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Passively collected mobile device location (PCMDL) data contains abundant travel 

behavior information to support travel demand analysis. Compared to traditional travel 

surveys, PCMDL data have larger spatial, temporal and population coverage while lack 

of ground truth information. This study proposes a framework to identify trip ends and 

impute travel modes from the PCMDL data. The proposed framework firstly identify 

trip ends using the Spatiotemporal Density-based Spatial Clustering of Applications 

with Noise (ST-DBSCAN) algorithm. Then three types of features are extracted for 

each trip to impute travel modes using machine learning methods. A PCMDL dataset 

with ground truth information is used to calibrate and validate the proposed framework, 

resulting in 95% accuracy in identifying trip ends and 93% accuracy in imputing five 

travel modes using the Random Forest (RF) classifier. The proposed framework is then 

applied to two large-scale PCMDL datasets, covering Maryland and the entire U.S. The 

mode share results are compared against travel surveys at different geographic levels.   



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MULTIMODAL TRAVEL MODE IMPUTATION BASED ON PASSIVELY 

COLLECTED MOBILE DEVICE LOCATION DATA 

 

 

 

by 

 

 

Mofeng Yang 

 

 

 

 

 

Thesis submitted to the Faculty of the Graduate School of the  

University of Maryland, College Park, in partial fulfillment 

of the requirements for the degree of 

Master of Science 

2020 

 

 

 

 

 

 

Advisory Committee: 

Professor Lei Zhang, Chair 

Professor Paul Schonfeld 

Professor Taylor Oshan 



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Copyright by 

Mofeng Yang 

2020 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

ii 

 

Dedication 

To my beloved parents Kun Yang and Peifan Li, and my girlfriend Zhiyue Xia. 



 

 

iii 

 

Acknowledgements 

This research was partially funded by Federal Highway Administration (FHWA). 

Opinions herein do not necessarily represent the views of the research sponsors. The 

author is responsible for the statements in the thesis.  

First, I would like to express my sincere gratitude to my advisor, Dr. Lei Zhang for his 

continuous support and guidance during the past two years. Dr. Zhang offered me the 

opportunity to study and work at the University of Maryland with financial support 

through a research assistantship, which enabled me to reach where I am now. He has 

always been my role model that I am willing to be in my future career. 

I would also like to thank Dr. Paul Schonfeld and Dr. Taylor Oshan for serving on my 

master thesis committee and offering me their valuable comments. I am extremely 

grateful for Dr.Schonfeld for his guidance among the courses I took in my first year. I 

would also like to express my special gratitude to Dr. Oshan for the perfect course I 

took with him at the Department of Geographical Science. 

I also want to thank my colleagues at Maryland Transportation Institute that helped me 

on this thesis: Sepehr Ghader, Aref Darzi, Yixuan Pan, Jun Zhao, Weiyi Zhou and 

Minha Lee. Thank you all for the help and advises. 

Last, I feel also thankful for my girlfriend, Zhiyue Xia, who always supports me 

whenever I met obstacles. And I would like to thank my parents, Kun Yang and Peifan 

Li, for always respecting my opinions and decisions. 



 

 

iv 

 

Table of Contents 

 

Dedication ..................................................................................................................... ii 

Acknowledgements ...................................................................................................... iii 

Table of Contents ......................................................................................................... iv 

List of Tables ............................................................................................................... vi 

List of Figures ............................................................................................................. vii 

List of Abbreviations ................................................................................................... ix 

Chapter 1: Introduction ................................................................................................. 1 

1.1 Background ......................................................................................................... 1 
1.2 Research Objective ............................................................................................. 2 
1.3 Research Contribution ........................................................................................ 3 

1.3.1 Uniqueness of the Data ................................................................................ 3 
1.3.2 Methodology and Comparison ..................................................................... 3 
1.3.1 Application Potential ................................................................................... 4 

1.4 Research Approach and Outline ......................................................................... 4 
Chapter 2: Literature Review ........................................................................................ 7 

2.1 Passively Collected Mobile Device Location Data ............................................ 7 
2.1.1 GPS-Enhanced Travel Survey Data with User Recall ................................. 7 

2.1.2 GPS Data with No User Recall .................................................................... 9 
2.1.3 Cellular Data ................................................................................................ 9 

2.1.3 Location-based Service Data ..................................................................... 10 
2.1.4 Summary of PCMDL Data ........................................................................ 11 

2.2 Extracting Trips from Passively Collected Mobile Device Location Data: State 

of Art Methodologies .............................................................................................. 12 

2.2.1 Trip End Identification ............................................................................... 12 
2.2.2 Travel Mode Imputation ............................................................................ 13 

2.3 Research Gap .................................................................................................... 15 

Chapter 3: Data ........................................................................................................... 16 

3.1 GPS Data with User Recall: incenTrip Mobile Application ............................. 16 
3.1.1 incenTrip Introduction ............................................................................... 16 
3.1.2 Data Description ........................................................................................ 17 

3.2 Location-based Service Data ............................................................................ 19 

3.3 Multimodal Transportation Network Data ........................................................ 20 
3.4 2017 National Household Travel Survey .......................................................... 21 

3.5 2007/2008 TPB-BMC Household Travel Survey ............................................. 22 
Chapter 4: Methodology ............................................................................................. 23 

4.1 Methodological Framework .............................................................................. 23 
4.2 Trip End Identification ...................................................................................... 24 

4.2.1 Potential Activity Location Identification ................................................. 24 

4.2.2 Activity Locations Extraction and Non-Activity Locations Elimination .. 27 
4.2.3 Non-Activity Adjustment........................................................................... 28 



 

 

v 

 

4.3 Travel Mode Imputation with Machine Learning Algorithms ......................... 28 

4.3.1 Overview of Machine Learning Algorithms .............................................. 28 

4.3.2 Feature Set Construction ............................................................................ 31 
4.3.3 Synthetic Minority Over-sampling Technique .......................................... 33 

4.4 Model Relaxation .............................................................................................. 34 
Chapter 5:  Results ...................................................................................................... 35 

5.1 Model Development using incenTrip Application Data ................................... 35 
5.1.1 Trip End Identification Parameter Calibration and Result ........................ 35 

5.1.2 Travel Mode Imputation Result ................................................................. 38 
5.2 Case Study One: Application on Maryland Location-based Service Data 

Sample..................................................................................................................... 42 
5.2.1 Trip Distance and Trip Time Distribution Comparison ............................. 43 

5.2.2 Statewide Mode Share Comparison ........................................................... 45 
5.2.3 CBSA-Level Mode Share Comparison ...................................................... 45 
5.2.4 County-Level Mode Share Comparison .................................................... 46 

5.2.5 Census Tract-Level Mode Share Comparison ........................................... 49 
5.3 Case Study Two: Application on the United States National Location-based 

Service Data Sample ............................................................................................... 51 
5.3.1 Trip Distance and Trip Time Distribution Comparison ............................. 51 

5.3.2 Nationwide Mode Share Comparison ........................................................ 53 
5.3.3 State-Level Mode Share Comparison ........................................................ 55 
5.3.4 CBSA-Level Mode Share Comparison ...................................................... 57 

Chapter 6:  Conclusion and Discussion ...................................................................... 59 

6.1 Conclusion ........................................................................................................ 59 

6.2 Discussion and Future Research Directions ..................................................... 60 
Appendix A: Travel Mode Imputation Confusion Matrix .......................................... 62 

References ................................................................................................................... 65 

 

 

 

 

 

 

 

 

 

 



 

 

vi 

 

List of Tables 

Table 2-1. Literature Review of GPS-Enhanced Travel Survey in the U.S. ................ 8 

Table 2-2. Comparisons among PCMDL data. ........................................................... 11 

Table 2-3. Literature Review on Travel Mode Imputation. ........................................ 14 

Table 3-1. Summary of the Two Datasets. ................................................................. 17 

Table 3-2. LBS Data Descriptive Statistics. ............................................................... 19 

Table 4-1. Features used in Travel Mode Imputation. ................................................ 33 

Table 5-1. Calibrated Parameters for Each Sample Rate. ........................................... 37 

Table 5-2. Trip End Identification Result. .................................................................. 38 

Table 5-3. Parameter Grid for Machine Learning Models ......................................... 39 

Table 5-4. Model Performance Comparison (F1 Score) ............................................. 41 

Table 5-5. Top 10 U.S. Airport Ranked by Passengers Boarded. .............................. 53 

 

 

 

 

 

 

 

 



 

 

vii 

 

List of Figures 

Figure 1-1. Thesis Outline. ........................................................................................... 6 

Figure 3-1. incenTrip Service Area. ........................................................................... 17 

Figure 3-2. Road Network: (a) national drive network; (b) Maryland drive network. 20 

Figure 3-3. Multimodal Transportation Network ....................................................... 21 

Figure 4-1. Methodological Framework ..................................................................... 23 

Figure 4-2. Illustration of a Person’s Trajectory. ........................................................ 24 

Figure 4-3. Illustration of DBSCAN Algorithm. ........................................................ 25 

Figure 4-4. Illustration of SMOTE. ............................................................................ 34 

Figure 5-1. Trip End Identification Result. ................................................................. 38 

Figure 5-2. Travel Mode Imputation Result with Five Travel Modes. ....................... 40 

Figure 5-3. Travel Mode Imputation Result with Four Travel Modes. ...................... 40 

Figure 5-4. RF Feature Importance Value for Five Travel Modes. ............................ 41 

Figure 5-5. RF Feature Importance Value for Four Travel Modes............................. 42 

Figure 5-6. Maryland Trip Distance Distribution for Short-Distance Trips. .............. 43 

Figure 5-7. Maryland Trip Distance Distribution for Long-Distance Trips. .............. 44 

Figure 5-8. Maryland Trip Time Distribution. ............................................................ 44 

Figure 5-9. Statewide Mode Shares. ........................................................................... 45 

Figure 5-10. CBSA-Level Mode Shares ..................................................................... 46 

Figure 5-11. 2007/2008 TPB-BMC HTS County-Level Mode Shares. ..................... 47 

Figure 5-12. Correlation between Estimated Mode Shares and 2007/08 TPB-BMC 

HHTS Mode Shares. ................................................................................................... 47 

Figure 5-13. NHTS County-Level Mode Shares (1). ................................................. 48 

Figure 5-14. NHTS County-Level Mode Shares (2). ................................................. 48 

Figure 5-15. NHTS County-Level Mode Shares (3). ................................................. 49 

Figure 5-16. Census Tract-Level Rail Mode Shares: (a) Washington D.C.; (b) 

Baltimore City. ............................................................................................................ 50 

Figure 5-17. Census Tract-Level Bus Mode Share Comparison. (a) Washington D.C.; 

(b) Baltimore City. ...................................................................................................... 50 

Figure 5-18. National Trip Distance Distribution for Short-Distance Trips. .............. 52 



 

 

viii 

 

Figure 5-19. National Trip Distance Distribution for Long-Distance Trips. .............. 52 

Figure 5-20. National Trip Time Distribution. ........................................................... 52 

Figure 5-21. Nationwide Air Trips by Origins Heat Map. ......................................... 54 

Figure 5-22. Nationwide Mode Shares. ...................................................................... 54 

Figure 5-23. State-Level Mode Shares (1). ................................................................. 55 

Figure 5-24. State-Level Mode Shares (2). ................................................................. 56 

Figure 5-25. State-Level Mode Shares (3). ................................................................. 56 

Figure 5-26. Correlation between Estimated Mode Shares and 2017 NHTS Mode 

Shares .......................................................................................................................... 56 

Figure 5-27. CBSA-Level Rail Mode Shares. ............................................................ 58 

Figure 5-28. CBSA-Level Bus Mode Shares. ............................................................. 58 

 

  



 

 

ix 

 

List of Abbreviations 

AADT   Annual Average Daily Traffic 

ANN   Artificial Neural Networks 

AWS   Amazon Web Service 

BMC   Baltimore Metropolitan Council 

BTS   Bureau of Transportation Statistics 

CASI   Computer-Assisted Self-Interview 

CATI   Computer-Assisted Telephone Interview 

CBSA   Core-based Statistical Area 

CDR   Call Detail Record 

DBSCAN  Density-based Spatial Clustering of Applications with Noise 

DNN   Deep Neural Networks 

DMV   Washington Metropolitan Area 

FHWA   Federal Highway Administration 

GPS   Global Positioning System 

HPMS   Highway Performance Monitoring System 

KNN   K-Nearest Neighbors 

LBS   Location-based Service 

MWCOG  Metropolitan Washington Council of Government 

NHTS   National Household Travel Survey 

NTM   National Transit Map 

OD   Origin and Destination 

PAPI   Paper-And-Pencil Interview 

PCMDL  Passively Collected Mobile Device Location 

SMOTE  Synthetic Minority Over-sampling Technique 

SVC   Support Vector Classifier 

SVM   Support Vector Machine 

TAZ   Traffic Analysis Zone 

TPB    Transportation Planning Board 

UMD   University of Maryland 

U.S.   the United States 

USDOE  the United States Department of Energy 

USDOT  the United States Department of Transportation 

XGB   eXtreme Gradient Boosting   

 

 



 

 

1 

 

1Chapter 1: Introduction 

1.1 Background 

Understanding travel behavior has always been one of the most important tasks in the 

realm of transportation planning. An accurate measurement of travel behavior can help 

governments and agencies understand how it evolves and better allocate resources in 

support of different transportation planning applications.  

Traditionally, researchers and practitioners design and conduct travel surveys to obtain 

household and individual travel behavior data, including trip origins and destinations, 

trip distance, trip time, trip purposes, travel modes, etc. Some of the most famous travel 

surveys conducted in the United States (U.S.) include the National Household Travel 

Survey (NHTS) [1], American Travel Survey [2], etc. However, traditional travel 

surveys require complex planning, design, large human labor and costs to obtain 

reasonable estimates from samples to the population level. For instance, the average 

cost of a travel survey is estimated at $487,000 implying about $9.7 million annually 

in the U.S. [3]. 

In the past two decades, along with the technology advancement in mobile sensors and 

mobile networks, passively collected mobile device location data, PCMDL data in 

abbreviate, has been growing drastically in terms of data coverage and data size. In the 

realm of transportation, the abundant personal movement information in the PCMDL 

data has great potentials to help researchers and practitioners understand the whole 

picture of human travel. Compared to traditional travel surveys, it has larger spatial, 
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temporal and population coverage while lack of ground truth, such as trip origins and 

destinations, trip purpose and travel modes. The missing information should be 

imputed using appropriate methods with additional data inputs to extract useful travel 

behavior data. In addition, though promising, the sources of PCMDL data can be 

various, including Global Positioning Service (GPS) devices, cellular network, 

Bluetooth, Wi-Fi, etc. The similarity and the difference between different PCMDL data 

sources are also one important thing that should be taken care of. 

1.2 Research Objective 

The objective of this study is to develop a methodological framework to obtain travel 

behavior information from the PCMDL data by identifying trips and imputing travel 

mode. The identified trips should include accurate trip origins and destinations, trip 

start time, and trip time information. The imputed travel modes should include 

multimodal travels, including drive, bus, rail and non-motorize travel modes. In order 

to fulfill the research objective, four tasks are identified as shown below: (1) evaluating 

the state-of-the-practice applications and the state-of-the-art methods based on 

PCMDL data and identifying the key research gap; (2) developing a suitable algorithm 

to extract accurate trip ends from the PCMDL data; (3) exploring what are the 

important features that can be used to impute travel modes based on PCMDL data and 

other publicly available information; (4) validating the travel mode imputation results 

using the traditional travel survey data and other publicly available data sources. 
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1.3 Research Contribution 

The main contribution of this study can be classified into three folds: (1) Uniqueness 

of the Data; (2) Methodology; (3) Comprehensive comparison process. 

1.3.1 Uniqueness of the Data 

This is the first study that utilizes three PCMDL datasets from different sources with 

various spatial and temporal coverages. The first PCMDL dataset is collected from one 

of the most advanced Mobility-as-a-Service (MaaS) mobile application, incenTrip. 

This dataset has travel behavior data with ground truth information including trip origin 

and destination, travel modes with user recall. The intermediate locations of the trip are 

also recorded. The second and the third PCMDL dataset is obtained from one of the 

leading PCMDL data vendors, covering Maryland and its peripheral with a temporal 

coverage of one day and the entire U.S. with a temporal coverage of seven days 

respectively. 

Apart from the PCMDL data, this study also utilized the public available multimodal 

transportation networks and stations information collected from the United States 

Department of Transportation (USDOT) Bureau of Transportation Statistics (BTS) 

National Transit Map (NTM) [4], which contains bus and rail  (metro included) 

networks and stations information. 

1.3.2 Methodology and Comparison 

This study examines the state-of-the-practice applications and state-of-art-methods on 

processing the PCMDL data. Based on the literature review result, a new framework is 
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proposed to process the PCMDL data from raw location points into trips with imputed 

travel modes. The proposed framework has two parts: the first part utilizes a 

Spatiotemporal Density-based Spatial Clustering of Applications with Noise (ST-

DBSCAN) algorithm to identify the activity locations with only PCMDL data 

information; the second part first construct features from the identified trips and 

examines the performance of various machine learning methods. The Random Forest 

(RF) algorithm is identified as the best method for travel mode imputation in terms of 

prediction accuracy, which has the capability to produce the best accuracy and prevents 

the overfitting problem. 

1.3.1 Application Potential 

The methodological framework proposed in this study is developed using a real-world 

dataset and applied on two other PCMDL datasets for case study purposes. The 

proposed framework is compared to be general at different geographies. The additional 

data used to support the proposed framework is publicly available and can be 

generalized to an even larger population. 

1.4 Research Approach and Outline 

The research approach of this study starts with a comprehensive literature review of the 

state-of-the-practice applications and the state-of-the-art methods about the PCMDL 

data. The key research gap is identified from the literature review. Then, three PCMDL 

datasets used in this study are introduced. With the datasets introduced, a 

methodological framework is proposed and applied to the datasets. The results are 

further compared with the travel surveys and other publicly available information. 
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The outline of this thesis is organized as shown in Figure 1-1. Chapter 2 first categorizes 

the PCMDL data into four categories by providing a comprehensive literature review 

about the state-of-the-practice applications using PCMDL data, and the state-of-the-art 

methodologies applied to the PCMDL data. Chapter 3 introduces the three PCMDL 

datasets used in this study, which includes one dataset from an active mobile 

application and two other datasets from one of the leading PCMDL data vendors in the 

world. The multimodal transportation network data and the travel survey data are also 

introduced. Chapter 4 demonstrates the proposed methodological framework to 

identify trip ends and impute travel modes from the PCMDL data. Several machine 

learning methods are briefly introduced. The feature construction process, model 

training, model selection and model applications are also included in this section. 

Chapter 5 first shows the calibration and comparison of the proposed methodological 

framework using the first PCMDL datasets with ground truth information. Then, two 

case studies further validate the framework using two PCMDL datasets. The detailed 

comparison process is also incorporated in this chapter. Finally, Chapter 6 summarizes 

the conclusion and suggests future research directions. 
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Figure 1-1. Thesis Outline. 
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2Chapter 2: Literature Review 

2.1 Passively Collected Mobile Device Location Data 

2.1.1 GPS-Enhanced Travel Survey Data with User Recall 

Travel survey serves as an important tool to obtain person-level or household-level 

travel behavior pattern, supporting both traditional four-step and activity-based travel 

demand model in the regional transportation planning process [5]. Traditional methods 

to conduct travel surveys usually require respondents to record their daily trips with 

original paper-and-pencil interview (PAPI), computer-assisted telephone interview 

(CATI), and computer-assisted-self-interview (CASI) [6,7]. However, these methods 

are prone to several well-known biases, such as under-reported trips, inaccurate travel 

times, and travel distances [8,9]. 

Since the late 1990s, with the commercialization of the Global Positional System 

(GPS), GPS data logger was also introduced to enhance the quality of travel surveys 

with personal longitudinal location data.  Table 1 summarized the location data-

enhanced travel surveys conducted in the U.S. At initial stages, the GPS data logger 

was installed in the vehicle and charged by the vehicle battery [10–18]. It records 

location data seconds by seconds when the vehicle is moving and would stop recording 

data when the vehicle is not moving, for example, if the vehicle speed falls below five 

miles per hour for a continuous period of thirty minutes or more [13].  This approach 

was proved to be effective, but it only captured respondents’ vehicle trips. Later on, the 

wearable GPS [19–22] further allowed respondents to carry within the bag such that 



 

 

8 

 

trips traveled by other non-vehicle travel modes could also be obtained. The drawback 

of the wearable GPS data logger was that it needed to be changed frequently. Some 

surveys utilized both in-vehicle and wearable GPS data loggers to take advantage of 

both devices [23–25]. 

Table 2-1. Literature Review of GPS-Enhanced Travel Survey in the U.S. 

Data Collection Methods Region Year 

In-Vehicle GPS Logger Lexington [10] 

California [11] 

Kansas City [12] 

Austin/San Antonio [13] 

Metropolitan Washington [14] 

Metropolitan Baltimore [14] 

Houston-Galveston [15] 

El Paso [16] 

Wichita Falls [17] 

Abilene [18] 

1997 

2001 

2004 

2006 

2007-08 

2007-08 

2008-09 

2010-11 

2010-11 

2010-11 

Wearable GPS Logger Minneapolis – St. Paul [19] 

Delaware Valley [20] 

New Mexico [21] 

Nevada [22] 

2010 

2012-13 

2013 

2014 

In-Vehicle and Wearable Combined Chicago [23] 

Atlanta [24] 

California [25] 

2007 

2011 

2010-12 

Smartphone Applications Puget Sound [26–28] 

Madison County [29] 

2014, 2015, 2017 

2015 

Nowadays, the advances of mobile device location data provide an alternative way to 

conduct travel surveys by using smartphones to passively collect respondent’s location 

data.  For instance, the most recent smartphone-enhanced travel surveys conducted in 

the United States enable the smartphone App running in the background to passively 

collect location data continuously with a fixed interval (usually 1 second) [26–29]. 

Also, in New Zealand, a smartphone-based system for personal travel survey was 

proposed and tested in real-world implementation [30]. This type of smartphone 

location data is usually generated by the location service providers not only using GPS, 
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but also Bluetooth (where those are available) along with crowd-sourced Wi-Fi hotspot 

and cell tower locations to determine the device’s approximate location.  

2.1.2 GPS Data with No User Recall 

Another type of GPS data is also passively collected but without any user recall. This 

type of data is widely collected with the in-vehicle GPS device for both passenger 

vehicles and trucks. For instance, INRIX Traffic [31] as a data provider collects GPS 

probe data from commercial vehicle fleets, connected vehicles and mobile apps. The 

data is further aggregated into link or corridor level to provide a real-time estimation 

of traffic speed and travel time [32-34]. 

2.1.3 Cellular Data 

Two types of data are included in the cellular data: Call Detail Record (CDR) and 

sightings. Call Detail Record (CDR) data is generated when a phone communicates 

with the cell tower in the cellular network, for instance when a phone call or text 

message is made by the phone. The location information of CDR data is the cell tower 

locations thus it fully depends on the density of the cellular network and does not reflect 

the actual location of the device [35]. Another type of cellular data is called sightings, 

where the location information is calculated via triangular calculation with several cell 

towers [35]. Both types of cellular data has been widely used in studying human 

mobility patterns in the past two decades [36-38]. 
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2.1.3 Location-based Service Data 

Similar to cellular data, the Location-based Service (LBS) data is generated when a 

smartphone updates the App periodically with the best location accuracy, based on the 

currently-available location providers such as Wi-Fi, Bluetooth, cellular tower and GPS 

[35,39]. The LBS data can reflect the exact location of the device and thus providing 

invaluable location information that describes depict person-level mobility pattern. 

Also, in most cases, the LBS data has a higher spatial precision and sample rate than 

the CDR data [35-40].  

The most recent research proposed a “Divide, Conquer and Integrate” (DCI) 

framework to process the LBS data to extract mobility patterns in the Puget Sound 

region, and the result was aggregated at census tract-level and compared with 

household travel survey [40]. The DCI framework was also applied to another LBS 

dataset in Texas to analyze the impact of hurricane Harvey on travel patterns [41]. 

In the industry, many location-intelligence companies have started to deliver products 

using the LBS data. For instance, StreetLight Data Inc. produced the Annual Average 

Daily Traffic (AADT) estimates, Bike and pedestrian analysis, etc. with the large-scale 

LBS data for the entire United States purchased from the data vendors [42]; AirSage 

leveraged LBS data to develop a traffic platform that can estimate traffic flow, speed, 

congestion and road user sociodemographic for every road and time of day [43]. 
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2.1.4 Summary of PCMDL Data 

In summary, these four types of PCMDL data are different in terms of spatial coverage, 

temporal coverage, population coverage, sample rate. Table 2-2 summarize the overall 

comparisons between these four types of PCMDL data.  

 

Table 2-2. Comparisons among PCMDL data. 

Data 
Spatial 

Coverage 

Temporal 

Coverage 

Population 

Coverage 
Sample Rate 

GPS Data with User Recall Low Low Low High 

GPS Data with No User Recall Medium High Low High 

Cellular Data High High High Low 

LBS Data High High High Low 

 

The GPS data with user recall, which is usually collected for travel survey purposes, 

has the highest sample rate (usually 1 second) that provides second-to-second 

trajectories with respondents’ confirmed ground truth information. However, the 

limitation is that the travel surveys usually sample a small percentage of respondents 

in small regions with a short survey period, resulting in low spatial, temporal and 

population coverage. Thus, this type of data cannot reflect population-level travel 

behavior. Additional weighting processes need to be combined to provide a statistically 

reasonable result. 

The GPS data with no user recall usually has the same level of sample rate as the GPS 

data with user recall. Though with low population coverage, the spatial coverage and 

temporal coverage is improved. 
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The sample rate of cellular data and LBS data are solely based on mobile device users’ 

frequency on using either telecommunication or location-based services. However, 

since a large proportion of the population owns a mobile device, cellular data and LBS 

data have significantly higher spatial, temporal and population coverage over the other 

types of data, while the ground truth information is missing. 

2.2 Extracting Trips from Passively Collected Mobile Device Location Data: State of 

Art Methodologies 

2.2.1 Trip End Identification 

The trip end identification algorithm for GPS data with high frequency has been well-

developed and used in practical application. To obtain accurate trip ends, the traditional 

way is the rule-based trip end identification methods. This type of method designs rules 

and parameters. The trip ends are obtained by applying the rules to location data point 

by point and at the same time examining the intra-relationship between several 

consecutive location points. Though proven to be effective, the rule-based methods 

highly rely on the design of the rule and the corresponding rule-based parameters. Most 

rules are complexly designed and the physical meanings behind is hard to interpret. 

Also, the parameters used in these rules are mostly defined by domain knowledge, such 

as dwell time, speed, etc. [6, 44-54]. In recent years, some researchers also leveraged 

the supervised machine learning method as a supplement to the rule-based methods, 

which classified each location point as static or moving [55-57]. However, the 

complexity of designing the rule and the un-interpretable result problems still exist. 
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Different clustering methods were also applied to obtain trip ends by identifying 

people’s potential activity places from the location data [58-61]. The most recent one 

in the literature utilized the Spatio-temporal clustering method with three combined 

optimization models to detect trip ends [61]. In their study, the respondents were still 

asked to record the trip starts and trip ends in the smartphone application. Moreover, 

the proposed trip end identification method still largely relied on the speed attribute, 

which could not always be available or observed accurately due to the heterogeneity of 

different types of smartphones.  

In recent years, there’s also a special focus on deriving the trip ends from LBS data. In 

[40], a Divide, Conquer and Integrate (DCI) framework was proposed to process the 

LBS data to extract mobility patterns in the Puget Sound region. The proposed 

framework combined a rule-based method and incremental clustering method to handle 

the bi-modal distributed LBS data. 

2.2.2 Travel Mode Imputation 

Travel mode imputation can be categorized into mainly two approaches: (1) trip-based 

approach; and (2) segment-based approach. The trip-based approach is based on the 

already identified trip ends, where each trip has only one travel mode to be imputed. 

The segment-based approach separates the trip into a fixed-length segment (time or 

distance) and then impute the travel mode for each segment. Then the segment with the 

same travel mode will be further merged to form a single-mode trip. This study 

considers the trip-based approach mainly. Table 2-3 summarizes some typical methods 

for travel mode imputation using the trip-based approach. 
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Table 2-3. Literature Review on Travel Mode Imputation. 

Authors 
Sample 

Rate 
Model Features Modes Accuracy 

Gong et al. 

[52] 
/ Rules 

Speed, Acceleration, 

Transit Stations, 

Transit Network 

D,T,Bu,W,S, 82.6% 

Stenneth et 

al. [62] 
30 s RF 

Speed, Acceleration, 

Heading change,  

Bus location, Transit 

Network  

D,Bu,Tr,Bi,W,St 93.7% 

Bruunauer 

et al. [63] 
1-10 s MLP 

Speed, Acceleration, 

Bendiness 
D,Bu,Tr,Bi,W 92% 

Xiao et al 

[64]  
1s BN 

Speed, Acceleration, 

Trip Distance 
D,Bu,W,Bi,Eb 92% 

Broach et 

al [65] 
4s MNL Speed, Acceleration  D,T,W,Bi 96% 

Shafique 

and Hato. 

[66] 

0.1s RF Resultant acceleration D,Bu,W,Bi,Tr,S 99.8% 

Wang et 

al. [67] 
1s RF 

Speed, Acceleration, 

Orientation, 

Distance/Duration, 

Sociodemographic 

D,Bu,W,Bi,Eb 93.1% 

* D: Drive; Bu: Bus; Tr: Train; W: Walk; Bi: Bike; S: Subway; Eb: Electric-Bike; St: 

Stationary; RF: Random forest; MLP: Multilayer perceptron; BN: Bayesian network; MNL: 

Multinomial logit model. 

It can be observed that some typical features used are speed (average, minimum, 

maximum, and quantiles), acceleration (average, minimum, maximum, and quantiles) 

[52,62-67]. Specifically, when the sample rate is higher than 10 seconds, the speed and 

acceleration features are more important to separate between different travel modes, 

which can be imputed solely by the data itself. However, as mentioned in [62], the 

higher the sample rate, the more battery the mobile device will need to consume. To 

maintain the same level of imputation accuracy and at the same time reduce battery 

consumption, additional features are added such as real-time transit information [62], 

multimodal transportation network [52,62], sociodemographic information [67] etc. 
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2.3 Research Gap 

Both the state-of-the-practice applications and the state-of-the-art methodologies can 

accurately identify trip ends and impute travel modes based on high sample rate GPS 

data with ground truth information. However, these methods have neither been applied 

nor compared on the emerging PCMDL datasets, LBS data in particular.  

Also from the state-of-the-practice application side, though location-intelligence 

companies like StreetLight Data [42] and AirSage [43] have developed multimodal 

transportation analysis products based on LBS data, their trip ends and travel mode 

imputation results have never been compared yet. 

The key research gap identified from the literature review indicates that few studies 

have focused on developing methods and comparison processes for extracting travel 

behavior data from LBS data. This study aims to fill this gap by proposing a 

methodological framework that developed based on GPS data and then applying it on 

two large-scale LBS datasets. A comparison process is also included in the framework 

to comprehensively validate the result against the travel surveys. 
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3Chapter 3: Data 

3.1 GPS Data with User Recall: incenTrip Mobile Application 

3.1.1 incenTrip Introduction 

incenTrip (incentrip.org), was developed by National Transportation Center (NTC) at 

the University of Maryland (UMD) for the "Integrated, Personalized, Real-time 

Traveler Information and Incentive" (iPretii) project, funded by U.S. Department of 

Energy’s (DOE) Advanced Research Projects Agency-Energy (ARPA-E). The 

incenTrip application was officially launched on Aug 28th, 2019 with the initial support 

of the Metropolitan Washington Council of Government (MWCOG). Since then, 

incenTrip has been incentivizing users for taking transit, multimodal or non-motorized 

travel modes. The corresponding trip data with travel mode imputed and confirmed by 

users is collected in order to provide corresponding incentives to nudge behavior 

changes. 

The incenTrip application would obtain location data from Google Maps API with a 

pre-defined sample rate and store the data in the Amazon Web Services (AWS) with 

privacy protection. The proposed framework in this study would then be applied to 

identify each user’s trips from the raw location data and then update the identified trips 

back into the database. Last, the application would show the trips for each user on the 

mobile application page and let users recall and confirm the trips and travel modes they 

made before.  
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The service area of incenTrip covers the entire Washington Metropolitan Area (DMV) 

and the Baltimore Metropolitan Council Area (BMC), as shown in Figure 3-1. This 

service area covers all kinds of daily travel modes, including metro lines, light rail lines, 

commuter rail lines (MARC), numerous bus lines and capital bike share stations. 

 
Figure 3-1. incenTrip Service Area. 

 

3.1.2 Data Description 

Two datasets from incenTrip are collected to calibrate and validate the proposed trip 

end identification algorithm and travel mode imputation model respectively. Table 3-1 

summarizes the two datasets. 

Table 3-1. Summary of the Two Datasets. 

Sample Rate  Duration Number of Reported Trips by Travel Mode 

(moving / not moving)  Drive Bus Rail Bike Walk 

Dataset One used for Trip End Identification 

    1s / 1s 03/13 - 03/15 12 3 6 0 2 

    2s / 5s 02/21 - 04/29 427 123 84 9 72 

    5s / 10s 04/13 - 05/02 116 192 76 20 37 

    5s / 30s 05/03 - 05/16 55 101 64 40 21 

    15s / 30s 05/21 - 06/12 95 130 85 16 2 

Total 705 550 315 85 134 

Dataset Two used for Travel Mode Imputation 

/ 6,064 1,403 1,824 1,496 1,901 
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The first dataset was collected from March to June 2019, when fifteen testers were 

hired to install the test version of incenTrip application, most of them being graduate 

students and faculties from the University of Maryland. For each week, each tester was 

assigned to an area to travel with different travel modes. At the same time, all of them 

were required to record detailed information for each trip, including the start date, start 

time, end date, end time, origin street address, destination street address, travel time 

and travel mode. Five phases of testing were conducted with different sample rates. At 

the beginning of each phase, testers were asked to install a new version of the incenTrip 

application with the new sample rate. The major consideration of setting different 

sample rates was to reduce the impact of the smartphone application on smartphone 

battery draining speed and at the same time ensure all the travel information was 

collected. We also tested sample rate including both lower and higher than five seconds. 

It should be noted that for the 1s/1s sample rate, only two testers were involved for two 

days since the battery consumption was too large. 

The second dataset was collected from March 2019 to January 2020, including the first 

dataset. The trips with the travel modes confirmed by users are extracted from the AWS 

database. For trips with correctly imputed travel mode, the corresponding data are 

directly extracted. For trips with wrongly imputed travel modes, the corresponding data 

are extracted and labeled with the users’ corrected travel mode label. This dataset does 

not divide trips into different sample rates (most of the trips have a sample rate of 

15s/30s) since the sample rate is an important feature that is stochastic in the LBS data.  
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3.2 Location-based Service Data 

The LBS data is obtained from one of the leading data vendors in the U.S, including 

the whole year of 2017, 2018. The real-time data is also available upon requests.  

In this study, two small LBS datasets are sampled with different spatial, temporal and 

population coverages. Table 3-2 summarizes the descriptive statistics of these two 

datasets. Dataset A covers the entire state of Maryland, Washington D.C. and part of 

northern Virginia. It has a temporal coverage of one day on September 12nd in 2017, 

including 474,634 devices. Dataset B covers the entire U.S. It has a temporal coverage 

of seven days from August 1st to August 7th in 2017. 1% of the total number of devices 

observed is sampled via random draw and used for this study, including 266,149 

devices. 

 

Table 3-2. LBS Data Descriptive Statistics. 

Dataset 
Spatial 

Coverage 
Temporal Coverage 

Sample 

Rate 

Number of 

Device 

A 
Maryland and it's 

peripheral 
1 day ~100% 474,634 

B the United States 7 days ~3% 266,149 

 

The major consideration of selection of these two datasets is the computing time. For 

dataset A, it has small temporal-spatial and temporal coverage while capturing 100% 

devices that observed in the region. For dataset B, since the spatial coverage is 

expanded to the entire U.S. and the temporal coverage is expanded to 7 days, to reduce 

the total computing time, only 3% of the device observed in the U.S. over 7 days are 

captured to have a comparable data size with dataset A. 
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3.3 Multimodal Transportation Network Data 

This study also collects the multimodal transportation network data including drive, 

bus, rail networks and bus stop locations in order to construct features that will be fed 

into the travel mode imputation models. 

Two different drive networks are collected. The first network is collected from 

Highway Performance Monitoring System (HPMS) [68] that covers the entire U.S. 

including national freeway and arterial road networks. The second network is collected 

from HERE [69], a mapping and location data and related service provider, including 

all types of roads in the state of Maryland and its peripherals. Figure 3-2 illustrates the 

road networks.  

  

(a)                                                                   (b) 

Figure 3-2. Road Network: (a) national drive network; (b) Maryland drive network. 

 

The national bus and rail network, and the bus stops data are collected from the United 

States Department of Transportation (USDOT) Bureau of Transportation Statistics 

(BTS) National Transit Map (NTM) [4]. Figure 3-3 shows the multimodal networks.  
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Figure 3-3. Multimodal Transportation Network  

*Green represents rail network, blue represents bus network 

3.4 2017 National Household Travel Survey 

The National Household Travel Survey (NHTS) [1] is a national-level travel survey 

conducted by USDOT Federal Highway Administration (FHWA), collecting travel 

behavior data by U.S. residents in all 50 states and District of Columbia, including trip 

origin and destinations, trip time, trip purposes (work, school, other) and travel modes 

(private vehicle, public transportation, pedestrian and cycling).  

The 2017 NHTS required that every household member age 16 and older complete a 

retrieval interview for the household to be considered complete, finally with a total 

number of 129,696 household data collected. The survey sample data is used to develop 

household, person, trip and vehicle weights separately in order to produce the 

population-level travel statistics [70]. 

In this study, the trip distance and trip time distribution from the 2017 NHTS are used 

to validate the trip end identification results from the two LBS dataset. The imputed 
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mode shares at different geographic levels are also compared to the mode share from 

2017 NHTS. 

3.5 2007/2008 TPB-BMC Household Travel Survey 

The 2007/2008 TPB-BMC Household Travel Survey (HHTS) is conducted by the 

Transportation Planning Board (TPB) in Baltimore and Washington regions from 

February 2007 to March 2008 using the same survey designs [71,72]. This survey 

covered nearly 14,000 households and can provide mode share information at Traffic 

Analysis Zone (TAZ) level. In this study, the mode shares for nine counties aggregated 

from TPB-BMC HHTS are used to validate the imputed mode shares from the second 

LBS dataset. 
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4Chapter 4: Methodology 

4.1 Methodological Framework 

The proposed methodological framework of this study is shown in Figure 4-1, 

including two major parts: model development and model application. In the model 

development part, firstly, the first dataset collected from the incenTrip application is 

used to calibrate and validate the trip end identification algorithm. Then the second 

dataset collected from the incenTrip application is used to train and validate the travel 

mode imputation model. 

Then, before the model applications, the similarity and difference between the 

incenTrip data and the LBS data is discussed in order to relax the constraints of the 

developed models. After that in the model application part, the relaxed models are 

directly applied to the two LBS datasets as mentioned in previous sections and the 

results are compared against the travel surveys 

 

Figure 4-1. Methodological Framework 
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4.2 Trip End Identification 

4.2.1 Potential Activity Location Identification 

Considering a person’s daily trajectory, it’s very common that he or she makes multiple 

stops at different places each day. In this study, as illustrated in Figure 4-2, the stops 

were categorized into two categories, namely Activity Stop (AS) and Non-Activity 

Stop (NAS). AS represents a stop where an actual activity takes place, such as home, 

workplace, restaurant, shopping mall, etc. NAS represents a stop where no activity 

takes place or the activity takes a very short amount of time, usually including stopping 

at a traffic light, picking up people within a short range of time, etc. In this study, only 

ASs were considered as actual trip ends and the trajectory between two consecutive 

ASs were considered as an actual trip. 

 

 

Figure 4-2. Illustration of a Person’s Trajectory. 
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To identify all potential ASs, a Spatiotemporal Density-based Spatial Clustering of 

Applications with Noise (ST-DBSCAN) [73] was applied to fit the data. The original 

ST-DBSCAN is an extended version of the traditional DBSCAN algorithm [74] with 

consideration of both spatial and temporal constraints, as illustrated in Figure 4-3. The 

temporal constraint was able to handle the scenario when a person stays at the same 

place multiple times per day, such as going out for lunch and return to the office, going 

back home, etc. Below shows a short description of the ST-DBSCAN algorithm, 

detailed information can be found in [73,74] 

 

Figure 4-3. Illustration of DBSCAN Algorithm. 

 

Definition 1 (Clustering). Given a database of n data objects 
1 2{ , ,..., }nD o o o= . 

The process of partitioning D into 
1 2{ , ,..., }kC C C C=  the base on a certain similarity 

measure is called clustering, Ci’s are called clusters, where 

1 1, ( 1,2,..., ), and .k k

i i i i iC D i k C C D= = = =  =  

Definition 2 (Neighborhood). It is determined by a distance function (e.g., 

Manhattan Distance, Euclidean Distance) for two points p and q, denoted by dist( , )p q . 

Definition 3 (Eps-neighborhood). The Eps-neighborhood of a point p is defined 

by { | dist( , ) Eps}q D p q  . 
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Definition 4 (Core object). A core object refers to such a point that its 

neighborhood of a given radius (Eps) has to contain at least a minimum number 

(MinPts) of other points. 

Definition 5 (Directly density-reachable). An object p is directly density-

reachable from the object q if p is within Eps-neighborhood of q, and q is a core object. 

Definition 6 (Density-reachable). An object p is density-reachable from the 

object q with respect to Eps and MinPts if a chain of object 1 1,..., ,np p p q=  and 

np q= such that 1ip +  is directly density-reachable from pi with respect to Eps and 

MinPts, for 1 , ii n p D   . 

Definition 7 (Density-connected). An object p is density-connected from the 

object q with respect to Eps and MinPts if an object o D  such that both p and q are 

density-reachable from o with respect to Eps and MinPts. 

Definition 8 (Density-based cluster). A cluster C is a non-empty subset of D 

satisfying the following “maximality” and “connectivity” requirements: 

∀ p,q: if q ∈ C and p is density-reachable from q with respect to Eps and MinPts,  

then p ∈ C 

∀ p,q ∈ C: p is density-connected to q with respect to Eps and MinPts.  

Definition 9 (Border object). An object p is a border project if it is not a core 

object but density reachable from another core object. 



 

 

27 

 

Definition 10 (Noise). An object p is a border project if it is not a core object 

but density reachable from another core object. 

Three thresholds are demonstrated for the ST-DBSCAN used in this study: (1) the 

spatial threshold s represents the distance falling within the activity distance range, 

calculated from a geographic distance; (2) the temporal threshold t represents the 

minimum duration of an activity, defined by a given value. (3) the minimum neighbor’s 

m threshold represents the density of the location points. After all the potential ASs 

were identified, we considered that a trip end is the first stopped point of a cluster and 

a trip start is the point immediately following the last stopped point of a cluster [52]. 

Thus, all the location points between a trip start and trip end can be labeled as waypoints 

of a trip. 

4.2.2 Activity Locations Extraction and Non-Activity Locations Elimination 

With all potential trips identified, the second step was to distinguish between ASs and 

NASs. Two parameters were proposed, s_act: maximum activity distance range and 

t_act: minimum activity duration threshold of an activity. The s_act parameter roughly 

demonstrated the maximum distance range where an activity takes place. If the distance 

between two consecutive clusters stayed within s_act, it implies that these two clusters 

still belong to the same activity, and the location points fell within these two clusters 

would be labeled as activities, otherwise a trip will be generated. The t_act parameter 

defines the minimum duration for an activity. If the minimum time lag between two 

consecutive clusters is shorter than t_act, it implies no activity happens, which can 
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happen at traffic lights, traffic congestions, stop by, pick up, etc, otherwise an activity 

would be identified between the two clusters.  

4.2.3 Non-Activity Adjustment 

According to the field observations, the current technology enables the smartphone to 

automatically reduce the background activity when it is not active to save the battery, 

i.e. iPhone, One Plus. Therefore, when people go sleep at night, the sample rate would 

drop to a few minutes or hours until the person moves again. Therefore, an adjustment 

factor for the low sample rate at night, t_gap, was proposed. The t_gap checked the 

time gap between two consecutive location points within each trip. 

4.3 Travel Mode Imputation with Machine Learning Algorithms 

4.3.1 Overview of Machine Learning Algorithms 

The objective of the travel mode imputation of this study is to identify drive, rail, bus, 

bike and walk travel modes. The air travel mode is not considered in this study, but it 

can be simply identified with heuristic rule using speed and time constraints. This study 

uses machine learning methods to impute travel modes with the feature generated from 

PCMDL data. Several machine learning methods will be examined in terms of 

prediction accuracy, including K-Nearest Neighbors (KNN), Support Vector Classifier 

(SVC), eXtreme Gradient Boosting (XGB), Random Forest (RF), and Deep Neural 

Network (DNN). 
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 4.3.1.1 K-Nearest Neighbors 

K-Nearest Neighbors (KNN) is one of the earliest and simplest classification methods 

[75]. The main idea of KNN is to find top k nearest samples of target sample based on 

distance measurement. The distance between two samples is usually calculated based 

on Euclidean distance: 

d(xi,xj)= √(xi1-xj1)
2
+(xi2-xj2)

2
+(xi3-xj3)

2
+⋯+(xip-xjp)

2
 

where 𝑥𝑖 represents the sample with p features. Then the target sample will be classified 

as the majority class of these k neighbors. The key parameters in KNN are the k value 

and the distance measurement. 

 4.3.1.2 Support Vector Classifier 

Support Vector Classifier (SVC) was developed by Cortes and Vapnik in the 1990s 

[76]. Numerous extensions of SVC were proposed and applied in the area of face 

recognition, pattern recognition, etc [77-79]. SVC can address the non-linearly 

separable samples by using the kernel function to map the data into a higher dimension, 

thus finding a hyperplane that best divides the data into different classes. Some 

examples of the kernel functions include polynomial, Gaussian, Gaussian radial basis 

function (RBF) and sigmoid, the equations of which are shown below: 

Polynomial: K(xi,xj)=(xi∙xj+1)
p
 

Gaussian: K(xi,xj)=e
(-

‖xi-xj‖

2σ2
)
 

Gaussian radial basis: K(xi,xj)=e
(-γ‖xi-xj‖

2
)
, γ>0 
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Sigmoid: K(xi,xj)=tanh(kxi
Txj+c), k>0 and c>0 

where 𝑥𝑖 represents the ith feature of the input features, p represents the degree of the 

polynomial, 𝜎 represents the standard deviation of the Gaussian distribution. 

 4.3.1.3 Extreme Gradient Boosting 

Extreme Gradient Boosting (XGB) is one of the most recent ensemble-learning 

algorithms using the boosting technique [80,81]. The main idea of boosting is to train 

a set of weak classifiers using the same samples and then combine them into one strong 

classifier to improve the classification accuracy, where new classifiers are added to 

reduce errors based on previous models until no further improvements can be made 

[82,83]. 

 4.3.1.4 Random Forest 

Random Forest (RF) is one of the most famous ensemble-learning algorithms using the 

bagging technique [84,85]. Bagging (Bootstrap aggregating) is a machine learning 

technique that tends to improve the stability and accuracy of machine learning 

algorithms [85]. It generated multiple training sets by sampling from the data uniformly 

and with replacement. RF not only employs the bagging technique, but also used a 

modified tree learning algorithm that selects a random subset of the features without 

using all features, which is called feature bagging [84]. In short, RF is essentially a 

collection of decision trees [86] and each decision tree is trained with the different 

training sets and different features. The classification result follows the majority vote 

of all the decision trees in the forest.  
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 4.3.1.5 Deep Neural Network 

Deep Neural Network (DNN) is an Artificial Neural Network (ANN) with multiple 

layers between the input and output layers [87,88]. DNN can model the complex non-

linear relationship between the input and the output by updating the weight vertices 

connecting each virtual neural between layers through back-propagation [89]. Detailed 

methodology of DNN and ANN can be found in [87,88]. Compared to an ANN, DNN 

can capture more complex non-linear relationships by adding more hidden layers. 

However, the neural network structure of a DNN needs to be designed efficiently and 

it also suffers from overfitting and computation time issues. 

4.3.2 Feature Set Construction 

Feature set construction directly affects the model performance. Before constructing 

the features, the air travel mode is filtered out using a rule-based method since it’s easy 

to distinguish from the other travel modes. In this study, three thresholds are used to 

filter out the air trips from all the trips identified: average speed, trip time and trip 

distance. Here the 100 mph, 1 hour and 100 miles are selected as the value of these 

thresholds, indicating that for a trip, if the average speed exceeds 100 mph, the trip time 

is larger than 1 hour and the trip distance exceeds 100 miles, then this trip is considered 

as an air trip. 

In this study, the features are constructed using the information derived from each trip 

and impute the travel mode using the trip-based approach, including three categories 

of features as shown in Table 4-1: sample rate feature, trip feature, and multimodal 

transportation network features. Though more features can be incorporated into the 
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feature set, it might not be computationally expensive to implement on the large-scale 

LBS dataset. 

The main idea of having the sample rate feature is that most LBS data’s sample rate is 

random since it is generated when smartphone users use the location-based services. 

Here the average number of records per minute is used to represent this randomness. 

The trip features describe the characteristics including the trip distance, origin-

destination distance, trip time, average speed, minimum speed, maximum speed, 

median speed, and 5/25/75/95 percentile speed. Though acceleration related 

information is proved to be effective in literature [61-67], it is not considered in this 

study. The main reason is that the acceleration can be calculated with high-frequency 

data, while the frequency PCMDL data, LBS data, in particular, ranges from one 

second to minutes or even hours. Under this consideration, it might result in biased 

estimation in terms of acceleration.  

The multimodal transportation network features are also considered as the import 

features to distinguish between different travel modes [52,62]. Here, a 10-meter buffer 

is generated using the multimodal transportation networks (bus, rail and drive) in order 

to obtain the percentage of records for each trip that fell within the networks 

respectively. To enhance the bus mode imputation results, a 50-meter buffer for the bus 

stops is also generated to check the percentage of records for each trip that fell within 

the bus stops. 
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Table 4-1. Features used in Travel Mode Imputation. 

Features  Unit 

Sample Rate Feature 

      Average # of records per minutes number / minute 

Trip Features 

      Trip distance meters 

      Origin-Destination distance meters 

      Trip time minutes 

      Average speed meters 

      Minimum speed meters 

      Maximum speed meters 

      Median speed meters 

      5-percentile speed meters 

      25-percentile speed meters 

      75-percentile speed meters 

      95-percentile speed meters 

Multimodal Transportation Network Features 

      % of records fell within 10 meters of the rail network percentage 

      % of records fell within 10 meters of the bus network percentage 

      % of records fell within 10 meters of drive network percentage  

      % of records fell within 50 meters of bus stops percentage 

 

4.3.3 Synthetic Minority Over-sampling Technique 

In order to balance the travel mode classes in the training dataset, the Synthetic 

Minority Over-sampling Technique (SMOTE) is used to address the imbalanced 

dataset via synthesizing the minority class from the existing samples [90].  

Figure 4-4 illustrates the basic idea of SMOTE. The synthetic sample is generated with 

the following steps: first, for each sample in each minority class, the distance to all the 

other sample in the same minority class is calculated in order to obtain its k nearest 

neighbors; then, a sample multiplier N is defined based on the imbalance ratio. For each 

minority sample x, randomly select samples from its k nearest neighbors xn; finally, 

generate the new sample with the equation as follows: 

xnew = x + rand(0,1) − |x-xn| 
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Figure 4-4. Illustration of SMOTE. 

 

4.4 Model Relaxation  

The aforementioned methods will be calibrated and compared using the two incenTrip 

datasets as shown in the following section. However, as mentioned in the literature, the 

sample rate is different between GPS data with user recall and LBS data. Therefore, 

the method developed based on the incenTrip data cannot be directly applied to the 

LBS data. Here this study relaxes the model constraints in order to enable the model to 

be applicable to the LBS data. 

For the trip end identification part, two of the six parameters are changed in order to 

take the low sample rate problem of LBS into account. The temporal threshold t will 

be increased and the minimum neighbor’s m will be decreased to capture more clusters 

in the LBS data. 

For the travel mode imputation part, the multimodal transportation network features 

are relaxed, where the 10-meter network buffer is expanded to 50-meter network buffer 

to cover the sparse LBS data. 
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5Chapter 5:  Results 

This chapter shows the model development and model application results with the 

proposed framework. Firstly, the model development part uses the first incenTrip 

application dataset to validate the trip end identification. Then, the second incenTrip 

dataset is used to train the travel mode imputation methods with machine learning 

methods. The performance of the models is examined. Then the proposed framework 

is relaxed and applied to two LBS datasets to validate against travel surveys. The trip 

distance and trip time distribution are used as criteria to validate the trip end 

identification results. The mode share at different geographic levels are used for travel 

mode imputation results comparison. 

5.1 Model Development using incenTrip Application Data 

5.1.1 Trip End Identification Parameter Calibration and Result 

As introduced in the previous section, the proposed framework is capable of different 

sample rates. In the case study, the trace segmentation purpose was set to include short 

activities, such as waiting for transferring at a metro station, waiting for the bus at a 

bus stop etc..  

To satisfy the trace segmentation purpose and at the same time conform to each sample 

rate, five parameters were calibrated, including the spatial threshold s, temporal 

threshold t, minimum neighbors n, maximum distance threshold for an activity s_act 

and minimum duration of an activity t_act. The adjustment factor t_gap was fixed at 

300 s since it’s only used for very few irregular data. s determines the distance range 
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of a stop, thus increasing the value of s would yield more identified stop since more 

location points would be involved in the clusters. To ensure all the stops were captured 

including traffic congestion and waiting at the traffic light for both vehicle and 

pedestrian, four constraints were added as shown below: 

1t n f   

2_t act n f   

_s act s  

2 /n f s v   

where v is the average walking speed, here we consider 1 m/s; f1 is sample rate when 

not moving; f2 is the sample rate when moving. Consider the real-world scenario when 

a person stops, it is intuitively to set the s value to be relatively small. With domain 

knowledge, here we use 25-meter, 50-meter and 100-meter as the candidate s value. 

Also, the t_act was set as 300 seconds to obtain most of the short activities. Then, with 

the given sample rate, the corresponding range for other parameters could be 

calculated. For each sample rate, two testers were selected to calibrate the parameters. 

The two testers have different daily mobility patterns, with one typical driver and the 

other one a typical public transportation user. Different combinations of the parameters 

were applied to these two testers to measuring the difference between reported trips 

and identified trips. 

Table 5-1 shows the calibrated parameters used in the case study for each sample rate. 

The proposed framework was further applied to all data collected during the testing 

period. Similar to the conclusion in [8,9], even the testers were required to record their 

trip diary correctly, highly-biased trip start time and trip end time and under-reported 
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trips problems were observed frequently when compared to each tester’s trip diary. To 

reduce the noise and validate the proposed framework, therefore, three people’s data 

with the best data consistency and recorded travel time was selected by comparing the 

trip diaries and identified trips with the visual check on the GIS platform. Then, testers 

were asked to re-confirm both their reported trips and underreported trips identified 

from the location data. It should be noted that for the 1s/1s sample rate, only two 

person’s data were available due to the short testing period, thus only 23 reported trips 

are included here. 

Table 5-1. Calibrated Parameters for Each Sample Rate. 

Sample Rate s (m) t (s) m s_act (m) t_act (s) t_gap (s) 

1s/1s 50 100 50 100 300 300 

2s/5s 50 200 25 100 300 300 

5s/10s 50 200 15 100 300 300 

5s/30s 50 500 15 100 300 300 

15s/30s 50 600 10 100 300 300 

 

Figure 5-1 and Table 5-2 show the trip end identification result. For each sample rate, 

the proposed framework was able to capture over 90% of the reported trips, with the 

overall hit-ratio for all sample rate is 94.5%. In addition, the proposed framework was 

also able to identify the underreported trips from the raw data. It can be observed that 

for each sample rate, about 15% to 35% of the trips were not reported by the 

respondents. Identifying these underreported trips help produce a more detailed 

mobility pattern and trip chain of each respondent. 
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Figure 5-1. Trip End Identification Result. 

 

Table 5-2. Trip End Identification Result. 

Sample rate Reported Trips Matched Trip All Identified Trips Hit-Ratio 

1s/1s 23 21 32 91.30% 

2s/5s 199 190 229 95.50% 

5s/10s 188 181 261 96.30% 

5s/30s 162 153 246 94.40% 

15s/30s 258 239 321 92.60% 

Total 830 784 1089 94.50% 

 

5.1.2 Travel Mode Imputation Result 

The dataset two mentioned in section 3.1 is used to train the travel mode Imputation 

using KNN, SVC, XGB, RF and DNN respectively. 70% of the data is used for training 

and 30% of the data is used for testing. The SMOTE is then applied to the training data 

in order to address the imbalanced sample problem. For each machine learning method, 

a parameter grid is created to conduct a random search among different parameter 

combinations to fine-tune the models. Table 5-3 shows the parameters tuned in this 

study. For DNN, a simple structure is used to train the model. 
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Table 5-3. Parameter Grid for Machine Learning Models 

Model Parameter Grid 

KNN 

k: [1,5,10,20,30,40,50] 

weights: [‘uniform’,’distance’] 

algorithm: [‘ball_tree’,’kd_tree’,’brute’] 

leaf_size: [1,10,30,50,100] 

p: [1,2,3,4] 

SVC 

Cs: [0.001,0.01,0.1,1,10,100] 

gammas: [0.001,0.01,0.1,1] 

class_weight: [‘None’,’balanced’] 

XGB 

colsample_bytree: U(0.7,0.3) 

gamma: U(0,0.5) 

learning_rate: U(0.03,0.3) 

max_depth: [2,3,4,5,6] 

n_estimators: [100-150] 

subsample: U(0.6,0.4) 

RF 

n_estimators: [100-1000] 

max_features: [‘auto’,’sqrt’] 

max_depth: [10,110] 

min_samples_split: [2,5,10,15,20] 

min_samples_leaf: [1,2,4,6,8] 

bootstrap: [‘True’,’False’] 

class_weight: [‘None’,’balanced’,’balanced_subsample’] 

DNN activation function: [‘ReLU’] 

* U represents uniform distribution. 

During the model training process, 10-fold cross-comparison is used to evaluate the 

model performance. In this study we used the F1 score to evaluate the model 

performance, which is calculated as shown below: 

F1=2∙
Precision∙Recall

Precision+Recall
 

Precision=
TP

TP+FP
 

Recall=
TP

TP+FN
 

where TP represents the true positive, FP represents false positive, and FN represents 

false negative. 
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Figure 5-2, Figure 5-3 and Table 5-3 compare model performances using the F1 score. 

Among all the tested machine learning methods, RF achieved the highest F1 score 

across all travel modes in both four and five modes models. The bus mode has the least 

prediction accuracy among the modes, mainly because the drive trips and bus trips are 

similar to each other. Detailed confusion matrixes are listed in Appendix A. 

 
Figure 5-2. Travel Mode Imputation Result with Five Travel Modes. 

 
Figure 5-3. Travel Mode Imputation Result with Four Travel Modes. 
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Table 5-4. Model Performance Comparison (F1 Score) 

  KNN SVC XGB RF DNN 

Four 

Modes 

Drive 0.81 0.83 0.89 0.90 0.81 

Rail 0.89 0.93 0.95 0.95 0.91 

Bus 0.49 0.55 0.67 0.68 0.57 

Bike 0.56 0.73 0.79 0.81 0.71 

Walk 0.73 0.84 0.89 0.89 0.85 

Five 

Modes 

Drive 0.81 0.84 0.89 0.90 0.84 

Rail 0.89 0.93 0.94 0.96 0.92 

Bus 0.48 0.56 0.67 0.67 0.57 

NonMotor 0.74 0.87 0.90 0.90 0.87 

 

Figure 5-4 and Figure 5-5 shows the feature importance value of the RF model for five 

and four travel modes respectively. The feature importance value (Gini importance) is 

automatically calculated using the python package sklearn, representing each 

importance as the sum over the number of splits across all trees. It can be seen that the 

speed variables (95 quantile speed, maximum speed and average speed) are the most 

important. Also, the percentage of records which fell within 10 meters of the rail 

network is also significantly important since it is a representative feature for imputing 

rail trips. 

 
Figure 5-4. RF Feature Importance Value for Five Travel Modes. 
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Figure 5-5. RF Feature Importance Value for Four Travel Modes 

 

5.2 Case Study One: Application on Maryland Location-based Service Data Sample 

In case study one, the models developed from the incenTrip application data are relaxed 

as described in section 4.4 and applied on the Maryland LBS dataset. Based on the 

15s/30s sample rate from the incenTrip data, three model relaxations are made: (1) the 

temporal threshold is relaxed from 600 seconds to 1800 seconds; (2) the minimum 

neighbors is relaxed from 10 to 5; (3) the three multimodal transportation network 

buffer (drive, rail, and bus) is relaxed from 10 meters to 50 meters. The trip distance 

and trip time distribution are compared against the 2017 NHTS results in for all trips 

originated from Maryland and Washington D.C. The mode share is first compared at a 

statewide level using the 2017 NHTS mode share in Maryland and Washington D.C. 

Then it is also compared against the 2007/08 BMC-TPB HHTS at the county level. The 

NHTS mode share results at the county-level is also used as a supplement comparison 

source for mode share. A visual comparison is provided at the census tract level. 
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5.2.1 Trip Distance and Trip Time Distribution Comparison 

According to USDOT BTS [4], the trips can be divided into short-distance trips and 

long-distance trips using the 50 miles threshold. Thus, the trip distance distribution for 

the LBS data is compared for both short-distance (<50 miles) and long-distance (≥50 

miles) trips. It should be noted that the 2017 NHTS uses Google API to calculate the 

distance for each trip, which underestimates the trip distance [1]. At the same time, 

trips extracted from the LBS data use the great circle distance accumulated from 

consecutive location points within each trip, thus also underestimating the trip distance.  

Figure 5-6 and Figure 5-7 show the short-distance and long-distance distribution 

comparison between NHTS results and LBS data results respectively. For both short-

distance and long-distance trips. For short-distance trips, the trip distance distribution 

is similar between NHTS results and LBS data results. For long-distance trips, the LBS 

result shows more long-distance trips than the survey. 

  

Figure 5-6. Maryland Trip Distance Distribution for Short-Distance Trips. 
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Figure 5-7. Maryland Trip Distance Distribution for Long-Distance Trips. 

 

Figure 5-8 shows the trip time distribution comparison. The overall trend is similar, 

while the LBS data underestimates trips around 10 minutes and overestimates long 

trips. This can mainly be attributed to the stochastic sample rate problem of LBS data.  

 
Figure 5-8. Maryland Trip Time Distribution. 
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5.2.2 Statewide Mode Share Comparison 

Figure 5-9 shows the statewide mode share comparison result. The overall mode share 

distribution is also consistent with the 2017 NHTS mode share. The drive and rail mode 

shares are perfectly matched with the 2017 NHTS. The bus mode share estimated from 

the LBS data is relatively low, which might also be the reason for the incomplete bus 

network. The non-motorized mode share is slightly higher. 

 
Figure 5-9. Statewide Mode Shares. 

5.2.3 CBSA-Level Mode Share Comparison 

The CBSA-level mode share is also compared against the 2017 NHTS more shares. 

Two CBSAs fall within Maryland and Washington D.C. are examined: Baltimore 

Metropolitan Council (BMC) and Washington Metropolitan Area (DMV). The trips 

originated from these two CBSAs are extracted and to obtain the mode shares from the 

2017 NHTS. 

Figure 5-10 illustrates the comparison results. The overall mode shares estimated from 

the LBS data for these two CBSAs show similar trends compared to 2017 NHTS. For 

BMC, the drive and rail mode share match perfectly, while the bus travel is 
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underestimated and the non-motorized travel is overestimated. For DMV, both rail and 

bus trips are underestimated. 

 
Figure 5-10. CBSA-Level Mode Shares 

 

5.2.4 County-Level Mode Share Comparison 

The mode shares are further compared at the county-level with two travel surveys. The 

first travel survey is the 2007/08 TPB-BMC HHTS that covers Anne Arundel County, 

Baltimore County, Baltimore City, Carroll County, Harford County, Howard County, 

Montgomery County, Prince George’s County and Washington D.C. Figure 5-11 

shows the comparison results. For Washington D.C., the rail mode share estimated 

from the LBS data is lower than the survey and the others are matched perfectly. For 

the other eight counties, the bus mode share estimated from LBS data is lower, and the 

non-motorized mode share is higher. Figure 5-12 shows the correlation between the 

estimated mode shares and the survey mode shares. It can be seen that there is a high 

correlation observed between our estimates and ground truth. However, it should be 

noted that the 2007/08 TPB-BMC HHTS was conducted over ten years ago and the 

travel patterns might have changed greatly. 
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Figure 5-11. 2007/2008 TPB-BMC HTS County-Level Mode Shares. 

 
Figure 5-12. Correlation between Estimated Mode Shares and 2007/08 TPB-BMC 

HHTS Mode Shares. 

The estimated mode shares are also compared to the 2017 NHTS mode shares using 

the trips originated from every county in Maryland and Washington D.C. The 2017 

NHTS mode shares might better reflect the recent travel patterns while for some 

counties it might suffer from the biased estimation because of small samples. Figure 5-

13, Figure 5-14 and Figure 5-15 show the comparison results. It can be observed that 

for some counties, the NHTS mode shares are biased which cannot be used for 
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comparison, such as Charles County and Kent County. The bus travel is underestimated 

over most areas except for Washington D.C. For Washington D.C., the bus and rail 

mode shares match perfectly. The high drive mode share might because lots of drive 

trips originated from Washington D.C. and ended out of Washington D.C. are observed 

that might not be taken into account in the survey. 

 
Figure 5-13. NHTS County-Level Mode Shares (1). 

 

 
Figure 5-14. NHTS County-Level Mode Shares (2). 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

NHTS LBS

Data

NHTS LBS

Data

NHTS LBS

Data

NHTS LBS

Data

NHTS LBS

Data

NHTS LBS

Data

NHTS LBS

Data

NHTS LBS

Data

Allegany Anne Arundel Baltimore Baltimore

City

Calvert Caroline Carroll Cecil

Drive Rail Bus NonMotor

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

NHTS LBS

Data

NHTS LBS

Data

NHTS LBS

Data

NHTS LBS

Data

NHTS LBS

Data

NHTS LBS

Data

NHTS LBS

Data

NHTS LBS

Data

Charles Dorchester Frederick Garrett Harford Howard Kent Montgomery

Drive Rail Bus NonMotor



 

 

49 

 

 
Figure 5-15. NHTS County-Level Mode Shares (3). 

 

 

5.2.5 Census Tract-Level Mode Share Comparison 

Since the estimated mode share at census tract-level is not available from any data 

sources, the census tract-level rail and bus mode shares estimated from the LBS data 

are also plotted for illustration purposes, as shown in Figure 5-16 and Figure 5-17. The 

figures are plotted using the Jenks natural breaks optimization [91] and the depth of 

color represents the magnitude of the value regarding mode shares.  
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(a)                                                                   (b) 

Figure 5-16. Census Tract-Level Rail Mode Shares: (a) Washington D.C.; (b) 

Baltimore City. 

  

(a)                                                                   (b) 

Figure 5-17. Census Tract-Level Bus Mode Share Comparison. (a) Washington D.C.; 

(b) Baltimore City. 

For both Washington D.C. and Baltimore city, the mode share distribution of census 

tracts is highly correlated with the geographical distribution of rail and bus networks. 

In other words, the values of rail and bus mode shares of census tracts highly depend 

on closeness to the rail and bus network. Also, since Washington D.C. has denser rail 

and bus networks, the relative mode shares are higher than Baltimore City. 
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5.3 Case Study Two: Application on the United States National Location-based 

Service Data Sample 

In case study two, the exactly same models with relaxations used in case study one is 

applied to the National LBS dataset. The trip distance and trip time distribution are 

compared against the 2017 NHTS results. The mode share is also compared against the 

2017 NHTS mode shares at a nationwide and state level. A visual comparison is 

provided at the Core-based Statistical Area (CBSA) level. 

5.3.1 Trip Distance and Trip Time Distribution Comparison 

Figure 5-17 and Figure 5-18 show the trip distance distribution comparison between 

NHTS result and LBS data result for short-distance and long-distance trips, 

respectively. For both short-distance and long-distance trips, the overall trip distance 

distribution is similar between NHTS results and LBS data results. For short-distance 

trips, trips shorter than 5 miles are underestimated and trips longer than 10 miles are 

overestimated. For long-distance trips, trips under 100 miles are underestimated and 

the others are overestimated.  

Figure 5-20 shows the trip time distribution comparison. The overall trend is similar. 

The short trips are underestimated and the long trips are overestimated. The main 

reason for this result is because the stochastic sample rate of the LBS data which 

produces inaccurate trip time. 
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Figure 5-18. National Trip Distance Distribution for Short-Distance Trips. 

 

Figure 5-19. National Trip Distance Distribution for Long-Distance Trips. 

 

Figure 5-20. National Trip Time Distribution. 
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However, since biases also exist in NHTS, the trip distance and trip time distribution 

results from the LBS data are not supposed to perfectly match with the NHTS results. 

The overall trends should be similar while differences are acceptable since the 

population level ground truth information is not available. 

5.3.2 Nationwide Mode Share Comparison  

The air trips are firstly filtered out using the rule-based method as mentioned in the 

previous chapter. The result is compared to the top airport ranked by passengers 

boarded summarized by USDOT BTS [4], the top 10 of which are shown in Table 5-5. 

Figure 5-21 shows the heat map of all identified air trip origins, where the depth of the 

color represents the number of air trips originated from the closest airport. It can be 

observed that all the major airports are captured. 

Table 5-5. Top 10 U.S. Airport Ranked by Passengers Boarded. 

Rank Airport City Rank Airport City 

1 ATL Atlanta 6 JFK New York 

2 LAX Los Angeles 7 SFO San Francisco 

3 ORD Chicago 8 SEA Seattle 

4 DFW Dallas 9 LAS Las Vegas 

5 DEN Denver 10 MCO Orlando 
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Figure 5-21. Nationwide Air Trips by Origins Heat Map. 

 

Figure 5-22 shows the nationwide mode share comparison results. The overall mode 

share distribution is consistent with the 2017 NHTS mode share. The bus mode share 

estimated from the LBS data is relatively low, which might be the reason for the 

incomplete bus network. The non-motorized mode share is higher. 

 

Figure 5-22. Nationwide Mode Shares. 
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5.3.3 State-Level Mode Share Comparison  

Figure 5-23, Figure 5-24 and Figure 5-25 show the state-level mode share comparison 

for 50 states and Washington D.C. in the United States. The overall mode share across 

the U.S. is reasonable, with a slight underestimation of bus travel and overestimation 

of the non-motorized travel. The underestimation of bus travel might due to the 

incomplete national bus network. For non-motorized travel, since respondents tend to 

underreport short trips [8,9], which are most likely to be short walking and biking trips 

that can be detected from the LBS data, the result from LBS might reflect the real world 

more precisely. 

In addition, the mode share estimated in Washington D.C. perfectly matches the survey 

compared to other states with relatively bus and rail mode share (IL, MA and NY). This 

might because the travel mode imputation model is trained using the data collected in 

the same region. Figure 5-26 shows the correlation between the estimated mode shares 

and the survey mode shares. It can be seen that there is a high correlation observed 

between our estimates and ground truth. 

 
Figure 5-23. State-Level Mode Shares (1). 
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Figure 5-24. State-Level Mode Shares (2). 

 

Figure 5-25. State-Level Mode Shares (3). 

 

Figure 5-26. Correlation between Estimated Mode Shares and 2017 NHTS Mode 

Shares 
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5.3.4 CBSA-Level Mode Share Comparison  

Since the estimated mode shares at CBSA level are biased due to limited sample, the 

CBSA-Level rail and bus mode shares estimated from the LBS data are also plotted for 

illustration purposes, as shown in Figure 5-27 and Figure 5-28. The figures are also 

plotted using the Jenks natural breaks optimization [91], where each class-s average 

deviation from the class mean is minimized and each class’s deviation from the means 

of the other groups is maximized. The depth of color represents the magnitude of the 

value regarding mode shares.  

Since the travel mode imputation algorithm is developed based on multimodal 

transportation networks, the imputation results for rail and bus travel modes are highly 

rely on the density of the rail and bus networks. For rail mode share, it can be observed 

that some typical CBSAs with well-developed rail or metro networks, such as 

Washington D.C., New York, Boston, San Francisco and Portland have obvious higher 

rail mode shares than the other CBSAs. For bus mode share, a similar trend is observed 

too where CBSAs with denser bus networks have higher bus mode shares. 
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Figure 5-27. CBSA-Level Rail Mode Shares. 

 

Figure 5-28. CBSA-Level Bus Mode Shares. 
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6Chapter 6:  Conclusion and Discussion 

6.1 Conclusion 

This study examines the state-of-the-practice applications and state-of-art-methods on 

processing the PCMDL data. Based on the literature review, the key research gap is 

identified, and a methodological framework is proposed to process the PCMDL data 

from raw location data to trips with imputed travel modes.  

Firstly, a Spatiotemporal Density-based Spatial Clustering of Applications with Noise 

(ST-DBSCAN) is proposed to identify the activity locations with only PCMDL data 

information. Then, a novel feature construction process with multimodal transportation 

network information is proposed to provide inputs for the travel mode imputation 

models. Several machine learning methods are applied to impute travel modes 

examined including KNN, SVC, XGB, RF and DNN. 

The framework is calibrated and compared using GPS data with user recall collected 

from the incenTrip application. With ground truth information, the ST-DBSCAN 

algorithm reaches 95% accuracy in identifying trips for different sample rates. The 

mode imputation results show that the Random Forest algorithm is the best model with 

an overall 93% accuracy to identify five travel modes, including drive, bus, rail, bike 

and walk. 

The difference and similarity between the GPS data with user recall and LBS data are 

discussed to relax the models and then apply to two large-scale LBS datasets, covering 

the entire U.S. and the state of Maryland. For the U.S. dataset, the nationwide trip 
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distance and trip time distribution are compared against the 2017 NHTS. The mode 

shares are also compared against 2017 NHTS at a nationwide and state level. For the 

Maryland dataset, the statewide trip distance and trip time distribution is compared 

against the 2017 NHTS. And the mode share is compared against 2007/08 TPB-BMC 

HHTS at the county-level. The results from both the surveys and the LBS data share 

similar trends in terms of trip distance and trip time distributions, and mode shares. 

6.2 Discussion and Future Research Directions 

The limitation of this study is that the proposed methodological framework is built 

upon a GPS data with user recall collected in a small region. In reality, travel behavior 

is largely affected by geographic locations and regional transportation systems (public 

transit, road network etc.).  Even though the comparison results for trip distance, trip 

time and mode shares have similar trends in comparison to the travel survey, the 

heterogeneity of travel behavior at different regions is not taken into account.  

Apart from the training data, the features used for imputing travel modes highly rely 

on the multimodal transportation networks, bus trips in particular. For future research, 

more multimodal transportation network information can be incorporated, such as 

metro stations, Amtrak stations, and intercity bus stations. With more detailed 

information about multimodal travels, the travel mode imputation model can be 

potentially improved. Also, for the regions without a well-archived bus network, the 

bus trips can barely imputed. To decrease the dependency of transit networks, 

additional information such as using acceleration, stop time can be introduced. 
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In the two case studies, the mode shares are estimated using a small sample of LBS 

data, which might not be able to represent the population level travel behavior. In 

addition, the LBS data underrepresents the older, younger and low-income population, 

the results are not able to accurately capture the travel behaviors of the aforementioned 

population. To address these two problems, additional weighting and comparison 

process can be done on top of the sample results using land use, sociodemographic 

information. 
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Appendix A: Travel Mode Imputation Confusion Matrix 

Table A-1. K-Nearest Neighbors Five Modes Confusion Matrix 
 

Rail Bus Bike Walk Drive Recall F1-Score 

Rail 496 6 13 31 12 0.889 0.887 

Bus 9 238 48 30 73 0.598 0.486 

Bike 9 83 269 63 52 0.565 0.558 

Walk 20 30 36 459 28 0.801 0.731 

Drive 26 225 123 99 1329 0.738 0.806 

Precision 0.886 0.409 0.550 0.673 0.890   

Table A-2. Support Vector Classifier Five Modes Confusion Matrix 
 

Rail Bus Bike Walk Drive Recall F1-Score 

Rail 524 3 11 8 12 0.939 0.931 

Bus 6 288 27 23 54 0.724 0.555 

Bike 7 45 346 52 26 0.727 0.728 

Walk 1 16 22 518 16 0.904 0.844 

Drive 30 288 69 54 1361 0.755 0.832 

Precision 0.923 0.450 0.728 0.791 0.926   

Table A-3. XGBoost Five Modes Confusion Matrix 
 

Rail Bus Bike Walk Drive Recall F1-Score 

Rail 537 2 4 3 12 0.962 0.947 

Bus 7 279 21 11 80 0.701 0.668 

Bike 5 19 367 41 44 0.771 0.792 

Walk 6 7 14 520 26 0.908 0.887 

Drive 21 130 45 24 1582 0.878 0.892 

Precision 0.932 0.638 0.814 0.868 0.907   

Table A-4. Random Forest Five Modes Confusion Matrix 
 

Rail Bus Bike Walk Drive Recall F1-Score 

Rail 537 1 3 5 12 0.962 0.940 

Bus 7 273 20 12 86 0.686 0.682 

Bike 8 13 370 46 39 0.777 0.806 

Walk 6 6 11 526 24 0.918 0.881 

Drive 26 110 38 32 1596 0.886 0.897 

Precision 0.929 0.677 0.837 0.847 0.908 
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Table A-5. Deep Neural Network Five Modes Confusion Matrix 
 

Rail Bus Bike Walk Drive Recall F1-Score 

Rail 471 15 21 3 48 0.844 0.880 

Bus 6 328 13 10 41 0.824 0.522 

Bike 4 59 353 36 24 0.742 0.749 

Walk 4 25 22 508 14 0.887 0.858 

Drive 27 432 57 54 1232 0.684 0.780 

Precision 0.920 0.382 0.758 0.831 0.907   

Table A-6. K-Nearest Neighbors Classifier Four Modes Confusion Matrix 
 

Rail Bus NonMotor Drive Recall F1-Score 

Rail 502 8 35 13 0.900 0.890 

Bus 9 251 59 79 0.631 0.479 

NonMotor 34 148 781 86 0.745 0.742 

Drive 25 243 182 1352 0.750 0.812 

Precision 0.881 0.386 0.739 0.884   

Table A-7. Support Vector Classifier Four Modes Confusion Matrix 
 

Rail Bus NonMoto

r 

Drive Recall F1-Score 

Rail 528 3 14 13 0.946 0.932 

Bus 6 304 34 54 0.764 0.562 

NonMotor 11 76 919 43 0.876 0.869 

Drive 30 301 98 1373 0.762 0.836 

Precision 0.918 0.444 0.863 0.926   

Table A-8. XGBoost Classifier Four Mode Confusion Matrix 
 

Rail Bus NonMotor Drive Recall F1-Score 

Rail 535 0 9 14 0.959 0.944 

Bus 7 281 21 89 0.706 0.672 

NonMotor 9 29 938 73 0.894 0.902 

Drive 25 128 63 1586 0.880 0.890 

Precision 0.929 0.642 0.910 0.900   

Table A-9. Random Forest Four Modes Confusion Matrix 
 

Rail Bus NonMotor Drive Recall F1-Score 

Rail 188 0 3 2 0.974 0.964 

Bus 1 88 11 25 0.704 0.667 

NonMotor 2 10 328 25 0.899 0.900 

Drive 6 41 22 517 0.882 0.895 

Precision 0.954 0.633 0.901 0.909   
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Table A-10. Deep Neural Network Four Modes Confusion Matrix 
 

Rail Bus NonMotor Drive Recall F1-Score 

Rail 515 11 11 21 92.29% 0.936 

Bus 4 320 49 25 80.40% 0.524 

NonMotor 7 52 947 43 90.28% 0.872 

Drive 16 441 115 1230 68.26% 0.788 

Precision 0.950 0.388 0.844 0.933   
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