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A model reduction methodology based on a Gauss-Jordan reaction factoriza-

tion for thin-film deposition reaction systems is developed in this thesis. The fac-

torization generates a transformation matrix that is used to create a new coordinate

system that guides the separation of the deposition process time scales by decoupling

the net-forward reaction rates to the greatest extent possible. The new coordinate

space enables recasting the original model as a singular perturbation problem and

consequently as a semi-explicit system of differential-algebraic equations (DAE) for

the dominant dynamics in the pseudo-equilibrium limit. Additionally, the factor-

ization reveals conserved quantities in the new reaction coordinate system as well

as potential structural problems with the deposition reaction network.

The reaction factorization methodology is formulated to be suitable for appli-

cation to dynamic, spatially distributed reaction systems. The factorization provides

a rigorous pathway to decouple the time evolution and the spatial distributions of

deposition systems when the dynamics of reactor-scale gas-phase transport are fast



relative to the deposition process. Moreover, the factorization approach provides a

solution to the problem of formulating Danckwerts-type boundary conditions where

gas-phase equilibrium reactions are important.

The reaction factorization is used to study the chemical vapor deposition of

copper on a tubular hot-wall reactor using copper iodide as the Cu precursor. A

film-growth mechanism is proposed from experimental observations that the copper

films deposited on quartz substrates suggest a Volmer-Weber growth mode. A model

based on this mechanism is used to track spatial distribution of the average Cu island

size in the reactor.

The rate expressions used in the Cu deposition model are determined using

absolute rate theory. To carry out these calculations in an organized manner, a

library of object-oriented classes are created in the Python programming language.
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Chapter 1

Introduction

This chapter presents the motivation to study the chemical vapor deposition

(CVD) of copper and copper oxide thin films due to their current and potential

applications as materials for solar energy harvesting, as well as the challenges en-

countered in modeling this process. A literature survey on model reduction and

stiffness relaxation is also provided in the second part of this chapter.

1.1 Motivation

1.1.1 Copper and copper oxide thin films

Copper is widely used as an interconnect material in electronic circuits [1, 2]

and is a key component used in absorbent layers in CIGS solar cells and photovoltaic

devices [3, 4]. It has been used in metal-halide discharge lamps in the form of copper

iodide [5, 6, 7], as well as a precursor, in CuI, in CVD of copper oxide thin films [8, 9].

The most common copper oxides, CuO and Cu2O, are natural p-type semi-

conductors that have shown potential for photovoltaic and photoelectrochemical

applications [10]. The abundance of copper and the practically null toxicity of the

oxides makes CuxO a very attractive material for solar energy applications. Par-

ticular interest has been devoted to solar water splitting applications because the

oxide bandgaps (Eg ,Cu2O ≈ 2.1 eV and Eg ,CuO ≈ 1.2 eV) are suitable for the photo-
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splitting of water to produce hydrogen and oxygen using visible light [11]. Practical

application of CuxO to water-splitting must, however, overcome barriers such as

semiconductor film instability in electrolyte solutions either by oxidation of cuprous

oxide to cupric oxide [12] or by reduction of CuO to Cu2O [10].

In the majority of the applications mentioned above, solar cells and photoelec-

trochemical cells, the films and electrodes are created by chemical vapor deposition

(CVD) using a copper containing precursor such as [13] or by co-evaporation using

elemental copper in physical vapor deposition as in [4]. Previous studies of copper

oxide CVD using copper iodide as the Cu precursor [8, 9] have revealed unexpected

film deposition spatial patterns: both Cu2O and CuO deposit are found on the

same substrate separated by a sharp transition between the two oxides. The abrupt

change in film composition is clearly seen due to the red color of Cu2O and black

color of CuO as shown in Figure 1.1.

In earlier work [14], the temperature and oxygen partial pressure influence on

these spatial patterns were statistically analyzed by creating a design of experiments

with three levels in each variable and then identifying surface response models from

the experimental data; more details of this study can be found in the Appendix A.

Subsequent analysis of thermodynamic degrees of freedom for a system consisting of

both oxides, Cu2O and CuO, revealed that these patterns are due to the coexistence

of both copper oxides at a unique critical oxygen partial pressure for a given tem-

perature. To complete this study, a one-dimensional oxygen transport model was

2



A B

C

Figure 1.1: Deposited films of Cu2O and CuO on two different types of substrates. Figure A shows

Cu2O (red color) and CuO (black color) deposited on a 1 inch by 1 inch quartz substrate, where

oxygen flow rate is reduced from left to right. Figure B shows Cu2O deposited on a copper substrate.

Figure C shows a close up to the sharp transition from Cu2O to CuO on the quartz substrates. The

length of the white line is 1 mm.

created to estimate the location of the sharp Cu2O-CuO transition on the films. The

model was able to predict qualitatively the influence of the temperature and oxygen

composition on the spatial patterns observed during the design of experiments.

The next step in modeling this deposition system was to include a deposition

mechanism for copper and oxygen on the substrates in combination with the species

transport equations. This not only increased the overall complexity of the deposition

model, but introduced the additional requirement of computing kinetic constants

unavailable in the literature. Furthermore, while operation of this CVD reactor may

appear to be at steady state, the film is growing under non-equilibrium conditions.

Therefore the need to simulate this system with at least two different time scales

combined with the lack of a some kinetic information motivated the creation of the

methodology presented in this thesis.
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1.1.2 Modeling chemical vapor deposition (CVD)

Chemical vapor deposition (CVD) processes are widely used in the semicon-

ductor manufacturing industry. In this process, a gaseous mixture of precursor

species containing the desired materials for the film flows over a substrate where the

precursors deposit and react with the surface to form a thin film.

A detailed kinetic mechanism is vital in modeling the complex chemical re-

action system of CVD processes for design, optimization and control. However,

a detailed kinetic model involves a large number of kinetic parameters to be de-

termined, either from literature or experimentally. Furthermore, the scales of the

kinetic parameters can inherently differ from each other over several orders of mag-

nitude making the model stiff and computationally demanding.

The computational cost increases with the number of precursor species, cre-

ating a high-dimensional system, especially when gas phase and surface transport

phenomena are coupled to the gas and surface reacting rate expressions. It is there-

fore advantageous to develop a framework to reduce the order of these chemical

reaction systems models, while enabling the tracking of the evolution of the compo-

sition of species along the reactor in a time scale that allows sufficient accuracy for

prediction and control.

In this thesis, a systematic model reduction methodology that is independent

of the form of the reaction rate models is proposed. The methodology is based

on a reaction Gauss-Jordan factorization procedure that allows a recasting of the

modeling equations into a singular perturbation problem. The methodology is tested
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first with simple deposition models and then is applied to the copper chemical vapor

deposition processes.

1.2 Model reduction and stiffness relaxation background

Some of the first researchers to describe a methodology for reducing models

of reaction systems were Mass and Pope in [15] and Lam and Goussis in [16]. The

objective of Mass and Pope was to simplify complex chemical kinetics by reducing

the dimensionality of the state space; Lam and Goussis aimed to decouple slow and

fast time scales and overcome the stiffness of the differential equation system. While

their goals in model reduction were different, they both used a similar approach

based on the concept of dynamical systems.

On the one hand, Mass and Pope noted that when solving a complete model

with detailed kinetics the trajectories in the composition state space tend to ap-

proach one another before equilibrium is reached creating an attracting manifold.

From this observation they developed a perturbation analysis of the eigenvalues of

the Jacobian of the system of differential equations to identify the trajectories for

which certain eigenvectors vanished. These vanishing trajectories were associated

with fast time scales that were then eliminated to reduce the model to only the

variables that define a manifold. The reaction system then evolves on this manifold

that roughly represents states that are in pseudo-equilibrium with respect to the

fastest relaxing time scales.

On the other hand, Lam and Goussis used a computational singular pertur-
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bation approach to find a refined a basis vector to separate the time scales. The

basis vector is defined so that the vector product of the stoichiometric vector and

the reaction rate vector is diagonal or block diagonal and thus can separate the time

scales of the system. The method developed in [16] was later extended to applica-

tion in reaction-diffusion systems in [17] to try to reduce stiffness due to reaction

and diffusion processes. In the methodology proposed in this thesis, instead of an

eigenvector analysis of the Jacobian of the system or refining a basis vector, the

separation of times scales is carried out with a Gauss-Jordan factorization.

As seen in the works [15] and [16], the singular perturbation theory provides

a natural framework for model reduction. In general if the system can be mod-

eled in the standard singularly perturbed form, where the time scales are explicitly

separated by a small parameter ε, then the system can be reduced to a system of

differential-algebraic equations (DAE). However there is a wide range of systems

that can exhibit time-scale multiplicity in which the slow and fast dynamics cannot

be associated with specific process variables. In these cases it is necessary to use

a coordinate change that would allow explicit separation of the time scales. Re-

searchers Kumar, Christofides and Daoutidis proposed such a coordinate change to

model chemical processes with two time scales in [18].

In their proposed methodology, Kumar et. al. define the algebraic variables

as the limit of the physical constraints in the slow time scale at the limit ε→ 0, and

base the coordinate change on these algebraic variables and the Lie derivative of the

physical constraints. Furthermore, they provide necessary and sufficient conditions

for the existence of a ε-dependent and of an ε-independent coordinate change based
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on the involutivity1 of the matrix that weights the algebraic variables.

Vora and Dautidis [19] provided further insight into the construction of the

coordinate changes for nonlinear systems. To do this they defined a generalized

stoichiometric matrix that contained the stoichiometric coefficients of the chemical

reactions in the system and separate this matrix into two matrices containing the

columns for fast and slow reactions, respectively. Then they enforced linear inde-

pendence on the matrix with the stoichiometric coefficients of the fast reactions as

well as on the vector containing the reaction rates for the fast reactions. Conse-

quently they noted that the involutivity condition of the distribution spanned by

the columns of the stoichiometric matrices for the fast reactions is readily satisfied

for isothermal systems since the matrix does not contain state variables. Therefore

the new coordinates were a linear combination of the original coordinates where the

transformation coefficients belong to the null space of the transpose of the matrix

with the fast reactions stoichiometric coefficients. They also noted that the algebraic

equations in the DAE representation of the problem obtained after the coordinate

transformation corresponded to reaction equilibrium or complete conversion con-

straints.

Contou-Carrere and Daoutidis developed a model reduction method for reaction-

convection processes with the goal of eliminating the stiffness from the systems

in [20]. They used a combination of the method of characteristics and singular

perturbation theory because modal decomposition techniques cannot be applied to

1Involutivity is the property of a matrix to be its own inverse. e.g A2 = I where I is the identity

matrix
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reaction-convection systems since all the eigenmodes of the spatial differential oper-

ator in these systems have the same amount of energy. After applying the method

of characteristics, they use singular perturbation theory to separate spatial from

temporal variables.

In the methodology presented in this thesis the coordinate change is provided

through the reaction factorization. This factorization, although simple in nature,

provides a coordinate transformation matrix that identifies conserved quantities

directly. Likewise, the approach developed in this thesis provides a rigorous means

of separating modeling time scales, resulting in a “nested” sequence of singular

perturbation problems for transient deposition models that are spatially dependent.

These and additional benefits and features of the reaction factorization method will

be described in the following chapters of this thesis.
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Chapter 2

Methodology

This chapters describes the reaction factorization methodology for a lumped

deposition model. The ability of the factorization to guide the separation of times

scales is explored through a simplified deposition reaction system and a procedure

to solve the singular perturbation problem resulting from the reaction factorization

is outlined.

2.1 Reaction factorization on a lumped model deposition system

To illustrate the methodology proposed in this thesis, consider a simplified

deposition mechanism consisting of a gas-phase monomer M and a gas phase trimer

T species and the reversible reaction between the two1. A molecule of precursor

monomer M, deposits a single atom of material A through an irreversible reaction

with a surface site X producing the growth of the film, as sketched in Figure 2.1

where the net-forward reversible and deposition reaction rates are represented by

G0 and F0, respectively. In this analysis it is assumed that the net-forward rate

associated with the reversible reaction is much greater than the rate of the deposition

reaction. Secondary products of the surface reaction are not considered in this

1While the choice of a trimer species may seem at first unusual relative to a dimer, we will show

later that Cu3I3 is the only oligomer formed in the gas phase from CuI
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M TMM+ +

A X X X X
A A X A X

X X A X A

3M
G0

M + X

T

A
F0

G0 =
1

ε

(
K0 [M]3 − [T]

)
mol m−3 s−1

F0 = k0 [M] [X] mol m−2 s−1

Figure 2.1: Schematic of the simplified deposition mechanism. Monomer precursor M reversibly

produces the trimer T in the gas phase, and can be deposited through an irreversible reaction with

a surface site X to produce an adsorbed species A in the film.

simplified analysis. Material balances for each species yield the following ordinary

differential equations in time:

dcnc×1

dt
= Snc×nr rnr×1 =⇒ d

dt



[M]

[T ]

σ [X ]

σ [A]


=



−3 −1

1 0

0 −1

0 1



 G0

σF0

 (2.1)

where σ is the deposition surface area to reactant gas volume ratio with units m−1.

The matrices c, S, and r contain the species concentrations, stoichiometric coeffi-

cients, and reaction rates respectively. nc and nr refer to the number of chemical

species and reactions. The species concentrations are given in mol/m3 for gas phase,

[M] and [T], and mol/m2 for [X] and [A].

This original formulation (2.1) of the problem presents a higher-dimensional

set of ODEs, four equations, compared to the single rate-limiting deposition step.

Moreover, the dynamic behavior of the monomer concentration, [M] (t) is governed

by two reaction rates of different orders of magnitude.

It might initially appear that the QR or singular value decomposition methods
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would be the best candidates to diagonalize the system of differential equations 2.1

and to subsequently reduce it to its minimal dynamic dimension. Nevertheless, these

methods are not useful for guiding the separation of time scales because the matrix S

is defined by reaction stoichiometric coefficients instead of reaction rate coefficients.

On the other hand, a Gauss-Jordan factorization of S can provide guidance in the

time scale separation by pairing each reaction with each new reaction coordinate to

the greatest extent possible, similar to the approach of Vora and Daoutidies in [19].

Hence, dynamic dimension reduction and time scale separation in Equation 2.1 can

be obtained if a transformation matrix U exists such that in the coordinate change

y = Uc each new coordinate can be associated to each reaction rate, yi ∈ Rnc , i.e.,

Unc×ncSnc×nr ≈

 Inr×nr

0(nc−nr )×nr

 .

Clearly, complete diagonalization of the stoichiometric matrix should not be ex-

pected in every case. However, this factorization can still guide the time scale

separation even if off-diagonal elements remain. For the system under study in this

section, the ODEs in Equation 2.1 can be factored to find

dy

dt
=

d

dt



[T ]

− [M]− 3 [T ]

σ [X ]− [M]− 3 [T ]

σ [A] + [M] + 3 [T ]


=

d

dt



z0

x0

w0

w1


=



1 0

0 1

0 0

0 0



 G0

σF0

 (2.2)

yielding the following temporal modes for the specific case k0 = 1 m3mol−1s−1,
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K0 = 1 m3mol−1, and σ = 1 m−1:

fast (reversible)
dz0

dt
=

d [T ]

dt
=

1

ε

(
[M]3 − [T ]

)
(2.3)

slow (deposition)
dx0

dt
=

d(−[M]− 3[T ])

dt
= [M][X ] (2.4)

conserved quantities w0 = [X ]− [M]− 3[T ] (2.5)

w1 = [A] + [M] + 3[T ] (2.6)

or more generally, when the factorization 2.2 can be completed,

slow
dx

dt
=

dUxc

dt
= F(c)

dx

dt
= F(x, z,wo) (2.7)

fast
dz

dt
=

dUzc

dt
=

1

ε
g(c)

ε→0
=⇒ 0 = g(x, z,wo) (2.8)

conservation w = Uwc (2.9)

where G = g/ε. We observe a semi-explicit differential-algebraic (DAE) system

results, both in the form of example (2.3-2.6) and in the more general case (2.7-2.9);

algebraic equations result from both the elimination of reduntant dynamic modes

producing the conserved quantities, and as will be discussed later, as ε→ 0.

Following the nomenclature by Biegler in [21], x are the differential variables,

z the algebraic variables, and yT = [xT zT wT ] [21]. Ux ,Uz ,Uw are submatrices

from U containing the rows corresponding to the slow, fast and conservation new

coordinates, x, y, z, respectively. It should be observed that new coordinates w

reveal quantities conserved during the time evolution the slow modes. For example,
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w1 is simply the total number of deposition element atoms in our control volume

and w0 + w1 = [X ] + [A] corresponds to the conservation of surface states. It is

important to recall that the decomposition approach presented here resembles other

model reduction procedures such as the ones in [18, 19, 22, 23] with the differences

noted in the introduction section of the thesis.

2.1.1 Integration of the DAE system in time

The system of differential-algebraic equations resulting from the reaction fac-

torization in equations 2.4-2.6 can be integrated in a relatively direct manner for

a finite ε. The ODEs involving x and z are integrated in time by computing the

reaction rates in the original coordinates by first recovering c with the inverse of the

transformation matrix from c = U−1y. It is evident that U must be invertible since

the forward elimination procedure used to obtain it is reversible. It should also be

noted that the new coordinates representing the conserved quantities w = wo are

clearly constant for all time.

Figure 2.2 shows representative results for the DAE system in equations 2.4-

2.6 calculated using a fixed step-size implicit Euler integrator. The initial specified

conditions used are co = [0.4, 0.6, 1, 0]T resulting in xo = −2.2, zo = 0.6, and wo =

[−1.2, 2.2]T after the transformation. The figure illustrates the strong attraction

of the initial conditions co to the neighborhood of the equilibrium manifold Q and

the subsequently slower dynamics which follow. The nature and computation of

manifold Q are described next.
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2.1.2 Outer solution of the singular perturbation problem

The reaction system takes the form of a singularly perturbed ordinary differen-

tial equation when Equation 2.3 is multiplied by ε. Furthermore, in the limit ε→ 0

the fast dynamics in the species composition space vanish, relaxing the system to

the manifold defined by the equilibrium condition

Q =
{

[M], [T ] : K0[M]3 − [T ] = 0
}

. (2.10)

The numerical outer solution of the singular perturbation problem [24] with initial

conditions co is calculated in the following manner.

First, the initial specified conditions co = c(t = 0) are converted to the new

chemical species composition space using the transformation matrix U, i.e yo = Uco .

Then these initial conditions co are projected onto the equilibrium manifold Q

defined by (2.10), to find c0 by solving the set of nonlinear/linear algebraic equations:
Uxc0

g(c0)

Uwc0

 =


xo

0

wo

 .

It is important to notice that while the manifold Q is defined in the original coordi-

nates, i.e. [M] and [T ], the above set of nonlinear/linear equations gives the initial

conditions in the new coordinate space y. The current state of the new coordinates

for the species state ci at time t i (where i = 0 for the projected initial state) is then

computed during the integration process using the transformation matrix Ux .

xi = Uxc
i .
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Finally we use a Newton-Raphson or another suitable nonlinear algebraic equation

solver to calculate the implicit Euler update over time step ∆t by solving driving

the residual below to zero.
(xi+1 − xi )/∆t − f

(
U−1yi+1

)
g
(
U−1yi+1

)
wi+1 −wo

 .

Figure 2.2 shows the results of applying this method to the system in equations

2.3-2.6 for ε = 0. The figure shows the specified initial conditions co , the projection

of these conditions into the equilibrium manifold Q to give the initial conditions c0,

and the evolution in time of the system along the manifold approaching equilibrium

at the point c∞.

2.1.3 DAE index

It should be mentioned that when solving semi-explicit DAE systems one must

be concerned about the index of the system and the consistency of initial conditions.

The index of a DAE is defined as the number of times that the system must be

differentiated with respect to time in order to convert it into an explicit set of first

order ODEs [25]. For DAE systems with index higher than one, the differentiation

to reduce the index to one generates more algebraic variables. Consistent initial

values are those who satisfy not only the original algebraic variables but also the

ones resulting from the index reduction [26].

The semi explicit DAE system in equations 2.3-2.6 is index-1, thus consistency

of the initial conditions is not an issue in this case. Nonetheless, more complex
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deposition surface reaction models may have higher DAE index values and thus

need more sophisticated treatment of the initial conditions [21, 27].

0.4 0.5 0.6 0.7 0.8
[M]

0.2

0.3

0.4

0.5

0.6

[T
]

co

c0

Q

c

Figure 2.2: Two-dimensional dynamics with k0 = K0 = 1, σ = 1, and t ∈ [0, 2]. Specified initial

conditions and those projected onto the equilibrium manifold (green dashed curve Q) are marked

with the filled blue square and red circle, respectively. Each point denotes 0.02 time units; black

dotted lines denote [M] + 3[T ] = constant. The blue curve corresponds to ε = 0.1 and the wto

ODE model; the red trajectory represents the outer solution of the singular perturbation problem.

2.1.4 High net-forward rates and multiple deposition reactions

Another numerical challenge encountered when solving models of surface re-

actions arises when the equilibrium reactions favor the product species and the de-

position reaction rate is significant. Under these conditions the numerical implicit
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integrator may converge to negative values of reactant concentrations and provide

results with non-physical meaning. To illustrate this consider the following reaction

system

M + 2N
G0⇀↽ P

D + E
F0→B

with the net-forward reaction rates

d [M]
dt = −G0

d [N]
dt = F0 − G0

d [P]
dt = G0

where the reactants D and E are fed in such a way that the rate F0 is constant.

The matrix representation of the system is given by

d

dt


[P]

[N]

[M]

 =


1 0

−2 1

−1 0


 G0

F0



with G0 =
1

ε
g0; after applying the factorization the system becomes

[M] + [P] = w0 the conserved mode

[N] + [P] = x0 + ∆tF0 the slow mode evolving over time interval ∆t

then the equilibrium manifold is defined by g0=0 and the integration of the slow

mode to give the equations:

[P]− K0[M][N] = 0

x0 + ∆tF0 − [N]− K0 (w0 − x0 −∆tF0 + [N]) [N] = 0
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Setting the equilibrium constant K0 = 1 and solving for [N] results in

[N] =
x0 + ∆tF0 − 1− w0 ±

√
(1 + w0 − x0 −∆tF0)2 + 4(x0 + ∆tF0)

2

thus, even though only the positive solution for [N] has a physical meaning, if

K0 � 1 the numerical integrator can overshoot the limit [M] → 0 and converge to

the negative solution as mentioned above.

Finally, the presence of multiple, relatively slow deposition reactions that all

deposit the same chemical species may prevent the reaction factorization from fully

diagonalizing the stoichiometric matrix. However, as mentioned before, the result

may still be valid and useful for guiding the dimension reduction and separation of

time scales. For example consider adding the following deposition reaction to the

system of equations 2.1.

T + X
F1→ A + 2M F1 = k1[T ][X ] (2.11)

using the same values for the reversible and deposition reaction constants as in the

analysis above, k0 = K0 = 1, and k1 = 0 the resulting DAE is

slow
dx0

dt
=

d([M] + 3[T ])

dt
= −[M][X ]− [T ][X ]

fast
dz0

dt
=

d [T ]

dt
=

1

ε

(
[M]3 − [T ]

)
− [T ][X ]

ε→0
=⇒ [M]3 − [T ] = 0

conserved w0 = [X ] + [A]

w1 = [A] + [M] + 3[T ].

In this case it can be seen that the conserved quantities are the same as those ob-

tained before the addition of the new deposition reaction (2.11): the conservation of
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surface states and the conservation of the deposited material found in species M, T,

and A. The equilibrium relationship resulting is also the same, and a single dynamic

mode now describes the consumption of the total precursor by the combination of

both surface reactions. The kinetic model considered for copper CVD in Chapter

4 presents this case where the factorization does not fully diagonalize the system.

However, the model is structurally correct and the singular perturbation problem

will be shown to be valid.
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Chapter 3

Reaction factorization on a spatially distributed deposition system

This chapter studies the reaction factorization of a spatially distributed de-

position system, extending the analysis in the previous chapter by considering gas

phase species diffusion in the hot wall tubular reactor. This model provides a more

realistic CVD process relative to the lumped parameter model in Chapter 2, and is

more closely related to our copper deposition system.

3.1 Simplified deposition system

To demonstrate the next step in extending the reaction factorization proce-

dure, consider a model CVD system in which (metal) precursor monomer species

M in the gas phase adsorbs onto the growth surface to form the adsorbed species

A with net adsorption rate G1; monomer M also can undergo a trimerization reac-

tion to form T at a rate G0. The adsorbed species is incorporated into the growing

film B through an irreversible reaction at rate F0; this same rate governs the time-

evolution of a film property L, such as film thickness, by the rate δF0, where δ relates
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the concentration of deposited species B to the film property.

3M ⇔ T G0 =
1

ε0

(
K0 [M]3 − [T]

)
mol s−1m−3

M ⇔ A G1 =
1

ε1
(K1 [M]− [A]) mol s−1m−2

A → B F0 = k0 [A] mol s−1m−2

(3.1)

The reactions and their associated rate expressions are summarized in Equa-

tion 3.1, where K0 is the equilibrium constant associated with the trimerization

reaction with units mol−2m6, K1 is adsorption equilibrium coefficient with units of

m, and k0 is the forward rate constant of the irreversible reaction with units of s−1.

The small parameters εi � 1 represent the time-scale ratios (with units of s) of

the reversible reactions relative to the irreversible reaction, which is assumed to be

the rate-limiting step of this example. These small parameters mark the separation

of fast and slow modes in the singular perturbation formulation of the problem; a

physical interpretation of this system is that the deposition process is kinetically

limited.

3.1.1 Tubular deposition reactor model

The deposition reactions will take place in a tubular reactor system, as the

one depicted in Figure 3.1, and thus a heterogeneous plug flow reactor (PFR) model

with axial diffusion and convection of the gas-phase precursors is derived; the axial

coordinate is denoted ζ. For this reactor system, the start of the deposition zone is

ζ = 0 and, without loss of generality, we set the reactor outlet as ζ = 1 m. As in
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the previous chapter, surface and gas-phase molar concentrations are indicted with

the bracket notation [·].

=0 =1

c
o

c0c0+ c1

Figure 3.1: Tubular reactor schematic. Precursor M evaporates from a precursor boat (white

rectangle) and flows toward the deposition zone 0 ≤ ζ ≤ 1. co represents the specified boundary

conditions in which we assume a constant concentration of M in the gas phase upstream from

the deposition zone. c0 is the projection of the specified boundary conditions onto the manifold Q

(defined in (3.5). c0+

and c1 are the concentrations resulting from boundary conditions at ζ0 and

at ζ1, respectively, in the two-point boundary value problem resulting from the factorization.

The modeling equations are summarized in Table 3.1, where

Ji = −Di
∂ [i]

∂ζ
+ v [i]

is the flux (diffusion and convection) of species i . Only binary diffusion is considered

due to the low concentration of precursors. The parameter σ is the area-to-volume

ratio to convert surface concentration into volume based concentrations. Thus, for

a tubular reactor system of radius R where material is deposited on the inner wall

surface, σ = 2/R . The small parameter δ � 1 captures the ratio of the deposition

time scale to the species transport time scale. Because of these small parameters,

the rates of change in the surface states can differ in orders of magnitude, rendering

the system numerically stiff.
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Governing equation ζ = 0, t ≥ 0 ζ = 1, t ≥ 0 ζ ∈ (0, 1), t = 0

∂[T ]

∂t
=
∂JT

∂ζ
+ G0 JT (0) = u [T]0

∂ [T]

∂ζ
= 0 [T] = 0

∂[M]

∂t
=
∂JM

∂ζ
− 3G0 − σG1 JM(0) = u [M]0

∂ [M]

∂ζ
= 0 [M] = 0

∂[A]

∂t
= G1 − F0 −−−− −−−− [A] = 0

∂L

∂t
= F1 −−−− −−−− L = 0

∂[B]

∂t
= F0 −−−− −−−− [B] = 0

Table 3.1: Modeling equations for the heterogeneous tubular CVD system together with boundary

and initial conditions.
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3.1.2 Reaction factorization and the singular perturbation problem

To eliminate redundant dynamic modes and to provide a rational path to

reconfiguring the modeling equations so that the system dynamics as ε0, ε1, δ → 0

can be investigated, the Gauss-Jordan factorization procedure proposed in Chapter

2 is applied to allow separating the effect of each reaction to guarantee the correct

handling of the different time scales of the model. Rewriting the modeling equations

in matrix form

∂

∂t



[T]

[M]

[A]

L

[B]


=



∂JT/∂ζ

∂JM/∂ζ

0

0

0


+



1 0 0 0

−3 −σ 0 0

0 1 −1 0

0 0 0 1

0 0 1 0





G0

G1

F0

F1


or

∂c

∂t
=
∂J

∂ζ
+ S



G0

G1

F0

F1


.

To find the transformation matrix U the factorization is applied to the stoi-

chiometric matrix, S, of the kinetic mechanism of our system yielding
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SF = U · S =



1 0 0 0 0

3 1 0 0 0

3 1 σ 0 0

0 0 0 1 0

3 1 σ 0 σ


·



1 0 0 0

−3 −σ 0 0

0 1 −1 0

0 0 0 1

0 0 1 0


=



1 0 0 0

0 −σ 0 0

0 0 σ 0

0 0 0 1

0 0 0 0


. (3.2)

Multiplying the original state vector by the transformation matrix yields a set

of new coordinates given by

y = U · c =



1 0 0 0 0

3 1 0 0 0

3 1 σ 0 0

0 0 0 1 0

3 1 σ 0 σ


·



[T]

[M]

[A]

L

[B]


=



[T]

3 [T] + [M]

3 [T] + [M] + σ [A]

L

3 [T] + [M] + σ [A] + σ [B]


=



z0

z1

x0

x1

w0


(3.3)

After applying the factorization to the boundary and initial conditions, our

model transforms into the set of equations shown in Table 3.2. The table shows that

the model of the system in the new coordinates y, which are the linear combinations

of the original coordinates given in Equation 3.3. Note that the model equations

for each of the new coordinates involve only one net forward reaction rate, which

allows us to separate unambiguously the different time scale modes of the system.

The fast modes (for 0 < εi � 1) are tracked by the new coordinates z0 and z1,

which are the concentration of monomer and the total concentration of precursor

on the gas phase, respectively. Multiplying both equations by their respective small

parameter, ε0 and ε1, and taking the limits as the parameters go to zero, the outer

25



Governing equation ζ = 0, t ≥ 0 ζ = 1, t ≥ 0 t = 0, 0 < ζ < 1

∂z0

∂t
=
∂JT

∂ζ
+ G0 Jz0(0) = z0u

∂z0

∂ζ
= 0 z0 = 0

∂z1

∂t
=
∂ (3JT + JM)

∂ζ
− σG1 Jz1(0) = uz1

∂z1

∂ζ
= 0 z1 = 0

∂x0

∂t
=
∂ (3JT + JM)

∂ζ
− σF0 Jx0(0) = ux0

∂x0

∂ζ
= 0 x0 = 0

∂x1

∂t
= F1 −−−− −−−− L = 0

∂ (w0 − δx1)

∂t
= 0 −−−− −−−− L = constant + δ [B]

Table 3.2: Model structure after factorization.
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solutions of the first two singularly perturbed PDEs are found by

g0 = 0 and g1 = 0

where Gi = gi/εi .

The new coordinate w0 is a conservation mode, because the corresponding row

of the transformed stoichiometric matrix SF of Equation 3.2 vanishes, meaning it

has no generation or consumption terms. Furthermore, combining the variables x1

and w0 yields a conservation mode given by the fifth equation in Table 3.2, that

indicates that the final conserved quantity gives

L = constant + δ[B] = wo + δ[B]

which means the constant is w0 and represents the initial thickness or surface prop-

erty value.

The slow modes of the system, variables x0 and x1, correspond to the total

amount of precursor that has not been incorporated to the bulk of the film and to

the thickness of the film, respectively. The system evolves along these slow modes

during the slow time [28, 20]. Therefore defining the slow time τ = δt, taking

F1 = δF0 and recalling that x1 = L, we have that

δ
∂x0

∂τ
=

∂

∂ζ
(3JT + JM)− σF0

∂L

∂τ
= F0

therefore, when δ → 0

0 =
∂

∂ζ
(3JT + JM)− σF0

∂L

∂τ
= F0
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In summary the evolution of the system in the slow time scale, along the manifold

defined by the equilibrium relations g0 and g1, when εi → 0 and δ → 0, can be

tracked by the following equations

g0 = 0 (3.4a)

g1 = 0 (3.4b)

d

dζ
(3JT + JM) = σF0 (3.4c)

dL

dτ
= F0 (3.4d)

Our system is now described by a mixture of differential and algebraic equa-

tions, a DAE system, plus boundary and initial conditions to be described next.

To solve this system it is necessary to provide initial and boundary conditions that

are consistent not only with the algebraic equations, but also with the differential

equation 3.4c, in a manner referred to as consistent initialization [29].

The initial condition is defined as an empty reactor before the start of the

deposition, shown in Equation 3.6, which fulfills trivially the equilibrium manifold

given by

Q = {c : g0 = 0 and g1 = 0} (3.5)

in the gas phase

[M] (ζ, 0) = 0

[D] (ζ, 0) = 0

[A] (ζ, 0) = 0

L(ζ, 0) = 0

0 < ζ < 1. (3.6)
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The specified boundary condition is co = [M0, 0, 0], in which we assume a con-

stant gas phase concentration of monomer on the boat zone as shown in Figure 3.1;

furthermore Equation 3.2 is used to obtain the specified conditions in the new co-

ordinate system. To translate these conditions to the slow time scale we project

them onto the manifold Q, this is the point c0 in Figure 3.1. Subsequently, c0 is

used to define the boundary conditions for Equation 3.4c, assuming that the gas is

moving at a uniform speed u. Since the system is constrained to the manifold Q,

equations 3.4a and 3.4b must be fulfilled together with the boundary conditions at

ζ = 0; this point is identified as c0+
in Figure 3.1. The process for obtaining these

boundary conditions is summarized in Table 3.3 and a phase space representation

is given in Figure 3.4.

3.1.3 Representative results

As a representative simulation, consider an initially empty reactor with a M0 =

2 s−1m−3mol feed of pure monomer. Kinetic parameters for Equation 3.1 and trans-

port parameters used in this simulation are given in Table 3.4.

To solve our model described by Equation 3.4, one only needs to obtain the

steady state spatial profiles of precursors and adsorbed species in the reactor using

equations 3.4a through 3.4c, and then use this profile to integrate in time our tracked

property L over the slow time scale τ using Equation 3.4d. As mentioned in the

previous section, the first step in the solution of our model is to project the specified

boundary condition, co , onto the spatial distributions manifold to which the system
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co c0 c0+
c1

Variables

[M]o = M0 [M]0 [M]0+

[M]1

[T]o = 0 [T]0 [T]0+

[T]1

[A]o = 0 [A]0 [A]0+

[A]1

x0o = M0 x0
0 x0+

0 x1
0

Equations

G0 = 0 G0 = 0 G0 = 0

G1 = 0 G1 = 0 G1 = 0

x0 = constant vx0
0 = Jx0

(
0+
) ∂

∂ζ
(x0) = 0

Table 3.3: Boundary conditions as they are transformed from the specified conditions co to the

projection onto the manifold Q, c0, and finally to the boundary conditions at the start (ζ0) and

end (ζ1) of the deposition zone, c0+

and c1, respectively.

is constrained by the equilibrium relationships g0 and g1 and the transport equa-

tion 3.4c in Equation 3.1 when ε0, ε1, δ → 0. Then these projected conditions are

used to calculate the boundary condition at the beginning of the deposition zone;

these conditions are shown in Figure 3.4.

The second step in the solution of our system is the solution of the two-point

boundary value problem given by Equation 3.4c, the spatial differential equation

that drives transport in the reactor, while making sure the equilibrium relationships

in equations 3.4a and 3.4b hold for every integration point to ensure that the system

stays on the manifold of spatial distributions Q. For this, a set of collocation points,
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Parameter Value Units

v 0.03 m/s

K0 1 m3mol−1

K1 1.5 m

k0 0.4 s−1

σ 1 m2m−3

DM 1.0×10−1 m2s−1

DD 1.0×10−2 m2s−1

Table 3.4: Kinetic and transport parameters for representative simulation of equations 3.4

ζi with i = 0, 1, ...,N , is defined in Figure 3.2 where ζ0 = 0 and ζN = 1. We then com-


0


i-1


i


i+1


N

... ...

Figure 3.2: Schematic of the collocation points in the ζ dimension.

pute discretization arrays E and F using second order accurate finite differences to

calculate the discretization weights of the second and first derivatives, respectively.

Derivation of the finite difference equations are given in Appendix B. Equation 3.4c
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is then discretized at every point to evaluate the residuals in Equation 3.7

res =



g0 (c)

g1 (c)

3 (DTF0− v) · T + (DMF0− v) ·M− v (3T 0 + M0)

3 (DTEin− vFin) · T + (DMEin− vFin) ·M− k0A

3 (DTFN) · T + (DMFN) ·M


(3.7)

where the third and fifth equations are the residuals for the boundary conditions

at the start (ζ = 0) and end (ζ = 1) of the deposition zone respectively. F0 is

the first vector row in array F where the weights are calculated using forward finite

differences. This vector is used to calculate the residual of the boundary condition

at ζ = 0 for c0+
in Table 3.3 (see Figure 3.4) which is the third element in the

residuals vector of Equation 3.7. F0 is written as:

F0 =

[
F(0, 0) F(0, 1) F(0, 2) · · · 0

]

where

F(0, 0) =
(ζ1 − ζ0)2 − (ζ2 − ζ0)2

ξF0

F(0, 1) =
(ζ2 − ζ0)2

ξF0

F(0, 2) = −(ζ1 − ζ0)2

ξF0

with

ξF0 = (ζ1 − ζ0)2 − (ζ2 − ζ0) (ζ1 − ζ0)2 .

The matrix Fin is a matrix with the weights of the discretization of the first deriva-
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tive at each interior collocation point. A vector row i of Fin is given by

F(i , i − 1) =
(ζi+1 − ζi )

2

ξF

F(i , i) =
(ζi−1 − ζi )

2 − (ζi+1 − ζi )
2

ξF

F(i , i + 1) =
− (ζi−1 − ζi )

2

ξF

where

ξF = (ζi−1 − ζi ) (ζi+1 − ζi )
2 − (ζi+1 − ζi ) (ζi−1 − ζi )

2

Fin is the equivalent of Ein for the discretization weights of the second derivative

for the interior collocation points. The weights of Ein for i = 1, 2, · · · ,N are as

follows

Eini =

[
0 · · · E(i , i − 1) E(i , i) E(i , i + 1) · · · 0

]
i = 1, · · · ,N

where central finite differences were used to calculate the weights as follow

E(i , i − 1) =
(ζi+1 − ζi )

ξE

E(i , i) =
(ζi−1 − ζi )− (ζi+1 − ζi )

ξE

E(i , i + 1) =
− (ζi−1 − ζi )

ξE

and

ξE =
(ζi+1 − ζi ) (ζi−1 − ζi )

2 − (ζi−1 − ζi ) (ζi+1 − ζi )
2

2
.

The vector FN is the last vector row of the F array. We use this vector to calculate

the boundary condition at ζ = 1 (column for c1 in Table 3.3). The vector has the

form

FN =

[
0 · · · F(N ,N − 2) F(N ,N − 1) F(N ,N)

]
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for this vector the weights are calculated with a backward finite difference to obtain

F(N ,N − 2) =
− (ζN−2 − ζN−1)2

ξFN

F(N ,N − 1) =
(ζN−3 − ζN−1)2

ξFN

F(N ,N) =
(ζN−2 − ζN−1)2 − (ζN−3 − ζN−1)2

ξFN

with

ξFN = (ζN−2 − ζN−1) (ζN−2 − ζN−1)2 − (ζN−3 − ζN1) (ζN−2 − ζN−1)2 .

M = [M0,M1,M2, ...,MN ]T are the discrete values of [M] at each collocation point

in space; similarly T, and A are the discretized values of [T] and [A] at each collo-

cation point. Finally c = [M,T,A]T . The residual (3.7) function was solved using

a Newton-Raphson method with N = 200 collocation points with a tolerance of

tol < 10−12 for the norm of the residual. The resulting profiles are shown in Fig-

ure 3.5 where it can be observed that the adsorption of the monomer on the surface

dominates the deposition and there is little trimer produced along the reactor, as is

expected by the thermodynamic and kinetic values employed in the simulation.

The plot in the upper part of Figure 3.3 shows the an analysis of the residuals

for a solution with N = 200. The linear behavior in the logarithmic scales (the

norm of residuals axis is in logarithmic scale) indicates that our system exhibits

superlinear convergence with an order of converge of -1.626. To analyze converge

with respect to discretization level, we compare solutions with different number of

collocation points against an analytical solution, or if an analytical solution is not

available, we compare against a fine grid solution. The number of collocation points
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for each grid is calculated as Ni = 2n
i +1 where ni = 2, 3, 4, · · · to generate grids with

matching collocation points and allow direct comparison of the function evaluations

at the same spatial location. Since an analytical solution is not available, we consider

a grid with Ni = 211 + 1 = 2049 collocation points to be our fine grid. The error

for a solution with Ni collocation points was computed as the norm of the difference

vector error = yfine − yNi
. The result of the analysis can be seen in the lower part of

Figure 3.3, where the linear behavior of the residuals in both logarithmic scale axes

allows to compute an order of converge as the slope of the curve to be -2.635.

Finally to investigate the time evolution of the surface property L(ζ, τ), in

this case film thickness, L (ζ, τ) is integrated at every collocation point in the slow

time scale using Equation 3.4d to obtain the profile in Figure 3.6, where it has been

integrated over 100 τ units (m3s/#). Figure 3.6 shows the film thickness along

the reactor spatial coordinate, ζ at different τ times. Since in the slow time the

concentration profiles for precursors and adsorbed species are at quasi equilibrium,

the time integration of L consist of solving a simple set of ordinary differential

equations with a constant value (in time, but of course not in space) of [A] at every

collocation point. It can observed, that as expected, the thickness will grow more

quickly near the entrance of the reactor where the concentration of the adsorbed

species A is higher.

35



10-6 10-5 10-4 10-3 10-2 10-1 100 101

norm of update at iteration K

10-7
10-6
10-5
10-4
10-3
10-2
10-1
100
101

no
rm

 o
f u

pd
at

e 
at

 it
er

at
io

n 
k+

1

ρ=0.99

101 102 103

number of collocation points

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

er
ro

r

ρ = -3.07

Figure 3.3: Upper plot: Residuals during the spatial integration of the DAE system (3.4) showing a

superlinear convergence order of -1.626 (the norm of residual axis is in logarithmic scale). Lower

plot: Grid convergence analysis of the solution to the system in (3.4) (the error axis is in logarithmic

scale) with an order of convergence of -2.635.
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0.2

0.3
0.4

[A]

0.0
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0.4

0.6

0.8

1.0

1.2
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c0

c0+

ζ=0

c1

ζ=1

Q

Figure 3.4: Phase space plot of the system. The equilibrium manifold Q is shown as the solid blue

curve and the spatial evolution of the system is graphed as the light red section along the manifold;

each point in this section represents the composition in the reactor at a different point in space ζ.

The boundary conditions are indicated by the yellow points. For reference on these conditions see

Figure 3.1. The green plane represents constant x0, i.e. precursor conservation and so any co in

this plane will be projected to c0 as a result of conservation of species.
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Figure 3.5: Profiles of the concentration of monomer, [M], trimer, [T], and adsorbed, [A], species

along the reactor length ζ.
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Figure 3.6: Integrated profile of the surface property L, film thickness in this example, along the

reactor coordinate ζ at different τ times.
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Chapter 4

Application of the factorization approach to copper CVD

This chapter describes the application of the reaction factorization method-

ology presented in previous chapters to the modeling of a hot wall chemical vapor

deposition reactor. The factorization is shown to be able to guide the time scale

separation and to reveal conserved quantities in the new reaction coordinates.

4.1 Copper chemical vapor deposition (Cu-CVD)

This section presents the application of the reaction factorization methodology

to modeling of the chemical vapor deposition of copper for the reaction

CuI(g)→ Cu(s) +
1

2
I2(g)

in the reactor shown in Figure 4.1. Experiments on copper CVD and visual analysis

of deposited films are presented in Appendix B. From the experimental and digital

3.92 cm

50 cm

Ar

750oCCuI SiO
2
 substrate

18 cm

Figure 4.1: Schematic of the hot wall tubular CVD reactor. The inner tube is not used for this

deposition process. Argon flows through the outer tube.

image analysis to be presented in Chapter 6, a single-island growth was inferred and
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is explained as follows: first, Figure 4.2 shows that the film grows mostly through the

formation, expansion and coarsening of islands, exhibiting a Volmer-Weber growth

mode. Presumably, this occurs because the copper adatoms are more attracted to

themselves than to the quartz surface, as suggested by the adsorption energies of

copper on copper (1.25 eV [30]) and copper on quartz (0.1 eV [31]). Hence, it is

assumed that the islands grow through two main precursor incorporation mecha-

nisms: 1) by direct precursor impingement from the gas phase onto the growing Cu

crystals; and 2) by initial adsorption onto the quartz, followed by surface diffusion

of the adsorbed species to the growing Cu crystals.

Figure 4.2: Image analysis process of copper films deposited on quartz substrates using CuI as as

copper precursor. The image on the left is a picture of the copper (red) deposited on a 1 inch by 1

inch quartz substrate. The image at the center is a optical microscope image of an area of the film.

The image on the right is the digitally process image of the optical microscope image at the center.

The processing was realized by filtering the microscope image digitally through a threshold value of

127 in the RGB color scale (the middle of the scale from 0(black) to 255(white) and converting it

to black and white. Note the accumulation of copper clusters on the scratches of the film where the

larger clusters form, a potential indicator of a surface reaction deposition mechanism.
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Figure 4.3: Sketch of the proposed growth mechanism. Gold color cubes represent copper atoms and

red cubes iodine atoms. Copper can be incorporated to a growing island through direct impingement

of precursor molecules, Cu and CuI, from the gas phase, or through surface diffusion of copper

adatoms (yellow color).
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4.1.1 Surface reactions and growth model

Figure 4.3 shows a schematic representation of a proposed copper crystal

growth mechanism in which precursor incorporation occurs by two main processes:

direct impingement from the gas phase, and surface diffusion of precursors deposited

on the substrate surface. In the first process, rCu
g and rCuI

g , copper and copper io-

dide from the gas phase deposit directly on the the growing islands, resulting in

the addition of copper to the islands and the production of iodine. In the analysis

that follows, it is assumed that iodine atoms adsorbed on the Cu surface combine

instantly to form molecular iodide that immediately desorbs. The rate of this de-

position mechanism by direct impingement from the gas phase can be estimated by

the wall collision rates for gas phase Cu and CuI atoms using the kinetic theory of

gases and assuming an ideal gas

rCu
g = ηCu

√
kBT

2πmCu
[Cu]Ag , rCuI

g = ηCuI

√
kBT

2πmCuI
[CuI ]Ag (4.1)

where kB is the Boltzmann constant, ηi is the sticking coefficient of precursor i , mCu

is the mass of a copper atom, mCuI is the mass of a copper iodide molecule, [Cu] and

[CuI ] are the gasp-phase concentrations of copper and copper iodide, respectively,

and Ag is the surface area available for deposition. To estimate this area, we consider

the islands to grow in a cubic manner. Therefore, for an island with nCu atoms of

copper, the length of the side of the island is L = n
1/3
Cu LCu where LCu = 0.228 nm is

the length of a solid copper atom represented as a cube. Then the area available for

deposition on the island is given by the following equation

Ag = 5× (L)2 (4.2)
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In the second mechanism the copper atoms deposit and weakly bond to the

quartz surface. These adatoms diffuse on the surface until they encounter the edge

of a growing island and are adsorbed by it. To estimate the rate of this adsorption

process through surface diffusion, absolute rate theory [32] is used to obtain equa-

tions 4.3 and 4.4, representing the rates of adsorption of Cu and CuI on the quartz

surface

rCu
s =

kBT

h
θCu/SiO2

[X̂ ]KCu
adsAedge (4.3)

rCuI
s =

kBT

h
θCuI/SiO2

[X̂ ]KCuI
ads Aedge (4.4)

where h is Plank’s constant, θCu/SiO2 is the equilibrium fraction coverage of copper

on quartz at the deposition temperature, [X̂ ] is the surface site density of copper

on quartz, and Aedge is the area of edge sites available on the surface. The area

Edge sites

Figure 4.4: Sketch of the top view of the area around the edge of the growing

Cu crystal (in yellow) on a quartz surface (in light blue).

of edge sites, shown in Figure 4.4, available for deposition is estimated as follows:

first the number of copper sites in a side of the base of the island is calculated as

nCuside
= (L/LCu + 1). Second the total area available for the sites on the perimeter

of the base is estimated as Aperi = nCuside
v

2/3
Cu1

, where Cu1 is the volume of a solid
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atom of copper. Finally to estimate the equivalent area of SiO2 surface sites, the

calculated copper edge area is divided by the area of a quartz surface site.

Aedge =
4
(

L
LCu

+ 1
)

X̂

v
2/3
Cu1

v
2/3
SiO2

To track the growth of the islands, we use the model given in Equation 4.5.

dL

dt
= δ

(
rCu
g + rCu

s + rCuI
g + rCuI

s

)
(4.5)

This completes the surface adsorption and growth model components.

4.1.2 Gas phase reactions

To calculate the concentration of precursors in the gas over the substrate

surface the following reactions are considered: (1) the reversible reaction between

the monomer CuI and the Cu3I3 trimer and (2) the reversible reaction between gas

phase atomic Cu and the Cu2.

The complete mechanism is shown in Figure 4.5, where D(s) represents an

surface adsorption site (either copper or quartz) and D(s)−Cu is an adsorbed copper

atom. The reactions and their rate expressions are presented in Table 4.1. In the

table, lower case k represents a forward reaction constant and upper case K an

equilibrium constant. The calculations of the adsorption and equilibrium constants

are detailed in Chapter 5.
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Cu3I3 CuI I2 + 2Cu

CuD(s) + 0.5I2

Cu D(s)

Cu2

Figure 4.5: The gas-phase reactions and their connection to the de-

position process. D(s) is a deposition site that can be either a copper

surface site or a quartz surface site. All species are gas phase species

unless noted as surface (s) species.

0) 3CuI
k0K0⇀↽

k0

Cu3I3 r0 =
1

ε0

(
K0 [CuI]3 − [Cu3I3]

)

1) 2CuI
k1K1⇀↽

k1

Cu2 + I2 r1 =
1

ε1

(
K1 [CuI]2 − [Cu2] [I2]

)

2) Cu2

k2K2⇀↽
k2

2Cu r2 =
1

ε2

(
K2 [Cu2]− [Cu]2

)

3) Cu
r3→ D(s) r3 = rCu

g ([Cu]) + rCu
s ([Cu])

4) CuI
r4→ D(s) + 1

2
I2 r4 = rCuI

g ([CuI ]) + rCuI
s ([CuI ])

Table 4.1: The mechanism considered for Cu deposition from CuI. Reactions

1 through 3 are assumed to have relatively fast dynamics, where as reactions 4

and 5 the deposition reactions are considered to be the rate-limiting steps, and

εi = 1/ki for i = 0, 1, 2.
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4.1.3 Precursor depletion spatial profiles in the hot-wall tubular CVD

reactor

To compute the depletion behavior of the copper-containing precursors dur-

ing deposition, consider the reactor schematic in Figure 4.1 where the shaded area

represents where deposition is observed during experiments. The analysis in this

section assumes the gas flowing in the reactor to follow the plug flow model with

no diffusion. It is also assumed that there are no gas-phase composition gradients

in the radial direction. To derive the governing equations for this model, consider

the sketch in Figure 4.6 that models the interior of the reactor in Figure 4.1 where

A v

c
i



Figure 4.6: Plug flow sketch for the precursor depletion model.

A = πR2
o is the area normal to the flow and Ro = 1.95× 107nm is the inner radius of

the reactor tube, ci is the precursor species i concentration, v = 3×107nm/s (result-

ing from 570 sccm of Ar flowing at 750oC ) is the fluid velocity, and Vζ = πR2
o ∆ζ

is the volume of the differential element of Figure 4.6. A mass balance over the

differential volume yields the following equation

πR2
o ∆ζ

∂ci

∂t
= πR2

o ci |ζν − πR
2
o ci |ζ+∆ζν + πR2

o ∆ζri (c) i = 0, 1, .., 4

where ri is the overall rate of consumption of precursor i according to the rate ex-

pressions of Table 4.1 and ν is the average flow velocity. Dividing by the differential
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volume and taking the limit when ∆ζ → 0 we obtain the deposition model

∂c

∂t
= −ν ∂c

∂ζ
+ r (c) (4.6)

where c and r are the vectors of concentration of species and reaction rate expres-

sions, respectively, as shown below

c =



[Cu3I3]

[I2]

[Cu]

[CuI]

[Cu2]


r =



r0

r1 + 0.5r4

2r1 − 2r2 − σr3

−3r0 − 2r1 − σr4

r2


.

Note that for the deposition reactions, r3 and r4 in Table 4.1, the rate expressions

must to be multiplied by the following surface area to volume ratio to match the

units of the differential volume derivation

σ =
A

V
=

2πRov

πR2
ov

=
2

Ro
.

Including the reaction for tracking the average island size (4.5), the time-dependent

distributed deposition system is modeled by the following equations

∂

∂t



[Cu3I3]

[I2]

[Cu]

[CuI]

L

[Cu2]



= −v ∂
∂ζ



[Cu3I3]

[I2]

[Cu]

[CuI]

0

[Cu2]



+



1 0 0 0 0 0

0 1 0 0 σ/2 0

0 2 −2 −σ 0 0

−3 −2 0 0 −σ 0

0 0 0 0 0 1

0 0 1 0 0 0





r0

r1

r2

r3

r4

r5


(4.7)
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where

r5 = δ
(
rCu
g + rCu

s + rCuI
g + rCuI

s

)
from Equation 4.5, where δ � 1 is a small parameter that represents the ratio of the

deposition time scale to the species transport time scale, as discussed in Chapter 3,

and it can be estimated as δ = reactor residence time/total deposition time.

4.1.4 Application of the reaction factorization

We apply the reaction factorization developed in Chapters 2 and 3 to the reac-

tion system (4.7) to eliminate redundant dynamic modes and to allow ε0,ε1,ε2 → 0,

transforming the system into the standard singular perturbation form. The new

reaction coordinates resulting from the reaction factorization are given in Equa-
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tion 4.8.

y = U · c =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 1

0 2 −1 0 0 −2

0 0 0 0 1 0

3 2 0 1 0 0



· c

y =



[Cu3I3]

[I2]

[Cu]2

2 [I2]− [Cu]− 2 [Cu2]

L

3 [Cu3I3] + [CuI] + 2 [I2]



=



z0

z1

z2

x0

x1

w0



(4.8)

Multiplying the system of ODEs in (4.7) by the transformation matrix U yields the

singular perturbation problem

∂

∂t



z0

z1

z2

x0

x1

w0



= −v ∂
∂ζ



z0

z1

z2

x0

0

w0



+



1 0 0 0 0 0

0 1 0 0 σ/2 0

0 0 −2σ 0 0 0

0 0 0 σ σ 0

0 0 0 0 0 1

0 0 0 0 0 0





1
ε0
g0

1

ε1
g1

1

ε2
g2

f3

f4

δf5


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where

g0 = K0 [CuI]3 − [Cu3I3]

g1 = K1 [CuI]2 − [Cu2] [I2]

g2 = K2 [Cu2]− [Cu]2

f3 = rCu
g ([Cu]) + rCu

s ([Cu])

f4 = rCuI
g ([CuI ]) + rCuI

s ([CuI ])

f5 = rCu
g + rCu

s + rCuI
g + rCuI

s

.

Taking the limit εi → 0 for i = 0, 1, 2 and δ → 0 to obtain the DAE system

g0 = 0

g1 = 0

g2 = 0

∂x0

∂t
= −v ∂x0

∂ζ
+ σf3 + σf4

∂x1

∂t
= f5

∂w0

∂t
= −v ∂w0

∂ζ

(4.9)
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We define the slow time scale τ = δt in which the deposited film property evolves

(see Section 3 in Chapter 3) and let δ → 0 to obtain

g0 = 0

g1 = 0

g2 = 0

dx0

dζ
= −σ

v
(f3 + f4)

dx1

dτ
= f5 (∗)

dw0

dζ
= 0

(4.10)

The separation of time scales is evident in this formulation from the following two

observations: 1) there is one ODE (labeled *) in time, and 2) the pseudo equilibrium

manifold is defined by a combination of equilibrium relationships and the gas phase

transport/deposition equation. Furthermore, the conserved quantity w0, which is

the conservation of iodine across the reaction in the gas phase, is revealed through

the reaction factorization

dw0

dζ
=

d

dt
(3 [Cu3I3] + [CuI] + 2 [I2]) = 0 ⇒ w0 = wo

where wo = Uwco is the flux for the total number of iodine atoms at any point

within the reactor at any point in time t > 0.

4.1.5 Integration of the DAE system

Before integrating the DAE system (4.10) resulting from the reaction factor-

ization, we must pay special attention to the boundary condition at the start of
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the deposition zone, well known as one of the main difficulties when solving DAE

systems [27, 29]. Our initial and boundary conditions must not only satisfy the

algebraic equations and the iodine species conservation relationship, but they must

also satisfy boundary condition of pure convective flow at the inlet of the reactor

for the gas phase transport equation in variable x0,

dx0

dζ

∣∣∣∣
ζ=0

= 0 ⇒ 2 [I2]0 − [Cu]0 − 2 [Cu2]0 = 0 ⇒ 2 [I2]0

[Cu]0 + 2 [Cu2]0

= 1

Note that this boundary condition in the new reaction coordinates preserves the ratio

of total amount of Cu to I on CuI (the specified inlet condition) at the beginning

of the deposition zone. Assuming the initial condition of an empty reactor, i.e.

c (ζ, 0) = 0, we can now integrate the system (4.10) in time and space in the manner

described below.

First the specified inlet conditions co are transformed into the new coordinate

system to obtain yo

yo = U · co .

Then we project these inlet conditions onto the equilibrium manifold Q, to find the

boundary condition at c0 by solving the following set of equations
Uxc0

g(c0)

Uwc0

 =


xo

0

wo

 .

where Ux = [2 -1 0 0 0 -2] and Uw = [ 3 2 0 1 0 0] are the rows of U corresponding

to the new reaction coordinates x , and w , respectively. As noted in Chapter two we

recall that even though the manifoldQ is defined in the original reaction coordinates,
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the above equation yields the projected initial conditions in the full new reaction

coordinates space.

Next we compute the current spatial state of the system by integrating the

new reaction coordinate associated with the slow mode, x0, in space. To do this we

follow an Euler implicit scheme to approximate the difference in space.

dx0

dζ
=

x i+1
0 − x i

0

∆ζ

where

x0
i = Ux0 · c i

is the state if new coordinate x0 at the current spatial integration step. Then we

find the composition state of the system at the next step in space by solving the

following system of equations using a Newton-Raphson technique.
(
x i+1

0 − x i
0

)
/∆ζ − f

(
U−1yi+1

)
g
(
U−1yi+1

)
wo − wi+1

0

 .

After completing the integration in space, we use the new spatial state of the sys-

tem to evaluet f5 and realize a step integration of the ODE in time (labeled *) in

Equation 4.10

4.1.6 Simulation results and discussion

At the beginning of the simulation we assume there is a number nucSite of

nucleation sites containing a single copper atom each to initialize the island growth
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model and estimate the surface deposition area at every time integration step. Ta-

ble 4.2 shows the parameters for the nominal operation of the CVD hot-wall reactor

used for experiments in Appendix A and Chapter 6. Figure 4.7 shows the spatial

Parameter Value Units

v 0.03 m/s

K0 4.72×1011 nm6

K1 1.23×10−14

K2 1.09×10−7 nm−3

Ro 0.0195 m

T 750 oC

[CuI ]o 1.48×10−05 nm−3

ηCu 5×10−03

ηCuI 5×10−04

mCu 1.05×10−25 kg/atom

mCuI 3.16×10−25 kg/molecule

nucSites 4.15×10−7 #/nm2

Table 4.2: Parameters used in the simulation of CuCVD at nominal conditions 1 atm at 750oC .

The boat in Figure 4.1 is loaded with 0.1 grams of copper iodide from which [CuI ]o is estimated.

concentration profiles of the precursors in the reactor. It can be seen that the con-

centration of the copper-containing species decreases as the deposition progresses

along the length of the reactor, whereas the concentration of iodine molecules in the

gas phase rises sharply driven by reactions r4 and r1. The concentration axis on the
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plot in the bottom part of Figure 4.7 is in logarithmic scale to show species with

very low concentrations.

The average size of the growing islands in the film is shown in Figure 4.8.

At the beginning of the ten minute deposition period and in the area closer to the

precursor boat, the concentration of the precursors is higher and thus more copper

is deposited on the surface. The islands consequently grow larger in this zone.

Downstream, the gasp phase concentration of precursors decreases at a reduced

rate and thus the islands that form have a more uniform average size through the

remainder of the reactor.

In Figure 4.9, we compare the direct (top) and surface diffusion (bottom)

deposition rates of copper and copper iodide. Both rates exhibit the same decreasing

trend due to the depletion of precursor species along the reactor. The depleted

precursors result in smaller islands and thus less growth area, which in turn drives

the deposition reactions to slower rates.
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Figure 4.7: Concentration profiles of precursors along the reactor. The spatial integration of the

system is done on the deposition zone. This zone is the shaded area in the reaction schematic

of Figure 4.1. The boundary condition at the beginning of the deposition zone is indicated by the

filled circle in the copper iodide profile. The light blue shaded area is the physical position of the

substrate on the reactor coordinate.
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Figure 4.8: Average island size in the growing film along the reactor dimension. The light blue

shaded area is the physical position of the substrate in the reactor coordinate. Note that the model

predicts the average size length of the islands to match the experimental average island size in the

substrate.
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Figure 4.9: A Snapshoot at time = 5 minutes of the deposition rates of copper and copper iodide

on the surface of growing islands. The plot on the left compares direct deposition rates from the

gas phase, and the plot on the right compares deposition rates by surface diffusion, The scale of

the rate axes is logarithmic.
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Chapter 5

Numerical tools

This chapter describes numerical tools created to perform the absolute rate

theory calculations used to estimate the adsorption isotherms and surface deposition

rate constants of Chapter 4. The molecular properties of the species and the methods

used to calculate partition functions are structured in object-oriented classes in the

programming language Python and are described in the following sections.

5.1 Chemical species class

A root class called species was created to store the universal constants Avo, kB , h

(Avogrado number, Boltzmann and Planck constants, respectively) to make them

available for inheritance by sub-classes of specific species. While the library of classes

continues to grow, the current classes can divided into two: 1) classes for gas phase

species and 2) classes for adsorbed species.

The classes for the gas phase consist of mono-atomic and polyatomic (including

diatomic) classes. The properties required to instantiate an object of the mono-

atomic gas phase class are simply the molecular weight MW of the gas and the

electronic energy modes. The electronic energy modes are obtained from tables of

electronic energy states that list the energy level ξel and the degeneracy ωel . The

degeneracy is the number of different states (configurations) that have the same
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energy level. This class contains methods to compute the partition function for the

translational (trans(T)) and electronic (elect(T)) degrees of freedom at a given

temperature T. Details of the derivation and calculation of the partition functions

for this and all classes can be found in statistical thermodynamic references such

as [33, 34].

SPECIES

Avo, kB, h

display()

monoatomG

MW
, 

trans(T)
elect(T)
partfunc(T)
--------------
A(T,P)
U(T)
H(T)
S(T,P)
G(T,P)

atomSurf

MW


polyatomG

MW
's

, I's
source

, 

trans(T)
rotat(T)
vibra(T)
rotat(T)
partfunc(T)
--------------
A(T,P)
U(T)
H(T)
S(T,P)
G(T,P)

adatom

name
MWa
MWS


ro
Do

trans(T)
vibra(T)
elect(T)
pftv(T)
partfunc(T)

admolec

name
MWa
MWS


ro


Do

trans(T)
vibra(T)
elect(T)
pftv(T)
partfunc(T)

[ X̂ ]

[ X̂ ]
[ X̂ ]

Figure 5.1: Representation of the species classes. atomSurf is a simple class that represents a

surface site, it requires only the molecular weight of the species, its density, and it calculates the

site density [X̂ ].
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Gas phase species

The class for polyatomic gas phase species requires the vibrational frequencies

(νi) the symmetry number σF and the moments of inertia Ii of the molecule (or

rotation numbers if available in the CCCBDB/NIST [35] data base), in addition

of the electronic energy levels, to be instantiated. If information to calculate the

rotational energy modes is not available, the species class has another method to

calculate the moments of inertia from the relative location of the atoms to each

other in the molecule [36]. The polyatomic species class has methods to compute the

partition functions for the main energy modes: transitional (trans(T)), rotational

(rota(T)), vibrational (vibra(T)) and electronic (elect(T)).

Surface species

The classes for surface species that represent an adsorbed atom and an ab-

sorbed molecule, are adatom and admolec, respectively. They have common prop-

erties: MWa (molecular weight of the adsorbed species), MWS (molecular weight of

the surface material), ρ density of the surface material and Do the energy of the bond

between the species and the surface. Both species classes have methods for com-

puting the translational, vibrational, rotational and electronic partition functions.

The vibrational mode perpendicular to the surface is estimated within the vibra-

tional methods in both classes. For the admolec class, if the adsorbed molecule has

vibrational modes other than the perpendicular, the frequencies ν’s of these extra

vibrational modes need to be supplied during the instantiation. The partition func-
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tion calculations of these classes are used to estimate adsorption isotherms through

absolute rate theory as discussed in the next section.

Figure 5.1 shows an schematic describing the different classes and subclasses

for different the types of species in every block rectangle. For a particular block the

first section under the name of the class shows the molecular properties required to

define an object of such class. Then the second block under the name, shows the

functions (methods) that such species supports. e.g. partition function calculations

and thermodynamic state functions such as Helmholtz free energy A(T,P), internal

energy U(T), enthalpy H(T), entropy S(T,P) and G(T,P). This thermodynamic state

functions are calculated with the partition function methods, and where created to

test the validity of the partition function methods in each species in the gas phase.

5.2 Adsorption isotherms from absolute rate theory

To estimate the adsorption isotherm and growth rates we follow Laidler et.

al. [32] who applied the absolute rate theory to develop expressions for adsorption

isotherms. Following their derivation, consider the deposition process illustrated in

Figure 5.2 where a molecule of gas-phase species A deposits on a surface site X and

forms the adsorbed species AX .

The equilibrium criterion at constant temperature yields the following expres-

sion

Keq =
[AX ]

[A] ([X ]− [AX ])
=

NAX/S

(NA/V ) (NX/S)
=

ZAX

(ZA/V )ZX
with units m3 (5.1)

where ZAX , ZA and ZX are the partition functions of the adsorbed species, the
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+ →

A X AX

Figure 5.2: Schematic of an adsorption reaction. A is the precursor

molecule in the gas phase, X is a surface site available for deposition

and AX is the adsorbed molecule A on the site X .

molecule in the gas phase, and the surface site, respectively. [A] = NA/V is the

concentration of the gas-phase species per unit volume. [AX ] = NAX/S is the con-

centration of surface sites occupied by the adsorbed species and [X ] = NX/S is the

number of surfaces sites available for deposition. S is the area of a surface deposi-

tion site. Note that if [X̂ ] (sites/area) is the surface site density of the substrates,

S = 1/[X̂ ].

5.2.1 Copper adsorption isotherm

To make this discussion more concrete, consider the deposition of gas-phase

atomic copper on a copper or quartz substrate. The partition function of a copper

atom in the gas phase will have only ground state electronic, ZA,0 and translational

contributions, ZA,trans . Thus its partition function is

ZA/V = ZA,transZA,0 =

(
2πmkBT

h2

)3/2

exp

(
−ECu

kBT

)
(5.2)

The adsorbed copper atom can move in only two directions and so loses one

translational degree of freedom relative to the gas phase. However, there is an extra
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vibrational degree of freedom perpendicular to the substrate. Hence its partition

function is as follows

ZAX = ZAX ,transZAX ,vibZAX ,0

ZAX =

(
2πmkBT

h2

)
·
(

exp (hνo/2kBT )

exp (hνo/kBT )− 1

)
exp

(
−ECu/SiO2

kBT

) (5.3)

where νo is the vibration frequency of the bond between the adsorbed atom and the

surface. According to [32] it can be estimated by

νo =
1

2π

√
2πεro
m∆3

(5.4)

where ε is the adsorption energy, ro= 2.35 ×10−10 meters is the bond length for

Cu-Cu [31] and ro = 2.46×10−10 meters for Cu-SiO2 [30], and ∆3 is the volume of

the adsorbed species. This volume was estimated from the surface site density, [X̂ ],

as ∆3 =
(

1/[X̂ ]
)3/2

. With these data the vibration frequencies for copper on copper

and quartz substrates are, νo ≈ 2×1012s−1 and ν1 ≈ 5×1011s−1, respectively.

For the surface site, in addition to the electronic ground state, ZX ,0, there is a

vibrational contribution commonly represented with a single frequency ν1, which can

be estimated from the adsorption energy using an equation similar to Equation 5.4 to

be 5.278× 1011s−1 which makes the contribution ZX ,vib = 2.11. Hence the partition

function value of a surface site is given by

ZX = ZX ,vibZX ,0 = 2.11× exp

(
−ESiO2

kBT

)
(5.5)

After applying the above considerations, Equation 5.1 transforms into

[AX ]

[A] ([X ]− [AX ])
=

ZAX ,trans

ZA,transZAX ,vib

ZAX ,0

ZA,0ZX ,0
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and we have that θAX = [AX ]/[X̂ ] is the fraction of surface sites occupied with an

atom from the gas phase. Using the ideal gas for [A] = PA/kBT and the equations

for the partition functions we obtain

θAX

1− θAX
=

PA

[X̂ ]

h

(2πm)1/2 (kBT )3/2

(
exp (hνo/2kBT )

exp (hνo/kBT )− 1

)
exp

(
−εCu−SiO2

kBT

)
(5.6)

where h and kB are Planck’s and Boltzmann’s constants, respectively. m is the

mass of the atomic species being adsorbed. ε1 is the adsorption energy which is the

difference between the energies of the species in the separate and adsorbed state.

Now, if we define the adsorption equilibrium constant

K (T ) =
h

X̂ (2πm)1/2 (kBT )3/2

(
exp (hνo/2kBT )

exp (hνo/kBT )− 1

)
exp

(
−ε1

kBT

)
(5.7)

Equation 5.6 becomes the Langmuir adsorption isotherm

θAX =
K (T )PA

1 + K (T )PA
. (5.8)

To calculate the fraction coverage of the surface by copper atoms we use Equation 5.8

and the appropriate adsorption energy ε1 for each surface available for deposition,

Cu and SiO2. Then we use Equation 5.7 to calculate the fractional coverage of copper

over a SiO2 surface. The resulting adsorption isotherms are shown in Figure 5.3

From Figure 5.3 we observe that copper, as expected from the adsorption

energy data in Chapter 4, is more likely to deposit on itself than on quartz. These

calculations are used in Chapter 4 to estimate the adsorption isotherm constant,K sp
ads ,

and fractional coverage, θsp, where sp = Cu,CuI , in equations 4.3 and 4.4.
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Figure 5.3: Fractional coverage, θ, of copper on deposited copper and on a quartz substrate

as a function of the partial pressure of copper in the gas phase. The red vertical lines

indicate the copper partial pressure at the reactor temperature, Pva
Cu = 0.133× 10 −4 Pa,

and the copper partial pressure at which our reactor operates, PCu = 4 × 10 −4 Pa.
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Chapter 6

Experimental deposition and image processing analysis of copper

films

This appendix considers the chemical vapor deposition of copper using copper

iodide as a precursor by the following reaction

CuI(g)→ Cu(s) +
1

2
I2(g)

in the hot wall tubular reactor sketched in Figure 4.1. The copper is deposited on

quartz substrates and optical microscope images are obtained of the grown films.

These images are digitally processed to estimate the size distribution of the copper

clusters that form the film.

6.1 Experimental reactor system

The reactor system and much of the operating procedures for depositing Cu

are the same as those described in Appendix A for the deposition of CuxO films.

An schematic of the reactor is shown in Figure 4.1. Argon is used as a carrier gas

and the copper iodide is fed in powder form in a ceramic boat to evaporate in the

reactor and being carried downstream by the flow of Ar. The temperature settings

for a typical CVD run in this system are in the range 725 - 775 oC . A calibrated

rotameter gauge is used to control the Ar flow rate. While the reactor is heating to

the desired temperature, the Ar carrier gas (fed to the annular inlet section where
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the CuI boat is located) flow rate is set to a rotameter setting of 60 (570 sccm)

to flush air from the process tube. This Ar flow is held constant through each

experiment and the flow rate of 570 sccm is used for all experiments described in

this appendix. Deposition takes place for 10 min, after which the reactor is allowed

to cool under Ar carrier gas flow for another 10 min before the boat and substrate

are removed. All deposition runs take place under atmospheric (total) pressure.

6.2 Results and analysis

6.2.1 Experimental island size distribution

The deposited films were visually examined under the optical microscope

(Olympus CKX41 with a Photometrics Coolsnap EZ charge-couple device camera).

The resulting image was later processed to have pixels of one color: white for the

substrate and black for the copper molecules deposited.

Figure 6.1: Reproduction of Figure 4.2. The image on the left is a quartz substrate with copper

deposited(red color), the image on the center is a microscope image of an zone in the substrate,

and the image on the right is the black and white version of the microscope image. Details on the

image analysis process are described in this section and also in the caption of 4.2
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The initial picture from the microscope had a RGB color format and was fil-

tered through a numerical threshold of 127, which is the middle between black (0)

and white (255), to eliminate noise in the image resulting in the black and white ver-

sion shown in on the right of Figure 6.1 (which is a reproduction of Figure 4.2). The

pixels in white are pixels from the substrate (SiO2 which is transparent) while the

black pixels indicate copper particles. The black and white images were processed

using the ndimage tool from the scipy python library, to identify copper islands

(clusters of black pixels) on the substrate.

The image on the right of Figure 6.1 shows that the deposited copper forms

small islands with accumulation a clear tendency for copper crystals to grow along

the film. This suggests that because of the weak bonding of copper with the SiO2

surface, 0.1 eV, the copper deposited diffuses rapidly along the surface until it en-

counters another surface atom or cluster and sticks to it. The scratches on the sub-

strate provide edge and kink sites of higher coordination where the copper adatoms

are more likely to stick as observed in the figure. This concentration on the scratches

and small size island distribution is considered to indicate that the dominant growth

mechanism is the direct deposition of copper atoms on both surfaces. This would

initially seem to contradict the results on the simulation in Chapter 4. However,

this observation suggests that surface migration is important to provide the initial

adsorbed copper atoms (on the kink sites generated by defects on the substrates

surface) where the islands will grow during the deposition. It is then the growth of

the island that is regulated by the direct deposition. In the simulation we assume

that there are initially nucSites (see Table 4.2) on the quartz surface containing a
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single copper atom where the islands will begin to grow during the deposition, in

accordance with this experimental observations.

For this analysis, the islands are assumed to have a cubic structure since it

is known that copper crystals have a FCC structure. Consequently the number of

pixels of each island can be used to estimate the volume of the cubic island Vp. The

volume of a cubic pixel converted to meters is

Vm3 = Vp × c3
pix2m = 2.68× 10−19m3

where cpix2m = 6.45×10−7 m/pixel, is the conversion factor from pixel to micrometers

obtained from the scale at which the camera was used. Finally the number of copper

atoms in the island is estimated by nCu = Vm3/vCu, where vCu is the atomic volume

of copper. The histogram with the island size distribution is show in Figure 6.2.

6.2.2 Average side length analysis

This subsection presents an analysis to validate the the copper crystal size

estimates. For this, the length of the deposition zone in the reactor (see Figure 4.1)

was calculated using the results of the image analysis with a material balance.

Table 6.1 summarizes the analysis of six image samples. Each sample was taken

from a subsection of Figure 6.1, right, in such a manner to avoid scratched areas

that would potentially bias the calculation of island size.

The results in Table 6.1 show that there are in average 1.275×1023 atoms in

every square meter of the substrate, distributed in islands of side length of 1.704

micrometers. In the table, DepLen is the deposition length in the reactor that would
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Figure 6.2: Overall island size distribution. The size of the islands was estimated taking

the pixel area as the base area of a cubic island.

take to consume all the initial precursor and is estimated as follows

DepLen =
mo

CuI

MWCuI

ρCu

2πR2
o

(6.1)

where mo
CuI = 0.1 grams is the mass of precursor used in a deposition and Ro = 1.91×

10−2m is the inner radius of the reactor tube. With these data, the average length of

deposition along the reactor is about 19.7 centimeters, which is in good agreement

with visual observations of deposition in the reactor supporting the assumption of

cubic islands.
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Table 6.1: Analysis of image samples with a scale of 0.645 µm/pixel .

Sample % pixel Cutotal × 1015 ρCu × 1023 DepLen Image size Side Length

number black/Total atoms atoms/m2 cm µm × µm µm

1 15 2.18 1.11 22.4 116×168 1.76

2 18 3.24 1.37 18.1 141×167 1.93

3 17 2.25 1.30 19.1 110×156 1.67

4 14 0.95 1.07 23.2 88×100 1.70

5 19 1.96 1.39 17.9 92×151 1.60

6 19 0.72 1.41 17.6 54×95 1.55

% pixel = number of black pixels / total number of pixels in the image

Cutotal = total number of atoms in the image (total volume/Cu atom volume)

ρCu = density of copper atoms in the image (total number of atoms in the image / image’s area)
[
atoms/m2

]
DepLen = length of deposition in the reactor needed to consume 0.1 grams of copper iodide [cm]
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Chapter 7

Conclusions and suggestions for future work

A model reduction methodology based on a Gauss-Jordan reaction factoriza-

tion was developed in this thesis. The reaction factorization successfully identified

the dominant dynamics of complex transport-reaction systems, tested the structural

integrity of the kinetic mechanism considered in the system, and provides physical

insight into quantities that are conserved in the system.

To identify the dominant dynamics, the factorization provided a rational ap-

proach to formulating standard singular perturbation representations of complex

transport-reaction systems preserving the dominant dynamics of the original system.

The factorization achieves these results by transforming the original composition

coordinates into new reaction coordinates that are associated with each individual

net-forward reaction rate to the maximum extent possible, i.e. by diagonalizing the

reaction stoichiometry matrix. Even in the case where the diagonalization of the

stoichiometry matrix was not fully realized, the singular perturbation problem was

still valid and accomplished separation of time scales of the system in the outer

solution.

The reaction factorization tested the structural integrity of the kinetic mecha-

nism by recognizing redundant dynamics if they existed in the model; consequently,

avoiding wasteful computations. Furthermore, the factorization revealed conserved
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quantities in the new reaction coordinates it produced, such as conserved total num-

ber of atoms through the length of the tubular reactor described in Chapter 4.

A major contribution of this thesis was the formulation of the reaction factor-

ization in a form suitable for application to dynamic, distributed-parameter reaction

systems. For these systems, the factorization proved useful not only to separate the

time scales of the system, but as a consequence it also provided a path rigorously

decoupling the time evolution of the system and the spatial distribution so that two

independent ordinary differential equation problems are to be solved rather than

the original set of partial differential equations. Furthermore this approach solved

the problem of how one formulates Danckwerts-type boundary conditions where

gas-phase equilibrium reactions are important.

A series of object-oriented species classes was created to store molecular infor-

mation in each species and structure statistical mechanics computations for abso-

lute rate computations estimations of adsorption isotherms and deposition reaction

rates. These classes have a broad application since they provide an organized way

to automate calculations of fundamental rates that are required in a wide variety of

multi-scale models such as alumina ALD [36].

A crystal growth model was proposed for the growth of copper films on quartz

films at the microscopic level. This model was included in the Cu CVD plug flow

model of Chapter 4. Using this model to track the average size (L) of copper

islands growing on the film. The simulation results predicted the average island size

that matches the experimental average size obtained from image processing of films

Chapter 6 to be in the zone where the substrate is located in the reactor.
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Finally, the effects of temperature and precursor flow on the composition of

copper oxide films were statistically determined through a design of experiments

and a subsequent surface response analysis of the digitized images of deposited

films. Particularly for the amount of the two oxides, CuO and Cu2O, present on the

films.

Suggestions for future work

1 Factorization of more detailed Cu and CuxO CVD processes.

2 Study of the modeling of 2D materials CVD.

3 Refinement of the film growth model.

Project 1: Factorization of more detailed Cu and CuxO CVD processes

Future work should be extend the reaction factorization process to distributed

CVD, which considers diffusive flux, since these systems are more realistic than the

plug flow model described in Chapter 3. The application is very similar to the

application in Chapter 4, the only difference is that the flux in this case contains

the extra term of diffusion as opposed to only convection in the plug flow model.
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The original model can be described by the following system of equations

∂

∂t



[Cu3I3]

[I2]

[Cu]

[CuI]

L

[Cu2]



=
∂

∂ζ



JCu3I3

JI2

JCu

JCuI

0

JCu2



+



1 0 0 0 0 0

0 1 0 0 σ/2 0

0 2 −2 −σ 0 0

−3 −2 0 0 −σ 0

0 0 0 0 0 1

0 0 1 0 0 0





r0

r1

r2

r3

r4

r5


where all the variables have the same meaning as in Chapter 4. Ji = −Di∂[i ]/∂ζ − v [i ] is the flux

of species i , the kinetic expressions are given in Table 4.1, and the parameter for the simulation

are the same from Table 4.2. In matrix form, the system becomes

∂c

∂t
=
∂J

∂ζ
+ S · r.

where S is the reaction stoichiometry matrix and the transformation matrix U that
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diagonalizes it produces the new reaction coordinates

y = U · c =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 −2

0 2 −1 0 0 −2

0 0 0 0 1 0

3 2 0 1 0 0



·



[Cu3I3]

[I2]

[Cu]

[CuI]

L

[Cu2]



y = U · c =



[Cu3I3]

[I2]

[Cu]2

2 [I2]− [Cu]− 2 [Cu2]

L

3 [Cu3I3] + [CuI] + 2 [I2]



=



z0

z1

z2

x0

x1

w0



(7.1)

which allows us to write the system in the standard singular perturbation form

shown below

∂

∂t



z0

z1

z2

x0

x1

w0



=
∂

∂ζ



Jz0

Jz1

Jz2

Jx0

0

Jw0



+



1 0 0 0 0 0

0 1 0 0 σ/2 0

0 0 −2σ 0 0 0

0 0 0 σ σ 0

0 0 0 0 0 1

0 0 0 0 0 0





1

ε0
g0

1

ε1
g1

1

ε2
g2

f3

f4

δf5


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Letting ε0, ε1, ε2 → 0 and δ → 0 produces the following semi-explicit DAE system

g0 = 0

g1 = 0

g2 = 0

∂Jx0

∂ζ
= −σf3 − σf4

∂Jx1

∂τ
= δf5

∂Jw0

∂ζ
= 0

(7.2)

which can be solved with a procedure similar to the one described in Chapter 3.

Once the application for the distributed Cu CVD system described above is

completed, the next step should be consider the addition of the oxygen species and

their pertinent reactions with the CuI system. This addition would not change the

methodology for the application of the reaction factorization and can be solved to

study the CuxO system that initialy motivated this research, for which previous

experimental was presented in Appendix A.

Project 2: Study of the modeling of 2D materials CVD.

The island growth mechanism used to estimate the film growth in Chapter

4 can be modified to track the growth of two dimensional islands of different ge-

ometries. This modification enables the factorization in distributed CVD systems

to be applied in the modeling of 2D materials growth that has shown potential for

applications in electronic and optoelectronic devices [37].
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Project 3: Refinement of the film growth model

Another direction for future work should be the refining of the film growth

model to better track more properties of the film in time and space. For example

a kinetic Monte Carlo (kMC) simulation model enables tracking not only of film

thickness but also of surface roughness [38]. The use of a kMC simulation for the

film growth increases the computational costs of the model. In this context the

model reduction resulting from the reaction factorization can reduce considerably

the computational costs.

An issue commonly encounter in these systems is the noise that the stochastic

results of the kMC introduce on the macroscopic scale transport model. This noise

can be decreased by using a filtering technique, e.g. a Kalman filter, on the kMC

simulation. The resulting reduced model will be well suited to study the potential

of using nanotubes as microreactors such as the ones in [39, 40, 41, 42].
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Appendix A

Temperature and precursor influence in CuXO film growth and

composition

In this appendix the deposition of Cu2O and CuO by the reactions

CuI + 1
2
O2 → CuO(s) + 1

2
I2

2CuI + 1
2
O2 → Cu2O(s) + I2

is considered. A set of experiments was carried out guided by a design of experiments

to study the influence of temperature and precursor flux on the composition of

copper oxide films grown in quartz substrates. The effect of these parameters was

statistically determined with a surface response model analysis.

A.1 Reactor system and substrate preparation

The reactor system consists of a 3.8 cm ID cylindrical quartz process tube

heated by a tube furnace (Fig. A.1). The digital furnace temperature controller

allows time-programmed temperature profiles accurate to 1 oC. The inlet of the

process tube has a custom-manufactured quartz fitting through which the argon

(Ar) carrier and 19% O2 in Ar precursor mixture are separately introduced into

the reactor. Copper(I) iodide is used as the solid-source Cu precursor. Residual

process gas is scrubbed in a chilled methanol bubbler to remove I2 before being

vented through the laboratory hood.
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Figure A.1: CuI CVD reactor process tube and furnace (left); schematic of CVD reactor showing

relative positions of CuI precursor boat, O2 mixture feed tube and substrate location. L1 = 18cm

and L2 = 32cm.

A.1.1 Substrate preparation

The substrates used in this study are 2.54 cm× 2.54 cm square frosted quartz

slides, 2.54 cm wide rectangles of pure copper sheets and ITO-coated glass. Before

each run, the quartz substrates are soaked in a strong HCl solution overnight to

remove previously deposited copper oxide films. Any oxides that remain after the

acid treatment are removed with steel wool and repeated rinsing with acid. Cop-

per substrates are prepared by roughening the surface with extra fine sandpaper;

no preliminary preparation for the ITO-coated substrates was required. All three

types of substrates then are rinsed with distilled water and methanol. Finally, the

substrates are heated to 200 oC in air to dry.

A.1.2 Reactor operating procedure

Temperature settings for a typical CVD run in this system are in the range

of 725 oC to 775 oC. Calibrated rotameter gauges are used to control the Ar and

Ar/O2 mixture flow rates. While the reactor is heating to the desired temperature

the Ar carrier gas (fed to the annular inlet section where the CuI boat is located)
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flow rate is set to a rotameter setting of 60 (570 sccm) to flush air from the process

tube. This Ar flow is held constant through each experiment and the flow rate of

570 sccm is used for all experiments described in this paper. Before each deposition

run, 0.1 g of the solid copper precursor (CuI) is measured into a ceramic boat; the

boat is cleaned with a strong acid solution after every set of runs. When the reactor

has reached the temperature set point the reactor is loaded first with the substrate,

placed with its leading edge approximately L1 = 18 cm into the reactor from the

entrance collar, followed by the precursor boat containing CuI. The ceramic boat

is placed upstream of the substrate in the zone swept by the Ar carrier gas (see

Fig. A.1). The reactor tube then is sealed with the inlet gas fitting and the oxygen

mixture flow rate is set to the desired rotameter setting. The 19% molar O2 mixture

flow rate corresponding to rotameter settings of M = [5, 10, 15] are [4.9, 6.5, 8.1]

sccm, respectively. Deposition takes place for 10 min, after which the reactor is

allowed to cool under Ar carrier gas flow (no O2 mixture) for another 10 min before

the boat and substrate are removed. All deposition runs take place at atmospheric

(total) pressure.

A.2 Representative films and design of experiments

In this study the effect of varying O2 feed flow rates and reactor temperature on

the deposition mechanism are explored. During the course of this study, the reactor

was operated at three temperatures (725, 750, and 775 oC) and three argon/oxygen

gas mixture flow rates (consisting of rotameter settings of 5, 10, or 15 at each of the
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three temperatures). This set of nine experiments were repeated multiple times to

collect sufficient data for statistical analysis.

A.2.1 Representative results

Figure A.2 shows representative samples of Cu2O/CuO films produced in our

reactor. Gas flow is from left to right in all cases shown. A striking feature of

these films is the distinct separation between the Cu2O (red) and CuO (black) film

regions. Note that X-ray diffraction (XRD) analysis on samples taken from the each

of the “visually apparent” (red vs. black) cuprous and cupric oxide regions always

shows the presence of a single oxide phase. Furthermore, the films used for this

modeling study were deposited on transparent substrates; visual inspection of each

film revealed identical spatial patterns for the initial and final growth surfaces of

CuO/Cu2O films. Details of the film analysis are reported in Levine[43].

Figure A.2-A shows an increasing fraction of Cu2O from left to right—these

experiments correspond to a decreasing sequence of O2 mixture flow rates. Fig-

ure A.2-B displays a pure Cu2O film deposited on a Cu substrate, produced under

reactor operating conditions that would otherwise deposit a Cu2O/CuO film on a

quartz substrate. Significant differences also were observed in films grown on the

ITO-coated/bare sides of the ITO-coated glass substrates [44]. It is this strong sub-

strate dependency that suggests the predominant role the nucleation and/or surface

reactions play and that motivate the experiments and analysis that follow.
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A B

C

Figure A.2: Cu2O/CuO deposition on quartz (A); O2 mixture flows for the three samples are

M = 60 (left), 30 (center), and 20 (right). Cu2O on Cu substrate is shown as (B) corresponding

to M = 30 O2 mixture flow. The grid shown in the background of A and B corresponds to 1 cm

spacing. Image (C) illustrates the sharpness of the transition between the films; the horizontal

white bar corresponds to 1 mm. This film was deposited with M = 15. For all cases, deposition

was performed at T = 750 oC.

A.2.2 Design of experiments

The effect of varying the reactor temperature T and oxygen mixture flow

meter setting M was investigated. A three-level full factorial experiment design was

created for the two factors T and M ; factor values are listed in Table A.1. The two

factors are scaled by subtracting the nominal operating conditions and dividing the

difference by the maximum deviation used in the three-level design:

m =
M − 10

5
, t =

T − 750 oC

25 K
.

The scaled factors are represented in vector form as x = [m t]T .

Information regarding the nM = 9 sets of experimental conditions were loaded

into a vector of MATLAB paramdata objects. Each object includes measured vari-

able (% cuprous oxide) and the two parameter (factor) names and values; the data
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M T (oC) m t precursor Cu/O ratio no. exp. Y (% Cu2O) yRSM (reduced) y1D

15 725 1 -1 0.9 3 27.6 27.1 43.7

15 750 1 0 1.2 2 39.5 35.6 64.1

15 775 1 1 1.6 3 31.9 43.9 83.1

10 725 0 -1 1.1 3 37.7 45.9 48.4

10 750 0 0 1.5 9 62.2 54.2 68.6

10 775 0 1 2.0 4 78.5 62.5 87.4

5 725 -1 -1 1.5 3 70.2 64.5 54.4

5 750 -1 0 2.0 5 65.6 72.8 74.4

5 775 -1 1 2.6 3 74.8 81.1 92.9

Table A.1: Experimental conditions defined by a three-level, full factorial design for the two factors

T and M (dimensionless rotameter setting), their normalized values t and m, and the corresponding

measured values for film % Cu2O. The Cu/O ratios correspond to molar values of the atomic

species. The fourth column from the right reports the number of runs performed under each set

of operating conditions; remaining columns give measured Y , empirical yRSM , and 1-dimensional

transport model predictions y1D of film Cu2O%.

structures developed by Leon [45, 46] provide a convenient means of storing the

parameterized data, sorting and manipulating the data, and constructing response

surface models from selected sets of data.
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A.2.3 Image analysis

Given the large number (35 in total) of experiments that were performed1, a

rapid method for estimating the ratio of Cu2O to CuO over the entire substrate was

required; because of the nature of the deposition reaction and precursor transport

modeling found later in this analysis, direct measurement of film thickness was not

required. Based on the distinct color difference between the oxide phases and owing

to the sharpness of the boundary between them, a computational image-processing

approach was developed to characterize the films.

In our approach, a high-resolution color photograph of each film was read

into a MATLAB image object and was then converted from an RGB to grayscale

image. Histograms of each grayscale image clearly showed a bimodal distribution

in the gray shade distribution (Fig. A.3), with the two peaks corresponding to

the two copper oxide phases. The corresponding pixels of each phase then were

reset to a binary distribution, resulting in the sharply contrasting phases shown in

Fig. A.3; the relative proportions of each phase were determined by simply counting

the number of each of the two pixel values. Experiments corresponding to identical

factor values were averaged, to give the nM = 9 Cu2O percentages shown in Fig. A.3

and in Table A.1.

1Repeated experiments were averaged to give nM = 9.
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Figure A.3: The image processing approach to determining film composition from original film

images (top). Note the bimodal distribution in the histogram (center), indicating the fraction of

each form of the copper oxide. Pie charts at the bottom indicate relative ratios of Cu2O (red) and

CuO (black).
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A.3 Response surface modeling

Given the column vector form of x, we can write the unknown function f that

results in the measured value Y = f (x) + ε and a quadratic response surface model

that predicts measurement value as

y = b0 + [b]Tx + xTBx (A.1)

where Y denotes the measured percentage of cuprous oxide in the sample, y is the

corresponding prediction of the cuprous oxide percentage, and ε represents measure-

ment error.

In the model (A.1), b0 is a scalar corresponding to the expected value of Y at

the nominal operating conditions, and b2×1 is a vector and B2×2 a matrix of model

coefficients to be determined from the data contained in Table A.1. To see this more

clearly, we can write the model as

y = b0 + b1m + b2t + B1,1m
2 + B1,2mt + B2,2t

2

From the equation above we can see that element B2,1 is not used and can be set to

zero.

A response surface model of the form (A.1) is identified using the data in

Table A.1, producing a set of coefficients {b0,b,B}. From the discussion above, we

see there are 1 + 2 + 3 = 6 b0, b, and B coefficients to identify in (A.1) from the

nM = 9 data points. Reordering the coefficients into a single column vector c6×1

and using the vector of measurement data Y, the resulting regression problem can

be written as Y = Xc where XnM×6 is a rectangular array constructed by the factor
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full model reduced model

model coeff vector name value std error sb,k value std error sb,k

b0 c1 61.0 9.93 54.2 3.52

b1 c2 -18.6 5.44 -18.6 4.31

b2 c3 8.30 5.44 8.30 4.31

B1,1 c4 -7.88 9.42 0 0

B1,2 c5 -0.09 6.66 0 0

B2,2 c6 -2.32 9.42 0 0

R2 0.8313 0.7887

σM 13.3 10.5

Table A.2: Model coefficients for the full and reduced response surface models.

values (and all of the relevant products m2, mt, and t2) of the nM experiments.

Having more equations than unknowns, the least squares technique is used to find

the optimal set of model coefficients c = [XTX]−1XTY. This least-squares solution

gives the model coefficients listed in Table A.2.

A.3.1 Analysis of the full model

With our model in hand, we turn to assessing its validity with the main goal

being identification and removal of model terms that are statistically irrelevant. To

begin, using the data contained in Table A.1, we quantify the total variation in the

measured data Y by computing the total sum of squares SST =
∑nM

i=1(Yi − Ȳ )2 =

3159 where Ȳ is the mean measured value of the modeling data set. The variability
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not captured by the full model is defined by the sum of squared residuals SSE =∑nM

i=1(Yi−yi )
2 = 533 where yi is the predicted value of the measured value computed

using the factor values corresponding to measurement Yi . These quantities can be

used immediately to compute the coefficient of determination

R2 = 1− SSE

SST
= 0.8313

indicating a reasonably good fit to the modeling data. The variance of the modeling

error then is approximated by

σ2
M ≈

SSE

nM − p
= 178 and σM = 13.3

where nM = 9 is the number of data points and p = 6 the number of identified

parameters in the model.

These data are used to create Fig. A.4, where the model predictions are com-

pared to the true values; if the model predictions were perfect, all of the blue circles

(modeling data) would line up on the diagonal line. The σM are plotted as red

dashed lines in Fig. A.4. Because of the relatively large value of R2 and that most of

the predictions lie inside ±σM , which allows us to conclude that the model accuracy

is reasonable for the identified response surface model (RSM).

A.3.2 Reduced model

Because of the assumption that parameter estimate errors are normally dis-

tributed with zero mean, we can compute the approximations s2
b,k to the true

parameter variance σ2
b,k to assess the accuracy of our bi and Bi ,j . These vari-

ances are listed (in terms of standard error) in Table A.2 and are computed as
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Figure A.4: Full model predictions for film composition (left) and the reduced model (right) com-

pared to modeling (blue circles) data; dashed red lines indicate ±σM .

σ2
b,k ≈ s2

b,k = [XTX]−1
k,kσ

2
M where the k , k subscripts denote diagonal elements of

[XTX]−1. The ratio of each estimated parameter standard deviation sb,k and the pa-

rameter value gives some feel for which parameters may be of questionable validity.

This evaluation process is formalized using Student’s t-test whereby the t-values for

each coefficient are first computed as tk = (ck − 0)/sb,k and then used as a test of

whether the coefficient can be statistically distinguished from zero. We then select a

parameter confidence level; in this case we wish to determine which parameters we

are 75% (α = 0.25) sure are actually non-zero. Using the MATLAB function tinv,

we compute tα/2,dof and flag all parameters falling outside −tα/2,dof < tk < tα/2,dof .

The degrees of freedom in this case dof = 9− 6 = 3, and so t0.125,3 = 1.42.

Removing the terms that cannot be distinguished from zero by this test and

recomputing the remaining parameter values using the modeling data set results in

a reduced model predicting the Cu2O percentage y as a function of the two input
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factors

y = b0 + b1m + b2t (A.2)

with parameter values tabulated in Table A.2. As with the full model, the reduced

model predictions and true measurements are compared in Fig. A.4, where it can

be seen that while there is a bit more spread in the predictions relative to the σM

error bars, the model compares well to the measured data. Furthermore, we find the

coefficient of determination R2 of the reduced model changes only slightly between

the full and reduced models.

Given the relative simplicity of the reduced model, two important trends be-

come clear for this CVD system:

1. Given the negative value of b1 the amount of Cu2O relative to CuO will de-

crease with increasing O2 flow at the nominal operating point, an observation

that makes physical sense based solely on the stoichiometry of the film phases;

2. Because b2 is positive, the amount of Cu2O relative to CuO will increase

with increasing temperature at the nominal operating point, an observation

consistent with Ottosson and Carlsson [9] and with Yoon et al. [47] where

Cu2O/CuO films were deposited by ion beam sputtering in an O2 environment.

Interestingly, this trend is opposite to that reported by Barreca et al. [10] and

Condorelli et al. [48] for MOCVD systems.
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Appendix B

Derivation of discretization weights

This appendix illustrates the derivation of the discretization weights for the

finite differences of the first and second derivatives used in Chapter 4.

B.1 Second order accuracy Taylor’s expansion

To approximate the first and second derivatives with respect to ζ of a function

f with values defined at three interior collocation points ζi−1, ζi and ζi+1 we use a

the Taylor’s series expansion approximation of f around ζi for the other two points

given by the equations:

fi−1 = fi + f ′i (ζi−1 − ζi ) + 1
2
f ′′i (ζi−1 − ζi )

2

fi+1 = fi + f ′i (ζi+1 − ζi ) + 1
2
f ′′i (ζi+1 − ζi )

2

(B.1)

for simplicity in the following derivation we let ∆ζi+1 = ζi+1 − ζi and ∆ζi−1 =

ζi−1 − ζi .

B.1.1 Finite differences of first and second dervatives

To find the discretization weights for the first derivative, we solve the second

equation in (B.1) for f ′′i , and substitute in the first equation to obtain

f ′i =
∆ζ2

i+1

ξi
fi−1 +

∆ζ2
i−1 −∆ζ2

i+1

ξi
fi −

∆ζ2
i−1

ξi
fi+1 (B.2)
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where

ξi = ∆ζi−1∆ζ2
i+1 −∆ζi+1∆ζ2

i−1

In a similar manner, to find the discretization weights for the second derivative,

we solve the second equation for f ′′i in (B.1) and substitute in the first equation to

obtain

f ′′i =
∆ζi+1

ξ2i
fi−1 +

∆ζi−1 −∆ζi+1

ξ2i
fi −

∆ζi−1

ξ2i
fi+1 (B.3)

where

ξ2i =
∆ζi+1∆ζ2

i−1 −∆ζi−1∆ζ2
i+1

2

At the lower bound of the interval we cannot use a centered finite difference,

and so we use the values of ζ2 and ζ3 to compute the Taylor series expansion at ζ1

and we find

f ′1 =
(ζ2 − ζ1)2 − (ζ3 − ζ1)2

ξ1
f1 +

(ζ3 − ζ1)2

ξ1
f2 −

(ζ2 − ζ1)2

ξ1
f3 (B.4)

where

ξ1 = (ζ2 − ζ1) (ζ3 − ζ1)2 − (ζ3 − ζ1) (ζ2 − ζ1)2

Finally at the upper bound of the interval (collocation point N), we have

f ′N =
(ζN−1 − ζN)2 − (ζN−2 − ζN)2

ξN
fN−2 +

(ζN−2 − ζN)2

ξN
fN−1 −

(ζ2 − ζ1)2

ξN
fN (B.5)

where

ξN = (ζN−1 − ζN) (ζN−2 − ζN)2 − (ζN−2 − ζN) (ζN−1 − ζN)2
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