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NOTATIONG;G0; G1; G2; : : : Search graphsG Sequence of graphsT Explicit search trees Start nodet; t1; t2; : : : Goal nodesm;n; n1; n2 : : : Other nodesc(m;n) Cost of the arc (m;n)P Path in Gc(P ) Cost of the path Pc(P;m; n) Cost of the path P from m to nlast(P ) Last node of Pg�(n) Cost of path of least cost from s to nh�(n) Cost of path of least cost from n to a goal nodef�(n) g�(n) + h�(n)g(n) Cost of currently known path of least cost from s to nh(n) Underestimate of h�(n)f(n) g(n) + h(n)� A small positive real numberb Node-branching factorb1 Constant > 1OPEN, CLOSED Listsz; z0 IDA* thresholdsi; j IntegersWG(z) Set of paths in G generable by IDA* with threshold zV G(z) Set of nodes of G generable by IDA* with threshold zXG(z) Set of nodes of G expandable by IDA* with threshold zxG(z) Cardinality of XG(z)i1; i2; : : : Active iterations of IDA*jp1; jp2; : : : Dummy iterations of IDA* following the active iteration ipu; u0 Number of active iterationsc1; c2; : : : Number of dummy iterationsI; I 0 Total number of iterations by IDA*XGnew(j) Set of new nodes expanded by IDA* during iteration jxGnew(j) Number of new nodes expanded by IDA* during iteration jxGtot Total number of node expansions done by IDA* on GEG Surely expandable nodes of GL Maximum number of nodes on any path P s.t. pathmax(P ) � h�(s)S Amount of Memory in number of nodesA, Abf Search Algorithms
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1 IntroductionThe well known A* search algorithm [7, 17] is optimal in terms of number of node expansions (whichis also a measure of its time complexity) in most cases [4]. However, since it requires exponentialamount of memory to run, it runs out of memory even on problem instances of moderate size.To overcome the storage problem, a variant of A* called IDA* (Iterative Deepening A*) wasintroduced by Korf [9, 10]. Basically, IDA* performs a depth-�rst search, backtracking wheneverit �nds a path whose cost exceeds a threshold value z. It repeats this search for larger and largervalues of z, until it �nds a solution. Since IDA* expands nodes more than once, the total numberof node expansions for IDA* is more than for A*. But since IDA*'s memory requirement is onlylinear in the depth of the search, this enables IDA* to solve much larger problems than A* cansolve in practice. For example, IDA* can solve randomly generated instances of the 15-puzzle [10].This paper presents a detailed analysis of the properties of IDA*. Our results are as follows:11. IDA* on Trees. One of IDA*'s most important properties is that under certain conditionsit is \asymptotically optimal in time and space over the class of best-�rst searches that �ndoptimal solutions on a tree" [10, p. 236]; i.e., on these trees it expands O(N) nodes, where Nis the number of nodes eligible for expansion by A*.2 In this paper, we describe and correctsome di�culties with this claim. In particular, we show that:(a) IDA* is not asymptotically optimal in all of the cases where it was thought to be so.As shown in Section 4, there are trees satisfying all of asymptotic optimality conditionsgiven in [10], such that IDA* will expand more than O(N) nodes.3(b) The above trees appear to be common enough to a�ect IDA*'s average-case performance.Our experimental results, which are presented in Section 5, suggest that for certain kindsof Traveling Salesman Problems, IDA*'s average-case performance is not asymptoticallyoptimal.1Some of these results have also been summarized brie
y in [12].2A node n is eligible for expansion by A* under a given heuristic h, if there exists a tie-breaking rule such that ifwe run A* using h and the tie-breaking rule, A* will expand n.3Previous papers have described trees on which IDA* expands more than O(N) nodes [13, 18], but the treesdescribed in these papers do not satisfy Korf's [10] requirements of �nite precision and non-exponential node costs.2



(c) In Section 6, we present correct sets of necessary conditions and su�cient conditions forIDA* to be asymptotically optimal on trees.2. IDA* on Graphs. When the heuristic is monotone, A* will do O(N) node expansions ongraphs, because it will never expand a node more than once. However, IDA* cannot preventthe reexpansion of a node through a costlier path. Thus, although there are speci�c graph-search problems (such as the 15-puzzle) in which IDA* does well, in general the performanceof IDA* for graphs is bound to become worse than that of A*.In particular, there are many graph and tree search problems where the node-branching factorgrows with the problem size (examples include the traveling salesman problem, 
ow-shopscheduling, etc.). In Section 7, we show that on such graphs, IDA*'s worst-case complexitywith a monotone heuristic is 
(22N), even if the graph is restricted to be acyclic.43. Other Algorithms on Trees. IDA* is not the only tree search algorithm that operates inlimited memory. Following IDA*, several other algorithms have been developed that run inlimited memory, such as MREC [21], MA* [3], RA* [5], SMA* [20], RBFS [8], and ITS [6]. InSection 8, we show that for trees that do not satisfy the asymptotic optimality conditions de-scribed in Section 6, no limited-memory best-�rst search algorithm is asymptotically optimal.More speci�cally, in the absence of any conditions (except that the heuristic is admissible andthe maximum node-branching factor is constant) there does not exist any best-�rst admissibletree search algorithm which when running with S = N= (N) (where  (N) 6= O(1)) memorycan have O(N) worst-case time complexity like A*.The paper is organized as follows. Section 2 contains background material, including briefdescriptions of A* and IDA*. Section 3 presents some notation needed in our analysis of IDA*.Sections 4 through 8 present the results described above, and Section 9 contains concluding remarks.4If cycles are allowed, then IDA*'s total number of node expansions can only increase.3



2 Background2.1 Basic Concepts and TerminologyA state space consists of a directed graph G that has one start node s and a non-empty set of goalnodes. Each arc (m;n) in G has a cost c(m;n) � � > 0. The number of children of a node is calledits node-branching factor. If P = (n0; n1; : : : ; nk) is a sequence of nodes such that (ni�1; ni) is anarc of G for i = 1; : : : ; k, then we say that P is a path from n0 to nk. In this case, last(P ) is thenode nk . P 's cost, denoted by cost(P ), is the sum of P 's arc costs. A solution path in G is a pathfrom s to a goal node. For each node n of G, h�(n) is the minimum cost of any path from n to agoal node. Thus h�(s) is the cost of the least costly solution path.The objective of many heuristic search algorithms is to �nd a least costly solution path in G.To �nd such a path, many algorithms use a node evaluation functionf(n) = g(n) + h(n);where g(n) is the cost of the best path currently known from s to n, and h, the heuristic function,is an estimate of h�. It is assumed that h(n) � 0 for every node n, with h(n) = 0 if n is a goalnode.Let P be any path from the start node s. Then the function pathmax(P ) [1] is de�ned asfollows: pathmax(P ) = maxn2P (c(P; s; n) + h(n));where c(P; s; n) is the cost of the subpath of P that goes from s to n.The heuristic function h is admissible if 8n 2 G, h(n) � h�(n). It is monotone if 8p 2 G,h(p) � c(p; q)+h(q), where q is a child of p. Note that monotonicity implies admissibility. Moreover,if h is admissible and P is a minimum-cost solution path then pathmax(P ) = h�(s) = cost(P ).Algorithms which �nd an optimal (least-costly) solution when using an admissible heuristic arecalled admissible algorithms.We use L to denote the maximum number of nodes on any path P for which pathmax(P ) �4



h�(s). Since the number of nodes on any path is one more than the length of the path 5,L = 1 +maxflength(P ) : pathmax(P ) � h�(s)g:The set EG of the surely expandable nodes of G is the set of all nodes n for which there existsa path P from s to n such that pathmax(P ) < h�(s). A node is surely generable if it is in EG oris a child of a node in EG. It is well known [4] that if A is any admissible best-�rst tree-searchalgorithm and G is a graph, then A must generate every surely generable node of G.Given a state space and a monotone heuristic function, the heuristic branching factor is theaverage ratio of the number of nodes of each f -value to the the number of nodes at the next smallerf -value, averaged over all f -values � h�(s) [10].2.2 Algorithm A*The best known admissible algorithm is A* [7, 17]. A* works in a best-�rst manner. It maintainstwo lists: OPEN, which contains nodes that are to be expanded, and CLOSED, which containsnodes that have already been expanded. At each iteration, A* selects a node n from OPEN withminimum f -value, generates all of its children, and puts these children into OPEN after settingtheir g; h; and f -values. If a child p of n is already present in OPEN and g(p) > g(n) + c(n; p);then g(p) is reset to g(n) + c(n; p). If a child p of n is already present in CLOSED and a betterpath to it is now found, then g(p) is reset to the newly found smaller path cost and p is broughtback to OPEN from CLOSED. The process of node selection and expansion continues until a goalnode is selected for expansion.Besides its admissibility, A* has the property that if the heuristic function is monotone, then A*never expands any node more than once. Admissible heuristic functions designed by the commonlyused method of \relaxation" [19] automatically satisfy the monotonicity condition.One major problem with A* is the amount of memory required to store nodes in OPEN andCLOSED. As shown in [4], every admissible search algorithm must expand all surely expandable5The length of a path P is the number of arcs in P . 5



nodes before �nding a solution. The number of such nodes often grows exponentially with somemeasure of the problem size|and since A* keeps track of all of these nodes, it needs an exponentialamount of memory in which to store these nodes.2.3 Performance Measures of Search AlgorithmsGenerally the following criteria are used to measure the e�ciency of an algorithm: (a) solution qual-ity, (b) time complexity, and (c) storage requirement. Any best-�rst search algorithm running withan admissible heuristic always returns an optimal solution. Therefore, in measuring performanceof admissible algorithms, storage and time are the two dominant factors. Since the total runningtime is closely related to the total number of node expansions, the number of node expansions isoften used as a measure of time complexity. Similarly, the maximum number of nodes stored atany one time is often used as a measure of the storage requirement.Since the admissible heuristics designed by the commonly used method of relaxation are alsomonotone, and A* expands each node at most once if the heuristic is monotone, one question thatnaturally arises is whether A* is optimal in terms of the number of node expansions. Dechter andPearl [4] and Mero [16] have shown that out of the set of all admissible best-�rst search algorithmsguided by the same admissible heuristic function h, no algorithm can be (in their terminology)0-optimal; i.e., no algorithm can guarantee fewer node expansions than all other algorithms forall problem instances. However, A* is 1-optimal; i.e., for every problem instance p there exists atie-breaking rule R for selecting nodes from OPEN, such that if we run A* on p using R, thenA* will do fewer node expansions on p than all other algorithms. Since there does not exist any0-optimal algorithm, we will use optimal to mean 1-optimal.An algorithm A asymptotically dominates an algorithm B over a class of problems P if for allproblems in P , A does O(NB) node expansions, where NB is the number of node expansions doneby B. An algorithm is asymptotically optimal if it asymptotically dominates an optimal algorithm.Thus since A* is an optimal algorithm, an admissible state-space search algorithm algorithm isasymptotically optimal if and only if it does O(N) node expansions, where N is the number ofnodes eligible for expansion by A*. 6



procedure IDA*:Let z; z0 be global variables.Set z := h(s), where s is the start node. Set z0 :=1.Do the following steps repeatedly:set P := the path containing only s;call Depth-First(P );set z := z0.procedure Depth-First(P ):Set f := cost(P ) + h(last(P )).If f > z, then set z0 := min(z0; f).Otherwise, if last(P) is a goal node, then exit from IDA*, returning P .Otherwise, do the following steps for every child n of last(P):set P 0 := the path formed by appending n to P ;call Depth-First(P 0).Figure 1: Pseudocode for IDA*.Researchers have recently realized that in addition to considering a search algorithm's timecomplexity, it is just as important to consider its storage complexity. For example, A*'s majorbottleneck in practical use is its storage requirement. For most problems of non-trivial size, A*runs out of memory before any signi�cant amount of execution time. This limitation also prevailsin the case of other known variants of A* (B [15], GRAPHSEARCH [17], C [1], PropC [2], MarkA[2], B' [16], D [14], etc.), which are not tailored to run with limited memory. Therefore, design ofsearch algorithms that run with limited memory has signi�cant practical importance.2.4 Algorithm IDA*To overcome the storage problem, a variant of A* called IDA* (Iterative Deepening A*) wasintroduced by Korf [9, 10]. Basically, IDA* performs a depth-�rst search, backtracking wheneverit �nds a path whose cost exceeds a threshold value z. It repeats this search for larger and largervalues of z, until it �nds a solution. Figure 1 shows a pseudocode version of IDA*.Unlike A*, IDA* is a tree search algorithm|in other words, it does not keep track of alternatepaths to each node. Thus if the search space is not a tree, IDA* can do many re-expansions ofeach node as it �nds new paths to that node. But since it only keeps track of the nodes on the7



path it is currently exploring, IDA* requires only O(L) memory. In other words, IDA*'s memoryrequirement grows only linearly with the depth of the search. This enables IDA* to solve muchlarger problems than A* can solve, such as the 15-puzzle [10]. Thus IDA* has drawn signi�cantattention from the AI research community.3 De�nitionsAs we will see later, the quantities de�ned below correspond closely to the behavior of A* andIDA*.If P = (n0; : : : ; nk) is any path, then all-but-last(P ) is the path (n0; : : : ; nk�1) and last(P ) isthe node nk . For each z � 0, we de�neWG(z) = 8>>><>>>:all paths P from s such that cost(P ) + h(last(P )) > z,pathmax(all-but-last(P )) � z, and all-but-last(P ) con-tains no goal nodes 9>>>=>>>; ;V G(z) = fall nodes of all paths in WG(z)g;XG(z) = fall non-tip nodes of all paths in WG(z)g;xG(z) = jXG(z)j;N(G) = xG(h�(s)):In the terms de�ned above, we will usually omit G if its identity is clear.From these de�nitions, it follows immediately that if we run A* on a tree, then every pathgenerated by A* will be a subpath of a path in W (h�(s)), every node generated by A* will be inV (h�(s)), and every node expanded by A* will be in X(h�(s)). Furthermore, in the worst case(which occurs if A* expands all nodes on OPEN that have f -values � h�(s) before it selects a goalnode), A* will generate all paths in W (h�(s)) and all nodes in V (h�(s)), and will expand all nodesin X(h�(s)), for a total of x(h�(s)) node expansions. Thus X(h�(s)) is the set of all nodes eligiblefor expansion by A*, and N = x(h�(s)) is the number of nodes eligible for expansion by A*. Thequantity N is known as the number of possibly expandable nodes.8



For j = 1; : : : ; we inductively de�nezG(j) = 8><>: h(s), where s is G's start node; if j = 1;minfcost(P ) + h(last(P )) : P is a path in WG(zG(j � 1))g; otherwise;XGnew(j) = 8><>: XG(zG(1)); if j = 1;XG(zG(j))�XG(zG(j � 1)); otherwise;xGnew(j) = jXGnew(j)j;IG = minfj : there is a solution path P such that pathmax(P ) � zG(j)g;xGtot = IGXj=1 xG(zG(j)) = IXj=1 jXG(zG(j))j:As before, we will usually omit the superscript G if the identity of G is clear.Suppose we run IDA* on a tree. The de�nitions of V (z(j)) and z(j) presented above correspondprecisely to the way that IDA* generates nodes and sets thresholds. Thus it follows that IDA*does I iterations, and that for j = 1; 2; : : : ; I � 1,the threshold used during IDA*'s j'th iteration = z(j); (1)fnodes generated during IDA*'s j'th iterationg = V (z(j)); (2)fnodes expanded during IDA*'s j'th iterationg = X(z(j)); (3)fnew nodes expanded during IDA*'s j'th iterationg = Xnew(j): (4)Since IDA* generates each node at most once during each iteration, it follows thatthe number of nodes expanded during IDA*'s j'th iteration = x(z(j)); (5)the number of new nodes expanded during IDA*'s j'th iteration = xnew(j): (6)During the �nal iteration (i.e., j = I), IDA* can �nd a goal node and terminate before every nodeof V (z(I)) has been generated. Thusthe threshold used during IDA*'s I 'th iteration = z(I); (7)9



fnodes generated during IDA*'s I 'th iterationg � V ((z(I)); (8)fnodes expanded during IDA*'s I 'th iterationg � X(z(I)); (9)fnew nodes expanded during IDA*'s I 'th iterationg � Xnew(I); (10)the number of nodes expanded during IDA*'s I 'th iteration � x(z(I)); (11)the number of new nodes expanded during IDA*'s I 'th iteration � xnew(I); (12)with equality in the worst case. Furthermore, from the correctness of IDA*, it follows thatz(I) = h�(s): (13)The heuristic branching factor de�ned in the previous section is the average, over j = 2; : : : ; I , ofthe quantity xnew(j)xnew(j � 1) :Finally, it is straightforward to see that the set of surely generable nodes is precisely V (z(I�1)),i.e., the set of nodes generated by IDA* in its second-to-last iteration and X(z(I � 1)) is the set ofsurely expandable nodes.4 IDA* on Trees: Examination of Optimality ConditionsIn his analysis of IDA*, Korf [10] introduces the following conditions that might or might not besatis�ed by various search problems:Condition 1: h has a heuristic branching factor > 1;Condition 2: the problem space grows exponentially with depth;Condition 3: representation of costs (f -values) is with �nite precision;Condition 4: cost (f) values do not grow exponentially with depth.For the case where G is a tree and h is an admissible heuristic function, it has been shown thatIDA* will do no more than (N +N2)=2 node expansions in the worst case [18]. In addition, Korf10
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Figure 2: IDA*: 
(N2)[10] states that if Condition 1 holds, then IDA* is asymptotically optimal, i.e., it will do only O(N)node expansions. In order to argue that Condition 1 is a reasonable one for most best-�rst treesearches, he states that Conditions 2, 3, and 4 are su�cient to guarantee Condition 1, and thatConditions 2, 3, and 4 are satis�ed in most realistic tree search problems. Thus, we call Condition1 the primary condition, and Conditions 2, 3, and 4 the secondary conditions.In this section we show the following:� The above conditions are not su�cient to ensure the O(N) time complexity of IDA*. Evenwhen all of them are satis�ed, IDA* fails to achieve O(N) time complexity in the worst case.� These conditions are not necessary either; i.e. IDA* can have O(N) complexity withoutsatisfying them.� Conditions 2, 3, and 4 are not su�cient to guarantee Condition 1.Example 1 Consider the search tree G in Figure 2 where there are N = 2N 0 � 1 non-goal nodeswhich are all possibly expandable, and one goal node. G consists of two subtrees G1 and G2. While11
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Figure 3: IDA*: 
(N lgN)G1 is a full binary tree, G2 contains N 0 nodes in the form of a degenerate tree. Every leaf node inG is a non-terminal node except the rightmost one (pN 0), which is a goal node. Cost of the solutionpath = N 0 + blgN 0c, maximum node branching factor is 2, and heuristic branching factor > 1.Each arc has cost 1, and heuristic value is zero at every node. Thus the heuristic is monotone.When IDA* expands nodes from G1, it expands an exponentially increasing number of new nodesthreshold by threshold. But when it begins expanding nodes from G2, it expands only one newnode at each iteration and for each new node pi, 1 � i � N 0, IDA* reexpands all nodes of G1. Sincethere are N 0 nodes in G2 and G1 also contains N 0 nodes, the total number of node expansions byIDA* is clearly 
(N 02) = 
(N2). This result also holds for several other types of trees [13].The example above satis�es the primary condition, and all secondary conditions except Condi-tion 2: the search space is not exponential in the solution depth. In the next two examples, we showthat the O(N) worst-case time complexity for IDA* does not hold even when all the conditions aresatis�ed.Example 2 In the search tree G given in Figure 3, each non-leaf node has a branching factorb = 2, and each arc has unit cost. G consists of two subtrees (called G1 and G2) where each one is12



a full binary tree of height k. G2 is rooted at the right most node of G1. Every leaf node, exceptthe one labeled as goal, is a non-terminal leaf node. For each node n in G, we assume h(n) = 0.Then h is monotone. The heuristic branching factor is2k + 12k�1 + 2(k � 1)(2k) = 2 + 1k2k � 1k � 2:Note that the goal node is at a depth of 2k = O(lgN), where N is the total number of possiblyexpandable nodes in G. Therefore the search space is exponential. The maximum cost value is 2kwhich grows only linearly with depth. The precision constraint is vacuously satis�ed because thecost values are not fractions. Thus, the primary condition and all of the secondary conditions aresatis�ed. Now we calculate the total number of node expansions by IDA* on the tree G.Clearly G1 and G2 each contain N 0 = dN=2e nodes. The cost of the solution path is 2k =2[lg(N 0 + 1)� 1]. Let N0 = bk + 2bk�1 + 3bk�2 + : : :+ kb:Then the total number of node expansions by IDA* in the worst-case isxtot = N0 + kN 0 +N0 � kN 0 +N 0 = k(N 0 + 1) = 
(N lgN):Example 3 In the example tree G shown in Figure 4 a more interesting situation is illustrated.The root node n0 has only one child n1, which roots a complete b-ary tree (b = 2 in this case).Every leaf node of G is a goal node. However, there is only one minimum-cost solution path of cost2k� 1, which in Figure 4 is the rightmost path in G. Every other solution path has cost 2k. Eacharc has cost 1, except for the ones which are incident on the goal nodes, in that case the cost is k.Heuristic values are shown beside the nodes. Since every non-goal node up to and including levelk (assuming that the root node is at level 0) has f -value less than h�(s)(= 2k � 1), IDA* mustexpand all of them before �nding a goal node and terminating. IDA* will expand one new node initeration 1. Thereafter, in iteration i, 2 � i � k, IDA* will expand 2k�i+1 new nodes. It will makea total of k + 1 iterations before termination corresponding to thresholds k � 1; k; : : : ; 2k� 1. The13
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(N lgN)heuristic branching factor is 2k�11 + (k � 1) � 12k > 1;and thus the primary condition is satis�ed. It can be easily seen that the secondary conditions arealso satis�ed. The total number of node expansions by IDA* isxtot = (k + 1) � 1 + kXi=2(k � i+ 2) � 2k�i+1= (k + 1) + 2k(k � 1):But k = lg(N + 1), where N is the number of possibly expandable nodes in G. Therefore, xtot =
(N lgN).Example 4 In the examples above, we have shown that the conditions stated in [10] for theasymptotic optimality of IDA* are not su�cient. In this example, we show that these conditionsare not necessary either. Consider a search tree which is identical to the tree in Figure 2, except14
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G(a) the maze (b) the search graphFigure 5: An example maze and its search graph.for two changes:� h(s) = k;� in the degenerate tree G2, there is only a constant number, say c, of nodes from nk to thegoal node.G contains a total of N = N 0 + c� 1 non-goal nodes, and one goal node. All the nodes of G1 willbe expanded by IDA* in the �rst iteration. Thereafter, in each iteration only one new node will beexpanded. The heuristic branching factor is :(c� 1) � 1 + 1N 0c < 1Since IDA* does only a constant number of iterations in this example, it will clearly do only O(N)node expansions. Note that the primary condition stated previously is not satis�ed in this case.This example also shows that the secondary conditions do not imply the primary condition.Example 5 Above, we have constructed trees on which the previous analysis of IDA* fails. Belowis an example of a search problem that gives rise to such a tree. Consider the maze shown in Figure5(a). The objective is to �nd a least-cost path through the maze from S to G, obeying the one-way15



markings shown in the maze. To represent the maze as a search graph, we use nodes to representjunction points and dead ends, and use arcs to represent the hallways between them. Thus, thesearch graph for this maze is the graph shown in Figure 5(b). To search this graph, IDA* willunfold 6 the space into the exact same tree shown in Figure 3.5 IDA* on Trees: Experimental StudiesIn Section 4, we showed that there are trees satisfying the asymptotic optimality conditions statedfor IDA* in [10], for which IDA* is not actually asymptotically optimal. In this section, we examinethe practical impact of the existence of such trees, by studying IDA*'s performance on randomlygenerated instances of the Traveling Salesman Problem (TSP).The TSP is a combinatorial optimization problem and is de�ned as follows: given a set of citieswith nonnegative cost between each pair of cities, �nd the cheapest tour. A tour is a path thatstarting at some initial city visits every city once and only once, and returns to the initial city. Ourresults suggest that on randomly generated instances of the TSP, the number of node generationsby IDA* will grow exponentially faster than the number of node generations by A* if the cost ofgoing from one city to another is allowed to grow in proportion to the square of the number ofcities (which satis�es the asymptotic optimality conditions in [10]).To represent the search space and the lower bound heuristic for the Traveling Salesman Problem,we chose the well known method of Little et al. [11]. The search space in this formulation is abinary tree.We generated two sets of data, which we will call TSP Set 1 and TSP Set 2, and ran both IDA*and A* on each set. For both sets we selected the number of cities equal to 5, 10, 15, 20, 25, 30, and35. For each value of the number of cities, one hundred cost matrices were generated. For TSP Set1 the cost values c(i; j) were taken at random from the interval [0,100] using a uniform distributionexcept for i = j, in which case c(i; j) was set to 1. For TSP Set 2 the cost values c(i; j) weretaken at random from the interval [0,(10� number of cities2)] using a uniform distribution exceptfor i = j, in which case c(i; j) was set to 1. In general the cost matrices of TSP Set 1 and TSP6What we mean by \unfold" should be intuitively clear. We give the precise de�nition in Section 7.16
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Figure 6: Node generations versus number of cities for IDA* and A* on TSP Set 1.
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Figure 7: Node generations versus number of cities for IDA* and A* on TSP Set 2.17
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Figure 8: Ratio of IDA* node generations to A* node generations, versus number of cities on TSPSet 1.
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Figure 9: Ratio of IDA* node generations to A* node generations, versus number of cities on TSPSet 2. 18



Set 2 were not symmetric and did not satisfy the triangle inequality. It is easy to verify that thetrees generated by the above technique satisfy all the conditions stated previously for asymptoticoptimality of IDA*. The only di�erence between TSP Set 1 and TSP Set 2 is that the costs betweenthe cities in TSP Set 1 are drawn from a �xed range whereas in TSP Set 2 the range grows inproportion to the cost matrix which is of the size of square of the number of cities.The results of our experiments are summarized in Figures 6 through 9, which graph the perfor-mance of IDA* and A* for TSP Set 1 and TSP Set 2. Each data point in Figures 6 through 9 isthe average over the one hundred problem instances.For TSP Set 1, from Figure 8, the ratio of node generations by IDA* to node generations byA* �rst goes up and then goes down. If A*'s asymptotic performance were strictly better thanIDA*'s, we would have expected the ratio to keep going up. Therefore, Figure 8 suggests thatboth algorithms have the same asymptotic performance on this problem on TSP Set 1, i.e. IDA*is asymptotically optimal. However, for TSP Set 2, the ratio of node generations by IDA* to nodegenerations by A* continues to grow with the number of cities. Although it is di�cult to makea conclusive statement about asymptotic complexity on the basis of a �nite number of tests, ourresults clearly suggest that IDA* is not asymptotically optimal on TSP Set 2.6 IDA* on Trees: New Optimality ConditionsIn this section, we derive two new conditions, one of which is necessary for asymptotic optimalityof IDA*, and the other of which is su�cient to guarantee asymptotic optimality of IDA*.Korf stated that IDA* is asymptotically optimal if the heuristic branching factor exceeds 1.As we have seen, this condition is not su�cient to guarantee asymptotic optimality|but we canguarantee asymptotic optimality if we make the condition stricter.For each i, consider the ratio of the number of new nodes at iteration i+ 1 to the number ofnew nodes at iteration i. Even though the average ratio may exceed 1 (in which case the heuristicbranching factor exceeds 1), there may be a number of \dummy iterations" in which the ratio isnot \large enough." If there are too many of these dummy iterations in the wrong places|thenIDA* will perform badly. 19



Below, we formalize the idea of a dummy iteration, and what it means for there to be \toomany" of them in the \wrong places." This enables us to state two new conditions, one of whichis necessary for asymptotic optimality of IDA*, and the other of which is su�cient to guaranteeasymptotic optimality of IDA*.Let b1 > 1 be a �xed constant. Then IDA*'s active iterations on G are the iterationsiG1 ; iG2 ; : : : ; iGuG de�ned inductively as follows:iG1 = 1.For p = 2; : : : ; u, iGp is the smallest integer such that xnew(iGp )=xnew(iGp�1) � b1.As usual, we omit the superscript G when the identity of G is obvious.Intuitively the active iterations are the iterations in which the number of new nodes expandedby IDA* grows exponentially. We call the remaining iterations dummy iterations. For each ip, letjp1; jp2; : : : ; jpcp be the dummy iterations immediately following ip.Dummy iterations can occur anywhere after the �rst active iteration i1. For q = 1; : : : ; u, let cqbe the number of dummy iterations that occur between iterations iq and iq+1. Note that cq � 0,and c1 + c2 + : : :+ cu = I � u. We de�ne M(G) = maxq cq, i.e., M(G) is the maximum number ofadjacent dummy iterations.Using the concept of dummy iterations, Sections 6.1 and 6.2 provide su�cient and necessaryconditions, respectively, for IDA* to be asymptotically optimal on trees. In addition, both sectionsgive examples in which these conditions are used to tell whether IDA* is asymptotically optimalon the trees presented in Section 4.6.1 Su�cient Conditions for OptimalityTheorem 1 gives a su�cient condition for IDA* to be asymptotically optimal.Theorem 1 Let G = (G1; G2; : : :) be any sequence of trees such thatM = O(1), i.e., the maximumnumber of adjacent dummy iterations is bounded by a constant. Then on G, the number of nodeexpansions by IDA* is xtot = O(N), where N(Gi) is the number of possibly expandable nodes inGi. 20



Proof.Let G be as de�ned above, G 2 G, andY = uxnew(i1) + (u� 1)xnew(i2) + : : :+ xnew(iu):By de�nition, xnew(iq+1)=xnew(iq) � b1, 1 � q � u � 1. Thus xnew(iu�p)=xnew(iu) � �p, 1 � p �u� 1, where � = 1=b1 < 1. Therefore,Y � xnew(iu)fu�u�1 + (u� 1)�u�2 + : : :+ 2�+ 1g � xnew(iu)(1� �)2 � N(1� �)2 = O(N):For each node n in G, let t(n) be the total number of times n is expanded by IDA*. Then
t(n) �

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

u+Mu = (u)(M + 1) if n 2 Xnew(i1);(u� 1) +Mu = (u)(M + 1)� 1 if n 2 Xnew(j11);� � �(u� 1) + (u� 1)M + 1 = (u)(M + 1)�M if n 2 Xnew(j1c1);(u� 1) +M(u� 1) = (u� 1)(M + 1) if n 2 Xnew(i2);(u� 2) +M(u� 1) = (u� 1)(M + 1)� 1 if n 2 Xnew(j21);� � �(u� 2) + (u� 2)M + 1 = (u� 1)(M + 1)�M if n 2 Xnew(j2c2);� � �(u� (u� 1)) +M(u� (u� 1)) =M + 1 if n 2 Xnew(iu);(u� u) +M(u� (u� 1)) = (M + 1)� 1 if n 2 Xnew(ju1);� � �(u� u) + (u� u)M + 1 = (M + 1)�M if n 2 Xnew(jucu):21



Therefore, the total number of node expansions isxtot = Xn2Xnew(i1) t(n) +0@ Xn2Xnew(j11) t(n) + : : :+ Xn2Xnew(j1c1) t(n)1A+ Xn2Xnew(i2) t(n) +0@ Xn2Xnew(j21) t(n) + : : :+ Xn2Xnew(j2c2 ) t(n)1A+ � � �+ Xn2Xnew(iu) t(n) +0@ Xn2Xnew(ju1) t(n) + : : :+ Xn2Xnew(jucu ) t(n)1A� Xn2Xnew(i1)(u)(M + 1)+ Xn2Xnew(j11)((u)(M + 1)� 1) + : : :+ Xn2Xnew(j1c1)((u)(M + 1)�M)+ Xn2Xnew(i2)(u� 1)(M + 1)+ Xn2Xnew(j21)((u� 1)(M + 1)� 1) + : : :+ Xn2Xnew(j2c2 )((u� 1)(M + 1)�M)+ � � �+ Xn2Xnew(iu)(M + 1)+ Xn2Xnew(ju1)((M + 1)� 1) + : : :+ Xn2Xnew(jucu )((M + 1)�M)� xnew(i1)(u)(M + 1)+ (b1)xnew(i1)((u)(M + 1)� 1) + : : :+ (b1)xnew(i1)((u)(M + 1)�M)+ xnew(i2)(u� 1)(M + 1)+ (b1)xnew(i2)((u)(M + 1)� 1) + : : :+ (b1)xnew(i2)((u� 1)(M + 1)�M)+ � � �+ xnew(iu)(M + 1)+ (b1)xnew(iu)((M + 1)� 1) + : : :+ (b1)xnew(iu)((M + 1)�M)� (b1)xnew(i1)(u)(M + 1)(M + 1) 22



+ (b1)xnew(i2)(u� 1)(M + 1)(M + 1)+ � � �+ (b1)xnew(iu)(M + 1)(M + 1)� (b1)(M + 1)(M + 1)(uxnew(i1) + (u� 1)xnew(i2) + : : :+ xnew(iu))� (M + 1)(M + 1)(b1)Y:Thus since Y = O(N), b1 and M = O(1), xtot = O(N).Example 6 In Example 4 of Section 4, the total number iterations I is a constant. Therefore, M= the maximum number of adjacent dummy iterations = O(1), so by Theorem 1, xtot = O(N).6.2 Necessary Conditions for OptimalityIn order to present necessary conditions for IDA* to be optimal, we �rst need the following lemma.This lemma shows that if a tree G0 is constructed from G in such a way that G0 is identical to Gexcept that one node n in G0 has a higher f -value than in G, i.e. fG0(n) > fG(n), then the totalnumber of node expansions by IDA* on G0 will be less than the number of node expansions byIDA* on G. What this means is that if a new problem instance is created from an old probleminstance of IDA* by pushing a new node of iteration j to the iteration k, such that k > j, then xtotin the new problem instance will be less than in the old problem instance.Lemma 1 Let G be any tree on which IDA* does I � 2 iterations, and let 1 � j < k � I . Ifxnew(j) = 1, then let G0 be any tree on which IDA* does I 0 = I � 1 iterations andx0new(i) = xnew(i); i = 1; : : : ; j � 1;x0new(i) = xnew(i+ 1); i = j; : : : ; k� 2;x0new(k � 1) = xnew(k) + 1;x0new(i) = xnew(i+ 1); i = k; : : : ; I � 1:23



Otherwise, let G0 be any tree on which IDA* does I 0 = I iterations andx0new(i) = xnew(i); i = 1; : : : ; j � 1;x0new(j) = xnew(j)� 1;x0new(i) = xnew(i); i = j + 1; : : : ; k � 1;x0new(k) = xnew(k) + 1;x0new(i) = xnew(i+ 1); i = k + 1; : : : ; I:Then x0tot < xtot.Proof. There are two cases:1. xnew(j) = 1. Then the number of node expansions on G0 isx0tot = �(I 0)x0new(1) + : : :+ (I 0 � j + 2)x0new(j � 1)�+ �(I 0 � j + 1)x0new(j) + : : :+ (I 0 � k + 3)x0new(k � 2)�+ (I 0 � k + 2)x0new(k � 1)+ (I 0 � k + 1)x0new(k) + : : :+ x0new(I 0)= [(I � 1)xnew(1) + : : :+ (I � j + 1)xnew(j � 1)]+ [(I � j)xnew(j + 1) + : : :+ (I � k + 2)xnew(k � 1)] + (I � k + 1)(xnew(k) + 1)+ (I � k)xnew(k + 1) + : : :+ xnew(I)< [(I)xnew(1) + : : :+ (I � j + 2)xnew(j � 1)]+ [(I � j)xnew(j + 1) + : : :+ (I � k + 2)xnew(k � 1)] + (I � k + 1)xnew(k)+ (I � k)xnew(k + 1) + : : :+ xnew(I)< [(I)xnew(1) + : : :+ (I � j + 2)xnew(j � 1)] + (I � j + 1)xnew(j)+ [(I � j)xnew(j + 1) + : : :+ (I � k + 2)xnew(k � 1)] + (I � k + 1)xnew(k)+ (I � k)xnew(k + 1) + : : :+ xnew(I)= xtot: 24



2. xnew(j) 6= 1. Then the number of node expansions on G0 isx0tot = �I 0x0new(1) + : : :+ (I 0 � j + 2)x0new(j � 1)�+ (I 0 � j + 1)x0new(j)+ �(I 0 � j)x0new(j + 1) + : : :+ (I 0 � k + 2)x0new(k � 1)�+ (I 0 � k + 1)x0new(k)+ (I 0 � k)x0new(k + 1) + : : :+ x0new(I 0)= [Ixnew(1) + : : :+ (I � j + 2)xnew(j � 1)] + (I � j + 1)(xnew(j)� 1)+ [(I � j)xnew(j + 1) + : : :+ (I � k + 2)xnew(k � 1)] + (I � k + 1)(xnew(k) + 1)+ (I � k)xnew(k + 1) + : : :+ xnew(I)< [Ixnew(1) + : : :+ (I � j + 2)xnew(j � 1)] + (I � j + 1)xnew(j)+ [(I � j)xnew(j + 1) + : : :+ (I � k + 2)xnew(k � 1)] + (I � k + 1)xnew(k)+ (I � k)xnew(k + 1) + : : :+ xnew(I)= xtot:Note that if G is any state space, then for j = 1; : : : ; I , the total number of node expansions byIDA* at iteration j denoted by xj is xj = jXi=1 xnew(i):Thus, if I is the total number of iterations done by IDA* on G, then the total number of nodeexpansions done by IDA* on G isxtot = IXj=1 xj= IXj=1 jXi=1 xnew(i)= Ixnew(1) + (I � 1)xnew(2) + : : :+ xnew(I): (14)25



Furthermore, since iu is the last active iteration on G, I = iu + cu. Thus from Eq. (14),xtot = Ixnew(1) + (I � 1)xnew(2) + : : :+ xnew(I)> (cu)xnew(iu + 1) + (cu � 1)xnew(iu + 2) + : : :+ xnew(iu + cu): (15)Theorem 2 Let G = (G1; G2; : : :) be any sequence of trees. Then in G, IDA*'s total number ofnode expansions is xtot = O(N) only if cu = O(1), i.e., only if the number of dummy iterationsafter the last active iteration is bounded by a constant.Proof. Suppose that xtot = O(N) and cu 6= O(1). Then there are two cases:1. xiu = 
(N). Clearly, xtot > cuxiu . Thuscu < xtotxiu = O(N)
(N) = O(1);which is a contradiction.2. xiu 6= 
(N). To show that xtot 6= O(N), we have to show that there does not exist anyconstant c > 0, such that xtot � cN . Assume the opposite, i.e. there exists a constant c > 0such that xtot � cN . Let d = (2+ b1(1+ 2c)�p(2 + b1(1 + 2c))2� 4)=2. Since xiu 6= 
(N),therefore it must be the case that xiu < dN .Now, by repeated application of Lemma 1, it follows that xtot � x0tot, where G0 is a searchtree having the following properties:N 0 = N ;u0 = u;i0u = iu;x0new(i) = xnew(i); i = 1; : : : ; iu;x0new(i) � (b1)xnew(iu)� 1; i = iu + 1;x0new(i) = (b1)xnew(iu)� 1; i = iu + 2; : : : ; I 0;26



c0u = I 0 � iu = � N � xiu(b1)xnew(iu)� 1� :Thus from Eq. (15),xtot � x0tot> (c0u)x0new(iu + 1)+ �(c0u � 1)x0new(iu + 2) + (c0u � 2)x0new(iu + 3) + : : :+ x0new(iu + c0u)�� 0 + �(c0u � 1)x0new(iu + 2) + (c0u � 2)x0new(iu + 3) + : : :+ x0new(iu + c0u)�= (c0u � 1)(b1xnew(iu)� 1) + (c0u � 2)(b1xnew(iu)� 1) + : : :+ (b1xnew(iu)� 1)= c0u(c0u � 1)2 (b1xnew(iu)� 1)= (N � xiu)22(b1xnew(iu)� 1) � (N � xiu)2> (N � xiu)22b1xnew(iu) � N2> (N � dN)22b1dN � N2= N2 [(1� d)2b1d � 1]= cNwhich contradicts our assumption that xtot � cN .Example 7 Consider Example 1 of Section 4. For any b1, the last N 0 iterations are dummyiterations, i.e. cu = 
(N 0) = 
(N). Therefore by Theorem 2 xtot 6= O(N).Example 8 Consider Example 2 of Section 4. For any b1, the last k iterations are dummy itera-tions, i.e. cu = 
(k) = 
(lgN). Therefore by Theorem 2 xtot 6= O(N).Example 9 Consider Example 3 of Section 4. For any b1, the last k � 1 iterations are dummyiterations, i.e. cu = 
(k � 1) = 
(lgN). Therefore by Theorem 2 xtot 6= O(N).27



Gn2goal = n4 n1 n3 n1 n2 n3n1 n1 n1n2n4 n4 n4 n4unfold(G)
s = n0 s = n0

Figure 10: A graph and the corresponding unfolded tree.7 IDA* on Acyclic GraphsWhen A* is run with a monotone heuristic on a directed graph G, it expands no node more thanonce, and thus does only O(N) node expansions. However, depth-�rst search will expand a node nmany times, once for each path it �nds from s to n. Thus, there are cases where depth-�rst searchcan do 2N node expansions on a directed acyclic graph with N possibly expandable nodes [10].Since IDA* does a depth-�rst search at each iteration, this means that on graphs it can also doexponentially many node expansions. More speci�cally, this section shows that in the worst case,IDA* does �(22N) node expansions.In the previous sections, all of our terminology for talking about IDA*'s behavior was developedfor trees rather than graphs. If we run a procedure like IDA* on a directed graph G, it behaves ex-actly the same as if it were searching the unfolded tree unfold(G), which contains several duplicatesof n: one for for each path from s to n in G (for an example, see Figure 10). Thus, to extend ourterminology to handle graphs as well, we can refer to the unfolded tree unfold(G). For example,the set of new nodes expanded by IDA* on G during iteration j is XGnew(j) = Xunfold(G)new (j). SinceXunfold(G)new (j) is the set of new nodes in unfold(G), it may contain several duplicates of each noden of G.The following theorem establishes an upper bound on the number of node expansions done by28



IDA*:Theorem 3 IDA* does no more than (2N + 22N)=2 node expansions on acyclic graphs with Npossibly expandable nodes.Proof. In an acyclic graph with N possibly expandable nodes, there can be at most 2N distinctpaths. From Theorem 5, in the worst case IDA* expands exactly one new path (i.e. xnew(k) = 1)at each iteration k; 1 � k � I = 2N . From Eq. (14) the total number of node expansions by IDA*= Ixnew(1) + (I � 1)xnew(2) + : : :+ xnew(I):Since the maximum occurs at I = 2N and xnew(k) = 1 for each k; 1 � k � I . Therefore the totalnumber of node expansions by IDA* � 2N + 2N�1 + : : :+ 1:� (2N + 22N)=2:The next step is to show that in the worst case, this upper bound is actually achieved. Below, wepresent theorems showing how to construct worst-case examples for IDA*. By using these theoremsto construct worst-case examples, and analyzing how IDA* performs in these examples, we showthat there are cases in which IDA* can do 
(22N) node expansions on directed acyclic graphs withN possibly expandable nodes.The total number of node expansions by IDA* depends not only on the number of dummyiterations but also on their positions. In the following theorem we show that, keeping the totalnumber of iterations I and the number of active iterations u �xed, the total number of nodeexpansions by IDA* increases as the dummy iterations are moved to the right, i.e. a dummyiteration j is moved to k where k > j. In particular, the theorem shows that IDA*'s total numberof node expansions xtot attains its maximum when all the dummy iterations appear after the last29



active iteration.Theorem 4 Let N; u; I , be positive integers, and let G be the set of all graphs G for which thereare N possibly expandable nodes, u active iterations, and I iterations. Then over all members ofG, the maximum value of xtot (the number of node expansions by IDA*) occurs in a graph G forwhich all dummy iterations occur after the last active iteration, i.e., c1 = c2 = : : : = cu�1 = 0.Proof.Case 1: u = 1 or u = I . Then either all dummy iterations occur after the �rst active iteration orthere are no dummy iterations, so the proof is vacuous.Case 2: u = 2 and I = 3. Then there are two possibilities. c1 = 1 and c2 = 0, or c1 = 0 andc2 = 1. Below, we show that the �rst possibility produces a smaller value for xtot.Let G be any graph such that c1 = 1 and c2 = 0. Then i1 = 1, j11 = 2, and i2 = 3, andxtot = 3xnew(i1) + 2xnew(j11) + xnew(i2):There is a graph G0 such that c01 = 0 and c02 = 1 andx0new(i01) = xnew(i1);x0new(i02) = xnew(i2);x0new(j 021) = xnew(j11):Thus i01 = 1, i02 = 2, and j 021 = 3, andx0tot = 3x0new(i01) + 2x0new(i02) + x0new(j 021):But xnew(j11) < xnew(i2), for otherwise j11 would be an active iteration. Thus,xtot = 3xnew(i1) + 2xnew(j11) + xnew(i2)< 3xnew(i1) + 2xnew(i2) + xnew(j11)30



goalp2kp2k�1p2p1s nkn4n3n2n1
Figure 11: IDA*: 
(N2N)= 3x0new(i01) + 2x0new(i02) + x0new(j 021)= x0tot:Case 3: all other cases. In general, the total number of node expansions by IDA* will bextot = Ixnew(i1) + c1Xq=1(I � j1q + 1)xnew(j1q)+ (I � i2 + 1)xnew(i2) + c2Xq=1(I � j2q + 1)xnew(j2q)+ : : :+ (I � iu + 1)xnew(iu) + cuXq=1(I � juq + 1)xnew(juq):From the de�nition of an active iteration, it follows that if i is any active iteration and j isany dummy iteration preceding i, then xnew(j) < xnew(i). Thus, using the same argumentas in the case u = 2; I = 3 above, it can be shown that if we shift a dummy iteration fromits current position to a position after the next active iteration then the number of nodesgenerated by IDA* will increase. Thus, the maximum value for xtot occurs in a graph forwhich all dummy iterations occur after the last active iteration, i.e., c1 = c2 = : : : = cu�1 = 0.31



Example 10 Theorem 4 says that IDA* will perform badly in cases where all dummy iterationsoccur after the last active iteration. As an example, consider the search graph shown in Figure 11.There are N = 3k non-goal nodes, all of which are possibly expandable; and one goal node. Eacharc has unit cost, and h(n) = 0 for every node n. If we run A* on G, it will do N node expansions.If we run IDA* on G, there will be 2k + 1 iterations, with 2k + 1 thresholds 0; 1; 2; : : :2k.Iterations 0 through b(k� 1)=2c are active iterations, and the remaining iterations are dummyiterations. More speci�cally, for each threshold i, IDA* expands 1 + �ki� new nodes if 0 � i � k,and makes i+ 2k node expansions if k+ 1 � i � 2k. Thus the total number of node expansions byIDA* is: xtot = (2k)(2k+ 1)2 + kXi=0 (k + 1� i)i !+ k2k= (2k)(2k+ 1)2 + (k + 1)2k�1 + 2k + k2k= (k + 1)2k�1 + k2k + 2k + k(2k + 1)= 
(k2k)= 
(N2N):In the last iteration of IDA* there will be 
(2N) node expansions. Note that the heuristic branchingfactor is greater than 1 in this case.The following theorem tells how to construct worst-case examples for IDA* if we keep thenumber of possibly expandable nodes �xed without requiring that the number of active iterationsand total number of iterations be �xed.Theorem 5 Let N be a positive integer, and G be the set of all graphs for which there are Npossibly expandable nodes. Then over all members of G, the maximum value of xtot occurs in agraph for which xnew(k) = 1 for each iteration k.Proof. Immediate from Lemma 1.Example 11 Theorem 5 says that IDA*'s worst case occurs if only one new node is expandedin each iteration. As an example, consider the search graph G shown in Figure 12 (which is a32
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Figure 12: IDA*: 
(22N).generalization of the graph shown in Figure 10). Let n0 be the start node and nk+1 be the goalnode. The cost structure is de�ned as follows:c(n0; ni) = 2i�1; 1 � i � k;c(n1; nk+1) = 2k � 1;c(ni; ni�1) = 2i�2; 1 < i � kc(ni; nj) = 2j�1; 1 � j < i; 1 < i � k;h(ni) = 0; 0 � i � k + 1:It can be easily seen that unfold(G) will contain nodes of all f -values from 0 through 2k(= 2N�1).Therefore the total number of node expansions will be O(N) for A*, and 
(22N) for IDA*.8 Limited-memory Search on TreesIn this section, we show that in general, limited-memory best-�rst search algorithms cannot alwaysperform as well as A*, even on trees.Let G be a tree, and A be any search algorithm used to search G. A stores a node n if during thecurrent state of A's execution, A contains information about the identity of node n (plus possiblysome other information about n). A properly stores node n if it stores not only n, but also at least33



one of the parents of n. A properly runs in storage S � 0 if at all times during its operation, itproperly stores no more than S nodes. A is said to run in limited-memory if it properly runs instorage S.The usual de�nition of \best �rst" is inappropriate for limited memory algorithms, because theymay expand nodes more than once. Instead, a limited-memory algorithm Abf is said to perform abest-�rst search on tree G if for every j � 1, it does not expand any node of XGnew(j + 1) beforeexpanding every node of XG(z(j)) at least once.The following theorem shows that there exists no best-�rst tree search algorithm, which whileusing less than a constant fraction of the memory used by A*, can have the same worst-caseasymptotic time complexity as A* on all trees. The following lemma is used to prove the theorem.Lemma 2 Let G be a b-ary tree that is complete to depth k for some k > 0, and A be a searchalgorithm that properly runs in storage S on G. Let d be the smallest integer such that S � bd+1�1b�1 .If d < k, then A properly stores no more than bd of the nodes at depth d+ 1 of G.Proof. Suppose the lemma is false, i.e., that its conditions are satis�ed but A properly storesmore than bd of the nodes of depth d+ 1 of G. Then A must properly store at least the followingnumber of nodes at each depth:Depth Nodesd+ 1 > bd (by assumption)d > bd�1 (since the branching factor is b)d� 1 > bd�2... ...2 > b1 > 10 1Thus the total number of nodes properly stored by A exceeds 1+1+ b+ b2 + : : :+ bd = 1+ bd+1�1b�1 .But from the statement of the lemma S � bd+1�1b�1 . This is a contradiction.34



Theorem 6 There is no best-�rst algorithm Abf such that for every sequence of trees G = fGig1i=1,Abf has O(N) complexity and properly runs in S = N (N) memory, where  (N) is a function thatis 6= O(1). The same is true even if G is restricted to be a sequence of trees such that the numberof possibly expandable nodes grows exponentially as a function of i.7Proof. By contradiction. Let us assume that there exists an algorithm Abf which whenrunning with memory S has O(N) complexity. Now we construct an in�nite sequence of treesG = (G1; G2; : : :) and show that the assumption is false. From now on in this proof, by G we meana tree of this sequence. Let G be a uniform b�ary tree of height H = dlogb(N)e. At level H thereis only one goal node which is the left most leaf node and every other leaf node of level H is anon-terminal leaf node.Let d � 0 be such that bd � 1b� 1 < S � bd+1 � 1b� 1Let d0 = d+1. Now by lemma 2, at any time during its execution, Abf cannot properly store morethan bd nodes of level d � d0. Let the nodes of level d0 be named asm1; m2; : : : ; mq; q = bd0Below each mi; 1 � i � q, there will be bH�d0�1 nodes of level H � 1. Let k = bH�d0�1. Let us callthe descendents at level H � 1 of node mi as mi;1; mi;2; : : : ; mi;k. Out of the total bH�1 nodes atlevel H � 1, we construct k disjoint sets of nodes S1; S2; : : : ; Sk in a manner such that every nodebelonging to set Sj ; 1 � j � k� 1 has f -value smaller than every node belonging to set Sj+1. Nowwe present a detailed construction of G by giving the arc-costs and heuristic estimates as follows:7In the case where we do not restrict G to have this property, the proof is relatively trivial|it su�ces to considerthe case where each Gi is just a path of length i.
35



c(s; n) = 1 for every child n of the root node s;c(n; ni) = 1 for every pair of nodes n; ni such that ni isa child of n, and ni is not a goal node.c(n; ni) = 1 + k if ni is a child of n, and ni is a goal node.h(s) = H � 1h(n) = H � 1� d if n is a node of level d < H � 1h(n) = 0 if n is a node of level Hh(mi;j) = j 1 � i � q; 1 � j � kFollowing the construction given above, we get for 1 � j � k,Sj = fmi;j j 1 � i � qgand f(mi;j) = H � 1 + j; 1 � i � qClearly, if n1 2 Sj and n2 2 Sj+1 thenf(n2) = f(mi;j+1) = H + j > H � 1 + j = f(mi;j) = f(n1)The nodes of level H � 1 have f -values H;H+1; : : : ; H+ k� 1. The only goal node at level H hasf -value = H � 1 + k + 1 = H + k; which is greater than the f -value of any node of level H � 1.Therefore, Abf must expand every node of level H�1 prior to selecting the goal node for expansionand terminating. In other words Abf must expand all nodes of each set Sj ; 1 � j � k, containingnodes of equal f -values. Note that starting from their ancestors at level d0, no two nodes of anyset Sj belong to a common path.Let l1; l2; : : : ; lk be the time instants when Abf begins expanding nodes of sets S1; S2; : : : ; Skrespectively. At time instant lj ; 1 � j � k, Abf begins expanding nodes of Sj . We know all nodesmi;j 2 Sj are from disjoint paths from level d0 to level H�1. There are a total of bd0 disjoint paths(from level d0 to level H � 1) for bd0 nodes in Sj , of which at most bd0�1 paths or parts of them36



can be in memory at instant lj , and no portion of the remaining (b� 1)bd0�1 paths (from level d0to level H � 1) have been stored. Prior to the instant lj+1 all the nodes of Sj must be expanded.Therefore, all nodes of these (b � 1)bd0�1 paths must be expanded prior to the instant lj+1. Nowexpanding this logic for each j; 1 � j � k we get the total number of node expansions by Abf� (bH�d0�1)(b� 1)bd0�1(H � d0 � 1)= (b� 1)(bH�2)(H � d) (16)From the construction of the tree, we know thatN = NG = bH � 1b� 1H = dlogbNeand since S > bd � 1b� 1therefore d < logb S + 1 = logb(N)� logb( (N)) + 1Now substituting the values of H , bH�2 and maximum value of d in Eq. (16), we get the total nodeexpansions by Abf � (b� 1b2 )[(b� 1)N + 1][logb (N)� 1]= 
(N lg (N))6= O(N)since  (N) 6= O(1). 37



9 ConclusionAlthough the A* search algorithm is optimal in terms of number of node expansions, its exponentialmemory requirement makes it impractical on a number of problems. This di�culty with A* andsimilar state-space search algorithms has led to the development of limited-memory algorithms suchas IDA*. Basically, limited-memory algorithms save space at the expense of time: they save spaceby removing nodes from their memory storage, but this means that they will need to re-generateand re-expand these nodes later.In this paper, our goal has been to do an in-depth analysis of the nature of this tradeo�. Inparticular, we have presented the following results:1. We have presented necessary and su�cient conditions for IDA* to be asymptotically optimal.Our conditions show that IDA* is asymptotically optimal in a somewhat di�erent range ofproblems than was originally believed. For example, the conditions stated in [10] are notsu�cient to guarantee asymptotic optimality of IDA*; i.e., IDA* will perform badly in someof the trees on which it was thought to be asymptotically optimal. However, this failing isnot unique to IDA*, for we have shown that in general, no best-�rst limited-memory heuristicsearch algorithm can be asymptotically optimal.2. It is well known that the amount of memory needed by A* can be exponential in the amountof memory needed by IDA*. But on graphs, the amount of time take by IDA* can beexponential in the amount of time take by A*|even if IDA* is using a monotone heuristic.Thus, if su�cient memory is available, on graphs it is much preferable to use a graph searchalgorithm rather than using IDA*.Acknowledgement: We thank Richard Korf for many helpful discussions.References[1] A. Bagchi and A. Mahanti. Search algorithms under di�erent kinds of heuristics-a comparativestudy. JACM, 30(1):1{21, 1983. 38
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