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ABSTRACT

The existing spatial smoothing (SS) technique, although it is effective in decorrelating coherent
signals, is considered applicable only to uniformly spaced linear arrays which are very sensitive to
the directions-of-arrival (DOA’s) and can be used to estimate azimuth angles only. To significantly
improve the robustness of DOA estimation and of beamforming and to estimate both azimuth and
elevation angles in a 3D multipath mobile radio environment, we developed techniques for applying
SS to arrays of nonlinear geometry. We found and proved the necessary and sufficient conditions on
an array configuration for applying SS. This array must have an orientational invariance structure
with an ambiguity free center array, and the number of subarrays must be larger than or equal
to the size of the largest group of coherent signals. We also studied the cause of ambiguities in a
multipath environment. We found the necessary and sufficient conditions for a three-sensor array
manifold to be ambiguity free and identified several higher order ambiguity situations. If an array
is also central symmetric, the forward/backward spatial smoothing can be used to improve the
resolution. Finally, we expanded the application of our technique not only to MUSIC and adaptive
beamforming algorithms but also to ESPRIT algorithm. All the predicted results are verified by
simulations.

This work was supported in part by the NSF grant MIP-93-09-506, the ONR grant
N00014-93-1-0566, and MIPS/Watkins Johnson.







I Introduction

Sensor array processing has been a key technology in radar, sonar, communications and biomed-
ical signal processing. Recently, as the cellular communication technology advances, sensor array
processing emerges as a potential technology to improve the spectral efficiency [1], [2], [3].

Much of the work in array processing has focused on methods for high-resolution DOA estima-
tion and optimum adaptive beamforming. These methods include the well known MUSIC [4] algo-
rithm and ESPRIT [5] algorithm for DOA estimation and MVDR and LCMYV algorithms [6], [7], [8]
for beamforming. However, an important drawback of these techniques is the severe degradation of
the estimation accuracy in DOA estimation [9] or signal cancellation [10] in adaptive beamforming,
in the presence of highly correlated or coherent signals.

To counter the deleterious effects due to some coherent signals, a pre-processing scheme referred
to as spatial smoothing (SS) proposed by Evans et al. [11] and further developed by Shan et
al. [9], [12] has been shown to be effective in decorrelating coherent signals. However, such a
scheme is only applied to uniformly spaced linear arrays. Linear arrays are known to be limited
to estimating azimuth angles within 180°, and practically effective only for signals from broadside
direction. The degree of SS using a uniformly spaced linear array is also sensitive to DOA’s [13]. As
a result, a linear array is not very effective in radar, sonar, or especially in cellular communications
where users can never predict the incoming directions of the moving targets.

In the past decade, research has been carried out in developing algorithms for coherent in-
terference using arrays of arbitrary geometry. In the area of DOA estimation, multidimensional
subspace fitting algorithms such as deterministic maximum likelihood (DML) [14], multidimen-
sional (MD)-MUSIC [15], and recently proposed weighted subspace fitting (WSF) [16], [17], are
effective in both coherent and noncoherent environment and can be applied to arrays of arbitrary
geometry. However, all these algorithms involve some searching procedures used to solve nonlin-
ear equations. They are computationally intensive and are not practical in real-time applications.
Several other techniques map the signal received by the array to a virtual array, but these methods
all need approximations and have restricted applications. In the area of narrow-band adaptive
beamforming, The coherent interference suppression using null constraint with an array of arbi-
trary geometry was addressed in [18]. This approach still requires pre-estimation of arrival angles
of coherent interferences. The SPT-LCMV beamforming algorithm applicable to arrays of arbi-

trary geometry was considered in [19]. This algorithm requires increased computational complexity



compared to LCMV. Recently, diversity combining [21] and blind adaptive beamforming [20] have
been proposed to combat multipath fading and cochannel interference. However, blind adaptive
beamformer has a low convergence rate, and is only applied to signals with constant modulation.
Both techniques have limitations on tracking complicated channels while cochannel interference
and multipath effects coexist.

In this work, we develop a general SS technique for arrays of arbitrary geometry to make MU-
SIC, ESPRIT algorithms and optimum adaptive beamforming algorithms operative in a coherent
interference environment and meanwhile achieve robustness in performance. Compared with the
aforementioned methods for arrays of arbitrary geometry, this SS technique can be easily imple-
mented. It does not increase the computational complexity of either MUSIC, ESPRIT, or adaptive
beamforming. It allows us to work on a data domain [22], and thus enables us to incorporate the
recently developed URV [23] [24] algorithm to DOA estimation and updating and enables us to
implement MVDR beamforming algorithm using systolic arrays. Therefore it has great potential
in mobile radio communication where coherent and cochannel multipath interference is a major
problem. Also, it can be used in conjunction with MUSIC or ESPRIT algorithm to provide an
initialization for the WSF method to get a more accurate DOA estimation [17].

Specifically, we discovered and proved the necessary and sufficient conditions on an array geom-
etry for applying SS. They are: (1) such an array must have an orientational invariance structure;
(2) its center array has an ambiguity free array manifold; and (3) the number of subarrays is larger
than or equal to the largest number of mutually coherent signals. By working on a smoothed
data matrix obtained from SS, we can use MUSIC and optimum adaptive beamformers effectively
in a coherent interference environment. To further increase efficiency and estimation resolution,
we found that the forward/backward spatial smoothing [25] (FBSS), when applied to a nonlinear
array of central symmetry, can reduce the number of sensors required and improve the estimation
resolution for closely spaced incoming signals. Finally we expand the application of our results to
ESPRIT.

In all the papers cited above that dealt with DOA estimation with arrays of arbitrary geometry,
ambiguity free array manifolds were assumed. In [4] Schmidt discovered and defined the rank-n
ambiguity in an array manifold. In [28], Lo and Marple proved the conditions for a rank-2 ambiguity.
In [26] ambiguities of linear arrays were studied. However, constructing an nonlinear array free of up
to rank-k ambiguities using only (k + 1) sensors remains a challenging problem [27]. In this paper,

we report a more thorough study on this issue. We proved the necessary and sufficient conditions




for a three-sensor array manifold to be ambiguity free. We then identified several situations, for
higher order sensor array manifolds, in which ambiguity may arise. Thus we get corresponding
necessary conditions to design ambiguity free center arrays and subarrays.

This paper is divided into six sections. In section II, we prove the necessary and sufficient
conditions on an array of nonlinear geometry for applying SS, and consider the FBSS technique for
applications in nonlinear arrays. In section III, we study the cause of ambiguities in a multipath
signal environment. In section IV, we present some practical considerations and simulation results.

In section V, we expand our results to ESPRIT. Section VI concludes our work.

II SS for Array of Arbitrary Geometry

We first assume that all the sensors in an array discussed in this paper are omnidirectional and
identical. Consider an array of p sensors. Let d narrow-band signals with additive white Gaussian
noise impinge on the array at incident angles ;,---,64. The array output covariance matrix has

the form [22]
R=E(x(t)rf(t) = AR, A" + oI, (1)

where r(t) is the received signal vector by the array at time ¢, A is a p x d steering matrix and
o? is the variance of the white Gaussian noise. When there are coherent interferences, the signal
covariance matrix R, is no longer full rank. Therefore, all the high resolution DOA estimation
methods based on eigendecomposition and all the adaptive beamforming algorithms which assume
that interfering signals are not fully correlated with the desired signals fail to operate effectively.
In the case of a uniformly spaced linear array, with a sensor spacing A, the SS algorithm [9] [12]
can be applied to achieve the nonsingularity of the modified covariance matrix of the signals.
This technique begins by dividing a uniformly spaced linear array of L sensors into K overlapping
subarrays of size p, with sensors {1,---,p} forming the first subarray, and sensors {2,---,p + 1}

forming the second subarray, etc. It was shown that [9]
Ay = A E®D), (2)

where A, k =1,---, K, is a p x d steering matrix consisting of steering vectors associated with the

kth subarray, and E®*) denotes the kth power of a d x d diagonal matrix E.



The spatially smoothed covariance matrix is defined as the average of the subarray covariances:

R

1 & _
% Y Ry = AiR AT + 01, (3)
k=1

where Ry, is the covariance matrix associated with the kth subarray, R, is the modified covariance
matrix of the signals, and has been proved [9] to be full rank when K > d. The signals are thus
progressively decorrelated [13]. However, linear arrays have limitations in the domain of estimable

DOA’s. It has been shown in [29] that R, can be decomposed as follows:

1
R, = —ECCH (4)

where C = PAT with P = diag(py,p2,---,pa), and

[ 1 1 » 1
o—J2m % sin(61) o—J2m 5 sin(62) e—J2m % sin(84)
A= | od4n%sin(61) e—J4mSsin(6a) . e—J4mSsin(6s) | (5)
e J2KT§sin(01) ,—j2Knsin(fa) . e—J2Km4 sin(84)

When incoming signals are closely spaced, the columns of both A and A; become almost linearly
dependent [29]. The dependency increases drastically when some of sin(6;),i = 1,-- -, d approach 1
for DOA’s near 90°. As a result, the performance of a linear array deteriorates quickly when some
of DOA’s approach 90°. The highly directional sensitivity of the linear array causes the lack of
performance robustness to the DOA’s and limits the domain of estimable angles to azimuth angles
from broadside direction of the array. The lack of performance robustness of a linear array is even
more severe when SS technique is applied, because in the smoothed covariance matrix, not only
the steering matrix A;, but also A is ill-conditioned in the situation described above. A general
SS technique that is robust and can be applied to directionally independent arrays is thus more

desirable.

A Orientational Invariance Structure

It is apparent that the mapping relation between A and A, is the key to successful application of

the SS technique. In general, we can divide an arbitrary array into K subarrays which may overlap.



There is not always a steering matrix A to map all the steering matrix A, for k = 1,--- ,K to
A. In this section, we will develop necessary and sufficient conditions on array geometries for

implementing the general SS. First, we give the following lemmas.

Lemma 1 For steering matrices A and B, given by A = [a(0y), ---, a(0,)] and B = [b(6y), ---,
b(04)], there exists a mapping relation B = AC if and only if C is a diagonal matriz.

Lemma 2 For K steering matrices Ay, Ay, -+, Ak, each A; can be mapped to a steering matriz B

if and only if there exists a mapping relation A; = A;Cyj for any i and j.

The proofs of both lemmas are given in the Appendix.
Consider an array that is divided into K subarrays. Suppose A; and A; are the steering

matrices associated with the ith and the jth subarrays, and there are d signals with incoming

angles 61,---,04. A; can be written as
A; = [a;(61),a:(62), - -, a:(0a)], (6)
where al () = [e=7%1(0%) ¢=3%:2(0%) ... e=i®wp(®)] k = 1,... d, is the steering vector associated

with the ith subarray, and ¢;(0x), ! € {1,---,p}, is the phase delay of the kth signal at the Ith
sensor of the ith subarray from the first sensor of the first subarray. We refer to the sensor of an
array associated with the [th row of a steering matrix of the array as the [th sensor of the array.

Let A;j, 1 <1 < p, represent the distance between the /th sensor in the sth subarray and the
Ith sensor in the jth subarray. Let (;; represent the angle of the line on which these two sensors
are located. If the ith and the jth subarrays are identical and have the same orientation, i.e. all
Ajj for I =1,---,p are equal and all §;;;,] = 1,---,p are equal, then the phase delay of a signal
with an incoming angle 65 from each sensor in the ¢th subarray to the corresponding sensor in the
jth subarray is the same according to the far field assumption. We denote this phase delay by
®;;(0). For any | € {1,---,p}, we have

24j(61) = B3(66) — $a(08) = 2n S sin(B — 04+ 7), )

then A; = A;C;;, where C;; is a diagonal matrix with the mth diagonal element e=7%is (6m). The
identical and orientational invariance properties between two subarrays guarantee a mapping rela-

tion between their steering matrices.




On the other hand, if A; = A;C, by Lemma 1, C should be a diagonal matrix and can be
represented by C = diag{ci11(01), c22(02),- - -, c4q(04)}. It requires that

eI ey (6,) = e79810%)  for 1=1,.--,p, (8)

which can be simplified to

$it(0k) — Bu(6k) = ;(Bk) + 27n, for I=1,---,p 9)

where n can be any integer. The relation in (9) holds for all 6; in [0,360) only if A;j; = Ayjp =
o = Ayjp and Bij1 = Bija = -+ = Bijp, i.e. the ith and the jth subarrays must be identical and

have the same orientation. Thus, we have Lemma 3:

Lemma 3 Suppose A; and A; are steering matrices associated with the ith and the jth subarrays.
The sensors in each subarray are numbered in the same sequence. There exists a mapping relation

A; = A;C;; if and only if the ith and the jth subarrays are identical and have the same orientation.

From Lemmas 2 and 3, we have:

Theorem 1 Suppose an array can be divided into K subarrays, each having a p X d steering matriz
A, 1=1,2,--- K. All A1, Az, -+, Ak can be mapped to a p X d steering matriz B by A; = BD;

if and only if all these subarrays are identical and have the same orientation.

We call the array structure held by an array satisfying conditions in Theorem 1 the orientational

invariance structure. A more rigorous definition is given as follows:

Definition 1 (Orientational Invariance Structure) An array has an orientational invariance

structure if it can be divided into subarrays that are identical and have the same orientation.

For an array with orientational invariance structure, we can consider each subarray as one
element located at its first sensor. Then all these elements form a center array. A more rigorous

definition for center array is given as follows:

Definition 2 (Center Array) If an array with orientational invariance structure is divided into
subarrays (which can have overlap), then the collection of all the first sensors of these subarrays

form a center array.




B Necessary and Sufficient Conditions

Suppose an array has an orientational invariance structure. Moreover, its center array has an
ambiguity free structure and the number of subarrays is larger than or equal to the largest number
of mutually coherent signals. The p X d steering matrices A1, As,---, Ax are associated with
the subarrays 1,2,---, K, respectively, and dj is the distance between the first sensor in the first
subarray and the first sensor in the kth subarray. The angle 8y represents the direction of the line
on which the first sensor in the first subarray and the first sensor in the kth subarray are located
(see Fig.1). We have

Ay =A1Dy, k=2,--- K (10)

where

[ o3 25k sin(By—01+3)

.27d .
o325k sin(By~62+)

.2wd .
e~ 3L sin(Br—04+7)

The covariance matrix of the kth subarray is thus given by
Ry = AiD,R,DIAH + 521, (12)

where R, is the covariance matrix of the source. The spatially smoothed covariance matrix is

defined as the average of the subarray covariances
I . _ )
RIEkz::le=A1R3A1+U I, (13)

where R, is the modified covariance matrix of the signal given by

_ 1 XK
R, =+ > DyR,Df. (14)

k=1

We will show in the following that R, is nonsingular. First, Rs can be written as



LR, I ]
1 H
_ =R D
R,=[I Dy --- Dg] K 2 (15)
! xBs | [ DE |
Let C denote the Hermitian square root of %Rs, i.e.
g 1
cCct = ERS' (16)
It follows that
R, =GGH (17)
where G is a d X Kd block matrix given by
G =[C DsC --- DkC]. (18)

Clearly, the rank of R, is equal to the rank of G. Suppose there are q groups of signals in d incoming
signals, with I;, 1 = 1,-- -, q, correlated signals in each group. R, must be a block diagonal matrix
with block size [;, i = 1,---,q. We can thus get a corresponding block diagonal matrix C. Recall
that the rank of a matrix is unchanged after a change of its columns. By grouping columns of

similar elements, we can verify that

cipbr - b
epaby e by
p(G) =p (19)
Cdlg+1,d—lg+1Pd—14+1 *** Cd—iy+1,dDd—1,+1
i Cd,d~1,+1bd e c4,dbg |
where p is a rank operator, ¢;; is the ijth element of matrix C, and b; (¢ =1,:--,d) isthe 1 x K
row vector given by
b; = [1 e—j@sin(ﬂz—oi—kg) e—j@sin(ﬂ3—01+§) . e—j%sin(ﬂK—Oﬁ-%) ] (20)



Each row of matrix C has at least one nonzero element because the energy of each signal is nonzero.
It is observed that b; is the transpose of the steering vector associated with the center array. Since
the center array is assumed to have ambiguity free array manifold, when K > max{l1,ls, -, 1},
all the b vectors associated with all the signals within a group of coherent signals are thus linearly
independent. Therefore, G is of full row rank and the modified covariance matrix Rg is of full rank.
Otherwise, if K < max{l1,la,--,l,}, we will see that R is rank deficient. We assume that Ry; is
the correlation matrix associated with the ith group of coherent signals. Thus, R,; has rank 1 and

can be expressed as \;h;h where )\; and h; are the corresponding eigenvalue and eigenvector of

Rg;. We have

Ry [ Athyh¥
Ry )\zhzhg

)\qhth |

and

[ TK | M (Dg hi)(Dyhp)#
— Zsz=1 )‘2(Dk2h2)(Dk2h2)H

SR Ag(Dy,hg) (Dy, hg)
(22)

where Dy, is a diagonal matrix consisting of /; diagonal elements of D which are associated with

all the DOA’s from ¢th group of coherent signals. Since

K
p(3" Ai(Di;hi)(Dihi)F) < min(K, 1) (23)
k=1
and
K
dim( Z YD) ) = 1; x I;, (24)

thus R; is rank deficient if K < maz(ly,l2,---,1,).
If the center array is not ambiguity free, then all the b vectors associated with all the signals
within a group of coherent signals can be linearly dependent, G' cannot be ensured to be of full row

rank, and neither can R;.



From Theorem 1 and the proof above, we get the following theorem.

Theorem 2 S5 can be applied to an array of arbitrary geometry to obtain a full rank smoothed
signal covariance matriz if and only if an array has an orientational invariance structure, its center
array has an ambiguity free structure, and the number of subarrays is larger than or equal to the

size of the largest group of coherent signals.

C Further Improvement

To get a smoothed nonsingular covariance matrix R, by using the SS technique, we need K >
max{ly,l, -+ ,l;}. We can further reduce the number of subarrays by getting another K backward
subarrays similar to the case in a linear array [25]. Although, the Forward-Backward Spatial
Smoothing (FBSS) [25] can always be applied in a uniformly spaced linear array. For arrays of
arbitrary geometry, there is some requirements on the geometry for successful implementation of

the backward method. We first give the definition of central symmetry:

Definition 3 (Central Symmetry) The array is central symmetric if it is identical before and

after rotating 180° about its center of mass.

If an array is central symmetric, we can get K additional backward subarrays by reversing the
order of the subarrays and the order of the sensors within each subarray.
Let rg(t) denote the complex conjugate of the output of the kth backward subarray for k =
1,---, K. We have
rj(t) = A1Dy(Drs(t))* + B*(t) (25)

where 11(¢) is an additive white Gaussian noise vector, Dy, is a diagonal matrix with the ith diagonal
element given by e™J 2”%{2 sin(Bxp=0i+3) and d Kp is the distance between the first sensor in the first
forward subarray and the first sensor in the first backward subarray. The angle Sk, represents the
direction of the line on which the two sensors are located.

The covariance matrix of the kth backward subarray is given by
R} = A DyRIDEAH 4 421 (26)

with
Rt = E(D;s*(t)sT (t)DY) = DL R:DY. (27)

10




Define the spatially smoothed backward subarray covariance matrix RY as the average of these

subarray covariance matrices, i.e.,

- 1 X _
RV = =" R = A|RbAT + 071, (28)
K k=1
where
5 1 & b H
Rb = 74 kZz:l DyR.Dy’, (29)

and define the forward/backward smoothed covariance matrix R as the average of R in (13) and

RY ie.,

R+ RY

R= = A1 R, AT + 571 (30)
It follows that _
. 5 b

Rs = RS ;RS . (31)

We can show, in a similar way as in the case of a linear array [25], that the modified source

covariance matrix R, is nonsingular as long as 2K > max{li,la, -, 14}

IIT Ambiguity Free Array Structure

To perform SS, we need an ambiguity free center array manifold. Also, to perform MUSIC, we
further require ambiguity free subarray manifolds. Ambiguity arises when a steering vector can
be expressed as a linear combination of other steering vectors in an array manifold [4]. For a
uniformly spaced linear array, rank-1 ambiguity [4] cannot be avoided since the DOA’s which are
“mirror images” with respect to the array line, have the same steering vector. This limits the range
of DOA’s estimable by a uniformly spaced linear array to within 180°. Suppose an array has p
elements, then rank-p [4] ambiguities cannot be avoided. In this paper, an ambiguity free array
manifold of an array of p sensors refers to rank-(p-1) ambiguity free. Generally, to avoid ambiguity,
an array used for high-resolution DOA estimation must have a proper structure. An ambiguity free
array manifold has been assumed in several papers [5], [17], [L5]. Our attempt is to identify all the
situations in which ambiguity may arise. One of our guidelines in designing arrays is to avoid these

identified ambiguities.

11



Theorem 3 In an azimuth only system, the necessary and sufficient condition for an ambiguity
Jree three-sensor array manifold is that all these three sensors are not on one line and that the

distance between any two sensors is less than or equal to %

The proof is given in the appendix.

We can see in general that (a) rank-1 ambiguity occurs not only in uniformly spaced linear
arrays but also in rectangular arrays with sensors having a uniform spacing of % along either x-axis
or y-axis, (b) rank-2 ambiguity occurs in an array that consists of two parallelly positioned linear
arrays with an identical uniform sensor spacing that is larger than %, (c) rank-3 ambiguity occurs in
an array that consists of three parallelly positioned linear arrays with an identical uniform sensors
spacing that is larger than %, and (d) higher order ambiguity occurs if more than [%] sensors are
on one line in a k sensor array or if an array consists of m parallelly positioned linear arrays with an
identical uniform sensor spacing that is larger than % | Z]. These situations are shown schematically
in Fig.3(a)-(d). In Fig.3 (b) and (c), the angles 6 and « satisfy the following constraint:

27r§ sin(a) + 2k = 27r§ sin(0), ke {12} (32)

In Fig.3 (d), the angles 0, § and « satisfy the following constraint:

d
zyr; sin(a) + 217 = 27r-§ sin(B) + 2k = 2 sin(6), (33)

where ki,ky € {1,2,---} and k1 # k2.

To get an ambiguity free array manifold, it is necessary to avoid these identified situations.

IV Implementation and Simulation Results

A Some Practical Considerations

To determine the source coherency structure, we can use SRP [30]. On the other hand, we can
estimate the maximum number of incoming angles according to the multipath environment. In this
paper, limited by space, we assume the number of incoming signals is given.

In practice, we can perform FBSS by setting up a special data matrix. Specifically, for the nth

12




snapshot we set up the data matrix

u(p,]-an) u(p,K,n) U*(I’K7'n) U*(lalan)
up—1,1,n) --- ulp—1,K,n) u*(2,K,n) --- u*(2,1,n

iy | ) LK) @K (2,1,m) »
| u(1,1,n) - u(l,K,n) u*(p,K,n) --- u*(p,1,n) |

where u(%, ,n) denotes the sample taken at the ith sensor of the jth subarray. For the totality of

N snapshots, we can define the overall data matrix
AR = [AF(1), 47 (2),- -, AT (V)] . (35)

It follows that the averaged smoothed correlation matrix R (as defined in (30)) can be estimated
as follows:

~ 1

As we know, more robust results can be obtained from data domain rather than from covariance
domain [22]. We can proceed with MUSIC [22] algorithm or MVDR [7] [22] beamforming algorithm
based on A instead of R.

An array needs to be chosen for applying SS. Such an array should satisfy all conditions afore-
mentioned. An omnidirectional circular array has been a conventional choice for mobile commu-
nications [1] [2], and there have been active research efforts to find a pre-processing scheme for
the circular array to handle the coherent interference [31]. However, we can see clearly from our
discussion that a single circular array is not orientational invariant. Therefore it does not satisfy
the necessary condition for applying SS. This implies that the circular array cannot overcome the
coherent interference by using the SS technique. For some circular arrays with central symmetric,
we can apply FBSS to handle two coherent signals. To handle more than two coherent signals,

several parallelly positioned circular arrays have to be used.

B Selecting Orientational Invariance Structure

In this section, we study some guidelines for designing an optimal sensor array for SS. We found

that the sensor utilization rate is an important factor for estimating DOA’s of coherent signals with

SS.

13



Definition 4 (Sensor Utilization Rate (SUR))

SUR = 2. Msubarray (37)

Narray

where Y Nsyparray 15 the sum of the number of sensors in each subarray, and ngrrqy is the total

number of sensors in the whole array. Obviously SUR > 1, because of possible overlap of subarrays.

Example 1: We perform simulations on two 64-element arrays: (1) a hollow square array as
shown in Fig.4(a), which has a low SUR for a given number of sensors, and (2) a dense square
array, as shown in Fig.4(b), which has a high SUR. The dense square array contains 4 subarrays
each having 49 sensors. The spacing between two neighboring sensors is 0.45X. The SUR of the
array is approximately 3. The hollow square array contains 4 subarrays, each having 32 sensors.
The spacing between two neighboring sensors is 0.45\. The SUR is 2. Both structures are used to
estimate the DOA’s of two coherent signals. The input SNR is 20dB. We use the FBSS method.
The simulation results are shown in Fig.5. In cases (a) and (b), the two coherent signals are at 40°
and 50°. Both arrays can clearly identify the DOA’s. In cases (c) and (d), the two coherent signals
are at 45° and 50°, only the dense square array can determine the DOA’s. Our results show that
a dense square array structure is better than a hollow square array structure.

For a uniformly spaced linear array, the larger the physical aperture, the narrower the beamwidth,
and the higher the resolution. For a nonlinear array, the DOA resolution is however decided by an
effective array beamwidth. The beamwidth b, » of two signals, with DOA at 6; and 6, arriving at

an array with steering vector v(8) is evaluated by the following equation.

[v(61)7v(6:)|

V@)V E)] (38)

bio = 3003_1(
™

We compared the beamwidths between a dense square subarray and a hollow square subarray. In
Fig. 6, we plot the beamwidths of two signals, that are 10° and 5° apart in (a) and (b), respectively,
versus the angle of arrival of the signal that has a smaller DOA values. We see that although the
dense square array has a smaller physical array aperture, it has a narrower beamwidth. Since both
arrays have the same number of elements, we infer that SUR is an important factor and needs to be
maximized in the array design. An array consisting of several parallelly positioned circular arrays

has a low SUR and is not recommended for SS applications.

14



C Simulation Results

In this section, we present some simulation results on MUSIC algorithm to show the effective-
ness and applications of our SS and FBSS. We choose a square array, which has an orientational
invariance structure, central symmetric, and a sensor spacing less than %

Example 2: To compare the performance of a square array to that of a linear array under
the same complexity, we use a nine-sensor linear array and a nine-sensor square array as shown in
Fig.7, both having a spacing of 0.45) between neighboring sensors. We divide the both arrays into
four overlapped subarrays. We get six and four sensors in each subarray of the linear array and
the square array respecti\;ely. The resolution of DOA estimations is decided by the beamwidth of
the subarrays. We consider two narrow-band coherent signals with DOA’s at 70° and 85°. The
SNR is 20 dB. A total of 500 samples (“snapshots”) are taken from the array. We use SS as a
pre-processing scheme for MUSIC. Fig.8 shows that the DOA’s of the two coherent signals are not
resolved using a linear array, whereas the square array gives a satisfactory result. In Fig. 9, we plot
the beamwidths of two signals, that are 15° apart, versus the angle of arrival of the signal that has
a smaller DOA values. For the linear array, actual beamwidth varies greatly with the DOA. The
square array, however, shows a relatively stable beamwidth for different DOA’s. When DOA’s are
at 70° and 85°, the square array provides a narrower beamwidth and a higher resolution.

Example 3: We use the square array shown in Fig.7 to receive two coherent signals with
DOA’s at 75° and 100°. We apply SS and FBSS separately. Fig.10 shows that the DOA estimation
resolution achieved by a central symmetric array is significantly improved by using the FBSS
method.

Example 4: In a wireless fading channel, coherent signals can not be avoided. Fig. 11 shows a
typical example of the distribution of scatters in a mobile radio environment [33]. We can treat all
the reflected signals from local scatterers as coming from a super position. However, those reflected
signals from far away scatterers such as high rise buildings or mountains are all coherent signals.
We use a dense square array of sixty-four sensors as shown in Fig.4(b) as the base station antenna.
The array contains 4 subarrays each of 49 sensors. The spacing between two neighboring sensors
is 0.45A. The array receives signals from four mobile users: four coherent signals at 20°,65°, 150°
and 200° from user 1, three at 230°,250° and 280° from user 2, two at 30° and 300° from user
3 and one at 320° from user 4. The SNR is 20 dB. A total of 500 samples are used. First, we
apply FBSS and then apply MUSIC. Simulation results are shown in Fig.12. According to these
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DOA’s information, we can further perform constrained beamforming and thus can achieve Spatial
Division Multiple Access(SDMA) [34] in a multipath environment.

We found the results obtained for a nonlinear array in an azimuth-only system remain valid in
an azimuth-elevation system. The following is an example.

Example 5: We use the square array shown in Fig.7 to receive two coherent signals, one is at
an azimuth of 40° and an elevation of 30°, and the other is at an azimuth of 50° and an elevation of
60°. The SNR is 20dB. The number of samples taken is 500. By using FBSS and MUSIC, we obtain
the result in Fig.13. It demonstrates that a planar array enables us to perform DOA’s estimation

in a 3D domain while a linear array is not capable of doing that.

V Spatial Smoothing for ESPRIT

Similar to MUSIC, the ESPRIT algorithm [5] is an approach to signal parameter estimation. It
exploits an underlying data model at significant computational savings. The ESPRIT algorithm is
also limited to estimating parameters in noncoherent incoming signals. The conventional SS can
be incorporated into ESPRIT [32], but it requires the center array to be a uniformly spaced linear
array. In this section, we show that our scheme also works for the ESPRIT algorithm to estimate
parameters in a coherent interference environment.

In the ESPRIT algorithm, we consider d narrow-band plane waves with incident angles 64, - - - 8y,
and wavelength ), impinge on a planar array of m sensors (m is even), arranged in % doublet pairs.
The displacement vector is the same for each doublet pair, but the location of each pair is arbitrary.

The sensor output z(t) is given by

A
x(t) = s(t) + n(z) (39)

Ad
where n(t) is a white Gaussian noise vector. A and A® are the steering matrices corresponding to
the first sensors and the second sensors in all pairs, respectively. The matrix @ is a diagonal d x d
matrix of phase delays between the doublet sensors for the d signals. The sensor output covariance

matrix R, is thus measured by

A A \
R, = R, +o0°I. (40)
Ad® Ad®
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A full rank matrix R, is assumed when the ESPRIT algorithm is performed. If some of the
incoming signals are coherent, R, will not be a full rank matrix and the ESPRIT will fail. The
spatial smoothing technique we introduced in the previous sections can then be applied here to get
a modified full rank signal covariance matrix.

We consider each doublet sensor pair in the array used by ESPRIT algorithm as one element.
Then the array consists 3 elements. If this array has an orientational invariance structure with K
subarrays and the corresponding center array has an ambiguity free structure, the sensor output

at the kth subarray is given by

Ay
xx(t) = Dys(t) + n(t). (41)
A1

Matrix Dy, is a diagonal d x d matrix of the phase delays in the form given in (11). The corresponding

covariance matrix R, is given by

H
A
Ry, =| °" | DyR,DE + 0?1 (42)

A9 A0

A

A smoothed output covariance matrix R, can thus be defined as

H
_ 1 X Ay _ A
A=Ll3p - 7 ey (43)
* K,; S IF S R WY

where R, is the modified signal covariance matrix as defined in (14). As proved in Section II, R,
is of full rank if K is larger than or equal to the size of the largest group of coherent signals. We
can now successfully perform ESPRIT based on R,. We can also use FBSS to further reduce the
number of sensors required and to improve the estimation resolution if the array of 3 element is
central symmetric.

Although SS enables ESPRIT to estimate DOA’s in a coherent interference environment, the
estimation is still limited to identifying DOA’s within 180° in an azimuth only system. Hence, in
terms of performance robustness to DOA’s, our SS is more effective for MUSIC than for ESPRIT.

Example 6: A twelve sensor array shown in Fig.14 is used in this example to receive two

coherent signals at 70° and 80°. This array consists of two overlapping nine-sensor square arrays.
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Each sensor in one square array and its counterpart in another form a doublet pair. These nine
doublet pairs form an array which has orientational invariance structure and is central symmetric.
The spacing between two neighboring sensors is 0.45). The doublet spacing for ESPRIR is 0.45).
The SNR is 20dB. A total of 2000 trials are run. A histogram of the results is given in Fig.15. We
apply FBSS first and then applied the ESPRIT. The two angles are clearly identified.

VI Conclusions

To significantly improve performance robustness in DOA estimation and in adaptive beamforming,
we developed techniques for applying SS on arrays of nonlinear geometry, thus making MUSIC,
ESPRIT and adaptive beamformers operative in a coherent interference environment. In order
to apply SS to an array of nonlinear geometry, this array must have an orientational invariance
structure and its center array must be ambiguity free. Also the number of subarrays must be greater
than or equal to the largest number of mutually coherent signals. To apply SS in conjunction
with MUSIC, all the subarrays must also be ambiguity free, and the number of sensors in each
subarrays must be larger than the number of incoming signals. For ESPRIT, two identical arrays (or
subarrays) separated by a displacement vector are used each satisfying the conditions for applying
SS and MUSIC.

When a nonlinear array is central symmetric, the FBSS can be used and it outperforms the
regular SS in terms of improved efficiency and estimation resolution.

We proved the necessary and sufficient conditions for a three-sensor array manifold to be am-
biguity free. We identified several situations, for higher order sensor array manifolds, in which
ambiguity may arise. It is necessary to avoid the identified ambiguities in designing ambiguity free
center arrays and subarrays.

In practice, we found that we can choose a square array with a sensor spacing less than %
to meet all the conditions required for applying SS. Simulation results also show that for DOA
estimation of coherent signals using SS, a square array has a prefered geometry in terms of the

DOA estimation resolution and performance robustness.

VII Appendix

Proof of Lemma 1:
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If part:
The proof is obvious and is omited.
Only If part:
If B=AC, A=[a(01), - ,a(64)] and B = [b(61),- - ,b(04)] and also assume C is not a diagonal

matrix, i.e. it has non-zero element ¢, for I # m, then the steering vector b(6,,) is

d d
b(6,) = Zcima(ﬂi) =ama(0) + D cima(6;). (44)
i=1 i=1il

This means that b(6,) is a function of variable ), which contradicts to the definition that b(6,,) is
only a function of 8,,. Thus the assumption that C is a non-diagonal matrix is false. C has to be
a diagonal matrix with ¢; = ZJ(Z—Z%.
Proof of Lemma 2:
If part:

Obviously, B can be any of {A;, Ay, -, Ax}.
Only if part:

If each A; can be mapped to a steering matrix B, by definition there exist C;, C; such that
A; = BC;, Aj = BC;. By Lemma 1, C; is a diagonal matrix. So C;! exists and is also a diagonal
matrix. We have A; = 4;C;'C;. Let Ci; = C;'C}, Cyj is the product of two diagonal matrices.
So Cj; is also an diagonal matrix. 4; = A;C;;.
Proof of Theorem 3:
If part:

If sensors A, B and C are not on one line and their mutual distance is less than %, without loss

of generality, we let sensor A be the first sensor in the array, B the second and C the third. The

steering matrix of the array has the form

1 1 1
V = | i#1(61) ¢id1(62) (ida(63) (45)

eI92(01)  oid2(02) ida(63)

where ¢ denotes phase delay. If the distance between any two sensors is < %, the phase delay ¢;(6;)
and ¢2(6;),i = 1,2, 3, are real numbers from (-, ).

Note that the steering matrix of the array corresponding to three incoming signals at different
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angles is a special case of the general array in Lemma 2 of [28]. By Lemma 2 in [28], V is nonsingular
with possible exception in one of the following three situations:

(1) When ¢1(6:1)=¢1(62), i.e. the two incoming signals are symmetric with respect to the line

on which sensors A and B are located. Note that

0 1 0
det(V) = | ed91(01) _ i61(62) id1(02) id1(0s) _ oig1(62) (46)

eI92(601) _ oid2(02) oid2(02)  id2(83) _ oid2(62)

ei91(01) _ oid1(62)  oid1(03) _ pidi(2)
= - . (47)

eI02(01) _ oid2(02)  id2(03) _ pida(62)

When ¢;(61) = ¢1(62), det(V) = 0 if and only if ¢2(61) = ¢2(0s) or ¢1(f3) = $1(6s). Since these
sensors are not on one line, if ¢1(0;) = ¢1(f2), we have $3(01) # ¢2(62). Since 6;,05 and 63
are three different angles, when 6; and 6y are symmetric with respect to the line, 3 and 6, can
not be symmetric to the line, i.e. if ¢1(01) = ¢1(02), then we get ¢1(03) # ¢1(02). Thus, when
$1(01) = ¢1(02), the matrix V is nonsingular.

(2) Similarly, we can prove that when ¢2(61) = ¢2(62), the matrix V is nonsingular.

(3) When ¢1(01) — ¢1(62) = ¢2(61) — ¢2(62), i-e. ¢1(61) — $2(61) = ¢1(62) — ¢2(62), 61 and 6,

are symmetric with respect to the line connecting sensors B and C. Note that

e—i%2(01) e—i%2(02) e—J%2(03)
det(V) = | eit1(61)=5¢2(01) ¢id1(02)-762(62) @id1(03)—id2(6s) (48)
1 1 1
— (e J#2(01) _ o—i92(02)\(pi1(02)—3b2(02) _ _i¢1(83)—jd2(ds)
(e e~ i103) ¢ ¢ ) (49)

When ¢1(61) — ¢2(01) = $1(02) — ¢2(62), det(V) = 0 if and only if eI92(01) = ¢=i¢2(02) op
ei#1(02)—7¢2(02) — ¢id1(63)—i¢2(83)  Gince the mutual distance between A, B and C are less than
3, $2(61), $2(62), ¢1(62) — ¢2(62) and $1(83) — $2(f5) are all real numbers in (—m, 7). e~I¢2(%1) =
e=792(02) if and only if ¢g(61) = ¢2(0a). ei$1(82)=392(02) = ¢i1(85)=392(65) if and only if ¢1(f2) —
$2(02) = ¢1(03) — ¢2(63).

Since A, B and C are not on one line, if §; and 6» are symmetric to the line connecting B and

C, they can not be symmetric to the line connecting A and B or A and C. i.e., if ¢1(61) — ¢2(61) =

20




#1(602) — ¢2(02), we have ¢o(61) # ¢2(02). Since 61,6, and 63 are three different incoming angles,
if #; and 6, are symmetric to the line connecting B and C, 63 and 63 can not be symmetric to the
line. ie., if 1(61) — ¢2(61) = ¢1(62) — ¢2(62), we have $1(02) — d2(62) # $1(63) — ¢2(63). Thus,
when ¢1(01) — ¢2(61) = ¢1(82) — ¢2(62), the matrix V is nonsingular.

Therefore, we conclude that all the three situations which cause the singularity of the matrix
in Lemma 2 of [28] will not cause the singularity of three-sensor steering matrix if three sensors
are not on one line and their mutual distance is less than % Therefore the matrix V is full rank.

If the spacing between any two of the three sensors is not larger than %, and there is at least
one pair in these three sensors with a spacing of —’%, then the only situation that the phase delay
#1(6;) and ¢2(6;),% = 1,2,3, are not all in (—, ) is when one of the incoming signals is from
the direction parallel to a line on which the two sensors with spacing % are located. The other
two signals can be either from the opposite direction or from other directions. If one of the other
two signals is from the opposite direction, it can be easily proved that the corresponding steering
matrix is full rank. If the other two signals are from the two other different directions, then one of
$n(0;), n=1,2,i=1,2,3 is equal to m and the rest are real numbers from (—, 7). Similarly, we
can prove that the matrix V is of full rank.

Only if part:

If the conditions in Theorem 1 are not satisfied, rank-1 or rank-2 ambiguity occurs for some
incoming signals. These situations are shown schematically in Fig.2(a)(b). In Fig.2(a), the relation
between § and « is

27r§sz'n(0 —a) +k2r = 27r;sin(0 +a) ke{l,2,---}. (50)

In Fig.2(b), the relation between 6 and « is

27r§sz'n(oz) + k2m = 27r;sin(—72£ -0), ke{1,2,---}. (51)
Acknowledgment

Fruitful discussions with C. C. Martin at AT&T Bell Labs are gratefully acknowledged.

21




References

(1]

[2]

[5]

[6]

(7]

[8]

[9]

[10]

[11]

(2]

[13]

[14]

S. C. Swales, M. A. Beach, D. J. Edwards and J. P. McGeehan, “The performance enhancement
of multibeam adaptive base-station antennas for cellular land mobile radio systems,” IEEE
Trans. on Vehicular Technology, vol. 39, No.1, pp. 56-67, Feb. 1990.

S. Anderson, M. Millnert, M. Viberg and B. Wahlberg,, “An adaptive array for mobile com-
munication systems” IEEE Trans. on Vehicular Technology, vol. 40, No.1, pp. 230-236, Feb.
1991.

W. C. Y. Lee, “Applying the Intelligent Cell Concept to PCS,” IEEE Trans. on Vehicular
Technology, vol. 43, No.3, pp. 672-679, August, 1994.

R. O. Schmidt, “A signal subspace approach to multiple source location and spectral estima-
tion,” Ph.D. dissertation, Stanford University, Stanford, CA, May 1981.

R. Roy and T. Kailath, “ESPRIT-estimation of signal parameters via rotational invariance
techniques,” IEEE Trans. Acoust., Speech, Signal Processing, vol. 37, No. 7, pp. 984-995, July
1989.

J. Capon, “High-resolution frequency-wavenumber spectrum analysis,” Proc. IEEE, vol.57,
pp. 1408-1418, Aug. 1969.

J. G. Mcwhirter and T. J. Shepherd “Systolic array processor for MVDR beamforming,” IEE
Proc.-F (London), vol.136, pp. 75-80, April, 1989.

O. L. Frost, “An algorithm for linearly constrained adaptive array processing,” Proc.IEEE,
vol.60, pp. 926-935, Aug. 1972.

T. J. Shan, M. Wax and T. Kailath, “On spatial smoothing for Direction-of-Arrival estimation
of coherent signals,” IEEE Trans. Acoust., Speech, Signal Processing, vol. 33, No. 4, pp. 806-
811, Aug. 1985.

B. Widrow, K .M. Duval, R. P. Gooch and W. C. William, “Signal cancellation phenomena,
in adaptive antennas: causes and cures” IEEE Trans. Acoust., Speech, Signal Processing, vol.
AP-30, No. 3, pp. 469-478, May 1982.

J. E. Evans, J. R. Johnson and D. F. Sun, “High resolution angular spectrum estimation tech-
niques for terrain scattering analysis and angle of arrival estimation”, in 1st ASSP Workshop
Spectral Estim., Hamilton (CANADA), 1981.

T. J. Shan and T. Kailath, “Adaptive beamforming for coherent signals and interference”,
IEEE Trans. Acoust., Speech, Signal Processing, vol. 33, No. 3, pp. 527-536, June 1985.

V. U. Reddy, A. Paulraj and T. Kailath, “Performance analysis of the optimum beamformer
in the presence of correlated sources and its behavior under spatial smoothing”, IEEE Trans.
Signal Processing, vol. 35, No. 7, pp. 927-936, July 1987.

Y. Brester and A. Macovski, “Exact maximum likelihood parameter estimation of superim-
posed exponential signals in noise,” IEEE Trans. Acoust., Speech, Signal Processing, vol.34,
pp- 1081-1089, Oct. 1986.

22



[15] J. A. Cadzow, “A high resolution direction-of-arrival algorithm for narrow-band coherent and
incoherent sources,” IEEE Trans. Acoust., Speech, Signal Processing, vol. 36, pp. 965-979, July
1988.

[16] M. Viberg and B. Ottersten, “Sensor array processing based on subspace fitting,” IEEE Trans.
Signal Processing vol. 39, No. 5, pp. 1110-1121, May 1991.

[17] M. Viberg, B. Ottersten and T. Kailath “Detection and estimation in sensor arrays using
weighted subspace fitting” IEEE Trans. Signal Processing vol. 39, No. 11, pp. 2436-2449, Nov.
1991.

[18] C. C. Yeh and W. D. Wang, “Coherent interference suppression by an antenna array of arbi-
trary geometry” IEEE Trans. on AP vol. 37, No. 10, pp. 1317-1322, Oct. 1989.

[19] M. Lu and Z. Y. He, “Adaptive beamforming for coherent interference suppression” in Proc.
ICASSP 93, Minnesota, USA, 1993, pp. (I-301)-(1-304).

[20] T. Ohgane, T. Shimura, N. Matsuzawa, and H. Sasaoka, “An Implementation of a CMA
Adaptive Array for High Speed GMSK Transmission in Mobile Communications,” IEEE Trans.
on Vehicular Technology, vol. 42, No. 3, pp. 282-288, August 1993.

[21] J. H. Winters, J. Salz and R. D. Gitlin, “The Impact of Antenna Diversity on the Capacity
of Wireless Communication Systems,” IEEE Trans. on Communications, vol. 42, No. 2/3/4,
pp. 1740-1751, February/March/April 1994.

[22] S. Haykin, Adaptive Filter Theorem. Englewood Cliffs, NJ:Pretice-Hall, Information and Sys-
tem sciences Series, 1991.

[23] G. W. Stewart, “An updating algorithm for subspace tracking,” IEEE Trans. Signal Processing
, vol. 40, No. 6, pp. 1535-1541, June 1992.

[24] K. J. R. Liu, D. P. O’Leary, G. W. Stewart, and Y.-J. Wu, "URV ESPRIT for Tracking
Time-Varying Signals”, IEEE Trans. on Signal Processing, Vol 42, No 12, pp.3441-3448, Dec.
1994.

[25] S. U. Pillai and B. H. Kwon, “Forward/backward spatial smoothing techniques for coherent
signal identification,” IEEE Trans. Acoust., Speech, Signal Processing, vol. 37, No. 1, pp. 8-15,
Jan. 1989.

[26] C. Proukakis and A. Manikas, “Study of Ambiguities of Linear Arrays,” Proc of ICASSP
pp.IV-(549-552), 1994

[27] K. Tan and Z. Goh, “A construction of arrays free of rank ambiguities,” Proc of ICASSP
pp.IV-(545-548), 1994

[28] J. T.-H. Lo and S. L. Marple, “Observability conditions for multiple signal direction finding
and array sensor localization,” IEEE Trans. Signal Processing, vol. 40, No. 11, pp. 2641-2650,
Nov. 1992.

[29] J. Li, “Improved angular resolution for spatial smoothing techniques,” IEEE Trans. Signal
Processing, vol. 40, pp. 3078-3081, Dec. 1992,

23




[30] T. Shan, A. Paulraj and T. Kailath, “On Smoothed Rank Profile Tests in Eigenstructure
Methods for Directions-of-Arrival Estimation,” IEEE Trans. Acoustic, Speech, and Signal Pro-
cessing, vol. 35, pp. 1377-1385, Oct. 1987.

[31] J. Litva and M. Zeytinoghi, “Application of high-resolution direction-finding algorithms to
circular arrays with mutual coupling present” Final report prepared for DREO under terms
of Contract No. W7714-9-9132/01-SZ, July 1990.

[32] A. L. Swindlehurst, B. Ottersten, R. Roy and T. Kailath, “Multiple invariance ESPRIT” IEEE
Trans. Acoust., Speech, Signal Processing, vol. 40, No. 4, pp. 867-881, April 1992.

[33] W.C.Y. Lee, “Mobile Communications Design Fundamentals,” 2nd Edition, New York: Wiley
International, 1993.

[34] M. Cooper and R. Roy, “SDMA technology-overview and development status,” ArrayComm-
ID-010, ArrayComm, Inc., CA.

24



Figure 1: Orientational invariance sensor array geometry

(b) rank-2 ambiguity

Figure 2: Three-sensor array structures that can cause ambiguities
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Figure 3: high order array structures that can cause ambiguities
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Figure 4: (a) A sixty four-sensor dense square array with four overlapping dense square subarrays
of forty nine-sensors (b)A sixty four-sensor hollow square array with four overlapping hollow square
subarrays of thirty two-sensors
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Figure 5: A sixty four-sensor hollow square array is used in (a) and (c), A sixty four-sensor dense
square array is used in (b) and (d)
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Figure 6: Beamwidth comparison between a dense square array and a hollow square array (a) two
DOAs are 10° apart (b) two DOAs are 5° apart
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Figure 7: A nine-sensor square array with spacing d

Figure 8: SS and MUSIC for DOA estimation of two coherent signals at 70° and 85°
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Figure 9: Beamwidth comparison between a six-sensor linear array and a four-sensor square array
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Figure 10: Standard deviation of DOA estimation using SS and FBSS

Figure 11: Multiuser Frequency Selective Channel
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Figure 12: DOA estimation of four groups of coherent signals at (20°,65°,150°,200°),
(230°,250°,280°), (30°,300°) and 320° based on a sixty four-sensor square array
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Figure 13: DOA estimation of two coherent signals at an azimuth of 40° and an elevation of 30°,
and at an azimuth of 50° and an elevation of 60°, respectively
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Figure 14: A twelve-sensor rectangle array with spacing d
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Figure 15: FBSS and ESPRIT for DOA estimation of two coherent signals at 70° and 80°
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