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Abstract

Since best-first search algorithms such as A* require large amounts of memory, they some-
times cannot run to completion, even on problem instances of moderate size. This problem has
led to the development of limited-memory search algorithms, of which the best known is IDA*

[9, 10]. This paper presents the following results about TDA* and related algorithms:

e The analysis of asymptotic optimality for IDA* in [10] is incorrect. There are trees satisfy-
ing the asymptotic optimality conditions given in [10] for which IDA* is not asymptotically
optimal.

e To correct the above problem, we state and prove necessary and sufficient conditions for
asymptotic optimality of IDA* on trees. On trees not satisfying our conditions, we show

that no best-first limited-memory search algorithm can be asymptotically optimal.

e On graphs, IDA* can perform quite poorly. In particular, there are graphs on which IDA*

does Q(22") node expansions where N is the number of nodes expanded by A*.
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Search graphs

Sequence of graphs

Explicit search tree

Start node

Goal nodes

Other nodes

Cost of the arc (m,n)

Path in G

Cost of the path P

Cost of the path P from m to n

Last node of P

Cost of path of least cost from s to n

Cost of path of least cost from n to a goal node

g=(n) + h*(n)

Cost of currently known path of least cost from s to n
Underestimate of 2*(n)

g(n)+ h(n)

A small positive real number

Node-branching factor

Constant > 1

Lists

IDA* thresholds

Integers

Set of paths in G’ generable by IDA* with threshold z
Set of nodes of G generable by IDA* with threshold z
Set of nodes of GG expandable by IDA* with threshold z
Cardinality of X“(z)

Active iterations of IDA*

Dummy iterations of IDA* following the active iteration i,
Number of active iterations

Number of dummy iterations

Total number of iterations by IDA*

Set of new nodes expanded by IDA* during iteration j
Number of new nodes expanded by IDA* during iteration j
Total number of node expansions done by IDA* on G
Surely expandable nodes of G

Maximum number of nodes on any path P s.t. pathmax(P) < h*(s)

Amount of Memory in number of nodes
Search Algorithms



1 Introduction

The well known A* search algorithm [7, 17] is optimal in terms of number of node expansions (which
is also a measure of its time complexity) in most cases [4]. However, since it requires exponential
amount of memory to run, it runs out of memory even on problem instances of moderate size.

To overcome the storage problem, a variant of A* called IDA* (Iterative Deepening A*) was
introduced by Korf [9, 10]. Basically, IDA* performs a depth-first search, backtracking whenever
it finds a path whose cost exceeds a threshold value z. It repeats this search for larger and larger
values of z, until it finds a solution. Since IDA* expands nodes more than once, the total number
of node expansions for IDA* is more than for A*. But since IDA*’s memory requirement is only
linear in the depth of the search, this enables IDA* to solve much larger problems than A* can
solve in practice. For example, IDA* can solve randomly generated instances of the 15-puzzle [10].

This paper presents a detailed analysis of the properties of IDA*. Qur results are as follows:?

1. IDA* on Trees. One of IDA*’s most important properties is that under certain conditions
it is “asymptotically optimal in time and space over the class of best-first searches that find
optimal solutions on a tree” [10, p. 236]; i.e., on these trees it expands O(N ) nodes, where N
is the number of nodes eligible for expansion by A*.? In this paper, we describe and correct

some difficulties with this claim. In particular, we show that:

(a) IDA* is not asymptotically optimal in all of the cases where it was thought to be so.
As shown in Section 4, there are trees satisfying all of asymptotic optimality conditions

given in [10], such that IDA* will expand more than O(N) nodes.?

(b) The above trees appear to be common enough to affect IDA*’s average-case performance.
Our experimental results, which are presented in Section 5, suggest that for certain kinds
of Traveling Salesman Problems, IDA*’s average-case performance is not asymptotically

optimal.

!Some of these results have also been summarized briefly in [12].

2A node n is eligible for expansion by A* under a given heuristic k, if there exists a tie-breaking rule such that if
we run A* using & and the tie-breaking rule, A* will expand n.

®Previous papers have described trees on which IDA* expands more than O(N) nodes [13, 18], but the trees
described in these papers do not satisfy Korf’s [10] requirements of finite precision and non-exponential node costs.



(c¢) In Section 6, we present correct sets of necessary conditions and sufficient conditions for

IDA* to be asymptotically optimal on trees.

2. IDA* on Graphs. When the heuristic is monotone, A* will do O(N) node expansions on
graphs, because it will never expand a node more than once. However, IDA* cannot prevent
the reexpansion of a node through a costlier path. Thus, although there are specific graph-
search problems (such as the 15-puzzle) in which IDA* does well, in general the performance

of IDA* for graphs is bound to become worse than that of A*.

In particular, there are many graph and tree search problems where the node-branching factor
grows with the problem size (examples include the traveling salesman problem, flow-shop
scheduling, etc.). In Section 7, we show that on such graphs, IDA*’s worst-case complexity

with a monotone heuristic is Q(QQN), even if the graph is restricted to be acyclic.?

3. Other Algorithms on Trees. IDA* is not the only tree search algorithm that operates in
limited memory. Following IDA*, several other algorithms have been developed that run in
limited memory, such as MREC [21], MA* [3], RA* [5], SMA* [20], RBFS [8], and ITS [6]. In
Section 8, we show that for trees that do not satisfy the asymptotic optimality conditions de-
scribed in Section 6, no limited-memory best-first search algorithm is asymptotically optimal.
More specifically, in the absence of any conditions (except that the heuristic is admissible and
the maximum node-branching factor is constant) there does not exist any best-first admissible
tree search algorithm which when running with S = N/ (N ) (where (N ) # O(1)) memory

can have O(N) worst-case time complexity like A*.

The paper is organized as follows. Section 2 contains background material, including brief
descriptions of A* and IDA*. Section 3 presents some notation needed in our analysis of IDA*.

Sections 4 through 8 present the results described above, and Section 9 contains concluding remarks.

*If cycles are allowed, then IDA*’s total number of node expansions can only increase.



2 Background

2.1 Basic Concepts and Terminology

A state space consists of a directed graph G that has one start node s and a non-empty set of goal
nodes. Each arc (m,n)in G has a cost ¢(m,n) > 6 > 0. The number of children of a node is called
its node-branching factor. If P = (ng,n1,...,n) is a sequence of nodes such that (n;,_1,n;) is an
arc of G for i = 1,...,k, then we say that P is a path from ng to nj. In this case, last(P) is the
node ny. P’s cost, denoted by cost(P), is the sum of P’s arc costs. A solution path in G is a path
from s to a goal node. For each node n of G, h*(n) is the minimum cost of any path from n to a
goal node. Thus h*(s) is the cost of the least costly solution path.

The objective of many heuristic search algorithms is to find a least costly solution path in G.

To find such a path, many algorithms use a node evaluation function

f(n) = g(n) + h(n),

where g(n) is the cost of the best path currently known from s to n, and h, the heuristic function,
is an estimate of A*. It is assumed that h(n) > 0 for every node n, with A(n) = 0 if n is a goal
node.

Let P be any path from the start node s. Then the function pathmax(P) [1] is defined as
follows:

pathmax(P) = ma]g((c(P, s,m) + h(n)),
ne

where ¢( P, s,n) is the cost of the subpath of P that goes from s to n.

The heuristic function h is admissible if Yn € G, h(n) < h*(n). It is monotone if Vp € G,
h(p) < ¢e(p,q)+h(q), where ¢ is a child of p. Note that monotonicity implies admissibility. Moreover,
if h is admissible and P is a minimum-cost solution path then pathmax(P) = h*(s) = cost(P).
Algorithms which find an optimal (least-costly) solution when using an admissible heuristic are
called admissible algorithms.

We use L to denote the maximum number of nodes on any path P for which pathmax(P) <



h*(s). Since the number of nodes on any path is one more than the length of the path ®,

L =1+ max{length(P) : pathmax(P) < h*(s)}.

The set EY of the surely expandable nodes of G is the set of all nodes n for which there exists
a path P from s to n such that pathmax(P) < h*(s). A node is surely generable if it is in EY or
is a child of a node in EY. Tt is well known [4] that if A is any admissible best-first tree-search
algorithm and G is a graph, then A must generate every surely generable node of G.

Given a state space and a monotone heuristic function, the heuristic branching factor is the
average ratio of the number of nodes of each f-value to the the number of nodes at the next smaller

f-value, averaged over all f-values < h*(s) [10].

2.2 Algorithm A*

The best known admissible algorithm is A* [7, 17]. A* works in a best-first manner. It maintains
two lists: OPEN, which contains nodes that are to be expanded, and CLOSED, which contains
nodes that have already been expanded. At each iteration, A* selects a node n from OPEN with
minimum f-value, generates all of its children, and puts these children into OPEN after setting
their g, h, and f-values. If a child p of n is already present in OPEN and g(p) > g(n) + ¢(n,p),
then g(p) is reset to g(n) 4 ¢(n,p). If a child p of n is already present in CLOSED and a better
path to it is now found, then g(p) is reset to the newly found smaller path cost and p is brought
back to OPEN from CLOSED. The process of node selection and expansion continues until a goal
node is selected for expansion.

Besides its admissibility, A* has the property that if the heuristic function is monotone, then A*
never expands any node more than once. Admissible heuristic functions designed by the commonly
used method of “relaxation” [19] automatically satisfy the monotonicity condition.

One major problem with A* is the amount of memory required to store nodes in OPEN and

CLOSED. As shown in [4], every admissible search algorithm must expand all surely expandable

®The length of a path P is the number of arcs in P.



nodes before finding a solution. The number of such nodes often grows exponentially with some
measure of the problem size—and since A* keeps track of all of these nodes, it needs an exponential

amount of memory in which to store these nodes.

2.3 Performance Measures of Search Algorithms

Generally the following criteria are used to measure the efficiency of an algorithm: (a) solution qual-
ity, (b) time complexity, and (c) storage requirement. Any best-first search algorithm running with
an admissible heuristic always returns an optimal solution. Therefore, in measuring performance
of admissible algorithms, storage and time are the two dominant factors. Since the total running
time is closely related to the total number of node expansions, the number of node expansions is
often used as a measure of time complexity. Similarly, the maximum number of nodes stored at
any one time is often used as a measure of the storage requirement.

Since the admissible heuristics designed by the commonly used method of relaxation are also
monotone, and A* expands each node at most once if the heuristic is monotone, one question that
naturally arises is whether A* is optimal in terms of the number of node expansions. Dechter and
Pearl [4] and Mero [16] have shown that out of the set of all admissible best-first search algorithms
guided by the same admissible heuristic function h, no algorithm can be (in their terminology)
O-optimal; i.e., no algorithm can guarantee fewer node expansions than all other algorithms for
all problem instances. However, A* is I-optimal; i.e., for every problem instance p there exists a
tie-breaking rule R for selecting nodes from OPEN, such that if we run A* on p using R, then
A* will do fewer node expansions on p than all other algorithms. Since there does not exist any
O-optimal algorithm, we will use optimal to mean 1-optimal.

An algorithm A asymptotically dominates an algorithm B over a class of problems P if for all
problems in P, A does O(Np) node expansions, where Npg is the number of node expansions done
by B. An algorithm is asymptotically optimal if it asymptotically dominates an optimal algorithm.
Thus since A* is an optimal algorithm, an admissible state-space search algorithm algorithm is
asymptotically optimal if and only if it does O(N) node expansions, where N is the number of

nodes eligible for expansion by A*.



procedure IDA*:
Let z,z" be global variables.
Set z := h(s), where s is the start node. Set 2’ := oo.
Do the following steps repeatedly:
set P := the path containing only s;
call Depth-First(P);
set 2 := 2.

procedure Depth-First(P):
Set f := cost(P) + h(last(P)).
If f> z, then set 2/ := min(2/, f).
Otherwise, if last(P) is a goal node, then exit from IDA*, returning P.
Otherwise, do the following steps for every child n of last(P):
set P’ := the path formed by appending n to P;
call Depth-First(P’).

Figure 1: Pseudocode for IDA*.

Researchers have recently realized that in addition to considering a search algorithm’s time
complexity, it is just as important to consider its storage complexity. For example, A*’s major
bottleneck in practical use is its storage requirement. For most problems of non-trivial size, A*
runs out of memory before any significant amount of execution time. This limitation also prevails
in the case of other known variants of A* (B [15], GRAPHSEARCH [17], C [1], PropC [2], MarkA
[2], B’ [16], D [14], etc.), which are not tailored to run with limited memory. Therefore, design of

search algorithms that run with limited memory has significant practical importance.

2.4 Algorithm IDA*

To overcome the storage problem, a variant of A* called IDA* (Iterative Deepening A*) was
introduced by Korf [9, 10]. Basically, IDA* performs a depth-first search, backtracking whenever
it finds a path whose cost exceeds a threshold value z. It repeats this search for larger and larger
values of z, until it finds a solution. Figure 1 shows a pseudocode version of IDA*.

Unlike A*, IDA* is a tree search algorithm—in other words, it does not keep track of alternate
paths to each node. Thus if the search space is not a tree, IDA* can do many re-expansions of

each node as it finds new paths to that node. But since it only keeps track of the nodes on the



path it is currently exploring, IDA* requires only O(L) memory. In other words, IDA*’s memory
requirement grows only linearly with the depth of the search. This enables IDA* to solve much
larger problems than A* can solve, such as the 15-puzzle [10]. Thus IDA* has drawn significant

attention from the Al research community.

3 Definitions

As we will see later, the quantities defined below correspond closely to the behavior of A* and
IDA*.
If P = (ng,...,ng) is any path, then all-but-last(P) is the path (ng,...,nx_1) and last(P) is

the node ng. For each z > 0, we define

all paths P from s such that cost(P) + h(last(P)) > z,
WY ) = { pathmax(all-but-last(P)) < z, and all-but-last(P) con- p ;

tains no goal nodes

VY z) = {all nodes of all paths in W%(2)};
X%() = {all non-tip nodes of all paths in W&(2)};
2(z) = X))

N(G) = «G(h*(s)).

In the terms defined above, we will usually omit G if its identity is clear.

From these definitions, it follows immediately that if we run A* on a tree, then every path
generated by A* will be a subpath of a path in W(h*(s)), every node generated by A* will be in
V(h*(s)), and every node expanded by A* will be in X(h*(s)). Furthermore, in the worst case
(which occurs if A* expands all nodes on OPEN that have f-values < h*(s) before it selects a goal
node), A* will generate all paths in W(h*(s)) and all nodes in V(h*(s)), and will expand all nodes
in X(h*(s)), for a total of 2(h*(s)) node expansions. Thus X (h*(s)) is the set of all nodes eligible
for expansion by A*, and N = z(h*(s)) is the number of nodes eligible for expansion by A*. The

quantity N is known as the number of possibly expandable nodes.



For 7 =1,..., we inductively define

ZG(j) _ h(s), where s is G’s start node, if j =1,
min{cost(P) + h(last(P)) : P is a path in WE(25(j — 1))}, otherwise;
XO(5(1), if j =1,
Xpewld) =
XG(29(5)) — X9(2%(j — 1)), otherwise;
Toew(7) = Xew(D);
I9 = min{j : there is a solution path P such that pathmax(P) < 29(j)};

I¢ I
i = Y a0G0U) = Y IXCEEU)

As before, we will usually omit the superscript G if the identity of G is clear.
Suppose we run IDA* on a tree. The definitions of V(2(j)) and z(j) presented above correspond
precisely to the way that IDA* generates nodes and sets thresholds. Thus it follows that IDA*

does [ iterations, and that for j = 1,2,...,1 — 1,

the threshold used during IDA*’s j’th iteration = z(j); (1)
{nodes generated during IDA*’s j’th iteration} = V(2(j)); (2)
{nodes expanded during IDA*’s j’th iteration} = X(z(j)); (3)
{new nodes expanded during IDA*’s j’th iteration} = Xpew(J). (4)

Since IDA* generates each node at most once during each iteration, it follows that

the number of nodes expanded during IDA*’s j’th iteration = (2(j)); (5)

the number of new nodes expanded during IDA*’s j’th iteration = zpew(J). (6)

During the final iteration (i.e., 7 = I), IDA* can find a goal node and terminate before every node

of V(z(1)) has been generated. Thus

the threshold used during IDA*’s I’th iteration = z([); (7)



{nodes generated during IDA*’s I'th iteration}
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{nodes expanded during IDA*’s ['th iteration} C X (z(1)); (9)

{new nodes expanded during IDA*’s I'th iteration} C Xjew({); (10)

the number of nodes expanded during IDA*’s I'th iteration < a(z([)); (11)

the number of new nodes expanded during IDA*’s I’th iteration < 2pew(]); (12)

with equality in the worst case. Furthermore, from the correctness of IDA*, it follows that

z2(I) = h*(s). (13)
The heuristic branching factor defined in the previous section is the average, over j = 2,..., 1, of
the quantity
Tnew (])
wnew(j - 1)

Finally, it is straightforward to see that the set of surely generable nodes is precisely V(z(I—1)),
i.e., the set of nodes generated by IDA* in its second-to-last iteration and X (z(/ — 1)) is the set of

surely expandable nodes.

4 IDA¥* on Trees: Examination of Optimality Conditions

In his analysis of IDA*, Korf [10] introduces the following conditions that might or might not be

satisfied by various search problems:

Condition 1: h has a heuristic branching factor > 1;

Condition 2: the problem space grows exponentially with depth;
Condition 3: representation of costs ( f-values) is with finite precision;
Condition 4: cost (f) values do not grow exponentially with depth.

For the case where GG is a tree and & is an admissible heuristic function, it has been shown that

IDA* will do no more than (N 4+ N?%)/2 node expansions in the worst case [18]. In addition, Korf

10
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Figure 2: IDA*: Q(N?)

[10] states that if Condition 1 holds, then IDA* is asymptotically optimal, i.e., it will do only O(N)
node expansions. In order to argue that Condition 1 is a reasonable one for most best-first tree
searches, he states that Conditions 2, 3, and 4 are sufflicient to guarantee Condition 1, and that
Conditions 2, 3, and 4 are satisfied in most realistic tree search problems. Thus, we call Condition
1 the primary condition, and Conditions 2, 3, and 4 the secondary conditions.

In this section we show the following:

o The above conditions are not sufficient to ensure the O(N) time complexity of IDA*. Even

when all of them are satisfied, IDA* fails to achieve O(N) time complexity in the worst case.

e These conditions are not necessary either; i.e. IDA* can have O(N) complexity without

satisfying them.

e Conditions 2, 3, and 4 are not sufficient to guarantee Condition 1.

Example 1 Consider the search tree G in Figure 2 where there are N = 2N’ — 1 non-goal nodes

which are all possibly expandable, and one goal node. G consists of two subtrees G; and G3. While

11



Figure 3: IDA*: Q(Nl1gN)

(i1 is a full binary tree, (G5 contains N’ nodes in the form of a degenerate tree. Every leaf node in
(i is a non-terminal node except the rightmost one (py), which is a goal node. Cost of the solution
path = N’ + |lg N’|, maximum node branching factor is 2, and heuristic branching factor > 1.
Each arc has cost 1, and heuristic value is zero at every node. Thus the heuristic is monotone.
When IDA* expands nodes from G4, it expands an exponentially increasing number of new nodes
threshold by threshold. But when it begins expanding nodes from G5, it expands only one new
node at each iteration and for each new node p;, 1 <@ < N’ IDA* reexpands all nodes of GG;. Since
there are N’ nodes in G5 and G also contains N’ nodes, the total number of node expansions by

IDA* is clearly Q(N'?) = Q(N?). This result also holds for several other types of trees [13].

The example above satisfies the primary condition, and all secondary conditions except Condi-
tion 2: the search space is not exponential in the solution depth. In the next two examples, we show
that the O(N) worst-case time complexity for IDA* does not hold even when all the conditions are

satisfied.

Example 2 In the search tree G given in Figure 3, each non-leaf node has a branching factor

b = 2, and each arc has unit cost. G consists of two subtrees (called Gy and G'3) where each one is

12



a full binary tree of height k. G5 is rooted at the right most node of GGy. Every leaf node, except
the one labeled as goal, is a non-terminal leaf node. For each node n in G, we assume h(n) = 0.
Then h is monotone. The heuristic branching factor is

2k+2k%1+2(k—1)_2+i_1
(2k) B K2k k

Note that the goal node is at a depth of 2k = O(lg N), where N is the total number of possibly
expandable nodes in . Therefore the search space is exponential. The maximum cost value is 2k
which grows only linearly with depth. The precision constraint is vacuously satisfied because the
cost values are not fractions. Thus, the primary condition and all of the secondary conditions are
satisfied. Now we calculate the total number of node expansions by IDA* on the tree G.

Clearly G4 and G each contain N’ = [N/2] nodes. The cost of the solution path is 2k =
2[lg(N'+ 1) — 1]. Let

No = 0% + 2051 + 3052 + ... + kb.

Then the total number of node expansions by IDA* in the worst-case is

ot = No+ kN'+ No > kN'+ N' = k(N'+1) = Q(N g N).

Example 3 In the example tree ¢ shown in Figure 4 a more interesting situation is illustrated.
The root node ng has only one child ny, which roots a complete b-ary tree (b = 2 in this case).
Every leaf node of (G is a goal node. However, there is only one minimum-cost solution path of cost
2k — 1, which in Figure 4 is the rightmost path in . Every other solution path has cost 2k. Fach
arc has cost 1, except for the ones which are incident on the goal nodes, in that case the cost is k.
Heuristic values are shown beside the nodes. Since every non-goal node up to and including level
k (assuming that the root node is at level 0) has f-value less than h*(s)(= 2k — 1), IDA* must
expand all of them before finding a goal node and terminating. IDA* will expand one new node in
iteration 1. Thereafter, in iteration i, 2 < i < k, IDA* will expand 2°~**! new nodes. It will make

a total of k£ + 1 iterations before termination corresponding to thresholds k — 1,k,...,2k — 1. The

13



Figure 4: IDA*: Q(Nlg N)

heuristic branching factor is

2k—1

—+(k—1)1
k

> 1,

and thus the primary condition is satisfied. It can be easily seen that the secondary conditions are

also satisfied. The total number of node expansions by IDA* is

k
Tiot = (h+ 1)1+ (k—i+2)+287H

=2

(k+1) 428k - 1).

But & =1g(N 4 1), where N is the number of possibly expandable nodes in GG. Therefore, zo, =

Q(NlIgN).

Example 4 In the examples above, we have shown that the conditions stated in [10] for the
asymptotic optimality of IDA* are not sufficient. In this example, we show that these conditions

are not necessary either. Consider a search tree which is identical to the tree in Figure 2, except

14



(a) the maze (b) the search graph

Figure 5: An example maze and its search graph.

for two changes:

e in the degenerate tree GGy, there is only a constant number, say ¢, of nodes from ny to the

goal node.

G contains a total of N = N’ + ¢ — 1 non-goal nodes, and one goal node. All the nodes of Gy will
be expanded by IDA* in the first iteration. Thereafter, in each iteration only one new node will be
expanded. The heuristic branching factor is :

(c=1D)*1+ 77
C

<1

Since IDA* does only a constant number of iterations in this example, it will clearly do only O(N)
node expansions. Note that the primary condition stated previously is not satisfied in this case.

This example also shows that the secondary conditions do not imply the primary condition.

Example 5 Above, we have constructed trees on which the previous analysis of IDA* fails. Below
is an example of a search problem that gives rise to such a tree. Consider the maze shown in Figure

5(a). The objective is to find a least-cost path through the maze from S to GG, obeying the one-way

15



markings shown in the maze. To represent the maze as a search graph, we use nodes to represent
junction points and dead ends, and use arcs to represent the hallways between them. Thus, the
search graph for this maze is the graph shown in Figure 5(b). To search this graph, IDA* will

unfold © the space into the exact same tree shown in Figure 3.

5 IDA* on Trees: Experimental Studies

In Section 4, we showed that there are trees satisfying the asymptotic optimality conditions stated
for IDA* in [10], for which IDA* is not actually asymptotically optimal. In this section, we examine
the practical impact of the existence of such trees, by studying IDA*’s performance on randomly
generated instances of the Traveling Salesman Problem (TSP).

The TSP is a combinatorial optimization problem and is defined as follows: given a set of cities
with nonnegative cost between each pair of cities, find the cheapest tour. A tour is a path that
starting at some initial city visits every city once and only once, and returns to the initial city. Our
results suggest that on randomly generated instances of the TSP, the number of node generations
by IDA* will grow exponentially faster than the number of node generations by A* if the cost of
going from one city to another is allowed to grow in proportion to the square of the number of
cities (which satisfies the asymptotic optimality conditions in [10]).

To represent the search space and the lower bound heuristic for the Traveling Salesman Problem,
we chose the well known method of Little et al. [11]. The search space in this formulation is a
binary tree.

We generated two sets of data, which we will call TSP Set 1 and TSP Set 2, and ran both IDA*
and A* on each set. For both sets we selected the number of cities equal to 5, 10, 15, 20, 25, 30, and
35. For each value of the number of cities, one hundred cost matrices were generated. For TSP Set
1 the cost values ¢(¢, j) were taken at random from the interval [0,100] using a uniform distribution
except for ¢ = j, in which case ¢(¢, ) was set to oco. For TSP Set 2 the cost values ¢(i,j) were
taken at random from the interval [0,(10 x number of cities®)] using a uniform distribution except

for ¢« = 7, in which case ¢(¢,7) was set to co. In general the cost matrices of TSP Set 1 and TSP

SWhat we mean by “unfold” should be intuitively clear. We give the precise definition in Section 7.
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Set 2 were not symmetric and did not satisfy the triangle inequality. It is easy to verify that the
trees generated by the above technique satisfy all the conditions stated previously for asymptotic
optimality of IDA*. The only difference between TSP Set 1 and TSP Set 2 is that the costs between
the cities in TSP Set 1 are drawn from a fixed range whereas in TSP Set 2 the range grows in
proportion to the cost matrix which is of the size of square of the number of cities.

The results of our experiments are summarized in Figures 6 through 9, which graph the perfor-
mance of IDA* and A* for TSP Set 1 and TSP Set 2. Each data point in Figures 6 through 9 is
the average over the one hundred problem instances.

For TSP Set 1, from Figure 8, the ratio of node generations by IDA* to node generations by
A* first goes up and then goes down. If A*’s asymptotic performance were strictly better than
IDA*’s, we would have expected the ratio to keep going up. Therefore, Figure 8 suggests that
both algorithms have the same asymptotic performance on this problem on TSP Set 1, i.e. IDA*
is asymptotically optimal. However, for TSP Set 2, the ratio of node generations by IDA* to node
generations by A* continues to grow with the number of cities. Although it is difficult to make
a conclusive statement about asymptotic complexity on the basis of a finite number of tests, our

results clearly suggest that IDA* is not asymptotically optimal on TSP Set 2.

6 IDA* on Trees: New Optimality Conditions

In this section, we derive two new conditions, one of which is necessary for asymptotic optimality
of IDA*, and the other of which is sufficient to guarantee asymptotic optimality of IDA*.

Korf stated that IDA* is asymptotically optimal if the heuristic branching factor exceeds 1.
As we have seen, this condition is not sufficient to guarantee asymptotic optimality—but we can
guarantee asymptotic optimality if we make the condition stricter.

For each ¢, consider the ratio of the number of new nodes at iteration ¢ + 1 to the number of
new nodes at iteration 7. Even though the average ratio may exceed 1 (in which case the heuristic
branching factor exceeds 1), there may be a number of “dummy iterations” in which the ratio is
not “large enough.” If there are too many of these dummy iterations in the wrong places—then

IDA* will perform badly.
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Below, we formalize the idea of a dummy iteration, and what it means for there to be “too
many” of them in the “wrong places.” This enables us to state two new conditions, one of which
is necessary for asymptotic optimality of IDA*, and the other of which is sufficient to guarantee
asymptotic optimality of IDA*,

Let by > 1 be a fixed constant. Then IDA*’s active iterations on (G are the iterations

i?, ig;, .. .,ifG defined inductively as follows:

v =

G

Forp=2,...,u, 1,

is the smallest integer such that xnew(ig)/wnew(ig_l) > by.

As usual, we omit the superscript G when the identity of G is obvious.

Intuitively the active iterations are the iterations in which the number of new nodes expanded
by IDA* grows exponentially. We call the remaining iterations dummy iterations. For each i,, let
Jp1lsJp2s - - +» Jpe, e the dummy iterations immediately following i,.

Dummy iterations can occur anywhere after the first active iteration ¢;. For ¢ = 1,...,u, let ¢,
be the number of dummy iterations that occur between iterations i, and 744;. Note that ¢, > 0,
and ¢4 +eco 4 ...+ ¢, = 1 —u. We define M(G) = max, ¢, i.e., M(G) is the maximum number of
adjacent dummy iterations.

Using the concept of dummy iterations, Sections 6.1 and 6.2 provide suflicient and necessary
conditions, respectively, for IDA* to be asymptotically optimal on trees. In addition, both sections
give examples in which these conditions are used to tell whether IDA* is asymptotically optimal

on the trees presented in Section 4.

6.1 Sufficient Conditions for Optimality

Theorem 1 gives a sufficient condition for IDA* to be asymptotically optimal.

Theorem 1 Let G = (G, Gy, . ..) be any sequence of trees such that M = O(1), i.e., the maximum
number of adjacent dummy iterations is bounded by a constant. Then on G, the number of node
expansions by IDA* is zyo, = O(N ), where N(G)) is the number of possibly expandable nodes in
G;.

20



Proof.

Let G be as defined above, G € G, and
Y = uwnew(il) + (u - 1)$new(i2) +...+ xnew(iu)-

By definition, @new(ig+1)/Tnew(tq) > b1, 1 < ¢ < u —1. Thus zpew(tu—p)/Tnew(ty) < €, 1 < p <

uw — 1, where € = 1/by < 1. Therefore,

Tnew( Ty < N
(1—¢€)? = (1—¢)?

Y < xnew(iu){ugu_l + (u — 1)6“_2 +...42e4+ 1} < = O(N).

For each node n in G, let ¢(n) be the total number of times n is expanded by IDA*. Then

U+ Mu = (U)(M + 1) ifne Xnew(il);

(u—1)+Mu=(u)(M+1)—1 if n € Xpew(J11);

(u—1)+(u—-1DM+1=(u)(M+1)-M if n € Xnew(Jie,);

(u—1)+Mu-1)=(u-1)(M+1) if n € Xpew(i2);

(u—2) 4+ M(u—-1)=(u—1)(M+1) -1 if n € Xnew(Jj21);

(u=2)+(u=2)M +1=(u—=1)(M+1)=M if n€ Xnew(jze,);

(u—(u—1)+Mu—-—(u—-1)=M+1 if n € Xpew(iy);
(w—u)+Mu—(u—1))=(M+1)-1 if 1€ Xnew(Ju1);
(v—u)+(v—uyM+1=(M+1)—M if n € Xnew(Jucy)-
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Therefore, the total number of node expansions is

Tiot = Z t(n) + ( Z tn)+...+ Z t(n))
(71) Jieg)

nEXnew (¢ neXnew(jll) neXnew(

+ > tn)+ dootn)+.+ D] t(n))
j2ey)

neXnew(Zé) neXnew(j21) neXnew(

+ > )+ oo+ D t(n))
Jucy)

neXnew(iu) neXnew(jul) neXnew( ]

IN

> (WM +1)

nEXnew (21)

+ > (WM+D-D+... 4+ > (u)(M+1)—M)

neXnew(jll) neXnew(jlcl)

+ ) (u—-1)(M+1)

neXnew(Zé)

+ > (u=(M+1)=1)+...+ o (w=1)(M+1)— M)
neXnew(j21) neXnew(j2c2)
A

+ > (M+1)

neXnew(iu)

+ ) M+ -D+...+ D> (M+1)-M)
€ Xnew(ju1) € Xnew (Jucy)
< Zaew(i)(W)(M + 1)
+ (0)new(()((w)(M + 1) = 1) 4. 4 (1) Znew (i) ((0)(M +1) = M)
+ Znew(iz)(u — 1)(M + 1)
+ (01)anew(i2)((w)(M + 1) = 1) 4 .. 4 (b1)2new(i2)((u = 1)(M + 1) = M)
NI
+ Znew(lu)(M + 1)

+ (01)Znew (0 )((M 4+ 1) = 1) + ..+ (b1) Znew (@) ((M + 1) = M)

< (b)) tnen(i)(w)(M + 1)(M + 1)

22



+ (01)Znew(ig)(u — (M + 1)(M + 1)

+ (01)Znew (i )(M + 1)(M + 1)

< (b)(M + DM + D)(0new(i1) + (4 = Dnew(52) + - - - + Znew(ia))

< (M +1)(M + 1)(b)Y.

Thus since Y = O(N), by and M = O(1), z¢or = O(N). |

Example 6 In Example 4 of Section 4, the total number iterations I is a constant. Therefore, M

= the maximum number of adjacent dummy iterations = O(1), so by Theorem 1, 2, = O(N).

6.2 Necessary Conditions for Optimality

In order to present necessary conditions for IDA* to be optimal, we first need the following lemma.
This lemma shows that if a tree G is constructed from G in such a way that G’ is identical to ¢
except that one node n in G has a higher f-value than in G, i.e. f&(n) > f&(n), then the total
number of node expansions by IDA* on G’ will be less than the number of node expansions by
IDA* on G. What this means is that if a new problem instance is created from an old problem
instance of IDA* by pushing a new node of iteration j to the iteration k, such that k > j, then xyy;

in the new problem instance will be less than in the old problem instance.

Lemma 1 Let G be any tree on which IDA* does I > 2 iterations, and let 1 < j < k& < I. If

Tnew(7) = 1, then let G’ be any tree on which IDA* does I’ = I — 1 iterations and

o1 = Tnew(), i=1,...,5—1;

(1) = Tpew(i+ 1), i=7,..., k=2
Tnew(F = 1) = Znew(k) + 15

Thew(i) = Tnew(i+ 1), i=k,... -1
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Otherwise, let G’ be any tree on which IDA* does I’ = [ iterations and

Then a{, < Ziot-

x;ew(i) = xnew(i)y l: 1,...,j—
x;ew(j) = xnew(j) - 17
x;ew(i) = xnew(i)a ? :]-|— 1,

x;ew(k) = $new(l€)—|-1;

Phow(i) = Tnewl(i+ 1), i=k+1,...

Proof. There are two cases:

1. Znew(7) = 1. Then the number of node expansions on G’ is

7
Lot

(1) hew(1) + oo+ (' = J 4 2)ap0 (5 = 1)]

+ [(I/ _]‘I' 1)x;ew(])+ .ot (I/ —k + 3)x;eW(k -

+ (I/ —k + 2)$;ew(k - 1)
+ (I = k4 D)apen (k) + .o+ e (1)

(I = Dapew(1)+ ..o+ (I = J+ Danew(s — 1)]

F 1= DrnewG+ 1)+ oo (I — k + 2)Tnew(k —

+ (I —k)zpew(k+ 1)+ ... + 2pew(])

[(Danew(1) + 4+ (1 = j + 2)anew(] = 1)]

F 1= DrnewG+ 1)+ oo (I — k + 2)Tnew(k —

+ (I —k)zpew(k+ 1)+ ... + 2pew(])

1;

2)]

DI+ (I = k4 1)(2new(k) + 1)

D)4 (T b+ Dernen(h)

[(I)xnew(l) +...+ (I - ] + 2)$new(j - 1)] + (I _j + 1)$new(j)

F 1= DrnewG+ 1)+ oo (I — k + 2)Tnew(k —

+ (I —k)zpew(k+ 1)+ ... + 2pew(])

Ttot-
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2. Zpew(j) # 1. Then the number of node expansions on G is

7
Lot

e (D) 4o+ (I = 4 2)new (G = D] + (' = J + Dagen(J)

+ (1= Dahen(G+ D+ (I =k 2zpen(k = 1)

+ ("= k4 Ve (k)

+(I' = k)apee(b+ 1)+ ...+ 2 (I)

Hanew(1) 4+ o+ (I = J + 2)new(d — D]+ (I = j + 1)(@new(s) — 1)

+{ = )new(F+ 1)+ ...+ =k 4+ 2)2new(b — D]+ (I =k + 1)(@new(k) + 1)
+ (I —k)zpew(k+ 1)+ ... + 2pew(])

Hanew(1) + oo+ (L =+ 2)2new(d = D]+ (L = 7+ Ditnew(J)

+[{L = )new(G+ 1)+ ...+ (U =k 4+ 2)2new(k — D]+ (I — b+ 1)2new(k)

+ (I = F)2new(k+ 1)+ ... 4 2pew(])

Ttot-

Note that if GG is any state space, then for j = 1,..., I, the total number of node expansions by

IDA* at iteration j denoted by z; is

J
T = Z Tnew(?).
=1

Thus, if I is the total number of iterations done by IDA* on G, then the total number of node

expansions done by IDA* on G is

Ttot =

[~
&
[

ECH
Il
—

Tnew(?)

1
KMN
'M“*

o
Il
—
o
Il

—~

1)+ (= Dtnew(2) + - - .+ Tnew( D). (14)

= Ixnew
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Furthermore, since ¢, is the last active iteration on &, I = i, 4 ¢,. Thus from Eq. (14),

Ttot = Ixnew(l) + (I - 1)$new(2) + ...+ xnew(I)

> (Cu)xnew(iu + 1) + (Cu - 1)$new(iu + 2) + ...+ $new(iu + Cu)- (15)

Theorem 2 Let G = (G1,Gy,...) be any sequence of trees. Then in G, IDA*’s total number of
node expansions is ¢y, = O(N) only if ¢, = O(1), i.e., only if the number of dummy iterations

after the last active iteration is bounded by a constant.
Proof. Suppose that 2 = O(N) and ¢, # O(1). Then there are two cases:

1. @, = Q(N). Clearly, 2ot > cya;,. Thus

which is a contradiction.

2. z;, # Q(N). To show that z4,; # O(N), we have to show that there does not exist any

constant ¢ > 0, such that z4; < ¢/N. Assume the opposite, i.e. there exists a constant ¢ > 0

such that @;0; < ¢N. Let d = (2+ b1(14 2¢) — /(2 + b1(1 + 2¢))? — 4)/2. Since z;, # Q(N),

therefore it must be the case that x;, < dN.

Now, by repeated application of Lemma 1, it follows that zy., > .., where G’ is a search

tree having the following properties:

N' = N;
o = g
=
w1 = Tpew(), i=1,..., 10,

$;ew(i) < (bl)xnew(iu) - 17 1= 7/u + 17

Thew(1) = (b1)Tnew(in) — 1, i =i, +2,...,1";
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¢ = I'—i, =

[(bnie;(% -

Thus from Eq. (15),

Teot > Tiog
> (Cz)wiqew(iu + 1)
+ [(C; - 1)$;ew(iu + 2) + (C; - 2)x;ew(iu + 3) +. Tt x;ew(iu + C;)]
> 04 [(cy = Doy (iu +2) 4 (¢, = 2)0hen(iu +3) + . F 2oy (i + €,)]
= (d, = D(h1znew(t) — 1) + (), = 2)(D12new(in) — 1) + o 4+ (b1Znew(ty) — 1)
c(cd —1 ,
= WD (i) - 1)
. V=) (N —2i,)
— 2(bynew(iy) — 1) 2
. Weow) N
lewnew(iu) 2
S (N —dN)? E
2b1dN 2
N (1—4d)?
- Sy
2 by d
= ¢N
which contradicts our assumption that z,; < cV. [ ]

Example 7 Consider Example 1 of Section 4. For any by, the last N’ iterations are dummy

iterations, i.e. ¢, = Q(N') = Q(N). Therefore by Theorem 2 z4,; # O(N).

Example 8 Consider Example 2 of Section 4. For any by, the last k iterations are dummy itera-

tions, i.e. ¢, = Q(k) = Q(lg N). Therefore by Theorem 2 x4, # O(N).

Example 9 Consider Example 3 of Section 4. For any by, the last k£ — 1 iterations are dummy

iterations, i.e. ¢, = Q(k — 1) = Q(lg N). Therefore by Theorem 2 x4, # O(N).
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Figure 10: A graph and the corresponding unfolded tree.
7 IDA* on Acyclic Graphs

When A* is run with a monotone heuristic on a directed graph , it expands no node more than
once, and thus does only O(N) node expansions. However, depth-first search will expand a node n
many times, once for each path it finds from s to n. Thus, there are cases where depth-first search
can do 2V node expansions on a directed acyclic graph with N possibly expandable nodes [10].
Since IDA* does a depth-first search at each iteration, this means that on graphs it can also do
exponentially many node expansions. More specifically, this section shows that in the worst case,
IDA* does ©(22Y) node expansions.

In the previous sections, all of our terminology for talking about IDA*’s behavior was developed
for trees rather than graphs. If we run a procedure like IDA* on a directed graph G, it behaves ex-
actly the same as if it were searching the unfolded tree unfold((G'), which contains several duplicates
of n: one for for each path from s to n in G (for an example, see Figure 10). Thus, to extend our

terminology to handle graphs as well, we can refer to the unfolded tree unfold(G). For example,

the set of new nodes expanded by IDA* on G during iteration j is X&,(j) = XE?VI:,OM(G) (7). Since
X ntold(c) (j) is the set of new nodes in unfold((), it may contain several duplicates of each node
n of G.

The following theorem establishes an upper bound on the number of node expansions done by
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IDA*:

Theorem 3 IDA* does no more than (2 + 22V)/2 node expansions on acyclic graphs with N

possibly expandable nodes.

Proof. In an acyclic graph with N possibly expandable nodes, there can be at most 2V distinct
paths. From Theorem 5, in the worst case IDA* expands exactly one new path (i.e. Znew(k) = 1)

at each iteration k,1 < k < I =2V, From Eq. (14) the total number of node expansions by IDA*

= Tinew(1) + (I = Denew(2) + - . + Tnew(D).

Since the maximum occurs at T = 2V and Tnew(k) = 1 for each k,1 < k < I. Therefore the total

number of node expansions by IDA*

< N oN-1 4 4.

< (2N 4+22Y))/2.

|

The next step is to show that in the worst case, this upper bound is actually achieved. Below, we
present theorems showing how to construct worst-case examples for IDA*. By using these theorems
to construct worst-case examples, and analyzing how IDA* performs in these examples, we show
that there are cases in which IDA* can do ©(2?") node expansions on directed acyclic graphs with

N possibly expandable nodes.

The total number of node expansions by IDA* depends not only on the number of dummy
iterations but also on their positions. In the following theorem we show that, keeping the total
number of iterations I and the number of active iterations u fixed, the total number of node
expansions by IDA* increases as the dummy iterations are moved to the right, i.e. a dummy
iteration j is moved to k where k > j. In particular, the theorem shows that IDA*’s total number

of node expansions z4,; attains its maximum when all the dummy iterations appear after the last
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active iteration.

Theorem 4 lLet N, u, I, be positive integers, and let G be the set of all graphs G for which there
are N possibly expandable nodes, u active iterations, and [ iterations. Then over all members of
G, the maximum value of @y, (the number of node expansions by IDA*) occurs in a graph G for

which all dummy iterations occur after the last active iteration, i.e., ¢y = ¢ca = ... = ¢y_1 = 0.

Proof.

Case 1: u =1 or u = I. Then either all dummy iterations occur after the first active iteration or

there are no dummy iterations, so the proof is vacuous.

Case 2: u = 2 and I = 3. Then there are two possibilities. ¢4 = 1 and ¢ = 0, or ¢4 = 0 and

cs = 1. Below, we show that the first possibility produces a smaller value for z.¢.

Let G be any graph such that ¢y = 1 and ¢; = 0. Then 43 = 1, j11 = 2, and ¢3 = 3, and

Ttot = 3xnew(i1) + 2wnew(jll) + xnew(iQ)-

There is a graph G’ such that ¢ = 0 and ¢}, = 1 and

w;ew(ill) = wnew(h)?
x;ew(ié) = xHeW(iQ);
x;ew(jél) = xnew(jll)-

Thus #) =1, ¢, = 2, and j};, = 3, and

But Zpew(j11) < @new(72), for otherwise j;; would be an active iteration. Thus,

Ttot = 3xnew(i1) + 2wnew(jll) + xnew(iQ)
< 3xnew(i1) + 2xnew(i2) + wnew(jll)
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Figure 11: IDA*: Q(N2V)

- xéot'
Case 3: all other cases. In general, the total number of node expansions by IDA* will be

c1
Ttot = Ixnew(il) + Z(I - jlq + 1)$new(j1q)

q=1
c2
‘|‘ (I - 7;2 ‘|’ 1)$new(i2) ‘|’ Z(I - j?q ‘|’ 1)$new(j2q)

g=1

+ ...

Cu
+ (I = w4 Danew(iu) + D (1 = Jug + Dnew(Jug)-

9=1
From the definition of an active iteration, it follows that if ¢ is any active iteration and j is
any dummy iteration preceding ¢, then @pew(j) < Zpew(). Thus, using the same argument
as in the case v = 2,1 = 3 above, it can be shown that if we shift a dummy iteration from
its current position to a position after the next active iteration then the number of nodes
generated by IDA* will increase. Thus, the maximum value for 2 occurs in a graph for

which all dummy iterations occur after the last active iteration, i.e., ¢y = cg = ... = ¢y_1 = 0.
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Example 10 Theorem 4 says that IDA* will perform badly in cases where all dummy iterations
occur after the last active iteration. As an example, consider the search graph shown in Figure 11.
There are N = 3k non-goal nodes, all of which are possibly expandable; and one goal node. Fach
arc has unit cost, and h(n) = 0 for every node n. If we run A* on G, it will do N node expansions.
If we run IDA* on G, there will be 2k + 1 iterations, with 2k + 1 thresholds 0,1,2,...2k.
Iterations 0 through |(k — 1)/2] are active iterations, and the remaining iterations are dummy
iterations. More specifically, for each threshold i, IDA* expands 1 + (f) new nodes if 0 < ¢ < k,
and makes i + 2° node expansions if k 4+ 1 < 7 < 2k. Thus the total number of node expansions by

IDA* is:

o = D i(’““ >)+k2k

=0
2k)(2k + 1
= (k+1)2" k2 28 k(26 + 1)
= Q(k2%)

= Q(N2M).

In the last iteration of IDA* there will be Q(2"V) node expansions. Note that the heuristic branching

factor is greater than 1 in this case.

The following theorem tells how to construct worst-case examples for IDA* if we keep the
number of possibly expandable nodes fixed without requiring that the number of active iterations

and total number of iterations be fixed.

Theorem 5 Let N be a positive integer, and G be the set of all graphs for which there are N
possibly expandable nodes. Then over all members of G, the maximum value of ¢, occurs in a

graph for which zpew(k) = 1 for each iteration k.
Proof. Immediate from Lemma 1. [ ]

Example 11 Theorem 5 says that IDA*’s worst case occurs if only one new node is expanded

in each iteration. As an example, consider the search graph G shown in Figure 12 (which is a
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Figure 12: IDA*: Q(22V).

generalization of the graph shown in Figure 10). Let ng be the start node and ngyq be the goal

node. The cost structure is defined as follows:

c(ng,ny) = 2=, 1< <k;
c(ny,npyr) = 2k — 1:
c(ni,mi—1) = 2i=2, 1<i<Ek
c(niymj) = 271 1<j<il<i<k
h(n;) = 0, 0<i<k+l

It can be easily seen that unfold(G) will contain nodes of all f-values from 0 through 2%(= 2V-1).

Therefore the total number of node expansions will be O(N) for A*, and Q(22V) for IDA*.

8 Limited-memory Search on Trees

In this section, we show that in general, limited-memory best-first search algorithms cannot always
perform as well as A*, even on trees.

Let G be a tree, and A be any search algorithm used to search G. A stores a node n if during the
current state of A’s execution, A contains information about the identity of node n (plus possibly

some other information about n). A properly stores node n if it stores not only n, but also at least
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one of the parents of n. A properly runs in storage S > 0 if at all times during its operation, it
properly stores no more than 5 nodes. A is said to run in limited-memory if it properly runs in
storage 5.

The usual definition of “best first” is inappropriate for limited memory algorithms, because they
may expand nodes more than once. Instead, a limited-memory algorithm A is said to perform a
best-first search on tree G if for every j7 > 1, it does not expand any node of Xliw(j + 1) before
expanding every node of X%(2(4)) at least once.

The following theorem shows that there exists no best-first tree search algorithm, which while
using less than a constant fraction of the memory used by A*  can have the same worst-case

asymptotic time complexity as A* on all trees. The following lemma is used to prove the theorem.

Lemma 2 Let G be a b-ary tree that is complete to depth k for some & > 0, and A be a search

. . . pat+l_q
algorithm that properly runs in storage S on GG. Let d be the smallest integer such that 5 < *5—<=.

If d < k, then A properly stores no more than % of the nodes at depth d 4 1 of G.

Proof. Suppose the lemma is false, i.e., that its conditions are satisfied but A properly stores
more than b% of the nodes of depth d + 1 of G. Then A must properly store at least the following

number of nodes at each depth:

Depth Nodes

d+1 > (by assumption)

d > %=1 (since the branching factor is b)

d—1 > pi?

2 >b

1 > 1

0 1
Thus the total number of nodes properly stored by A exceeds 1 +1+0b+ B2 .. 4+t =1+ bd;_ll_l.
But from the statement of the lemma 5 < bd;_ll_l. This is a contradiction. |
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Theorem 6 There is no best-first algorithm Ay ¢ such that for every sequence of trees G = {G;}2,,
Aps has O(N) complexity and properly runs in 5 = % memory, where (N) is a function that
is # O(1). The same is true even if G is restricted to be a sequence of trees such that the number

of possibly expandable nodes grows exponentially as a function of .7

Proof. By contradiction. Let us assume that there exists an algorithm .4y which when
running with memory S has O(N) complexity. Now we construct an infinite sequence of trees
G = (G1,Gy, .. .) and show that the assumption is false. From now on in this proof, by G we mean
a tree of this sequence. Let G be a uniform b—ary tree of height I = [log,(NN)]. At level H there
is only one goal node which is the left most leaf node and every other leaf node of level H is a
non-terminal leaf node.
Let d > 0 be such that
bt —1 b — 1

<7
=1 <0 5

Let dy = d+ 1. Now by lemma 2, at any time during its execution, Ay cannot properly store more

than b nodes of level d > dy. Let the nodes of level dy be named as

d,
My, Mo, ..., My, q = 0"

Below each m;, 1 < i < ¢, there will be b7 =%~1 nodes of level H — 1. Let k = b =% =1, Let us call
the descendents at level H — 1 of node m; as m; 1, m;2,...,m; . Out of the total b =1 nodes at
level H — 1, we construct k& disjoint sets of nodes 51, 55,...,5% in a manner such that every node
belonging to set S;,1 < j <k —1 has f-value smaller than every node belonging to set S;4;. Now

we present a detailed construction of GG by giving the arc-costs and heuristic estimates as follows:

"In the case where we do not restrict § to have this property, the proof is relatively trivial—it suffices to consider
the case where each G is just a path of length .
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c(s,n) = 1 for every child n of the root node s;
c(n,m;) = 1 for every pair of nodes n,n; such that n; is

a child of n, and n; is not a goal node.

c(n,m;) = 1+k if n; is a child of n, and n; is a goal node.
h(s) = H-1
h(in) = H-1-—d ifnisanodeofleveld < H —1
hin) = 0 if n is a node of level H

h(mi;) = 1<i<q,1<j<k

Following the construction given above, we get for 1 < j < k.,

Sp=A{mi; |1 <i<q}

and

Smij)=H—-14j,1<i<gq

Clearly, if ny € 5; and ny € S;41 then

fng) = f(mijp)=H+j>H-14+j= f(m;)= f(m)

The nodes of level H — 1 have f-values H, H+ 1,..., H+ k — 1. The only goal node at level H has
f-value = H — 14+ k+4+ 1 = H + k, which is greater than the f-value of any node of level H — 1.
Therefore, Apr must expand every node of level H —1 prior to selecting the goal node for expansion
and terminating. In other words .Apy must expand all nodes of each set 5;,1 < j <k, containing
nodes of equal f-values. Note that starting from their ancestors at level dy, no two nodes of any
set 5; belong to a common path.

Let l1,ls,...,l; be the time instants when 4;; begins expanding nodes of sets 5S¢, 5%,...,5%
respectively. At time instant [;,1 < j <k, Ap; begins expanding nodes of 5;. We know all nodes
m;; € 5; are from disjoint paths from level dg to level H —1. There are a total of b disjoint paths

(from level dy to level H — 1) for b% nodes in S;, of which at most b%~1 paths or parts of them
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can be in memory at instant /;, and no portion of the remaining (b — 1)b%~1 paths (from level dy
to level H — 1) have been stored. Prior to the instant /;44 all the nodes of S; must be expanded.
Therefore, all nodes of these (b — 1)b%~! paths must be expanded prior to the instant l;41. Now

expanding this logic for each 7,1 < j < k we get the total number of node expansions by Ap¢

v

(b =d0=1y(p — 1)p%~Y(H — dy — 1)

= (b= DO")(H ~ d) (16)

From the construction of the tree, we know that

H _
N = NC b 1
b—1
H = Tlogy N
and since
bt — 1
S > A
therefore

d < log,S+1=1logy(N)—log,()(N))+1

Now substituting the values of H, ¥7~% and maximum value of d in Eq. (16), we get the total node

expansions by As

> (LoD DN + 1llog, v(N) ~ 1]
= QN Igu(V)
£ O(N)
since ¥(N) # O(1). |
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9 Conclusion

Although the A* search algorithm is optimal in terms of number of node expansions, its exponential
memory requirement makes it impractical on a number of problems. This difficulty with A* and
similar state-space search algorithms has led to the development of limited-memory algorithms such
as IDA*. Basically, limited-memory algorithms save space at the expense of time: they save space
by removing nodes from their memory storage, but this means that they will need to re-generate
and re-expand these nodes later.

In this paper, our goal has been to do an in-depth analysis of the nature of this tradeoff. In

particular, we have presented the following results:

1. We have presented necessary and sufficient conditions for IDA* to be asymptotically optimal.
Our conditions show that IDA* is asymptotically optimal in a somewhat different range of
problems than was originally believed. For example, the conditions stated in [10] are not
sufficient to guarantee asymptotic optimality of IDA*; i.e., IDA* will perform badly in some
of the trees on which it was thought to be asymptotically optimal. However, this failing is
not unique to IDA*, for we have shown that in general, no best-first limited-memory heuristic

search algorithm can be asymptotically optimal.

2. It is well known that the amount of memory needed by A* can be exponential in the amount
of memory needed by IDA*. But on graphs, the amount of time take by IDA* can be
exponential in the amount of time take by A*—even if IDA* is using a monotone heuristic.
Thus, if sufficient memory is available, on graphs it is much preferable to use a graph search

algorithm rather than using IDA*.
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