G4-K
+ B hydrogel is a brownish color. Photo reprinted with 

permission from the American Chemical Society.55 ................................................... 20 

 

Figure 1.23: A) G 1 forms hydrogels with 2-FBA 32 and TAEA 33. B) The hydrogels 

break down in the presence of glucose or acid, and will release any cargo they hold 

following zero-order kinetics. ..................................................................................... 21 
 

Figure 1.24: a) Shows the self-healing properties of the G 1, phB(OH)2 17 hydrogels. 

b) The gel is used as a bioink for 3D printing c-g) Different shapes printed by the 

hydrogel (scale bar = 10 mm). Reprinted with permission from the Royal Society of 

Chemistry.57 ................................................................................................................ 22 
 

Figure 2.1: A hydrogel is made when G 1 or 5ʹ-IG 2 reacts with KB(OH)4 to form GB 

esters that self-assemble into G4-wires stabilized by K+. These wires entangle to give a 

fibrous network.15 ....................................................................................................... 25 
 

Figure 2.2: Left: 5ʹ-IG 2 and aqueous KB(OH)4 give a supramolecular hydrogel with 

in situ formation of 5ʹ-cG 3. Right: Lacking a N1 H-bond donor 5ʹ-cG 3 cannot form 

stable G4-quartets, its in situ formation destroys the hydrogel network.15 ................. 26 
 

file:///C:/Users/Taylor/Dropbox/Thesis/Thesis.docx%23_Toc511674574
file:///C:/Users/Taylor/Dropbox/Thesis/Thesis.docx%23_Toc511674574
file:///C:/Users/Taylor/Dropbox/Thesis/Thesis.docx%23_Toc511674574


 

 

ix 

 

Figure 2.3: Top: The possible borate ester species present in the 5ʹ-IG 2 gel system. 

Bottom: Variable temperature 11B NMR spectra; experiments were performed on 50 

mM 5ʹ-IG 2 gels.15 Peaks are assigned based on literature precedent.12..................... 28 
 

Figure 2.4: Mass spectrum of a 50 mM 5ʹ-IG 2 gel. Peaks are labeled with their 

corresponding species. The peak at 214 m/z is a contaminant in the mass 

spectrometer.15 ............................................................................................................ 29 
 

Figure 2.5: a) The HSQC spectrum indicates two different species from the 5ʹ-signals 

(yellow and green boxes). b) COSY was used to assign the peaks to 5ʹ-IG 2 (yellow 

labels) and 5ʹ-cG 3 (green labels).15 ............................................................................ 30 
 

Figure 2.6: 1H NMR experiments on the dissociated gel systems formed with different 

heating times show that 5ʹ-IG 2 is the gelator. Spectra show the H1ʹ region. The gel 

(bottom) is roughly 65% 5ʹ-IG 2 and 35% 5ʹ-cG 3. The viscous solution (top) contains 

far more 5ʹ-cG 3 (75%) than 5ʹ-IG 2 (25%).15 ............................................................ 32 
 

Figure 2.7: Changing the temperature to which gels are heated during formation results 

in visibly different gels. At 50 mM 5ʹ-IG 2 and 100 mM KB(OH)4, gels range from an 

opaque white gel when heated to 30 °C to a transparent gel when heated to 90 °C. 1H 

NMR studies of the dissociated gel networks (the H1ʹ region is depicted in the spectra) 

show that these visual changes correspond to varying quantities of 5ʹ -cG 3, with almost 

none present in the gels heated to low temperatures (<1% of the total G species in the 

gel heated to 30 °C), and increasing with heating temperature (~40% of total G species 

in the gel heated to 90 °C).15 ....................................................................................... 33 

 

Figure 2.8: Frequency sweeps of 5ʹ-IG 2 gels formed at different temperatures show 

the gel formed at 70 °C is much stronger than the gels formed at 50 and 90 °C. The Gʹ 

value for the gel formed at 70 °C is ~1000 Pa, whereas the values for the gels formed 

at 50 and 90 °C are around ~700 Pa.15 ........................................................................ 34 
 

Figure 2.9: 50 mM 5ʹ-IG 2 gels prepared at different heating temperatures give rise to 

different CD spectra. The gel formed at 70 °C (orange) most closely resembles the GB 

system (blue), indicating the presence of stacked G4-quartets. Gels formed at 50 and 90 

°C (yellow and green) show a much weaker G4-quartet signature.15 ......................... 35 
 

Figure 2.10: Acyclovir (blue) can be incorporated into the 5ʹ-IG 2 (green) gel network. 

Over time more 5ʹ-cG 3 (orange) forms, destroying the gel and releasing the drug.1536 

 

Figure 2.11: Gels at RT (blue) and 37°C (orange) studied over time, after 72 hrs at 37 

°C the amount of G-species in solution increased and the system was not a gel.15 .... 37 
 

Figure 2.12: The H1ʹ (pink) region of the spectra shows three peaks representing each 

species in the sample 5ʹ-cG 3, 5ʹ-IG 2, and acyclovir (top) or ganciclovir (bottom).15

..................................................................................................................................... 38 



 

 

x 

 

Figure 2.13: Compounds that are pre-incorporated into the gel network can be released 

over time. a) Acyclovir and b) ganciclovir, can be incorporated into the hydrogel 

system. Drug release over time increases if the gel is heated. Release data shown is an 

average of 3 trials. Error bars represent the standard deviation between trials.15 ....... 39 

 

Figure 2.14: 5ʹ-IG 2 (50 mM) with 2.0 eq of KB(OH)4 gels H2O but not D2O. In H2O 

clear gels form. Increasing the amount of D2O in 10% increments yields less viscous, 

more turbid solutions. ................................................................................................. 40 
 

Figure 2.15: The isotope effect persists over a range of 5ʹ-IG 2 concentrations, even 

when both solvents result in the same phase, either solution (low concentration of 5ʹ-

IG 2) or gel (high 5ʹ-IG 2 concentrations). ................................................................. 41 
 

Figure 2.16: The solvent isotope effect of the 5ʹ-IG 2 system is evident in the frequency 

sweeps of 72 mM gels made with H2O vs D2O. With a Gʹ of ~700 Pa the H2O system 

is much stronger than the D2O system, which has a Gʹ value of ~300 Pa. ................. 41 
 

Figure 2.17: Despite the physical differences due to the isotope effect, 1H NMR spectra 

of the 5ʹ-IG 2 gels in H2O and D2O appear the same. The H1ʹ region is shown. ....... 42 
 

Figure 2.18: Gels made with varying concentrations of 5ʹ-IG 2 and 250mM KCl (H2O 

as the solvent on the left and D2O as the solvent on the right) do not appear to have a 

noticeable solvent isotope effect. ................................................................................ 43 
 

Figure 3.1: The proposed gelation reaction for BDBA-K and BDBA-Mg hydrogels of 

G 1.16 ........................................................................................................................... 45 

 

Figure 3.2: a) Samples of hydrogels with 50.0 of mg G 1 in various amounts of water 

(indicated on vials). BDBA-K, 59 mM G 1 (left), BDBA-Ba, 18mM G 1 (middle) and 

4mM G 1, BDBA-Mg (right). b) BDBA-K gels of varying G 1 concentrations (from 

88 to 18 mM, as indicated on vials) made with G 1:BDBA 4:KOH = 1:0.5:1 c) BDBA-

Mg gels of varying concentrations of G 1 (from 88 to 5 mM, as indicated on vials), 

made by preforming a BDBA-K gel and diluting with H2O, then adding 5 mM Mg2+.16

..................................................................................................................................... 46 
 

Figure 3.3: Vials containing G-BDBA and various cations; Li+, guanidinium (G), and 

Fe3+ result in solutions while Mn2+ and Mg2+ yield self-standing hydrogels.16 .......... 47 
 

Figure 3.4: a) The H1ʹ region of the 1H NMR spectra of BDBA-Mg (top), BDBA-Ba 

(middle), and BDBA-K (bottom) gels at 25 °C in D2O show three peaks that correspond 

to different species of G 1 in solution. b) The diffusion coefficients of the three G 1 

species (G-monomer, mono-substituted G-BDBA 34, and di-substituted G-BDBA-G 

35) were determined for the H1ʹ peaks in a BDBA-Mg sample in D2O at 5 °C.16 ..... 48 
 

Figure 3.5: PXRD data of a lyophilized BDBA-K gel supporting the presence of 

stacked G4-quartet layers in the sample.16 .................................................................. 49 



 

 

xi 

 

Figure 3.6: CD spectra for the BDBA-K, BDBA-Ba, and BDBA-Mg show peaks in 

the region characteristic of G4-quartets.16 ................................................................... 50 
 

Figure 3.7: Rheological strain sweeps of the three gels show the storage modulus Gʹ 

(●) and the loss modulus Gʹʹ (○) in Pascals (Pa).16 ..................................................... 52 
 

Figure 3.8: AFM images of a) BDBA-K, b) BDBA-Ba, and c) BDBA-Mg hydrogels.16

..................................................................................................................................... 54 
 

Figure 3.9: Representative SEM images of freeze-dried BDBA-K hydrogels.16 ...... 54 
 

Figure 3.10: NHDF cells on BDBA-Mg hydrogels treated with 3xTAE + KCl (155 

mM) visualized after 4 h (left) and 24 h (right).16 ...................................................... 55 

 

Figure 3.11: NHDF cells on a) BDBA-K gel washed w/ 3xTAE/Mg2+ buffer, b) 

BDBA-Ba gel (no buffer), and c) BDBA-Mg gel (no buffer); at different time points.16

..................................................................................................................................... 56 

 

Figure 3.12: Cell viability by MTS assay on the three different hydrogels. The 

reference sample is considered 100% for cell viability on culture medium.16 ........... 57 

 

Figure 4.1: Binary 1:1 mixtures of G 1 and 8AmG 5 with alkali/alkaline earth salts (K+ 

and Ba2+) give G4-quartet structures that lead to formation of stiff, stable, and 

transparent hydrogels. The 8AmG/G-BaCl2 hydrogel can selectively extract anionic 

dyes from solution into the gel phase.17 ...................................................................... 61 

 

Figure 4.2: The potential protonation of the N7 position and subsequent resonance 

stabilization possible with 8AmG 5.17 ........................................................................ 62 
 

Figure 4.3: A) Mixtures of 2 wt% (70 mM) of G species with 2 eq of KNO3 that were 

heated to 95 °C and cooled at 20 °C for 1 hr. Only the 1:1 binary mixture of G 1/8AmG 

5 forms a hydrogel. B) Binary 1:1 8AmG 5/G 1 hydrogels formed with 2 eq of 

Ba(NO3)2 or Pb(NO3)2. C) An SEM image of an 8AmG 5/G 1 gel (2wt%, 70 mM), 

made with 2 eq of Pb(NO3)2, shows a fibrous intertwined gel network.17 ................. 63 
 

Figure 4.4 : CD Spectra (A and B) of the gels show signature peaks for G4-assemblies. 

Representative PXRD data (C and D) show peaks corresponding to the diameter of a 

G4-quartet (~20 Å) and the π-π stacking distance between layers (~3.3 Å).17 ........... 64 

 

Figure 4.5: While the gels in A, B, and C have been previously reported to form gels 

with K+ salts, they do not gel with Pb2+ or Ba2+, only 8AmG (D) gels with all 3 cations.17

..................................................................................................................................... 65 
 

 

 



 

 

xii 

 

Figure 4.6: Top) A 1:1 binary mixture of G/8AmG begins to form transparent viscous 

solutions with 0.125 eq of Ba(NO3)2, which is 1 Ba2+ per 8 nucleosides, as depicted 

schematically. Bottom) The same mixture begins to form a self-standing gel at 0.25 eq 

of added KNO3, corresponding to 1 cation per 4 nucleosides.17 ................................ 67 

 

Figure 4.7: Frequency sweeps of 8AmG/G hydrogels (70 mM) with 2 eq of Ba(NO3)2 

(green) or KNO3 (blue). The 8AmG/G-Ba(NO3)2 gel has a Gʹ of ~5700 Pa compared 

to ~3000 Pa for the 8AmG/G-KNO3 gel, indicating the divalent gel is stronger.17 ... 68 
 

Figure 4.8: Strain sweeps of 2 wt% (70 mM) 8AmG/G gels with varying eqs of salt 

show that Ba2+ (green) gels are strongest, followed by K+ (blue), and Pb2+ (orange) 

gels, which are much weaker. Adding more salt results in stronger hydrogels.17 ...... 69 
 

Figure 4.9: Top) the structures of the three dyes used. Bottom) This graph shows the 

percentage of the dyes each of the three 70 mM 8AmG/G gels absorbed after being 

suspended in a 155 mM KCl/12.5 μM dye solution for 24 hours.17 ........................... 71 
 

Figure 4.10 : Gels soaking in 100 μM NBB solution for 24 hours (top) absorb different 

amounts of NBB depending on the salt they are made with. BaCl2 gels absorb ~80% of 

the dye after one week whereas KB(OH)4 gels absorb less than 20%.17 .................... 72 

 

Figure 4.11: Qualitative dye uptake experiments show 8AmG/G-KCl vs 8AmG/G-

BaCl2 gels after soaking in 12.5μM NBB 3 for 24 hours. While 8AmG/G-KCl gels will 

absorb NBB 36 from solution, 8AmG/G-the BaCl2 gels absorbs the dye much faster.17

..................................................................................................................................... 73 

 

Figure 4.12: This qualitative dye experiment shows how a KCl gel loaded with 25 μM 

NBB 36 will release the dye into solution. The NBB 36 will then be absorbed by a 

BaCl2 gel in the same vial over the course of 2 weeks.17 ........................................... 74 

 

Figure 4.13: Qualitative dye uptake experiments show 8AmG/G-KCl vs 8AmG/G-

KB(OH)4 gels after soaking in 12.5 μM NBB 36 for 24 hours. The 8AmG/G-KCl gel 

absorbs the anionic NBB 36 much more than the 8AmG/G-KB(OH)4 gel, likely due to 

the repulsion between the dye and the anionic borate esters. ..................................... 74 
 

Figure 4.14: The experimental setup for Pb2+ uptake is shown above. A gel is 

suspended in KNO3/Pb(NO3)2 solution. The outside solution is monitored over time by 

taking aliquots from the solution. 207Pb NMR is performed with a Pb2+ internal standard 

contained within a capillary tube. After 3 days the outside solution is removed and the 

gel is rinsed with KNO3. The gel is then dissolved with HNO3 and the liquefied gel 

sample is analyzed with 207Pb NMR following the same procedure. ......................... 76 
 

Figure 4.15: The 207Pb NMR spectra show peaks from the outside solution and the Pb2+ 

internal standard contained within a capillary tube. After 72hrs the peak from the Pb2+ 

in solution has disappeared. After liquefying the gel sample with HNO3, we can see the 

Pb2+ had been absorbed by the hydrogel cube. ........................................................... 77 



 

 

xiii 

 

Figure 4.16: The illustration on the left shows (a) a depiction of the 8AmG/G hydrogel 

network made with K+, (b) after soaking in K+/Pb2+ solution some of the K+ is replaced 

by Pb2+, (c) the gel network dissociates with acid addition. Right) ICP-MS data shows 

that the amount of Pb2+ in solution decreases over time as it is absorbed by the gel. 78 

 

Figure 5.1: Images of 64 mM, 2 wt% BrG 6/G 1 hydrogels with 0.5 eq of KB(OH)4 

with different ratios of G 1:8BrG 6. A) Shows room temperature samples after 1 hour. 

B) Shows heated samples after 1 hour. ....................................................................... 81 
 

Figure 5.2: The H1ʹ region of the 1H NMR spectra of 1:1 8BrG 6:G 1 (64 mM, 2 wt%, 

0.5 eq of KB(OH)4) in D2O top) RT gel, bottom) heated gel. .................................... 82 
 

Figure 5.3: Top) G4-quartets composed of 8BrG 6 and G 1 self-assemble into G4-fibers 

to form a hydrogel. Bottom) The CD spectra of RT and heated gels (1:1 8BrG 6:G 1 - 

64 mM, 2 wt%, 0.5 eq of KB(OH)4) shows evidence for G4-quartets. ....................... 83 

 

Figure 5.4: PXRD data for lyophilized hydrogels made from 8BrG/G show evidence 

of G4-quartets in both heated and RT gel samples. ..................................................... 84 
 

Figure 5.5: Rheological strain sweeps of BrG/G hydrogels and G hydrogels - A) RT 

samples and B) heated samples................................................................................... 85 
 

Figure 5.6: The graph shows the release of nucleoside from the hydrogel networks of 

a heated G 1 gel (gray), a heated 8BrG 6/G 1 gel (orange), and a RT 8BrG 6/G 1 gel 

(blue) into 3 mL of water with 155 mM of KB(OH)4. ............................................... 86 

 

Figure 5.7: There is an equilibrium between the syn and anti conformations of the 

nucleobase and ribose about the glycosidic bond of G 1. These conformation lead to 

different possible assemblies of the G-units ............................................................... 87 

 

Figure 5.8: The image shows binary hydrogels made of G 1 and various other G-

derivatives (2 wt% nucleoside, 0.5 eq of KB(OH)4. ................................................... 88 
 

Figure 5.9: Strain Sweeps show the Gʹ values for RT gels made from 2 wt% 8BrG/G 

(purple) and 8morphG/G (green). ............................................................................... 90 
 

Figure 6.1: A potential method to add covalent cross-linking to the supramolecular 

hydrogel network. ....................................................................................................... 93 

 

Figure 6.2: Some potential G-derivatives and their corresponding linkers are shown.

..................................................................................................................................... 94 
 

Figure 7.1: Gels allowed to sit at RT (blue) and 37 °C (orange) were monitored over 

time. After 72 hours at 37 °C the amount of G species in solution increased and the 

system was no longer a gel. ........................................................................................ 98 
 



 

 

xiv 

 

Figure 7.2: The synthesis of 5'-IG 2 from G 1. .......................................................... 99 
 

Figure 7.3: 1H NMR spectrum of 5'-IG 2. ............................................................... 100 
 

Figure 7.4: 13C NMR spectrum of 5'-IG 2. .............................................................. 101 
 

Figure 7.5: Experimental setup for the gel network quantification, a D2O gel is made 

and placed in an NMR tube with a capillary tube of d6-DMSO (top left). 1H NMR 

spectra are taken and the H1ʹ region (top right) is used to quantify the amounts of G 

species in the gel and sol network. The error associated with NMR is ±10%. ......... 108 
 

Figure 7.6: The critical gelation concentration (CGC) for several 8AmG/G systems is 

calculated by forming gels of varying concentrations of nucleoside. ....................... 109 

 

Figure 7.7: We attempted to form gels with all of the salts shown following the general 

gel procedure. Gels were only able to form with K+, Sr2+, Ba2+, and Pb2+ salts. ...... 110 
 

Figure 7.8: Gels loaded with MB and RB (25 μM each) suspended in 155 mM KCl 

buffer will release different dyes based on their charge. .......................................... 112 
 

Figure 7.9: Illustration of the dye uptake experiments. ........................................... 113 
 

Figure 7.10: Gels were suspended in a 155 mM KCl solution with 12.5 μM MB dye 

and the amount of dye in the outside solution was monitored using UV-Vis. The graph 

shows the amount of MB absorbed by the gel after 24 hours. .................................. 113 

 

Figure 7.11: 1H NMR spectra of 8morphG 8. .......................................................... 117 
 

 



 

 

 

1 

 

Chapter 1: Introduction 

 Introduction 

Inspired by nature, the self-assembly of molecules is a powerful tool in creating 

functional materials.1 One such example are supramolecular guanosine (G 1) 

hydrogels,2,3 formed via the self-assembly of the naturally occurring nucleoside (or its 

derivatives) into G4-quartets (Figure 1.1).4 While G 1 hydrogels have been known for 

over a century,5 there has been a recent increase in their use for a variety of applications 

as these gels are easily synthesized and are potentially bio-compatible.6–8  

 

Figure 1.1: When added to aqueous solution of monovalent cation, G 1 self-assembles 

into cation stabilized G4-quartets. This protocol leads to formation of a G-hydrogel. 

 

 In the past 10 years research on G-hydrogels has focused on enhancing the 

stability of these systems.9–11 Previous research in our group focused on utilizing boric 

acid to crosslink the gel network via borate-ester formation. We were able to form 

robust guanosine-borate (GB) hydrogels. The anionic GB-esters play a pivotal role in 

solubilizing G 1 and extending the gel’s long-term stability.12 The strength of these gels 



 

 

 

2 

 

can be modulated by the cation identity, and both guanine analogs, and diols can be 

incorporated into the gel network.13 In addition, due to their negative charge, they are 

able to absorb cationic dyes from water.14 This thesis, “Tailoring Guanosine Hydrogels 

for Various Functions” details further experiments modifying different components of 

the GB-hydrogel system in order to better suit the hydrogels for applications. 

Modifications of (a) the sugar’s 5ʹ-OH position, (b) the 2ʹ,3ʹ-diol via altering the borate-

ester species, and (c) the H8 position of the nucleobase are discussed. 

 Thesis Organization 

 This thesis is organized into seven chapters. Chapter 1 introduces hydrogels 

with a general background on gelation and information on utilizing boron cross-linking 

in supramolecular hydrogels. This chapter concludes with a brief history of G-

hydrogels, including recent work on boron containing G-hydrogels. Chapter 2 

describes a 5ʹ-deoxy-5ʹ-iodoguanosine (5ʹ-IG 2) hydrogel formed with potassium 

borate that self-destructs via intramolecular cyclization to form 5ʹ-deoxy-N3,5ʹ-

cycloguanosine (5ʹ-cG 3), which breaks down the gel network. This self-destruction is 

used to release G-analog drugs that were incorporated into the hydrogel network.15 

Chapter 3 focuses on hydrogels made of G 1 with K+ and benzene-1,4-diboronic acid 

(BDBA 4), which can be used for cell growth.16 Chapter 4 discusses binary hydrogels 

of 8-aminoguanosine (8AmG 5)/G 1 in environmental remediation. These gels can be 

formed with various salts allowing them to uptake either cationic or anionic dyes from 

water.17 Chapter 5 explores the gelation of other 8-substituted-guanosine analogs, such 

as 8-bromoguanosine (8BrG 6), 8-iodoguanosine (8IG 7), and 8-mopholinoguanosine 
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(8morphG 8). When any of these derivatives are combined in binary mixtures with G 

1 and KB(OH)4 hydrogels form quickly at room temperature. Chapter 6 details 

potential future directions for research on GB-hydrogels. Finally, Chapter 7 contains 

supporting information, including experimental procedures, synthetic methods, and 

supplemental figures. A bibliography of all literature cited herein concludes the thesis. 

 Introduction to Gels 

Gels are common materials. From toothpaste and hair gel, to jello, we encounter 

many gels on a daily basis. Despite the numerous gels in our lives, explaining what a 

gel is has historically been a difficult task.18 Perhaps best described by Dr. Dorothy 

Lloyd, a gel is “easier to recognize than define,” as there are multiple types of gels all 

with different characteristics.19 In general, gels are substances that, despite being 

mostly solvent (90% or more by weight), do not flow and have solid-like rheologies. 

These features arise from the formation of two phases within the material, the 3D solid-

like gel network (the gel phase) that entraps the solvent (the sol phase) thus preventing 

the liquid from flowing (Figure 1.2). Gels made with organic solvents are known as 

organogels, while those made with water are referred to as hydrogels.20–22 

 

Figure 1.2: A depiction of the two phases contained within a gel. 
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Gels can also be classified as either chemical gels or physical gels. Chemical gels 

contain covalently crosslinked gel networks, meaning the network can only be 

disrupted if covalent bonds are broken. Due to the covalent crosslinks, chemical gels 

normally shrink or swell in the presence of external stimuli rather than breaking apart. 

On the other hand, physical gels are held together via non-covalent interactions that are 

reversible and therefore can disassemble upon interactions with stimuli (Figure 1.3).2,21 

 

Figure 1.3: Chemical gel (top) networks form via covalent bonds, therefore the gels 

swell or shrink in the presence of external stimuli. In contrast, physical gels (bottom) 

form from non-covalent interactions and can dissociate when exposed to stimuli. 

 

Supramolecular gels (also known as molecular gels), are a subset of physical gels 

that generally refers to the gelation of low molecular weight gelators (LMWG) 

(technically some polymer gels could be classified as supramolecular gels, however 

they are not the focus of this thesis) via noncovalent interactions, including H-bonding, 

π-π stacking, van der Waals forces, Coulombic attractions, etc. The LMWGs self-

assemble into 1D structures that further aggregate to form a 3D network of entangled 

fibers, referred to as a self-assembled fibrillar network (SAFiN) (Figure 1.4).2,6 
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Figure 1.4: Supramolecular gels form via self-assembly of LMWGs 1D structures with 

subsequent aggregation into 3D networks. 

 

There are some examples of gelation occurring at room temperature (one of 

which will be discussed in Chapter 5 of this thesis), but these are not the norm as the 

gelation process usually involves heating the LMWG and solvent until the gelator 

dissolves (or adding the LMWG to hot solvent), the solution is then allowed to cool at 

room temperature and upon cooling a gel forms.2,6,22  

The multi-step self-assembly process required to form the SAFiN makes 

supramolecular gels particularly sensitive to stimuli such as temperature, acids/bases, 

light, redox, mechanical forces, and more. This stimuli responsiveness can be harnessed 

to utilize supramolecular gels for a variety of applications including, sensing, drug 

release, environmental remediation, and more.23,24 

 Boron-Species as Cross-Linkers 

Having three valence electrons and an empty, Lewis acidic p-orbital, boron plays 

a critical role in many areas of science. Boron has been recognized for its role in 

synthesis as many boron-containing species act as key reagents in many important 

reactions. As an element naturally occurring in many minerals it plays an important 
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role in prebiotic chemistry. In addition, with a Lewis acidic, empty p-orbital, boron-

containing species have found use in supramolecular and polymer chemistry for their 

ability to form dynamic covalent bonds with oxygen.25 

Boric acid, B(OH)3 is well known to form borate esters with 1,2- and 1,3-diols, 

resulting in negatively charged, tetravalent, tetrahedral boron. These borate ester bonds 

are dynamic and reversible with acid and base (Figure 1.5).26 

 

Figure 1.5: Borate esters form between boric acid and a 1,2- (top) or 1,3-diol (bottom) 

in the presence of base. These dynamic bonds can be reversed with acid. 

 

Borate ester species are commonly used to crosslink polymers to create 

hydrogels. Perhaps most commonly known with polyvinyl alcohol (PVA 9), which is 

a common household adhesive (Figure 1.6). This interaction is the basis of many at 

home science projects to create “slime” by mixing borax soap with school glue.27 

 

Figure 1.6: Borate ester cross-linking between two chains of PVA 9. 
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In addition to PVA 9, boric acid is known to cross-link many other diol-

containing polymers. This boron cross-linking has been utilized in numerous polymer 

hydrogels. Boronic acids (R-B(OH)2, where R is any carbon containing group) have 

also been used to the same effect in organogels. These materials have found many uses, 

one of the most prominent being in glucose sensing.28,29  For more information on the 

applications of boron, including uses in polymer gels and organogels, see several recent 

review articles and books on these topics.25,30–32 The remainder of this chapter will 

focus on the use of borate esters in supramolecular hydrogels made from LMWGs 

including peptides, triazine analogs, and G-derivatives.  

 Supramolecular Hydrogels with Boron 

Sankar and Dastidar reported a triazine based triboronic acid hydrogelator (tHG 

10) that forms hydrogels based on both hydrophobic stacking interactions and, 

interestingly, H-bonding based boronic acid dimers (Figure 1.7) when mixed in water 

and a small amount of DMSO. These gels could be loaded with the anticancer drug, 

doxorubicinHCl (DOX 11) without disrupting the gel network (since DOX 11 has no 

1,2- or 1,3-diols, it does not disrupt the boronic acid dimers). The drug could then be 

slowly released from the gel with a decrease in pH to break up the gel network. 

Similarly insulin could be loaded into the gel network and released when triggered by 

glucose. Hydrogels of tHG 10 show promise for targeted drug release applications.33 
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Figure 1.7: A) The formation of a honeycomb gel network by tHG 10. B) H-bonded 

boronic acid dimer that is part of the gel network C) Structure of DOX 11. 

 

A supramolecular hydrogel containing a boronic acid-substituted fluorescence 

resonance energy transfer (FRET) acceptor that can be used as a sensor for polyols was 

reported by the Hamachi group. This gel forms when the phosphate containing gelator 

PO4g 12, is mixed with Ca2+ ions (Figure 1.8).34  

 

Figure 1.8: A) The formation of a gel network by PO4g 12 with Ca2+. B) The FRET 

donor and acceptor pair. 
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A FRET acceptor, the boron-appended NBD-B 13, and donor, coumarin dye 

(Coum-C12 14), can be incorporated into the hydrogel network. NBD-B 13 has a 

boronic acid group that is capable of binding polyols. When bound with a polyol FRET 

is turned off. Without any polyols the system emits green. In the presence of polyols, 

there is blue emission, indicating FRET has been turned off by the polyol-boronic acid 

binding. In addition to sensing in the gel state the authors spotted a mixture of PO4g 

12, NBD-B 13, and Coum-C12 14 onto a piece of cellulose-based filter paper pre-

saturated with CaCl2. Even after 1 week the paper system worked as a polyol sensor, 

with a color change in the presence of polyols, making this hydrogel-paper sensor an 

affordable and portable diagnostic tool.34 

 Peptide-Based Supramolecular Hydrogels with Boron 

Hamachi and coworkers also explored the gelation of different peptide 

derivatives, finding that BPmoc-F3 15 forms a gel network that be disrupted due to 

degradation of the gelator upon reaction with H2O2 (Figure 1.9).35  

 

Figure 1.9: The self-assembly of BPmoc-F3 15 to form a gel network is shown. This 

gel can be destroyed by H2O2, which causes the degradation of the gelator. 
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In order to transform the gel system into a practical sensor for biomolecules the 

authors incorporated various oxidase enzymes into the gel network. These oxidase 

enzymes generate H2O2 in situ upon reaction with their substrates (Figure 1.10A). In 

turn, this H2O2 generation causes gel breakdown, indicating the presence of the target 

biomolecule (Figure 1.10B).36,37  

 

Figure 1.10: A) The biomolecules tested. B) A grid showing the gels or solutions 

resulting from the biomolecules present with different oxidase enzymes. Only the gels 

with the oxidase enzyme corresponding to the correct molecules produced H2O2 

resulting in the gel-solution transition. The mismatched systems remained gels. Part B 

of this figure is reproduced with permission from Springer.36 

 

Cameron and coworkers reported a hydrogel composed of the dipeptide 

derivative BrNap-AV-OH 16 (Figure 1.11A). At a pH below the pKa of the carboxylic 

acid the gelator aggregates to form a hydrogel network, when the pH is higher, the 

carboxylate anion solubilizes the gelator, resulting in a solution. By adding 

phenylboronic acid (phB(OH)2 17) to hydrogel system the authors were able to use 

gelation as a saccharide sensor. When phB(OH)2 17 reacts with a diol (like those 

present in sugars) to form a boronate ester species (Figure 1.11B) the pH of the solution 

is lowered. This decrease in pH results in gelation by BrNap-AV-OH 16. The authors 

envision a potential application for this system as a smart-bandage in which saccharide 
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coated bacteria would trigger gelation upon reaction with phB(OH)2 17, thus trapping 

bacteria in a gel matrix.38 

 

Figure 1.11: A) The gelating species - a dipeptide derivative. B) The formation of 

boronate esters is accompanied by an acidification of the solution. 

 

The Spoerke group combined the gelating ability of a phenylalanine dipeptide 

with the diol sensing abilities of boronic acid into the hydrogelator BFF 18 (Figure 

1.12). Similar to BrNap-AV-OH 16, BFF 18 is charged, and therefore soluble at higher 

pH values, but will form a hydrogel at low pH values. This system can be tuned not 

only by pH, but also by addition of a diol-containing species. Diol species react with 

the boronic acid moiety to form an anionic boronate ester, thus solubilizing the 

gelator.39 

 

Figure 1.12: Hydrogelator BFF 18 is charged at high pH values, resulting in 

solubilization and destruction of hydrogels. 
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 Summary of Non-Guanosine Supramolecular Hydrogels with Boron 

 This section has explored recent developments in low molecular weight 

supramolecular hydrogels that utilize boron species. The examples discussed showcase 

the versatility of boronic acids as both parts of hydrogelators and in sensors for polyols. 

The remainder of this chapter will focus on the use of boric acid and boronic acids in 

guanosine-analog hydrogels. 

 A Brief History of Guanosine Hydrogels 

Gelation of a G 1 derivative was first reported by Bang in 1910,5 however it wasn’t 

until 1962 that Gellert and coworkers proposed G4-quartet based structures as the 

foundation for the gelation of 5ʹ-guanosine monophosphate (5ʹ-GMP 19).40 Further 

exploration of a variety of G 1 analogs by Guschlbauer and colleagues in the 1970s 

solidified the importance of the G4-quartet in gel formation.41–43 The G4-quartet is an 

H-bonded macrocycle composed of four guanine-containing units stabilized by a cation 

in the central cavity. These planar structures can further assemble via π-π stacking into 

columnar aggregates.4 In the last 20 years there have been several examples of G4-

quartet hydrogels with a wide range of potential applications including drug 

incorporation and delivery, sensing, tissue engineering, and more.44–49 

 One major issue with supramolecular G 1 hydrogels is their tendency to 

crystallize over time. In the presence of excess KCl, G 1 will initially form a transparent 

hydrogel, but over time hydrophobic G 1 crystallizes in the sol phase of the gel and 

eventually leads to a complete breakdown of the gel network (Figure 1.13). This 

instability is a major setback for long-term storage and applications of G 1 hydrogels. 



 

 

 

13 

 

 

Figure 1.13: G 1 forms transparent hydrogels in the presence of KCl, however, over 

time the nucleoside crystallizes, destroying the gel network. 

 

 Binary Guanosine Hydrogels 

One method developed to prevent crystallization is the creation of binary 

hydrogels made with two G-derivatives. The use of two nucleosides adds a level of 

disorder to the hydrogel system and prevents crystallization. In 2008, the McGown 

group reported the formation of a binary hydrogel made from G 1 and 5ʹ-GMP 19 

(Figure 1.14), with increased lifetime and stability. Readily soluble 5ʹ-GMP 19 helps 

to solubilize hydrophobic G 1 to form more stable hydrogels. Using different ratios of 

G 1:5ʹ-GMP 19 the authors are able to tune the temperature response of the hydrogels 

to either thermoassociate or thermodissociate.9 Since this initial report several other 

binary gel systems with G 1 have been reported.  

 

Figure 1.14: G 1 and G-derivatives used to form binary hydrogels with G 1. 
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Mariani and colleagues also explored hydrogels of G 1 and 5ʹ-GMP 19, finding 

that tuning the ratio of G 1:5ʹ-GMP 19 alters the amount of water the gel network is 

capable of supporting. They envision using these gels for entrapping target molecules.50 

 Rowan and coworkers utilized binary mixtures of 2ʹ,3ʹ,5ʹ-tri-O-acetylguanosine 

(TAcG 20) with G 1 that form transparent, stable hydrogels when mixed in 60:40-40:60 

ratios. Varying the ratio within this range results in hydrogels with different mechanical 

strengths and thermal stabilities. With too much G 1 the gels would precipitate, and 

with too much TAcG 20 no gels would form (Figure 1.15).10,51 

 

Figure 1.15: Hydrogels or solutions formed with different ratios of G 1: TAcG 20. 

Images of gels reprinted with permission from the American Chemical Society.10 

 

 The Dash group formed stable and transparent hydrogels from binary mixtures 

of 8BrG 6 and G 1, which could be used in varying ratios. Organic dyes were able to 

diffuse through and subsequently be released from these hydrogels (Figure 1.16), 

implying that the gels could be used for the uptake and release of target compounds.11 
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Figure 1.16: Images of the RB 21 (structure, top) diffusing through two G 1/BrG 6 

(left 1:1, right 1:2) hydrogels after A) 1 hr, B) 24 hrs, and C) 72 hrs. Pictures reprinted 

with permission from Wiley.11 

 

 Adhikari, Kraatz, and coworkers made hydrogels of G 1 with 2ʹ-deoxy-

guanosine (dG 22). They found they could alter the gel strength and stability by varying 

the cation used to template G4-quartet formation.52 

 Enhancing the lifetime of G 1 hydrogels through the use of binary mixtures with 

other G-derivatives has greatly improved the applicability of these hydrogels for 

practical applications. However, some of these systems still require high salt 

concentrations in order to form, making them problematic for biological applications. 

A different approach to stabilize G 1 hydrogels utilizes a stabilizing borate anion. 

 Stabilizing Guanosine Hydrogels with an Anion 

 In 2014 our group described the formation of a transparent and indefinitely 

stable hydrogel made by heating G 1 with 0.5 eq of aqueous KOH and B(OH)3, the gel 

forms upon cooling. In the gelation mechanism (Figure 1.17) G 1 and KB(OH)4 react 

to form dynamic guanosine-borate (GB) esters; GB-monoester (23) and two species of 

GB-diesters (24 and 25). These GB-esters then self-assemble into G4-quartets that 

further stack to form G4-wires, which entangle to make the hydrogel network.12 
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Figure 1.17: The gelation mechanism for the formation of GB-hydrogels of G 1 with 

KB(OH)4.
12,13 

 

We found that the gel’s strengths and physical properties could be controlled 

by the identity of the stabilizing cation (Li+, Na+, K+, Rb+, Cs+), with K+ giving the 

most robust hydrogels and Li+ forming weaker gels. These gels were also capable of 

incorporating diol-containing molecules (through borate-ester linkages) and guanine-

derivatives (via G4-quartet H-bonding). We also found that these gels were stable in 

155 mM K+ solutions. Due to the anionic borate esters in the gel network, the hydrogels 

would selectively incorporate and hold cationic dyes (such as methylene blue, MB 26), 

over anionic dyes (such as rose bengal, RB 21) (Figure 1.18).12,13  
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Figure 1.18: The anionic GB hydrogel selectively absorbs cationic MB 26 from an 

aqueous solution of MB 26 and anionic RB 21.12 

 

We further explored these charge based interactions using the known G-

quadruplex ligand, thioflavin T (ThT 27). Substoichiometric amounts of ThT 27 (and 

other cationic, aromatic dyes) strengthened the weaker Li+ hydrogels and acted as 

molecular chaperones for gelation by templating the formation of G4-quartets. The dye 

was able to repair a hydrogel that had been liquefied via sonication (Figure 1.19).14  

 

Figure 1.19: Substoichiometric amounts of ThT 27 helps to repair a GB-Li+ hydrogel.14 
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 Additional work from our group focuses on modifying components of the GB 

hydrogel system (including substitutions on the G 1 monomer, and the boron species) 

and is presented in Chapters 2 – 6 of this thesis. 

 Since our group introduced borate containing G 1 hydrogels in 2014 there has 

been an explosion of GB hydrogels in the chemical literature reported from several 

different groups. These new reports utilize GB hydrogels or GB-derivative hydrogels 

in a variety of fields ranging from sensing to drug release and bioinks for 3D printing. 

 Guanosine-Boron Hydrogels with Hemin 

There are several examples of G 1 hydrogels that incorporate hemin 28 into the 

gel network, which endows the gels with catalytic activity (Figure 1.20). This activity 

can be harnessed in redox reactions and for sensing applications. 

 

Figure 1.20: Hemin 28 binds to G4-quartets to be incorporated into a hydrogel network. 

 

Using G 1, phB(OH)2 17, and hemin 28 the Dash group detailed a system that 

forms hydrogels in the presence of K+ (Figure 1.21). The hemin 28 containing gels are 

able to oxidize 3,3ʹ,5,5ʹ-tetramethylbenzidine (TMB 29), which undergoes a color 

change with oxidation. In the presence of Pb2+ the oxidation activity is turned off due 

to the preference of the G4-quartets for Pb2+ over K+. The cation change results in a 
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change in the G4-quartet structure that disrupts hemin binding.53 Li, Zhu, and coworkers 

explored a similar system utilizing the GB-hydrogel with G 1 and KB(OH)4 and hemin. 

They also found that in the presence of Pb2+ no oxidation of TMB 29 occurred.54 These 

hydrogel systems can be used as sensors for detecting Pb2+. 

 

Figure 1.21: In the presence of H2O2 TMB 29 is oxidized in GB-K+ hydrogels with 

hemin 28, however with GB-Pb2+ hydrogels no reaction occurs 

 

 Zhang, Pei, and coworkers used G 1 with KB(OH)4 and hemin 28 to create a 

printable hydrogel. This gel can be printed onto an electrochemical electrode, which 

can be incorporated into flexible bioelectronic devices, such as glucose sensors.54 

 Guanosine-Boron Hydrogels for Biological Applications 

The Sadler group utilized the GB-hydrogel to incorporate a photoactivatable 

dopamine-conjugated platinum (IV) anticancer drug (Pt-DA 30) (Figure 1.22). The gel 

showed cytotoxicity against cisplatin-resistant A2780Cis human ovarian cancer cells. 

This cytotoxicity was selective for cancer cells over normal non-cancerous cells.55 
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Figure 1.22: A) The anti-cancer drug derivative Pt-DA 30 forms a boronate ester (Pt-

Da-B-G 31) with G 1 that can be incorporated into a hydrogel network via G4-quartet 

H-bonding. B) The Pt-G4-K
+ B hydrogel is a brownish color. Photo reprinted with 

permission from the American Chemical Society.55 

  

Utilizing G 1 with 2-formylboronic acid (2-FBA 32) and tris(2-

aminoethyl)amine (TAEA 33) the Shi and Ma groups formed hydrogels based on G4-

quarets and cooperative boronate-ester, iminoboronate linkages. These dynamic 

linkages are sensitive to pH and diol functional groups and can therefore be controlled 

via addition of acid and/or glucose. When model compounds were loaded into the 

hydrogel, they could be released following zero-order kinetics upon addition of H+ or 

glucose (Figure 1.23). With their pH and glucose responses, these hydrogels have 

potential for use in targeted and controlled drug delivery.56 
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Figure 1.23: A) G 1 forms hydrogels with 2-FBA 32 and TAEA 33. B) The hydrogels 

break down in the presence of glucose or acid, and will release any cargo they hold 

following zero-order kinetics. 

  

Lastly, Kalaskar, Das and coworkers, reported hydrogels formulated with G 1, 

phB(OH)2 17 and K+. These hydrogels are thixotropic and self-healing, making them 

ideal candidates for 3D printable bioink. In addition the gels were shown to be non-

toxic to human dermal fibroblast (HDF) cells and the authors utilized cell-loaded gels 

as bioink without damage to the cells nor the hydrogels (Figure 1.24).57 
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Figure 1.24: a) Shows the self-healing properties of the G 1, phB(OH)2 17 hydrogels. 

b) The gel is used as a bioink for 3D printing c-g) Different shapes printed by the 

hydrogel (scale bar = 10 mm). Reprinted with permission from the Royal Society of 

Chemistry.57 

 

 Conclusions 

Supramolecular hydrogels, including boron-crosslinked and G 1 gels, are a rapidly 

growing field of research. As explored in this chapter the dynamic and stimuli 

responsive nature of these gels makes them great candidates for use in various 

applications in a number of fields. The subsequent chapters of this thesis explore my 

work from the last five years on guanosine-analog hydrogels for drug delivery, cell 

growth, environmental remediation, and room temperature gelation. 
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Chapter 2: Hydrogels from 5ʹ-Iodo-5ʹ-Deoxyguanosine – Self Destruction for 

Drug Delivery 

 

The majority of this chapter has been published in reference 15: 

Plank, T.N.; Davis, J.T. A G4·K
+ Hydrogel That Self-Destructs Chem. Commun. 2016, 

52, 5037-5040. 

2.1 Summary 

The research in this chapter focuses on utilizing guanosine-borate (GB) 

hydrogels for drug release. Since previous research in our lab showed that guanosine 

(G 1) analog drugs could be incorporated into the GB gel network,12 we aimed to create 

a functionalized GB hydrogel that could self-destruct to release the drug. 

We found that 5ʹ-deoxy-5ʹ-iodoguanosine (5ʹ-IG 2) forms gels with KB(OH)4. 

These G4-quartet based gels break down over time as (5ʹ-IG 2) decomposes via 

intramolecular cyclization to form 5ʹ-deoxy-N3,5ʹ-cycloguanosine (5ʹ-cG 3), which is 

missing a H-bond donor necessary for G4-quartet formation. Hydrogel breakdown can 

be modulated via temperature. G-analog drugs (acyclovir and ganciclovir) can be 

incorporated into the gel network and released over time as the gel degrades. 

2.2 Introduction 

Supramolecular hydrogels,8,21 formed by low-molecular weight compounds, are 

being investigated for use in chemical sensing, organic electronics, tissue engineering, 

and drug delivery.6,58,59 While derivatives of G 1 have been known to gel water since 

the early 1900’s,5 there has been renewed interest in G 1 gels for their ease of 

preparation, unique properties, and potential biocompatibility.9–11,49,52 As described in 

the introduction to this thesis, our group had previously described a supramolecular 
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hydrogel made by mixing G 1 and 0.5 eq of KB(OH)4 in H2O.12–14 The nucleoside’s 

2ʹ,3ʹ-diol reacts with borate to form anionic GB diesters that self-assemble into H-

bonded G4-quartets.4,60 

Having identified the key components for the formation of robust hydrogels in 

the GB gel system previously developed in our lab we set out to alter gel properties by 

altering the 5ʹ-OH group. We reasoned that unlike the 2ʹ,3ʹ-diol (required for borate 

ester formation), and the G nucleobase (required for G4-quartet formation), the 5ʹ-

position was not directly involved in the gelation mechanism and was therefore not 

critical for gelation (Figure 2.1). The ability to functionalize the 5ʹ-OH group is further 

supported by the existence of hydrogels made from 5ʹ-substituted guanosines; 

including 5ʹ-GMP,5,61,62 5ʹ-hydrazides,44 5ʹ-OAc,10,51 5ʹ-sulfate,42 and 5ʹ-Cl analogs.43  
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We reasoned that incorporating a good leaving group at C5ʹ, such as an iodo 

group to form 5ʹ-deoxy-5ʹ-iodoguanosine (5ʹ-IG 2),63 would facilitate intramolecular 

cyclization by N3 to form 5ʹ-deoxy-N3,5ʹ-cycloguanosine (5ʹ-cG 3) when the 

nucleoside was in the syn conformation (Figure 2.2) This N3, C5ʹ cyclization is known 

for other guanosine analogs with good 5ʹ-leaving groups.64–66  Formation of 5ʹ-cG 3 

should disrupt the G4-quartet based gel network, as 5ʹ-cG 3 is missing an H-bond donor 

(Figure 2.2) necessary for the formation of G4-quartets. Our goal in creating such a 

“self-destroying” hydrogel was to use the system for controlled release of compounds 

(such as guanine containing drugs) that had been pre-incorporated into the hydrogel. 

Figure 2.1: A hydrogel is made when G 1 or 5ʹ-IG 2 reacts with KB(OH)4 

to form GB esters that self-assemble into G4-wires stabilized by K+. 

These wires entangle to give a fibrous network.15 
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With this objective in mind, we began our investigation on 5ʹ-modifications by studying 

hydrogelation of 5ʹ-IG 2 with KB(OH)4. 

 

Figure 2.2: Left: 5ʹ-IG 2 and aqueous KB(OH)4 give a supramolecular hydrogel with 

in situ formation of 5ʹ-cG 3. Right: Lacking a N1 H-bond donor 5ʹ-cG 3 cannot form 

stable G4-quartets, its in situ formation destroys the hydrogel network.15  

 

2.3 Hydrogels Made of 5ʹ-IG 2 with KB(OH)4 

We found that GB gels can be made by heating aqueous suspensions of poorly 

soluble 5ʹ-IG 2 with 2 eq of KB(OH)4 to 90 °C, removing the sample immediately from 

the heat bath and then allowing that clear solution to cool at RT. While these hydrogels 

made from 5ʹ-IG 2 were weaker than GB gels from G 1 (storage modulus, Gʹ, was 

~10,000 Pa for 72 mM G 1 gels;13 whereas Gʹ was ~700 Pa for 72 mM 5ʹ-IG 2 gels), 

the 5ʹ-IG 2 hydrogels were transparent and appeared stable for weeks at RT. 

Importantly, gels did not form upon cooling if the sample was kept at 90 °C for > 10 

min before being removed from the heat bath; instead viscous solutions were obtained. 

This suggested that 5ʹ-IG 2 had cyclized to give 5ʹ-cG 3, preventing hydrogelation.  
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2.4 Formation of 5ʹ-cG 3 

Two pieces of information supported the proposal that 5ʹ-IG 2 would 

significantly populate a syn conformation, enabling the intramolecular cyclization to 

5ʹ-cG 3 upon deprotonation of N1H (pKa ~9; gel pH ~8.6)67 (Figure 2.2). First, using 

an empirical NMR analysis that compares the chemical shift of H2ʹ to those of 

conformationally-locked analogs,68 we found that 5ʹ-IG 2 has a ~67% preference for 

the syn conformation in DMSO-d6. Second, like GB hydrogels made from G 1,12,13 B-

11 NMR indicates that 5ʹ-IG 2 hydrogels contain borate diesters (Figure 2.3) and 2ʹ,3ʹ 

-borate esters of nucleosides are known to favor the syn conformation.69–72  
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Figure 2.3: Top: The possible borate ester species present in the 5ʹ-IG 2 gel system. 

Bottom: Variable temperature 11B NMR spectra; experiments were performed on 50 

mM 5ʹ-IG 2 gels.15 Peaks are assigned based on literature precedent.12 

 

Both mass spectrometry and NMR spectroscopy confirmed that 5ʹ-cG 3 was 

formed in situ when samples were heated to 90 oC. ESI-MS analysis (Figure 2.4) of a 

GB-K+ hydrogel made from 5ʹ-IG 2 showed significant signals for 5ʹ-cG 3 + H+ 

(m/z=266 amu) and for 5ʹ-cG 3 + K+ (m/z=304 amu).   
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Figure 2.4: Mass spectrum of a 50 mM 5ʹ-IG 2 gel. Peaks are labeled with their 

corresponding species. The peak at 214 m/z is a contaminant in the mass 

spectrometer.15 

 

A 1H-1H COSY NMR spectrum of the same hydrogel showed separate sets of 

signals for the borate esters of both 5ʹ-IG 2 and 5ʹ-cG 3 (Figure 2.5b). The N3, C5ʹ 

cyclization was apparent from the significant deshielding and separation of the H5′,5′′ 

signals for 5ʹ-cG 3 (δ 4.40 and 3.97 ppm) relative to those for 5ʹ-IG 2 (a complex ABX 

pattern centered at δ 3.35 ppm). These 1H chemical shifts for H5′,5′′ of 5ʹ-cG 3, 

confirmed by a 2D 1H-13C HSQC experiment (Figure 2.5a), matched literature 

values.65  
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Figure 2.5: a) The HSQC spectrum indicates two different species from the 5ʹ-signals 

(yellow and green boxes). b) COSY was used to assign the peaks to 5ʹ-IG 2 (yellow 

labels) and 5ʹ-cG 3 (green labels).15 
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2.5 Control of 5ʹ-cG 3 Formation and Influence on Gel Properties 

 To confirm that 5ʹ-cG 3 is responsible for destroying the gel’s integrity we 

compared two different samples made from 5ʹ-IG 2 and KB(OH)4. The first sample, a 

transparent and stable hydrogel, was made by mixing 5ʹ-IG 2 with 2 eq of KB(OH)4, 

heating the solution to 90 °C at a rate of 5 °/min, removing the sample from the 90 °C 

bath, and allowing it to cool at RT. The second sample, which gave a viscous solution, 

was formed by mixing 5ʹ-IG 2 with 2 eq of KB(OH)4 in water and heating to 90 °C. 

But, rather than remove sample 2 from the heat bath immediately it was kept at 90 °C 

for an additional 15 min before cooling at RT. We used 1H NMR to determine the ratios 

of 5ʹ-IG 2 and 5ʹ-cG 3 in each sample (we added acid to ensure that all species were in 

their monomeric forms, and thus visible in solution NMR, rather than in 

supramolecular assemblies too large to be seen). The ratio of 5ʹ-IG 2/5ʹ-cG 3 in sample 

1 was 65:35 based on integration of the H1ʹ signals. Sample 2 had a 5ʹ-IG 2/5ʹ-cG 3 

ratio of 25:75 confirming that a) 5ʹ-IG 2 is the gelator and b) 5ʹ-cG 3 inhibits gelation 

by 5ʹ-IG 2 (Figure 2.6).  
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Figure 2.6: 1H NMR experiments on the dissociated gel systems formed with different 

heating times show that 5ʹ-IG 2 is the gelator. Spectra show the H1ʹ region. The gel 

(bottom) is roughly 65% 5ʹ-IG 2 and 35% 5ʹ-cG 3. The viscous solution (top) contains 

far more 5ʹ-cG 3 (75%) than 5ʹ-IG 2 (25%).15 

 

2.5.1 1H NMR Shows Higher Temperature Increases 5ʹ-cG 3 Formation 

Since heating temperature plays a critical role in formation of 5ʹ-cG 3 we tested 

how lowering the heating temperature would affect gelation. We observed that the final 

temperature to which the gelator solution was heated influenced the appearance, 

composition, and rheology of the hydrogels. Gels made from 5ʹ-IG 2 (50 mM) ranged 

from opaque to transparent depending on the temperature to which samples were 

heated. NMR (Figure 2.7) confirmed that the amount of 5ʹ-cG 3 varied considerably 

in these samples, with little cyclization occurring in gels formed at or below 70 °C.  
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Figure 2.7: Changing the temperature to which gels are heated during formation results 

in visibly different gels. At 50 mM 5ʹ-IG 2 and 100 mM KB(OH)4, gels range from an 

opaque white gel when heated to 30 °C to a transparent gel when heated to 90 °C. 1H 

NMR studies of the dissociated gel networks (the H1ʹ region is depicted in the spectra) 

show that these visual changes correspond to varying quantities of 5ʹ -cG 3, with almost 

none present in the gels heated to low temperatures (<1% of the total G species in the 

gel heated to 30 °C), and increasing with heating temperature (~40% of total G species 

in the gel heated to 90 °C).15 

 

2.5.2 Increased 5ʹ-cG 3 Decreases Gel Strength 

Rheology showed that the stiffness of 5ʹ-IG 2 GB gels (72 mM) also depended 

on the preparation conditions. Thus, gels formed after heating to 70 °C were stiffest, 



 

 

 

34 

 

with storage modulus Gʹ of ~1000 Pa, whereas gels formed after heating to 50 °C and 

90 °C had Gʹ values of ~700 Pa (Figure 2.8).  

 

Figure 2.8: Frequency sweeps of 5ʹ-IG 2 gels formed at different temperatures show 

the gel formed at 70 °C is much stronger than the gels formed at 50 and 90 °C. The Gʹ 

value for the gel formed at 70 °C is ~1000 Pa, whereas the values for the gels formed 

at 50 and 90 °C are around ~700 Pa.15 

 

2.5.3 CD Shows Decreased G4-Quartet Signals with More 5ʹ-cG 3 

 To probe the cause of these rheological differences, we used circular dichroism 

(CD) spectroscopy to examine how hydrogelation conditions influenced G4-quartet 

formation in different hydrogel samples (Figure 2.9). The 5ʹ-IG 2 hydrogel (50 mM) 

formed after heating to 70 °C gave a CD spectrum (red trace) similar to that for gels 

made from G 1 (blue dotted trace),12,13 with characteristic G4-quartet peaks at ~290 and 
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250 nm and troughs at ~270 and 220 nm. This spectrum indicates that this 5ʹ-IG 2 

hydrogel contained stacked G4-quartets.73,74 Signature CD bands for G4-quartets were 

significantly weaker in the hydrogels formed at 50 °C (yellow) and 90 °C (green and 

purple traces). Overall, these combined observations suggest that the hydrogel’s 

properties depend on a balance between dissolving the poorly soluble hydrogelator 5ʹ-

IG 2 and the subsequent cyclization of 5ʹ-IG 2 to 5ʹ-cG 3. Solubilizing 5ʹ-IG 2 so that 

it can self-assemble into a G4-hydrogel is obviously easier at higher temperatures; but, 

the formation of 5ʹ-cG 3 also increases with temperature.  

 

Figure 2.9: 50 mM 5ʹ-IG 2 gels prepared at different heating temperatures give rise to 

different CD spectra. The gel formed at 70 °C (orange) most closely resembles the GB 

system (blue), indicating the presence of stacked G4-quartets. Gels formed at 50 and 90 

°C (yellow and green) show a much weaker G4-quartet signature.15 

 

2.6 Utilizing Gel Self-Destruction for Drug Release 

Gels often respond to external stimuli, such as mechanical stress, ultrasound, 

temperature, light, redox processes, pH, ions, chemical reactants and enzymes.23,24,75 

The 5ʹ-IG 2 system is a rare example of a gel whose critical components for formation 
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(5ʹ-IG 2 and hydroxide) later react to break down the gel. Since 5ʹ-cG 3 destroys the 

gel network we sought to utilize this feature for the “catch and release” of guanine 

analogs, as depicted in Figure 2.10. We knew from our previous work that G-analogs, 

such as acyclovir (blue), can be incorporated into G4-quartets that make up the GB 

hydrogel.12 We reasoned that in situ cyclization of 5ʹ-IG 2 (green) to give 5ʹ-cG 3 

(orange) would perturb the G4-quartets, leading to erosion of the gel. This self-

destruction of the hydrogel would enable release of pre-incorporated guanine analogs, 

such as the anti-viral drugs acyclovir and ganciclovir. 76–78 

 

Figure 2.10: Acyclovir (blue) can be incorporated into the 5ʹ-IG 2 (green) gel network. 

Over time more 5ʹ-cG 3 (orange) forms, destroying the gel and releasing the drug.15 

 

2.6.1  5ʹ-IG 2 Continues to Cyclize to 5ʹ-cG 3 After Gel Formation 

 Before testing this hypothesis we first explored if cyclization of 5ʹ-IG 2 

continued to occur in the gel after its initial formation. We tested gels kept, at both 20 

and 37 °C. By using 1H NMR to measure the amounts of 5ʹ-IG 2 and 5ʹ-cG 3 in the sol 

phase, we discovered that cyclization did indeed continue to occur after gelation. NMR 

data showed that after initial gel formation at 90°C, 56 ± 2 % of the total guanosine 

species was 5ʹ-IG 2. After standing for 72 hours at 20 °C, 41 ± 2 % of the G species 
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was 5ʹ-IG 2 and the gel remained self-supporting. In contrast, after 72 hours at 37 °C 

only 28 ± 2 % of the sample, a viscous solution, was 5ʹ-IG 2 (Figure 2.11).  

 

Figure 2.11: Gels at RT (blue) and 37°C (orange) studied over time, after 72 hrs at 37 

°C the amount of G-species in solution increased and the system was not a gel.15 

 

2.6.2  Drug Incorporation 

We were encouraged that the 5ʹ-IG 2 GB hydrogel would show enhanced release 

of pre-incorporated nucleoside analogs at 37 °C. We monitored the release of two pre-

incorporated guanine analogs (the anti-viral drugs acyclovir and ganciclovir)76–78 from 

the gel phase into the sol phase at 20 °C and at 37 °C. We pre-incorporated the drugs 

into the GB gels by adding aqueous KB(OH)4 to a mixture of solid 5ʹ-IG 2 and the drug 

and then heated and cooled the system as previously described. Using 1H NMR, with 

an internal standard (d6-DMSO) to measure the H1ʹ signals for acyclovir and 

ganciclovir in the sol phase, we found that 1) about 2.5 mM of the G-analogs acyclovir 

and ganciclovir (out of a total concentration of 5.0 mM) were incorporated into the gel 
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phase of a GB hydrogel made using 5ʹ-IG 2 (50 mM) and 2) both pre-incorporated 

analogs were then released into the sol phase from the gel over time (Figure 2.12).  

 

Figure 2.12: The H1ʹ (pink) region of the spectra shows three peaks representing each 

species in the sample 5ʹ-cG 3, 5ʹ-IG 2, and acyclovir (top) or ganciclovir (bottom).15 

 

2.6.3  Drug Release 

Data in Figure 2.13 indicates that acyclovir and ganciclovir were both released 

from the GB gel significantly faster at 37 °C than at 20 °C, which reflects the enhanced 

rate for N3,C5’-cyclization at body temperature. After 3 days at 37 °C, over 80% of the 
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pre-incorporated acyclovir had been released into the sol phase, whereas only 13% was 

released at 20 °C (Figure 2.13a). Ganciclovir release at the two temperatures was also 

quite different. After 3 days at 37 °C, 67% of the ganciclovir was released. In contrast, 

little, if any, ganciclovir was released from the gel after 3 days at 20 °C (Figure 2.13b) 

the gel network.12 There is precedent for incorporation and release of acyclovir from 

another G4-hydrogel,46 but this 5ʹ-IG 2 hydrogel shows both higher incorporation and 

increased release of the drug. Topical applications of a G4-based hydrogel that slowly 

decompose and release these pre-incorporated drugs could be beneficial. 

 

Figure 2.13: Compounds that are pre-incorporated into the gel network can be released 

over time. a) Acyclovir and b) ganciclovir, can be incorporated into the hydrogel 

system. Drug release over time increases if the gel is heated. Release data shown is an 

average of 3 trials. Error bars represent the standard deviation between trials.15 

 

2.7 Conclusions 

 We have shown that 5ʹ-IG 2 forms hydrogels with KB(OH)4 and that 2 also 

undergoes in situ intramolecular cyclization to form non-gelating 5ʹ-cG 3. The 

temperature-sensitive cyclization continues to occur after gel formation and leads to 
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self-destruction of the GB hydrogel. The ability to incorporate and release guanosine 

analogs using such a “self-destroying” gel may find applications for controlled drug 

release, provided the hydrogelator and 5ʹ-cG 3 are non-toxic.  

2.8  Other Results – Solvent Isotope Effect 

While performing NMR studies on the 5ʹ-IG 2 gel system using D2O as the 

solvent, we discovered a solvent isotope effect. As previously described, transparent 

gels readily form at 50 mM 5ʹ-IG 2 (with 2 eq of KB(OH)4) in H2O; however, in D2O, 

the result is a translucent viscous solution (Figure 2.14).  

 

Figure 2.14: 5ʹ-IG 2 (50 mM) with 2.0 eq of KB(OH)4 gels H2O but not D2O. In H2O 

clear gels form. Increasing the amount of D2O in 10% increments yields less viscous, 

more turbid solutions. 

 

This solvent isotope effect persists over a range of concentrations (Figure 2.15) 

with less viscous, more translucent solutions or gels in D2O, and stronger, more 

transparent gels in H2O.  
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Figure 2.15: The isotope effect persists over a range of 5ʹ-IG 2 concentrations, even 

when both solvents result in the same phase, either solution (low concentration of 5ʹ-

IG 2) or gel (high 5ʹ-IG 2 concentrations). 

 

There is also a stark rheological difference between gels formed in H2O and those 

formed in D2O. When formed at 90 °C in H2O, 72 mM 5ʹ-IG 2 gels have a Gʹ value of 

~700 Pa, whereas gels made in D2O have a lower Gʹ value of ~300 Pa (Figure 2.16).  

 

Figure 2.16: The solvent isotope effect of the 5ʹ-IG 2 system is evident in the frequency 

sweeps of 72 mM gels made with H2O vs D2O. With a Gʹ of ~700 Pa the H2O system 

is much stronger than the D2O system, which has a Gʹ value of ~300 Pa. 
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Despite these macroscopic differences, on a microscopic scale 1H NMR spectra 

of H2O and D2O gels are indistinguishable (Figure 2.17).  

 

Figure 2.17: Despite the physical differences due to the isotope effect, 1H NMR spectra 

of the 5ʹ-IG 2 gels in H2O and D2O appear the same. The H1ʹ region is shown. 

 

We believe these findings indicate that the stacking of G4-quartets somehow 

differs based on solvent interactions that drive the isotope effect in this system. 

Previous work on the self-assembly of 5ʹ-GMP indicates that the size and stability of 

G4-quartet assemblies differ in H2O and D2O. However, no definitive reason for these 

observed differences is known.62 While it is well established that the physical properties 

of H2O and D2O are different, there is still much to learn about how and why these 

differences affect self-assembly.79 There are many examples in the literature of systems 

exhibiting isotope effects, but they differ in how changing the solvent alters the system. 

Some systems seem to be stabilized in D2O versus H2O, in others they are destabilized. 

There are some reports of greater hydrophobic effect in D2O, and other cases indicating 

a larger contribution from the hydrophobic effect in H2O.80–82 In short, there is no clear 

consensus on the cause of the solvent isotope effect in self-assembled systems.  

While the reasoning behind the H2O/D2O difference remains unclear, in the G-

based gel systems we have studied, it seems to be present only in the 5ʹ-IG 2:KB(OH)4 
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system. This isotope phenomenon does not appear to occur in the GB gel systems,12–14 

or gels made with 5ʹ-IG 2 and excess KCl (Figure S9).  

 

Figure 2.18: Gels made with varying concentrations of 5ʹ-IG 2 and 250mM KCl (H2O 

as the solvent on the left and D2O as the solvent on the right) do not appear to have a 

noticeable solvent isotope effect. 

 

2.9  Future Directions 

To the best of our knowledge this solvent isotope effect in a small molecule 

hydrogel has never been reported in the literature. It is possible that the H2O/D2O effect 

is so prominent in the 5ʹ-IG 2 system because the gels are not as stable as the G 1 

system. Perhaps there is a smaller isotope effect in the G 1 system, but we never noticed 

it as the system is more stable and H2O and D2O gels are visually identical. Future work 

on this solvent isotope effect could examine a series of known gel systems (such as the 

GB gels, and other known guanosine analog systems)9,10,12–14,49,51,52 and test if they 

exhibit rheological differences, like the 5ʹ-IG 2 system, with changing solvent. 
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Chapter 3:  Guanosine–(Benzene-1,4-Diboronic Acid) Hydrogels for Cell Growth 

The majority of this chapter has been published in reference 16: 

Rotaru, A.; Pricope, G.; Plank, T.N.; Clima, L.; Ursu, E.L.; Davis, J.T.; Barboiu, M. 

G-Quartet Hydrogels for Effective Cell Growth Applications Chem Commun. 2017, 

53, 12668-12671. 

 

This work was completed in collaboration with the Rotaru and Barboiu Groups from 

“Petru Poni” Institute of Macromolecular Chemistry, Centre Advanced Research in 

Bionanoconjugates and Biopolymers in Romania, and Institut Europeen Membranes, 

Adaptive Supramolecular Nanosystems Group, Université de Montpellier in France. 

The Rotaru and Barboiu groups performed the preliminary gel formation experiments, 

CD spectroscopy, obtained the AFM and SEM images, and carried out the biological 

experiments (cell growth and cytoxicity). I performed additional gel studies 

(calculating critical gelation concentration of the different cation gels) and 

characterized the gels via 1H, and DOSY NMR, PXRD, and rheology. 

 

3.1 Summary 

The research in this chapter explores how changing the boron species used to 

form hydrogels with guanosine (G 1) can alter gel properties. By using benzene-1,4-

diboronic acid (BDBA) in place of B(OH)3 we are able to form guanosine bis-boronate 

(G-BDBA-G) hydrogels with either K+ or Ba2+.  Moreover, we could add Mg2+ to 

further crosslink the gel network. This significantly decreases the critical gelator 

concentration (cgc) necessary to form stable hydrogels. These gels are capable of 

supporting cell growth and showed no visible signs of gel breakdown. 

3.2 Introduction 

 Constitutional self-organization (CSO),  self-assembly utilizing both dynamic 

covalent and supramolecular bonding, provides a unique approach for generating 

adaptive materials for biomimetic systems.45,83,84 Hydrogels based on G4-quartets are a 
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prime example of these types of materials.4,85 As described in more detail in the 

introduction to this thesis, in guanosine based gel systems G 1 self-assembles into H-

bonded G4-quartets that stack to create G4-wires, forming a gel network. While 

supramolecular peptide gels have been used in tissue engineering,1,86,87 the use of 

nucleoside gels for cell growth has not been well explored.49,55 

As hydrogels made with various G 1 derivatives are known,9–11,44,52,53,88–90 we 

decided to modify our previously reported guanosine-borate (GB) gels by exchanging 

B(OH)3, 
12–15,17 for a boronate species, BDBA 4.30,31 We envisioned we would be able 

to decrease the cgc of the gel due to a) the aforementioned change to ditopic BDBA 4, 

which has the more potential for more cross-linking interactions than B(OH)3, and b) 

adding additional multivalent cations to add another layer of cross-linking between G-

BDBA-G moieties (Figure 3.1).  

 
Figure 3.1: The proposed gelation reaction for BDBA-K and BDBA-Mg hydrogels of 

G 1.16
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3.3 Hydrogels from G-BDBA 

 We found that by using 50.0 mg of G 1 and 0.5 eq of BDBA 4 we were able to 

form G4-quartet based hydrogels with 1eq K+ or 0.5 eq Ba2+. We found that we could 

decrease the cgc of the K+ system by adding Mg2+ to a preformed BDBA-K gel (Figure 

3.2a). To compare the cgc of the BDBA-K and BDBA-Mg systems we made a series 

of gels of varying concentrations and used tip tests, in which a vial containing the 

hydrogel is inverted to visually see if the gel is self-standing, to determine the cgc for 

the two systems. We determined that the cgc of G 1 for the BDBA-K gel was ~36 mM 

(Figure 3.2b), while for the BDBA-Mg gel it was significantly lower at <5 mM 

(Figure 3.2c). These results indicate that Mg2+ is an effective cross-linker and 

significantly increases the water content of G4-quartet based hydrogel made from G 1 

and BDBA 4.  

 

Figure 3.2: a) Samples of hydrogels with 50.0 of mg G 1 in various amounts of water 

(indicated on vials). BDBA-K, 59 mM G 1 (left), BDBA-Ba, 18mM G 1 (middle) and 

4mM G 1, BDBA-Mg (right). b) BDBA-K gels of varying G 1 concentrations (from 

88 to 18 mM, as indicated on vials) made with G 1:BDBA 4:KOH = 1:0.5:1 c) BDBA-

Mg gels of varying concentrations of G 1 (from 88 to 5 mM, as indicated on vials), 

made by preforming a BDBA-K gel and diluting with H2O, then adding 5 mM Mg2+.16 
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We also attempted to cross-link the BDBA-K gel network using other 

multivalent cations (Figure 3.3); however none of these other cations worked as well 

as Mg2+. Thus, addition of Li+, guanidinium, and Fe3+ to preformed BDBA-K gel 

resulted in suspensions or viscous solutions. While Mn2+ yielded a brownish-black 

hydrogel, we determined this color would not be ideal for cell viability studies, so we 

decided to continue further experiments on only the BDBA-Mg gels. 

 

Figure 3.3: Vials containing G-BDBA and various cations; Li+, guanidinium (G), and 

Fe3+ result in solutions while Mn2+ and Mg2+ yield self-standing hydrogels.16 

 

3.3.1 NMR Spectroscopy Shows Evidence of G-Boronate Species 

To help support the proposed gelation mechanism for the BDBA-K and BDBA-

Mg hydrogels made from G 1 (Figure 3.1) we utilized NMR spectroscopy. The 1H 

NMR spectra in Figure 3.4 showed evidence of 3 distinct species (namely, G 1 

monomer, mono-substituted boronate ester – G-BDBA 34, and di-substituted boronate 

ester – G-BDBA-G 35) in the sol phase of all three gels (BDBA-K, BDBA-Ba and 

BDBA-Mg). Using diffusion-ordered spectroscopy (DOSY)91,92 we were able to assign 

the peaks of the BDBA-Mg gel to each of the three species based on their different 
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diffusion coefficients. The peak at δ = 5.70 ppm has the largest diffusion coefficient 

(2.377 x 10-10 m2 s-1) and therefore belongs to the smallest species, G 1 monomer. The 

next largest coefficient (1.766 x 10-10 m2 s-1) corresponds to the monoester G-BDBA 

34 at δ = 5.66 ppm. Finally, the peak at δ = 5.91 ppm has the smallest diffusion 

coefficient (1.698 x 10-10 m2 s-1), consistent with the largest species, di-substituted G-

BDBA-G 35.  

 

 

Figure 3.4: a) The H1ʹ region of the 1H NMR spectra of BDBA-Mg (top), BDBA-Ba 

(middle), and BDBA-K (bottom) gels at 25 °C in D2O show three peaks that correspond 

to different species of G 1 in solution. b) The diffusion coefficients of the three G 1 

species (G-monomer, mono-substituted G-BDBA 34, and di-substituted G-BDBA-G 

35) were determined for the H1ʹ peaks in a BDBA-Mg sample in D2O at 5 °C.16 
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3.3.2 PXRD and CD Spectroscopy Show Hydrogels are G4-Quartet Based 

Powder x-ray diffraction (PXRD) obtained from a lyophilized sample of a 

BDBA-K gel showed a peak at 2θ ~ 26.9° (d = 3.3Å), which is consistent with the π-π 

stacking distance between G4-quartet layers (Figure 3.5).60,93 

 

Figure 3.5: PXRD data of a lyophilized BDBA-K gel supporting the presence of 

stacked G4-quartet layers in the sample.16 

 

We used CD spectroscopy to further confirm the presence of stacked G4-

quartets, indicated by presence of bands in the 240-260 nm and/or 290-300 nm 

regions.73 All three gels exhibited distinctive CD spectra indicative of different G4-

stacking interactions or different populations of syn/anti-conformers about the 

glycosidic bond of G 1. The CD spectrum of BDBA-K showed an intense positive band 

at 300 nm with a broader negative band at 255 nm (Figure 3.6a). In BDBA-Ba, the 

oppositely signed negative–positive bands lower than 290 nm can be attributed to left-

handed helical stacking of G4-quartets (Figure 3.6b) indicating a different chiral 
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structure than that in BDBA-K. Finally, the spectrum of BDBA-Mg showed a small 

negative–positive band (240–260 nm), similar to BDBA-Ba, and a strong negative band 

at 290 nm, attributed to a unique G4-orientation induced by Mg2+ (Figure 3.6c). 

 

 

Figure 3.6: CD spectra for the BDBA-K, BDBA-Ba, and BDBA-Mg show peaks in 

the region characteristic of G4-quartets.16 
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3.3.3 Hydrogels Have Solid-Like Rheology with Strength Dependent on Cation 

 Rheological studies of the three gels showed that all have solid-like rheology 

(Figure 3.7) with a storage modulus (Gʹ) greater than the loss modulus (Gʹʹ).94 Both 

the BDBA-K and BDBA-Ba gels are stiffer than the BDBA-Mg gel, which contains a 

significantly lower concentration of G 1 than the other two gels. The important point is 

that, even at 5 mM G 1, BDBA-Mg has rheological characteristics of a hydrogel, with 

a constant Gʹ value that is greater than Gʹʹ over the entire strain range of 0.1–100%. 
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Figure 3.7: Rheological strain sweeps of the three gels show the storage modulus Gʹ 

(●) and the loss modulus Gʹʹ (○) in Pascals (Pa).16 
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3.3.4 Microscopy Shows Gels of Different Cations Have Unique Morphologies 

 Using atomic force microscopy (AFM) we found that each sample exhibits 

distinct morphologies on the microscale. BDBA-K has an organized wave-like 

structure with a unit size of ~1 mm (Figure 3.8a), while BDBA-Ba shows uniform 

fibrillar layers (Figure 3.8b). On the sub-mm scale, BDBA-K and BDBA-Ba hydrogels 

have similar structures (bottom Figure 3.8a and b). Importantly, the BDBA-Mg gel 

has a distinct morphology, with interconnected fibers up to several mm in length 

(Figure 3.8c). These AFM results, along with the tip-test, CD, and rheology data, 

highlight that Mg2+ serves as a bridging element between G4-quartet structures formed 

by G-BDBA-G 35. The width of the fibers suggests that 15–23 G-quartets, each having 

a diameter of  ~3 nm, may self-assemble via Mg2+ external cross-linking, to form an 

aggregated fibrillar structure of 50–70 nm. It is important to note that although Ba2+ 

and Mg2+ are both divalent cations, the morphologies of their respective hydrogels are 

very different: the absence of the fibers for BDBA-Ba in the AFM is consistent with 

Ba2+ not forming bridges, but instead stabilizing the H-bonded G4-quartets. A related 

cross-linking motif was reported for adenosine monophosphate hydrogels stabilized by 

selective synergetic interactions of Zn2+ with phosphate and adenine groups.95 
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Figure 3.8: AFM images of a) BDBA-K, b) BDBA-Ba, and c) BDBA-Mg hydrogels.16 

 

We also performed scanning electron microscopy (SEM) on a freeze-dried 

sample of a BDBA-K hydrogel, which showed a sponge-like microstructure with pore 

diameters between 5-8 μm (Figure 3.9). 

 

Figure 3.9: Representative SEM images of freeze-dried BDBA-K hydrogels.16 

 

3.4 Hydrogels are Capable of Supporting Cell Growth 

 Having characterized the hydrogels we next tested their potential applicability 

in tissue engineering. We performed cell growth and viability tests on the NDF (Normal 
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Human Dermal Fibroblasts)96 cell line using freshly-prepared BDBA-K (88 mM G 1), 

BDBA-Ba (20 mM G 1), and BDBA-Mg (18 mM G 1) hydrogels. The high pH values 

of the initial hydrogels were adjusted to near neutral by washing with TAE buffer: 

BDBA-K (pH = 9.5 to pH = 7.6), BDBA-Ba (pH = 8.8 to pH = 7.5), and BDBA-Mg 

(pH = 9.5 to pH = 7.4). The BDBA-K gel was stable under both buffered and 

unbuffered conditions. The BDBA-Ba gel became cloudy after buffer treatment and no 

cell growth was observed. Although the buffer-treated BDBA-Mg gel initially 

supported cell growth it was unstable under these experimental conditions, and started 

to degrade after 24 h and it was almost all destroyed after 48 h (Figure 3.10). 

 

Figure 3.10: NHDF cells on BDBA-Mg hydrogels treated with 3xTAE + KCl (155 

mM) visualized after 4 h (left) and 24 h (right).16 

 

Based on these findings, the cell growth experiments on buffered BDBA-K, and 

unbuffered BDBA-Ba and BDBA-Mg gels were monitored, with images taken, at 0, 4 

and 24 h of cell cultivation (Figure 3.11).  
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Figure 3.11: NHDF cells on a) BDBA-K gel washed w/ 3xTAE/Mg2+ buffer, b) 

BDBA-Ba gel (no buffer), and c) BDBA-Mg gel (no buffer); at different time points.16  

 

As shown in Figure 3.11a, after 4 h, the cells had begun to attach to the BDBA-

K surface, changing from a spherical to an ellipsoidal shape, with a clear improvement 

in cell density after 24 h. The most spectacular results were obtained with BDBA-Ba 

and BDBA-Mg hydrogels that were not treated with TAE buffer. As seen in Figure 

3.11b, the cells adhered to the surface of the unbuffered BDBA-Ba hydrogel, forming 

a network of linked cells after 24 h. Similarly, untreated BDBA-Mg hydrogels showed 



 

 

 

57 

 

excellent properties as cell growth supports, with a dense network of connected cells, 

and the gel platform did not present any signs of degradation over 24 h (Figure 3.11c).  

Cell viability on the hydrogels was evaluated using a colorimetric MTS cell 

proliferation assay and was calculated as a percentage relative to the viability of 

untreated cells supported by the culture medium.97 Our experiments showed that the 

cell viability after 24 h was 42% for BDBA-K and 47% for BDBA-Ba, but was 

significantly greater at 73% for the less dense gel network resulting from the lower 

concentration of G 1 in the BDBA-Mg hydrogel (Figure 3.12). In our cytotoxicity 

experiments we have used the ISO 10993-5 standard, which recommends a quantitative 

evaluation of the cytotoxicity of a material after 24-72 h using a colorimetric method. 

The material tested is considered non-cytotoxic if the viable cells is greater than or 

equal to 70% of the untested control, as our results show for the BDBA-Mg hydrogel.98 

  

Figure 3.12: Cell viability by MTS assay on the three different hydrogels. The 

reference sample is considered 100% for cell viability on culture medium.16 
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3.5 Conclusions 

We have designed and prepared G4-quartet hydrogels readily made from the 

natural product G 1, BDBA 4, and various templating and bridging cations. These gels 

show interesting cation-dependent physical and functional properties. Tip tests, NMR, 

CD, and microscopy data show that the structure of the supramolecular hydrogels are 

governed by the identity of the cations used for internal stabilization of G-quartets (K+ 

or Ba2+) as well as by external cross-linking of anionic boronates by Mg2+. The 

composition of each hydrogel determines the cgc of G 1, with the Mg2+crosslinked 

hydrogel requiring a cgc over 7 times lower than a non-externally crosslinked gel, such 

as BDBA-K. This decreased cgc makes these hydrogels perfect candidates for cell 

growth applications. Our initial findings using the NHDF cell line demonstrate that 

these G4-quartet hydrogels can support significant cell growth on their surfaces.  

 

3.6 Future Work 

Future work on this system will include screening other formulations of the gel 

system (varying pH, ionic strength, and buffers) to find optimal conditions for growing 

cells on these easy to make and biocompatible G4-quartet hydrogels.  

In addition, we plan to test other boron-containing compounds to see how they 

affect gelation. Some possible options include, altering the position of the boron in 

benzene-diboronic acid, and altering the carbon linker size, such as with biphenyl-

diboronic acids. 
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Chapter 4: 8-Aminoguanosine/Guanosine Binary Gels in Environmental 

Remediation – Selective Uptake of Anionic Dyes from Water 

 

The majority of this chapter has been published in reference 17: 

Plank, T.N.; Skala, L.P.; Davis, J.T. Supramolecular Hydrogels for Environmental 

Remediation: G4-quartet Gels that Selectively Absorb Anionic Dyes from Water Chem 

Commun. 2016, 53, 6235-6238. 

 

Some of the preliminary work for the experiments described in this chapter was 

performed by Luke P. Skala, who, at the time, was an undergraduate researcher in the 

Davis lab. ICP-MS data was collected by Dr. Richard Ash of the UMD Geology 

department. SEM images were obtained by Dr. Wen-An Chiou at the Maryland 

NanoCenter. 

 

4.1 Summary 

This chapter highlights how changing the salt with which guanosine (G 1) based 

gels are formed can tailor gels for various properties. As previous research in our lab 

showed, the guanosine-borate (GB) gels made with G 1 and alkali metal borate salts 

are capable of absorbing and retaining cationic dyes from water, presumably due to 

electrostatic interactions with the anionic borate esters within the gel network.12–14 We 

sought to find a system capable of forming gels with and without borate salts to give 

us the ability to selectively uptake either cationic or anionic dyes. 

We discovered that binary gels made of 8-amingoguanosine (8AmG 5) and 

guanosine (G 1) are capable of forming stable, transparent gels with KB(OH)4, as well 

as with nitrate or chloride salts. Using nitrate or chloride salts allowed to us to expand 

the scope of cations used in gelation to include the divalent Ba2+, Sr2+, and Pb2+ cations. 

We found that altering the salts with which the gels are made changes the ability of the 

hydrogel to absorb cationic (with B(OH)4
- salts) or anionic (with Cl- or NO3

- salts) dyes.  
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4.2 Introduction 

Guanosine hydrogels, known since 1910,5 are undergoing a resurgence because 

of their biocompatibility and many potential applications.2,9–11,49,51,55 As described in 

more detail in the introduction to this thesis, we recently developed a hydrogel formed 

by guanosine (G 1) and 0.5 eq of MB(OH)4, where M is an alkali metal cation.12–15 This 

guanosine-borate (GB) hydrogel is based on anionic GB-diesters that self-assemble 

into G4-quartets. The gel’s rheological properties are sensitive to the templating cation, 

with K+ giving the strongest gels.13,14 The GB hydrogel, with its anionic borates, 

selectively extracts cationic (vs. anionic) dyes from solution.12,14  

We sought to develop a G4-hydrogel to absorb anionic dyes, many of which are 

wastewater pollutants (Figure 4.1).99,100 The GB gels do not bind anionic dyes well, 

likely due to electrostatic repulsion of the dye with the anionic borate esters. In order 

to uptake anionic dyes we needed to eliminate the borate esters, from the gel system. 

To develop a stable G4-hydrogel without borate, which forms GB esters so as to better 

solubilize G 1 and allows for greater crosslinking of the gel fibers, we took a two-

pronged approach. First, we sought to form G4-M
2+ hydrogels with divalent cations, 

reasoning that the higher charge density of M2+, relative to M+, should enhance 

electrostatic binding of anions. There are examples of lipophilic guanosines forming 

very stable G4-quartets with divalent cations (Ba2+, Sr2+ and Pb2+) in organic 

solutions,101,102 and G4-DNA is known to bind divalent cations in water.103,104 

Surprisingly, at the time we discovered this hydrogel, there was just one reference, with 

no experimental detail, to a G4-hydrogel containing divalent cations.41 Second, we 
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searched for a binary system composed of two analogs that would form these G4-M
2+ 

hydrogels. Several binary systems are known to form stable G4-K
+ hydrogels, and it is 

postulated that the binary mixtures add disorder that prevents crystallization of 

hydrophobic G 1, thus promoting gelation.9,10,49,51  

 

Figure 4..1: Binary 1:1 mixtures of G 1 and 8AmG 5 with alkali/alkaline earth salts 

(K+ and Ba2+) give G4-quartet structures that lead to formation of stiff, stable, and 

transparent hydrogels. The 8AmG/G-BaCl2 hydrogel can selectively extract anionic 

dyes from solution into the gel phase.17 

 

 In searching for binary G4-hydrogels we focused on C8-substituted G 

derivatives, since that modification does not block G4-quartet formation which is 

essential for hydrogelation. We chose to explore 8-aminoguanosine (8AmG 5) as a 

gelation partner for G 1, since 8AmG 5 forms G4-quartets in DNA.105 In addition, poly-

8AmG’s pKa is 9.4,106–108 suggesting that a significant amount of 8AmG 5 would be 

protonated in a G4-hydrogel (Figure 4.2). Having a cationic gel network would further 

enhance electrostatic binding of anionic dyes by a G4-M
2+ gel. 
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Figure 4.2: The potential protonation of the N7 position and subsequent resonance 

stabilization possible with 8AmG 5.17 

 

4.3 Binary Mixtures of 8AmG 5 and G 1 Form Stable Hydrogels 

 We found that 1:1 mixtures of G 1 and 8AmG 5 form strong, stable, and 

transparent G4-hydrogels when treated with stoichiometric amounts of either K+ or 

Ba2+. These binary G4-hydrogels show potential for use in environmental 

remediation,109 as both the 8AmG/G-K+ and 8AmG/G-Ba2+ hydrogels selectively bind 

anionic dyes, including naphthol blue black (NBB 36), a diazo dye used in the textile 

industry and a major pollutant.99 Most remarkably, we also show that the 8AmG/G-

Ba2+ gel outcompetes the 8AmG/G-K+ hydrogel for binding the anionic NBB 36.  

G 1 and 8AmG 5 alone do not form hydrogels with any alkali or alkaline earth 

salts that we tested. However, a 1:1 mixture of G 1 and 8AmG 2 form a transparent 

hydrogel in the presence of KNO3 (Figure 4.3a). Using 1H NMR spectroscopy we 

found that the solution phase of an 8AmG/G-K+ sample contained an excess of G 1 (12 

mM) relative to 8AmG 2 (7 mM), indicating a modest preference for 8AmG 5 (28 mM) 

to be incorporated into the gel over G 1 (23 mM). With 2 eq of KNO3 (relative to 

nucleoside) this binary mixture had a critical gelation concentration (cgc) of ~18 mM.  
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Figure 4.3: A) Mixtures of 2 wt% (70 mM) of G species with 2 eq of KNO3 that were 

heated to 95 °C and cooled at 20 °C for 1 hr. Only the 1:1 binary mixture of G 1/8AmG 

5 forms a hydrogel. B) Binary 1:1 8AmG 5/G 1 hydrogels formed with 2 eq of 

Ba(NO3)2 or Pb(NO3)2. C) An SEM image of an 8AmG 5/G 1 gel (2wt%, 70 mM), 

made with 2 eq of Pb(NO3)2, shows a fibrous intertwined gel network.17 

 

 

4.3.1 Hydrogels are G4-Quartet Based 

Both circular dichroism (CD) spectroscopy and powder X-ray diffraction 

(PXRD) indicate this binary gel contains G4-quartets (Figure 4.4). The dominant 

feature of the CD spectra was the exciton couplet centered near 260 nm, diagnostic of 

stacked G4-quartets that are rotated with respect to one another, in either a classic G-

quartet structure or in a helical structure.110,111 PXRD data on a dried 8AmG/G-K+ gel 

shows peaks corresponding to ~20 Å, a value that is close to the diameter of a G4-

quartet, and ~3.3 Å, which is the π-π stacking distance between G4-quartets.112  
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Figure 4.4 : CD Spectra (A and B) of the gels show signature peaks for G4-assemblies. 

Representative PXRD data (C and D) show peaks corresponding to the diameter of a 

G4-quartet (~20 Å) and the π-π stacking distance between layers (~3.3 Å).17 

 

4.3.2 8AmG/G Hydrogels Form with Divalent Cations  

In addition to forming transparent gels with K+, we found that the 1:1 mixture of 

G 1 and 8AmG 5 (2 wt%, 70 mM) also formed clear hydrogels with 2 eq of Ba2+ 

(Figure 4.3b), Sr2+ or Pb2+. This ability to form hydrogels with divalent cations seems 

unique to the 8AmG/G system, as other 1:1 binary mixtures known to gel with K+, 

namely triacetylG 20/G 1,10,51 5ʹ-GMP 19/G 1,9 and 8-BrG 6/G 1,11 did not form 

hydrogels when we mixed them with Ba2+ or Pb2+ (Figure 4.5). Only the 1:1 8AmG 

5/G 1 binary mixture led to transparent, self-standing gels when treated with Ba(NO3)2 
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or Pb(NO3)2. This is, to our knowledge, the first detailed report of a guanosine hydrogel 

containing divalent cations.  

 

Figure 4.5: While the gels in A, B, and C have been previously reported to form gels 

with K+ salts, they do not gel with Pb2+ or Ba2+, only 8AmG (D) gels with all 3 cations.17 

 

Scanning electron microscopy (SEM) of a 1:1 8AmG/G gel (with 2 eq of 

Pb(NO3)2) showed a dense fibrous network (Figure 4.3c). The entangled fibers, which 

are a few microns in diameter and hundreds of microns long, appear to be formed of 

bundles of strands (presumably G4-nanowires) wrapping around one another in a 

helical fashion.  
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4.3.3 Less M2+ is Required for Gel Formation Compared to M+ 

 To investigate differences between the 1:1 8AmG/G gels containing K+ and 

Ba2+ we first determined how many equivalents of the corresponding nitrate salts were 

needed to induce hydrogelation at 2 wt% of total nucleoside (70 mM for this system). 

The solution became viscous and eventually formed a cloudy, self-standing gel (Figure 

4.6) with 0.25 eq of added KNO3, a stoichiometry that corresponds to 1 K+ cation per 

G4-quartet. The same 1:1 8AmG/G mixture is completely transparent and begins to gel 

at just 0.125 eq of added Ba(NO3)2, which corresponds to1 cation per G8-octamer. Most 

notably all of the nucleoside is dissolved at just 0.125 eq of Ba2+ whereas with 0.125 

eq of K+ there is a large amount of solid precipitate (Figure 4.6). The 1:4 ratio for K+ 

and 1:8 stoichiometry for Ba2+ is further evidence that G4-quartets are the basis for 

hydrogelation of the binary 8AmG/G mixture, since X-ray crystal structures of G-

quadruplexes made from lipophilic G nucleosides show K+ cations bound between 

every G4-quartet,112 whereas divalent cations (Ba2+ or Pb2+) are located between every 

other G4-quartet in those same structures.101,102  
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Figure 4.6: Top) A 1:1 binary mixture of G/8AmG begins to form transparent viscous 

solutions with 0.125 eq of Ba(NO3)2, which is 1 Ba2+ per 8 nucleosides, as depicted 

schematically. Bottom) The same mixture begins to form a self-standing gel at 0.25 eq 

of added KNO3, corresponding to 1 cation per 4 nucleosides.17 

 

4.3.4 Gel Strength Varies Depending on Cation and Salt 

 Rheology also showed that the properties of the binary 8AmG/G gels differ as 

a function of the cation. Hydrogels exhibit solid-like rheology, where the storage 

modulus (G') of the material is larger than its loss modulus (G'').21 We compared the 

rheological properties of the 8AmG/G-K+ and 8AmG/GBa2+ hydrogels. Dynamic 

frequency sweeps indicated that both the K+ and Ba2+ hydrogels (2 wt% nucleoside, 2 

eq cation) had an elastic response independent of frequency from 100 to 0.1 rad/s 

(Figure 4.7). Furthermore, the Ba2+ hydrogel, with a storage modulus (G') of ~5700 Pa, 

was stiffer than the K+ hydrogel (G' ~3000 Pa), indicating that 8AmG/G hydrogels 

containing Ba2+ are stronger than those with K+. 
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Figure 4.7: Frequency sweeps of 8AmG/G hydrogels (70 mM) with 2 eq of Ba(NO3)2 

(green) or KNO3 (blue). The 8AmG/G-Ba(NO3)2 gel has a Gʹ of ~5700 Pa compared 

to ~3000 Pa for the 8AmG/G-KNO3 gel, indicating the divalent gel is stronger.17 

 

Further rheology studies showed that increasing the amount of salt relative to G 

species in the hydrogels increased the stiffness (as measured by Gʹ) of the gels. In 

general Ba2+ gels were the strongest, followed by K+. The Pb2+ gels were much weaker, 

regardless of their salt content. (Figure 4.8). 
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Figure 4.8: Strain sweeps of 2 wt% (70 mM) 8AmG/G gels with varying eqs of salt 

show that Ba2+ (green) gels are strongest, followed by K+ (blue), and Pb2+ (orange) 

gels, which are much weaker. Adding more salt results in stronger hydrogels.17 

 

4.4 Dye Uptake Based on Electrostatic Interactions 

We previously established that GB hydrogels made from G 1 and KB(OH)4 

preferentially bind cationic (vs. anionic) dyes, presumably due to electrostatic 

interactions between the negatively charged borate esters and the cationic dyes.12 

Creating G4-based hydrogels that could be readily altered to absorb cationic or anionic 

dyes by simply changing the salt used to make the gels, would provide an easy and 

versatile method for removal of pollutant dyes regardless of their charge. The binary 
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8AmG/G system is well suited for this task, as it is possible to make binary hydrogels 

with KB(OH)4, and with chloride salts.  

To study dye uptake by the binary 8AmG/G system we compared 3 aromatic 

compounds: naphthol blue black (NBB 36), rose bengal (RB 21), and safranin O (SO 

37). NBB 36, an anionic diazo dye widely used in the textile industry, and a major 

wastewater pollutant, was specifically chosen to highlight the potential of this binary 

gel for environmental remediation.99,100 RB 21, an anionic dye, has previously been 

shown by the Dash group to bind to binary hydrogels made from G 1 and 8BrG 5.11  

Finally, SO 36 is a cationic dye that we previously found binds to GB hydrogels made 

from G 1.14 Like the GB gels we find that the binary 8AmG/G gels are stable in salt 

water. This remarkable stability for a supramolecular hydrogel allows us to carry out 

dye uptake experiments with the binary 8AmG/G gels. Thus, we separately suspended 

a 0.5 mL cube of each type of binary 8AmG/G gel (i.e. ones made using 0.5 eq of 

KB(OH)4 or 2.0 eq of either KCl or BaCl2) in 3 mL of a solution of 155 mM KCl that 

had a 12.5 μM concentration of dye. The outside solution was monitored over time 

using UV-Vis spectroscopy, which allowed us to quantify how much dye had been 

absorbed from solution into the hydrogel network.  

4.4.1 Quantitative Dye Uptake Studies 

As expected from electrostatic considerations and analogy to the GB gel, the 

8AmG/G-KB(OH)4 gel absorbed significantly more cationic dye, SO 37 (61%) than 

either of the anionic dyes NBB 36 and RB 21 (22% and 4%, respectively) (Figure 4.9).  



 

 

 

71 

 

 

Figure 4.9: Top) the structures of the three dyes used. Bottom) This graph shows the 

percentage of the dyes each of the three 70 mM 8AmG/G gels absorbed after being 

suspended in a 155 mM KCl/12.5 μM dye solution for 24 hours.17 

 

Although the 8AmG/G-KCl gel showed moderate to low uptake of each of the 

three dyes, these gels absorbed more of the anionic dyes (RB 21 - 58% and NBB 36 - 

37%) than the cationic SO 37 (22%). Most importantly, the 8AmG/G-BaCl2 gels 

showed both excellent efficiency and selectivity for the anionic dyes, NBB 36 and RB 

21 (89% and 75%, respectively) as compared to extracting just 15% of SO 37. Clearly 

the 8AmG/G-BaCl2 gel, with its divalent cations is the best supramolecular hydrogel 

for uptake of the anionic dyes we tested.  

In order to investigate how much anionic dye the gels would absorb, we soaked 

each of the gel cubes in a vial with 100 μM NBB 36 and monitored the uptake over one 

week (Figure 4.10). We found that after 3 days the dye uptake leveled off, with the 

8AmG/G-BaCl2 gel absorbing ~80% of the NBB 36, the 8AmG/G-KCl gel absorbing 

~55%, and the 8AmG/G-KB(OH)4 gel absorbing just ~17% of the NBB 36. 
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Figure 4.10 : Gels soaking in 100 μM NBB solution for 24 hours (top) absorb different 

amounts of NBB depending on the salt they are made with. BaCl2 gels absorb ~80% of 

the dye after one week whereas KB(OH)4 gels absorb less than 20%.17 

 

4.4.2 Qualitative Dye Uptake Studies 

 To further probe the differences between the KCl and BaCl2 gels we performed 

several qualitative dye competition experiments in which cubes of 2 different gels were 

suspended in a single vial containing 12.5 μM of NBB 36 dissolved in 155 mM KCl 

solution. When 8AmG/G-BaCl2 and 8AmG/G-KCl gels were placed in the same vial 

the NBB 36 was clearly concentrated in the 8AmG/G-BaCl2 gel after 24 hours (Figure 

4.11).  We attribute this difference in affinity to the stronger electrostatic interactions 

between the anionic dye and the gel that contains the divalent Ba2+ cation. That the 
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8AmG/G-BaCl2 gel and 8AmG/G-KCl gel demonstrate different affinities for NBB, 

even when suspended in the same vial for 24 hours, indicates that the Ba2+ cation is 

kinetically stable within the G4-assemblies that make up the gel fibers. It is impressive 

that the Ba2+ cations in the hydrogel would not exchange with the 155 mM K+ that is in 

the outside solution. This may be due to preferential binding of the G4-structures to 

Ba2+ over K+ and may help explain why the Ba2+ gels are stronger than the K+ gels.  

 

Figure 4.11: Qualitative dye uptake experiments show 8AmG/G-KCl vs 8AmG/G-

BaCl2 gels after soaking in 12.5μM NBB 3 for 24 hours. While 8AmG/G-KCl gels will 

absorb NBB 36 from solution, 8AmG/G-the BaCl2 gels absorbs the dye much faster.17 

 

To further explore the qualitative differences between the 8AmG/G-BaCl2 and 

8AmG/G-KCl gels we prepared a cube of 8AmG/G-KCl gel with NBB 36 and placed 

it in a vial with 8AmG/G-BaCl2 without dye. Over the course of two weeks the dye 

leached from the 8AmG/G-KCl gel into the 8AmG/G-BaCl2 gel cube (Figure 4.12). 
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Figure 4.12: This qualitative dye experiment shows how a KCl gel loaded with 25 μM 

NBB 36 will release the dye into solution. The NBB 36 will then be absorbed by a 

BaCl2 gel in the same vial over the course of 2 weeks.17 

 

While the 8AmG/G-KCl gel clearly has a lower affinity for NBB 36 than 

8AmG/G-BaCl2, it will absorb the anionic dye more readily than the negatively charged 

8AmG/G-KB(OH)4 gel (Figure 4.13). 

 

 

Figure 4.13: Qualitative dye uptake experiments show 8AmG/G-KCl vs 8AmG/G-

KB(OH)4 gels after soaking in 12.5 μM NBB 36 for 24 hours. The 8AmG/G-KCl gel 

absorbs the anionic NBB 36 much more than the 8AmG/G-KB(OH)4 gel, likely due to 

the repulsion between the dye and the anionic borate esters. 
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4.5 Conclusions 

 We have shown that binary mixtures of 8AmG/G are able to form strong, stable, 

and transparent hydrogels in the presence of KB(OH)4 or K+, Ba2+, Sr2+, and Pb2+ nitrate 

or chloride salts. This is notable as they are the first well studied example of a G 1 

based hydrogel formed with divalent cations. These gels are capable of selectively 

removing both cationic and anionic dyes from aqueous solution. This charge selectively 

can be altered by changing the salt the gels are formed with.  

4.6 Other Results – Uptake of Pb2+ 

The ability to make G4-hydrogels with divalent cations is reminiscent of 

previous work in our lab that showed G4-quadruplexes could favor Pb2+ over K+.102 If 

this were true for our 8AmG/G hydrogels, we envisioned using K+ gels to remove Pb2+ 

from waste water. We theorized that if Pb2+ binding to G4-quartets was favored, we 

would be able to soak a K+ gel in a Pb2+ solution and the K+ would exchange for Pb2+. 

To test this theory, we probed the ability of the binary gels to remove Pb2+ from water 

by soaking an 8AmG/G-KNO3 gel in a Pb2+ containing solution (Figure 4.14).  
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Figure 4.14: The experimental setup for Pb2+ uptake is shown above. A gel is 

suspended in KNO3/Pb(NO3)2 solution. The outside solution is monitored over time by 

taking aliquots from the solution. 207Pb NMR is performed with a Pb2+ internal standard 

contained within a capillary tube. After 3 days the outside solution is removed and the 

gel is rinsed with KNO3. The gel is then dissolved with HNO3 and the liquefied gel 

sample is analyzed with 207Pb NMR following the same procedure. 

 

 

We made a 3 mL solution that was 35 mM in Pb(NO3)2 and 120 mM in KNO3 

(previous research in our group showed that GB gels are stable in salt solutions of 155 

mM K+).12 A 0.5 mL cube of an 8AmG/G gel with 2 eq of KNO3 was then placed in 

the solution. The outside solution was monitored over time using 207Pb NMR with a 

Pb(NO3)2/EuCl3 internal standard enclosed within a capillary tube to monitor the 

concentration of Pb2+. After 72 hours the Pb2+ in the outside solution could no longer 

be measured via NMR (Figure 4.15). We then disassembled the gel by adding 10 μL 

of concentrated HNO3. After examining the liquefied gel via 207Pb NMR, it was evident 

that the gel sample had absorbed Pb2+.  
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Figure 4.15: The 207Pb NMR spectra show peaks from the outside solution and the Pb2+ 

internal standard contained within a capillary tube. After 72hrs the peak from the Pb2+ 

in solution has disappeared. After liquefying the gel sample with HNO3, we can see the 

Pb2+ had been absorbed by the hydrogel cube. 

 

Next, we turned to ICP-MS to quantify the amount of Pb2+ absorbed by the gel. 

Using the same experimental setup utilized for the NMR experiment (Figure 4.14), we 

found that ~3.1 mg of Pb2+ was absorbed after 72 hours (Figure 4.16). This corresponds 

to 304 mg of pollutant/gram of gelator, which is a moderate amount compared to other 

supramolecular hydrogels used for environmental remediation of Pb2+.109  
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Figure 4.16: The illustration on the left shows (a) a depiction of the 8AmG/G hydrogel 

network made with K+, (b) after soaking in K+/Pb2+ solution some of the K+ is replaced 

by Pb2+, (c) the gel network dissociates with acid addition. Right) ICP-MS data shows 

that the amount of Pb2+ in solution decreases over time as it is absorbed by the gel. 

 

 

4.7 Future Directions 

While we have shown that the 8AmG/G hydrogels are capable of absorbing either 

anionic or cationic dyes from water based on the salt used to template their formation, 

the structure of the gel network is not entirely clear. CD and PXRD data shows G4-

assemblies, but further work using solid-state NMR could be useful in elucidating a 

more complete picture of the fiber networks in the different gels. 

In addition, more complete studies of the uptake of toxic metal cations (Pb2+ and 

others) by the hydrogels could be done. This would include finding the maximum 

uptake capacity for gels made with different cations and different amounts of salt, as 

well as different concentrations of nucleoside.  
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Chapter 5: Utilizing Binary Mixtures of 8-Substituted Guanosine Derivatives with 

Guanosine for Room Temperature Hydrogelation 

5.1 Summary 

Work in this chapter highlights how templating the formation of G4-quartets can 

promote hydrogelation at room temperature. Continuing experiments on 8-substituted 

G-derivatives we found that 8-bromoguanosine (8BrG 6) in binary mixtures with G 1, 

will form hydrogels in the presence of KB(OH)4 without heat. 

Further investigation into this unusual property lead us to discover that other 8-

substituted derivatives, 8-iodoguanosine (8IG 7) and 8-morpholinoguanosine 

(8morphG 8) also form room temperature binary gels with G 1 and KB(OH)4. All of 

these derivatives have a high preference for the syn conformation over the anti 

conformation about the glycosidic bond. This preference for the syn conformation can 

template G4-quartet formation, which promotes gelation since G4-quartets are the basis 

of the hydrogel network. We studied the differences in physical properties between 

hydrogels formed at room temperature versus those made via the traditional heating 

method. The role of the solubility of the G-derivative is also discussed. 

5.2 Introduction 

The use of supramolecular hydrogels for a variety of applications has seen a 

dramatic increase in recent years.8,31,113 Of particular interest for our group are 

guanosine based hydrogels.2,3 As discussed in the introduction and Chapters 2-4 of 

this thesis, we have previously reported on guanosine-borate (GB) based hydrogels in 

which G 1 (or a G-derivative) is heated with an aqueous solution of KB(OH)4 and forms 
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a self-standing hydrogel upon cooling.12–17 These gels have been applied to many fields 

of chemistry from drug delivery and cell growth to sensing and environmental 

remediation.15,17,53,55,57,86 However, the ability to form gels at room temperature (RT) 

would potentially enable the GB hydrogels to be used for more applications that have 

yet to be explored with these systems. 

This expanded scope of applications would include the encapsulation of enzymes 

or temperature sensitive drugs that would be destroyed in the heating process 

traditionally required for G-based hydrogels. This encapsulation could help improve 

the stability of reactive enzymes and drugs.114,115 In addition, gels that form at room 

temperature can be used for environmental remediation by gelling in situ upon contact 

with a gelating trigger. There are several examples of gels used to gel oil or petrol with 

implications for environmental remediation.116,117 

 While there have been several reports of room temperature organo-

gelators,118,119 as well as peptides,38,120 and a few other systems that form gels at room 

temperature,121 to the best of our knowledge there have not been any reports of G 1 or 

its analogs capable of forming gels at room temperature. Guanosine derivatives have 

the advantages of being commercially available at low costs and/or being relatively 

easy to synthesize. In addition guanosine based hydrogels have already shown promise 

in both drug encapsulation and delivery,15,55,56 and environmental remediation.17 

5.3 Binary Hydrogel Formation with 8-Bromoguanosine and Guanosine 

We found that when mixed with 0.5 eq of B(OH)3 and 0.5 eq of KOH, binary 

mixtures of 8BrG 6 and G 1 (64 mM, 2 wt % total nucleoside) form hydrogels within 
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minutes. These gels are initially opaque, but become transparent within ~20 minutes. 

These RT hydrogels are distinct from their heated counterparts (gels made by heating 

the mixtures to ~95°C until clear that undergo gelation upon cooling) as shown in 

Figure 5.1. With no heating 100% G 1 does not form a gel, but adding as little as 1% 

of BrG 6 results in a self-standing hydrogel. Hydrogels with 40% - 90% BrG 6 form 

stable, transparent hydrogels at RT. Interestingly heated gels with 70% BrG 6 or more 

are white, and heated mixtures with more than 90% BrG 6 do not gel. 

 

 
Figure 5.1: Images of 64 mM, 2 wt% BrG 6/G 1 hydrogels with 0.5 eq of KB(OH)4 

with different ratios of G 1:8BrG 6. A) Shows room temperature samples after 1 hour. 

B) Shows heated samples after 1 hour. 

 

 

  

 To further investigate the differences between the heated gel samples and the 

unique room temperature gels we performed a series of experiments including, CD 

spectroscopy, PXRD, 1H NMR, and stability studies. 
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5.3.1 Hydrogels are G4-Quartet Based and Contain Borate Esters 

First, the 1H NMR spectra of both heated and RT gels showed evidence of 

borate ester species for both 8BrG 6 and G 1 in the H1ʹ region. In addition, the solution 

phase of both gels looks nearly identical, with some small differences in the ratios of 

the species in the solution. Further experiments are needed to determine if there are 

differences in the concentration of nucleoside in the gel phase versus the sol phase for 

the RT and heated gels. 

 

Figure 5.2: The H1ʹ region of the 1H NMR spectra of 1:1 8BrG 6:G 1 (64 mM, 2 wt%, 

0.5 eq of KB(OH)4) in D2O top) RT gel, bottom) heated gel. 

 

CD spectroscopy shows that both of the gel systems are G4-quartet based. Both 

the RT and heated samples (1:1 BrG 6:G 1, 64 mM, 2 wt% nucleoside, 0.5 eq of 

KB(OH)4) showed the characteristic peaks and troughs between 200 – 320 nm arising 

from G4-quartet assemblies.110 Both gave the same pattern in the CD spectra, however 

the signal from the RT gel had a higher amplitude than its heated counterpart (Figure 

5.2). This could mean that there are more G4-quartets in the RT sample. 
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Figure 5.3: Top) G4-quartets composed of 8BrG 6 and G 1 self-assemble into G4-fibers 

to form a hydrogel. Bottom) The CD spectra of RT and heated gels (1:1 8BrG 6:G 1 - 

64 mM, 2 wt%, 0.5 eq of KB(OH)4) shows evidence for G4-quartets. 

 

 PXRD data (Figure 5.4) for both RT and heated 8BrG 6/G1 hydrogels showed 

evidence for G4-quartets. The data show peaks corresponding to distances of ~3.3 Å 

and ~21.9 Å, which are the distances between layers in a G4-quartet, and the diameter 

of G4-quartet, respectively. 
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Figure 5.4: PXRD data for lyophilized hydrogels made from 8BrG/G show evidence 

of G4-quartets in both heated and RT gel samples. 

 

 After determining that the structural basis for both the RT and heated gel 

networks were GB-esters and G4-quartets we next sought to explore the stabilities of 

both of these systems to see if there were any differences. 

5.3.2 Both the RT and Heated Hydrogels are Stable and Robust 

Using rheological strain sweeps we quantified the strength differences between 

A) RT and B) heated gels made of either 50% BrG 6/50% G 1, 100% BrG 6, or 100% 

G 1 (64 mM, 2 wt% with 0.5 eq of KB(OH)4, tests were run after gels sat at RT 

overnight). As shown in the Figure 5.5, the binary mixture is critical in forming stable 

gels at RT as the 50/50 mix with a Gʹ ~3100Pa, is nearly 300 times stronger than either 

G 1 or BrG 6 alone. For the heated gels the binary mixture is the strongest, closely 

followed by the G 1 hydrogel. The BrG 6 gel is very weak. 
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Figure 5.5: Rheological strain sweeps of BrG/G hydrogels and G hydrogels - A) RT 

samples and B) heated samples. 

 

Since previous work in our lab showed that G 1, KB(OH)4 gels were stable in 

water with 155 mM K+,12–14,17 we tested both heated and RT gels to see how much 

nucleoside leached from the gel network. This experiment allows to see if there is a 

difference in the stability of the gel networks in water for the two gels. In three separate 

vials we placed 0.5 mL gel cubes (for 8BrG 6/G 1 binary gels - 64 mM, 2 wt%, 0.5 eq 

of KB(OH)4, for G 1 gel – 72 mM, 2 wt%, 0.5eq KB(OH)4). We found that there was 

no appreciable difference between the RT and heated binary gels or the heated G 1 gel 

used as a control, with all samples releasing less than 3 % of the nucleoside from their 

gel network (Figure 5.6). This indicates that the RT and heated gels are equally stable. 
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Figure 5.6: The graph shows the release of nucleoside from the hydrogel networks of 

a heated G 1 gel (gray), a heated 8BrG 6/G 1 gel (orange), and a RT 8BrG 6/G 1 gel 

(blue) into 3 mL of water with 155 mM of KB(OH)4. 

 

 Having examined some of the physical properties of the RT and heated gel 

systems we sought to explore why 8BrG 6 has the unique ability to form room 

temperature gels with G 1.  

5.4 Room Temperature Gelation and Correlation with the Syn/Anti Glycosidic 

Bond Preference and Gelator Solubility 

 

We hypothesize that this unique room temperature gelating ability arises due to 

the preference of 8BrG 6 for the syn conformation about the glycosidic bond. While G 

1 favors the anti conformation over the syn (60% to 40%), 8BrG 6 is reported to exist 

mostly in the syn conformation (90%).68,122 Both syn and anti conformations allow for 

the formation of G4-quartets. However, in the anti conformation the N2 and N3 

positions (pink in Figure 5.7) can form intermolecular H-bonds to form G-ribbons, in 
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the syn conformation these positions are blocked by the sugar. This blocking could 

allow for faster formation of G4-quartets (the building blocks of the hydrogels) and thus 

catalyze gelation at RT. 

 

Figure 5.7: There is an equilibrium between the syn and anti conformations of the 

nucleobase and ribose about the glycosidic bond of G 1. These conformation lead to 

different possible assemblies of the G-units 
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5.4.1 Syn/Anti Glycosidic Bond Conformation and RT Gelation 

Based on this hypothesis we synthesized binary hydrogels (1:1 G-derivative:G 

1, 2 wt% nucleoside, 0.5eq KB(OH)4) from various G-derivatives with different 

syn/anti ratios (the syn/anti ratios were determined based on literature precedent and/or 

the 1H NMR shifts).49,68  Preliminary results on these derivatives show that of those 

tested only 8BrG 6, 8-iodoguanosine (8IG 7), and 8-morpholinoguanosine (8morphG 

8) formed mostly transparent hydrogels with G 1 after 2 hrs at RT. Interestingly, while 

both 8BrG 6 and 8IG 7 begin to form gels within 1 minute of mixing, 8morphG 8 takes 

significantly longer, at least 2 hours, to form a gel. 5ʹ-GMP 19 did not gel with G 1. 

Both 8AmG 5 and 5ʹ-IG 2 formed white gels with G 1 that had undissolved solid (the 

5ʹ-IG 2 gel was also very weak). 8BrG 6 and 8IG 7 both have ~90% preference for the 

syn conformation whereas 5ʹ-GMP 19 and 8AmG 5 are only ~30% and 40% syn, 

respectively.6 While 5ʹIG 2 has a slight preference for the syn conformation (~65%) it 

is very hydrophobic, which could be preventing gelation at RT. 

 

Figure 5.8: The image shows binary hydrogels made of G 1 and various other G-

derivatives (2 wt% nucleoside, 0.5 eq of KB(OH)4. 
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5.4.2 Gelator Solubility and RT Gelation 

We next determined the solubilities for G 1 and the three 8-substituted G-

derivatives that form transparent, binary hydrogels at room temperature. We 

determined that G 1 has a solubility of 1.90 + 0.08 mM, 8BrG 6 is slightly more soluble 

at 2.81 + 0.28 mM, and 8IG 8 is less soluble at 0.83 + 0.08 mM. Interestingly 8morphG 

8 is significantly more soluble than any of the other derivatives tested, with a solubility 

of 11.82 + 0.51 mM. Gelation requires a balance between hydrophobicity and 

hydrophilicity. If a molecule is soluble in water it will simply dissolve rather than 

forming a gel, on the other hand if a compound is too insoluble it cannot form a gel 

network. The increased solubility of 8morphG 8 may help explain the longer time 

period required to form a gel. As 8morphG is quite soluble in comparison to its 

hydrophobic counterparts (G 1, 8BrG 6, and 8IG 7) it is conceivable that the gel 

network takes longer to form since there is no hydrophobic effect to push gelation. 

Based on the results from these preliminary studies we decided to pursue further 

experiments with 8morphG 8 (while 8IG 7 also formed gels they were less transparent, 

likely due to the lower solubility of the compound). 

5.5 Differences Between Room Temperature Hydrogels from 8-

Morpholinoguanosine/Guanosine and 8-Bromoguanosine/Guanosine 

 

 Rheological comparisons of binary hydrogels made from 8morphG 8/G 1 and 

8BrG 6/G 1 (2 wt% nucleoside, 0.5 eq of KB(OH)4) show (Figure 5.9) that binary gels 

with 8morphG 8/G 1 are weaker (Gʹ ~800 Pa) than those of 8BrG 6/G 1 (Gʹ ~3100 Pa). 
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Figure 5.9: Strain Sweeps show the Gʹ values for RT gels made from 2 wt% 8BrG/G 

(purple) and 8morphG/G (green). 

 

 While the rheological studies clearly show that the 8BrG 6/G 1 system is 

stronger than the 8morphG 8/G 1 system, having the ability to tailor the strength of gels 

formed at room temperature could be advantageous. For example, the 8BrG 6/G 1 

system may be too stiff for potential applications as a bioink or for injections. In 

addition, literature on 8-substituted G-derivatives indicates that 8-amine substituted 

guanosine’s are more robust than 8-BrG 6 when it comes to degradation of the 

monomer such as in glycosidic bond cleavage.123 

5.6 Conclusions 

We have shown that 8-substituted guanosine derivatives with a high preference 

for the syn conformation about the glycosidic bond can template the formation of G4-

quartets. In addition to the conformational preference, solubility also seemingly plays 

a role in both the speed of gelation and the transparency of the resulting hydrogels. 
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5.7 Future Directions 

 While our initial findings are promising, there is still much to learn in the area 

of room temperature guanosine-derivative hydrogels. Questions remain about the 

structural differences between heated and room temperature hydrogels. While both 

systems seem to be based on GB-ester formation and G4-quartets, the actual 

composition of the gel network remains unknown. Solid state NMR would be useful in 

elucidating the structure of the gel network, as well as examining the proporties of each 

nucleoside in the gel state vs the sol state. It is also evident that the room temperature 

gels, especially those made with 8morphG 8 and G 1, change over time. More studies 

could be done to study the time dependency on the physical properties of the materials 

including rheology, CD, and NMR spectroscopy. 

 In addition to further characterization, applications for these hydrogel systems 

can be explored. As mentioned in the introduction to this chapter these RT gels may be 

useful in immobilization of enzymes. Simple experiments in which an enzyme loaded 

gel cube is suspended in an aqueous solution containing 155 mM K+ (to stabilize the 

hydrogel) and an enzyme substrate, could be used to test the activity and reusability of 

the enzyme versus a control with free enzyme. 

 As previous research in our group has shown, GB hydrogels can incorporate 

drugs via either G4-quartet H-bonding (for guanine analog drugs), or through borate-

ester linkages (with diol containing drugs).13,15 The RT hydrogels could be utilized to 

store and deliver unstable drugs containing either guanine units and/or 1,2- or 1,3-diols. 
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 Lastly, these systems could be used in environmental remediation to form gel 

in situ with pollutants. For example, since we have shown that Pb2+ can form hydrogels 

with G-derivatives (see Chapter 4.6), adding a room temperature gelator to an aqueous 

solution of Pb2+ could trigger gel formation. This would trap Pb2+ in the hydrogel 

network, thus removing it from the solution. 
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Chapter 6: Future Work 

 In the past five years our group has made several contributions to the field of 

supramolecular guanosine hydrogels. In addition to the future directions discussed at 

the end of Chapters 2-5, there is potential to alter the gel network by adding additional 

covalent crosslinking to the supramolecular hydrogel. One method for this would be to 

form a hydrogel and then add a cross-linker to the preexisting fibrous network in a 

second step (Figure 6.1). Presumably these added connections between fibers in the 

hydrogel network would strengthen the gel. 

 

Figure 6.1: A potential method to add covalent cross-linking to the supramolecular 

hydrogel network. 

 

Some examples of potential gel systems are shown in Figure 6.2. Modifying the 

5ʹ-position with a reactive group and adding a double ended cross-linker would allow 

for a variety of different covalently-linked gel networks. The length of the cross-linking 

chain length could also be tuned. 
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Figure 6.2: Some potential G-derivatives and their corresponding linkers are shown. 

  

 As evidenced by the work presented in this thesis the role of supramolecular 

hydrogels, including those made of G 1 and its derivatives, is an interesting and rapidly 

growing area of chemistry. While a number of novel applications for these materials 

has been presented there are numerous potential applications that have yet to be 

explored. 
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Chapter 7: Supporting Information 

7.1 General Experimental for Chapters 2-5 

General Experimental: NMR spectra were recorded on Bruker DRX-400, Bruker 

DRX-500, or Bruker AVIII-600 spectrometers. Chemical shifts are reported in ppm 

relative to the residual solvent peak. Deuterated solvents were purchased from 

Cambridge Isotope Labs. Mass spectrometry experiments were performed on a JEOL 

AccuTOF-CS Spectrometer. CD Spectroscopy was performed on a Jasco J-810 

spectropolarimeter. Rheological data was collected with an AR2000 stress-controlled 

rheometer from TA instruments, New Castle DE. SEM images were obtained on a 

Hitachi SU-70 High Resolution Analytical SEM. ICP-MS data was obtained on a 

Single Collector Element 2 ICP-MS. UV-Vis spectra were obtained on Varian Cary 

100 spectrometer. PXRD experiments were performed with a Bruker D8 Advance 

Bragg-Brentano Diffractometer. Chemicals and solvents were purchased from Acros, 

Sigma-Aldrich, Alfa Aesar, Fisher, and Santa Cruz Biotechnology and used without 

further purification. 

7.2 Supporting Information for Chapter 2 

General Gel Preparation Procedure: The desired amount of 5ʹ-IG 2 was weighed into 

a vial, and the appropriate amounts of KB(OH)4 stock solution and water were added. 

The vial was physically shaken and sonicated for ~1 minute. The mixture was placed 

in a water bath and heated to the desired temperature (90 °C unless otherwise noted) at 

a rate of ~5 °C/min. The vial was then removed from the bath and was allowed to cool 
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at room temperature (20 °C). Unless otherwise noted gels were formed at a 5ʹ-IG 2 

concentration of 50 mM and a 1:2 ratio of 5ʹ-IG 2:KB(OH)4. G 1 gels were formed at 

a 1:0.5 ratio of G 1 to KB(OH)4.  

2D NMR – HSQC and COSY procedures: 50 mM 5ʹ-IG 2 gels were formed following 

the general 5ʹ-IG 2 gel procedure. Two samples were made; one in 90% H2O:10% D2O 

and one in D2O. NMR experiments were run at 25 °C (32 scans, 1.5 second delay). 

Upon examination of the HSQC it was evident there were two 5ʹ signals. One, 

corresponding to 5ʹ-IG 2 at low ppm values (yellow box), and a second with two 

separate H’s (green box), which we would assign as 5ʹ-cG 3 using the COSY spectrum. 

Since experiments were performed on gels NMR signals correspond to the borate esters 

of 5ʹ-IG 2 and 5ʹ-cG 3. Note that 5ʹ-cG 3 is a known compound, and our spectra match 

literature values with slight differences due to different solvents (d-6 DMSO in the 

literature) and borate esters.65  

Mass Spectrometry Procedure: 50 mM 5ʹ-IG 2 gels were formed following the general 

5ʹ-IG 2 gel procedure. The gel was then diluted with water and sonicated until the 

system was no longer a gel and could be injected into the JEOL AccuTOF-CS 

Spectrometer. 

Rheology Procedure: 72 mM 5ʹ-IG 2 and G 1 gels were prepared following the general 

gel procedures. Experiments were performed on an AR2000 stress-controlled 

rheometer from TA instruments at 20 °C with a 20 mm diameter parallel plate 

geometry. The gels were allowed to equilibrate on the plate for 10 minutes. Frequency 

sweeps were performed at 1% strain. 
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Circular Dichroism Spectroscopy Procedure: 50 mM 5ʹ-IG 2 or G 1 gels were 

prepared according to the general gel procedure. The gels were allowed to sit for 1-2 

hours before the experiments. Spectra were collected at room temperature in a Hellma 

106-QS quartz cell with an optical path length of 0.01 mm. Experiments were 

performed at 25 °C with a scanning speed of 200 nm/min, response time of 2 sec, and 

a bandwidth of 1 nm. Each experiment was repeated at least 3 times, and the signals 

were averaged. 

1H NMR – Quantification of cyclization and drug release procedures: 50 mM 5ʹ-IG 

2 gels were formed following the general 5ʹ-IG 2 gel procedure in 90% H2O:10% D2O. 

For the drug incorporation experiments the solid drug was added to the vial along with 

the solid 5ʹ-IG 2 in order to afford a final drug concentration of 5mM. When the vials 

were removed from the heat 0.5 mL of the gel was pipetted into an NMR tube, with 

deuterated DMSO inside of a capillary tube sealed with parafilm as an internal 

standard. The gels were allowed to sit for 1 hour before initial experiments were run. 

Experiments were run at 25 °C with solvent suppression (32 scans) and repeated on at 

least 3 gel samples. Room temperature samples were allowed to sit at 20 °C; heated 

samples were submerged in an oil bath at 37 °C for the time indicated. After the scans 

were run on the samples left sitting for 72 hours, 10 μL of HCl was added to the NMR 

tube to completely break up any aggregates and determine the total G-derivative or 

drug concentration. The integration of the DMSO peak was set to 1.00 and the H1ʹ 

peaks of the G-derivatives or drugs were used. Experiments were performed 3 times, 
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and data is reported as the average of the experiments.  Error bars represent the standard 

deviation between the 3 trials. The amount of G-derivative or the amount of drug in 

solution was determined according to the following equation: 

% 𝑑𝑟𝑢𝑔 𝑖𝑛 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 =
[𝑡𝑎𝑟𝑔𝑒𝑡 𝑎𝑡 𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑡𝑖𝑚𝑒]

[𝑡𝑎𝑟𝑔𝑒𝑡 𝑎𝑓𝑡𝑒𝑟 𝐻𝐶𝑙 𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛]
 

 

Figure 7.1: Gels allowed to sit at RT (blue) and 37 °C (orange) were monitored over 

time. After 72 hours at 37 °C the amount of G species in solution increased and the 

system was no longer a gel. 

Synthesis of 5ʹ-deoxy-5ʹ-iodoguanosine (5ʹ-IG 2):63 Guanosine hydrate (2.5 g, 8.33 

mmol), triphenylphosphine (7.2 g, 27.5 mmol), and imidazole (3.75 g, 55.2 mmol) 

were placed in a clean, dry, 250 mL 2-neck round bottom flask with a stir bar and 

flushed with N2. N-methyl-2-pyrrolidinone (33.3 mL) was added and the mixture was 

allowed to stir for 3 minutes. Iodine (6.70 g, 26.3 mmol) was added in 2 batches over 

the course of 5 minutes. The solution was allowed to stir for 2-3 hours. When 1H 

NMR of a small aliquot showed complete reaction methylene chloride (333 mL) and 
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water (100 mL) were added. Product was collected via vacuum filtration to afford an 

off-white powder (up to 2.39 g, 73% yield). 1H NMR (d-6 DMSO) δ: 10.65 (s br, 1H, 

NH), 7.93 (s, 1H, H8), 6.49 (s br, 2H, NH2), 5.71 (d, 1H, J = 6.4 Hz, H1ʹ), 5.55 (d, 

1H, J = 6 Hz, OH), 5.39 (d, 1H, J = 4.8 Hz, OH), 4.652-4.608 (m, 1H, H2ʹ), 4.079-

4.046 (m, 1H, H3ʹ), 3.952-3.912 (m, 1H, H4ʹ), 3.584-3.399 (m, 2H, H5ʹ). 13C NMR 

(d-6 DMSO) δ: 156.55 (C6), 153.54 (C2), 151.24 (C4), 135.64 (C8), 116.70 (C5), 

86.65 (C1ʹ), 83.53 (C4ʹ), 73.02 (C2ʹ), 72.68 (C3ʹ), 7.80 (C5ʹ). NMR data matches 

literature values.63 

 

Figure 7.2: The synthesis of 5'-IG 2 from G 1. 
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Figure 7.3: 1H NMR spectrum of 5'-IG 2. 
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Figure 7.4: 13C NMR spectrum of 5'-IG 2. 

 

7.3 Supporting Information for Chapter 3 

Hydrogel Synthesis Protocols: 

Synthesis protocol BDBA-K: In a glass vial 0.05g, 0.2 mmol (1 eq) of guanosine is 

mixed with 0.0146 g, 0.1 mmol (0.5 eq) of benzene-1,4-diboronic acid (BDBA). 

Distilled water (1.9 mL) is added, and the mixture is sonnicated for a few minutes, until 

all the components are dispersed. The suspension is then heated in an oil bath preheated 
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to 120oC until the solution becomes transparent. To avoid pressure in the vial upon 

heating a syringe needle in the plastic cap of the vial is used. Then, 100 µL, 0.01 g, 0.2 

mmol KOH (1eq, stock solution of KOH: 0.66 g in 6.6 mL distilled water) is added and 

the mixture is heated and stirred for a few more minutes, and then left to cool down at 

room temperature. After cooling a transparent and strong gel is formed. 

Synthesis protocol BDBA-Ba: In a vial, an amount of 0.05g, 0.2 mmol (1 eq) of 

guanosine is mixed with 0.0146g, 0.1 mmol (0.5 eq) of benzene-1,4-diboronic acid 

(BDBA). Distilled water (6.58 mL) is added, and the mixture is sonnicated for a few 

minutes, until all the components are dispersed. The suspension is then heated on an 

oil bath preheated to 120oC until the solution becomes transparent. To avoid pressure 

in the vial upon heating a needle in the cap of the vial is used. Then, 1.42 mL containing 

0.015g, 0.1 mmol Ba(OH)2*H2O (0.5eq, stock solution of Ba(OH)2*H2O: 0.31g in 30 

mL distilled water) is added and the mixture is heated and stirred for a few more 

minutes, and then left to cool down at room temperature. After cooling a transparent 

and strong gel is formed. Note that, at smaller amount of water used, the gel is cloudy. 

Synthesis protocol BDBA-Mg: In a vial, an amount of 0.05g, 0.2 mmol (1 eq) of 

guanosine is mixed with 0.0146g, 0.1 mmol (0.5 eq) of benzene-1,4-diboronic acid 

(BDBA). Distilled water (1.9 mL) is added, and the mixture is sonicated for a few 

minutes, until all the components are dispersed. The suspension is then heated on an 

oil bath preheated to 120oC until the solution becomes transparent. To avoid pressure 

in the vial upon heating a needle in the cap of the vial is used. Then, 100 µL containing 

0.01 g, 0.2 mmol, KOH (1 eq) is added and the mixture is heated and stirred for a few 
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more minutes, and then left to cool down at room temperature. After cooling, the gel is 

diluted with 38 ml distilled water in a NUNC tube (50 mL). The mixture is then 

sonnicated for few seconds to remove the air bubbles and then 4 mL of Mg2+ solution 

containing 0.041 g of MgCl2*6H2O or 0.059 g 0.2  mmol (1 eq) of Mg(NO3)2*6H2O is 

added (stock solution: 0.59g in 40mL). We used initially chloride and then nitrate in 

the presence of TAE buffer to avoid MgCl2/TAE pH change effects.   

Comparison of water retention between BDBA-K, BDBA-Ba and BDBA-Mg 

hydrogels: We have observed the differences in the behavior of hydrogels containing 

K+, Ba2+ and Mg2+ ions as jellifying triggers. In order to get a primary insight into the 

differences of hydrogel properties, we have performed water retention experiments. 

Two similar hydrogels were prepared using the standard protocol described above: 

hydrogel BDBA-K stabilized with K+ and hydrogel BDBA-Ba stabilized with Ba2+. 

Next, 2 mL of water to each sample was added and the reactions heated until melted. 

Then, the samples were cooled down and turned upside-down to check the self-

sustainability. The gel BDBA-K is self-sustainable at maximum 3 mL of overall water 

content, collapsing at the volume of 4 mL. Hydrogel BDBA-Ba is self-sustainable at 

volumes up to 14 mL. To check the influence of Mg2+ to the formation of hydrogel, we 

used the collapsed BDBA-K gel and step wise added water solution containing Mg2+ 

(12 mM). We have observed an astonishing effect of Mg2+ ions over the self-

sustainability of the gel, the same amount of organic matrix was sustaining up to 44 

mL of water.  
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1H NMR Procedure: Gels were formed in D2O according to the afore mentioned 

procedures. In the case of the BDBA-K and BDBA-Ba gels, immediately following the 

final heating, 0.5mL of the hot solution was pipetted into a hot NMR tube. For the 

BDBA-Mg gel after addition of the Mg(NO3)2 0.5mL of the mixture was pipetted into 

an NMR tube. Samples were allowed to sit overnight prior to running NMR 

experiments. Experiments were performed on a Bruker AVIII-600 at 25 °C and the 

solvent peak was used to calibrate the shifts. 

Diffusion-Ordered Spectroscopy (DOSY) NMR Procedure: A Mg-BDBA gel was 

formed in D2O according to the previously established procedure. After adding the 

Mg(NO3)2 0.5 mL of the mixture was pipetted into an NMR tube and the gel was 

allowed to sit overnight. Diffusion experiments were performed on a Bruker AVIII-

600 at 5 °C to maximize the separation of the H1ʹ signals with 18 points of 256 scans, 

a delay of 5 seconds, a gradient pulse length of 2300 μseconds and a delta value of 0.10 

seconds. The spectral width and offset were set at 8ppm and 5.5 ppm respectively. The 

diffusion coefficients for each peak were calculated using their integration and the 

fitting function in the Bruker software. 

Procedure for Powder X-ray diffraction: A G-BDBA-K+ gel was prepared according 

the established procedure. The sample was allowed to sit at 20 °C overnight and was 

then frozen and dried on a lyophilizer to form a white powder. Diffraction 

measurements were performed using a Cu radiation source at 20 °C on a Bruker D8 

Advance Bragg-Brentano Diffractometer with a LynxEye detector. 
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Rheology: Gels were made as described in the procedures above and allowed to sit at 

room temperature overnight before experiments were performed. Experiments were 

run on an AR2000 stress-controlled rheometer from TA Instruments in New Castle, 

DE at 20 °C with a 20mm diameter parallel plate geometry. The gels were loaded onto 

the rheometer and allowed to equilibrate on the plate for 10 minutes before running the 

experiment. Frequency sweeps were performed at 0.2% strain. 

AFM Atomic Force Microscopy: The Ntegra Spectra Atomic Force Microscope (NT-

MDT, Russia) operated in tapping mode under ambient conditions was used to image 

gels structures. Silicon cantilever tips (NSG 10, NT-MDT) with gold reflecting coating, 

a resonance frequency of 140–390 kHz, a force constant of 3.1–37.6 N m-1 and a tip 

curvature radius of 10 nm were used. Sample preparation: a 10 mL aliquot of the gel 

solution was deposited on freshly cleaved mica substrates and dried in air at room 

temperature prior to imaging. 

Cell growth experiments: 100 µl of freshly prepared hot solutions of BDBA-K, 

BDBA-Ba and BDBA-Mg, prepared as previously describe in Section 1, were 

dispensed in each well with a pipette, and left to cool down and form hydrogels. 

Subsequently, 100 µl of Tris-acetate-EDTA –TAE buffer was added to adjust the 

hydrogels at the physiological pH. In parallel, several wells containing all three 

hydrogels were left without TAE buffer treatment. After 2 hours of incubation, the 

buffer was removed, and DMEM culture medium supplemented with 10% fetal bovine 

serum (FBS) and 1% Penicillin-Streptomycin-Amphotericin B mixture (10K/10K/25 

µg) was added (100 µl/well). One hour later, the cell suspension was added to each 
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well (1x104 NHDF cells/well in a total volume of 100 µl/well). In the MEM culture 

medium the concentration of possible competitive ions is rather small (0.2 g/L Ca2+ and 

0.1 g/L Mg2+) but with a very high concentration of Na+ (6.8 g/L) and, under these 

conditions we do not expect major ion exchange processes as previously observed  with 

Na+, 300-500 mM by Davis et al.  J. Am. Chem. Soc. 2014, 136, 12596−12599) 

Cytotoxicity assay: The reported results represent the average of three individual MTS 

tests, where at least 6 replicates were performed for each type of hydrogel. Aliquots of 

20, 90, 100 µl of hydrogel samples containing 0.5 mg guanosine were distributed in 96 

well plates and incubated with 100 µl DMEM culture medium for one hour in order to 

better adjust the hydrogels for cell culture. The BDBA-K hydrogel samples were 

previously treated for 2 hours with 3xTAEMg2+ buffer solution, in order to adjust the 

pH value. NHDF cells were seeded at a density of 5 x103 cells/well, in 96 well plates, 

on top of the hydrogel samples. After 20 hours 20 μL of CellTiter 96® Aqueous One 

Solution reagent were added to each well, and the plates were incubated for another 4 

hours before reading the result. Absorbance at 490 nm was recorded with a plate reader 

(EnSight, PerkinElmer).  

7.4 Supporting Information for Chapter 4 

General Gel Procedure: The desired amounts of equimolar mixtures of 8AmG 5 and 

G 1 were weighted into a vial then the appropriate amounts of salt solution and water 

were added and the mixtures were sonicated for ~1 minute (in the case of the KB(OH)4 

gels KOH and water were added, then the mixture was sonicated, and B(OH)3 was 

added and the mixture was sonicated again). The mixture was placed in a water bath at 
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room temperature (20 °C) and heated to 95-100 °C at a rate of ~5 °C/min until the 

solution was clear. The vial was then removed from the bath and was allowed to cool 

to room temperature (20 °C). KB(OH)4 gels were made with 0.5 eq of salt, all other 

gels were made with various salt eqs as noted throughout the paper. 

NMR Procedure: Gels were formed following the general gel procedure (0.5mL, 

1wt%, 35mM 8AmG/G with 0.5eq salt) in D2O. After heating the hot gel solutions 

were pipetted into hot NMR tubes. A capillary tube with d6-DMSO was sealed with 

parafilm and placed inside the NMR tube as an internal standard. 1H NMR spectra were 

recorded on a Bruker AVIII-600 spectrometer. The DMSO peak was set to 2.5 and 

integrated to 1.00. The H1ʹ peaks for G and 8AmG were then integrated in comparison 

the DMSO peak. After the experiment the internal standard was removed and 10μL of 

DCl was added to the NMR tube to destroy the gel network. The capillary tube was re-

inserted and new 1H NMR spectra were obtained. The DMSO peak was again 

integrated to 1.00 and the H1ʹ peaks for G and 8AmG were integrated in comparison 

to the DMSO peak. The amounts of 8AmG and G in the gel and the sol were then 

calculated. 
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Figure 7.5: Experimental setup for the gel network quantification, a D2O gel is made 

and placed in an NMR tube with a capillary tube of d6-DMSO (top left). 1H NMR 

spectra are taken and the H1ʹ region (top right) is used to quantify the amounts of G 

species in the gel and sol network. The error associated with NMR is ±10%. 

 

207Pb NMR Procedure: Samples (0.5mL) where taken from the Pb2+ solution and 

placed in an NMR tube. Then a capillary tube containing 1 M Pb(NO3)2 and 1mM 

EuCl3 was sealed with parafilm and placed inside of the NMR tube. 207Pb was run on 

the sample with a Bruker DRX-500 
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Figure 7.6: The critical gelation concentration (CGC) for several 8AmG/G systems is 

calculated by forming gels of varying concentrations of nucleoside. 

 

 

CD Procedure: Gels were prepared following the general gel procedure. KB(OH)4 gels 

were prepared at 2wt% with 0.5 eq of salt. KNO3 and Pb(NO3)2 gels were prepared at 

1wt% with 0.5 eq salt. The gels were allowed to sit for 2 hours prior to the experiments. 

The CD spectra were recorded at 25 °C in a Hellma 106-QS quartz cell with a path 

length of 0.01 mm. Experiments were run on a Jasco J-810 spectropolarimeter with a 

scanning speed of 200 nm/min, response time of 2 sec, and a bandwidth of 1 nm. Each 

experiment was repeated at least 3 times, and the signals averaged. 

PXRD Procedure: Gels were prepared according the general gel procedure (1 wt%, 35 

mM 8AmG/G with 0.5 eq salt). After sitting at 20 °C overnight the gels were 

lyophilized to form white powders. Powder X-ray diffraction measurements were 
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performed with a Cu radiation source at 20 °C using a Bruker D8 Advance Bragg-

Brentano Diffractometer equipped with a LynxEye detector. 

 

Figure 7.7: We attempted to form gels with all of the salts shown following the general 

gel procedure. Gels were only able to form with K+, Sr2+, Ba2+, and Pb2+ salts. 

 

SEM Procedure: A 2 wt% (70 mM) binary 8AmG/G hydrogel was prepared 

according to the general gel procedure. A small portion of the gel was scooped up 

with a small spatula and placed on an AL stub with a small dimple. A 0.3 μL aliquot 

of 3% ionic liquid (HILEM 1000 for Hitachi EM) was pipetted onto the gel sample 

and set in the air for 10 minutes prior to SEM examination. 
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 Rheology Procedure: Gels were made following the general gel procedure (2 wt%, 70 

mM 8AmG/G with various salt concentrations). Gels were allowed to cool overnight 

before rheology was performed. Experiments were performed on an AR2000 stress-

controlled rheometer from TA instruments in New Castle, DE at 20 °C with a 20mm 

diameter parallel plate geometry. The gels were allowed to equilibrate on the plate for 

10 minutes. Frequency sweeps were performed at 0.5% strain. 

Dye Release Procedure: Gels were prepared following the general gel procedure (2 

wt%, 70 mM 8AmG/G, 0.5 eq of KB(OH)4 or 2 eq of KCl or 2 eq of BaCl2) with the 

following alterations. After heating to ~95 °C both MB and RB were added (25 μM 

each) and the vials were shaken to distribute the dyes. The vials were returned to the 

heat bath for ~2 mins. After the 2 min heating 0.5 mL of the hot dyed gel solution was 

pipetted into a parafilm lined cube mold. After cooling for 1 hour at room temperature 

the gel cubes were suspended in 3 mL of 155 mM KCl solutions. The systems were 

monitored visually for dye release. 
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Figure 7.8: Gels loaded with MB and RB (25 μM each) suspended in 155 mM KCl 

buffer will release different dyes based on their charge.  

 

Dye Uptake Procedure: Gels were prepared according to the general gel procedure (2 

wt%, 70 mM, 8AmG/G with 0.5 eq of KB(OH)4 or 2 eq of KCl or 2 eq of BaCl2). After 

heating 0.5 mL aliquots of the hot gel solution were pipetted into parafilm lined cube 

molds and allowed to cool at RT for 1 hr. The cubes were then suspended in 3 mL of 

155 mM KCl with 12.5 μM dye. The outside solution was monitored over time via UV-

Vis spectroscopy. 
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Figure 7.9: Illustration of the dye uptake experiments. 

 

 

 

Figure 7.10: Gels were suspended in a 155 mM KCl solution with 12.5 μM MB dye 

and the amount of dye in the outside solution was monitored using UV-Vis. The graph 

shows the amount of MB absorbed by the gel after 24 hours. 
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NBB Max Procedure: Gels were prepared according to the general gel procedure (2 

wt%, 70 mM, 8AmG/G with 0. 5eq of KB(OH)4 or 2 eq of KCl or 2 eq of BaCl2). After 

heating 0.5 mL aliquots of the hot gel solution were pipetted into parafilm lined cube 

molds and allowed to cool at RT for 1 hr. The cubes were then suspended in 3 mL of 

155 mM KCl with 100 μM NBB. The outside solution was monitored over time via 

UV-Vis spectroscopy. 

Qualitative Dye Procedure: Gels were prepared following the general gel procedure (2 

wt%, 70 mM 8AmG/G with 0.5 eq of KB(OH)4 or 2 eq of KCl or 2 eq of BaCl2). The 

hot gel solution was pipetted into parafilm lined cube molds in 0.5 mL increments. The 

gel cubs were allowed to cool for 1hr before being suspended in 3 mL of 155 mM KCl.  

7.5 Supporting information for Chapter 5 

General Gel Procedure: The desired amounts of equimolar mixtures of the 8-

substituted guanosine and G were weighted into a vial and then 0.5 eq of aqueous 

B(OH)3 and any necessary H2O was added. The mixture was sonicated for ~30 seconds 

and 0.5 eq of aqueous KOH was added. The mixtures was sonicated for ~1 minute. For 

room temperature gels: At this point the gels were allowed to sit at room temperature 

to form gels. For heated gels: The mixture was placed in a water bath at room 

temperature (20 °C) and heated to 95-100 °C at a rate of ~5 °C/min until the solution 

was clear. The vial was then removed from the bath and was allowed to cool to room 

temperature (20 °C). 

 



 

 

 

115 

 

NMR Procedure: Gels were formed following the general gel procedure (0.5 mL, 1 

wt%, 8-substittued G/G with 0.5 eq KB(OH)4) in D2O. For RT Gels: The 

nucleoside/B(OH)3 mixture was placed in an NMR tube after sonication and aqueous 

KOH was added directly to the NMR tube followed by sonication. Gels formed directly 

in the tube. For heated gels: After heating the hot gel solutions were pipetted into hot 

NMR tubes.  

CD Procedure: Gels were prepared following the general gel procedure. The gels were 

allowed to sit for overnight prior to the experiments. The CD spectra were recorded at 

25 °C in a Hellma 106-QS quartz cell with an optical path length of 0.01 mm. 

Experiments were run on a Jasco J-810 spectropolarimeter with a scanning speed of 

200 nm/min, response time of 2 sec, and a bandwidth of 1nm. Each experiment was 

repeated at least 3 times, and the signals were averaged. 

PXRD Procedure: Gels were prepared according the general gel procedure. After 

sitting at 20 °C overnight the gels were lyophilized to white powders. PXRD 

measurements were performed with a Cu radiation source at 20 °C using a Bruker D8 

Advance Bragg-Brentano Diffractometer equipped with a LynxEye detector. 

Rheology Procedure: Gels were made following the general gel procedure (2wt%, 

nucleoside, 0.5 eq of KB(OH)4). Gels were allowed to cool overnight before rheology 

was performed. Experiments were performed on an AR2000 stress-controlled 

rheometer from TA instruments in New Castle, DE at 20 °C with a 20mm diameter 

parallel plate geometry. The gels were allowed to equilibrate on the plate for 10 

minutes. Frequency sweeps were performed at 0.5% strain. 
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Gel Cube Stability Procedure: Gels were made following the general gel procedure 

(2wt% nucleoside, 0.5 eq of KB(OH)4). RT gels were made in a parafilm lined mold. 

Heated gels were pipetted into a parafilm lined mold while hot. After sitting in the mold 

overnight the gels were placed in 3 mL of 155 mM KCl solution. Aliquots were taken 

from the outside solution and diluted as necessary to monitor the nucleoside 

concentration via UV-vis spectroscopy. 

Synthesis of 8-mopholinoguanosine (8morphG 8):124 Guanosine (0.5 g, 1.38 mmol), 

was placed in a clean, dry, 50 mL 2-neck round bottom flask with a stir bar and a 

condenser and flushed with N2. After ~15 min, 15 mL of morpholine was added and 

the mixture was allowed to stir in an oil bath at ~129 °C overnight. After 17 hours the 

flask was removed from the heat and rotovapped to remove the solvent. The resulting 

brown oil was dissolved in water and recrystallized to form a white powder. (60% 

yield). 1H NMR (d-6 DMSO) δ: 10.660 (s br, 1H, NH), 6.284 (s br, 2H, NH2), 5.588 

(d, 1H, J = 6.6 Hz, H1ʹ), 5.371 (d, 1H, J = 6 Hz, OH), 5.063-5.055 (m, 2H, 2-OH), 

4.986-4.956 (m, 1H, H2ʹ), 4.111-4.106 (m, 1H, H3ʹ), 3.827-3.821 (m, 1H, H4ʹ), 3.723-

3.500 (m, 6H, H5ʹ and morph. ring) 3.147-2.971 (m, 4H, morph ring). 



 

 

 

117 

 

 

Figure 7.11: 1H NMR spectra of 8morphG 8. 
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