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Figure 1: Mixed Triangles

1 Introduction
Throughout this paper we will let n ∈ N be a large natural number and k ∈ N be a small natural number
(i.e. k � n). We are concerned with coloring the edges of Kn, the complete graph on n vertices. Let
c ∈ N be the number of colors we use to do this. Our objective will be to find an asymptotic lower bound
α on the number of monochromatic copies of Kk in Kn for various values of k, n, and c.

Many, but not all, of the results in this paper are well established; however, some of the proofs in
the literature are missing or incomplete. Many of the proofs are not motivated. As such, we present the
proofs in a new light, intended to illuminate the problem solving process while still rigorously proving
the main results.

In Section 2 we show that for all 2-colorings of the edges of K6 there are two monochromatic K3’s.
In Section 3 we use the ideas of the proof in Section 2 for all 2-colorings of the edges of Kn, showing
there are asymptotically at least n3

24 monochromatic K3’s. We view this as saying that 1
4 of the triangles

are monochromatic. Section 4 discusses the best known bounds for c-colorings.
What if we seek monochromatic Kk’s? Section 5 introduces the concept of Ramsey Multiplicity,

which is the fraction of Kk’s that are monochromatic. We discuss some of the early work and give a
lower bound on this fraction. In Section 6 we improve this lower bound. We offer two proofs of this
improved lower bound. One proof is from the literature. The other is a motivated version of that proof.
The motivated version is, in our opinion, easier to generalize to c colors, which we state and prove as
our final result.

In Section 7 we state the best known bounds for the Ramsey Multiplicity constants. Finally, In
Section 8, we discuss open questions.

2 Monochromatic Triangles in Any 2-Coloring of the Edges of
K6

Definition 1. We denote the minimum number of monochromatic Kk’s in any c-coloring of Kn by
ψc(k, n).

We give an example by showing that ψ2(3, 6) ≥ 2. The proof is from an exposition by Dorwart &
Finkbeiner [4] based on ideas from Schwenk [8].

Theorem 2. ψ2(3, 6) ≥ 2

Proof. Let COL : E −→ {red, blue} be an arbitrary 2-coloring of the edges of our graph. Any triangle in
our graph will either have 3 red edges, 3 blue edges, or it will be mixed with 2 edges of one color and 1
edge of the other. A mixed triangle would look like the ones in Figure 1.

Let R, B, and M be the sets of red, blue, and mixed triangles respectively. Then

|R|+ |B|+ |M | =
(

6
3

)
= 20

We show |M | ≤ 18 which implies |R|+ |B| ≥ 2.
In each mixed triangle there will be exactly 2 vertices with both a red and blue edge coming out of

them.

Definition 3. A Mix is an element (v, {u,w}) ∈ V × E s.t. v 6∈ {u,w} and COL(v, u) 6= COL(v, w).
MIX is the set of all Mixes.

1



For example, in our mixed triangles above, the set of Mixes is:

{(v2, {v1, v3}), (v3, {v1, v2}), (v4, {v5, v6}), (v6, {v4, v5})}

Because there are exactly 2 Mixes for each mixed triangle, we see |MIX| = 2|M |. Now we bound
|MIX|.

To bound the contribution of a single vertex to MIX, consider the red degree of each vertex in our
graph, dR(v). Since every vertex has degree 5, dB(v) = 5− dR(v).

Case 1: dR(v) = 5. Then v does not have different colored edges coming out of it so it contributes 0 to the
size of MIX.

Case 2: dR(v) = 4. Then dB(v) = 1 and there are 4 pairs of edges of different colors coming out of v so
this vertex contributes 4 to the size of MIX.

Case 3: dR(v) = 3. Then dB(v) = 2 and there are 3 · 2 = 6 pairs of edges of different colors coming out of
v so this vertex contributes 6 to the size of MIX.

By symmetry we need not consider the cases dR(v) < 3.
So each vertex in our graph will contribute at most 6 to the size of MIX. With 6 vertices in the graph

this means
|MIX| ≤ 6 · 6 = 36 =⇒ |M | ≤ 18 =⇒ |R|+ |B| ≥ 2

3 Monochromatic Triangles in Any 2-Coloring of the Edges of
Kn

We rephrase Theorem 2:
For all 2-colorings of K6 at least 2

20 = 1
10 of the triangles are guaranteed to be monochromatic.

What happens if n is large? What should we expect the lower bound on the fraction of monochromatic
triangles to be? We give an informal argument, credited to Erdős, for why the answer should be 1

4 and
then prove it formally.

Informal Argument Lower bounds on the Ramsey numbers are often obtained with the probabilistic
method where a color is determined by a fair coin flip. Hence we assume that the coloring with the least
number of monochromatic triangles is so determined. Color the edges of Kn as follows; for each edge,
color it R with probability 1

2 , and (hence) B with probability 1
2 .

To get the density of triangles, pick three vertices at random. There are 8 possible ways to 2-color the
edges of a triangle and 2 of those result in a monochromatic triangle. Hence the density of monochromatic
triangles is 1

4 .
End of Informal Argument

In the proof of Theorem 2 the red and blue degrees of each vertex played a role in determining the
maximum contribution to our set MIX. We saw the maximum contribution occurred when the red and
blue degrees were close to equal. It will be useful to formalize this statement when considering coloring
the edges of Kn. We leave the proof of this to the reader.

Lemma 4. Let x, y ∈ N. Then the maximum value of xy is achieved w.r.t. the constraint x+ y = d for
some fixed d ∈ N when x =

⌊
d
2
⌋

(or when y =
⌊
d
2
⌋
).

We now prove a theorem about 2-coloring the edges of Kn. This result was first proved by Good-
man [7] and later a simpler proof was given by Schwenk [8] using the method of Theorem 2. Both authors
demonstrate that the lower bound from Theorem 5 is tight by construction. Here is a presentation of
the proof by Schwenk, though we have modernized the notation of the original paper.

We split the theorem into two theorems: a lower bound and an upper bound.

Theorem 5. For n ≥ 6 a natural number,

ψ2(3, n) ≥


n3

24 −
n2

4 + n
3 , n ≡ 0 (mod 2)

n3

24 −
n2

4 + 5n
24 , n ≡ 1 (mod 4)

n3

24 −
n2

4 + 5n
24 + 1

2 , n ≡ 3 (mod 4)

2



Proof. We proceed in a manner analogous to the previous example, constructing the sets R, B, M , and
MIX, noting that |MIX| = 2|M |. To bound |MIX| above we consider the maximum number of mixed
triangles.

Case 1: n ≡ 0 mod 2
The degree of each vertex, n− 1, is odd and therefore from Lemma 4, the maximum contribution
of a given vertex to MIX is n

2 ·
n−2

2 . So

|M | = |MIX|
2 ≤ n3 − 2n2

8

=⇒ |R|+ |B| ≥
(
n

3

)
− n3 − 2n2

8

= n3

24 −
n2

4 + n

3

Case 2: n ≡ 1 mod 4
Each vertex has degree n− 1, which is an even number divisible by 4. Using Lemma 4, this means
we have a maximum contribution of (n−1)2

4 to MIX from each vertex. Therefore

|M | = |MIX|
2 ≤ n (n− 1)2

8

=⇒ |R|+ |B| ≥
(
n

3

)
− n (n− 1)2

8

= n3

24 −
n2

4 + 5n
24

Case 3: n ≡ 3 mod 4
Since n is odd and n−1

2 is odd, our previous calculation of |MIX| yields an odd number. Because
|M | must be a whole number, MIX can’t be odd and we take |M | =

⌊
|MIX|

2

⌋
= |MIX|−1

2 .

|M | = |MIX| − 1
2 ≤ n (n− 1)2

8 − 1
2

=⇒ |R|+ |B| ≥
(
n

3

)
− n (n− 1)2

8 + 1
2

= n3

24 −
n2

4 + 5n
24 + 1

2

We now give the upper bound.

Theorem 6. For n ≥ 6 a natural number,

ψ2(3, n) ≤


n3

24 −
n2

4 + n
3 , n ≡ 0 (mod 2)

n3

24 −
n2

4 + 5n
24 , n ≡ 1 (mod 4)

n3

24 −
n2

4 + 5n
24 + 1

2 , n ≡ 3 (mod 4)

Proof. We consider two cases depending on the parity of n.

Case 1: n even
Partition the vertices into two sets of the same size, A = {a1, . . . , ad} and B = {b1, . . . , bd} where
d = n

2 . Color all the edges between vertices in the same set red and color all edges between vertices
in different sets blue. Figure 2 shows the construction.
We claim there are no blue triangles in this construction. Every set of 3 vertices must have either
2 vertices in A or 2 vertices in B and in both cases we have a red edge. Therefore we concern
ourselves with counting the number of red triangles in the graph.
|A| = |B| = n

2 . In each set there are thus
(
n/2
3
)

red triangles.

2 ·
(n

2
3

)
= n(n− 2)(n− 4)

24 = n3

24 −
n2

4 + n

3

3
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...

Figure 2: Edge Coloring of Kn, n Even, with Minimum Number of Monochromatic Triangles

v
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ad/2+1
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b1

bd/2

bd/2+1

bd
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Figure 3: Edge Coloring of Kn, n ≡ 1 (mod 4), with Minimum Number of Monochromatic Triangles

Case 2: n odd
We do the case where n ≡ 1 (mod 4); however, we indicate what changes in the construction if
n ≡ 3 (mod 4).
Label one vertex in the graph v, which will have different behavior than the others. The remaining
n−1 vertices we divide into two sets of the same size, A = {a1, . . . , ad} and B = {b1, . . . , bd} where
d = n−1

2 . Color all the edges between vertices in the same set red as before, but we also color red
the edges in the following sets:

1. {(ai, v) : 1 ≤ i ≤ n−1
4 } (If n ≡ 3 (mod 4) then the upper bound is n−3

4 .)
2. {(bj , v) : 1 ≤ j ≤ n−1

4 } (If n ≡ 3 (mod 4) then the upper bound is n−3
4 .)

3. {(ai, bj) : i = j and i, j ≥ n+3
4 } (If n ≡ 3 (mod 4) then the lower bound is n+1

4 .)

We color the remaining edges blue. Figure 3 shows the construction when n ≡ 1 (mod 4).
We now count the monochromatic triangles in this construction. In sets A and B we have

2
(

(n− 1)/2
3

)
= (n− 1)(n− 3)(n− 5)

24 = n3

24 −
3n2

8 + 23n
24 −

15
24

4



red triangles. Through vertex v we have

2
(

(n− 1)/4
2

)
= (n− 1)(n− 5)

16 = n2

16 −
3n
8 + 5

16

red triangles formed in the upper half of our diagram, and we have

n− 1
4 ·

(
n− 1

4 − 1
)

= (n− 1)(n− 5)
16 = n2

16 −
3n
8 + 5

16

blue triangles formed in the lower half of our diagram. Hence the number of monochromatic
triangles that pass through v is

n2

8 −
3n
4 + 5

8 .

Therefore the total number of monochromatic triangles is

n3

24 −
3n2

8 + 23n
24 −

15
24 + n2

8 −
3n
4 + 5

8 = n3

24 −
n2

4 + 5n
24

The construction we provide in Theorem 6 has the property that approximately half the edges are
of each color. Erdős [5] conjectured this type of graph was the worst case for all colorings, which was
true for k = 3. Is it true for general k? Alas, no. Thomason [9] proved this was not the case for k ≥ 4.

4 What About More Colors?
With monochromatic triangles in 2-colorings completely solved using elementary techniques, one could
ask if we can extrapolate these ideas to more colors. Cummings et al. [3] gives an asymptotic bound for
c = 3, but for c > 3 the best known upper and lower bounds are far from tight. In this Section we state
and provide an interpretation of the best known bounds for these problems. We begin by defining the
Ramsey numbers.

Definition 7. Rc(k) is the smallest n ∈ N such that, for any c-coloring of the edges of Kn, there is a
monochromatic Kk.

We make use of the following bounds on Rc(3).

Theorem 8.

1. (Exoo et al. [10]) Rc(3) ≥ (3.199 . . .)c ≥ 2Ω(c).

2. (Xiaodong et al. [11]) Rc(3) ≤ 2.55c! ≤ 2O(c log c).

Theorem 8 combined with the work of Fox [6] and Cummings et al. [3] gives the following as the best
known bounds for c ≥ 3.

Theorem 9. For large n:

1. (Fox [6])

(a) For any c-coloring of the edges of Kn the proportion of triangles that are monochromatic is
≥
(Rc(3)

3
)−1

. By Theorem 8.2 this proportion is ≥ 1
2O(c log c) .

(b) There is a c-coloring of the edges of Kn such that the proportion of triangles that are monochro-
matic is ≤ (Rc−1(3)− 1)1−c. By Theorem 8.1 this proportion is ≤ 1

2Ω((c−1)2) .

2. (Cummings et al. [3])

(a) For any 3-coloring of the edges of Kn, the proportion of triangles that are monochromatic is
≥ 1

25 .
(b) There is a 3-coloring of the edges of Kn such that the proportion of triangles that are monochro-

matic is ≤ 1
25 .

5



5 Ramsey Multiplicity
Definition 10. The Ramsey Multiplicity given by:

RMc(k) = lim
n→∞

ψc(k, n)(
n
k

)
represents the minimum density of monochromatic subgraphs of size k in any c-coloring of Kn as n gets
large.

Example 11.

1. By Theorems 5 and 6, RM2(3) = 1
4 .

2. By Theorem 9.2, RM3(3) = 1
25 .

3. By Theorem 9.1, for fixed c,

1
2O(c log c) ≤ RMc(3) ≤ 1

2Ω((c−1)2) .

That these limits exist for all c, k was first claimed by Erdős [5] without proof. Other authors have
quoted it; however, to our knowledge, a proof has never been written down. We do so.

Lemma 12. ∀c, k,RMc(k) exists and is finite.

Proof. RMc(k) ≤ 1,∀c, k is clear. Now we must argue that the sequence

ψc(k, n)(
n
k

)
is non-decreasing in n.

Consider a c-coloring of the graph G = Kn+1. Let Gv be the subgraph of G given by removing the
vertex v (and its associated edges). Thus Gv is a c-coloring of Kn and as such it will have at least
ψc(k, n) monochromatic Kk’s. This is true for any subgraph Gv and therefore

number of monochromatic Kk’s in Gv ≥ ψc(k, n)

There are n + 1 choices for Gv and as such there are (n + 1) · ψc(k, n) total monochromatic Kk’s that
can be counted in the associated subgraphs. We are counting some of these Kk multiple times. How
many times are we counting each? Each monochromatic Kk only appears once in a particular choice of
Gv and the number of choices for v for which this Kk appears is n+ 1− k, choosing any vertex from our
set of n+ 1 which is not part of the Kk. Therefore:

ψc(k, n+ 1) ≥ n+ 1
n+ 1− kψc(k, n)

Thus,

ψc(k, n+ 1)(
n+1
k

) /
ψc(k, n)(

n
k

) = (n+ 1− k)ψc(k, n+ 1)
(n+ 1)ψc(k, n)

≥ (n+ 1)ψc(k, n)
(n+ 1)ψc(k, n) = 1

So our sequence is non-decreasing in n and upper bounded by 1 which means the limit exists ∀c, k.

We now turn our attention to finding lower bounds on these constants for different values of c and
k. First we must state a well-known bound on the Ramsey numbers.

Theorem 13. R2(k) ≤ 4k.

Theorem 13 is folklore, and while there are better upper bounds (see Conlon [1]), we don’t need to
make use of them. With this result we can derive a loose bound on RM2(k). The proof of the following
Theorem is due to Erdős [5]. We present it using modern notation and supply some of the missing
details.

6



Theorem 14. RM2(k) ≥
( 1

4
)k2

Proof. Let R = R2(k). Let A = {A1, · · · , A(n
R)} be an enumeration of all R-subsets of [n]. We will

iterate the following process to find a lower bound on the number of monochromatic Kk’s while A is not
empty:

1. Choose Ai ∈ A.

2. There is a monochromatic Kk in Ai, which increases our count. Call it C.

3. Remove from A every Ai containing C.

Every iteration produces a distinct monochromatic Kk and we are removing at most
(
n−k
R−k

)
elements

from A. Hence:

ψ2(k, n) ≥
(
n
R

)(
n−k
R−k

) = n!
R!(n−R)! ·

(n−R)!(R− k)!
(n− k)! = n!

(n− k)! ·
(R− k)!
R!

Now we take the lower bound RM2(3) by utilizing Theorem 13:

RM2(k) = lim
n→∞

ψ2(k, n)(
n
k

) ≥
n!

(n−k)! ·
(R−k)!
R!(

n
k

) = k!(R− k)!
R!

= 1
R
· 2
R− 1 · · ·

k

R− k + 1 ≥
1
Rk
≥ 1

(4k)k = 1
4k2

To get a sense of how this lower bound compares to known values, we utilize RM2(3) = 1
4 which we

computed earlier. Theorem 14 gives RM2(3) ≥ 1
432 = 1

262144 , which is a significant disparity.

6 Comparing Two Proofs of a Tighter Bound
In this section we give two proofs of an improvement to Theorem 14. They are both the same proof
and due to Conlon [2]. The first one is essentially what Conlon presented. It is straightforward but
unmotivated and hard to generalize to c colors. The second one is motivated and from it one can see
how to generalize it to c colors.

Notation 15. For the remaining Theorems we will use the notation Oa,b(f(a, b, n)) to denote that the
function f has a coefficient of the highest-order term which depends on a and b.

As an example, in Theorem 17 we write Oa,b(na−1) to suggest the highest order term is f(a, b)na−1

where f(a, b) is some function of a and b (e.g. f(a, b) = 2ab).

6.1 Conlon’s Proof
Lemma 16. Let n� d and 0 < x < 1. Then(

x(n− 1)
d

)
≈ xd

(
n

d

)
.

Proof. See Appendix A.

We want a better lower bound on RM2(k) than was shown in Theorem 14. We only care about what
happens when n is large. However, in the proof of Theorem 17 we need to formally bound n below for
the induction to proceed, hence the condition in the Theorem statement n ≥ 3a+b.

Theorem 17. Let a, b ≥ 1 be natural numbers, and let n ≥ 3a+b. Then in any red/blue-coloring of the
edges of Kn there are at least:

2−a(b−2)−(a+1
2 )
(
n

a

)
−Oa,b(na−1)

red Ka’s OR at least:
2−b(a−2)−(b+1

2 )
(
n

b

)
−Oa,b(nb−1)

blue Kb’s.

7



Proof. We induct on a+ b.
Base Case: a+ b = 2.

2−1(1−2)−(2
2)
(
n

1

)
= n

and since we can think of every vertex being a monochromatic K1 in either color, the statement holds.

Induction Hypothesis: The theorem is true for all (a0, b0, n0) such that a0+b0 < a+b and n0 ≥ 3a0+b0 .

Induction Step: We show the theorem is true for (a, b, n) with n ≥ 3a+b.
Assume we are given a red/blue coloring of the edges of Kn.
For each vertex vi there is a color Ci s.t. there are at least n−1

2 neighbors to which it is connected
by Ci. Either there are at least n

2 vertices associated with red or there are at least n
2 vertices associated

with blue. Suppose WLOG these vertices are red and call them {v1, · · · , vn
2
}. For all i, let Vi be the

respective red neighbors of vi.
We apply the induction hypothesis to the subgraph induced by each Vi separately. Each subgraph

has at least n−1
2 vertices and by the induction hypothesis we know:

n ≥ 3a+b =⇒ n− 1 ≥ 3a+b − 1

=⇒ n− 1
2 ≥ 3a+b − 1

2 ≥ 3a+b−1

So we can apply the induction hypothesis to the triple
(
a− 1, b, n−1

2
)
.

For each Vi, our induction hypothesis tells us there are either:

2−(a−1)(b−2)−(a
2)
( n−1

2
a− 1

)
−Oa,b((n/2)a−2)

red Ka−1’s OR at least:

2−(b)(a−3)−(b+1
2 )
(n−1

2
b

)
−Oa,b((n/2)b−1)

blue Kb’s.
First suppose there exists some i for which the latter case holds for Vi. Then the number of blue

Kb’s is at least:

2−(b)(a−3)−(b+1
2 )
(n−1

2
b

)
−Oa,b((n/2)b−1)

= 2−(b)(a−3)−(b+1
2 )2−b

(
n

b

)
−Oa,b(nb−1) (Lemma 16)

= 2−(b)(a−2)−(b+1
2 )
(
n

b

)
−Oa,b(nb−1)

completing the proof. Therefore we assume for all i, Vi instead has at least:

2−(a−1)(b−2)−(a
2)
( n−1

2
a− 1

)
−Oa,b((n/2)a−2)

red Ka−1’s. By our assumption, since each Vi is connected to vi by red edges, each of these forms a red
Ka. It is possible we have counted each of these a times (once per each vertex), and there are at least
n
2 of them so in total we have at least:

1
a
· n2

(
2−(a−1)(b−2)−(a

2)
( n−1

2
a− 1

)
−Oa,b((n/2)a−2)

)
= n

2a

(
2−(a−1)(b−2)−(a

2)21−a
(

n

a− 1

)
−Oa,b(na−2)

)
(Lemma 16)

= 2−(a−1)(b−2)−(a
2)2−a

(
n

a

)
−Oa,b(na−1)

= 2−(a−1)(b−2)−(a+1
2 )
(
n

a

)
−Oa,b(na−1)

> 2−(a)(b−2)−(a+1
2 )
(
n

a

)
−Oa,b(na−1)

red Ka’s.
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Corollary 18. RM2(k) ≥
(

1
2
√

2

)k2(1−o(1))

Proof. In Theorem 17, let a = b = k. Then

ψ2(k, n) ≥ 2−k(k−2)−(k+1
2 )
(
n

k

)
−Ok(nk−1)

= 2− 3
2k

2+ 3
2k

(
n

k

)
−Ok(nk−1)

=
(

1
2
√

2

)k2−k (
n

k

)
−Ok(nk−1)

So

RM2(k) = lim
n→∞

ψ2(k, n)(
n
k

) ≥
(

1
2
√

2

)k2(1−o(1))

6.2 Another Version of the Proof
Theorem 17 is succinct and the proof is easy to follow. A curious reader may wonder where the leading
coefficients came from; we must postpone this exploration until our next result. As a comparison with
the bound we computed for RM2(3) earlier, this result gives us:

RM2(3) ≥
(

1
2
√

2

)32

≈ 1
11585

We now step back and consider the problem in generality. Due to the definition of Ramsey Multi-
plicity, we want to construct a function whose leading term is a product of some coefficient with

(
n
k

)
.

If we structure the Theorem in a similar way, this function can depend on both a and b to represent
different sized subgraphs for each color. The lower order terms are of no consequence as we plan to take
a limit. With this in mind, we state and prove a similar result to Theorem 17 as a second method of
obtaining the bound in Corollary 18.

Rather than simply state the Theorem in its entirety upfront, we methodically proceed from our
general statement and derive relations on our functions. Then, under certain intuitive, relaxed conditions,
we use these relations to provide a recurrence for our functions. Finally we solve the recurrence and
realize the same bound from Corollary 18.

Theorem 19. Let a, b ≥ 1 be natural numbers, and n ≥ 3a+b. Let T = T (a, b) and U = U(a, b) be
functions (determined later). Then in any red/blue-coloring of the edges of Kn there are at least:

T

(
n

a

)
−Oa,b(na−1)

red Ka’s OR at least:
U

(
n

b

)
−Oa,b(nb−1)

blue Kb’s.

Proof. We wish to prove this by induction, in a similar manner to the previous Theorem, but because
we will later determine T and U , we only end up with a set of relations for these functions in order for
our inductive proof to work.

Again we induct on a+ b.
Base Case: a+ b = 2. Note that if a = 1 or b = 1 we have n monochromatic Ka’s or Kb’s respectively.
So we can simply set:

T (a, 1) = T (1, b) = U(a, 1) = U(1, b) = 1,∀a, b (1)

Induction Hypothesis: The theorem is true for all (a0, b0, n0) such that a0+b0 < a+b and n0 ≥ 3a0+b0 .

Induction Step: We show the theorem is true for (a, b, n) with n ≥ 3a+b.

9



Assume we are given a red/blue coloring of the edges of Kn.
Every vertex v is connected to either n−1

2 vertices by blue edges or n−1
2 vertices by red edges.

Additionally, either the first case occurs n
2 times or the second case occurs n

2 times. We will first work
through the case where we have n

2 vertices {vi} each connected to n−1
2 vertices (respectively Vi) by blue

edges and the remaining cases follow similarly.
We apply our induction hypothesis to the subgraph induced by each Vi separately, similar to the

process in Theorem 17. Our induction hypothesis says for each Vi we must have at least:

T (a, b− 1)
(n−1

2
a

)
−Oa,b(na−1)

red Ka’s OR at least:

U(a, b− 1)
( n−1

2
b− 1

)
−Oa,b(nb−2)

blue Kb−1’s.
If the first case occurs for any of the vertices, then (making use of Lemma 16) we have at least:

T (a, b− 1)
(n−1

2
a

)
−Oa,b(na−1) =

(
1
2

)a
T (a, b− 1)

(
n

a

)
−Oa,b(na−1)

red Ka’s. To complete our proof from here we would need the following relation on T :(
1
2

)a
T (a, b− 1) ≥ T (a, b) (2)

If this case does not occur for any of the vertices, then for each vertex set Vi our Inductive Hypothesis
says we have at least:

U(a, b− 1)
( n−1

2
b− 1

)
−Oa,b(nb−2)

blue Kb−1’s. By our assumption, since each Vi is connected to vi by blue edges, each of these forms a
blue Kb. It is possible we have counted each of these b times (once per each vertex of the Kb), and there
are at least n

2 of them so in total we have at least:

1
b
· n2

(
U(a, b− 1)

( n−1
2

b− 1

)
−Oa,b(nb−2)

)
= 1
b
· n2

(
U(a, b− 1)

(
1
2

)b−1(
n

b− 1

)
−Oa,b(nb−2)

)

=
(

1
2

)b
U(a, b− 1)

(
n

b

)
−Oa,b(nb−1)

blue Kb’s. To complete our proof from here we would need the following relation on U :(
1
2

)b
U(a, b− 1) ≥ U(a, b) (3)

If we worked through the other cases, we would similarly obtain the following relations on T and U :

(
1
2

)a
T (a, b− 1) ≥ T (a, b)(

1
2

)b
U(a, b− 1) ≥ U(a, b)(

1
2

)a
T (a− 1, b) ≥ T (a, b)(

1
2

)b
U(a− 1, b) ≥ U(a, b)(

1
2

)a
T (a− 1, b) ≥ T (a, b)(

1
2

)b
U(a− 1, b) ≥ U(a, b)

10



Note the redundancy in some of these equations. This is actually due to an arbitrary, although
understandable choice we made earlier in the proof. We will revisit this observation shortly.

For clarity we will now list our required relations on T and U to complete the proof.

T (a, 1) = U(1, b) = 1,∀a, b (4)(
1
2

)a
T (a, b− 1) ≥ T (a, b) (5)(

1
2

)b
U(a, b− 1) ≥ U(a, b) (6)(

1
2

)a
T (a− 1, b) ≥ T (a, b) (7)(

1
2

)b
U(a− 1, b) ≥ U(a, b) (8)

Note 20. Early on in the induction step of the proof of Theorem 19 we said Every vertex v is connected
to either n−1

2 vertices · · · . This is true, but our choice of the fraction 1
2 may not have been optimal.

Indeed it is not! Conlon shows that better results can be obtained by having the fraction depend on a
and b. We offer some intuition as to why this might be true. Consider the scenario where b is much
larger than a, say b = 100a. In this scenario we could imagine the worst-case graph may be one with
significantly more blue edges than red edges, and could thus imagine tweaking our proof to account for
this possibility. Still, our choice of 1

2 yields a non-trivial bound with a simple proof that still contains
most of the ideas of the original proof.

In Section 7 we state a result of Conlon who provides a numerical solution to the recurrence given
in Equations 4 - 8, although the methods used are beyond the scope of this paper. Now we proceed to
show how to obtain the same bound referenced earlier using these relations.

Corollary 21. RM2(k) ≥
(

1
2
√

2

)k2(1−o(1))

Proof. We wish to maximize the quantity T (k, k), noting that the relations are symmetric in T and U
when a = b = k.

To do this, imagine a lattice of points {1 ≤ a ≤ k} × {1 ≤ b ≤ k}. To reach the point (k, k) we
must begin along an edge and sequentially take steps, increasing by one our 1st or 2nd coordinate. Each
of these steps comes at a multiplicative cost of 2−a or 2−b in our respective coordinates. Importantly,
because T (a, b) must be smaller than the product of each step, we need to minimize the quantity over
all possible step sequences. Let us formalize this process with a definition:

Definition 22. Let [x]× [y] be an integer lattice of points. A path P in this lattice to (x, y) is defined
as a sequence of points {ai, bi}i=0,··· ,t which satisfies the following properties:

1. a0 = 1 or b0 = 1

2. a1 6= 1 and b1 6= 1

3. (ai, bi) = (ai−1 + 1, bi−1) or (ai, bi) = (ai−1, bi−1 + 1)

4. (at, bt) = (x, y)

We will denote by Px,y the set of all paths to (x, y).

Using this definition and notation we can succinctly describe our optimization problem as:

T (k, k) = min
P∈Pk,k

Πt
i=12−ai

11



To minimize this product, we wish to maximize the exponents {ai} as quickly as possible and this can
be done with the path (2, 1), (2, 2), (3, 2), (4, 2), · · · , (k, 2), (k, 3), · · · , (k, k).

T (k, k) = min
P∈Pk,k

Πt
i=12−ai

= 2−(2+
∑k

i=2
i+
∑k

i=2
k)

= 2−(2−1+(k(k+1)/2)+k(k−1))

= 2−( 3
2k

2− 1
2k+1)

=
(

1
2
√

2

)k2(1−o(1))

Conlon states the process used to obtain the bounds for 2-colorings is also effective for c-colorings,
but does not explore this in his original work. We now offer our main result, a generalization of the
previous Theorems for c-colorings. The technique used to solve the problem will be exactly as presented
in the proof of Theorem 19 and the subsequent Corollary 21.

Theorem 23. Let c ≥ 2 represent the number of colors, m = {m1, · · · ,mc} with mi ≥ 1 ∀i, and
n ≥ (c + 1)

∑
mi . Let {Ui = Ui(m)}ci=1 be functions (determined later). Then in any c-coloring of the

edges of Kn there are at least:

U1

(
n

m1

)
−Om(nm1−1)

monochromatic Km1 ’s OR at least:

...

OR at least:
Uc

(
n

mc

)
−Om(nmc−1)

monochromatic Kmc
’s.

Proof. We prove this by induction on
∑
imi.

Base Case: Any mi = 1. Then we have n monochromatic Kmi
’s. In this case we may set U = 1 if

there is a 1 in any coordinate of the vector m.

Induction Hypothesis: The theorem is true for all (m0, n0) such that
∑
m0i

<
∑
mi and n0 ≥

(c+ 1)
∑

m0i .

Induction Step: We show the theorem is true for (m, n) with n ≥ (c+ 1)
∑

mi .
Assume we are given a c-coloring of the edges of Kn.
For each vertex v there must be a color Ci for which there are at least n−1

c edges of this color
connecting v to other vertices. Across all vertices, choose the color Ci which occurs the most often,
which results in a set {vi} of size at least n

c . WLOG suppose this color is C1. Let Vi be the set of
vertices connected to each vi by color C1.

We apply the induction hypothesis to the subgraph induced by each Vi separately. Each subgraph
has at least n−1

c vertices and by the induction hypothesis we know:

n ≥ (c+ 1)
∑

mi =⇒ n− 1 ≥ (c+ 1)
∑

mi − 1

=⇒ n− 1
c
≥ (c+ 1)

∑
mi − 1

c
≥ (c+ 1)(

∑
mi)−1

So we can apply our induction hypothesis to the tuple
(
m1 − 1,m2, · · · ,mc,

n−1
c

)
.

By our inductive hypothesis this means there are at least:

U1(m1 − 1,m2, · · · ,mc)
( n−1

c

m1 − 1

)
−Om(nm1−2)

12



monochromatic Km1 ’s of color C1 OR at least:

U2(m1 − 1,m2, · · · ,mc)
(n−1

c

m2

)
−Om(nm2−1)

monochromatic Km2 ’s of color C2 OR at least:

U3(m1 − 1,m2, · · · ,mc)
(n−1

c

m3

)
−Om(nm3−1)

monochromatic Km3 ’s of color C3 OR at least:

...

Uc(m1 − 1,m2, · · · ,mc)
(n−1

c

mc

)
−Om(nmc−1)

monochromatic Kmc
’s of color Cc.

For 2 ≤ j ≤ c, our argument proceeds in the following way.

Uj(m1 − 1,m2, · · · ,mc)
(n−1

c

mj

)
−Om(nmj−1) =

(
1
c

)mj

Uj(m1 − 1,m2, · · · ,mc)
(
n

mj

)
−Om(nmj−1)

=⇒
(

1
c

)mj

Uj(m1 − 1,m2, · · · ,mc) ≥ Uj(m1,m2, · · · ,mc)

If none of these cases happens, since all of our vertices are connected to each of their corresponding
vertex sets by the same color, C1, our Inductive Hypothesis states we have at least:

U1(m1 − 1,m2, · · · ,mc)
( n−1

c

m1 − 1

)
−Om(nm1−2)

monochromatic Km1 ’s. There are n
c vertex sets, but each monochromatic Km1 may be overcounted m1

times and thus:
n

c
· 1
m1

(
U1(m1 − 1,m2, · · · ,mc)

( n−1
c

m1 − 1

)
−Om(nm1−2)

)
=
(

1
c

)m1

U1(m1 − 1,m2, · · · ,mc)
(
n

m1

)
−Om(nm1−1)

=⇒
(

1
c

)m1

U1(m1 − 1,m2, · · · ,mc) ≥ U1(m1,m2, · · · ,mc)

The relations we desire on {U} must hold for each color and each coordinate of our vector m, so we
are left with the following set of relations that must be satisfied for our Theorem to hold:

U(m01 , · · · ,m0i = 1, · · · ,m0c) = 1, 1 ≤ i ≤ c, 1 ≤ m0j ≤ mj ,∀i, j (9)
c−maxi{m0i

}U(m01 , · · · ,m0i
− 1, · · · ,m0c

) ≥ U(m01 , · · · ,m0c
),∀i (10)

Corollary 24. RMc(k) ≥
(( 1

c

)c− 1
2
)k2(1−o(1))

Proof. Similar to our construction of the function T in the proof of Corollary 21 we wish to find paths,
now in a c-dimensional lattice. The minimizing path to reach (k, · · · , k) can be done with the path (2,
· · · , 2, 1), (2, · · · , 2, 2), (3, · · · , 2, 2), (4, · · · , 2, 2), · · · , (k, · · · , 2, 2), (k, 3, · · · , 2, 2), · · · , (k, k, 2, · · · ,
2, 2), · · · , (k, k, · · · , k, 2), · · · , (k, · · · , k). Thus

U(k, · · · , k) = min
P∈Pk,··· ,k

Πt
i=1c

−ai

= c−(2+
∑k

i=2
i+(c−1)

∑k

i=2
k)

= c−((2−1+k(k+1)/2)+(c−1)k(k−1))

= c−((c− 1
2 )k2−(c− 3

2 )k+1)

=
((

1
c

)c− 1
2
)k2(1−o(1))
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7 Tighter Bounds
Conlon provides an analytic approximation to the solution of the recurrence given in Equations 4 - 8.
Keep in mind that our arbitrary choice of the fraction 1

2 was not optimal and their work utilizes a more
general recurrence.

Theorem 25. Let tε(x) be a function with tε(0) = ε and satisfying the differential equation:

t′ε(x) = log tε(x) tε(x)(1− tε(x)
x− (1− x)tε(x)

Let L = limε→0 tε(1) and C = (L(1− L))−1/2, then

RM2(k) ≥ C−k
2(1−o(1)

A numeric approximation yields the value C ≈ 2.18. This is the best known bound and we therefore
have the following result:

RM2(3) ≥
(

1
2.18

)32

≈ 1
1112

Their analysis is simple enough to follow, but goes beyond the scope of this paper. From a quick
glance it is not immediately obvious to us how their process could be generalized for c-colorings, but
that is an area for further research.

8 Open Problems
Open 26.

1. The results on ψ2(3, n) are obtained with completely elementary techniques. Can this be done for
ψ2(4, n)? ψ3(3, n)?, ψ2(5, n)?

2. Obtain an easier proof of Theorem 25. One litmus test is if the proof easily generalizes to c colors.

A Appendix
Proof of Lemma 16

Proof. We wish to show for n large, d� n, and 0 < x < 1 fixed:(
x(n− 1)

d

)
= xd

(
n

d

)
−O(nd−1)

We carefully keep track of the sign of the lower order term for completeness, though this is not strictly
necessary for our earlier results because we are taking the limit as n −→∞.
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(
x(n− 1)

d

)
= x(n− 1) · (x(n− 1)− 1) · · · (x(n− 1)− d+ 1)

d!

=
(x(n− 1))d −

[∑d−1
i=1 i

]
(x(n− 1))d−1

d! +O(nd−2)

= xd
(n− 1)d

d! − xd−1

[∑d−1
i=1 i

]
(n− 1)d−1

d! +O(nd−2)

= xd
nd

d! − x
d (d− 1)(n− 1)d−1

d! − xd−1

[∑d−1
i=1 i

]
(n− 1)d−1

d! +O(nd−2)

= xd
(
n

d

)
− xd

(
n

d

)
+ xd

nd

d! − x
d (d− 1)(n− 1)d−1

d! − xd−1

[∑d−1
i=1 i

]
(n− 1)d−1

d! +O(nd−2)

= xd
(
n

d

)
− xdn

d

d! + xd

[∑d−1
i=1 i

]
nd−1

d! + xd
nd

d!

− xd (d− 1)(n− 1)d−1

d! − xd−1

[∑d−1
i=1 i

]
(n− 1)d−1

d! +O(nd−2)

= xd
(
n

d

)
+ xd

[∑d−1
i=1 i

]
nd−1

d! − xd (d− 1)(n− 1)d−1

d! − xd−1

[∑d−1
i=1 i

]
(n− 1)d−1

d! +O(nd−2)

Comparing the coefficients of nd−1 in the second and fourth terms of this last equation, since x < 1
we see that of the fourth term is larger in absolute value and thus:(

x(n− 1)
d

)
= xd

(
n

d

)
−O(nd−1)
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