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Abstract— DS-CDMA has been recognized as the major
candidate for providing high and variable data rates in third
generation wireless networks, where multi-code structures
and different spreading gains will be employed. In this
paper, we address the problem of assignment of variable
spreading gain deterministic codes to a set of users, with
the objective to maximize down-link system throughput.
We propose an algorithm to allocate codes to users with
different minimum rate requirements, based on code cross-
correlation properties and spreading gains. Our algorithm
first constructs an admissible set of codes by using criteria
which are based on induced interference to the system and
code rates. These codes are then appropriately assigned to
users, so that user rate requirements are satisfied. Compar-
ative numerical results for different performance measures
of these criteria are also provided.

I. Introduction

The last frontier in wireless communication networks is
the provisioning of high and variable data rates to hetero-
geneous users for supporting a mixture of diverse appli-
cations, such as voice, video and data. Next generation
applications will mostly carry bursty traffic, which must
be handled differently than existing voice traffic, where the
objective is to maintain constant link quality. Due to the
increasing demand for limited network resources and the
trend towards variable, higher data rates, sophisticated re-
source utilization and assignment are indispensable.

The predominant third generation physical layer tech-
nique for delivering wireless access to users is Direct-
Sequence Code Division Multiple Access (DS-CDMA). In
DS-CDMA, user symbols are modulated by a high-rate chip
sequence, the spreading code or signature sequence. The
number of chips per symbol is called spreading gain. Many
users can transmit in the same wide frequency band, if a
unique code is assigned to each user. Second generation
CDMA systems are based on the IS-95 standard. Third
generation CDMA technology encompasses the Wide-band
CDMA (W-CDMA) and cdma2000 standards, where a
wide range of higher data rates is achieved with multi-code
structures and different spreading gain per code [1].

A fundamental goal in DS-CDMA is to satisfy QoS re-
quirements for users. These are usually expressed in terms
of achievable data rate, signal-to-interference and noise ra-
tio (SINR) or bit error rate (BER). Depending on user re-
quirements and resource availability, a user can be assigned
multiple codes, each of different spreading gain, in order
to satisfy QoS requirements. The performance of a DS-

CDMA system is significantly affected by the design and
assignment of signature sequences to users. Although or-
thogonal signatures eliminate inter-user interference, code
orthogonality may vanish at the receiver, due to lack of syn-
chronization and multi-path effects. Further, low spreading
gain codes provide high rates, but they have low diversity
gain against channel impairments and do not efficiently
suppress other user interference.

Two general approaches can be identified in the liter-
ature. The first one assumes deterministic signature se-
quences and focuses on their design, so as to maximize
capacity of the DS-CDMA channel. The optimal set of
Welch bound equality (WBE) signature sequences was first
identified in [2], in the sense that the total squared cross-
correlation (TSC) of the signature sequences is minimized
and Welch bound is achieved. WBE sequences have been
shown to maximize sum capacity of the CDMA channel
for equal received powers [3]. In [4] and [5], the authors
present a technique for signature design and power alloca-
tion, so that up-link and down-link channel sum capacity
are maximized. In [6], an iterative technique for distributed
signature update is proposed that converges to the mini-
mum TSC signature sequence set.

The second approach deals with codes that are ran-
domly generated and assigned to users. Then, code cross-
correlation terms are eliminated from SINR expressions
and SINR depends on received powers and spreading gain.
Under this assumption, the main trend in literature is to
adapt spreading gains and powers in order to maximize
system throughput. In [7], spreading gain adaptation poli-
cies for minimum probability of packet retransmission are
considered. Power control for fixed spreading gain multi-
code DS-CDMA and variable spreading gain single-code
DS-CDMA is studied in [8]. Finally, spreading gain and
power control for maximum system throughput are stud-
ied in [9], where throughput is expressed as a function of
achievable rates and the amount of packet retransmissions.

The main feature of these approaches is that they focus
on physical layer aspects of the problem, such as signature
design and spreading gain or transmission power adapta-
tion. In addition, spreading gain is assumed constant in
deterministic signature studies and is adaptable only in
random signature cases. In this work, we investigate the
problem of deterministic assignment of variable spreading
gain codes to a set of users with different rate requirements,
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with the objective to enhance system throughput. We fol-
low a cross-layer approach, in the sense that we consider
the impact of physical layer code properties on MAC layer
code assignment.

The paper is organized as follows. In section II, we pro-
vide the model used in our approach. In section III, we de-
scribe the problem and present the proposed algorithm for
deterministic assignment of variable spreading gain codes
to users. Numerical results are illustrated in section IV.
Finally section V concludes our study.

II. System Model

We consider the down-link of a single-cell synchronous
DS-CDMA system with M binary antipodal codes {si}M

i=1

available at the base station. Each code can have differ-
ent spreading gain Ni and the maximum spreading gain is
Nmax. Let ci denote the normalized version of si, so that

ci ∈
{
± 1√

Ni

}Ni

, for i = 1, . . .M and cT
i ci = 1, where T

denotes the transpose operation. A code ci of spreading
gain Ni is associated with rate r(ci) = r(si) = 1/(TcNi),
where Tc is the (common for all codes) chip duration.
Spreading gains are assumed to satisfy the following condi-
tion, which facilitates framing at the receiver: any spread-
ing gain is the common multiple of all lower value spreading
gains. A frame structure of duration Tf is thus imposed by
Nmax, so that Tf = NmaxTc.

There exist K users in the cell and user k is character-
ized by channel gain hk. Antipodal BPSK modulation is
employed for all users, so that bk ∈ {−1, 1} for each infor-
mation symbol bk of user k. Each user k has a minimum
rate requirement rmin,k (in bits/sec), which must be sat-
isfied by the assignment algorithm. In general, multiple
codes can be assigned to a user, but each code can be as-
signed to at most one user. The set of all M codes is C
and the set of codes assigned to user k is Ck. Finally, the
cardinality of a set X is denoted by |X |.

Assume for a moment that M codes of equal spreading
gain N are used. The received signal at the input of the
receiver of user k in a symbol interval is,

yk =
K∑

n=1

∑
ci∈Cn

hkbi
nci + n, (1)

where bi
n is the information symbol of user n, which is

transmitted with code ci ∈ Cn and n is zero mean white
Gaussian noise with variance σ2.

The receiver of user k consists of a bank of |Ck| matched
filters, each of which is matched to code ci ∈ Ck. For the
symbol-synchronous case, useful signal and interference are
received synchronously at each matched filter. The signal
at the output of the matched filter corresponding to code
ci ∈ Ck is yi

k = cT
i yk, which can be expanded as,

yi
k = hkcT

i




K∑
n=1
n�=k

∑
cj∈Cn

bj
ncj +

∑
cj∈Ck

j �=i

bj
kcj + bi

kci + n


 , (2)

where the first two terms capture the effect of interference

on code ci from other users’ codes and other codes of user
k, while the third term leads to the useful signal. Since
total induced interference to code ci is due to all other
codes, irrespective of users, yi

k can be written as,

yi
k = hk


 ∑

cj∈C
j �=i

bjρij + bi
kρii


 , (3)

where bj denotes a user symbol carried by code cj �= ci

and ρij is the cross-correlation between codes ci and cj ,
defined as ρij = cT

i cj , with ρii = 1. Then, the SINR at the
output of the matched filter corresponding to ci ∈ Ck is,

SINR(ci) =
1∑M

j=1,j �=i ρ2
ij + σ2

. (4)

Consider now codes ci and cj with spreading gains Ni and
Nj . Let ρ̃ij = sT

i sj be the cross-correlation of the unnor-
malized codes si and sj , so that ρij = ρ̃ij/

√
NiNj . Equa-

tion (4) can be written equivalently as1,

SINR(si) =
Ni∑M

j=1,j �=i

ρ̃2
ij

Nj
+ σ2

. (5)

We now need to define ρ̃2
ij for Ni �= Nj . We first

make the following notational remarks for a code si =
[si,1, . . . , si,Ni ]

T of spreading gain Ni:
• s(k)

i : a new code, formed by concatenating code si to
itself k − 1 times. E.g, s(2)

i = [si si]
T , s(3)

i = [si si si]
T , etc.

• s(�,L)
i : the �-th L-length subsequence of si, such that

s(�,L)
i = [si,[1+(�−1)L], . . . , si,(�L)]

T , for � = 1, . . . , Ni/L.
E.g., if s1 = [+1+1-1-1]T and L = 2, then s(1,2)

1 = [+1+1]T

and s(2,2)
1 = [-1 -1]T .

Consider the following example of three codes s1,
s2 and s3 with spreading gains 4, 8 and 16, where
s1 = [+1-1+1-1]T , s2 = [+1+1+1-1-1-1+1+1]T , and
s3 = [+1+1-1-1 +1+1-1-1+1+1-1-1+1+1-1-1]T (Figure
1). Consider squared cross-correlation ρ̃2

21 between s2 and
s1. The matched filter for the longer code s2 at Ts2 sees
two replicas of the shorter code s1 in a symbol period
Ts2 . Then, ρ̃21 becomes the inner product of s2 with the
concatenated version of s1. Now consider squared cross-
correlation ρ̃2

23 between s2 and s3. The matched filter for
the shorter code s2 at Ts2 sees two sub-sequences of the
longer code s3, each of length 8, and the SINR require-
ment for s2 should be satisfied for all such sub-sequences.
It is thus meaningful to consider worst case SINR, which
occurs when the squared cross-correlation between s2 and
one of the two sub-sequences is maximum. The formal def-
inition of squared cross-correlation of codes si and sj with
spreading gain ratio R = Nj/Ni is,

ρ̃2
ij =




(
sT
i s(1/R)

j

)2

, if Ni > Nj

max
k=1,...,R

(
s(k,R)
i

T
sj

)2

, if Ni < Nj

(6)

1Spreading gains also affect noise power; it will be assumed that
interference is the major limitation, rather than noise power.



3

s1T  s13T s12T  s14T

s1N     =  4

s2T  s22T

s2N     =  8

0T

fT

fT

+1

−1

0T

cT

cT

s3T

s3N     =  16 fT

+1

−1

0T

cT

+1

−1

Fig. 1. Illustrative example for the cross-correlation for codes of
different spreading gains.

A certain BER requirement ε for all assigned codes of
a user must be satisfied. The minimum required SINR
per code to maintain BER ≤ ε for BPSK modulation is
denoted by SINR threshold γ.

III. Deterministic Code Assignment with
Spreading Gain adaptation

A. Problem Statement

When a lower spreading gain code is used by a user,
symbol duration becomes shorter and data rate increases.
If lower spreading gain codes are assigned to a user, the
user needs fewer codes to reach rate requirements. Thus,
more users are accommodated in the system for a given
set of codes and capacity is increased. However, a lower
spreading gain code has lower SINR and induces higher
interference to other codes, as (5) suggests. Thus, lower
spreading gain codes do not favor use of many codes with
acceptable SINR. From that point of view, they do not con-
tribute to throughput enhancement. On the other hand,
a higher spreading gain code has lower rate. Since a user
with higher spreading gain codes needs more codes to sat-
isfy rate requirements, system capacity is decreased. How-
ever, higher spreading gain codes allow more codes to be
used, due to higher SINRs and less induced interference to
other codes.

Clearly, there exists a tradeoff between spreading gains
and number of utilized codes, with respect to achievable
throughput. The question that arises is which codes of dif-
ferent spreading gains must be assigned to users, so as to
achieve high throughput and satisfy user rate requirements.
Ideally, we would like to use as many codes of low spread-
ing gain as possible. This could be achieved in the case
of nearly orthogonal codes due to small inter-code inter-
ference. However, if code cross-correlations and spreading
gains are such that the amount of interference is signifi-
cant, then only a subset of codes with certain spreading
gains may be admissible in the system. User rate require-

ments are achievable either by more high spreading gain
codes or by fewer low spreading gain codes.

An assignment of M codes to users is specified by vector
(α1, α2, . . . , αM ), where αi ∈ {1, . . . , K} ∪ {0} denotes the
user to which code si is assigned. Code assignment involves
(i) code admission in the system and (ii) code allocation to
users. If αi = 0, si is not admitted in the system. Let
A denote the set of all possible code assignments. We can
index assignments as d = 1, 2, . . . , and map assignment in-
dex d to vector [α1(d), α2(d), . . . , αM (d)]. The set of codes
assigned to user k with assignment d is Ck(d). Then our
code assignment problem for maximum system throughput
can be formally stated as follows:

max
d∈A

M∑
i=1

αi(d) �=0

r(si), (7)

subject to a minimum SINR requirement per code,

SINR(si) ≥ γ, for i = 1, . . . , M, s.t. αi(d) �= 0, (8)

and a minimum rate requirement constraint for each user,∑
si∈Cj(d)

r(si) ≥ rmin,j , for j = 1, . . . , K. (9)

Observe that SINRs of admitted codes depend only
on the set of admitted codes itself through their cross-
correlations and are independent of code allocation to
users. A set of admitted codes, in which all codes sat-
isfy constraint (8) is called admissible. An allocation of
an admissible code set to users, such that constraint (9)
is satisfied, is called a feasible allocation. Among all feasi-
ble allocations, we want to identify the one that maximizes
system throughput. However, enumeration of all admissi-
ble code sets is of exponential complexity, and feasibility of
code allocations cannot be easily verified, as will be shown
in the sequel. Hence, it is desirable to design a heuristic
algorithm for code admission and code assignment to users.

B. Proposed approach

Based on our previous observation, the code assignment
procedure consists of two phases: (i) determination of ad-
missible set of codes and (ii) code allocation to users.

B.1 Code admission

In code admission, user rate requirements are not con-
sidered. The key idea is to admit as many codes as possible
in the system, while enabling codes to have high rates, i.e,
have low spreading gains. The criterion under which codes
are admitted is crucial. Interference among codes affects
code set admissibility and must be minimized during code
admission in order to facilitate more future code admissions
with acceptable code SINR. However, this goal contradicts
admission of high rate codes. We thus propose different
admission criteria that capture the impact of these factors.
In the sequel, we assume that the major limitation is inter-
ference rather than noise and that SINR is approximated
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by SIR. Let S0 be the set of codes that have already been
admitted. The next code si must be selected.
Criterion 1: Minimum SINR decrease with spreading gain
consideration
For each code si ∈ C \S0, we define an admission factor
when si is tentatively admitted. A code should be admit-
ted if it incurs low interference to other admitted codes
and thus leads to minimum decrease of their SIRs. Let
SIR

(−)
j , SIR

(i,+)
j denote the SIR of code sj ∈ S0 before

and after admission of si. The SIR decrease of sj due to si

is ∆SIRi
j = SIR

(−)
j − SIR

(i,+)
j and

∆SIRi
j =

Nj∑
sk∈S0:k �=j

ρ̃2
jk

Nk

− Nj∑
sk∈S0:k �=j

ρ̃2
jk

Nk
+

ρ̃2
ji

Ni

. (10)

An admitted code si should also receive low interference
from other admitted codes, so that its SIR is high. In
addition, low spreading gain codes should be given priority
for admission, due to high code rates. To capture all these
objectives, for each code si ∈ C\S0 with spreading gain Ni,
we define Admission Factor (AF) Ai as,

Ai = Ni ·
∑

sj∈S0:j �=i ∆SIRi
j

SIRi
. (11)

Thus, among codes that cause or receive the same amount
of interference, the one with higher rate (lower spreading
gain) is preferable. Moreover, among codes of same rate,
the one with the smallest amount of received or induced
interference is admitted. The code with the minimum AF
in C\S0 is always selected for admission.
Criterion 2: Minimum TSC of admitted codes
TSC of codes is considered as a reliable measure for inter-
code interference[2],[6]. For each code si ∈ C\S0, we define

TSCi =
∑

sj∈S0

ρ̃2
ij

Nj
+

∑
sj∈S0

ρ̃2
ji

Ni
, (12)

where the first term is a measure of the interference that
si receives from already admitted codes and the second
term captures induced interference from si to other admit-
ted codes. Codes with minimum TSCi are sequentially
admitted in the system. This criterion is based only on an
interference measure and not on code rates.
Criterion 3: SIR Balancing for admitted codes
The objective of this criterion is to admit code si, such
that SIRs of admitted codes are as balanced as possible.
For each code si ∈ C\S0, we define factor

Wi = max

{
max
sj∈S0

1

SIR
(i,+)
j

,
1

SIRi

}
, (13)

where the quantity in brackets is the worst case code SIR
after si is admitted. The algorithm selects code si, such
that the minimum SIR among admitted codes is maxi-
mized, that is si with minimum Wi. By maximizing the
minimum SIR among admitted codes, we encourage admis-
sion of more codes in the system.

Depending on the employed criterion, the algorithm se-
lects code si with minimum Ai, TSCi or Wi, so that all
admitted codes satisfy the SIR requirement. After each
code admission, set S0 is updated. The procedure termi-
nates when no more codes can be admitted.

B.2 Code allocation to users

After determining the final set of admissible codes S un-
der an admission criterion, a feasible allocation of codes
to users must be found, so that user rate requirements are
satisfied. If

∑
si∈S r(si) <

∑K
j=1 rmin,j , a feasible code al-

location for that admission criterion does not exist. On
the other hand, if

∑
si∈S r(si) ≥

∑K
j=1 rmin,j , the problem

of finding a feasible allocation of codes to users is not of
polynomial complexity. To see this, let code si ∈ S with
spreading gain Ni be an item of size r(si). Each user j
with rate requirements rmin, j can be perceived as a bin of
that size. Then, the code allocation problem to K users is
equivalent to the Bin Packing problem, “Given |S| items,
each of size r(si) and integer K, can we pack the items into
K bins?”, which is known to be NP-Complete [10].

Several heuristics can be found for code allocation to
users. Here, we use the following rationale: users are sorted
in decreasing order of rate requirements. Starting from the
user with the highest rate requirement, codes are sequen-
tially assigned to users, until their rate requirements are
satisfied or exceeded, in which case the next user is consid-
ered. For user j0, the code s∗i ∈ S, such that

s∗i = arg min
si∈S

|rmin,j0 − r(si)| (14)

is assigned to that user. After each code assignment, rate
requirements and set S are updated. After assignment of
all codes, let qj be the total rate assigned to user j and let
ej = max{0, qj − rmin,j} be the excess rate of j. If there
are unsatisfied users, the following procedure is performed:
for each user j with ej > 0, we remove the highest rate
code si assigned to that user, such that r(si) < ej (after
each removal, ej ’s are updated). All such codes are then
reassigned to unsatisfied users, starting from the user where
code allocation had terminated and applying similar code
assignment rules as before.

IV. Simulation Results

For our simulation model, the size of code alphabet is
340 codes. Codes are selected randomly and are classified
as follows: 40,100 and 200 codes with spreading gain 16, 32
and 64 respectively. Results are averaged over 50 experi-
ments. User rate requirements are uniformly distributed in
a rate interval, so that maximum rate request can be higher
than the highest code rate and minimum rate request can
be lower than the lowest code rate. For each experiment,
10 different random user rate assignments are used.

For code admission, we measure throughput of admitted
codes. Figure 2 illustrates throughput (normalized with
chip rate), as a function of SINR threshold for all admis-
sion criteria. Criteria 2 and 3 yield similar throughput,
which is larger than that of criterion 1. As SINR threshold
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increases, throughput reduces and all criteria perform sim-
ilarly. With respect to the number of admitted codes and
their rates, we observed that criterion 1 provides fewer and
variable rate codes, while the other criteria tend to admit
more codes of similar rate and specifically low rate ones.
Overall, more low-rate admitted codes turn out to provide
better performance than fewer high-rate codes, which im-
plies that a user may be forced to use multiple low-rate
codes, although a single high-rate code suffices. If the as-
signment of multiple codes leads to increased implementa-
tion complexity, criterion 1 may be a preferable solution.

We also consider the impact of code admission criteria
on feasibility and efficiency of code allocation to users. The
latter is quantified by measuring the total residual rate for
users that do not satisfy their rate requirements. In Figure
3, we show this residual rate for the three admission criteria
for 5, 10 and 20 users. When the average total user request
is compared with the throughput graph, the case of 5 users
corresponds to an under-loaded system, whereas the case
of 20 users corresponds to an over-loaded one. For given
user load, results consistently show that criterion 3 has
the best performance. As load increases, the performance
differences between these criteria become more evident.

In our simulation we randomly selected code alpha-
bets and considered code admission and allocation, based
on cross-correlation properties. A more realistic scenario
would be to consider a deterministic code alphabet with
bounded cross-correlation values, such as a mixture of or-
thogonal (e.g. Hadamard) and quasi-orthogonal codes.
Different criteria for code admission may then be required.
For instance, orthogonal codes have zero cross-correlation
and are trivially admitted, but any other quasi-orthogonal
code may not be admitted, due to high cumulative inter-
ference from other orthogonal codes.

V. Conclusion

In this paper, we considered the problem of determinis-
tic code assignment to users, with the objective to achieve
high system throughput and satisfy user rate requirements.
The determination of the optimal solution in terms of the
admissible subset of codes and feasible code allocation to
users that yield maximum throughput is a hard optimiza-
tion problem. Thus, we considered three code admission
criteria and provided a heuristic algorithm for code admis-
sion and allocation to users.

There exist several directions for future study. The ex-
tension of our work to the asynchronous case, which is
usually encountered in the up-link, requires modifications
in signal reception model and cross-correlation definitions.
The design of deterministic variable spreading gain codes is
still an open issue. If power control is also incorporated in
that design problem or in our model, then these problems
become even more challenging.

References

[1] D.N. Knisely, S. Kumar, S. Laha and S. Nanda, ”Evolution of
wireless data services: IS-95 to cdma2000”, IEEE Communica-
tions Magazine, vol.36, no.10, October 1998.

[2] J.L. Massey and T. Mittelholzer, ”Welch’s bound and sequence
sets for code-division multiple access systems”, in Sequences II,

Methods in Communication, Security and Computer Science, A.
Capocelli, A. De Santis and U. Vaccaro, Eds. New York: Springer-
Verlag, 1993.

[3] M. Rupf and J.L. Massey, “Optimum sequence multisets for syn-
chronous code-division multiple-access channels”, IEEE Trans.
Inform. Theory, vol.40, no.4, pp.1261-1266, July 1994.

[4] P. Viswanath, V. Anantharam and D. Tse, ”Optimal sequences,
power control and user capacity of synchronous CDMA systems
with linear MMSE multiuser receivers”, IEEE Trans. Inform.
Theory, vol.45, no.5, pp.1968-1983, Sept. 1999.

[5] P. Viswanath and V. Anantharam, ”Optimal sequences and sum
capacity of synchronous CDMA systems”, IEEE Trans. Inform.
Theory, vol.45, no.5, pp.1984-1991, Sept. 1999.

[6] S. Ulukus and R.D. Yates, ”Iterative construction of optimum
signature sequence sets in synchronous CDMA systems”, IEEE
Trans. Inform. Theory, vol.47, no.5, pp.1989-1998, July 2001.

[7] S.-J. Oh and K.M. Wasserman, ”Dynamic Spreading Gain control
in multiservice CDMA networks”, IEEE J. Select. Areas Com-
mun., vol.17, no.5, pp.918-927, May 1999.

[8] D. Ayyagari and A. Ephremides, ”Power control based admission
policies for maximizing throughput in DS-CDMA networks with
multi-media traffic”, WCNC, 1999.

[9] S. Ulukus and L.J. Greenstein, ”Throughput maximization in
CDMA uplinks using adaptive spreading and power control”,
IEEE 6th Int. Symp. Spread Spectrum Techniques Applic., 2000.

[10] E.G. Hoffman, M.R. Garey and D.S. Johnson, “Approximation
algorithms for bin packing: a survey”, in Approximation algo-
rithms for NP-hard problems, D.S. Hochbaum, Ed. Boston: PWS,
1997.

0 2 4 6 8 10 12
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SINR threshold (dB)

To
ta

l N
or

m
al

iz
ed

 R
at

e
Total Code Rate vs. SINR threshold

Admission Criterion−1
Admission Criterion−2
Admission Criterion−3

Fig. 2. Total code throughput as a function of SINR threshold γ.

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

SINR threshold (dB)

To
ta

l R
es

id
ua

l R
at

e 
fo

r U
ns

at
is

fie
d 

U
se

rs

Total Residual Rate vs. SINR threshold

5−user, Cr.1 
10−user, Cr.1
20−user, Cr.1
5−user, Cr.2 
10−user, Cr.2
20−user, Cr.2
5−user, Cr.3 
10−user, Cr.3
20−user, Cr.3

Fig. 3. Residual rate for unsatisfied users as a function of SINR
threshold γ.


