
A case for in-kernel data streaming over the �le subsystem �Sandeep GuptaDepartment of Computer Science yJohn S. Baras zInstitute of Systems ResearchStephen Kelley yInstitute of Advanced Computer StudiesNick Roussopoulos yInstitute of Advanced Computer Studies and Department of Computer ScienceUniversity of Maryland, College Park, MD 20742fsandeep,nick,skelleyg@cs.umd.edu, baras@isr.umd.eduMay 30, 1996AbstractThis paper maeks a case for a new implementation of in-kernel data streaming in Unix.In particular, we show we can use it to improve the throughput during an important activity:�le transfer. The performance improvements are not limited to the aggregate throughput ofthe system, and we see that it makes lesser demands on the system. This note describes theperformance measurements of our implementation of in-kernel data streaming in Unix for large�le transfers, and presents a comparison with standard user driven transfers.1 IntroductionWe make a case for a new implementation of in-kernel data streaming in Unix. In particular, weshow we can use it to improve the throughput during an important activity: �le transfer. Thiscan be done by inexpensively scheduling the transfers in the kernel within a process's kernel share,without returning to the user process. We implemented and tested data streams over the �lesubsystem. Our interface turns out to be simple, compact and 
exible to implement in-kernel datastreams as well as has promise for a more general system service. The performance improvementsthat we report here are not limited to the aggregate throughput of the system, and we see that itmakes lesser demands on the system.�This material is based upon work supported in part by the National Science Foundation under Grant No. NSFEEC 94-02384, and by the Center for Satellite and Hybrid Communication Networks under NASA contract NAGW-2777, by the University of Maryland Institute of Advanced Computing Studies, by ARPA under Grant No. F30602{93{C{0177, Maryland Industrial Partnerships and Loral Corporation. Part of the design for this work was also doneby the �rst author as a summer internt at AT&T Bell Laboratories, Murray Hill in Summer '94.yAlso with the Institute of Systems Research.zAlso with the Department of Electrical Engineering. 1



The throughput gain for multiple transfers has been found to be upto 50% to 80% for fourtransfers in parallel. This gain has also been veri�ed for a standard ftp server (wuftpd). Inaddition to raw throughput performance, since we eliminate copies in and out of the kernel andavoid involuntary context switches, we also expected savings in processor cycles. This was foundto be true too. Consequently this technique should be very useful for popular applications that use�le servers viz., ftp, www servers, and distributed databases.A general discussion on in-kernel streaming appears in [1]. An earlier implementation [2] showsan alternative way of splicing for Unix. Data streaming through the kernel can be done in severalways. System V streams [6] modules can be used for the same concept. Our implementation usesthe �le subsystem abstraction [4], and in contrast to these di�ers in the applicability and at theuser interface. Our implementation has potential for a more general OS service and is extremelycompact. On the other hand, in it's current version we consider it early to evaluate it for videodata where [2] is well tested [3], [5].Most of this note describes the performance measurements of our implementation of in-kerneldata streaming in Unix for large �le transfers. Before we could compare the this technique to stan-dard user driven transfers, we needed some meaningful comparison. In the next section we describethe measurement environment. Section 3.1 details the selection of our experiments, measurementsand key observations that make a case for this technique. We give an outline of the implementationin section 4, and following the conclusion, a view of the future work.2 The measurement environmentThese measurements are on a DEC-station 3100, running Ultrix 4.2 with the additional systemcall (Cue) implemented for in-kernel streaming. This machine is used for transmitting data fromthe disk to the network, and the data is being received on a DEC 3000 Alpha running OSF1 V3.2.Two types of setups were used, in one the data was simply read o� the socket, and in the second,an ftp client copied data to the disk. The machines being asymmetric ensures that the Alpha iscapable of receiving data at least as fast as the 3100 can transmit.Our programs to measure the performance (other than the ftp server, mentioned next) do anumber of transfers and report the total transfer time, system time and other system activity bydirectly reading the appropriate kernel variables. We print out several details to ensure the readingsare not a�ected by other system activity.Most of the initial sets reported are several sets of 60 transfers each, and the later run onperformance of several transfers in parallel are two to three sets of 3 transfers. The numbersmeasured from these parallel transfers were veri�ed to correspond to performance on a ftp serverfrom Washington University (wuftpd-2.4) that we modi�ed to use Cue. The modi�cations on theftp server involved replacing the two lines from the data transfer loop that read and write data.2.1 Details of measurement routinesIn each individual run we vary the scheduling of transfers, by having the Cue relinquish the processorfor some duration after a number of transfers. By varying the number of transfers `k', and theduration `t' for which it relinquishes, we can study the performance and design schedules. Threekind of measurements are reported in this section.2



The �rst type starts a process that transfers a large �le (nearly 12 MB) from the disk sixtytimes using user driven as well as in-kernel data transfers. In parallel it forks a process that makesa system call (gettimeofday()) in a loop, and maintains a count of how many calls it makes. Atthe beginning and end of each of the sixty transfers, the �rst process sends a signal to the secondprocess. The second process, on receipt of the signal prints out the current count, and resets thecount to zero, before resuming. The system call loop was chosen to ensure most timely delivery ofthe signal. It is harder to otherwise meter the progress of the parallel process synchronized withthe duration of the transfer in the �rst one. By the numbers of syscalls reported by the parallelprocess during the durations of the Cue and user driven transfers, we can compare how much ofthe processor was available for other system activity during each of these transfers.The second type of measurements do not fork the parallel process. They simply transfer the�les using the two mechanisms and report the measurements across the transfers. The third typeof measurements use ftp. The observations are taken with a modi�ed ftp server on the DEC 3100as mentioned above, and one or more standard ftp clients running on the DEC 3000 Alpha. Themeasurements of throughput are those reported at the client.The �rst type of transfers with metering process in parallel, maintain a full utilization of theprocessor. For all three types of measurements, the number of 8 KB blocks read from the disk forthe transfer are approximately 90,000. Over the course of the sixty runs of the 12 MB transfers each,the user driven transfer consistently uses 25 more block inputs. This is not completely understood,but since the number is small, we ignored the di�erence, while we account for it in the calculations.We also monitored other activity on the system and there is little page reclaim and page faultactivity during these runs - only a couple in the hour long runs. There was no other di�erence inthe two transfers. Most of the initial transfers run over an hour each. Some of the later experimentswith multiple streams running in parallel, have shorter runs.3 Schedule selection and evaluationFirst we describe the heuristics for equivalent schedule computation for in-kernel streaming oflarge �le transfers. An discussion on the measurements with the selected schedules follows. Anappropriate scheduling for the transfers was needed since the �rst attempts at in-kernel streamingusing Cue did not show any gain in performance. In this implementation, a schedule refers to twoparameters (k, t): k is the number of blocks it fetches from the disk and sends out without pauseevery time the Cue call goes active, and t is the time it pauses between two such sets of transfers.3.1 Schedule selection heuristicsTo decide on the initial values of (k, t) , we used the following heuristic: We measured the averagenumber of user driven block transfers per 100ms (the time slice on the Unix systems) and yieldedthe processor for the right amount the time. The notion of right was in terms of the usage of thekernel for the transfer, both in terms of share, and the duration of individual requests. For the �rstexample, there are two dominant processes: the transfer process and the metering process. We donot want either process to hold the kernel for a time greater than the time quantum that Unixtries to limit for each process. Second, to begin with we do not want to keep either process activefor an unfair share, though in the later experiments we evaluate the results of slightly aggressivescheduling of the transfers. 3



We started with a simple heuristic of scheduling as many transfers as possible without violatingthe time slice the OS provides, and then yielding the processor for the amount of time equal towhat it used. An approximation of disk seek time/block transfer time was used to guess the timeto yield the processor.We approximate fair behavior in the �rst schedule by starting with three transfers (i.e., k=3),not wanting to routinely overshoot the time quantum as the average blocks read during user driventransfers was less than four. Cue transfers could manage four transfers within the same quantumso we experimented with k=4 as well. The delay (i.e., t) chosen for the �rst test is 70ms, wasapproximated with the average seek time of the disk being considered as the dominant factor.Comments on the heuristic In retrospect, our starting choices were close to the fraction ofthe system time used during the transfer. User driven transfers maintain transfer rates of aroundthree block transfers per 100 ms unix quantum on an average. System time usage was approximately50%. If we used the system time rationale we would be yielding the CPU after using the sameratio of system time as for the user driven transfers used, i.e., around 50ms after three transfers. Itturns out that the exact choice of the delay is somewhere close, and for multiple transfers, it doesnot matter, as the disk transfer times dominate the actual delay.As mentioned above, the value of d was chosen based on disk seek times and they being 15-20 ms.This was not looked at rigorously as the initial tests started to lead us to interesting answers. Also,at this point we wanted to establish if this concept had any utility. In section 5 we mention howthis scheduling is also dependent on the disk's access time, and the need to remove this dependency.One experiment also showed us that the reasoning behind the heuristic doesn't always work, andthe merit in the concept makes a case for study of the schedules. Once we got interesting answerswe looked at other schedules by dividing the delay across blocks, and choosing schedules that di�erin aggressiveness from the �rst one.3.2 System performance with the �rst schedule and variationsThe most important observation from set 1 is that it does not seem to cost too much in termsof time to do even 50% more context switches if they are voluntary. This fact can be used toexpect that the cost of in-kernel scheduling for large �le transfers will be justi�able, if there areperformance bene�ts. Second observation is that the variance in the number of context switchesis much more with user driven transfers. Finally, this schedule shows it is possible to get morework done by a parallel process (the metering process in this case) by a less aggressive transfer.We emphasize `possible' because later experiments also showed that all schedules that appear lessaggressive by the above heuristic are not necessarily less expensive.The important thing to note is that it is possible to pace the transfers entirely using in-kernelvoluntary context switches within the time quantum of the process, at a lower cost. The answer ongain in overall performance is not conclusive in this run as the user driven transfers provide betterthroughput than Cue. Even so, with this schedule taking 15% more time, it is a good startingpoint to guess test schedules based on the observations on system behavior.The average system time spent servicing each block in the Cue transfer is 12% less, and thenumber of system calls made by the metering process are 18.5% more than in the user driventransfer. Note that the time taken by Cue transfer in this case is also 16% more. There is indicationof improvement in system performance, interpreting it as follows. The number of calls the meteringprocess makes, were it left to run on it's own is roughly 32,000. Then, the Cue transfer and the4



k = 3 (8192 KB block transfers), d= 70msContext Switches per MB transferredS. No. User driven transfer Cue transfervoluntary involuntary (all voluntary)1. 6 23 482. 6 23 473. 5 23 474. 19 18 505. 8 22 49Table 1: Set 1: The number of context switches during user driven transfer, though three timesless, are involuntary over 70% of the time. This shows the possibility of inexpensive scheduling oftransfers in the kernel. User Driven Cue (k=3, d=70ms)S.No. Time (S) per MB System calls per Time (S) per MB System calls perwall clock system second in parallel wall clock system second in parallel1. 4.6 2.3 12574 5.3 2.1 147402. 4.6 2.3 12605 5.2 2.1 146533. 4.6 2.3 12619 5.2 2.1 146404. 4.5 2.2 12420 5.4 2.1 149135. 4.5 2.3 12564 5.3 2.1 14928Table 2: System performance during user driven and Cue part in Set 1. This hints towards theutility of the call with schedules that perform slower than user driven transfer. Please see text forinterpretation.user driven transfers take o� 47% and 60% respectively from the standalone metering rate. Thenext experiment uses a schedule which does not use as many context switches but gives us �rmevidence of increased CPU availability during these transfers.3.2.1 Set 2: Evidence of improved cpu availability with comparable transfers.In the second set we have a schedule which takes roughly equal time as the user driven transfer(on an average 1.7% more). This amounts to around 16 seconds more on an average. We notice anaverage of 5% increase in the number of calls made by the metering process amounting to abouttwo million extra calls over the transfer. This amounts to an approximate gain of 4%, in spite ofthis marginally extra time spent, as shown next.As noted in the previous section, the metering process, left to itself without the transfers inparallel makes less than 32,000 calls a second. At this rate, 16 seconds of extra time only givesit a chance to make less than half a million more calls. Even if we subtract this number of callsfrom the surplus calls that we see in the Cue transfer, we see cpu cycles for 4% more system callsavailable to the other process, for a single transfer.5



k = 4 (8192 KB block transfers), t= 70msS. No. Total time for Cue part System calls during transfer(seconds) % over user driven part per block % over user driven1. 3183 1.7 463 4.82. 3246 3.4 478 7.93. 3170 0.5 462 3.64. 3194 1.3 468 4.2Average 3198 1.7 468 5.1Table 3: Set 2: Performance with a schedule that takes about as much time the user driven transfers.The 1.7% extra time amounts to only a fourth of the 5.1% gain seen by the metering process, forjust one transfer in parallel. Please see text. Time1 (S) System call rateSetup Wall clock System in parallelUser Driven2 3147 1562 12471Set 3:Cue (k=1, t= 16ms) 2678 (85% of std) 1214 9890 (80% of std)Set 4:Cue (k=1, t= 20ms) 3022 (96% of std) 1213 10422 (82% of std)Table 4: Sets 3,4: E�ect of distributing the delay after each transfer. Adding extra yield timedoesn't help linearly. 1 The times reported are from aggregated times of 60 transfers. 2 The userdriven transfer part numbers are averaged over eleven such measurements from Sets 1-4.3.2.2 Sets 3,4:Distributing `t' over individual transfersNext we measured the e�ect of distributing the delay t after each transfer instead of after everythree or four transfers, with the same heuristic. It is not possible to get exact division of delaybecause of the scheduling quantum in the kernel, so we use two sets. The CPU yield time pertransfer averages to around ten percent less in set 3 and ten percent more in set 4.Both these cases result in a nearly identical saving of the time the process spends in the systemmode (22%). By itself, this is not as conclusive a measure of performance, but for the fact thatnearly this amount is seen saved from the overall time as well, in set 3. In set 4, even though theprocess yields for 10% extra time, it does not seem to help the process in parallel, which tells usthat by yielding the processor for an extra time, it doesn't always help. It is also important to notethat in all the experiments, the transfer size (8K) is the optimal size for this machine. Increasingthe bu�er size for user driven transfers doesn't help the throughput signi�cantly.The more useful of these two schedules in this case is greedier than the user driven. Since thequantum for timing is large, (4ms), it is not possible to get exactly comparable schedules. Still,if we have not yet found equivalent schedules, i.e., an exact criteria for comparing or �nding thebest schedule it is not entirely discouraging. This schedule, e.g., is indirectly an evidence of morecapacity, as it gives a totally free processor for 15% of the time than the user driven transfer case.Using the number of metering calls standalone (32,000 a second), this is equivalent to about 37%more of system calls that would be made by the metering process.6



User Driven transfer Cue transferParameter Sets 1-4 Set 1 Set 2 Set 3 Set 4k=3, t=70 k=4, t=70 k=1 k=1Mean � Mean � Mean � t=16 t=20Wall Clock time/MB 4.53 0.04 5.27 0.05 4.60 0.05 3.85 4.34System time/MB 2.25 0.06 2.13 0.02 2.17 0.01 1.75 1.75Context switches/MB 301 2.4 48 1.4 39 1.2 132 131Syscalls in parallel (s�1) 12471 390.8 14775 138.6 13017 74.7 9890 10422Table 5: Summary observations from Sets 1-4 show there is less strain on the machine for Cuetransfers. 173.2% of context switches during user driven transfer tests are involuntary in this setup. Some later experiments show that large number of involuntary context switches show upespecially for one process doing the transfers (32%). The rest are due to the metering process.Setup on Time(S)/MB Context System call rateboth transfers Wall clock System switches/MB in parallel (s�1)User driven 4.05 1.00 59.6 10463Set5:Cue (k=3, t=16ms) 4.46 0.64 157.0 11571Set5:Cue (k=4, t=16ms) 3.17 0.89 97.2 6032Set6:Cue (k=4, t=16ms) 3.13 0.88 96.8 No meteringTable 6: Sets 5,6: Two Cue transfers in parallel show better machine utilization scaling, as well asan improvement in system's aggregate data throughput.3.2.3 Other observations from Sets 1-4:demands from the system during transferIn table 5 we summarize the observations from sets 1-4. In additions to performance averages, wealso computed the variance. The number for the total transfer time are roughly the same, butin terms of the demand it makes from the system time, the context switches it puts the systemthrough, and the amount of CPU available to the other process, Cue transfer seems to behave moreconsistently than user process driven transfers. The number of observations for Cue transfers insets 1-4 are 4-5 each, and for the user driven transfers, the number is around 10. With the caveatthat this is a small number of observations, we take it as a hint to the possibility that user leveltransfers strain the system's performance more than Cue.3.3 Sets 5-9: Utilization and throughput scaling with parallel transfersCue transfers seem to scale well, both in performance and in use of the system's resources. Sets5,6� show the performance of two schedules with two transfers in parallel. In Set 1, we had theCue transfer and the metering process run in parallel, and we relinquished the processor for asmuch time as Cue was occupying it. With two transfers and two metering processes, there are fourprocesses in the experiment. These measurements were without our earlier heuristic, and intuitivelywe were relying on the Unix scheduler to do a good job even though individual Cue contend moreaggressively. It does do well.�There is no set 7 in these measurements. 7



No. of transfers Time(S)/MBin parallel Cue User driven2 (set 6) 3.13 7.403 (set 8) 3.42 13.324 (set 9) 3.23 18.97Table 7: Sets 6,8,9: Parallel Cue (k=4, t=16ms) transfers scale throughput much better than userdriven transfers. The value of t has little impact, as the kernel cannot return control to anothertransfer before completing k blocks, which take more than 16ms. The next subsection reports this.In this set, we have reduced the time for which the processor is relinquished by each of the Cue.The idea was to see if there were schedules in the same neighborhood that yielded comparableperformance. Set 5 performs 10% slower than user driven transfers, yielding this time to themetering process, which makes 10% more progress. Following the observation that the averagesystem time per MB transferred was only 64% of the user driven case, Set 6 schedules the transfersa bit more aggressively, while still keeping the system time per MB transferred 10% lower. Thetransfers turn out 20% faster than the user driven case, however, it taxes the metering process 42%.This still is very attractive, as the total time spent on the transfer is much less. It also turned out,as observed in the next set with ftp, that the 15% slower schedule from the �rst set (k=4, t=70ms)shows a good scaling of throughput.Finally, a new observation was made in Set 6 by dropping the metering process. It seems tomake very little di�erence to the system time and context switches incurred by the Cue transfer.We take it, that in addition to creating less contention with other Cue transfers, this may be a hintthat a Cue transfer also spends less CPU resources contending with non I/O intensive processes.Sets 8,9 show the dramatic di�erence in performance of the transfers when two or more ofthem (the same type only) are scheduled in parallel. This is not the only interesting observation inthese experiments. The number of context switches begins competing with Cue, and the number ofinvoluntary context switches drops. There are several aspects to comparing the number of contextswitches in user driven transfers to Cue transfers, so we are not attempting to describe them inthis report. These numbers are important. In the next subsection we show several Cue scheduleswhich show comparable scaling of throughput with a standard application.3.3.1 Wuftpd FTP server testsThe numbers in this section are reported from four to �ve tests of the 12MB �le. Eventually, theseneed to be automated and made as rigorous as the earlier sets. Because we use smaller samples, andthe variability in the results is large, we have not computed averages. Instead we have listed therange of throughput reported by the FTP clients. We have not looked into the ftp client sourcesabout how they measure the throughput, hence we are not certain about the variability in thethroughput across di�erent experiments.The measurements in the �rst two types of sets were at the server side, in contrast to this set.Since we are measuring the throughput only in this case, then the reading at the client versusthe server will be negligible, as the window used by tcp is orders of magnitude smaller than theindividual transfer sizes (� 10K versus � 10 MB).The gains in performance seen by the multiple transfers seem to scale well with appropriate8



No. of ftp wuftpd performance at clients (Kbytes/S)clients in user driven using Cueparallel transfer k=1, t=16ms k=3, t=16ms k=4, t=16ms k=4, t=70ms1 400-410 260-280 340-360 350-370 2002 220-300 220-240 240-280 320-360 3503 202-240 239-257 221-250 277-330 3004 205-240 216-237 204-225 300-360 317Table 8: FTP daemon performance.schedules. In table 8, the performance with use of Cue in a user driven FTP daemon. The mostconservative schedule tested above scaled 50% better with four transfers, though they start o�with a much slower performance. These observations seem to suggest that the optimal (k,t) formultiple transfers may not be the same. Even the aggressive schedule e.g., (k=4, t=16) from Set3, shows a dip with three transfers even while achieving upto 80% improvement in performanceclearly indicating there is more to be understood here.3.3.2 Pacing of the transfersAnother interesting observation made informally during the ftpd tests and the multiple transfertests reported above, is that Cue transfers also seem to pace themselves very well relative toother transfers. In ongoing experiments as well, this seems to be true, indicating that this simplescheduling mechanism is good.4 The Cue() ImplementationIn this section we describe the semantics and implementation of the Cue call for �le transfersto a remote machine through the network, and the change made to wuftpd. The �lesystem spliceconcept is more general, and the same primitive can be useful for upgrading another system function(descriptor passing) within the system as well. That part is not implemented yet, and not describedhere. The inputs to the current implementation of the call are �le descriptors for the disk �le tobe transmitted, and the socket on which it is transmitted.4.1 ConceptThe inputs to the call are used to locate the appropriate �le table entries from the kernel datastructures, and the kernel routines for data transfer area used to drive the transfer loop over the�le subsystem. The �rst implementation transferred data in a kernel loop, and returned when thetransfer was over. It would yield the processor only when it needed to wait for disk blocks. Thisdid not yield the desired performance even at the expense of fairness in scheduling. This is becauseit naively holds the cpu at a high priority all through the transfer. Subsequently we tested simplecpu yielding schedules, relinquishing the priority to the minimum the kernel would admit. andmeasured the performance. This shows improvements in performance, and with parallel transfers,upto 80% additional throughput. 9



4.1.1 Syntax and semanticsThe syntax of the �rst version of the call is Cue (int sdes, int ddes);, where sdes and ddesare �le descriptors to a disk �le and a socket, respectively. At this point, the call does not return avalue, and can only do transfer in this direction. y The current implementation of the system callblocks the user process until the transfer is complete. Multiple processes can make the call andtheir transfers are executed concurrently. The blocking and sequential transfer semantics are goingto change very soon, to facilitate random access experiments, and the syntax will remain backwardcompatible with this call.4.1.2 Changes to wuftpdThe change to wuftpd is minimal. For these tests, we have simply replaced the couple of linesused for data transfer using user driven I/O with our calls. Speci�cally, the read() and write()call loop is replaced by a Cue() call with the appropriate descriptors, referring to the �le beingtransferred and the socket to the connection for sending data.5 Conclusion and future workWe have described the set of experiments that establish the feasibility and usefulness of implement-ing in-kernel data streams over the �le subsystem, and in-kernel scheduling of such data streamsfor high volume �le I/O. We measured the performance of the system with our implementationduring such data transfers and compared them with user driven transfers. Finally, we claim theutility of this concept using ftp, one of the most common data transfer applications.The most important observation from these measurements is that in-kernel streams using theseprimitives scale much better than user driven transfers when we try multiple transfers at the sametime. We also found that our scheduling method paces multiple transfers evenly, i.e., transfers geta fair share of the throughput.Immediate next goad on Cue is to scan for optimal schedules, and test it's suitability fordatabases. For further work, we want to understand the scheduling, and work on how optimalschedules could be arranged dynamically for applications such as database servers, ftp and webservers. Some of these schedules do not scale as well as the others, even though they yield betterperformance in some cases. Understanding the mechanics of scheduling may help us select thebest or design adaptive schedules. Once a good basis for the scheduling is established, we cantry simple enhancements like prefetching. Finally, the Cue call design has potential to be a verygeneral interface to I/O services and IPC related functions such as transfer con�guration, descriptorpassing across processes. Some of these features will become apparent in the tests for databaseservers.References[1] Peter Druschel, Mark B. Abbott, Michael Pagels, and Larry L. Peterson. Network Sub-systemDesign: A Case for an Integrated Data Path. IEEE Network, July 1993.yIt is missing the code to close the �le after the transfer is complete, for the receive transfers to be correctlyre
ected in the �lesystem. This is not a technical problem.10



[2] Kevin Fall and Joseph Pasquale. Exploiting In-kernel Data Paths to Improve I/O Throughputand CPU Availability. In Winter Conference, pages 327{333. USENIX, January 1993.[3] Kevin Fall and Joseph Pasquale. Improving Continuous-media Playback Performance withIn-kernel Data Paths. In Multimedia Conference. IEEE, March 1995.[4] Le�er, et al. The Design and Implementation of the 4.3 BSD UNIX Operating System. Addison-Wesley Publishing Company, 1989.[5] Joseph Pasquale. I/O System Design for Intensive Multimedia I/O. InWorkshop on WorkstationOperating Systems, Key Biscayne, FL, 1992. IEEE.[6] Dennis M. Ritchie. A Stream Input-Output System. AT&T Bell Laboratories Technical Journal,63(8):1897{1910, 1984.

11


