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The B cell receptor (BCR) serves as both signal-transducer and antigen-transporter.  

Binding of antigens to the BCR induces signaling cascades and antigen-processing and 

presentation, two essential cellular events for B cell activation.  BCR-initiated signaling 

increases BCR-mediated antigen-processing efficiency by increasing the rate and 

specificity of antigen transport.  Previous studies showed a critical role for the actin 

cytoskeleton in these two processes.  Here I found that actin-binding protein 1 

(Abp1/HIP-55/SH3P7) functioned as an actin-binding adaptor protein, coupling BCR 

signaling and antigen-processing pathways with the actin cytoskeleton.   Gene knockout 

of Abp1 and over-expression of the SH3 domain of Abp1 inhibited BCR-mediated 

antigen internalization, consequently reducing the rate of antigen transport to processing 

compartments and the efficiency of BCR-mediated antigen-processing and presentation.  

BCR activation induced tyrosine phosphorylation of Abp1 and translocation of both 



Abp1 and dynamin 2 from the cytoplasm to the plasma membrane, where they 

colocalized with the BCR and cortical F-actin. The inhibitory effect of a dynamin PRD 

deletion mutant on the recruitment of Abp1 to the plasma membrane and the 

internalization of the BCR, co-immunoprecipitation of dynamin with Abp1, and co-

precipitation of Abp1 with GST fusion of the dynamin PRD, demonstrate the interaction 

of Abp1 with dynamin 2. In addition to its role in antigen transport and processing, Abp1 

is also important for BCR signal transduction. Splenic B cells from Abp1 knockout mice 

and A20 B cell line with Abp1 knockdown displayed higher levels of protein tyrosine 

phosphorylation after BCR crosslinking when compared with wild type mice.  BCR-

triggered ERK phosphorylation in Abp1-deficient splenic B cells occurred sooner and for 

a much shorter duration than the wild type B cells, while both Abp1 knockout and 

knockdown significantly reduced BCR-induced phosphorylation of JNK. These results 

demonstrate that the BCR regulates the function of Abp1 by inducing Abp1 

phosphorylation and actin cytoskeleton rearrangement, and that Abp1 facilitates BCR-

mediated antigen-processing by simultaneously interacting with dynamin and the actin 

cytoskeleton. My results further suggest a negative regulatory role for Abp1 in BCR 

signal transduction. 
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Chapter 1: Introduction 

1.1 Humoral immunity 

Our body defends us against microorganisms using two major types of immunity, an 

early, innate immunity that recognizes a limited set of molecular patterns on the surfaces 

of microbes and a later, more specific adaptive immunity (1). The adaptive immunity can 

be further subdivided into two main types, humoral immunity and cell-mediated 

immunity. Cell-mediated or cellular immunity is mediated by T cells, while humoral 

immunity is mediated by B cells. The B cell produces a protein complex called antibodies 

(immunoglobulin) in secreted and membrane-bound forms.  Antibodies are the primary 

effectors of humoral immunity.  An antibody is a complex made up of two identical light 

chains and two identical heavy chains. At the N-terminal region of both the heavy and 

light chain of antibodies the amino acid sequences of antibodies have a high degree of 

variation.  This region, termed the variable region, is responsible for conferring on the 

antibody its ability to bind to billions of molecules that the body might encounter during 

the course of its lifetime (2-5). Secreted antibodies reside in most of the body fluids and 

they can bind to microorganisms and foreign antigens, neutralizing their toxicity, 

targeting them for destruction by other arms of the immune system. Antibodies also exist 

in a membrane-bound form on the surface of the B cell. Here, they are termed B cell 

antigen receptors (BCR). The BCR also has the capability to recognize and bind to 

foreign antigens. Binding of antigens to the BCR leads to a series of signaling cascades 

that activate the B cells. These signals also facilitate the rapid internalization of the 

antigen to compartments within the B cell for processing into peptides and later presented 
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to T cells on structures called major histocompatibility complex class II (MIIC) 

Presentation to T cells enables the B cell to receive additional signals that allow the B cell 

to participate more effectively in adapting the immune response to the offending antigen.  

 

1.2 BCR Signaling 

The BCR is a multi-subunit protein complex composed of a membrane immunoglobulin 

(mIg), which associates non-covalently with the Igα/Igβ heterodimer (Fig. 1.1).  The 

membrane-bound Ig on the cell surface is responsible for antigen binding, while the 

Igα/Igβ propagates intracellular signals (6).  The mIg portion of the BCR is made up of 

two light chains and two heavy chains, thus creating two antigen binding sites. The Igα 

and Igβ each contain one immunoreceptor tyrosine-based activation motif (ITAM) in 

their cytoplasmic tails, providing the BCR with signal transduction capabilities (7).  Each 

ITAM has two copies of the amino acid sequence YXXφ (D/E XX-YXXφ-X6-8-YXXφ), 

where Y is a tyrosine, X is any amino acid, and φ is a bulky hydrophobic amino acid (8). 

The recognition of antigens with repeated epitopes by multiple, individual molecules of 

BCR, causes these receptors to aggregate, leading to the activation of signaling cascades 

that are mediated by the Igα/Igβ complex. BCR crosslinking by antigen leads to a rapid 

translocation of the BCR to cholesterol-rich lipid rafts where it interacts with signaling 

proteins (9). In lipid rafts, the ITAMs of the BCR are phosphorylated by the Src-family 

kinases, Lyn, Fyn or Blk, which are either constitutively associated or become associated 

with lipid rafts upon stimulation (9). The phosphorylated ITAMs serve as docking sites 

for the tyrosine kinase (TK) Syk and adaptor proteins, such as  B-cell linker protein 

(BLNK) (10), Shc (11), Grb2 (12), and Gab (13).  The binding of Syk and adaptor 
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proteins to the phosphorylated ITAMs of the BCR recruits them to the BCR surface 

signaling microdomain in the lipid rafts and activates Syk kinase activity (Syk belongs to 

a group of TKs which have Src homology 2 (SH2) domains). BCR–induced activation of 

Lyn and Syk is required for the activation of Burtons tyrosine kinase (Btk), a Tec family 

protein tyrosine kinase (14). Btk and Syk work in concert for optimal phospholipase C 

gamma (PLC γ) activation (14, 15). Btk activation is also dependent on the 

phosphoinositide 3 kinase (PI-3K)-induced production of phosphatidylinositol 3,4,5-

trisphosphate (PIP3) from phosphatidylinositol 4,5-bisphosphate (PIP2) (16).  PI-3K is 

itself activated by recruitment to the CD19 co-receptor during BCR signaling (17). The 

binding of PH (Pleckstrin Homology) domain of Btk to PIP3 enables Btk recruitment to 

the BCR surface signaling microdomain where it is phosphorylated by Lyn. Failure in 

binding PIP3 due to mutations in the PH domain of Btk leads to defects in Btk activation 

and abnormalities in BCR signaling, consequently resulting in humoral immune 

deficiency (18).   Adaptor protein BLNK (B cell linker protein) is phosphorylated by Syk, 

and This phosphorylation generates docking motifs for SH2-containing proteins like Vav, 

Grb2 and PLC γ2 (10). BLNK, in concert with Btk, activates PLC γ2.  PLC γ cleaves 

phosphatidylinositol bisphosphate (PIP2) to diacylglycerol (DAG) and inositol 

trisphosphate (IP3).  IP3 triggers the release of calcium from the endoplasmic reticulum, 

and increases calcium influx.  DAG in concert with calcium activates protein kinase C 

which, in turn, activates nuclear factor kappa B (NF-κB) by phosphorylating the Inhibitor 

of κB Kinase (IΚK) (19) .  Calcium also activates calcineurin which, in turn, activates 

nuclear factor of activation of T cells (NFAT). NF-κB and NFAT are transcription factors 

that play major roles in B-cell activation (20). Upon activation through BLNK, Vav and 
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Grb2/SOS (guanine exchange factors) activate Rho and Ras family GTPases, 

respectively. Activated Ras initiates the Raf/MEKK pathway which results in the 

eventual activation of MAP kinase ERK (21) while activation of Rho-family GTPase Rac 

leads to activation of MAP kinases JNK and P38 (22-25).  The eventual goal of these 

kinases is to phosphorylate a number of transcription factors that regulate expression of 

genes involved in cell survival and proliferation. ERK is responsible for phosphorylating 

Elk-1 and c-myc (26), JNK phosphorylates c-Jun and activating transcription factor 2 

(ATF-2) (24), while P38 phosphorylates ATF-2  (27).   

 

There is a group of molecules that exerts regulatory roles on BCR signaling. Notable 

among these are CD45 and C-terminal Src tyrosine kinase (Csk). CD45 is a phosphatase 

that prevents hyperphosphorylation of Lyn at its inhibitory tyrosine residue (Y508), 

which represses the kinase (28). Csk on the other hand exerts a seemingly opposite effect. 

It is a kinase that phosphorylates this same tyrosine, inhibiting Lyn activation (29). CD45 

is partitioned away from the lipid raft signaling microdomains formed after BCR 

crosslinking, thus effectively shielding it from acting on Lyn (30), which is located 

within the lipid rafts. In addition, Lyn plays both a positive and negative role in BCR 

signaling. The resting B cells from Lyn-deficient mice have a hyperphosphorylated status 

when compared to B cells from normal mice, and Lyn-deficient mice have increased 

levels of autoantibodies. Lyn generates its inhibitory effect on B-cell signaling by 

phosphorylating Fc gamma receptor IIB (FcγRIIB) and CD22 on their ITIMs 

(Immunoreceptor tyrosine based inhibitory motifs). When FcγRIIB and BCR are co-

ligated by antibody-antigen complexes, the ITIMs of FcγRIIB are phosphorylated by 
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Lyn, which enables them to recruit a phosphatase called SHIP (SH2-containing inositol 

5` phosphatase (31).  SHIP is able to block PIP3 production by hydrolyzing it to PIP2 

subsequently inhibiting BCR signaling and B cell activation (32). 

1.3 BCR-mediated antigen processing and presentation 

When B cells encounter antigens in the body, the antigens are likely to be present in low 

concentrations, and the number of B cells specific for each antigen is limited.  

Fortunately, the BCR has adapted to overcome this problem by increasing its rate of 

internalization once it encounters an antigen that is able to crosslink to multiple BCRs.  

BCR endocytosis occurs primarily by clathrin-mediated endocytosis (CME) (33), 

although it may be mediated by other forms of endocytosis such as macropinocytosis. In 

the absence of antigens, the BCR is constitutively internalized into early endosomes and a 

large fraction recycles back to the cell surface (8). Following the crosslinking of the BCR 

with its cognate antigen, signaling cascades lead to an increase in the internalization rate 

of the BCR.  BCR crosslinking also efficiently targets the BCR to the late endosomes 

(34).   Additionally, crosslinking induces a reorganization of the actin cytoskeleton, 

which is required for the internalization and movement of the BCR into specialized late 

endosomal compartments (35).  In the late endosome, the internalized antigens are 

fragmented into peptides by proteases that are activated by the acidic environment of the 

endosomes. The resulting peptides are loaded on to major histocompatibility complex 

(MHC) class II molecules for presentation of the complex at the surface of B cells (35).  

The recognition by T cells of MHC class II-presented antigen on the B-cell surface
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FIGURE 1.1. Structure of the BCR complex 

BCR complex is composed of a membrane-bound immunoglobulin that is responsible for 

antigen binding and an Igα/Igβ heterodimer that is responsible for signal propagation. 

Membrane immunoglobulin is non-covalently associated with the Igα/Igβ heterodimer.  

The Igα/Igβ heterodimer contains ITAMs whose tyrosine is phosphorylated following 

BCR crosslinking.  

ITAM
Immunoreceptor 
Tyrosine-based 
Activation 
Motif

Heavy chain

Light chain

Igα/Igβ heterodimer

Antigen binding site
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initiates a T cell-dependent antibody response.   

 

1.4 The role of signaling in the intracellular trafficking of the BCR  

Recent evidence has shown that the signaling and antigen processing functions of the 

BCR may be linked.  While the BCR internalizes constitutively at a low rate, BCR 

crosslinking by multivalent antigens leads to a rapid internalization of the BCR and 

accelerates the transport of the BCR to the MIIC (36). This antigen-induced BCR 

internalization has been shown to be dependent on BCR-triggered signaling cascades. 

Tyrosine kinase inhibitors that block BCR-induced signaling inhibit antigen-induced 

BCR internalization (37). In addition, the Src kinase Lyn, which is activated following 

BCR crosslinking, was also found to be required for BCR internalization (38).  A study 

from our lab, in collaboration with Dr. Francis Brodsky, showed that crosslinking the 

BCR induces the recruitment of clathrin to the plasma membrane and BCR-containing 

vesicles, and the Src-kinase inhibitor PP2 blocks this recruitment (33).  The 

phosphorylation of clathrin in lipid rafts by Src-kinases following BCR crosslinking is 

required for BCR internalization, which was demonstrated by inhibition of clathrin 

phosphorylation and BCR internalization by the disruption of lipid rafts.  Our lab 

previously showed that low valency antigens induce a rapid internalization of the BCR 

and a transient protein tyrosine phosphorylation.  However, high valency antigens reduce 

BCR internalization, extend the residency of the BCR on the cell surface, and increase 

the level of BCR signaling (34).  These results show that BCR signals and BCR 

endocytosis regulate each other.   
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The intracellular trafficking of the BCR seems to also be regulated by BCR signaling. 

Prior to BCR crosslinking, the BCR constitutively traffics to the early endosomes from 

where it recycles to the plasma membrane. After crosslinking by an antigen, the BCR is 

targeted from the early endosomes to the late endosomes (39). The targeting of the BCR 

to late endosomes is disrupted by Src kinase inhibitors that disrupt BCR crosslinking 

induced signaling (40), emphasizing the need for BCR signaling to target antigen-BCR 

complexes to the late endosomes.  Using chimeric receptors our lab and a number of 

others have also shown the importance of Igα/Igβ complex in BCR trafficking to the late 

endosomes following BCR crosslinking (41-43). Specifically, mutating the tyrosines in 

the ITAMs of Igα/Igβ led to defects in BCR trafficking to late endosomes (43), further 

indicating that BCR signaling is important for BCR trafficking to the late endosomes.  

 

1.5 Clathrin-mediated endocytosis 

Clathrin-mediated endocytosis (CME) is initiated when adaptor proteins recognize and 

bind to internalization motifs on the cytoplasmic tails of receptors for various cargos. 

There are two main classes of adaptor molecules that bind to internalization motifs; 

tetrameric AP-2 adaptors, and monomeric adaptors such as Dab2 and Epsin (44). The µ2 

subunit of AP-2 interacts with YXXφ internalization motifs on the cytoplasmic tail of 

receptors (45). Dab2 recognizes FXNPXY internalization signals (46) while Epsin 

recognizes polyubiquitination signals via ubiquitin-interacting motifs (47). Recruited 

adaptor proteins bind and sequester cargo receptors while simultaneously binding PIP2 

on the plasma membrane (48). After binding of AP-2 to the appropriate cargo receptor, 

clathrin is recruited to the region. Once the clathrin coat has assembled on the 
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cytoplasmic side of the plasma membrane, the membrane invaginates to form a coated-

pit. The invagination of the coated pit is driven by changes in lipid composition at the 

membrane, the intrinsic curvature of the clathrin triskelia, as well as forces exerted by the 

cytoskeleton (49). Notable among proteins involved at this stage are the Bar domain-

containing proteins endophilin and amphiphysin. Endophilin can alter lipid compositions 

at the cell membrane via acyl transferase activity and bind dynamin during endocytic 

processes (50, 51). Amphiphysin also binds dynamin and, in addition, binds to AP-2 and 

clathrin (44, 51). It plays a major role in recruiting dynamin to endocytic vesicles during 

CME (52-54). Dynamin provides the signal and force that pinches off the coated-pit from 

the cell membrane.  It is recruited to the nascent clathrin-coated vesicles (CCVs) just 

before the pinch off stage (55). Other proteins that are recruited at this dynamin driven-

scission stage of CME include N-WASP, Arp2/3 (56), actin (55) and synaptojanin (57). 

Once the CCVs have pinched off, they shed their clathrin coats due to the activity of 

Hsc70, an ATPase recruited to the CCVs (58). Following the uncoating stage, the 

vesicles fuse with other vesicles to form early endosomes (55).  

 

1.6 A role for the actin cytoskeleton during clathrin-mediated endocytosis 

Initial evidence for the role of actin in endocytosis came from genetic studies of yeast by 

a number of groups (59). Mutations in ACT1, the gene that encodes yeast actin, were 

among the first to be identified as directly impacting the endocytosis of α-factor (a small 

peptide secreted by yeast during mating) (60). Subsequently, researchers have identified a 

number of actin-related, actin-binding and actin-regulating proteins that are also involved 

in yeast endocytosis, and many of these proteins have homologues in mammalian cells 

 9



 

(59), further indicating an essential role for the actin cytoskeleton in regulating 

endocytosis.  

 

Additional evidence for the role of actin in endocytosis came from the studies of actin 

cytoskeleton-disrupting agents. Apodaca et al. reported that cytochalasin-D (CD), which 

binds to the barbed end of F-actin and disrupts actin filaments, inhibits apical endocytosis 

in polarized epithelial cells but has no detectable effect on basolateral endocytosis (61).  

Fujimoto et al. studied the effect of different actin-perturbing drugs on the endocytosis of 

transferrin and showed that the involvement of the actin cytoskeleton in CME is 

dependent on cell type and growth conditions (62).  There are a number of endocytic 

pathways in mammalian cells, including the clathrin-mediated endocytosis, the caveolar 

pathway, a clathrin and caveolae-independent pathway, macropinocytois and 

phagocytosis (59).  A role for the actin cytoskeleton has been determined in most of these 

pathways (63, 64), and localized polymerization has been shown at sites of caveolae-

mediated endocytosis (65, 66), clathrin mediated endocytosis (CME) (55), 

macropinocytosis (67) and phagocytosis (68) . 

 

The interaction of actin-binding proteins with proteins involved in CME, as well as the 

effect of actin-regulating proteins on CME has also been used to implicate the actin 

cytoskeleton in CME.  A common structural property of proteins that link the actin 

cytoskeleton to endocytosis is their multiple protein-protein interaction domains, which 

provides them with the potential to bind both F-actin and proteins from the endocytic 

machinery.  Cortactin (69) and mammalian actin binding protein 1 (Abp1) (70) bind both 

 10



 

F-actin and dynamin during endocytosis. Huntington-interacting protein 1 (Hip1R) binds 

to both clathrin and F-actin (71, 72), while syndapins can bind to both N-WASP (an actin 

nucleation-promoting factor that stimulates Arp2/3 activity (73))  and dynamin (74-76) 

(Fig. 1.2). Tsujita et al describe a group of proteins called pombe cdc 15 homology 

family (PCH), such as formin-binding protein 17 (FBP17). These proteins were shown to 

bind to phosphatidylserine and PIP2 in membranes, where they help to deform the 

membrane during endocytosis. They were also shown to bind to dynamin and recruit and 

activate N-WASP at the plasma membrane, serving as a link between the endocytosis 

machinery and the actin cytoskeleton (52). It has recently been shown that another 

protein, sorting nexin 9 (SNX9), simultaneously binds to dynamin and N-WASP and 

stimulates Arp2/3-mediated actin assembly, providing another link between the actin 

cytoskeleton and the endocytosis machinery (77, 78). Buss et al. showed that Myosin IV 

colocalized with clathrin-coated vesicles and binds AP-2 in-vitro. Overexpressing the tail 

region of myosin IV blocked transferrin endocytosis in fibroblasts (79).  Myosin IV 

belongs to a group of proteins that move along actin filaments and help in movement of 

membrane vesicles within the cytoplasm (80); this could help link the actin cytoskeleton 

to the inward movement of CCV.  It is likely that more protein linkers between the actin 

cytoskeleton and the endocytosis machinery will be discovered as research progresses in 

this field.
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FIGURE 1.2. Steps during CME and possible links to actin 

Clathrin-mediated endocytosis is initiated when adaptor molecules bind to internalization 

motifs in the cytoplasmic tail of receptors. This is followed by the recruitment of the 

clathrin and the formation of clathrin-coated pits. Hip1R binds to clathrin and F-actin and 

may help coordinate the interaction of actin with clathrin at this stage. Dynamin is 

recruited to the vesicles and is important for the scission of the nascent vesicle from the 

plasma membrane. Numerous actin-binding proteins that bind the PRD of dynamin may 

be responsible for linking the actin cytoskeleton to dynamin at this stage. Vesicle 

uncoating is stimulated by the ATPase activity of Hsc70 which is recruited to the vesicle 

by auxilin (which binds membrane phospholipids). Uncoated vesicles are able to fuse 

with other vesicles and be transported to various destinations by interactions with the 

microtubule network. Interactions between the actin cytoskeleton and microtubule motor 

proteins (myosins) also facilitate this process. 
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1.7 Regulation of the actin cytoskeleton 

The regulation of dynamic actin networks by extracellular signals has been extensively 

studied during the last decade and has been shown to be largely mediated through the 

Rho family of GTPases.  Rho GTPases (specifically Cdc42, Rac1 and RhoA) are 

activated in response to a variety of extracellular signals (73). The activation of these 

GTPases in many cases leads to the activation of the Arp2/3 complex, which in turn 

regulates actin polymerization. The Arp2/3 complex is required to drive de novo actin 

nucleation, since forming new actin filaments from actin monomers is energetically 

unfavorable (81). However, the activity of the Arp2/3 complex itself is low without the 

help of nucleation-promoting factors (NPFs). Examples of NPFs include WASP, N-

WASP and WAVE. Rho GTPases are linked to the Arp2/3 complex via these NPFs (81).  

 

How receptor activation leads to varied responses by the actin cytoskeleton is not yet 

fully understood, but there is evidence that the activation of different Rho GTPases help 

to generate these varied responses. RhoA helps regulate the formation of stress fibers, 

Rac1 regulates lamellipodia formation, and Cdc42 regulates filopodia formation (69, 73). 

The small GTPases that are involved in directly regulating the actin cytoskeleton during 

endocytosis are not yet known, although a role had been described for Rac and Rho 

whose mutants were shown to block endocytosis of transferrin (82) and low density 

lipoproteins (83).  

 

A number of groups, including our own, have shown that BCR crosslinking can create 

dynamic changes in the actin cytoskeleton (22, 35, 84-87).  Hao et al, showed that the 
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actin cytoskeleton undergoes an initial decrease in F-actin levels followed by an increase 

in F-actin levels at localized sites within the cell after BCR crosslinking of DT40 cell 

lines as well as primary splenocytes (87), indicating that BCR crosslinking induces 

dynamic changes in the actin cytoskeleton. Our lab also has shown a similar 

accumulation of F-actin with the BCR after BCR crosslinking (35), however the link 

between the two is yet to be fully elucidated.  Among the potential candidates that could 

link BCR signaling to actin cytoskeletal rearrangements is Bam32 (B-cell adaptor 

molecule of 32 kDa). It contains an N-terminal SH2 domain, C-terminal PH domain, and 

a number of tyrosine residues, one of which has the consensus tyrosine-phosphorylation 

motif (YXXP) (88).  It is regulated by BCR signaling in a PI-3K-dependent manner and 

by NFAT activity (88).  Following BCR crosslinking, Bam32 is recruited to the plasma 

membrane via the interaction of its PH domain with phosphatidylinositides on the plasma 

membrane (88). Bam32 also regulates the reorganization of the actin cytoskeleton by 

activating Rac1 in response to the BCR crosslinking (85), indicating that Bam32 might 

serve to link signals generated during BCR signaling to the reorganization of the actin 

cytoskeleton following BCR crosslinking. Not surprisingly, Bam32 knockout mice had a 

marked decrease in the rate of BCR internalization, probably due to defects in the BCR 

induced reorganization of the actin cytoskeleton (86).  In support of this, preliminary data 

from our lab shows BCR signaling-dependent activation of Vav, the GEF of Rho-family 

GTPases and WASP, an actin nucleation promoting factor (S. Sharma, unpublished 

observations). The activation of Bam32, Vav and WASP by BCR crosslinking provides 

further evidence for a connection between BCR signaling and the actin cytoskeleton. 

Vascotto et al. have recently provided further evidence for how BCR signaling might 
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regulate the actin dependent trafficking of the BCR. In one study, they observed that 

myosin II, an actin motor protein, is regulated by BCR signaling and is required for the 

interaction of BCR internalized antigens and MHC class II molecules in late endosomes. 

Pharmacologic inhibition or siRNA depletion of Myosin II in splenic B cells led to 

defects in antigen presentation and activation of T cells (89). The same group showed 

that BCR crosslinking-induced actin reorganization was drastically altered, and the 

trafficking of the BCR into late endosomes is inhibited in a Syk-deficient B cells line 

(84). These further indicated a three way connection between the actin cytoskeleton, BCR 

signaling, and antigen transport pathways.  

 

1.8 The actin cytoskeleton and the intracellular trafficking of the BCR 

BCR internalization is dependent on the actin cytoskeleton (35). Work in our lab showed 

that Cytochalasin D (CD), an actin disrupter, Latrunculin, an actin depolymerizer, and 

Jasplakinolide, an F-actin stabilizer, inhibited the antigen-enhanced internalization of the 

BCR.  In contrast, constitutive BCR internalization was not affected by CD treatment, 

implying that actin involvement in BCR internalization is regulated by signals generated 

by BCR crosslinking (35). In CD-treated cells, cortical actin was visualized as reduced 

patches close to the plasma membrane that colocalized with BCR, implying that the BCR 

was trapped in vesicles that were associated with the actin cytoskeleton. Electron 

microscopy studies showed that the BCR accumulated in elongated clathrin-coated pits in 

CD-treated cells, indicating that BCR-containing clathrin-coated pits failed to pinch off.  

An interesting finding was the fact that, unlike previous reports that showed that CD had 

an inhibitory effect on BCR signaling measured by observing of proliferation (actin is 
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required for cytokinesis during proliferation and this is not a BCR signaling mediated 

defect) (90),  we observed an elevation of phosphorylation after BCR stimulation in CD-

treated cells compared to untreated cells. Taken together, these results show that the actin 

cytoskeleton is important for the rapid internalization of the BCR following antigen 

crosslinking, however, the mechanism remains to be elucidated. 

  

1.9 Dynamin and clathrin-mediated endocytosis 

Dynamin is a 100 kDa GTPase that is required for pinching off of coated pits formed at 

the surface of the plasma membrane.  It consists of four main domains, an N-terminal 

GTPase domain, a PH domain, a GTPase effector domain (GED,) and a C-terminal PRD 

(91).  The GTPase of dynamin has a higher GTP hydrolysis activity than small GTPases 

such as Ras(91). Its GTPase activity is greatly enhanced (up to 15 fold) by self 

oligomerization, as in the case of dynamin being recruited to nascent clathrin-coated pits, 

where it oligomerizes to form tight spirals that constrict to pinch off of these vesicles (91, 

92). The GED domain regulates dynamin GTPase activity by binding directly to the 

GTPase domain of dynamin.  This was demonstrated by the fact that  addition of the 

GED domain alone induced the assembly of dynamin and increased its GTPase activity 

by 50 fold (93). The PH domain of dynamin is required for binding to PI(4,5)P2 . This 

binding has been shown to be important for dynamin recruitment to the plasma 

membrane, and mutations in the PH domain disrupt receptor-mediated endocytosis (94, 

95). The PRD region contains SH3 domain-binding sites that are defined by the PXXP 

motif (where X stands for any amino acid) and interacts with numerous proteins 

necessary for a variety of cellular processes including clathrin-mediated endocytosis (96).  
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These proteins include amphiphysin (53), endophilin (96), PLCγ (97), Grb (98), Cortactin 

(99), Vav (100), and Abp1(70). The PRD of dynamin is required for the recruitment of 

dynamin to clathrin-coated pits via interactions with the SH3 domain of amphiphysin 

(101).  Amphiphysin may direct dynamin to coated pits by binding to both dynamin and 

the alpha adaptin of AP-2 (102).  Dynamin also binds to endophilin, a protein recruited to 

the plasma membrane during receptor-mediated endocytosis (RME) (96). Endophilin 

converts lysophosphatidic acid (LPA), an inverted cone-shaped lipid, to phosphatidic acid 

(PA), a cone-shaped lipid, inducing plasma membrane curvature during RME (50). In 

addition to interactions between the PH domain of dynamin and the plasma membrane, 

the PRD of dynamin, which interacts with the SH3 domains of amphiphysin and 

endophilin, helps direct the recruitment of dynamin to the plasma membrane during 

RME.   

 

Dynamin is known to be regulated by signaling during RME. The recruitment of 

dynamin1 to the plasma membrane in the neurological synapse upon depolarization of the 

synapse has been shown to be dependent on dynamin dephosphorylation (103). The 

dephosphorylation of dynamin during depolarization of the synapse is mediated by the 

calcium-dependent phosphatase, calcineurin (104). Upon repolarization of the membrane, 

dynamin is phosphorylated by protein kinase C (PKC) and relocates to the cytosol (105). 

Ahn et al. showed that dynamin 2 can also be tyrosine phosphorylated at positions 231 

and 597 by Src kinases in response to β adrenergic stimulation, and this phosphorylation 

was shown to be important for the internalization of the β2 adrenergic receptor (106). 

During internalization of the FcγRI in mast cells, dynamin 2 is dephosphorylated in 
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response to the aggregation of FcγRI, and this aggregation enhanced the rapid 

internalization of the FcγRI via CME (107). It is unclear whether dynamin is 

phosphorylated during BCR crosslinking induced signaling events. Previous studies 

carried out in our lab have, however, shown that dynamin 2 is recruited to the cell surface 

upon BCR crosslinking and that this recruitment is inhibited by Src kinase inhibitors (B. 

Brown, unpublished observations), implying that the function of dynamin 2 is regulated 

by Src kinases in B cells. In contrast, a recent study reported that dynamin was not 

phosphorylated in T cells following TCR activation (100), implying that the function of 

dynamin is regulated by different mechanisms in different types of cells.  

 

1.10 The role of dynamin in linking the actin cytoskeleton to the 

endocytosis machinery 

Previous studies have revealed that dynamin may provide a major link between the 

endocytosis machinery and the actin cytoskeleton (63) (Fig. 1.3). A number of actin-

binding proteins have been shown to have the ability to bind to the PRD of dynamin via 

their SH3 domains. Examples of such proteins include cortactin that binds and activates 

the Arp2/3 complex (108), syndapins that interact with N-WASP (74, 76), profilin that 

binds to actin monomers and promotes ATP exchange on monomeric actin, facilitating 

filament elongation, and also binds to clathrin (109), and Abp1 that binds F-Actin (70).  

In addition to serving as a link between the endocytic machinery and the actin 

cytoskeleton, dynamin is suggested to have a role in linking extracellular signals to the 

actin cytoskeleton. Dynamin has been shown to regulate the subcellular localization of 
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Rac to the leading edge of lamellipodia (F actin-based structures), and induces cell 

spreading in response to PDGF in rat fibroblasts and NIH3T3 cells (110). It was shown in 

these experiments that dynamin knockdown using siRNA as well as dominant negative 

transfections of a Dynamin K44A (a mutation that inactivates the GTPase of dynamin) 

were able to mislocalize Rac and hence interfere with Rac-induced actin reorganization at 

the leading edge of lamellipodia.  Dynamin was also shown to be involved in the 

reorganization of the actin cytoskeleton at the immunological synapse formed between a 

T cell and an antigen-presenting cell (APC) (100). In T cells, dynamin was shown to be 

important for recruiting Vav (100). Vav is a GEF that activates Cdc42, which regulates 

WASP, a key activator of actin polymerization in the T cell synapse (111). Further 

evidence for the regulatory role of dynamin in the actin cytoskeleton was provided by 

studies of actin pedestal formation induced by enteropathogenic E-coli invasion of 

epithelial cells. Interaction of the bacteria with the epithelium generates actin-rich 

pedestals by bacteria-secreted factors. Bacteria-induced actin pedestal formation was 

abolished when dynamin expression was knocked down using siRNA (112), implicating 

dynamin in the regulation of this actin-based structure.  

 

1.11 Abp1 in Endocytosis 

Mammalian actin-binding protein 1 (Abp1), which is also known as SH3P7 and HIP-55, 

was discovered in a screen for novel proteins containing SH3 domains (113).  Abp1 

belongs to the debrin family of actin-binding proteins (114). It is a 55 kDa 

phosphoprotein with multiple sequence motifs for protein-protein interactions (114),  

including two N-terminal actin-binding domains, a PRD, and a C-terminal SH3 domain.
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FIGURE 1.3. Dynamin is a major link between CME and actin 

Dynamin is recruited to nascent clathrin coated vesicles (CCVs) by interactions between 

its PH domain and PI(4,5)P at the plasma membrane as well as interactions between its 

PRD with amphiphysin (binds AP-2) and endophilin (binds lipids at the plasma 

membrane). The PRD of dynamin mediates the interaction between dynamin and the 

actin cytoskeleton by binding to a number of SH3 domain-containing actin-binding 

proteins (Abp1, cortactin, profiling, and syndapins). 
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Abp1 was first discovered in yeast and originally characterized as a protein important in 

actin-dependent endocytosis (59). Sequence analysis revealed that mammalian Abp1 had 

a significant sequence homology to yeast Abp1 (21% in the actin-binding domain and 

40% in the SH3 domain) (115). Yeast Abp1 has the ability to bind to the Arp2/3 complex 

and increase the affinity of this complex for F-actin. Abp1 binds directly to F-actin in 

mammalian systems (114). Abp1 is expressed in most tissues of the mouse that have been 

tested, including testis, spleen, brain, thymus, heart, and lungs, while very little was 

detected in ovaries and muscle (114). In addition, a number of human cell lines, including 

Ramos B cells and Jurkat, express the human homolog of Abp1 (114). Mammalian Abp1 

lacks the acidic motif required for interacting with the Arp2/3 complex (115, 116), and 

may, therefore, not be directly involved in regulating the actin cytoskeleton. However, 

Abp1 was recently shown to interact with and activate N-WASP with the help of Cdc42 

in neuronal cells (117), implying that at least in some mammalian systems, Abp1 may be 

involved in actin regulation.  

 

Abp1 is able to interact with the PRD of dynamin via its SH3 domain, and this interaction 

has been shown to be important for receptor-mediated endocytosis of transferrin (70). 

The ability of Abp1 to bind to both F-actin and dynamin implies that it could provide a 

physical link between the endocytic machinery and the actin cytoskeleton.  Abp1 has 

been shown to be phosphorylated at tyrosines 337 and 347 of the PRD by Syk and Lyn in 

vitro upon BCR crosslinking (114).  These findings led us to hypothesize that Abp1 plays 

a role in linking the BCR signaling and endocytosis pathway to the actin cytoskeleton. 
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FIGURE 1.4. Actin binding protein 1 (Abp1) and its interactions 

Abp1 is a 55 kDa phosphoprotein with multiple sequence motifs for protein-protein 

interactions, including two N-terminal actin-binding domains, a PRD, and a C-terminal 

SH3 domain. The PRD of Abp1 contains two consensus tyrosine phosphorylation sites 

which are substrates for Src kinases in B cells. The SH3 domain of Abp1 has been shown 

to bind dynamin and facilitate the internalization of transferrin as well as the binding of 

HPK1 (a MAP4K in the JNK activation pathway) in T cells and hence, serves an adaptor 

function in T cell signaling. 
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1.12 Role of Abp1 in Lymphocyte activation 

Abp1 (HIP55), was identified as a key regulator of hematopoetic progenitor kinase 1 

(HPK1) in T cells (118, 119). HPK1 belongs to a group of kinases referred to as germinal 

center kinases and a subgroup of the STE20-related proteins (120). HPK1 is a MAP4K 

that is able to activate the c-Jun N-terminal kinase (JNK) pathway by activating MAP3Ks 

that include MEKK1, MLK3, and TAK1 (121). Activation of JNK leads to the 

phosphorylation of c-jun, a component of the AP-1 transcription factor that regulates cell 

proliferation and apoptosis (24). HPK1 was recently shown to be a negative regulator of 

T-cell receptor signaling by inhibiting TCR-mediated production of IL-2 (121). In 293T 

cells, Abp1 was shown to associate with HPK1 in immunoprecipitation studies. This 

interaction was meditated by the binding of the SH3 domain of Abp1 with one of the four 

PRDs of HPK1 and the interaction was shown to be important for JNK activation (118, 

119).   

 

Abp1 is recruited to the T-cell:APC interface in T cells in an antigen-dependent manner 

where it localizes with lipid rafts (122). Abp1 is phosphorylated on tyrosines 334 and 344 

by Zap70 in Jurkat T cells (119). Abp1 is important for TCR-mediated activation of T 

cells.  T cells showed defects in proliferation, cytokine production, and upregulation of 

activation markers, notably CD69, in Abp1-knockout mice (Abp1-/-). Abp1-/- mice 

displayed a marked reduction in humoral immune response to T-dependent antigens 

(123). Defective TCR-induced activation of Lat,  PLCγ1, JNK and HPK1 were also 

observed in Abp1-/- mice (123).  These point to a role for Abp1 in antigen-induced 

signaling in T cells.  

 24



 

 

The role for Abp1 in the signal transduction of B cells has yet to be studied. The fact that 

it is a substrate for Src kinases, as well as a link to kinases involved in later stages of 

BCR signaling, raises the possibility that Abp1 serves as an adaptor protein that links 

upstream to downstream signaling events of the BCR for B cell activation. The ability of 

Abp1 to interact with the actin cytoskeleton allows it to link the actin cytoskeletal 

dynamics regulated by BCR activation with BCR-mediated signaling events.  

 

1.13 Significance 

In this thesis, I have investigated the interaction between the actin cytoskeleton, BCR 

signaling and antigen processing pathways. I have identified Abp1 and dynamin 2 as 

molecular links between the actin cytoskeleton, BCR signaling and antigen processing 

pathways. I have studied the interrelationship between dynamin and Abp1 and the role of 

these two proteins in regulating BCR-mediated signal transduction and antigen 

processing and presentation. 

 

The internalization, processing, and presentation of antigens, by B cells, is a critical step 

in mounting an effective immune response to pathogens, and this study will provide 

further insights into how this processes are regulated. When the processes are not 

properly regulated, B-cell malfunction may lead to serious consequences. This is 

underscored by a variety of pathological conditions including autoimmune and allergic 

disorders, some of which can be traced to defects in B-cell regulation.  The effector 

function of the B cell is mediated by the BCR, with which it binds antigens. The BCR has 
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two functions, first as an antigen-binding receptor and second as a signal transducer that 

activates the B cell. After binding the antigen the BCR transports it to endosomal 

compartments that enable the processing and presentation of the antigen. The antigen, 

when presented to T cells enables additional signals to be supplied to the B cell by T 

cells. Defects at the stage of antigen processing and presentation or during signal 

transduction can have significant consequences for the immune system either by 

attenuating the immune system or overstimulating the immune system. Both scenarios are 

undesirable events. Understanding both the antigen processing and presentation functions 

of the BCR and the signaling functions of the BCR as well as the links that may exist 

between them will enable us appreciate how these events are regulated. This can help us 

develop effective ways to alter the function of the B cell and help control the immune 

response.
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Chapter 2: Actin binding protein 1 regulates BCR-mediated antigen 

processing and presentation in response to BCR activation 

 

2.1 Abstract 

The B cell receptor (BCR) serves as both signal-transducer and antigen-transporter.  

Binding of antigens to the BCR induces signaling cascades and antigen-processing and 

presentation, two essential cellular events for B cell activation.  BCR-initiated signaling 

increases BCR-mediated antigen-processing efficiency by increasing the rate and 

specificity of antigen transport.  Previous studies showed a critical role for the actin 

cytoskeleton in these two processes.  Here we found that actin-binding protein 1 

functioned as an actin-binding adaptor protein, coupling BCR signaling and antigen-

processing pathways with the actin cytoskeleton.  Gene knockout of Abp1 and over-

expression of the SH3 domain of Abp1 inhibited BCR-mediated antigen internalization, 

consequently reducing the rate of antigen transport to processing compartments and the 

efficiency of BCR-mediated antigen-processing and presentation.  BCR activation 

induced tyrosine phosphorylation of Abp1 and translocation of both Abp1 and dynamin 2 

from the cytoplasm to plasma membrane, where they colocalized with the BCR and 

cortical F-actin.  Mutations of the two tyrosine phosphorylation sites of Abp1 and 

depolymerization of the actin cytoskeleton interfered with BCR-induced Abp1 

recruitment to the plasma membrane.  The inhibitory effect of a dynamin PRD deletion 

mutant on the recruitment of Abp1 to the plasma membrane, co-immunoprecipitation of 

dynamin with Abp1, and co-precipitation of Abp1 with GST fusion of the dynamin PRD 
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demonstrate the interaction of Abp1 with dynamin 2.  These results demonstrate that the 

BCR regulates the function of Abp1 by inducing Abp1 phosphorylation and actin 

cytoskeleton rearrangement, and that Abp1 facilitates BCR-mediated antigen-processing 

by simultaneously interacting with dynamin and the actin cytoskeleton.   

2.2 Introduction 

B cell-mediated antibody responses constitute one of the major components of the 

immune system.  B cells are activated through two separate stages of signals, and the B 

cell antigen receptor (BCR) plays an essential role in the generation of both stages of 

signals.  The binding of antigens to the BCR induces signaling cascades that provide the 

first stage signals for B cell activation (14, 124). Subsequently, the BCR internalizes the 

antigens to the endosomal system, where the antigens are processed and loaded onto 

MHC class II molecules.  The interaction between B cells and T cells in the context of 

antigenic peptide-MHC class II complexes triggers the second stage of signals.  The 

induction of affinity maturation and the establishment of B cell memory require both 

stages of signals (125, 126).   

 

The BCR serves as both signal transducer and antigen transporter.  Binding of the BCR to 

multi-valent antigens not only induces signal transduction, but also triggers rapid 

internalization of the BCR and accelerates targeting of the BCR to antigen processing 

compartments (127, 128). The BCR increases the antigen processing and presentation 

efficiency of B cells by increasing the kinetics and specificity of antigen uptake and 

transport to antigen processing compartments (127, 128), allowing B cells to present an 

antigen even when the antigen is sparse.  BCR signaling and antigen 
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processing/presentation functions have been shown to be interrelated.  BCR signaling 

blockage by tyrosine kinase inhibitors (40, 129), mutations of the tyrosine 

phosphorylation sites in the Igα chain of the BCR (43, 130, 131), and loss-function 

mutants for Lyn or Syk (38, 84, 132) inhibit accelerated antigen transport and lower the 

antigen-presenting efficiency of B cells.  Our lab previously showed that crosslinking the 

BCR induced the recruitment of clathrin to the cell surface and BCR-containing vesicles 

and the tyrosine phosphorylation of clathrin in lipid rafts, both of which were required for 

BCR internalization (33).  The exact mechanisms underlying the interaction of BCR 

signaling and antigen transport pathways have not been well studied. 

 

The involvement of the actin cytoskeleton in BCR-mediated activation of B cells has 

long been suggested.  Early studies showed that antigen binding induced the translocation 

of the BCR and tyrosine kinases Lyn and Syk to the detergent-insoluble cytoskeletal 

fractions (133-135), reorganization of the actin cytoskeleton (90, 136-139), and transient 

increases in F-actin levels in B cells (35, 87).  Hao and August recently showed that 

disruption of the actin cytoskeleton altered BCR-induced activation of the MAP kinase 

ERK and transcription factors SRF, NFAT, and NF-κB (87).  We previously 

demonstrated that the dynamic property of the actin cytoskeleton was required for signal-

stimulated BCR internalization.  BCR endocytosis is blocked at the pinching-off step 

during clathrin-coated vesicle formation in the absence of the functional actin 

cytoskeleton (35). Stoddart et al. (140) suggested an actin cytoskeleton-dependent and 

clathrin-independent BCR internalization pathway in DT40 chicken B cells.  It has 

recently been reported that myosin II, an actin motor, is activated upon BCR engagement 
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and facilitates BCR-driven antigen processing and presentation by interacting with MHC 

class II–invariant chain complexes (141).  The findings that the actin cytoskeleton 

undergoes reorganization in response to BCR signaling and this reorganization is 

required for signal-induced BCR internalization suggest a role for the actin cytoskeleton 

in cross talk between BCR signaling and antigen-processing pathways.  

 

Actin-binding protein 1 (Abp1, SH3P7 or HIP-55) is a multi-domain protein that contains 

two independent F-actin-binding domains (ABDs), a proline-rich domain (PRD), and a 

Src homology 3 (SH3) domain (114, 115, 118).  The SH3 domain of Abp1 is closely 

related to the SH3 domain of murine cortactin, an F-actin binding protein and a substrate 

of Src kinase.  Thus, Abp1 is able to simultaneously interact with the actin cytoskeleton 

and molecules of other pathways (70, 118, 142, 143).  Abp1 was first cloned from yeast 

(144) and named Abp1p.  Its mammalian homologue was cloned later by several different 

research groups (114, 115, 118).  Abp1 was found to bind F-actin and be capable of 

directly (in yeast) (116) or indirectly (in mammal) (115, 145) regulating the ability of the 

Arp2/3 complex to assemble branched actin filament networks.  In yeast, Abp1p directly 

interacts with RVS167/amphiphysin, an endocytosis machinery protein, and was 

recruited to cortical actin patches partially coinciding with sites of endocytosis (146).  In 

mammalian cells, Abp1 accumulates in lamellipodia in response to growth factors or the 

expression of dominant-active Rac1 (115) and is involved in transferrin receptor (TfR) 

endocytosis by a direct interaction with dynamin (70), a GTPase that drives the release of 

the nascent clathrin-coated vesicles (91).  The role of Abp1 in TfR internalization was 

further confirmed in Abp1-deficient embryonic fibroblasts (147) and in cells where Abp1 
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was knocked down by siRNA (148).  Recently established Abp1-knockout mice 

exhibited a moderate reduction in synaptic endocytosis and a dramatic defect in the 

reformation of fusion-competent vesicles in synapses of hippocampus neurons (147).  

Abp1-deficiency also caused abnormal structure and function of multiple organs, 

including the spleen, heart and lung in both heterozygous and homozygous mice (147). 

 

In lymphocytes, antigen engagement of the BCR or TCR induces tyrosine 

phosphorylation of Abp1, probably by Lyn, Syk or Zap70 (114, 119).  Abp1 was found to 

be recruited to the immunological synapse of T cells and bind to phosphorylated Zap70 in 

response to TCR stimulation (122).  RNAi knockdown of Abp1 inhibited TCR-induced 

activation of hematopoetic progenitor kinase 1 (HPK1) and the MAP-kinase JNK (118, 

119).  T cells from Abp1-knockout mice showed similar TCR signaling defects (123).  

While T and B cells appeared to develop normally, T cells in Abp1-/- mice exhibited 

reduced T cell proliferation and IL-2 secretion.  These defects were accompanied by 

reduced T cell-dependent antibody responses (123).  While the role of Abp1 in B cells 

has not yet been examined, the data accumulated to date suggest a potential role for Abp1 

in interaction with both antigen receptor signaling and antigen transport pathways.   

 

In this study, we examined the relationship of Abp1 with BCR signaling and antigen 

processing and presentation pathways.  We demonstrate that the BCR regulates the 

function of Abp1 by inducing Abp1 phosphorylation and actin cytoskeleton 

rearrangement, and that Abp1 facilitates BCR-mediated antigen processing by interacting 

with dynamin and the actin cytoskeleton. 
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2.3 Materials and Methods  

2.3.1 Mice, cells and cell culture   

B cell lymphoma A20 IIA1.6 cells (H-2d, IgG2a
+, FcγRIIB-) were cultured in DMEM 

supplemented with 10% FBS.  C57BL6 mice which were 6~8 weeks old were purchased 

from Taconic (Hudson, NY).  Abp1 knockout mice (Abp1-/-) were generated and crossed 

into a C57BL/6 background as previously described (123).  To isolate splenic B cells, 

single-cell suspensions of splenocytes were subjected to density-gradient centrifugation 

(2300 x g) in Ficoll (Sigma-Aldrich, St Louis, MO) to obtain mononuclear cells, treated 

with anti-Thy1.2 mAb (BD Biosciences, San Jose, CA) and guinea pig complement 

(Rockland Immunobiochemicals, Gilbertsville, PA) to remove T cells, and panned for 2 h 

to remove monocytes. 

 

2.3.2 DNA constructs and transfection 

The cDNA of myc-tagged full length (myc-Abp1), actin-binding domains (ABDs), PRD-

SH3 domains (PRD-SH3), and SH3 domain (SH3) of Abp1 were cloned into a pRK5 

plasmid as previously described (115).  Mutations of tyrosines 337 and 347 to 

phenylalanine (myc-Abp1 Y337FY347F) were generated using the Stratagene quick 

change site-directed mutagenesis kit (Stratagene, La Jolla, CA) and confirmed by 

sequencing.  DNA constructs were introduced into A20 B cells by electroporation using a 

Nucleofection kit (Amaxa, Gaithersburg, MD).   
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2.3.3 Analysis of the movement of the BCR from the cell surface to late endosomes 

B cells were incubated with Alexa Fluor (AF) 488-conjugated F(ab’)2-goat anti-mouse 

IgG or IgM (Invitrogen, Carlsbad, CA) for 20 min at 4oC to label the surface BCR.  Cells 

were washed and adhered to poly-lysine-coated slides (Sigma-Aldrich) for 40 min at 4oC 

and then chased at 37oC for varying lengths of time to allow for BCR internalization.  At 

the end of each time point, cells were fixed with 4% paraformaldehyde, permeabilized 

with 0.05% saponin, and incubated with a mAb specific for lysosome-associated 

membrane protein 1 (LAMP-1) (ID4B, ATCC, Manassas, VA) and an AF633-conjugated 

secondary antibody.  Myc-Abp1 was detected using Cy3-anti-c-myc mAb (Sigma-

Aldrich).  Endogenous Abp1 was detected using rabbit anti-Abp1 antibody (70) and an 

AF546-conjugated secondary antibody (Invitrogen).  Cells were mounted with gel mount 

(Biomeda, Foster City, CA) and analyzed using a laser-scanning confocal fluorescence 

microscope (LSM 510; Zeiss, Oberkochen, Germany).  For quantitative analysis of 

images, the cellular distribution of the BCR was divided into three different categories:  

the BCR mainly distributed on the cell surface without colocalization with LAMP-1, 

extensively colocalized, and partially colocalized with LAMP-1 at the perinuclear region 

of cells.  Cells were categorized by visual inspection.  Over 100 cells from three 

independent experiments were analyzed for each time point, and the data were plotted as 

percentages of the total number of cells in the images. To quantify the levels of 

colocalization between the BCR and LAMP-1, the correlation coefficients of the staining 

for the BCR and LAMP-1 in individual cells were determined using the LSM510 

software. 
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2.3.4 Analysis of BCR internalization 

Splenic B cells were incubated with biotinylated F(ab’)2 fragments of goat anti-mouse 

IgM (20 µg/ml; Jackson ImmunoResearch) for 30 min at 4oC to label the surface BCR. 

After washing off unbound antibodies, cells were chased at 37oC for 0, 2, 5, and 20 min.  

The chase was terminated by adding ice-cold DMEM containing 6 mg/ml BSA.  The 

biotinylated antibodies remaining on the cell surface were stained with PE-streptavidin (5 

µg/ml; Qiagen, Valencia, CA) at 4oC.  The cells were then fixed and analyzed using a 

flow cytometer (FACSCalibur, BD Bioscience).  The data was plotted as a percentage of 

the mean fluorescence intensity of cell-surface PE-streptavidin at time 0.  To 

depolymerize the actin cytoskeleton, cells were treated with 5 μm latrunculin 

(Calbiochem, San Diego, CA) for 30 min at 37oC before the internalization assay, and 

latrunculin was also included in the incubation medium during the internalization assay. 

 

2.3.5 Antigen presentation Assay 

Splenic B cells were incubated sequentially with the following antibodies and reagents at 

4oC.  Anti-CD32/CD16 mAb (BD Biosciences) was used to block FcγII/IIIRs.  A peptide 

(a.a. 52-68) of MHC class II I-E α chain fused with red fluorescence protein (EαRFP) 

was used as the antigen (a gift from Dr. Mark Jenkins, University of Minnesota).  An 

equivalent concentration of rabbit anti-RFP (Rockland Immunochemicals) was used to 

bind to RFP and rabbit anti-mouse IgM (5 µg/ml, Jackson ImmunoResearch) to cross-

link the BCR. Goat anti-rabbit IgG (Fc) (5 µg/ml, Jackson ImmunoResearch) was used to 

target the Eα-RFP-anti-RFP antibody complex to the BCR.  B cells were allowed to 

internalize the antigen-antibody complex for 10 min at 37oC, washed, and incubated at 
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37oC for 14 h.  After washing, cells were incubated with anti-CD32/CD16 mAb and 

biotin-conjugated mAb Y-Ae (eBioscience, San Diego, CA), followed by PE-streptavidin 

to label Eα-I-Ab complexes (149, 150).  Cells were fixed and analyzed using a flow 

cytometer.  The surface expression level of MHC class II was monitored before and after 

the incubation with the antigen-antibody complex using PE-anti-mouse MHC class II 

(Miltenyi Biotec, Auburn, CA) by flow cytometry. 

 

2.3.6 Analysis of cellular distributions of Abp1, F-actin, and dynamin 2 

A20 B cells and splenic B cells were incubated with Cy5-conjugated Fab fragments of 

rabbit anti-mouse IgG+M to label the BCR and activated by F(ab’)2 donkey anti-mouse 

IgG+M (20 μg/ml; Jackson ImmunoResearch). Cells were permeabilized and stained 

with goat-anti-Abp1 antibody for endogenous Abp1, Cy3-anti-myc antibody for 

transfected Abp1, anti-dynamin 2 antibody (BD biosciences), or AF488-phalloidin 

(Invitrogen) for F-actin.  Goat anti-mouse Abp1 antibody was generated by immunization 

of a goat with GST-Abp1 fusion proteins by Alpha Diagnostics International (San 

Antonio, TX) and purified using a protein G-sepharose column. To disrupt the actin 

cytoskeleton, cells were pretreated with 5 μM latrunculin for 30 min at 37oC.  Cells were 

analyzed using a confocal fluorescence microscope.  The recruitment of Abp1 to the cell 

surface was quantified by visually inspecting five randomly selected fields (~100 cells) 

from each of three independent experiments.  Correlation coefficients between the 

staining of Abp1 and BCR in individual cells were determined using the LSM510 

software to quantify the extent of the colocalization. Over 100 cells from two or three 

independent experiments were analyzed for each time point.  
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To further analyze the cellular distribution of Abp1 in relation to dynamin 2, A20 cells 

were co-transfected with plasmids of myc-Abp1 and either GFP-dynamin 2 (GFP-Dyn) 

or GFP-dynamin 2 with its PRD deleted (GFP-∆PRD) (kind gifts from Dr. Mark A. 

McNiven at Mayo Clinic, Rochester, MN). The BCR was labeled using AF633-Fab-goat 

anti-mouse IgG for 15 min at room temperature on polylysine coated slides. The cells 

were then activated with rabbit anti-mouse IgG (20 µg/ml) for 5 and 30 min at 37oC, 

followed by fixation and permeabilization. Transfected Abp1was stained with Cy3-anti-

myc antibody, and cells were analyzed using a confocal fluorescence microscope. 

Correlation coefficients between the staining of Abp1 and GFP-Dyn at the cell surface 

area were determined using the LSM510 software.  Over 30 cells from three independent 

experiments were analyzed for each condition.  

 

2.3.7 Analysis of tyrosine phosphorylation of Abp1 

 
Untransfected A20 cells and A20 cells transfected with plasmids myc-Abp1 were 

activated by crosslinking the BCR with goat anti-mouse IgG (20 µg/ml) for indicated 

times and lysed in a lysis buffer containing 0.5% Triton X100, 20 mM Tris-HCl, pH 7.5, 

150 mM NaCl, 1 mM MgCl2, 1 mM EGTA, 1 mM Na3VO4, and protease inhibitors 

(Sigma).  Lysates were subjected to immunoprecipitation using rabbit-anti-Abp1 

antibody for endogenous Abp1 and anti-myc mAb (Bethyl Labs, Montgomery, TX) for 

transfected Abp1.  The immunoprecipitates were analyzed by SDS-PAGE and Western 

blotting, probing with anti-phospho-tyrosine mAb (4G10, Upstate Biotech, Lake Placid, 
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NY).  The blots were stripped and reblotted with guinea pig anti-Abp1 (115) or anti-myc 

antibodies. 

 

2.3.8 Co-immunoprecipitation and coprecipitation of Abp1 and dynamin 2 

A20 cells were activated with rabbit anti-mouse IgG for indicated times at 37oC and lysed 

with the 0.5% Triton X100 lysis buffer.  The lysates were subjected to 

immunoprecipitation using goat-anti-Abp1 antibody and protein G sepharose beads, and 

the immunoprecipitates were analyzed using SDS-PAGE and Western blotting.  The 

presence of dynamin 2 in the anti-Abp1 immunoprecipitates was detected using anti-

dynamin 2 antibody (BD Biosciences), and Abp1 was detected using guinea pig anti-

Abp1 antibody.   

 

The DNA construct of GST-dynamin PRD fusion protein (GST-dynamin PRD, a gift 

from Dr. Mark McNiven, Mayo Clinic, Minnesota) was expressed in the E. coli BL21 

strain.  The bacteria were grown at 37oC in LB medium supplemented with 100 µg/ml 

ampicillin until OD600 = 1.0.  The synthesis of the fusion protein was induced by 1.0 mM 

IPTG (US Biological, Swampscott, MA) for 3 h.  Cells were harvested, washed and lysed 

using a lysis buffer (140 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1.8 mM KH2PO4, 

pH 7.4, 1 mg/ml lysozyme, and protease inhibitor cocktail) and three freeze-thaw cycles.  

The lysate was centrifuged at 70,000 x g for 25 min at 4oC, and supernatant was loaded 

onto a GSTrap FF column (GE Healthcare, Uppsala, Sweden).  The column was washed 

with PBS and stored in PBS containing 0.05% Sodium Azide.  A20 cells transfected with 

either myc-Abp1 or myc-Abp1-ABDs were activated with goat anti-mouse IgG (20 
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µg/ml) for indicated times at 37oC and lysed with the Triton X100 lysis buffer.  The 

lysates were incubated with GST-dynamin PRD beads overnight, and the precipitates 

were analyzed using SDS-PAGE and Western blotting.  The presence of myc-Abp1 in the 

precipitates was detected using anti-myc mAb (BD Biosciences) and a HRP-conjugated 

secondary antibody. 

2.3.9 Statistics 

P values were generally obtained by conducting 2 tailed, paired students t test on data 

from at least 3 independent experiments. To determine the significance between data of 

correlation coefficients, the mean correlation coefficients of six individual fields 

randomly selected from at least two independent experiments were acquired, and p values 

were determined using the 2 tailed, paired students t test.  

 

2.4 Results 

2.4.1 Abp1 is required for BCR-mediated antigen uptake  

To test whether Abp1 plays a role in BCR-mediated antigen transport, the functions of 

Abp1 were disrupted by gene knockout and over-expression of dominant negative 

mutants.  The Abp1 knockout mouse model was previously developed by Han et al. 

(123), and the deletion of the Abp1 gene (Fig. 2.1A, top panel) and the absence of Abp1 

protein expression (Fig. 2.1A, bottom panels) were confirmed by PCR analyses of 

genomic DNA and Western blot analyses of splenic B cell lysates.  The movement of the 

BCR from the cell surface to the LAMP-1+ compartment was followed by 
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immunofluorescence microscopy (Fig. 2.1B).  Based on the cellular distribution pattern 

of the BCR and LAMP-1, cells were categorized into three groups: (1) BCR colocalizing 

with LAMP-1 extensively in the perinuclear region, (2) BCR remaining on the cell 

surface and periphery with no significant colocalization with LAMP-1, and (3) BCR 

partially colocalizing with LAMP-1.  The numbers of cells in these three categories were 

plotted as percentages of the total number of cells in the field (Fig. 2.1C).  After a 30 min 

chase at 37oC, the surface labeled BCR was extensively colocalized with the LAMP-1 in 

over 60% of wt splenic B cells, compared to just ~30% of Abp1-/- splenic B cells (Fig. 

2.1B-C).  In more than 60% of Abp1-/- splenic B cells, the BCR remained at the cell 

surface and periphery after a 30 min chase (Fig. 2.1B-C), indicating that Abp1-deficiency 

dramatically slowed BCR-mediated antigen transport.  This is further supported by the 

quantitative analysis of colocalization between the BCR and LAMP-1 staining. While 

BCR crosslinking increased the correlation coefficients between the BCR and LAMP-1 

in both wt and Abp1-/- splenic B cells, the increase in wt B cells was significantly greater 

than that in Abp1-/- B cells (Fig. 2.1D).  To analyze the effect of Abp1-deficiency on the 

kinetics of BCR internalization, the surface BCR of splenic B cells from both wt and 

Abp1-/- mice were labeled with biotin-F(ab’)2-anti-mouse IgM at 4°C and chased for 0, 2, 

5 and 20 min at 37°C.  Biotin-anti-mouse IgM remaining at the cell surface after the 

chase was detected with PE-streptavidin and quantified using flow cytometry.  As shown 

in Fig. 2.1E, Abp1-deficiency significantly decreased the kinetics of BCR internalization. 

Furthermore, Abp1-deficiency and F-actin depolymerization by latrunculin-treatment 

inhibited BCR internalization to a similar extent. These data demonstrate that Abp1-
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deficiency inhibits BCR-mediated antigen uptake, consequently reducing the rate of 

antigen transport to the antigen processing compartment. 

 

To determine which domain of Abp1 is important for BCR-mediated antigen transport, 

we introduced plasmids of myc-tagged full length Abp1 (myc-Abp1), two actin binding 

domains (ABDs), myc-Abp1 with two tyrosine phosphorylation sites mutated 

(Y337FY347F), PRD and SH3 domains (PRD-SH3), or SH3 domain (SH3) of Abp1 (70) 

into A20 B cells by transient transfection (Fig. 2.2A).  The movement of the BCR from 

the cell surface to late endosomes was analyzed using immunofluorescence microscopy.  

After 30 min chase, the BCR in more than 50% of cells that underwent electroporation 

but did not express proteins from transfected plasmids colocalized with LAMP-1 

extensively in the perinuclear location (Fig. 2.2A-B).  Overexpression of full-length myc-

Abp1, myc-Abp1 ABDs, or myc-Abp1 Y337FY347F did not alter the extent of the 

colocalization between the BCR and LAMP-1 (Fig. 2.2Aa-Al and 2B), indicating that 

they had no significant effect on the movement of the BCR to the LAMP-1+ 

compartment.  In contrast, only 10-20% of cells that expressed myc-Abp1 PRD-SH3 or 

myc-Abp1 SH3 showed colocalization of the BCR with LAMP-1, and in ~70% of those 

cells, the BCR remained on the cell surface and periphery, displaying no significant 

colocalization with LAMP-1 after the 30 min chase (Fig. 2.2Am-At and 2.2B).  This 

indicates that over expression of the SH3 domain of Abp1 inhibits the movement of the 

BCR from the cell surface into late endosomes and suggests a role for the SH3 domain of 

Abp1 in BCR-mediated antigen transport.  
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FIGURE 2.1. Abp1 gene knockout reduces the rates of BCR internalization and 

movement from the plasma membrane to late endosomes.   

(A) Abp1 gene knockout in mice was confirmed using PCR (top panel) and Western blot 

(bottom panel).  (B) Splenic B cells from wt and Abp1-/- mice were incubated with Alexa 

Fluor (AF)-488-F(ab’)2-goat anti-mouse IgM at 4oC for labeling and crosslinking the 

surface BCR and then chased at 37oC for 30 min.  Cells were fixed, permeabilized, and 

labeled with anti-Abp1, anti-LAMP-1, and fluorochrome-conjugated secondary 

antibodies.  Cells were analyzed using a confocal fluorescence microscope. Shown are 

representative images of three independent experiments.  Bar, 5 μm.  (C) Cells were 

categorized by visual inspection into three different categories: cells showing extensive 

colocalization, no colocalization, and partial colocalization between the BCR and LAMP-

1.  Cells from more than ten randomly selected fields containing at least 15 cells per field 

from three independent experiments were inspected.  Shown are the average percentages 

(±S.D.) of cells in each of the three categories.  **, p<0.01. (D) Shown are correlation 

coefficients between the staining of the BCR and LAMP1 in ~100 individual cells of 

three independent experiments. Black bars represent mean correlation coefficients. *, 

p<0.05, paired 2 tailed student t test of mean correlation coefficient from six fields of 

view from three independent experiments. (E) The surface BCR was labeled with biotin-

F(ab’)2-goat anti-mouse IgM at 4oC and chased at 37oC for indicated times.  Biotin-anti-

mouse IgM left on the surface after the chase was detected by PE-streptavidin and 

quantified using a FACS Calibur.  For latrunculin (LAT) treatment, cells were incubated 

with 5 μM latrunculin before and during the analysis. The data were plotted as the 
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percentages of the surface-labeled BCR at time 0.  Shown are the averages (±S.D.) of 

three independent experiments. *, p<0.05, **, p<0.01. 
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FIGURE 2.2. The effect of over expression of Abp1 domains and mutants on the 

movement of the BCR from the cell surface to late endosomes.  

 (A) B cell lymphoma A20 cells were transiently transfected with myc tagged full-length 

protein of Abp1 (Abp1), Abp1 with its two tyrosine phosphorylation sites mutated 

(Y337FY347F), actin-binding domains (ABDs), PRD and/or SH3 domains (PRD-SH3 

and SH3) of Abp1.  Twenty-four hours after transfection, cells were labeled with AF488 

goat anti-mouse IgG for 20 min at 4oC and chased for 30 min at 37oC.  Cells were fixed, 

permeabilized, and labeled with anti-myc antibody for myc-Abp1 and anti-LAMP-1 mAb 

for late endosomes.  Arrows indicate cells expressing transfected proteins.  Bar, 10 μm.  

(B) Cells were categorized by visual inspection into three different categories as 

described in Fig. 2.1.  Shown are the average percentages (±S.D.) of cells in each of the 

three categories from three independent experiments.  **, p<0.01 
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2.4.2 B cells with Abp1-deficiency are defective in BCR-mediated antigen 

presentation 

The inhibitory effect of Abp1 deficiency on BCR internalization and transport to late 

endosomes suggests a reduced efficiency of antigen processing and presentation in Abp1-

/- splenic B cells.  To test this hypothesis, we determined the antigen processing and 

presentation efficiency of mouse splenic B cells using an Eα peptide (a.a. 52-68)-red 

fluorescent protein (EαRFP) chimera as the antigen.  To follow BCR-mediated antigen 

processing and presentation, we targeted EαRFP to the BCR using an antibody complex.  

The specific internalization and delivery of EαRFP by the BCR to late endosomes was 

confirmed by flow cytometry and immunofluorescence microscopy respectively (data not 

shown).  Eα peptide-loaded MHC class II I-Ab complexes (Eα-I-Ab) were detected using 

Y-Ae mAb (150, 151), indicating levels of antigen presentation.  Splenic B cells were 

incubated with different concentrations of EαRFP alone for pinocytosis-mediated antigen 

processing or EαRFP plus the antibody complex for BCR-mediated antigen processing at 

37oC for 10 min to allow antigen internalization, and then washed and incubated at 37oC 

for 14 h.  The surface Eα-I-Ab staining levels were quantified by flow cytometry.  The 

surface Eα-I-Ab level of wt splenic B cells incubated with the antigen-antibody complex 

was significantly higher than those incubated with EαRFP alone (Fig. 2.3A-B), indicating 

a higher efficiency of BCR-mediated antigen processing and presentation than that of 

non-specific mechanisms.  In addition, the level of surface Eα-I-Ab on wt splenic B cells 

that were incubated with the antigen-antibody complex increased with the concentration 

of the complex (Fig. 2.3B).  In comparison with wt splenic B cells, the surface Eα-I-Ab 

level in Abp1-/- B cells was significantly lower and did not increase with the 
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concentration of the antigen-antibody complex (Fig. 2.3A-B).   BCR crosslinking 

increased the surface levels of MHC class II in both wt and Abp1-/- splenic B cells, and 

Abp1-/- B cells showed MHC class II expression levels similar to wt B cells before and 

after BCR crosslinking by the antigen-antibody complex (Fig. 2.3C).  These results 

indicate that the decrease in surface Eα-I-Ab levels was not the result of decreased I-Ab 

expression.  These data indicate that Abp1-deficiency decreases the efficiency of BCR-

mediated antigen processing and presentation. 

 

2.4.3 BCR activation induces recruitment of Abp1 to the plasma membrane and 

the internalizing BCR 

To examine the relationship of Abp1 with BCR signaling pathway, we analyzed the 

cellular redistribution of Abp1 in response to BCR activation in both A20 and splenic B 

cells using immunofluorescence microscopy. B cells were activated via incubation with 

crosslinking antibody for 2 and 10 min at 37°C, fixed, permeabilized, and labeled with an 

antibody specific for Abp1.  In the absence of BCR crosslinking, Abp1 was primarily 

located in the cytoplasm (Fig. 2.4Aa-b, and 2.4Ca).  BCR crosslinking for 2 min led to a 

redistribution of Abp1 to the cell surface (Fig. 2.4Af-g, and 2.4Ce).  Nearly 55% of the 

A20 B cells showed this redistribution after 2-min of activation, compared to only 10% 

of the unstimulated cells (Fig. 2.4B).  By 10 min, Abp1 began returning to the cytoplasm 

(Fig. 2.4Ak-l, and 2.4Ci). Such redistribution from the cytoplasm to plasma membrane in 

response to BCR activation was observed with both transfected myc-Abp1 and 

endogenous Abp1 in A20 and splenic B cells (Fig. 2.4A-C), showing that transfected 

myc-Abp1 behaved in a similar manner to the endogenous Abp1. 
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FIGURE 2.3. B cells from Abp1 knockout mice are defective in Antigen processing 

and presentation.   

(A) Splenic B cells from wt (filled) and Abp1-/- (dotted) mice were incubated at 37oC for 10 

min with EαRFP (1 μg/ml) alone (gray line) or with the antibody complex that targets 

EαRFP to the BCR.  Cells were washed and incubated at 37oC for 14 h.  Eα peptide-loaded 

MHC class II I-Ab complexes on the cell surface were detected using anti-Y-Ae mAb and 

quantified using flow cytometry.  (B) Splenic B cells from wt (open squares) and Abp1-/- 

(closed squares) mice were incubated with different concentrations of EαRFP alone or 

EαRFP-antibody complexes as described in A.  Splenic B cells from wt mice were incubated 

with different concentrations of EαRFP alone (triangles).  Cells were stained and analyzed as 

described above.  Shown are the averages (±S.D.) of mean fluorescence intensity of Y-Ae 

staining from three independent experiments.  **, p<0.01.  (C) The expression levels of 

MHC class II I-Ab of splenic B cells from wt (solid line) and Abp1-/- (dotted lines) mice 

before (-XL) and after (+XL) exposure to EαRFP-antibody complexes were measured using 

flow cytometry.
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To examine the cellular distribution of Abp1 relative to the antigen bound BCR, the 

surface BCR in both A20 and splenic B cells were labeled and cross-linked at 4oC and the 

cells were warmed up to 37°C for 2 and 10 min.  After fixation and permeabilization, 

myc-Abp1 and endogenous Abp1 was labeled with anti-myc mAb and anti-Abp1 

antibody, respectively.  Before the cells were warmed to 37oC, Abp1 was primarily 

localized in the cytoplasm, and there was little colocalization of the cytoplasmic Abp1 

with the surface BCR observed (Fig. 2.4Ab-e and 2.4Ca-d).  After 2-min incubation at 

37oC, we observed a dramatic increase in the colocalization of Abp1 with the BCR at the 

cell surface (Fig. 2.4Ag-j mad 2.4Ce-h), suggesting that Abp1 was recruited to the 

surface BCR in response to the stimulation.  By 10 min, when some of the BCR had been 

internalized and moved to late endosomes, Abp1 began moving back to the cytoplasm, 

however, some remained colocalized with the intracellular BCR (Fig. 2.4Al-o and 2.4Ci-

l).  The correlation analysis of splenic B cells showed an increase in the colocalization of 

Abp1 with the BCR at 2 min after BCR crosslinking, and this colocalization declined at 

later time points (Fig. 2.4D).  These results showed that BCR stimulation induced the 

recruitment of Abp1 to the surface and internalizing BCR. 
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FIGURE 2.4. BCR activation induces the redistribution of Abp1 to the plasma 

membrane.  

 (A and C) A20 (A) and splenic B cells (C) were treated (+XL) or untreated (-XL) with 

either goat anti-mouse IgG (Aa, Af, and Ak) or AF488 goat-anti-mouse IgG (Ab-e, Ag-j, 

Al-o and C) at 4oC and chased at 37oC for indicated times.  After fixation and 

permeabilization, cells were labeled with anti-Abp1 antibody for the endogenously 

expressed Abp1 (Aa, Af, Ak, and C) or anti-myc antibody for myc-Abp1 (Ab-e, g-j, and l-

o).  Cells were analyzed using a confocal fluorescence microscope.  Shown are 

representative images from three independent experiments.  Bar, 5 μm.  (B) The 

redistribution of endogenous Abp1 and myc-Abp1 from the cytoplasm to the cell surface 

after BCR crosslinking for 2 min was quantified by visual inspection.  Over 100 cells 

from five randomly selected fields of each experiment were analyzed, and the numbers of 

cells showing Abp1 concentrated on the cell surface were plotted as percentages of the 

total number of cells inspected.  Shown are averages (±S.D.) from three independent 

experiments. * p<0.05, ** p<0.01. (D) The correlation coefficients of endogenous Abp1 

with the BCR in splenic B cells before and after BCR crosslinking was determined using 

the LSM510 software. Shown are the data generated from >100 cells of two independent 

experiments. Black bars indicate the mean.  ** p<0.01, paired two tailed student t test of 

mean correlation coefficient of 6 fields of view from two independent experiments.
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2.4.4 BCR-induced redistribution of Abp1 depends on BCR-induced tyrosine 

phosphorylation of Abp1 

Abp1 has been reported to undergo tyrosine phosphorylation at Y337 and Y347 in 

response to BCR stimulation (114).  To test whether BCR-induced tyrosine 

phosphorylation of Abp1 is related to its cellular distribution, we followed the time 

course of the tyrosine phosphorylation of endogenous Abp1 and transfected myc-Abp1.  

Untransfected A20 B cells and A20 B cells that were transfected with full length myc-

Abp1 were activated for indicated times by crosslinking the BCR.  Cells were lysed, and 

the cell lysates were subjected to immunoprecipitation using anti-Abp1 antibody for 

endogenous Abp1 or anti-myc mAb for transfected myc-Abp1.  The immunoprecipitates 

were analyzed by SDS-PAGE and Western blot, probing for phospho-tyrosine.  As 

shown in Fig. 2.5A, crosslinking of the BCR increased the tyrosine phosphorylation of 

endogenous Abp1 as early as 2 min and this increase appeared to be sustained at least for 

30 min (Fig. 2.5A, top panels).  Similarly, BCR crosslinking induced the tyrosine 

phosphorylation of myc-Abp1.  This phosphorylation peaked at 2 min, but rapidly 

decreased to undetectable levels by 10 min (Fig. 2.5A, bottom panels).  These results 

show that BCR crosslinking increases tyrosine phosphorylation of Abp1 at a time 

corresponding to BCR-induced redistribution of Abp1.  

 

To test whether BCR-induced tyrosine phosphorylation of Abp1 is important for its 

cellular redistribution, we determined the effect of mutations of Abp1 tyrosines 337 and 

347 into phenylalanines (Abp1 Y337F/Y347F) on the cellular redistribution of Abp1.  

The DNA construct of myc-Abp1 Y337FY347F was introduced into A20 B cells by 
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FIGURE 2.5. BCR-induced cellular redistribution of Abp1 is dependent on BCR-

induced tyrosine phosphorylation of Abp1.   

(A) Untransfected A20 B cells (top) and A20 B cells transfected with myc-Abp1 (bottom) 

were treated (+XL) or untreated (-XL) with goat-anti-mouse IgG for varying lengths of 

time to activate the BCR.  Then cells were lysed, and endogenous Abp1 and myc-Abp1 

were purified from cell lysates by immunoprecipitation using anti-Abp1 and anti-myc 

antibodies, respectively.  The immunoprecipitates were analyzed by SDS-PAGE and 

Western blot, probing with anti-phosphotyrosine mAb (4G10).  The blots were stripped 

and reblotted with anti-Abp1 or anti-myc antibody.  Shown are representative blots of 

three independent experiments.  (B) A20 cells transiently transfected with wt myc-Abp1 

(Ba-Bb) and myc-Abp1 Y337F/Y347F (Bc-Bd) were treated (+XL) and untreated (-XL) 

with goat anti-mouse IgG for 2 min, and then fixed, permeabilized, and labeled with Cy3-

anti-myc mAb for myc-Abp1.  Cells were analyzed using a confocal fluorescence 

microscopy.  Shown are representative images of three independent experiments.  Bar, 10 

μm.  (C) Cells in images were quantified as described in Fig. 2.4B. Over 100 cells from 

three independent experiments were analyzed.  Shown are the averages (±S.E.) from 

three independent experiments. **, p<0.01.
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transfection and the cellular redistribution of expressed protein was analyzed by 

immunofluorescence microscopy in comparison to wt myc-Abp1 (Fig. 2.5Ba-Bd).  The 

percentage of wt myc-Abp1-expressing cells showing cell surface redistribution of Abp1 

increased from 20% to 80% after BCR crosslinking for 2 min (Fig. 2.5Ba-Bb and 2.5C).  

In contrast, there was no significant increase in the percentage of Abp1 Y337F/Y347F-

expressing cells showing the redistribution (Fig. 2.5Bc-Bd and 2.5C).  This indicates that 

the Abp1 redistribution depends on BCR-induced tyrosine phosphorylation of Abp1.  

 

2.4.5 BCR-induced Abp1 redistribution depends on the actin cytoskeleton 

BCR activation induces reorganization of the actin cytoskeleton (35, 87).  The presence 

of two ABDs in Abp1 implies that its cellular redistribution may rely on BCR-induced 

actin cytoskeleton reorganization.  To test this hypothesis, we analyzed the cellular 

distribution of Abp1 relative to F-actin and tested the effect of a G-actin sequestering 

agent latrunculin B on BCR-induced redistribution of Abp1.  In A20 B cells, myc-Abp1 

was colocalized with F-actin extensively with and without BCR activation (Fig. 2.6A).  

Both F-actin and endogenous Abp1 were located at the cell periphery and cytoplasm in 

unstimulated cells (Fig. 2.6Ba) and rapidly moved to the plasma membrane upon BCR 

activation (Fig. 2.6Bc).  In latrunculin-treated cells, Abp1 was primarily located in the 

cytoplasm with (Fig. 2.6Bd) or without BCR activation (Fig. 2.6Bb).  Latrunculin B 

treatment significantly decreased the number of cells showing BCR-induced 

redistribution of Abp1 (Fig. 2.6B-C).  These data indicate that BCR-induced Abp1 

redistribution is dependent on the actin cytoskeleton. 
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FIGURE 2.6.  BCR-induced Abp1 redistribution depends on the actin cytoskeleton.  

(A) A20 cells transiently transected with myc-Abp1 were incubated with (+XL) or 

without (-XL) goat anti-mouse IgG for 1 min.  After fixation and permeabilization, cells 

were labeled with AF488-phalloidin for F-actin and Cy3-anti-myc mAb for myc-Abp1.  

(B) A20 cells were pretreated with or without latrunculin (Lat) and activated in the 

presence or absence of Lat for 1 min.  Cells were labeled with anti-Abp1 antibody and 

AF488-conjugated secondary antibody and analyzed using a confocal fluorescence 

microscopy.  Shown are representative images of three independent experiments.  Bar, 10 

μM.  (C) Cells in images quantified as described in Fig. 2.4B, and shown are averages 

(±S.D.) from three independent experiments.  **, p<0.01 
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2.4.6 The interaction of Abp1 with dynamin 2 

The interaction of dynamin and Abp1 through their PRD and SH3 domains has been 

shown to be important for Tf internalization (70).  To examine the relationship between 

Abp1 and dynamin 2 in B cells, we followed the interaction of these two proteins by 

immunofluorescence microscopy, co-immunoprecipitation, and co-precipitation.  

Immunofluorescence microscopy studies showed that similar to Abp1, dynamin 2 was 

primarily distributed in the cytoplasm in the absence of stimulation.  In response to BCR 

crosslinking, dynamin 2 was recruited from the cytoplasm to plasma membrane where it 

colocalized with Abp1 (Fig. 2.7A).  The co-recruitment of dynamin 2 with Abp1 upon 

BCR activation suggests a potential interaction between Abp1 and dynamin 2.  To further 

test whether the interaction between the two proteins depends on their SH3 and PRDs, we 

co-transfected A20 B cells with myc-Abp1 and GFP-dynamin 2 (GFP-Dyn, Fig. 2.7Ba-l) 

or GFP-dynamin 2 with its PRD deleted (GFP-∆PRD, Fig. 2.7Bm-x) and followed the 

cellular distribution of these proteins by immunofluorescence microscopy.  Similar to 

endogenous dynamin 2, GFP-Dyn showed a cytoplasmic distribution in the absence of 

stimulation (Fig. 2.7Bc) and was recruited to the cell surface where it colocalized with 

myc-Abp1 and the BCR after crosslinking of the BCR for 5 min (Fig. 2.7Be-h).  By 30 

min, both proteins accumulated in the perinuclear region with the BCR (Fig. 2.7Bi-l).  In 

cells co-expressing myc-Abp1 and GFP-∆PRD, both proteins appeared to be in the 

cytoplasm without BCR activation (Fig. 2.7Bm-p).  Upon BCR crosslinking, both GFP-

∆PRD and Abp1 showed punctuate staining patterns (Fig. 2.7Br-t and 2.7Bv-x).  In 

contrast to what was observed in cells co-expressing GFP-Dyn and myc-Abp1, GFP-

∆PRD and Abp1 were neither recruited to the cell surface, nor colocalized with each 
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other (Fig. 2.7Bq-x).  The correlation analysis further showed that the colocalization 

coefficients between GFP-Dyn and myc-Abp1 were increased in response to BCR 

activation (Fig. 2.7C).  In contrast, there was no significant increase in the colocalization 

coefficients between GFP-∆PRD and myc-Abp1 following BCR activation (Fig. 2.7C). 

These results suggest that dynamin 2 interacts with Abp1 through its PRD. 

 

We further examined the interaction between dynamin 2 and Abp1 using co-

immunoprecipitation and GST-fusion protein co-precipitation.  The cell lysates from 

unstimulated and stimulated A20 B cells were subjected to immunoprecipitation using a 

polyclonal antibody specific for Abp1.  The presence of dynamin 2 in the Abp1 

immunoprecipitates was detected by a dynamin 2-specific antibody.  As shown in Fig. 

2.7D, dynamin 2 was detected in the Abp1 immunoprecipitates in the presence or 

absence of BCR activation, and dynamin 2 was absent only when anti-Abp1 antibody 

was omitted.  This result indicates a constitutive interaction between dynamin 2 and 

Abp1.  To further confirm that this interaction is mediated through the PRD of dynamin 2 

and the SH3 domain of Abp1, we used a GST fusion protein of dynamin 2 PRD (GST-

Dyn-PRD) to precipitate Abp1 from the lysates of cells expressing full length myc-Abp1 

and myc-Abp1 ABDs.  Similar to the co-immunoprecipitation of endogenous dynamin 2 

with Abp1, GST-Dyn-PRD co-precipitated similar amounts of myc-Abp1 from the lysate 

of A20 cells that were treated or untreated with BCR crosslinking antibodies (Fig. 2.7E), 

confirming the constitutive interaction of dynamin 2 with Abp1.  In contrast, GST-

dynamin-PRD failed to precipitate myc-Abp1 ABDs (Fig. 2.7E), indicating that the PRD 

and SH3 domains of dynamin and Abp1 are essential for their interaction.  These results  
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FIGURE 2.7.  Interaction of Abp1 with Dynamin 2.   

(A) A20 cells were incubated with (+XL) and without (-XL) goat anti-mouse IgG for 

indicated times, and then fixed, permeabilized, and labeled with anti-Abp1 and anti-

dynamin 2 antibodies and corresponding secondary antibodies. The cells were analyzed 

using a confocal fluorescence microscope.  Shown are representative images from three 

independent experiments.  Bar, 10 μm.  (B) A20 cells were co-transected with myc-Abp1 

and GFP-dynamin 2 (GFP-Dyn) (a-l) or GFP-dynamin 2 with PRD deletion (GFP-∆PRD) 

(m-x). The cells were incubated with (+XL) (e-l, q-x) and without (-XL) (a-d, m-p) goat 

anti-mouse IgG for indicated times, and then fixed, permeabilized, and labeled with Cy3-

anti-myc antibody to label myc-Abp1. The cells were analyzed by confocal fluorescence 

microscopy. Shown are representative images from three independent experiments. Bar, 

10 μm. (C) Shown are the correlation coefficients between myc-Abp1 and GFP-Dyn or 

GFP-ΔPRD in the cell surface area of >30 cells from three independent experiments. 

Black bars represent the mean correlation coefficient.  * p<0.05, paired two tailed student 

t test of mean correlation coefficient from three independent experiments. (D) A20 cells 

were treated or untreated (-XL) with BCR crosslinking antibody for indicated times.  The 

cells were lysed, and the cell lysates were subjected to immunoprecipitation using goat 

anti-Abp1 antibody.  The cell lysates and immunoprecipitates were analyzed using SDS-

PAGE and Western blot, probing for dynamin 2. The blots were stripped and reblotted 

with anti-Abp1 antibody as loading controls.  Shown are representative blots from three 

independent experiments.  (E) A20 cells transiently transfected with myc-Abp1 or myc-

Abp1 ADF-H were activated by crosslinking the BCR with goat anti-mouse IgG for 

indicated times and then lysed.  The cell lysates were incubated with GST-fusion of 
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dynamin PRD bound beads.  The cell lysates and precipitates were subjected to SDS-

PAGE and Western blot, probing for myc-Abp1.  The blots were stripped and reblotted 

with anti-GST antibody.  Shown are representative blots from two independent 

experiments.
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 further confirm that Abp1 and dynamin 2 may constitutively interact with each other 

through their SH3 and PRDs.  

 

2.5 Discussion 

This study revealed a critical role for Abp1 in BCR-mediated antigen processing and 

presentation.  Abp1 gene knockout and overexpression of the Abp1 SH3 domain reduced 

the rates of BCR-mediated antigen uptake, consequently reducing the rate of antigen 

transport to the antigen processing compartment and the efficiency of antigen processing 

and presentation.  B cells process and present antigens to acquire T cell help, which is 

essential for the induction of isotype switching, somatic hypermutation, and affinity 

maturation in B cells.  The BCR increases B cell antigen processing and presentation 

efficiency by binding to antigens with high specificity and affinity and by initiating rapid 

internalization and transport of antigens to antigen processing compartments.  This allows 

B cells to present specific antigens even when antigen concentrations are extremely low.  

A previous study showed defective antibody responses to T cell-dependent antigens and 

reduced T cell receptor-mediated signaling and T cell activation in Abp1-/- mice (123).  

Here, we discovered defects in antigen processing and presentation of Abp1-/- B cells.  

Lowering the efficiency of B cells to process and present antigens to T cells would 

decrease the sensitivity of T cell-dependent B cell activation, contributing to defective T 

cell-dependent antibody responses in Abp1-/- mice.  Abp1 contains two independent F 

actin-binding domains in the N-terminus, and a SH3 domain and a PRD or flexible 

domain in its C-terminus (114, 115, 118).  Its multiple protein-protein interacting 

domains enable Abp1 to interconnect different cellular apparatuses.  Previous studies 
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implicate Abp1 as an actin adaptor protein connecting the actin cytoskeleton to 

endocytosis machinery.  The null mutation of the yeast homologue of Abp1, Abp1p, 

resulted in defects similar to those seen in Rvs167/amphiphysin mutation, including 

sporulation and reduced viability under certain suboptimal growth conditions.  Double 

mutations in ABP1 and RVS167/amphiphysin genes or one of the genes encoding other 

cytoskeletal components were genetic lethal (152).  In mammalian cells, Abp1 has been 

shown to be essential for Tf receptor internalization (70, 148) and synaptic vesicle 

recycling (147).  Here, we showed that Abp1 was required for efficient BCR-mediated 

antigen internalization, further demonstrating an essential role for Abp1 in endocytosis.  

Previous studies have shown that Abp1 interacts directly with proteins of the endocytic 

machinery, including rvs167/amphiphysin in yeast (152) and dynamin in mammalian 

cells (70).  Both amphiphysin and dynamin are important for the membrane fission step 

of endocytosis (91, 153).  Furthermore, Abp1p was recruited to the endocytosis sites 

along with Arp2/3 and actin in yeast (146), suggesting a role for Abp1 in endocytic 

vesicle formation from the plasma membrane.  However, a recent study using Abp1-/- 

mice placed Abp1 function downstream of vesicle fission in synaptic vesicle recycling in 

hippocampal neurons (147).  Our previous studies showed that the dynamic properties of 

the actin cytoskeleton were required for BCR internalization at the fission step of 

clathrin-coated vesicle formation (35).  Here we found that Abp1-deficiency and actin 

depolymerization inhibited BCR internalization to a similar extent.  Furthermore, Abp1, 

F-actin, and dynamin 2 were recruited to the BCR at the plasma membrane at the same 

time and appear to interact with each other.  These findings further support a role for 

Abp1 in clathrin-coated vesicle fission. 
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Unlike the constitutive internalization of Tf receptor, BCR internalization is triggered by 

antigen binding and is dependent on BCR-mediated signaling (40, 127-129).  Previously, 

our lab showed that BCR activation induced the recruitment of clathrin to the BCR and 

phosphorylation of clathrin within lipid rafts, both of which were required for BCR 

internalization (140).  In this study, we found that BCR activation induced the 

recruitment of Abp1 to the plasma membrane and to the internalizing BCR, suggesting 

that BCR signaling regulates the function of Abp1.  Indeed, our data revealed that BCR 

activation induced tyrosine phosphorylation of Abp1 and that this phosphorylation was 

required for the recruitment of Abp1 to the cell surface and BCR.  Abp1 colocalized with 

cortical F-actin, and BCR-induced recruitment of Abp1 to the cell surface depended on 

the actin cytoskeleton.  These data indicate that BCR signaling can regulate the 

subcellular location of Abp1 through the tyrosine phosphorylation of Abp1 and the 

reorganization of the actin cytoskeleton.  This is in line with a previous study showing the 

translocation of Abp1p from the perinuclear region to the leading edge of cells in a 

pattern that overlaps with Arp2/3 complex localization in response to activation of the 

GTPase Rac (115).  The finding of a synchronized cellular reorganization of the actin 

cytoskeleton, Abp1 and dynamin 2 in response to BCR stimulation suggests that BCR 

signaling regulates the interaction of Abp1 with the actin cytoskeleton and dynamin 2.  

The interaction of Abp1 with dynamin during clathrin-mediated endocytosis has been 

previously reported (70).  Here, we demonstrate this interaction in B cells by co-

immunoprecipitation and GST fusion protein co-precipitation.  While the interaction 

between Abp1 and dynamin 2 appeared to be constitutive, our observation of co-
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recruitment of Abp1 and dynamin 2 to the plasma membrane following BCR activation 

indicates that BCR signaling regulates the subcellular location where Abp1 and dynamin 

2 interact.  

 

Another possible mechanism through which Abp1 functions in endocytosis is by 

regulating the dynamics of the actin cytoskeleton.  In yeast, Abp1p recruits Arp2/3 

complexes to the sites of actin filaments and is required for Arp2/3 complex activation in 

vitro (116).  Over expression of Abp1p in yeast causes severe defects in cellular actin 

organization (144).  Pinyol et al. (145) recently showed that Abp1 directly interacted with 

N-WASP, an activator of Arp 2/3 complex, and activated N-WASP in cooperation with 

Cdc42, suggesting that Abp1 may regulate the actin cytoskeleton indirectly through N-

WASP. However, obvious defects in the actin cytoskeleton have not been observed in 

Abp1-/- B cells and B cells over expressing Abp1 and its dominant negative mutants (data 

not shown).   

 

Abp1 has been shown to serve as a signaling regulator in T cells.  Abp1 is recruited to the 

immunological synapse formed between T cells and antigen-presenting cells (122) and 

regulates the distal signaling of the TCR, including the activation of HPK1, the MAP 

kinase JNK, and the transcription factor NFAT (118, 119, 123).  It is possible that Abp1 

plays a similar role in regulation of BCR signaling events, which may provide feedback 

signals from the actin cytoskeleton and endocytic machinery to the BCR-mediated 

signaling pathway.   
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This study demonstrates the role of Abp1 in coupling BCR signaling and antigen 

processing/presentation functions by interacting with BCR signaling, endocytic, and actin 

cytoskeletal apparatuses.  BCR activation induced Abp1 tyrosine phosphorylation and 

actin cytoskeleton reorganization, both of which are required for the recruitment of Abp1 

to BCR internalization sites.  Upon being recruited to the plasma membrane, the 

interaction of Abp1 with the actin cytoskeleton and endocytic proteins, such as dynamin 

2, drives BCR internalization.  Future studies will further examine the molecular 

mechanisms for interactions of Abp1 with BCR signaling, endocytic, and actin 

cytoskeletal apparatuses and regulatory mechanisms for these interactions. 
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Chapter 3: Dynamin is regulated by BCR signaling and is required for 

BCR internalization 

 

3.1 Abstract 

The binding of multi-valent antigens to the B cell antigen receptor (BCR) initiates signaling 

cascades, actin cytoskeleton reorganization and rapid internalization of the BCR-antigen 

complex for antigen processing.  BCR internalization has been shown to primarily take place 

via clathrin-mediated endocytosis.  Previous studies have demonstrated links among the actin 

cytoskeleton, BCR-mediated signaling and antigen uptake, however the molecular nature of 

such links has not been fully elucidated.  Here, I studied the role of dynamin 2, a GTPase 

required for the fission of clathrin-coated vesicles from the plasma membrane, in coupling 

BCR signaling, actin cytoskeleton, and BCR internalization.  It was found that BCR 

signaling induced the recruitment of dynamin 2 to the plasma membrane where it colocalized 

with the BCR and the actin cytoskeleton during BCR internalization.  A PRD deletion 

mutation abrogated this recruitment.  The recruitment of dynamin 2 to the plasma membrane 

was sensitive to PP2, a Src kinase inhibitor, but not latrunculin B which depolymerizes F-

actin.  While overexpression of dynamin 2 with a deletion of PRD did not significantly alter 

the organization of the actin cytoskeleton, it blocked BCR internalization and reduced the 

colocalization of the actin cytoskeleton with the BCR and dynamin 2.  These results indicate 

that BCR-triggered signaling regulates the subcellular location of dynamin 2, and dynamin 2 

is essential for BCR-mediated antigen uptake. 
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3.2 Introduction. 

In naïve B cells, prior to crosslinking with antigen, the BCR is constitutively internalized 

via clathrin mediated endocytosis (CME) and recycles through the early endosome back 

to the cell surface (130). When the BCR encounters an antigen, oligomerization of the 

BCR by antigens leads to tyrosine phosphorylation of the Ig α/Ig β heterodimer, the 

signaling component of the BCR complex that is non-covalently bound to membrane 

immunoglobulin (6). The BCR then initiates signaling cascades that lead to the 

transcription and translation of genes required for B cell activation.  In addition, BCR-

triggered signaling facilitates the internalization of the BCR-antigen complex and the 

targeting of the complex to the antigen-processing compartment also called the MIIC 

compartment (154).  In the MIIC compartment, antigens are fragmented and loaded unto 

the MHC class II complex and eventually presented on the surface of B cells to engage 

cognate T cells (14).   

 

Previous studies from our lab and others have demonstrated that crosslinking of the BCR 

increases the antigen processing and presentation efficiency of B cells by increasing the 

kinetics and specificity of antigen uptake and transport to the MIIC.  This allows B cells 

to effectively present an antigen even at very low concentrations of antigen and during a 

very short antigen exposure (127, 154).  BCR signaling and antigen processing have been 

shown to be interrelated.  Tyrosine kinase inhibitors that block BCR signaling were 

shown to inhibit accelerated antigen transport and also reduce the antigen-presenting 

efficiency of B cells (40, 129).  We showed previously that crosslinking the BCR induced 
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the recruitment of clathrin to the cell surface, where it colocalized with BCR-containing 

vesicles, and the tyrosine phosphorylation of clathrin in lipid rafts (33).   

 

The actin cytoskeleton has long been suspected of having a role in the generation of 

CME. It has been observed that F-actin was actively recruited to newly formed clathrin-

coated vesicles just at the point of detachment from the plasma membrane, which raises 

the possibility that the actin cytoskeleton may have a role in the membrane fission step of 

CME (55, 155, 156). However, the use of various actin-disrupting agents has given 

conflicting results. In some systems, disrupting the actin cytoskeleton actually enhanced 

endocytosis (157).  This is probably due to a barrier activity of cortical actin at the 

plasma membrane which inhibits the inward movement of clathrin-coated vesicles.  

Research by our lab and others is beginning to reveal a role for the actin cytoskeleton in 

BCR-mediated activation of B cells.  Previous studies showed that antigen binding 

induced the translocation of the BCR and tyrosine kinases Lyn and Syk to the detergent-

insoluble cytoskeletal fractions (133-135), reorganization of the actin cytoskeleton (90, 

136-139), and transient increases in F-actin levels in B cells (35, 87).  We have 

previously shown that the dynamic property of the actin cytoskeleton was required for 

signal-stimulated BCR internalization.  BCR endocytosis is blocked at the pinching-off 

step during clathrin-coated vesicle formation in the absence of a functional actin 

cytoskeleton. Allam et al. (35) has revealed a role for the B-lymphocyte associated 

adaptor protein (Bam 32) in BCR-meditated actin reorganization. Bam32 was recruited to 

the BCR and F-actin rich areas of cells in response to BCR activation and regulated 

BCR-triggered actin polymerization through interactions with the Rho-family GTPase 
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Rac1 (85, 86, 88). Although these recent studies have provided evidence for the 

involvement of the actin cytoskeleton in BCR endocytosis, the molecular link between 

the actin cytoskeleton and BCR internalization pathway remains to be defined.  Previous 

studies have revealed a number of proteins that might play a role in connecting the actin 

cytoskeleton to CME. Some of the proteins that are capable of binding both F-actin and 

proteins involved in CME include Huntington-interacting protein-1 (71), cortactin, (69, 

108, 156), actin binding protein 1 (Abp1) (70, 158), and Myosin VI (159).  

 

Dynamin is a GTPase that is involved in pinching off vesicles in a number of membrane 

processes (91).  Dynamin is composed of multiple domains, including a PH domain that 

binds to PI(4,5)P on the plasma membrane, a GTPase domain that provides a signal for 

membrane fission, and a PRD that binds to an ever expanding list of SH3 domain-

containing proteins (63). As a GTPase, dynamin provides mechanical force that constricts 

the neck of nascent endocytic vesicles (160). Recently dynamin has also been shown to 

be involved in connecting the actin cytoskeleton to the clathrin-mediated endocytosis 

pathway (63, 161). Although there is no evidence for a direct interaction between 

dynamin and F-actin, dynamin has been shown to interact with a number of proteins that 

interact with the actin cytoskeleton (63).  In T cells, dynamin has been shown to be 

important for actin reorganization at the immunological synapse that is formed between a 

T cell and an antigen-presenting cell. Dynamin knockdown inhibited T cell antigen 

receptor-triggered signal transduction, probably due to the failure of formation of the 

immunological synapse (100).  Unsworth et al. showed that dynamin is required for the 

formation of actin-based pedestals in enteropathogenic E.coli-infected epithelial cells 
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(112), implying a role in regulating the actin cytoskeleton, in addition to linking the actin 

cytoskeleton to the endocytic machinery. 

 

Here I studied the role of dynamin in BCR-mediated antigen uptake and showed that BCR 

internalization requires dynamin. In response to BCR activation, dynamin 2 was recruited to 

the plasma membrane, the internalizing BCR, and the actin cytoskeleton, and this recruitment 

was dependent on the PRD of dynamin and BCR-triggered signaling, but not the actin 

cytoskeleton.  

 

3.3 Materials and Methods 

3.3.1 DNA constructs and transfection.    

B cell lymphoma A20 IIA1.6 cells (H-2d, IgG2a
+, FcγRIIB-) were cultured at 37oC in DMEM 

supplemented with 10% FBS.  The DNA constructs for GFP fusion protein of dynamin 2aa 

(GFP-Dyn) and dynamin 2aa mutant with its PRD deleted (GFP-Dyn ∆PRD) were kindly 

provided by Dr. Mark McNiven, (Mayo Clinic, Rochester), and the DNA construct of GFP 

fusion protein of actin (GFP-actin) was obtained from Clonetech. DNA constructs were 

introduced into A20 B cells by electroporation using Nucleofection kit (Amaxa, 

Gaithersburg, MD). 
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3.3.2 Analysis of the movement of the BCR from the cell surface to late 

endosomes.  

A20 B cells, untransfected or transfected with either GFP-Dyn or GFP-Dyn ∆PRD, were 

incubated with Alexa Fluor (AF) 546-conjugated F(ab’)2-goat anti-mouse IgG (Invitrogen,  

Carlsbad, CA) for 20 min at 4oC to label the surface BCR.  Cells were washed and then 

adhered to poly-lysine-coated slides (Sigma-Aldrich) for 20 min at 4oC and then chased at 

37oC for varying lengths of time to allow for the internalization of the BCR.  At each time 

point, cells were fixed with 4% paraformaldehyde, permeabilized with 0.05% saponin in 

DMEM, 10%FBS, 10mM Hepes and 10mM glycine, and incubated with a mAb specific for 

lysosome-associated membrane protein 1 (LAMP-1) (ID4B, ATCC, Manassas, VA) and an 

AF633-conjugated secondary antibody.  Cells were mounted with gel mount (Biomeda, 

Foster City, CA) and analyzed using a laser-scanning confocal microscope (LSM 510; Zeiss, 

Oberkochen, Germany).  For quantitative analysis of images, the cellular distribution of the 

BCR was divided into two different categories:  the BCR mainly distributed on the cell 

surface without colocalization with LAMP-1 or extensively colocalized with LAMP-1 at the 

perinuclear region of cells.  Cells were categorized by visual inspection to determine the 

localization pattern of the BCR.  Over 100 cells from three independent experiments were 

analyzed for each time point.  

 

3.3.3 Analysis of BCR internalization.   

A20 B cells, untransfected or transfected with either GFP-Dyn or GFP-Dyn ∆PRD, were 

incubated with biotinylated goat anti-mouse IgG (20 µg/ml; Jackson ImmunoResearch) for 

30 min at 4oC to label the surface BCR.  After washing off unbound antibodies, cells were 
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chased at 37oC for varying lengths of time.  The chase was terminated by adding ice-cold 

DMEM containing 6 mg/ml BSA (DMEM-BSA).  The biotinylated antibodies remaining on 

the cell surface after the chase were stained with PE-streptavidin (5 µg/ml; Qiagen, Valencia, 

CA) at 4oC.  The cells were then fixed with 2% paraformaldehyde and analyzed using a flow 

cytometer (FACSCalibur, BD Bioscience, San Jose, CA).  GFP-expressing cells were gated 

for analysis. The data was plotted as a percentage of the mean fluorescence intensity of cell-

surface PE-streptavidin at time 0. 

 

3.3.4 Analysis of cellular distributions of BCR, F-actin, and dynamin 2.  

Untransfected A20 B cells or A20 cells transfected with either GFP-Dyn or GFP-Dyn ∆PRD 

were incubated with Cy3 (Jackson ImmunoResearch) or AF 633 (Invitrogen)-conjugated Fab 

fragment of goat anti-mouse IgG (5 µg/ml) for 10 min at 4oC to label the surface BCR, 

followed by rabbit anti-mouse IgG (20 µg/ml, Jackson ImmunoResearch) for indicated times 

at 37oC to crosslink the BCR.  Cells were fixed with 4% paraformaldehyde, permeabilized 

and stained with anti-dynamin antibody (BD biosciences) followed by AF488-anti-mouse 

IgG1 as a secondary antibody for endogenous dynamin 2. AF 555-phalloidin (Invitrogen) was 

used to stain for F-actin in GFP-Dyn transfected cells.  Cells were analyzed using a confocal 

fluorescence microscope.   

 

3.3.5 Live cell imaging.  

GFP-actin, GFP-Dyn, or GFP-Dyn ∆PRD were introduced into A20 B cells by 

electroporation using Nucleofection kit (Amaxa). 24 hours after transfection, cells were 
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placed into chambered polylysine (10 µM)-coated cover glasses (Nalge Nunc Int. Rochester, 

NY) and incubated at 37°C, 5% CO2 for 30 min. Cells were then incubated with Cy3-Fab-

goat anti mouse IgG (5 μg/ml; Jackson ImmunoResearch) at room temperature for 10 min, 

washed with 1%FBS in PBS. Cells were activated by crosslinking the BCR with rabbit-anti-

mouse IgG (20 μg/ml; Jackson ImmunoResearch) and images were acquired every 3 

seconds. Some of the images were acquired using the Zeiss LiveDUO confocal microscope 

while other images were obtained using the Zeiss LSM510.  

 

3.4 Results 

3.4.1 BCR crosslinking induces the recruitment of Dynamin 2 to the plasma 

membrane and to the BCR.   

BCR crosslinking has been shown to increase the phosphorylation of clathrin and induce 

its recruitment to the cell surface where it colocalizes with the BCR (33). Dynamin 2 has 

also been shown to recruit to nascent clathrin-coated vesicles prior to the scission event 

during CME (55). To test whether dynamin 2 is regulated by BCR activation, we 

monitored the cellular distribution of dynamin 2 after BCR crosslinking using 

immunofluorescence microscopy.  The surface BCR of A20 B cells were labeled with 

Cy3-conjugated Fab fragment of goat anti-mouse IgG and cross-linked by rabbit-anti-

mouse IgG for varying lengths of time. After fixation and permeabilization, cells were 

stained for dynamin 2. Prior to BCR crosslinking, dynamin 2 was distributed mainly in 

the cytoplasm (Fig. 3.1Aa-c). Ten minutes after BCR crosslinking, dynamin 2 had 

redistributed from the cytoplasm to the cell periphery where it colocalized with the BCR 
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(Fig. 3.1Ad-f). 30 min after BCR crosslinking we observed that dynamin 2 still remained 

colocalized with the clustered BCR in the perinuclear region of the cell (Fig. 3.1Ag-i). 

Using A20 cells expressing GFP-Dyn or GFP-Dyn ∆PRD mutant, I examined BCR-

induced dynamin 2 redistribution in live cells.  The BCR on transfected cells was labeled 

with Cy3-Fab-anti-mouse IgG and cross-linked with anti-mouse IgG. Cells were imaged 

before and after BCR crosslinking. Similar to what was seen with the endogenous 

dynamin in fixed cells, prior to BCR crosslinking, GFP-Dyn 2 was evenly distributed in 

the cytoplasm (Fig. 3.1Ba), 2 min after BCR crosslinking GFP-Dyn was colocalized with 

the BCR in discrete spots near the plasma membrane (Fig. 3.1Bb).  Surprisingly, while 

the surface labeled BCR underwent characteristic clustering during its internalization, 

dynamin co-clustered with the BCR (Fig. 3.1Bc) and remained with the BCR while it 

moved inwards. This suggests that dynamin 2 remains with nascent endocytic vesicles 

following the internalization of the cargo, which has not been reported before.   By 15 

min GFP-Dyn still remained clustered with the BCR and seemed to accumulate with the 

BCR in the perinuclear region of the cell  (Fig.3.1Bd-Be). In contrast, GFP-Dyn ∆PRD 

mutant failed to redistribute to the cell surface in response to BCR crosslinking (Fig. 

3.1Bf – BJ).  These results show that dynamin 2 is recruited to the cell surface following 

BCR activation where it colocalizes with the BCR during BCR internalization and that 

the PRD of dynamin is required for its recruitment to the cell surface.  
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FIGURE 3.1. Dynamin colocalizes with the BCR following BCR crosslinking.  

(A) A20 B cells were incubated with Cy3-conjugated Fab-goat anti mouse IgG to label the 

BCR and rabbit-anti-mouse IgG to cross-link the BCR for indicated time points. Cells were 

fixed, permeabilized, and labeled with anti-dynamin mAb and a fluorochrome-conjugated 

secondary antibody.  Cells were analyzed using a confocal fluorescence microscope. Shown 

are representative images of three independent experiments.  Bar, 10 μm. (B) A20 B cells 

were transiently transfected with wt GFP-dynamin 2aa (GFP-Dyn) or GFP-dynamin 2aa 

∆PRD mutant (GFP-Dyn-∆PRD).  Twenty-four hours after transfection, the surface BCR 

was labeled with Cy3 Fab-goat anti-mouse IgG on chambered cover glasses and activated by 

crosslinking the BCR with rabbit anti-mouse IgG. Images were acquired every 3 sec with a 

confocal fluorescence microscope (Bar, 10 µm).  Shown are representative images of three 

independent experiments. 
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3.4.2 Dynamin 2 is important for BCR internalization.   

The role of dynamin in membrane fission events has been well established.  The GTPase 

mutation (K44A) and the PH deletion mutation of dynamin 2 have been shown to disrupt 

CME of  transferrin (162), EGFR (163) and the AT1 angiotensin receptor (164, 165). To 

investigate the role of dynamin in BCR internalization, we transiently transfected GFP 

tagged wt and the PRD-deleted mutant of Dynamin 2 into A20 B cells. The BCR of 

transfected B cells were labeled with Cy3-Fab-goat-anti-mouse IgG and crosslinked with 

rabbit-anti-mouse IgG. The internalization of the BCR was monitored using live cell 

imaging. Similar to untransfected cells, in cells that were transiently transfected with wt 

GFP-Dyn, the BCR clearly moved into the cell right after the recruitment of dynamin 2 to 

the cell surface (Fig. 3.1Ba-e).  However, the BCR failed to internalize in cells 

transfected with dynamin ∆PRD mutant (Fig.3.2Aa-d). Next, we further quantified BCR 

internalization in A20 cells transfected with wt GFP-dynamin or its ∆PRD mutant using 

flow cytometry. The surface BCR of A20 B cells were labeled with biotin-conjugated 

anti-mouse IgG at 4°C and chased for 0, 5 and 20 min at 37°C.  Biotin-anti-mouse IgG 

remaining at the cell surface after the chase was detected with PE-streptavidin and 

quantified using flow cytometry.  As shown in Fig. 3.2B, overexpression of GFP-Dyn 

∆PRD significantly decreased the kinetics of BCR internalization while overexpression 

of wt GFP-Dynamin 2 had no significant effect on BCR internalization.  This data 

demonstrates that dynamin 2 is required for BCR internalization, and the PRD of 

dynamin 2 likely plays an important role in BCR internalization although the non specific 

effect of overexpressing a mutant protein cannot be ruled out. 
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The movement of the BCR from the cell surface to the antigen-processing compartment 

was followed by immunofluorescence microscopy.  The surface BCR was labeled with 

Cy3-Fab-anti-mouse IgG at 4oC and activated with anti-mouse IgG at 37oC for varying 

lengths of time.  After fixation and permeabilization, the antigen-processing compartment 

was marked with anti-LAMP1 mAb.  Cells were analyzed by a confocal fluorescence 

microscope.  Based on the cellular distribution pattern of the BCR and LAMP-1, cells 

were categorized into two groups, BCR colocalizing with LAMP-1 extensively in the 

perinuclear region and BCR remaining on the cell surface and periphery with no 

significant colocalization with LAMP-1.  The numbers of cells in each category were 

plotted as percentages of the total number of cells in the field (Fig. 3.2D).  After a 30 min 

chase at 37oC, the surface labeled BCR was extensively colocalized with the LAMP-1 in 

over 60% of cells expressing wt GFP-Dyn, compared to just 40% of cells expressing 

GFP-Dyn ∆PRD (Fig. 3.2C-D).  These results indicate that dynamin 2 is required for the 

movement of the BCR from the cell surface to the antigen processing compartments and 

that the PRD of dynamin 2 may be important for this function. 

 

3.4.3 Dynamin regulates F-actin and BCR interaction following BCR crosslinking.  

To examine the relationship between the actin cytoskeleton and dynamin during BCR 

internalization, we monitored actin dynamics in live cells. GFP-actin was transiently 

transfected into A20 B cells.  GFP-actin-expressing cells were stained with Cy3-Fab-anti-
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FIGURE 3.2. The PRD of Dynamin is important for BCR internalization. 

 (A) The experiments are presented as freeze frames of selected time points from movies 

taken of  B cell lymphoma A20 cells transiently transfected with Dynamin 2aa ∆ PRD 

GFP.  Twenty-four hours after transfection, surface BCR was labeled with Cy3-

conjugated goat anti-mouse IgG on 4-well chambered cover glasses and activated by 

crosslinking the BCR with rabbit anti-mouse IgG. Images were obtained every 3 seconds 

with a Zeiss confocal microscope. (B) A20 cells were transiently transfected with GFP-

Dyn or GFP-Dyn ∆PRD. Twenty-four hours later the surface BCR was labeled with 

biotin-F(ab’)2-goat anti-mouse IgG at 4oC and chased at 37oC for indicated times.  Biotin-

anti-mouse IgG left on the surface was detected by PE-streptavidin and quantified using a 

FACS Calibur.  The data was plotted as the percentage of the labeled BCR remaining at 

the cell surface.  Shown are the averages (±S.D.) of three independent experiments. ** p< 

0.01. (C) A20 cells were transiently transfected with GFP-Dyn or GFP-Dyn ∆PRD.  

Twenty-four hours after transfection, cells were labeled with AF546-conjugated goat 

anti-mouse IgG for 20 min at 4oC and chased for 30 min at 37oC.  Immediately following 

the chase, cells were fixed, permeabilized, and labeled with anti-LAMP-1 mAb for late 

endosomes.  Arrows indicate cells expressing transfected proteins (Bar, 10 μm).  (D) 

Quantification of the effect of over expression of GFP-Dyn or GFP-Dyn ∆PRD on the 

cellular distribution of the BCR.  Cells were divided into two different categories: cells 

showing extensive colocalization between the BCR and LAMP-1 and those showing no 

colocalization.  Cells were categorized by visual inspection.  Shown are the averages 

(±S.D.) of over 100 cells randomly selected from three independent experiments and 

plotted as percentages of the total number of counted cells.  p <0.01.
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mouse IgG to label the BCR and treated with anti-mouse-IgG whole antibody to crosslink 

the BCR. The cellular distribution of GFP-actin and BCR was monitored in real time 

using a confocal fluorescence microscope (Fig. 3.3A-H). Prior to BCR crosslinking, 

GFP-actin was evenly distributed around the cytoplasm and showed some colocalization 

with the BCR (Fig. 3.3Aa). Upon BCR crosslinking, GFP-actin co-clustered with the 

BCR at a particular pole of the B cell (Fig. 3.3Ab).  The GFP-actin and BCR co-cluster 

increased in size over time and was sustained for about 20 min. This was followed by the 

BCR moving into the cell (Fig. 3.3Ac-h). Furthermore, GFP-actin remained colocalized 

with the BCR or located in the vicinity of the BCR when the BCR moved to the 

perinuclear location (Fig. 3.3Af-h). This revealed that BCR crosslinking mobilizes the 

actin cytoskeleton from the cytoplasm to the surface BCR, and the reorganized actin 

accompanies the BCR during its internalization and movement to the antigen processing 

compartments. We next examined the cellular distribution of dynamin 2 relative to GFP-

actin and the BCR. A20 B cells expressing either wt GFP-Dyn or its ∆PRD mutant were 

incubated with AF633-anti-mouse IgG for 10 min to label and cross-link the BCR.  After 

fixation and permeabilization, cells were stained with AF555-phalloidin for F-actin. It 

was observed that the both F-actin (red) and wt GFP-dynamin (blue) co-clustered with 

BCR (green) at the cell membrane (Fig. 3.3Ba-d). However, the co-clustering of F-actin 

and dynamin with the BCR was reduced in cells expressing GFP-Dyn ∆PRD (Fig. 3.3Be-

h). This result suggests that dynamin has the potential to play a role in directing the 

reorganization of the actin cytoskeleton to the BCR during BCR internalization. This 

hypothesis, however, remains to be tested fully. 
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FIGURE 3.3. Dynamin regulates F-actin and BCR interaction following BCR 

crosslinking.  

(A) B-cell lymphoma A20 cells were transiently transfected with GFP-Actin.  Twenty-

four hours after transfection, surface BCR was labeled with cy3 conjugated goat anti-

mouse IgG on 4 well chambered cover glasses and activated by crosslinking the BCR 

with rabbit anti-mouse IgG. Images were obtained every 3 seconds with a Zeiss confocal 

microscope, (bar, 10µm). Image shows freeze frames of selected time points and is 

representative of three independent experiments.  

(B). A20 cells transiently transfected with GFP-Dyn (a - d) or GFP-Dyn ∆ PRD (e - h) 

were activated with goat anti-mouse IgG for 10 min, and then fixed, permeabilized, and 

labeled with AF 555 Phalloidin to stain F-actin  Cells were analyzed using confocal 

fluorescence microscopy.  Shown are representative images of three independent 

experiments (Bar, 10 μm).
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3.5 Discussion   

Here I show that dynamin 2 is recruited to the cell surface in a BCR signaling-dependent 

manner and that this recruitment depends on the PRD of dynamin 2. I also show that 

deletion of the PRD of dynamin 2 has a dominant negative effect on the internalization of 

the BCR as well as disrupting the colocalization of F-actin with the BCR on the plasma 

membrane.   

 

The role of dynamin in CME has been clearly elucidated (55, 91, 166). Dynamin acts as a 

GTPase that is recruited to the neck of nascent clathrin-coated vesicles and helps to 

generate the force that pinches of the clathrin-coated vesicles (91, 92). Studies have 

shown that mutations in the GTPase domain (167) as well as the PH domain (94) of 

dynamin can disrupt CME. The PRD of dynamin is required for the recruitment of 

dynamin to the cell surface by interacting with amphiphysin and mutations of this domain 

don’t seem to have any effect on endocytosis (91, 94). On the contrary, mutations in the 

PRD of dynamin inhibited the dominant negative effect of a PH domain deletion 

dynamin mutant on endocytosis in Cos-7 cells (94). My data shows that in B cells, 

deletion of the PRD had a dominant negative effect on BCR internalization as well as 

trafficking to the late endosomes (Fig 3.2). This was relatively surprising considering 

previous data to the contrary in other systems like the findings from the previously stated 

Cos-7 cells. It is possible that overexpressing the ∆PRD mutant might disrupt BCR 

internalization by inhibiting the interaction between the actin cytoskeleton and the 

endocytic machinery of the B-cell.  The PRD of dynamin is required for interacting with 

the actin cytoskeleton by binding a number of proteins that interact with the actin 
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cytoskeleton (59, 63, 77). Overexpressing the SH3 domain of some of these proteins had 

a dominant negative effect on CME.  These proteins include amphiphysin (53), syndapin 

(76), intersectin (96) and Abp1 (70). Work in our lab by Bruce Brown has also shown an 

involvement of the actin cytoskeleton in BCR trafficking (35). In the presence of 

cytochalasin D, an agent that disrupts the actin cytoskeleton, there was a preponderance 

of deeply invaginated long necked clathrin-coated pits reminiscent of the expression of 

dynamin mutants that block endocytosis (168). Interestingly Bruce showed that 

constitutive internalization of the BCR as well as the internalization of transferrin (both 

via CME) did not seem to be affected by the disruption of the actin cytoskeleton, 

implying that an intact actin cytoskeleton is not required for this form of CME. This 

implies that the actin cytoskeleton is required for driving the rapid internalization of the 

BCR once it is crosslinked but is not required for the constitutive internalization of the 

BCR. This might help explain the obvious discrepancy between our data and that of 

others, that showed a lack of involvement of the PRD of dynamin in other cell systems 

(91, 94). In addition, I observed that actin co-localized with the BCR and stayed with the 

BCR during BCR internalization (Fig 3.3a and b). I also noticed that F-actin, BCR and 

GFP-Dynamin 2 colocalized at the cell surface during BCR internalization. When I 

expressed GFP-Dyn ∆PRD there was a marked reduction in the extent of colocalization 

between these proteins (Fig 3.3b), implicating the PRD of dynamin in the regulation of 

the interaction between actin and the internalizing BCR.  These observations provide 

further evidence that the observed defect in BCR internalization in the presence of the 

GFP-Dyn ∆PRD might be due to a disruption in the recruitment of the actin cytoskeleton 

to the nascent BCR containing vesicles. 
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 Another possibility is that the ∆PRD mutant might have an effect on the GTPase 

function of dynamin in generating scission at the plasma membrane. This event is 

dependent on its ability to oligomerize at the plasma membrane during CME (91, 92). 

The oligomerization of dynamin has some dependency on its PRD (169), although this is 

a primary function of the GED. It is, therefore, possible that overexpression of a PRD 

deletion mutant may competitively inhibit dynamin from forming spirals at the sites of 

endocytosis and thus inhibit its GTPase activity. GFP-Dynamin 2 ∆PRD may also be 

interfering with the interaction of dynamin oligomers at nascent CCVs with other SH3 

domain containing proteins that link dynamin to the endocytic machinery  during  BCR 

internalization (55, 166). Examples include amphiphysin(170) and endophilin (51, 171).  

 

It is important to point out that, unlike GFP-Dyn 2, we did not observe the recruitment of 

GFP-Dyn ∆PRD to the cell surface (Fig 3.1) during the internalization of the BCR, which 

implies that the inhibition of dynamin 2 may be occurring at sites other than the plasma 

membrane. One example is the Golgi where interactions between dynamin 2 and 

cortactin link the actin cytoskeleton to Golgi transport and is required for the transport of 

newly formed proteins from the trans-Golgi network (172).  

 

The recruitment of dynamin 2 to nascent CCVs has been shown to be dependent on the 

interaction of its PRD with the SH3 domain of amphiphysin (53) as well as the 

interaction of the PH domain with membrane phospholipids, notably PI(4,5)P (94, 95). 

Studies on sonicated plasma membranes of Cos-7 cells show that dynamin accumulates 

with CCPs, while a mutant with a disrupted PRD did not (101). The recruitment of 
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dynamin 2 in response to PDGF stimulation was shown by Mark McNiven to be 

dependent on the PRD of dynamin 2 via an interaction with cortactin, an activator of the 

actin cytoskeleton (173). Therefore the inhibition of dynamin recruitment in the absence 

of the PRD domain could be as a result of its inability to interact with amphiphysin or 

some other protein at the cell surface. This scenario is, however, yet to be tested and 

should be investigated in the future. It will also be interesting to test what role 

amphiphysin plays in BCR trafficking.  

 

The recruitment of dynamin could also be dependent on BCR signaling. Work in our lab 

in collaboration with the Brodsky lab had shown that clathrin is recruited to the cell 

surface upon BCR crosslinking and that this recruitment is dependent on BCR signaling-

mediated phosphorylation of clathrin (33). In addition, previous work in our lab had 

shown that the Src kinase inhibitor PP2 inhibited the BCR crosslinking mediated 

recruitment of dynamin to the cell surface, implying that dynamin recruitment may also 

be signaling-dependent (Brown, B.K. unpublished observations). Dynamin 2 is tyrosine 

phosphorylated at Y231 and Y597 in rat endothelial cell lines in response to albumin 

binding to its receptor gp60, where it colocalized with caveolin, and the phosphorylation 

was Src kinase-mediated (174). The recruitment of dynamin 2 to the plasma membrane 

has also been observed at the immunological synapse formed between a T cell and an 

antigen-presenting cell (100). In this study, the researchers did not find any evidence of 

dynamin phosphorylation before or after T cell stimulation and suggested that the 

recruitment of dynamin 2 to the immunological synapse is not dependent on dynamin 

phosphorylation(100). Whether dynamin 2 is phosphorylated in response to BCR 
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crosslinking and accounts for its recruitment to the plasma membrane is not known and 

would be a study to be considered in the future. 

 

BCR signaling could also direct dynamin recruitment via activation of Btk. BCR 

crosslinking leads to the activation of Btk.  Btk is involved in the synthesis of PIP2, the 

precursor of PIP3, by recruiting phosphatidylinositol-4-phosphate 5-kinase (PIP5K) 

which  synthesizes PIP2 (16). The binding of the PH domain of dynamin to PIP2 is one 

of the mechanisms that recruits dynamin to the cell surface (94, 175). It will be 

interesting to test this hypothesis first by observing the role of the PH domain of dynamin 

during BCR crosslinking and also testing whether Btk plays a role in dynamin 

recruitment. 

 

One intriguing observation we made was the colocalization of dynamin with the BCR for 

a sustained period of time during endocytosis. Dynamin 2 not only colocalized with the 

surface BCR, but also colocalized with BCR-positive vesicles moving inward (Fig.3.1).  

Recent reports by Merrifield et al. pointed to a transient involvement of dynamin in CME 

(55, 156). The significance of our observation is not yet known. One possibility is that 

dynamin remains associated with the newly formed vesicle in order to direct F-actin 

reorganization at or near the neck of the nascent CCV and thus position the vesicle for 

trafficking towards the cell interior as against a more random movement if actin was 

polymerizing all over the vesicle.  A similar hypothesis for actin directing the inward 

movement of the CCV had been proposed by Drubin et al. (157).  
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The results presented here demonstrate that dynamin plays an essential role in the 

internalization of the BCR and may be regulated by BCR crosslinking-mediated signaling 

events. Future work will focus on the effect of other domains of dynamin on BCR 

signaling as well as deciphering exactly how BCR signaling regulates dynamin function.  
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 Chapter 4: Abp1, an actin adapter protein, is important for 

optimal activation of JNK and ERK in response to BCR 

activation  

 

4.1 Abstract 

BCR crosslinking leads to the activation of signaling cascades that turn on transcription 

factors and the expression of genes required for B cell activation. Abp1 is an actin-binding 

adaptor protein that has been shown to be important in both clathrin-mediated endocytosis 

and signal transduction. In T cells, it regulates the activity of the MAP kinase, JNK, by 

interacting with HPK1, a MAP4K. Abp1 knockout mice have defective T-dependent 

antibody responses. In Chapter 2, we demonstrated a role for Abp1 in BCR-mediated antigen 

processing and presentation.  Here, we have studied the role of Abp1 in BCR signaling using 

Abp1 knockout and knock down approaches. In response to BCR crosslinking by antigen, 

splenic B cells from Abp1 knock out mice and A20 B cells transfected with Abp1 shRNA 

had higher levels of protein tyrosine phosphorylation than the wild type splenic B cells and 

untransfected A20 B cells.  While BCR-triggered ERK phosphorylation in Abp1-deficient B 

cells occurred sooner and for a much shorter duration than the wild type B cells, both Abp1 

knockout and knockdown significantly reduced BCR-induced phosphorylation of JNK.  

These data demonstrate a role for Abp1 in BCR-induced activation of the MAP kinases, ERK 

and JNK.
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4.2 Introduction 

Crosslinking of the BCR by antigen leads to  activation of signal transduction pathways that 

lead to the transcription and translation of proteins required for B cell proliferation (176). 

The initial event of activation is the phosphorylation of tyrosine residues in the ITAM of Igα 

and Igβ by Src-family kinases (6).  The phosphorylated ITAMs recruit and activate tyrosine 

kinases, Syk, and adaptor proteins (14). The kinases and adaptor proteins activate 

downstream effectors that include phospholipase Cγ2, phosphatidylinositol-3-kinase, and 

Ras, which leads to calcium mobilization and activation of the MAP kinases, including ERK, 

JNK and p38.  The MAP kinases activate a host of transcription factors (14).  

 

Recent studies have provided evidence for links between the actin cytoskeleton and signal 

transduction pathway.  In B cells, BCR-mediated signaling regulates the actin cytoskeleton.  

BCR crosslinking by antigen induces polymerization and subsequent depolymerization of F-

actin (35). The binding of antigen to the BCR triggers the phosphorylation and activation of 

Vav, a guanidine nucleotide exchange factor for a Rho-family GTPase, Cdc42, which 

regulates the actin cytoskeleton (177). The actin cytoskeleton has been shown to influence 

the signal transduction events in B cells. Our lab previously showed that perturbing the actin 

cytoskeleton with cytochalasin D did not inhibit BCR-induced protein tyrosine 

phosphorylation, but extended the duration of the phosphorylation.  Hao et al. recently 

showed that F-actin depolymerization by latrunculin alone led to ERK activation in CH27 B 

cell lines (87). This indicates a regulatory relationship between the actin cytoskeleton and 

signal transduction pathway and implies a possible role for actin adaptor proteins in linking 

the actin cytoskeleton to the BCR signal transduction pathway.   

 101



 

Abp1 is a 55 kDa adaptor protein composed of various protein-protein interaction domains 

including two N-terminal actin binding domains, a PRD or flexible domain, and a C-terminal 

SH3 domain (115). Its PRD contains two tyrosine phosphorylation sites, Y337 and Y347 

(114). Mammalian Abp1 is a homologue of the Abp1 protein first found in yeast, and yeast 

Abp1 has an important role in yeast endocytosis (178). Similarly, Abp1 has been shown to be 

important for transferrin endocytosis in mammalian cells (70). Yeast Abp1 can directly 

regulate the actin cytoskeleton by interacting with N-WASP.  However, a similar function for 

mammalian Abp1 has not been observed.  In Chapter 2 of this thesis, we have shown a role 

for Abp1 in BCR-mediated antigen internalization and antigen presentation. Larbolette et al 

showed that Abp1 was phosphorylated at Y337 and Y347 by Src kinases Lyn and Blk and 

Syk in vitro (114). In Chapter 2, we showed that this phosphorylation was important for the 

recruitment of Abp1 to the surface of the B cells, suggesting that BCR signaling can regulate 

the cellular location of Abp1.  

 

Groups led by Tse-Hua Tan and Marcel Deckert have shown a role for Abp1 in T cell 

receptor-mediated signal transduction (119, 122, 123). Abp1 binds to hematopoetic 

progenitor kinase 1 (HPK1), a serine/threonine protein kinase (118) that negatively regulates 

T-cell signaling (121). HPK1 is a MAP4K that activates the JNK pathway in T cells (120, 

179, 180). Both HPK1 and JNK phosphorylation was attenuated in two T cell lines treated 

with Abp1 siRNA (119) and primary T cells from Abp1 knockout mice (123). Using RNA 

interference, Le Bras et al. found Abp1 to be a negative regulator of NFAT in Jurkat T cells 

(122), and Han et al. revealed defects in TCR- induced proliferation of T cells, IL-2 

production, and reduced levels of T-cell activation markers, notably CD69, in Abp1-/-.  In 
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response to TCR signaling, these defects in Abp1-/- were upstream of protein kinase C and 

calcium influx, because the response of the T cells to phorbol 12-myristate 13 acetate and 

ionomycin (which bypasses TCR signaling-induced activation of protein kinase C) was 

similar to that of wildtype cells (123).  Furthermore, Abp1-/- had reduced IgG1 production 

during both the primary and secondary immune response in Abp1-/- mice when immunized 

with specific antigens. There was also reduced T-cell proliferation and IL-2 production in 

response to the same antigen  (123), implying that Abp1-/- may play a role in antigen-specific 

immune responses in T cells.  Abp1-/- had reduced JNK and HPK1 activation, as well as a 

reduction in the phosphorylation of PLCγ1 and LAT in response to TCR stimulation. The 

role of Abp1 in BCR-mediated signaling pathways has not been examined.  As an actin 

adaptor protein, Abp1 has the potential to simultaneously interact with both F-actin and a 

signaling protein.   Its multiple domains for protein-protein interaction and F-actin binding, 

and its role in TCR-mediated signal transduction, suggest a role for Abp1 in the interaction of 

the actin cytoskeleton and signal transduction pathway in B cells.  

 

Using a mouse knockout model, we have started to examine the role of Abp1 in BCR-

mediated signaling. We found that both splenic B cells from Abp1 knockout mice (Abp1 -/-), 

and B cells treated with Abp1-specific siRNA, had higher levels of protein tyrosine 

phosphorylation than wt splenic B cells in response to BCR crosslinking. Both Abp1 

knockout and knockdown reduced BCR-triggered phosphorylation of JNK.  In addition, the 

activation kinetics of ERK was altered in Abp1-deficient splenic B cells. These demonstrate 

a role for Abp1 in BCR signaling.  
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4.3 Materials and method 

4.3.1 Mice, cells and cell culture.   

B cell lymphoma A20 IIA1.6 cells (H-2d, IgG2a
+, FcγRIIB-) were cultured at 37oC in DMEM 

supplemented with 10% FBS.  C57BL6 mice that were 6-8 weeks old were purchased from 

Taconic (Hudson, NY).  Abp1 knockout mice (Abp1-/-) in a C57BL6 background were 

established and kindly provided by Dr. Tse-Hua Tan at Baylor Medical College (Houston, 

TX).  To isolate splenic B cells, single-cell suspensions of splenocytes were subjected to 

density-gradient centrifugation (2300 x g) in Ficoll (Sigma-Aldrich, St Louis, MO) to obtain 

mononuclear cells, treated with anti-Thy1.2 mAb (BD biosciences, San Jose, CA) and guinea 

pig complement (Rockland Immunobiochemicals, Gilbertsville PA) to remove T cells, and 

panned for 2 h to remove monocytes. 

 

4.3.2 Developing of Abp1 shRNA.  

Sequences with the potential to target mouse ABP1 mRNA were designed using software 

provided by the Qiagen siRNA website. Four sequences were designed and ligated into a 

lentiviral vector pLL3.7 GFP (181) (this process was done with the assistance of Dr. Wenxia 

Song) and introduced into 293T cells with the packaging vectors (Invitrogen) using 

Lipofectamine to generate virus-infected 293T cells. Virus-containing supernatants were 

collected 36 h after infection. A20 cells were infected with the virus for 5 days. GFP-

expressing A20 cells were sorted for GFP expression by BD Aria and cloned by limiting 

dilution. Clones with Abp1 knockdown were screened by immunofluorescence microscopy. 

Cells were washed and adhered to poly-lysine-coated slides (Sigma-Aldrich) for 40 min at 
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4oC and then fixed with 4% paraformaldehyde. Cells were permeabilized with a 

permeabilization buffer (0.05% saponin, 10mM HEPES, 10mM Glycine and 10% Fetal 

bovine serum in DMEM) and stained for Abp1 using rabbit anti-Abp1 (70) and AF 633 

conjugated anti-rabbit mAb.  Cells were mounted with gel mount (Biomeda, Foster City, CA) 

and analyzed using a laser-scanning confocal microscope (LSM 510; Zeiss, Oberkochen, 

Germany).  Abp1 knockdown was confirmed by western blot. The shRNA sequence 

corresponding to AAGGATAACTTCTGGGCCAAA was shown to be effective in knocking 

down Abp1 expression and the sequence corresponding to AGCACCTCCTTCCAGGATGT 

showed no knockdown of Abp1, which will be used as control.  

 

4.3.3 Analysis of phosphorylation.   

Splenic B cells from wildtype C57BL6 and Abp1 knockout mice, as well as A20 B cells that 

express Abp1 shRNA, were activated by crosslinking the BCR with goat anti-mouse IgG+M 

(20 µg/ml, Jackson ImmunoResearch), or goat anti-mouse IgG (20 µg/ml, Jackson 

ImmunoResearch) for A20 B cells, for the indicated times and lysed in a lysis buffer 

containing 0.5% Triton X100, 20 mM Tris-HCl, pH 7.5, 150 mM NaCl, 1 mM MgCl2, 1 mM 

EGTA, 1 mM Na3VO4, and protease inhibitors (Roche, Basel Switzerland). To test the effect 

of actin depolymerization on BCR signaling, splenic B cells were incubated with 2 µM 

latrunculin for 30 min before activating the cells.  Cell lysates were analyzed using SDS-

PAGE and Western blotting, probing with anti-phospho-tyrosine mAb (4G10, Upstate 

Biotech, Lake Placid, NY), rabbit anti-phosphorylated JNK (pJNK), rabbit anti-

phosphorylated ERK (pERK) (Cell signaling), and mouse anti-tubulin (IgG1 specific, Sigma) 

 105



 

and HRP-conjugated antibodies (Jackson ImmunoResearch). The blots were quantified using 

densitometry.  

 

4.4 Results 

4.4.1 Abp1 deficiency alters BCR-induced protein tyrosine phosphorylation. 

In order to study the role of Abp1 in BCR signaling, we attempted to knockdown Abp1 by 

the approach of siRNA. Abp1 knockdown had previously been reported in Jurkat T cells 

(119) and human embryonic kidney 293T (148). Due to low transfection efficiency of B-cell 

lines, we interfered with Abp1 expression by introducing shRNA using a lentiviral system.  

A short hairpin sequence that targeted the mRNA of Abp1 was inserted into a previously 

described vector (181) that was engineered to include a GFP cDNA for detection of shRNA-

positive cells. A20 B cells expressing four potential shRNA sequences were sorted for GFP 

expression. One of the sequences revealed a substantial inhibition of Abp1 expression by 

western blot analyses (Fig. 4.1A). Immunofluorescence microscopy analyses showed a 

decreased Abp1 staining in GFP-expressing cells (Fig. 4.1B). The cells were subsequently 

cloned and cells expressing the shRNA were selected. The expression level of Abp1 in A20 

cells that stably express Abp1 shRNA was less than 20% of wt cells (Fig. 4.1D). This shows 

that Abp1 can be significantly knocked down in A20 B cells by stably expressing Abp1 

shRNA. 

 

Using the A20 cell line in which Abp1 is stably knocked down, we examined the role of 

Abp1 in BCR signaling. A20 B cells with or without Abp1 knockdown, were incubated with 
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anti-mouse IgG to cross-link the BCR.  The cells were lysed, and the cell lysates were 

subjected to SDS-PAGE and Western blot, probing with antibodies specific for 

phosphotyrosine. A20 B cells expressing Abp1 shRNA had a significant increase in the level 

of protein tyrosine phosphorylation when compared with wt A20 B cells (Fig. 4.1C).  To 

further confirm the role of Abp1 knockdown in BCR signaling, a mouse knockout model of 

Abp1 knockdown was employed (123). The splenic B cells from both wt and Abp1-/- mice, 

on C57BL6 background, were incubated with anti mouse IgG + M for indicated times to 

activate the BCR.  Cells were lysed, and the lysates were analyzed by SDS-PAGE and 

western blot. As shown in Fig. 4.1E, crosslinking of the BCR induced protein tyrosine 

phosphorylation in both wt and Abp1-/- splenic B cells with the level of protein tyrosine 

phosphorylation in Abp1-/- splenic B cells significantly higher than wt ones.  Specifically, we 

observed increases in tyrosine phosphorylation for bands around 75KDa (Fig. 1F), 100KDa 

(Fig. 4.1G) and 120KDa (Fig. 4.1H), although the specific identity of these proteins is 

unknown. This result shows that Abp1 plays a role in BCR signaling by regulating BCR-

triggered protein tyrosine phosphorylation. 
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FIGURE 4.1. Abp1-deficiency alters BCR-induced protein tyrosine 

phosphorylation. 

 (A) Putative Abp1 shRNA’s were introduced into A20 B cells using the lentiviral 

system. shRNA-positive cells were sorted based on co-expressed GFP. Cells were lysed 

and the lysates were analyzed by SDS-PAGE and Western blot, probing for Abp1. (B) 

Mixture of A20 B cells expressing and not expressing Abp1 shRNA (Green) were fixed, 

permeabilized, and labeled with rabbit anti-Abp1 and an Alexa Fluor 546-conjugated 

secondary antibody. Shown are representative images of three independent experiments.  

(Bar, 10 μm).  The protein tyrosine phosphorylation of Abp1 shRNA-expressing A20 B 

cells in response to BCR activation was compared with wt A20 B cells using western 

blot.  Wt and Abp1 shRNA-expressing cells were incubated with goat-anti-mouse IgG for 

5 min to activate the BCR.  Then, cells were lysed, and the lysates were analyzed by 

SDS-PAGE and Western blot, probing with anti-phosphotyrosine mAb (4G10) (C).  The 

blots were stripped and reblotted with either anti-Abp1 or actin antibody (C).  (D) Shows 

Abp1 expression in both wt and Abp1 shRNA expressing cells, quantified using 

densitometry, and normalized to actin levels. (E) The protein tyrosine phosphorylation in 

response to BCR activation in splenic B cells from Abp1-/- mice was compared with that 

in wt splenic B cells using western blotting.  Splenic B cells were incubated with goat-

anti-mouse IgG + M for varying lengths of time to crosslink the BCR.  Next the cells 

were lysed, and the lysates were analyzed by SDS-PAGE and Western blotting, probing 

with anti-phosphotyrosine mAb (4G10). Shown is a representative of three independent 

experiments. (F-G) Phosphorylation levels for selected bands were quantified using 
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densitometry and normalized to tubulin levels. Shown is a representative of three 

independent experiments.  
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4.4.2 Abp1 deficiency alters BCR-induced phosphorylation of JNK and ERK. 

Abp1 has previously been shown to play an indirect role in JNK activation by interacting 

with HPK1, an upstream kinase of JNK  in T cells (119, 123).  To determine whether 

Abp1 plays a role in BCR-triggered JNK activation in B cells, we compared BCR-

triggered phosphorylation of JNK in wt and Abp1-/- splenic B cells. Western blot analyses 

using anti-phospho JNK antibodies showed that BCR crosslinking increased JNK 

phosphorylation in wt A20 B cells and splenic B cells (Fig. 4.2A ,B and C,D 

respectively), however, this increase in JNK phosphorylation was significantly reduced in 

Abp1-knockdown A20 B cells and Abp1-/- B cells (Fig. 4.2A ,B and C,D respectively). 

ERK phosphorylation resulting from BCR-mediated activation has been shown to be 

important for the proliferation of the B cell and the upregulation of B-cell activation 

markers (14).  To study the role of Abp1 in B-cell signaling, we compared the 

phosphorylation of ERK following BCR crosslinking in Abp1-/- and wt splenic B cells. 

ERK phosphorylation increased to a similar level in Abp1-/- and wt splenic B cells 2 min 

after BCR crosslinking. However, at 10 min, ERK phosphorylation in Abp1-/- B cells 

declined, while ERK phosphorylation in wt B cells remained high (Fig. 4.2C and E). We 

did not observe any obvious differences in BCR-induced phosphorylation of p38 between 

Abp1-/- and wt splenic B cells (Fig. 4.2C).    

 

 113



 

FIGURE 4.2. Abp1-deficiency alters BCR-induced phosphorylation of JNK and 

ERK. 

The phosphorylation of JNK in Abp- shRNA expressing A20 B cells in response to BCR 

activation was compared with wt A20 B cells using western blotting.  Wt and Abp1 shRNA 

expressing cells were incubated with goat-anti-mouse IgG for 5 min to crosslink the BCR.  

Next the cells were lysed and the lysates were analyzed by SDS-PAGE and Western blot. 

Blots from Fig 4.1C were stripped and probed with anti-phosphorylated JNK (pJNK) mAb 

(A).  The blots were stripped and re-probed with either anti-Abp1 or actin antibody.  (B) 

Shows pJNK level in both wt and Abp1-shRNA expressing cells quantified using 

densitometry and normalized to actin levels. (C) The phosphorylation of JNK, ERK and p38 

in response to BCR activation in splenic B cells from Abp1-/- mice was compared with that in 

wt splenic B cells using western blotting.  Blots from Fig 4.1E were stripped and probed with 

anti-pJNK, anti pERK and anti p38 mAb.  JNK (D) and ERK (E) phosphorylation levels in 

Abp1-/- and wt mice were quantified using densitometry and normalized to tubulin levels. 

Shown are averages (S.D.) of three independent experiments.  
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4.4.3 Alteration of BCR signaling in Abp1-/- B cells is not simply caused by 

reduced BCR internalization. 

In the previous chapter, we demonstrated that the internalization rate of the BCR was 

reduced in Abp1-/- B cells. In order to test whether the increase in BCR-induced protein 

tyrosine phosphorylation is a result of reduced BCR internalization, we compared the 

protein tyrosine phosphorylation levels in Abp1-/- 

 

splenic B cells with wt splenic B cells treated with latrunculin, which blocks BCR 

internalization through actin depolymerization (35). We did not observe a similar increase in 

protein tyrosine phosphorylation in latrunculin-treated B cells as seen in Abp1-/- B cells (Fig. 

4.3B). This result suggests that inhibition of BCR internalization is not the sole cause of 

upregulated protein tyrosine phosphorylation in Abp1-/- B cells. Furthermore, in latrunculin-

treated splenic B cells, we observed that BCR-induced ERK phosphorylation was 

considerably higher than in cells that were not treated with latrunculin (Fig. 4.3A and B). 

This is in sharp contrast to Abp1-/- mice where there was a substantial attenuation of ERK 

phosphorylation (Fig. 4.2C and E). This result is in line with a previously published report 

showing that latrunculin-treatment enhances BCR-induced ERK phosphorylation (87).  In 

addition, JNK phosphorylation was higher in latrunculin treated splenic B cells when 

compared with wt (Fig. 4.3A and B) contrasting with what was observed in Abp1-/- (Fig. 

4.2C and E) where JNK activation was attenuated. This further supports the conclusion that 

the altered signaling profiles observed in Abp1-/- mice may not be connected to the observed 

defects in BCR internalization.  
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FIGURE 4.3. Defect in BCR internalization is not sufficient to explain signaling 

defect in Abp1-/-. 

(A) The protein tyrosine phosphorylation in response to BCR crosslinking in latrunculin-

treated splenic B cells was compared with that in wt splenic B cells using western 

blotting. Splenic B cells were treated with or without 2μM latrunculin for 30 min and 

incubated with goat-anti-mouse IgG for varying lengths of time to crosslink the BCR.  

Then the cells were lysed, and the lysates analyzed by SDS-PAGE and Western blotting, 

probing with anti-phosphotyrosine, (4G10) anti-pJNK and anti-pERK mAb. Shown is a 

representative of two independent experiments. ERK (B) and JNK (C) phosphorylation 

levels in wt and latrunculin-treated wt splenocytes were quantified using densitometry 

and normalized to tubulin levels.

 119



 

 120

A 

p-ERK

p-JNK

Tubulin

Control          Latrunculin

-xl  2   10   30    -xl   2   10   30  Time (min)

131 KDa

90 KDa

42 KDa

Ph
os

ph
o-

ty
ro

si
ne

 b
lo

t



 

 121

0

100

200

300

400

wt LatLe
ve

ls
 o

f p
ho

sp
ho

ry
la

te
d 

ER
K

 
(A

rb
itr

ar
y 

un
its

)

0

20

40

60

80

wt Lat

Le
ve

ls
 o

f p
ho

sp
ho

ry
la

te
d 

JN
K

 
(A

rb
itr

ar
y 

un
its

)

0min
2min
10min
30min

B 

C 
0min
2min
10min
30min



 

4.5 Discussion 

Abp1, an actin adaptor protein, plays an important role in T cell signaling.  In T cells, Abp1 

regulates the function of the MAP kinase, JNK, via interactions with HPK1 (123). However, 

the role of Abp1 in B cell signaling has not yet been studied.  In this study, we showed that 

both Abp1 knockdown and knockout enhanced BCR-induced protein tyrosine 

phosphorylation, and reduced BCR-induced phosphorylation of the MAP kinases JNK and 

ERK.  These results demonstrate an important role for Abp1 in BCR-mediated signaling. 

 

The attenuation of JNK activation observed in B cells was similar to previously published 

reports in Abp1-/- T cells (123).  The same report showed a defect in p38 activation in Abp1-/- 

T cells.  However the effect of Abp1-deficiency on TCR-induced ERK activation has not 

been reported. In B cells, ERK phosphorylation, but not p38 phosphorylation was altered by 

Abp1 deficiency, suggesting that Abp1 regulates BCR signaling by a mechanism different 

from TCR signaling. The regulatory role of Abp1 in TCR signaling has been attributed to the 

interaction of Abp1 with HPK1, a MAP4K.  This interaction regulates the activation of 

HPK1 (119, 120, 122, 123) which activates JNK through MAP3K, e.g. MEKK1 (180, 182). 

Whether or not Abp1 uses a similar mechanism to regulate the activation of JNK in B cells 

remains to be tested.    

 

Alteration of BCR-triggered tyrosine phosphorylation levels of multiple proteins was 

observed in Abp1 knockdown and knockout B cells, suggesting the involvement of Abp1 in 

the proximal signaling of the BCR. BCR crosslinking by antigen results in the translocation 

of the BCR and signaling molecules to lipid rafts. This process has been shown to be 
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important for BCR signaling (9, 33, 183, 184). Previously published data show that Abp1 is 

translocated into glycolipid-enriched microdomains  (also described as lipid rafts) formed at 

the T-cell synapse following antibody stimulation of the TCR (119, 122). This recruitment is 

followed by the phosphorylation of Abp1 by ZAP70 (119).  Previously published reports also 

show that the recruitment and phosphorylation of Abp1 at the T cell synapse occurs 

concurrently with HPK1 recruitment following TCR activation (122).  Although Abp1 binds 

constitutively with HPK1 (119, 122), it is possible that the recruitment of Abp1 directs the 

recruitment of HPK1 in T cells as well. The observation that BCR-triggered protein tyrosine 

phosphorylation was upregulated in both Abp1-/- and Abp1 knockdown B cells suggests a 

negatively regulatory role for Abp1 in BCR signaling and this may be due to its interaction 

with HPK1.  A recent report showed that HPK1 serves as a negative regulator of T-cell 

function (121).  HPK1 deficiency resulted in the enhanced phosphorylation of SLP-76, PLC-

γ1 and enhanced calcium influx (121).  Abp1 has the potential to recruit HPK1 to the BCR-

signaling microdomain, permitting HPK1 to regulate BCR signaling, and this could help 

explain the observed defect in BCR signaling dependent tyrosine phosphorylation in Abp1 

deficient B cells.   

 

In the second chapter my observations show that Abp1 knockout and knockdown can inhibit 

BCR internalization. This may prolong the lifetime of BCR surface signaling microdomains 

and enhance proximal signaling. However, inhibiting BCR internalization by disrupting the 

actin cytoskeleton with latrunculin gave a markedly different signaling profile, suggesting 

that enhanced BCR signaling due to defects in internalization cannot fully explain the 

observations. I was also able to observe a number of tyrosine-phosphorylated bands that 
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showed substantial increases in activation. This included bands that corresponded to 

approximately 75, 100 and 120 kDa. Speculating on the identity of these proteins based on 

molecular weight alone is difficult, since the accuracy of the markers used in SDS/PAGE is 

limited, and a long list of signaling proteins exist at this molecular weight range. Determining 

the identity of these proteins, by either mass spectrometry or some other method, should 

provide important clues about what stage in the BCR signaling cascade Abp1 might be 

exerting its influence.    

 

Surface-signaling microdomains formed by coalescing of BCR and signaling molecules in 

the lipid rafts, are similar to the immunological synapses between T cells and APCs. A role 

for the actin cytoskeleton has been described in the successful formation of the synapse in T 

cells and one of the major defects observed in WASP (a regulator of the actin cytoskeleton) 

knockout mice was an inability to form a synapse between the APC and the T-cell (111). 

Vav-deficient mice (a GEF for Rac) have defects in synapse formation in T cells (100, 177). 

It has also been shown in B cells that actin plays a role in regulating the lipid-raft complex 

formed after BCR crosslinking. It was observed that disrupting the actin cytoskeleton led to a 

delay in the BCR crosslinking-induced internalization of the lipid rafts and may explain the 

sustained ERK signaling observed in the presence of actin-disrupting agents (87). It is 

possible that Abp1’s activity might be connected to the actin cytoskeleton. It was observed 

that Abp1 recruitment to the cell surface was disrupted in the presence of latrunculin, an 

actin-disrupting agent, indicating that Abp1 function is dependent on an intact actin 

cytoskeleton (Unpublished observations). This allows us to envision a scenario where the 

BCR-induced recruitment of the actin cytoskeleton facilitates the translocation of Abp1 to the 
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plasma membrane, where it is phosphorylated by Src kinases and it acts as an adaptor protein 

that helps transduce signals generated by BCR crosslinking to downstream effectors. The 

identity of these downstream effectors is not known although obvious candidates include 

HPK1, which regulates JNK activity (180, 182).  This may explain the attenuation I observed 

in JNK activation. A proteomic approach can be used to identify other proteins that might be 

regulated by Abp1. 

 

Bam32, an actin adaptor protein, has recently been shown to be important for BCR-induced 

reorganization of the actin cytoskeleton via interactions with Rac1 (85, 86, 88). Splenic B 

cells, from Bam32-deficient mice and Bam32-deficient DT40 cells, shared similar JNK and 

ERK activation defects as Abp1-/- B cells. Bam32 was shown to interact with HPK1, and 

Bam32-/- mice had defective HPK1 activation in B cells (185), reminiscent of the phenotypes 

observed in T cells from  Abp1-/- mice (123). Furthermore, both Abp1 and Bam32 are 

recruited to the plasma membrane and tyrosine phosphorylated following BCR-mediated 

activation (114, 185). However, Bam32 is involved in regulating the actin cytoskeleton, 

while Abp1 function in mammalian cells seems to be dependent on the actin cytoskeleton. 

Although no functional relationship between Abp1 and Bam 32 has been established, 

similarities shared by Abp1 and Bam32 deficiency indicate the involvement of these two 

proteins in the same pathway.  It is possible that both of these proteins are part of a 

signalsome complex that is maintained by the actin cytoskeleton and is required for optimal 

BCR signaling. A recent report by Batista’s group showed the formation of signaling 

microclusters composed of antigen-crosslinked BCR, tyrosine phosphorylated proteins, and 

the non receptor tyrosine kinase, Syk (186).  It is possible that the formation of these clusters 
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is also dependent on an intact actin cytoskeleton as a well as a number of actin binding 

proteins like Abp1 that might help with recruiting signaling proteins to these microclusters. 

 

The data presented here clearly show a role for Abp1 in regulation of BCR-mediated 

signaling.  However, the underlying mechanism for the regulatory role of Abp1 has not been 

well defined.  Future work will focus on the impact of Abp1 knockout on HPK1 activity and 

downstream transcription factor activation in B cells as well as the functional and physical 

interactions between Abp1 and Bam32.   
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 Chapter 5: General discussion 

 

The main objective of my thesis was to study how BCR signaling regulates the 

interaction of the actin cytoskeleton with the endocytic machinery of the B cell leading to 

the rapid internalization of antigens and their successful processing and presentation.  

 

The B cell is a major component of the adaptive immune response.  It is capable of 

recognizing an incredibly diverse array of antigens with its clonally specific receptor, the 

BCR. Multivalent antigens that can crosslink these receptors trigger a series of signaling 

events that lead to signaling-dependent internalization and processing of the antigen in 

MHC class II-containing compartments for the eventual presentation of the processed 

antigens to T cells on the surface of the B cell. The mechanism by which BCR signaling 

upregulates its own internalization is still being worked out. Previous work in Dr. Song’s  

laboratory showed that a dynamic actin cytoskeleton is required for the efficient 

internalization of the BCR following BCR crosslinking (35). Furthermore, we showed 

that BCR signaling regulates major proteins that are required for endocytosis of the BCR, 

notably clathrin (33). These studies and studies from other laboratories point to an 

intimate relationship between BCR signaling and the molecular events that direct the 

internalization of the BCR, and elucidating these mechanisms has been the primary focus 

of the lab. 

 

In this thesis, I demonstrate that Abp1 is a linker that connects the actin cytoskeleton to 

the endocytic machinery of the BCR upon antigenic crosslinking of the BCR. Abp1 
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mediates this connection by interacting with both F-actin and dynamin, and these 

interactions are important for the efficiency of BCR-mediated antigen processing and 

presentation. The interaction between dynamin and Abp1 depends on the PRD of 

dynamin and the SH3 domain of Abp1, respectively, and this was confirmed by co-

immunoprecipitation and GST-based precipitation. This was further supported by the 

inhibitory effect seen with overexpression of the SH3 domain of Abp1 or the PRD 

deletion mutant of dynamin on BCR internalization and movement to the antigen 

processing compartment. These results underscore the importance of both Abp1 and 

dynamin in antigen-induced BCR internalization and BCR-mediated antigen processing 

and presentation.  Antigen-induced BCR internalization is  primarily clathrin-mediated 

(33, 140), and the role of dynamin in pinching off nascent vesicle during CME has been 

well documented (55, 91). A role for dynamin in linking the endocytic vesicle to the actin 

cytoskeleton during CME has also begun to emerge (59, 63, 77).  My data describes a 

critical link between the actin cytoskeleton and the internalizing BCR, mediated by the 

interaction between dynamin and Abp1.  

 

The rapid internalization of the BCR following antigen crosslinking is accompanied by 

the efficient processing of the antigen in the MIIC compartment and the eventual 

presentation of the antigen in the context of the MHC (14, 187).  The efficient delivery of 

antigen to the MIIC and its subsequent processing has been shown to be dependent on 

BCR-mediated signaling (42). The engagement of the BCR by antigen triggers the 

phosphorylation of ITAMs on Igα/Igβ, and the phosphorylation sites of the ITAM are 

also required for the accelerated targeting of antigens to the antigen processing 
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compartment or MIIC compartment (34, 42, 43, 132, 154). Following BCR crosslinking, 

the phosphorylated ITAMs on Igα/Igβ recruit the tyrosine kinase Syk, which activate a 

number of signaling and adaptor molecules (14). Overexpression of a Syk mutant that 

does not interact with the phosphorylated ITAMs on Igα leads to defects in antigen 

presentation (132). These further indicate that BCR-induced signaling regulates the 

antigen processing and presenting functions of the BCR.  The reduction of the efficiency 

of BCR-mediated antigen processing and presentation in Abp1-knockout mice indicates 

the importance of Abp1 in this process. This defect can be explained by the reduced rates 

of BCR internalization and movement to the antigen-processing compartment in Abp1 

knockout mice.   

 

The interaction of Abp1 with dynamin provides a link between Abp1 and the endocytosis 

machinery.  However, the link between Abp1 and the machinery responsible for targeting 

of antigens to the MIIC is not known. In this thesis, I show that dynamin was recruited to 

the BCR at the plasma membrane upon BCR activation and maintained its colocalization 

with the BCR when it was on its way to the late endosomes. This sustained colocalization 

and trafficking of dynamin with the internalized BCR is disrupted by deleting the PRD of 

dynamin, suggesting that interactions mediated by this domain are important for co-

trafficking dynamin with the BCR to the antigen processing compartment.  I hypothesize 

that dynamin recruits the actin cytoskeleton to BCR-containing vesicles, which provides 

not only the driving force for the intracellular movement but fusion of these vesicles to 

their targets. Previous studies have shown that actin comet tails provide a mechanism for 

pushing vesicles within the cell interior (67, 188), and in at least one study, dynamin was 
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shown to be a part of the actin comet (189).  A working model can therefore be 

envisioned whereby BCR activation recruits dynamin to BCR containing clathrin-coated 

pits or vesicles, where it recruits F-actin by interacting with actin binding proteins, such 

as Abp1 or induces localized actin polymerization by binding to actin regulating proteins.  

The interaction of dynamin with Abp1 could provide actin nucleation sites in the vicinity 

of the BCR for active actin polymerization and branching.  The localized polymerization 

of actin could then generate the force that moves BCR-containing clathrin-coated pits and 

vesicles. 

 

How does BCR signaling regulate the interaction between the actin cytoskeleton and 

BCR endocytosis machinery?  Tyrosine phosphorylation of Abp1 is induced by PTKs 

Syk, Lyn and Blk in in vitro kinase assays (114). Here, I show that Abp1 is recruited to 

the BCR in a phosphorylation-dependent manner, since mutating the tyrosine 

phosphorylation sites to phenylalanine inhibited the recruitment. The particular kinase 

responsible for phosphorylating Abp1 in response to BCR activation in vivo is not known 

and should be a topic for future studies. Syk is a kinase that could be a likely candidate 

for regulating Abp1.  In addition to being the potential kinase for Abp1 phosphorylation, 

Syk could regulate the subcellular location of Abp1 by modulating the actin cytoskeleton 

organization. Syk-mediated regulation of the actin cytoskeleton has recently been 

reported to be important for the endocytosis and intracellular trafficking of BCR–antigen 

complexes (84). Using a Syk-deficient A20 cell line, Le Roux et al. showed that the 

targeting of BCR–antigen complexes to the MIIC compartments as well as the formation 

of the MHC II-peptide complexes is Syk-dependent (84). It was also observed that, 
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unlike wildtype A20 cells, where the actin cytoskeleton colocalized with the MIIC 

compartment, Syk deficient cells had a disorganized actin cytoskeleton. How Syk 

regulates the actin cytoskeleton has not been fully elucidated. Syk has been shown to 

activate Vavs, which are guanine exchange factors for Rho-family GTPases, Rac and 

Cdc42, both key regulators of the actin cytoskeleton (190, 191). Another possibility is 

that Syk might phosphorylate and thus recruit Abp1 to the BCR. This enables Abp1 to 

connect the BCR-antigen complex to the actin cytoskeleton and thus direct the complex 

to the late endosomes.  

 

BCR signaling may also regulate dynamin function and potentially direct its interaction 

with Abp1. Collaborative work with the Brodsky lab has shown that clathrin is recruited 

to the cell surface upon BCR crosslinking and this recruitment is dependent on BCR 

signaling mediated phosphorylation of clathrin (33). In addition, previous work in our lab 

has shown that the Src kinase inhibitor PP2 inhibits BCR crosslinking-mediated 

recruitment of dynamin to the cell surface, implying that dynamin recruitment may also 

be signaling-dependent (Brown, B.K. unpublished observations). Dynamin 2 is 

phosphorylated in a Src-dependent manner at Y231 and Y597 in rat endothelial cell lines 

in response to albumin binding to its receptor gp60, where dynamin 2 colocalized with 

caveolin (174). The recruitment of dynamin 2 to the plasma membrane has also been 

observed at the immunological synapse formed between a T cell and an antigen 

presenting cell (100). The researchers, however, did not find any change in dynamin 

phosphorylation before and after T cell stimulation and suggested that the recruitment of 

dynamin 2 to the immunological synapse is not dependent on its phosphorylation (100). 
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As discussed previously, my data shows that dynamin 2 is recruited to the cell surface 

following BCR crosslinking where it colocalizes with the BCR.  This could be a direct 

result of BCR signaling-dependent phosphorylation (or dephosphorylation) of dynamin. 

It is also possible that proteins responsible for recruiting dynamin are regulated by BCR 

signaling and, hence, indirectly recruit dynamin to the cell surface.  My data supports this 

hypothesis by showing that deleting the PRD of dynamin inhibits the recruitment of 

dynamin to the cell surface.  The PRD of dynamin is responsible for binding to a number 

of SH3 domain-containing proteins that are involved in the endocytic process, notably 

endophilin and amphiphysin (51, 54, 102, 171). These proteins could be directly 

regulated by BCR signaling, which then regulate dynamin indirectly.  Dynamin binding 

to amphiphysin via its PRD has been shown to be required for its recruitment (91). So, it 

is plausible that BCR signaling might regulate amphiphysin, which, in turn, recruits 

dynamin to the cell surface. This hypothesis is further buttressed by the fact that 

amphiphysin is itself recruited to the plasma membrane by binding to the α-adaptin 

subunit of AP-2 (102), which is recruited with clathrin in a BCR signaling-dependent 

manner ((33) and Bruce Brown unpublished observations).  Interestingly, amphiphysin 

phosphorylation prevented it from binding to AP-2, while dephosphorylation enhances its 

binding to AP-2 in synaptic vesicles (103). It will be interesting to study the regulation of 

these proteins during BCR signaling and whether they have any effect on dynamin 

regulation. 

 

In addition to a role for Abp1 in endocytosis, studies in T cells using both siRNA (119, 

122) and Abp1-/- mice have revealed a role for Abp1 in T cell signaling (123). Abp1 
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recruitment to the T cell side of the APC – T cell immune synapse is dependent on both 

the SH3 domain and the ADH domain of Abp1 (122).   Abp1 knockdown using siRNA 

results in a reduced expression of the TCR, indicating a possible defect in the recycling of 

the TCR to the cell surface (122).  In T cells, Abp1 interacts with the kinase HPK1 (118), 

and this interaction is required for the activation of HPK1, a MAP4K that acts in the JNK 

pathway (180). Furthermore, Abp1-/- mice have defects in the activation of LAT, PLCγ1, 

HPK1 and JNK in T cells, and these may contribute to defects in T cell-derived IL-2 

production as well as proliferation. Thus, Abp1 may be involved in both proximal and 

downstream signaling from the TCR.  We delineate a role for Abp1 in BCR-mediated 

signaling as demonstrated by enhanced tyrosine phosphorylation and altered JNK and 

ERK signaling in splenic B cells from Abp1-/- mice. However, the exact role of Abp1 in 

BCR signaling, though significant, remains undetermined. The enhanced tyrosine 

phosphorylation suggests that Abp1is a regulator for BCR signaling. Such a regulatory 

effect could be mediated by the interaction of Abp1 with HPK1.   HPK1 has recently 

been shown to be a negative regulator of T cell signaling (121). T cells from HPK1 

knockout mouse display hyper-responsiveness to TCR stimulation as indicated by 

enhanced phosphorylation of PLCγ1, ERK and SLP-76, increased proliferation, cytokine 

production and humoral response (121). Abp1-deficiency may cause defects in the 

recruitment to and phosphorylation of HPK1 at the plasma membrane, consequently 

failing to activate JNK. The interaction of Abp1 and HPK1 in B cells however, has not 

yet been reported. Recent reports have described a link between Bam32, a BCR adaptor 

protein, and HPK1 in B cells, where Bam32 was shown to directly interact with HPK1 

and regulate JNK activation in response to BCR crosslinking (23, 85).  This points to a 
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similar role for Abp1 and Bam32 in regulating JNK activation in B cells, indicating that 

these two proteins may have a functional relationship, this, however, remains to be 

elucidated.  

 

My studies reveal an important function performed by Abp1 in linking, BCR signaling, 

antigen processing and presentation pathways, and the actin cytoskeleton.   Abp1 

facilitates BCR-mediated antigen internalization and subsequent processing and 

presentation in response to BCR activation by interacting with F-actin and dynamin.  

Additionally, Abp1-facilitated BCR internalization and the interaction of Abp1 with 

HPK1 potentially provide feedback signals for BCR-triggered signaling cascades.   

 

5.1 .Future studies 

While my research has revealed important roles for Abp1 and dynamin in BCR signal 

transduction, endocytosis and intracellular trafficking, a number of questions remain. 

 

The coordination of the endocytic machinery with the actin cytoskeleton during BCR 

signaling and internalization is not well understood. Live imaging studies of the 

interaction between dynamin and Abp1 would help shed some light on its nature. Studies 

using Fluorescence Resonance Energy Transfer (FRET) between tagged proteins can 

provide critical visual data on the interaction between these two proteins during BCR 

signaling and internalization. The kinetics of the interaction between the endocytic 

machinery, Abp1, dynamin, and the actin cytoskeleton can also be studied at the plasma 
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membrane using total internal reflection microscopy (TIRF) to determine the timing of 

BCR movement from the plasma membrane, the involvement of the actin cytoskeleton as 

well as other proteins that may be connected to BCR endocytic machinery.  

 

My research has revealed that dynamin and Abp1 seem to be regulated by BCR 

signaling. The precise nature of their regulation, however, is yet to be determined. It will 

be important to determine exactly how BCR signaling might be regulating both Abp1 and 

dynamin. Previous work in our lab by Bruce Brown has revealed disruption of dynamin 

recruitment in the presence of PP2, a Src kinase inhibitor. This raises the possibility that 

BCR signaling might directly regulate dynamin recruitment by phosphorylating dynamin. 

To test this, dynamin can be immunoprecipitated with antibodies, and the 

phosphorylation of dynamin can be detected with anti-phospho-tyrosine mAb using 

SDS/PAGE and western blotting.  Furthermore, a dynamin mutant lacking its two 

tyrosine phosphorylation sites (Y231/597F) has recently been developed by Dr. McNiven 

(personal communications with Dr. Song). The effect of these mutations on dynamin 

recruitment and colocalization with the BCR following BCR crosslinking can be 

monitored. The regulation of dynamin by BCR signaling could also be indirect, and 

proteins that recruit dynamin to the endocytosis machinery may exert a regulatory effect 

on dynamin by their recruitment to the plasma membrane during BCR signaling. 

Amphiphysin is a protein that could potentially regulate dynamin activity during BCR 

signaling. Future work would test if amphiphysin is regulated by BCR signaling and 

whether it is responsible for recruiting dynamin to the B cell surface in response to BCR 

activation. Amphiphysin activity can be monitored by its cellular localization before and 
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after BCR activation and the effect of Src kinase inhibitors and/or phosphatase inhibitors 

on its cellular localization. It can also be tested whether the SH3 domain of amphiphysin, 

which potentially interacts with dynamin (53, 102), has a dominant negative effect on 

dynamin recruitment and BCR internalization.   

 

Although BCR internalization has been shown to be dependent on the clathrin-mediated 

endocytic pathway (33, 140), the importance of dynamin in BCR internalization and 

trafficking has not been determined.  The work in this thesis underscores the significance 

of dynamin in BCR internalization, since overexpressing a dynamin 2 mutant with a 

deletion of its PRD in A20 cells caused a significant reduction in BCR internalization and 

trafficking, implying that dynamin and its PRD are important for BCR internalization. A 

role for the PRD of dynamin in CME is, thus far, unreported, and a unique role for 

dynamin in BCR internalization is implied (91, 94). To determine how dynamin ∆PRD 

might disrupt BCR endocytosis, the effect of overexpressing a dynamin ∆PRD mutant on 

the recruitment of endogenous dynamin should be determined.  Tests should also be 

conducted to determine the extent of oligomerization of endogenous dynamin with the 

∆PRD mutant before and after BCR crosslinking by immunoprecipitation, which will 

provide answers to the question of whether disrupting dynamin oligomerization is the 

mechanism for defects caused by the ∆PRD mutant. The effect of other mutants of 

dynamin, which have been shown to inhibit CME, on the internalization and intracellular 

trafficking of the BCR, should also be tested: Notably, the mutant K44A that disrupts the 

GTPase function of dynamin (192) and mutations in the pleckstrin homology domain that 

inhibit binding to membrane lipids (91, 94).  
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The role of dynamin in signal transduction in lymphocytes is an emerging area of 

research. Studies reported by Gomez et al. (100), show that dynamin is important for 

regulating actin-dependent formation of synapses by recruiting Vav to the synapses. In 

addition, they suggested dynamin having  a role in forming a signaling scaffold in T cells 

(100). Dynamin has also been known to bind to Grb2 (97, 193) and PLC-γ1 (194) two 

major signaling molecules in lymphocytes.  Dynamin could, therefore, play a significant 

role in BCR signal transduction, and studies should be done to determine its role in 

modulating BCR signaling. The effect of dynamin on BCR signaling could be tested 

using shRNA-mediated knockdown of dynamin as well as over-expressing dynamin in 

cell lines, a system that has already been developed in our lab. Furthermore, co-

immunoprecipitating dynamin or co-precipitation using GST pull down with the PRD of 

dynamin can be used to look for interacting signaling partners, following antigen 

crosslinking of the BCR.  

 

The role of Abp1 in BCR signal transduction is yet to be elucidated. My research shows 

that Abp1-knockout mice have defects in the BCR-mediated activation of the ERK and 

JNK MAPK pathways. Further studies will shed light on how Abp1 might be regulating 

these pathways following BCR crosslinking. One likely mechanism is the interaction of 

Abp1 with HPK1 through their SH3 and PRDs respectively (119, 120, 180). Future 

studies should address the status of HPK1 activation following BCR crosslinking and the 

effects of knocking out Abp1 on the activation of HPK1. These experiments will address 

the functional link between Abp1 and HPK1 in B cells and the regulation of this link by 

BCR crosslinking. Future studies could also test the role of Abp1 in regulating kinases 
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upstream of JNK.  The observation that Abp1-knockout mice and Bam32-knockout mice 

have similar defects in JNK and ERK activation as well as BCR internalization (23, 86) 

may provide an important link as to how Abp1 might be regulating JNK and ERK 

activation. Both Abp1 and Bam32 are recruited to the plasma membrane where they are 

tyrosine phosphorylated following BCR crosslinking (unpublished observations and 

(88)).  Additionally, both of them interact directly with HPK1: Abp1 in T cells (119) and 

Bam32 in B cells (185).  A known difference between the two is that Bam32, but not 

Abp1 is involved in regulating actin polymerization (85) (unpublished observations). 

Based on the similarities between Bam32- and Abp1-knockout mice, it is possible that 

Abp1 and Bam32 regulate the formation and stabilization of BCR signaling 

microdomains by modulating actin dynamics and organization, consequently influencing 

the activation of upstream kinases of the JNK and ERK pathways. Future studies should 

focus on the interactions between Bam32 and Abp1. Another interesting question is 

whether Bam32 regulates Abp1 function. To test this, initial studies will focus on the 

cellular location and phosphorylation status of Abp1 in B cells from Bam32-knockout 

mice before and after BCR crosslinking. The interaction between Abp1 and Bam32 can 

also be followed by the colocalization and FRET between these two proteins.  

 

The JNK and ERK kinase pathways also play significant roles in antigen induced 

activation of the B-cell, leading to proliferation and upregulation of various activation 

markers (14).  BCR signaling induced ERK activation leads to activation of cyclin D 

which is important for cell cycle progression (195), while activation of JNK activates the 

AP-1 transcription factor (26, 196).  The role of BCR signaling in JNK activation is not 
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clear, but it seems to be anti-apoptotic (197) and may aid in proliferative responses to 

BCR signaling (185). It will be important to determine what effect Abp1 knockdown 

might have on B cell proliferation following BCR crosslinking.  

 

Studies on yeast Abp1 point to a negative feedback role for Abp1 in yeast endocytosis 

(157), and there is a potential for this role to exist in mammals. S. cerevisiae has two 

actin-regulating kinases, Ark 1 (actin regulating kinase 1) and Prk1 (p53 regulating 

kinase), that are involved in shutting down actin polymerization at the sites of newly 

formed endocytic vesicles (198, 199). Abp1 recruits these proteins to endocytic sites in 

yeast (200). The mammalian homologues of these two kinases are AAK (adaptor protein 

complex 2 associated kinase 1) and GAK (cyclin G associated kinase) (157). 

Interestingly GAK is the ubiquitously expressed form of the neuronal-specific protein 

auxilin, a protein involved in the decoating steps of CME (201). The interaction between 

Abp1 and GAK in mammalian systems has not yet been reported. However, GAK 

recruitment was shown to coincide with that of dynamin recruitment during CME (201). 

It will be interesting to test whether Abp1 is able to regulate GAK’s function either 

directly or indirectly in mammalian systems and if this will have any impact on 

endocytosis. 

 

Elucidating the link between the signals generated by antigen crosslinking of the BCR 

and the effective processing and presentation of the antigen will enable better 

understanding of the complexities of the B cell mediated immune response. This will 

provide important insight for a number of disease conditions that are mediated wholly or 
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in part by defects in the humoral immune response. These conditions include 

autoimmunity, hypersensitivity, certain types of cancers and immunodeficiency. 

 140 
 



 

Bibliography 
 
1. Pasare, C., and R. Medzhitov. 2004. Toll-like receptors: linking innate and 

adaptive immunity. Microbes Infect 6:1382-1387. 

2. Brummer, T., W. Elis, M. Reth, and M. Huber. 2004. B-cell signal transduction: 
tyrosine phosphorylation, kinase activity, and calcium mobilization. Methods Mol 
Biol 271:189-212. 

3. Reth, M. 1992. Antigen receptors on B lymphocytes. Annu Rev Immunol 10:97-
121. 

4. Reth, M., J. Hombach, J. Wienands, K. S. Campbell, N. Chien, L. B. Justement, 
and J. C. Cambier. 1991. The B-cell antigen receptor complex. Immunol Today 
12:196-201. 

5. Reth, M., J. Wienands, T. Tsubata, and J. Hombach. 1991. Identification of 
components of the B cell antigen receptor complex. Adv Exp Med Biol 292:207-
214. 

6. Sanchez, M., Z. Misulovin, A. L. Burkhardt, S. Mahajan, T. Costa, R. Franke, J. 
B. Bolen, and M. Nussenzweig. 1993. Signal transduction by immunoglobulin is 
mediated through Ig alpha and Ig beta. J Exp Med 178:1049-1055. 

7. Pao, L. I., S. J. Famiglietti, and J. C. Cambier. 1998. Asymmetrical 
phosphorylation and function of immunoreceptor tyrosine-based activation motif 
tyrosines in B cell antigen receptor signal transduction. J Immunol 160:3305-
3314. 

8. Cassard, S., D. Choquet, W. H. Fridman, and C. Bonnerot. 1996. Regulation of 
ITAM signaling by specific sequences in Ig-beta B cell antigen receptor subunit. J 
Biol Chem 271:23786-23791. 

9. Dykstra, M., A. Cherukuri, H. W. Sohn, S. J. Tzeng, and S. K. Pierce. 2003. 
Location is everything: lipid rafts and immune cell signaling. Annu Rev Immunol 
21:457-481. 

10. Fu, C., C. W. Turck, T. Kurosaki, and A. C. Chan. 1998. BLNK: a central linker 
protein in B cell activation. Immunity 9:93-103. 

 141 
 



 

11. D'Ambrosio, D., K. L. Hippen, and J. C. Cambier. 1996. Distinct mechanisms 
mediate SHC association with the activated and resting B cell antigen receptor. 
Eur J Immunol 26:1960-1965. 

12. Saxton, T. M., I. van Oostveen, D. Bowtell, R. Aebersold, and M. R. Gold. 1994. 
B cell antigen receptor cross-linking induces phosphorylation of the p21ras 
oncoprotein activators SHC and mSOS1 as well as assembly of complexes 
containing SHC, GRB-2, mSOS1, and a 145-kDa tyrosine-phosphorylated 
protein. J Immunol 153:623-636. 

13. Ingham, R. J., M. Holgado-Madruga, C. Siu, A. J. Wong, and M. R. Gold. 1998. 
The Gab1 protein is a docking site for multiple proteins involved in signaling by 
the B cell antigen receptor. J Biol Chem 273:30630-30637. 

14. Dal Porto, J. M., S. B. Gauld, K. T. Merrell, D. Mills, A. E. Pugh-Bernard, and J. 
Cambier. 2004. B cell antigen receptor signaling 101. Mol Immunol 41:599-613. 

15. Hashimoto, S., A. Iwamatsu, M. Ishiai, K. Okawa, T. Yamadori, M. Matsushita, 
Y. Baba, T. Kishimoto, T. Kurosaki, and S. Tsukada. 1999. Identification of the 
SH2 domain binding protein of Bruton's tyrosine kinase as BLNK--functional 
significance of Btk-SH2 domain in B-cell antigen receptor-coupled calcium 
signaling. Blood 94:2357-2364. 

16. Saito, K., K. F. Tolias, A. Saci, H. B. Koon, L. A. Humphries, A. Scharenberg, D. 
J. Rawlings, J. P. Kinet, and C. L. Carpenter. 2003. BTK regulates PtdIns-4,5-P2 
synthesis: importance for calcium signaling and PI3K activity. Immunity 19:669-
678. 

17. Wang, Y., S. R. Brooks, X. Li, A. N. Anzelon, R. C. Rickert, and R. H. Carter. 
2002. The physiologic role of CD19 cytoplasmic tyrosines. Immunity 17:501-514. 

18. Takata, M., and T. Kurosaki. 1996. A role for Bruton's tyrosine kinase in B cell 
antigen receptor-mediated activation of phospholipase C-gamma 2. J Exp Med 
184:31-40. 

19. Saijo, K., I. Mecklenbrauker, A. Santana, M. Leitger, C. Schmedt, and A. 
Tarakhovsky. 2002. Protein kinase C beta controls nuclear factor kappaB 
activation in B cells through selective regulation of the IkappaB kinase alpha. J 
Exp Med 195:1647-1652. 

 142 
 



 

20. Coggeshall, K. M., J. C. McHugh, and A. Altman. 1992. Predominant expression 
and activation-induced tyrosine phosphorylation of phospholipase C-gamma 2 in 
B lymphocytes. Proc Natl Acad Sci U S A 89:5660-5664. 

21. Li, X., and R. H. Carter. 1998. Convergence of CD19 and B cell antigen receptor 
signals at MEK1 in the ERK2 activation cascade. J Immunol 161:5901-5908. 

22. Brezski, R. J., and J. G. Monroe. 2007. B cell antigen receptor-induced Rac1 
activation and Rac1-dependent spreading are impaired in transitional immature B 
cells due to levels of membrane cholesterol. J Immunol 179:4464-4472. 

23. Han, A., K. Saijo, I. Mecklenbrauker, A. Tarakhovsky, and M. C. Nussenzweig. 
2003. Bam32 links the B cell receptor to ERK and JNK and mediates B cell 
proliferation but not survival. Immunity 19:621-632. 

24. Davis, R. J. 2000. Signal transduction by the JNK group of MAP kinases. Cell 
103:239-252. 

25. Jiang, A., A. Craxton, T. Kurosaki, and E. A. Clark. 1998. Different protein 
tyrosine kinases are required for B cell antigen receptor-mediated activation of 
extracellular signal-regulated kinase, c-Jun NH2-terminal kinase 1, and p38 
mitogen-activated protein kinase. J Exp Med 188:1297-1306. 

26. Davis, R. J. 1995. Transcriptional regulation by MAP kinases. Mol Reprod Dev 
42:459-467. 

27. Dong, C., R. J. Davis, and R. A. Flavell. 2002. MAP kinases in the immune 
response. Annu Rev Immunol 20:55-72. 

28. Pao, L. I., W. D. Bedzyk, C. Persin, and J. C. Cambier. 1997. Molecular targets of 
CD45 in B cell antigen receptor signal transduction. J Immunol 158:1116-1124. 

29. Hata, A., H. Sabe, T. Kurosaki, M. Takata, and H. Hanafusa. 1994. Functional 
analysis of Csk in signal transduction through the B-cell antigen receptor. Mol 
Cell Biol 14:7306-7313. 

30. Cheng, P. C., B. K. Brown, W. Song, and S. K. Pierce. 2001. Translocation of the 
B cell antigen receptor into lipid rafts reveals a novel step in signaling. J Immunol 
166:3693-3701. 

 143 
 



 

31. Famiglietti, S. J., K. Nakamura, and J. C. Cambier. 1999. Unique features of 
SHIP, SHP-1 and SHP-2 binding to FcgammaRIIb revealed by surface plasmon 
resonance analysis. Immunol Lett 68:35-40. 

32. Chan, V. W., C. A. Lowell, and A. L. DeFranco. 1998. Defective negative 
regulation of antigen receptor signaling in Lyn-deficient B lymphocytes. Curr 
Biol 8:545-553. 

33. Stoddart, A., M. L. Dykstra, B. K. Brown, W. Song, S. K. Pierce, and F. M. 
Brodsky. 2002. Lipid rafts unite signaling cascades with clathrin to regulate BCR 
internalization. Immunity 17:451-462. 

34. Thyagarajan, R., N. Arunkumar, and W. Song. 2003. Polyvalent antigens stabilize 
B cell antigen receptor surface signaling microdomains. J Immunol 170:6099-
6106. 

35. Brown, B. K., and W. Song. 2001. The actin cytoskeleton is required for the 
trafficking of the B cell antigen receptor to the late endosomes. Traffic 2:414-427. 

36. Song, W., H. Cho, P. Cheng, and S. K. Pierce. 1995. Entry of B cell antigen 
receptor and antigen into class II peptide-loading compartment is independent of 
receptor cross-linking. J Immunol 155:4255-4263. 

37. Wagle, N. M., P. Cheng, J. Kim, T. W. Sproul, K. D. Kausch, and S. K. Pierce. 
2000. B-lymphocyte signaling receptors and the control of class-II antigen 
processing. Curr Top Microbiol Immunol 245:101-126. 

38. Ma, H., T. M. Yankee, J. Hu, D. J. Asai, M. L. Harrison, and R. L. Geahlen. 2001. 
Visualization of Syk-antigen receptor interactions using green fluorescent protein: 
differential roles for Syk and Lyn in the regulation of receptor capping and 
internalization. J Immunol 166:1507-1516. 

39. Rudensky, A. Y., M. Maric, S. Eastman, L. Shoemaker, P. C. DeRoos, and J. S. 
Blum. 1994. Intracellular assembly and transport of endogenous peptide-MHC 
class II complexes. Immunity 1:585-594. 

40. Wagle, N. M., J. H. Kim, and S. K. Pierce. 1998. Signaling through the B cell 
antigen receptor regulates discrete steps in the antigen processing pathway. Cell 
Immunol 184:1-11. 

 144 
 



 

41. Li, C., K. Siemasko, M. R. Clark, and W. Song. 2002. Cooperative interaction of 
Igalpha and Igbeta of the BCR regulates the kinetics and specificity of antigen 
targeting. Int Immunol 14:1179-1191. 

42. Brown, B. K., C. Li, P. C. Cheng, and W. Song. 1999. Trafficking of the 
Igalpha/Igbeta heterodimer with membrane Ig and bound antigen to the major 
histocompatibility complex class II peptide-loading compartment. J Biol Chem 
274:11439-11446. 

43. Siemasko, K., B. J. Eisfelder, C. Stebbins, S. Kabak, A. J. Sant, W. Song, and M. 
R. Clark. 1999. Ig alpha and Ig beta are required for efficient trafficking to late 
endosomes and to enhance antigen presentation. J Immunol 162:6518-6525. 

44. Ungewickell, E. J., and L. Hinrichsen. 2007. Endocytosis: clathrin-mediated 
membrane budding. Curr Opin Cell Biol 19:417-425. 

45. Ohno, H., J. Stewart, M. C. Fournier, H. Bosshart, I. Rhee, S. Miyatake, T. Saito, 
A. Gallusser, T. Kirchhausen, and J. S. Bonifacino. 1995. Interaction of tyrosine-
based sorting signals with clathrin-associated proteins. Science 269:1872-1875. 

46. Maurer, M. E., and J. A. Cooper. 2006. The adaptor protein Dab2 sorts LDL 
receptors into coated pits independently of AP-2 and ARH. J Cell Sci 119:4235-
4246. 

47. Hawryluk, M. J., P. A. Keyel, S. K. Mishra, S. C. Watkins, J. E. Heuser, and L. 
M. Traub. 2006. Epsin 1 is a polyubiquitin-selective clathrin-associated sorting 
protein. Traffic 7:262-281. 

48. Carlton, J. G., and P. J. Cullen. 2005. Coincidence detection in phosphoinositide 
signaling. Trends Cell Biol 15:540-547. 

49. McMahon, H. T., and J. L. Gallop. 2005. Membrane curvature and mechanisms of 
dynamic cell membrane remodelling. Nature 438:590-596. 

50. Schmidt, A., M. Wolde, C. Thiele, W. Fest, H. Kratzin, A. V. Podtelejnikov, W. 
Witke, W. B. Huttner, and H. D. Soling. 1999. Endophilin I mediates synaptic 
vesicle formation by transfer of arachidonate to lysophosphatidic acid. Nature 
401:133-141. 

 145 
 



 

51. Micheva, K. D., A. R. Ramjaun, B. K. Kay, and P. S. McPherson. 1997. SH3 
domain-dependent interactions of endophilin with amphiphysin. FEBS Lett. 
14:308. 

52. Tsujita, K., S. Suetsugu, N. Sasaki, M. Furutani, T. Oikawa, and T. Takenawa. 
2006. Coordination between the actin cytoskeleton and membrane deformation by 
a novel membrane tubulation domain of PCH proteins is involved in endocytosis. 
J Cell Biol 172:269-279. 

53. Wigge, P., Y. Vallis, and H. T. McMahon. 1997. Inhibition of receptor-mediated 
endocytosis by the amphiphysin SH3 domain. Curr Biol 7:554-560. 

54. Grabs, D., V. I. Slepnev, Z. Songyang, C. David, and M. Lynch. 1997. The SH3 
domain of amphiphysin binds the proline-rich domain of dynamin at a single site 
that defines a new SH3 binding consensus sequence. J. Biol. Chem. 272:13419. 

55. Merrifield, C. J., M. E. Feldman, L. Wan, and W. Almers. 2002. Imaging actin 
and dynamin recruitment during invagination of single clathrin-coated pits. Nat 
Cell Biol 4:691-698. 

56. Merrifield, C. J., B. Qualmann, M. M. Kessels, and W. Almers. 2004. Neural 
Wiskott Aldrich Syndrome Protein (N-WASP) and the Arp2/3 complex are 
recruited to sites of clathrin-mediated endocytosis in cultured fibroblasts. Eur J 
Cell Biol 83:13-18. 

57. Perera, R. M., R. Zoncu, L. Lucast, P. De Camilli, and D. Toomre. 2006. Two 
synaptojanin 1 isoforms are recruited to clathrin-coated pits at different stages. 
Proc Natl Acad Sci U S A 103:19332-19337. 

58. Massol, R. H., W. Boll, A. M. Griffin, and T. Kirchhausen. 2006. A burst of 
auxilin recruitment determines the onset of clathrin-coated vesicle uncoating. 
Proc Natl Acad Sci U S A 103:10265-10270. 

59. Engqvist-Goldstein, A. E., and D. G. Drubin. 2003. Actin assembly and 
endocytosis: from yeast to mammals. Annu Rev Cell Dev Biol 19:287-332. 

60. Kubler, E., and H. Riezman. 1993. Actin and fimbrin are required for the 
internalization step of endocytosis in yeast. Embo J 12:2855-2862. 

 146 
 



 

61. Apodaca, G. 2001. Endocytic traffic in polarized epithelial cells: role of the actin 
and microtubule cytoskeleton. Traffic 2:149-159. 

62. Fujimoto, L. M., R. Roth, J. E. Heuser, and S. L. Schmid. 2000. Actin assembly 
plays a variable, but not obligatory role in receptor-mediated endocytosis in 
mammalian cells. Traffic 1:161-171. 

63. Orth, J. D., and M. A. McNiven. 2003. Dynamin at the actin-membrane interface. 
Curr Opin Cell Biol 15:31-39. 

64. Jeng, R. L., and M. D. Welch. 2001. Cytoskeleton: actin and endocytosis--no 
longer the weakest link. Curr Biol 11:R691-694. 

65. Pelkmans, L., and A. Helenius. 2002. Endocytosis via caveolae. Traffic 3:311-
320. 

66. Pelkmans, L., D. Puntener, and A. Helenius. 2002. Local actin polymerization and 
dynamin recruitment in SV40-induced internalization of caveolae. Science 
296:535-539. 

67. Merrifield, C. J., S. E. Moss, C. Ballestrem, B. A. Imhof, G. Giese, I. Wunderlich, 
and W. Almers. 1999. Endocytic vesicles move at the tips of actin tails in cultured 
mast cells. Nat Cell Biol 1:72-74. 

68. May, R. C., and L. M. Machesky. 2001. Phagocytosis and the actin cytoskeleton. 
J Cell Sci 114:1061-1077. 

69. Daly, R. J. 2004. Cortactin signalling and dynamic actin networks. Biochem J 
382:13-25. 

70. Kessels, M. M., A. E. Engqvist-Goldstein, D. G. Drubin, and B. Qualmann. 2001. 
Mammalian Abp1, a signal-responsive F-actin-binding protein, links the actin 
cytoskeleton to endocytosis via the GTPase dynamin. J Cell Biol 153:351-366. 

71. Engqvist-Goldstein, A. E., C. X. Zhang, S. Carreno, C. Barroso, J. E. Heuser, and 
D. G. Drubin. 2004. RNAi-mediated Hip1R silencing results in stable association 
between the endocytic machinery and the actin assembly machinery. Mol Biol 
Cell 15:1666-1679. 

 147 
 



 

72. Engqvist-Goldstein, A. E., R. A. Warren, M. M. Kessels, J. H. Keen, J. Heuser, 
and D. G. Drubin. 2001. The actin-binding protein Hip1R associates with clathrin 
during early stages of endocytosis and promotes clathrin assembly in vitro. J Cell 
Biol 154:1209-1223. 

73. Higgs, H. N., and T. D. Pollard. 2001. Regulation of actin filament network 
formation through ARP2/3 complex: activation by a diverse array of proteins. 
Annu Rev Biochem 70:649-676. 

74. Kessels, M. M., and B. Qualmann. 2004. The syndapin protein family: linking 
membrane trafficking with the cytoskeleton. J Cell Sci 117:3077-3086. 

75. Da Costa, S. R., E. Sou, J. Xie, F. A. Yarber, C. T. Okamoto, M. Pidgeon, M. M. 
Kessels, A. K. Mircheff, J. E. Schechter, B. Qualmann, and S. F. Hamm-Alvarez. 
2003. Impairing actin filament or syndapin functions promotes accumulation of 
clathrin-coated vesicles at the apical plasma membrane of acinar epithelial cells. 
Mol Biol Cell 14:4397-4413. 

76. Kessels, M. M., and B. Qualmann. 2002. Syndapins integrate N-WASP in 
receptor-mediated endocytosis. Embo J 21:6083-6094. 

77. Roth, M. G. 2007. Integrating actin assembly and endocytosis. Dev Cell 13:3-4. 

78. Yarar, D., C. M. Waterman-Storer, and S. L. Schmid. 2007. SNX9 couples actin 
assembly to phosphoinositide signals and is required for membrane remodeling 
during endocytosis. Dev Cell 13:43-56. 

79. Buss, F., S. D. Arden, M. Lindsay, J. P. Luzio, and J. Kendrick-Jones. 2001. 
Myosin VI isoform localized to clathrin-coated vesicles with a role in clathrin-
mediated endocytosis. Embo J 20:3676-3684. 

80. Mermall, V., P. L. Post, and M. S. Mooseker. 1998. Unconventional myosins in 
cell movement, membrane traffic, and signal transduction. Science 279:527-533. 

81. Bompard, G., and E. Caron. 2004. Regulation of WASP/WAVE proteins: making 
a long story short. J Cell Biol 166:957-962. 

 148 
 



 

82. Lamaze, C., T. H. Chuang, L. J. Terlecky, G. M. Bokoch, and S. L. Schmid. 1996. 
Regulation of receptor-mediated endocytosis by Rho and Rac. Nature 382:177-
179. 

83. Hrboticky, N., T. Feldmeer, M. Essler, A. Wiedemann, and M. Aepfelbacher. 
2002. Involvement of the GTPase Rho in the cellular uptake of low density 
lipoprotein by human skin fibroblasts. Biochim Biophys Acta 1580:123-132. 

84. Le Roux, D., D. Lankar, M. I. Yuseff, F. Vascotto, T. Yokozeki, G. Faure-Andre, 
E. Mougneau, N. Glaichenhaus, B. Manoury, C. Bonnerot, and A. M. Lennon-
Dumenil. 2007. Syk-dependent Actin Dynamics Regulate Endocytic Trafficking 
and Processing of Antigens Internalized through the B-Cell Receptor. Mol Biol 
Cell 18:3451-3462. 

85. Allam, A., H. Niiro, E. A. Clark, and A. J. Marshall. 2004. The adaptor protein 
Bam32 regulates Rac1 activation and actin remodeling through a 
phosphorylation-dependent mechanism. J Biol Chem 279:39775-39782. 

86. Niiro, H., A. Allam, A. Stoddart, F. M. Brodsky, A. J. Marshall, and E. A. Clark. 
2004. The B lymphocyte adaptor molecule of 32 kilodaltons (Bam32) regulates B 
cell antigen receptor internalization. J Immunol 173:5601-5609. 

87. Hao, S., and A. August. 2005. Actin depolymerization transduces the strength of 
B-cell receptor stimulation. Mol Biol Cell 16:2275-2284. 

88. Marshall, A. J., H. Niiro, C. G. Lerner, T. J. Yun, S. Thomas, C. M. Disteche, and 
E. A. Clark. 2000. A novel B lymphocyte-associated adaptor protein, Bam32, 
regulates antigen receptor signaling downstream of phosphatidylinositol 3-kinase. 
J Exp Med 191:1319-1332. 

89. Vascotto, F., D. Lankar, G. Faure-Andre, P. Vargas, J. Diaz, D. Le Roux, M. I. 
Yuseff, J. B. Sibarita, M. Boes, G. Raposo, E. Mougneau, N. Glaichenhaus, C. 
Bonnerot, B. Manoury, and A. M. Lennon-Dumenil. 2007. The actin-based motor 
protein myosin II regulates MHC class II trafficking and BCR-driven antigen 
presentation. J Cell Biol 176:1007-1019. 

90. Melamed, I., G. P. Downey, K. Aktories, and C. M. Roifman. 1991. 
Microfilament assembly is required for antigen-receptor-mediated activation of 
human B lymphocytes. J Immunol 147:1139-1146. 

 149 
 



 

91. Hinshaw, J. E. 2000. Dynamin and its role in membrane fission. Annu Rev Cell 
Dev Biol 16:483-519. 

92. Hinshaw, J. E. 1999. Dynamin spirals. Curr Opin Struct Biol 9:260-267. 

93. Sever, S., A. B. Muhlberg, and S. L. Schmid. 1999. Impairment of dynamin's 
GAP domain stimulates receptor-mediated endocytosis. Nature 398:481-486. 

94. Vallis, Y., P. Wigge, B. Marks, P. R. Evans, and H. T. McMahon. 1999. 
Importance of the pleckstrin homology domain of dynamin in clathrin-mediated 
endocytosis. Curr Biol 9:257-260. 

95. Salim, K., M. J. Bottomley, E. Querfurth, M. J. Zvelebil, I. Gout, R. Scaife, R. L. 
Margolis, R. Gigg, C. I. Smith, P. C. Driscoll, M. D. Waterfield, and G. 
Panayotou. 1996. Distinct specificity in the recognition of phosphoinositides by 
the pleckstrin homology domains of dynamin and Bruton's tyrosine kinase. Embo 
J 15:6241-6250. 

96. Simpson, F., N. K. Hussain, B. Qualmann, R. B. Kelly, B. K. Kay, P. S. 
McPherson, and S. L. Schmid. 1999. SH3-domain-containing proteins function at 
distinct steps in clathrin-coated vesicle formation. Nat Cell Biol 1:119-124. 

97. Scaife, R., I. Gout, M. D. Waterfield, and R. L. Margolis. 1994. Growth factor-
induced binding of dynamin to signal transduction proteins involves sorting to 
distinct and separate proline-rich dynamin sequences. Embo J 13:2574-2582. 

98. Herskovits, J. S., H. S. Shpetner, C. C. Burgess, and R. B. Vallee. 1993. 
Microtubules and Src homology 3 domains stimulate the dynamin GTPase via its 
C-terminal domain. Proc Natl Acad Sci U S A 90:11468-11472. 

99. Zhu, J., K. Zhou, J. J. Hao, J. Liu, N. Smith, and X. Zhan. 2005. Regulation of 
cortactin/dynamin interaction by actin polymerization during the fission of 
clathrin-coated pits. J Cell Sci 118:807-817. 

100. Gomez, T. S., M. J. Hamann, S. McCarney, D. N. Savoy, C. M. Lubking, M. P. 
Heldebrant, C. M. Labno, D. J. McKean, M. A. McNiven, J. K. Burkhardt, and D. 
D. Billadeau. 2005. Dynamin 2 regulates T cell activation by controlling actin 
polymerization at the immunological synapse. Nat Immunol 6:261-270. 

 150 
 



 

101. Shpetner, H. S., J. S. Herskovits, and R. B. Vallee. 1996. A binding site for SH3 
domains targets dynamin to coated pits. J Biol Chem 271:13-16. 

102. David, C., P. S. McPherson, O. Mundigl, and P. de Camilli. 1996. A role of 
amphiphysin in synaptic vesicle endocytosis suggested by its binding to dynamin 
in nerve terminals. Proc Natl Acad Sci U S A 93:331-335. 

103. Slepnev, V. I., G. C. Ochoa, M. H. Butler, D. Grabs, and P. De Camilli. 1998. 
Role of phosphorylation in regulation of the assembly of endocytic coat 
complexes. Science 281:821-824. 

104. Marks, B., and H. T. McMahon. 1998. Calcium triggers calcineurin-dependent 
synaptic vesicle recycling in mammalian nerve terminals. Curr Biol 8:740-749. 

105. Robinson, P. J., J. M. Sontag, J. P. Liu, E. M. Fykse, C. Slaughter, H. McMahon, 
and T. C. Sudhof. 1993. Dynamin GTPase regulated by protein kinase C 
phosphorylation in nerve terminals. Nature 365:163-166. 

106. Ahn, S., S. Maudsley, L. M. Luttrell, R. J. Lefkowitz, and Y. Daaka. 1999. Src-
mediated tyrosine phosphorylation of dynamin is required for beta2-adrenergic 
receptor internalization and mitogen-activated protein kinase signaling. J Biol 
Chem 274:1185-1188. 

107. Pullar, C. E., B. Repetto, and A. M. Gilfillan. 1996. Rapid dephosphorylation of 
the GTPase dynamin after FcepsilonRI aggregation in a rat mast cell line. J 
Immunol 157:1226-1232. 

108. Cao, H., J. D. Orth, J. Chen, S. G. Weller, J. E. Heuser, and M. A. McNiven. 
2003. Cortactin is a component of clathrin-coated pits and participates in receptor-
mediated endocytosis. Mol Cell Biol 23:2162-2170. 

109. Witke, W., A. V. Podtelejnikov, A. Di Nardo, J. D. Sutherland, C. B. Gurniak, C. 
Dotti, and M. Mann. 1998. In mouse brain profilin I and profilin II associate with 
regulators of the endocytic pathway and actin assembly. Embo J 17:967-976. 

110. Schlunck, G., H. Damke, W. B. Kiosses, N. Rusk, M. H. Symons, C. M. 
Waterman-Storer, S. L. Schmid, and M. A. Schwartz. 2004. Modulation of Rac 
localization and function by dynamin. Mol Biol Cell 15:256-267. 

 151 
 



 

111. Snapper, S. B., F. S. Rosen, E. Mizoguchi, P. Cohen, W. Khan, C. H. Liu, T. L. 
Hagemann, S. P. Kwan, R. Ferrini, L. Davidson, A. K. Bhan, and F. W. Alt. 1998. 
Wiskott-Aldrich syndrome protein-deficient mice reveal a role for WASP in T but 
not B cell activation. Immunity 9:81-91. 

112. Unsworth, K. E., P. Mazurkiewicz, F. Senf, M. Zettl, M. McNiven, M. Way, and 
D. W. Holden. 2007. Dynamin is required for F-actin assembly and pedestal 
formation by enteropathogenic Escherichia coli (EPEC). Cell Microbiol 9:438-
449. 

113. Sparks, A. B., N. G. Hoffman, S. J. McConnell, D. M. Fowlkes, and B. K. Kay. 
1996. Cloning of ligand targets: systematic isolation of SH3 domain-containing 
proteins. Nat Biotechnol 14:741-744. 

114. Larbolette, O., B. Wollscheid, J. Schweikert, P. J. Nielsen, and J. Wienands. 
1999. SH3P7 is a cytoskeleton adapter protein and is coupled to signal 
transduction from lymphocyte antigen receptors. Mol Cell Biol 19:1539-1546. 

115. Kessels, M. M., A. E. Engqvist-Goldstein, and D. G. Drubin. 2000. Association of 
mouse actin-binding protein 1 (mAbp1/SH3P7), an Src kinase target, with 
dynamic regions of the cortical actin cytoskeleton in response to Rac1 activation. 
Mol Biol Cell 11:393-412. 

116. Goode, B. L., A. A. Rodal, G. Barnes, and D. G. Drubin. 2001. Activation of the 
Arp2/3 complex by the actin filament binding protein Abp1p. J Cell Biol 
153:627-634. 

117. Pinyol, R., A. Haeckel, A. Ritter, B. Qualmann, and M. M. Kessels. 2007. 
Regulation of N-wasp and the arp2/3 complex by abp1 controls neuronal 
morphology. PLoS ONE 2:e400. 

118. Ensenat, D., Z. Yao, X. S. Wang, R. Kori, G. Zhou, S. C. Lee, and T. H. Tan. 
1999. A novel src homology 3 domain-containing adaptor protein, HIP-55, that 
interacts with hematopoietic progenitor kinase 1. J Biol Chem 274:33945-33950. 

119. Han, J., R. Kori, J. W. Shui, Y. R. Chen, Z. Yao, and T. H. Tan. 2003. The SH3 
domain-containing adaptor HIP-55 mediates c-Jun N-terminal kinase activation in 
T cell receptor signaling. J Biol Chem 278:52195-52202. 

 152 
 



 

120. Boomer, J. S., and T. H. Tan. 2005. Functional interactions of HPK1 with adaptor 
proteins. J Cell Biochem 95:34-44. 

121. Shui, J. W., J. S. Boomer, J. Han, J. Xu, G. A. Dement, G. Zhou, and T. H. Tan. 
2007. Hematopoietic progenitor kinase 1 negatively regulates T cell receptor 
signaling and T cell-mediated immune responses. Nat Immunol 8:84-91. 

122. Le Bras, S., I. Foucault, A. Foussat, C. Brignone, O. Acuto, and M. Deckert. 
2004. Recruitment of the actin-binding protein HIP-55 to the immunological 
synapse regulates T cell receptor signaling and endocytosis. J Biol Chem 
279:15550-15560. 

123. Han, J., J. W. Shui, X. Zhang, B. Zheng, S. Han, and T. H. Tan. 2005. HIP-55 is 
important for T-cell proliferation, cytokine production, and immune responses. 
Mol Cell Biol 25:6869-6878. 

124. Kurosaki, T. 1999. Genetic analysis of B cell antigen receptor signaling. Annu 
Rev Immunol 17:555-592. 

125. McHeyzer-Williams, M. G., L. J. McHeyzer-Williams, J. Fanelli Panus, G. Bikah, 
R. R. Pogue-Caley, D. J. Driver, and M. D. Eisenbraun. 2000. Antigen-specific 
immunity. Th cell-dependent B cell responses. Immunol Res 22:223-236. 

126. Mitchison, N. A. 2004. T-cell-B-cell cooperation. Nat Rev Immunol 4:308-312. 

127. Song, W., H. Cho, P. Cheng, and S. K. Pierce. 1995. Entry of B cell antigen 
receptor and antigen into class II peptide- loading compartment is independent of 
receptor cross-linking. J Immunol 155:4255-4263. 

128. pCheng, P. C., C. R. Steele, L. Gu, W. Song, and S. K. Pierce. 1999. MHC class 
II antigen processing in B cells: accelerated intracellular targeting of antigens. J 
Immunol 162:7171-7180. 

129. Pure, E., and L. Tardelli. 1992. Tyrosine phosphorylation is required for ligand-
induced internalization of the antigen receptor on B lymphocytes. Proc Natl Acad 
Sci U S A 89:114-117. 

 153 
 



 

130. Cassard, S., J. Salamero, D. Hanau, D. Spehner, J. Davoust, W. H. Fridman, and 
C. Bonnerot. 1998. A tyrosine-based signal present in Ig alpha mediates B cell 
receptor constitutive internalization. J Immunol 160:1767-1773. 

131. Siemasko, K., B. Skaggs, J. , S. Kabak, E. Williamson, B. K. Brown, W. Song, 
and M. Clark, R. 2002. Receptor facilitated antigen presentation requires the 
recruitment of B cell linker protein to Igα. J. Immunol. 168:2127-2138. 

132. Lankar, D., V. Briken, K. Adler, P. Weiser, S. Cassard, U. Blank, M. Viguier, and 
C. Bonnerot. 1998. Syk tyrosine kinase and B cell antigen receptor (BCR) 
immunoglobulin-alpha subunit determine BCR-mediated major histocompatibility 
complex class II-restricted antigen presentation. J Exp Med 188:819-831. 

133. Braun, J., P. S. Hochman, and E. R. Unanue. 1982. Ligand-induced association of 
surface immunoglobulin with the detergent-insoluble cytoskeletal matrix of the B 
lymphocyte. J Immunol 128:1198-1204. 

134. Park, J. Y., and J. Jongstra-Bilen. 1997. Interactions between membrane IgM and 
the cytoskeleton involve the cytoplasmic domain of the immunoglobulin receptor. 
Eur J Immunol 27:3001-3009. 

135. Jugloff, L. S., and J. Jongstra-Bilen. 1997. Cross-linking of the IgM receptor 
induces rapid translocation of IgM-associated Ig alpha, Lyn, and Syk tyrosine 
kinases to the membrane skeleton. J Immunol 159:1096-1106. 

136. Albrecht, D. L., J. W. Mills, and R. J. Noelle. 1990. Membrane Ig-cytoskeletal 
interactions. III. Receptor cross-linking results in the formation of extensive 
filamentous arrays of vimentin. J Immunol 144:3251-3256. 

137. Schreiner, G. F., and E. R. Unanue. 1976. Membrane and cytoplasmic changes in 
B lymphocytes induced by ligand-surface immunoglobulin interaction. Adv 
Immunol 24:37-165. 

138. Schreiner, G. F., and E. R. Unanue. 1977. Capping and the lymphocyte: models 
for membrane reorganization. J Immunol 119:1549-1551. 

139. Gabbiani, G., C. Chaponnier, A. Zumbe, and P. Vassalli. 1977. Actin and tubulin 
co-cap with surface immunoglobulins in mouse B lymphocytes. Nature 269:697-
698. 

 154 
 



 

140. Stoddart, A., A. P. Jackson, and F. M. Brodsky. 2005. Plasticity of B cell receptor 
internalization upon conditional depletion of clathrin. Mol Biol Cell 16:2339-
2348. 

141. Vascotto, F., D. Le Roux, D. Lankar, G. Faure-Andre, P. Vargas, P. 
Guermonprez, and A. M. Lennon-Dumenil. 2007. Antigen presentation by B 
lymphocytes: how receptor signaling directs membrane trafficking. Curr Opin 
Immunol 19:93-98. 

142. Fenster, S. D., M. M. Kessels, B. Qualmann, W. J. Chung, J. Nash, E. D. 
Gundelfinger, and C. C. Garner. 2003. Interactions between Piccolo and the 
actin/dynamin-binding protein Abp1 link vesicle endocytosis to presynaptic active 
zones. J Biol Chem 278:20268-20277. 

143. Qualmann, B., T. M. Boeckers, M. Jeromin, E. D. Gundelfinger, and M. M. 
Kessels. 2004. Linkage of the actin cytoskeleton to the postsynaptic density via 
direct interactions of Abp1 with the ProSAP/Shank family. J Neurosci 24:2481-
2495. 

144. Drubin, D. G., K. G. Miller, and D. Botstein. 1988. Yeast actin-binding proteins: 
evidence for a role in morphogenesis. J Cell Biol 107:2551-2561. 

145. Pinyol, R., A. Haeckel, A. Ritter, B. Qualmann, and M. M. Kessels. 2007. 
Regulation of N-WASP and the Arp2/3 complex by Abp1 controls neuronal 
morphology. PLoS ONE 2:e400. 

146. Kaksonen, M., C. P. Toret, and D. G. Drubin. 2005. A modular design for the 
clathrin- and actin-mediated endocytosis machinery. Cell 123:305-320. 

147. Connert, S., S. Wienand, C. Thiel, M. Krikunova, N. Glyvuk, Y. Tsytsyura, D. 
Hilfiker-Kleiner, J. W. Bartsch, J. Klingauf, and J. Wienands. 2006. 
SH3P7/mAbp1 deficiency leads to tissue and behavioral abnormalities and 
impaired vesicle transport. Embo J 25:1611-1622. 

148. Mise-Omata, S., B. Montagne, M. Deckert, J. Wienands, and O. Acuto. 2003. 
Mammalian actin binding protein 1 is essential for endocytosis but not 
lamellipodia formation: functional analysis by RNA interference. Biochem 
Biophys Res Commun 301:704-710. 

 155 
 



 

149. Germain, R. N., and M. K. Jenkins. 2004. In vivo antigen presentation. Curr Opin 
Immunol 16:120-125. 

150. Murphy, D. B., S. Rath, E. Pizzo, A. Y. Rudensky, A. George, J. K. Larson, and 
C. A. Janeway, Jr. 1992. Monoclonal antibody detection of a major self peptide. 
MHC class II complex. J Immunol 148:3483-3491. 

151. Lerner, E. A., L. A. Matis, C. A. Janeway, Jr., P. P. Jones, R. H. Schwartz, and D. 
B. Murphy. 1980. Monoclonal antibody against an Ir gene product? J Exp Med 
152:1085-1101. 

152. Lila, T., and D. G. Drubin. 1997. Evidence for physical and functional 
interactions among two Saccharomyces cerevisiae SH3 domain proteins, an 
adenylyl cyclase-associated protein and the actin cytoskeleton. Mol Biol Cell 
8:367-385. 

153. Dawson, J. C., J. A. Legg, and L. M. Machesky. 2006. Bar domain proteins: a role 
in tubulation, scission and actin assembly in clathrin-mediated endocytosis. 
Trends Cell Biol 16:493-498. 

154. Cheng, P. C., C. R. Steele, L. Gu, W. Song, and S. K. Pierce. 1999. MHC class II 
antigen processing in B cells: accelerated intracellular targeting of antigens. J 
Immunol 162:7171-7180. 

155. Merrifield, C. J. 2004. Seeing is believing: imaging actin dynamics at single sites 
of endocytosis. Trends Cell Biol 14:352-358. 

156. Merrifield, C. J., D. Perrais, and D. Zenisek. 2005. Coupling between clathrin-
coated-pit invagination, cortactin recruitment, and membrane scission observed in 
live cells. Cell 121:593-606. 

157. Kaksonen, M., C. P. Toret, and D. G. Drubin. 2006. Harnessing actin dynamics 
for clathrin-mediated endocytosis. Nat Rev Mol Cell Biol 7:404-414. 

158. Schafer, D. A. 2002. Coupling actin dynamics and membrane dynamics during 
endocytosis. Curr Opin Cell Biol 14:76-81. 

 156 
 



 

159. Krendel, M., E. K. Osterweil, and M. S. Mooseker. 2007. Myosin 1E interacts 
with synaptojanin-1 and dynamin and is involved in endocytosis. FEBS Lett 
581:644-650. 

160. Baba, T., H. Damke, J. E. Hinshaw, K. Ikeda, S. L. Schmid, and D. E. Warnock. 
1995. Role of dynamin in clathrin-coated vesicle formation. Cold Spring Harb 
Symp Quant Biol 60:235-242. 

161. Qualmann, B., M. M. Kessels, and R. B. Kelly. 2000. Molecular links between 
endocytosis and the actin cytoskeleton. J Cell Biol 150:F111-116. 

162. Herskovits, J. S., C. C. Burgess, R. A. Obar, and R. B. Vallee. 1993. Effects of 
mutant rat dynamin on endocytosis. J Cell Biol 122:565-578. 

163. Damke, H., T. Baba, D. E. Warnock, and S. L. Schmid. 1994. Induction of mutant 
dynamin specifically blocks endocytic coated vesicle formation. J Cell Biol 
127:915-934. 

164. Szaszak, M., Z. Gaborik, G. Turu, P. S. McPherson, A. J. Clark, K. J. Catt, and L. 
Hunyady. 2002. Role of the proline-rich domain of dynamin-2 and its interactions 
with Src homology 3 domains during endocytosis of the AT1 angiotensin 
receptor. J Biol Chem 277:21650-21656. 

165. Gaborik, Z., M. Szaszak, L. Szidonya, B. Balla, S. Paku, K. J. Catt, A. J. Clark, 
and L. Hunyady. 2001. Beta-arrestin- and dynamin-dependent endocytosis of the 
AT1 angiotensin receptor. Mol Pharmacol 59:239-247. 

166. Perrais, D., and C. J. Merrifield. 2005. Dynamics of endocytic vesicle creation. 
Dev Cell 9:581-592. 

167. Vallee, R. B., J. S. Herskovits, J. G. Aghajanian, C. C. Burgess, and H. S. 
Shpetner. 1993. Dynamin, a GTPase involved in the initial stages of endocytosis. 
Ciba Found Symp 176:185-193; discussion 193-187. 

168. Takei, K., P. S. McPherson, S. L. Schmid, and P. De Camilli. 1995. Tubular 
membrane invaginations coated by dynamin rings are induced by GTP-gamma S 
in nerve terminals. Nature 374:186. 

 157 
 



 

169. Scaife, R., C. Venien-Bryan, and R. L. Margolis. 1998. Dual function C-terminal 
domain of dynamin-1: modulation of self-assembly by interaction of the assembly 
site with SH3 domains. Biochemistry 37:17673. 

170. Takei, K., V. I. Slepnev, V. Haucke, and P. De Camilli. 1999. Functional 
partnership between amphiphysin and dynamin in clathrin-mediated endocytosis. 
Nat. Cell Biol. 1:33. 

171. Ringstad, N., H. Gad, P. Low, G. Di Paolo, and L. Brodin. 1999. 
Endophilin/SH3p4 is required for the transition from early to late stages in 
clathrin-mediated synaptic vesicle endocytosis. Neuron 24:143. 

172. Cao, H., S. Weller, J. D. Orth, J. Chen, B. Huang, J. L. Chen, M. Stamnes, and M. 
A. McNiven. 2005. Actin and Arf1-dependent recruitment of a cortactin-dynamin 
complex to the Golgi regulates post-Golgi transport. Nat Cell Biol 7:483-492. 

173. McNiven, M. A., L. Kim, E. W. Krueger, J. D. Orth, H. Cao, and T. W. Wong. 
2000. Regulated interactions between dynamin and the actin-binding protein 
cortactin modulate cell shape. J Cell Biol 151:187-198. 

174. Shajahan, A. N., B. K. Timblin, R. Sandoval, C. Tiruppathi, A. B. Malik, and R. 
D. Minshall. 2004. Role of Src-induced dynamin-2 phosphorylation in caveolae-
mediated endocytosis in endothelial cells. J Biol Chem 279:20392-20400. 

175. Achiriloaie, M., B. Barylko, and J. P. Albanesi. 1999. Essential role of the 
dynamin pleckstrin homology domain in receptor-mediated endocytosis. Mol. 
Cell Biol. 19:1410. 

176. Ruland, J., and T. W. Mak. 2003. From antigen to activation: specific signal 
transduction pathways linking antigen receptors to NF-kappaB. Semin Immunol 
15:177-183. 

177. Holsinger, L. J., I. A. Graef, W. Swat, T. Chi, D. M. Bautista, L. Davidson, R. S. 
Lewis, F. W. Alt, and G. R. Crabtree. 1998. Defects in actin-cap formation in 
Vav-deficient mice implicate an actin requirement for lymphocyte signal 
transduction. Curr Biol 8:563-572. 

178. Wesp, A., L. Hicke, J. Palecek, R. Lombardi, T. Aust, A. L. Munn, and H. 
Riezman. 1997. End4p/Sla2p interacts with actin-associated proteins for 
endocytosis in Saccharomyces cerevisiae. Mol Biol Cell 8:2291-2306. 

 158 
 



 

179. Ling, P., C. F. Meyer, L. P. Redmond, J. W. Shui, B. Davis, R. R. Rich, M. C. 
Hu, R. L. Wange, and T. H. Tan. 2001. Involvement of hematopoietic progenitor 
kinase 1 in T cell receptor signaling. J Biol Chem 276:18908-18914. 

180. Hu, M. C., W. R. Qiu, X. Wang, C. F. Meyer, and T. H. Tan. 1996. Human 
HPK1, a novel human hematopoietic progenitor kinase that activates the 
JNK/SAPK kinase cascade. Genes Dev 10:2251-2264. 

181. Rubinson, D. A., C. P. Dillon, A. V. Kwiatkowski, C. Sievers, L. Yang, J. 
Kopinja, D. L. Rooney, M. M. Ihrig, M. T. McManus, F. B. Gertler, M. L. Scott, 
and L. Van Parijs. 2003. A lentivirus-based system to functionally silence genes 
in primary mammalian cells, stem cells and transgenic mice by RNA interference. 
Nat Genet 33:401-406. 

182. Wang, W., G. Zhou, M. C. Hu, Z. Yao, and T. H. Tan. 1997. Activation of the 
hematopoietic progenitor kinase-1 (HPK1)-dependent, stress-activated c-Jun N-
terminal kinase (JNK) pathway by transforming growth factor beta (TGF-beta)-
activated kinase (TAK1), a kinase mediator of TGF beta signal transduction. J 
Biol Chem 272:22771-22775. 

183. Lajoie, P., and I. R. Nabi. 2007. Regulation of raft-dependent endocytosis. J Cell 
Mol Med 11:644-653. 

184. Pierce, S. K. 2002. Lipid rafts and B-cell activation. Nat Rev Immunol 2:96-105. 

185. Niiro, H., and E. A. Clark. 2003. Branches of the B cell antigen receptor pathway 
are directed by protein conduits Bam32 and Carma1. Immunity 19:637-640. 

186. Depoil, D., S. Fleire, B. L. Treanor, M. Weber, N. E. Harwood, K. L. Marchbank, 
V. L. Tybulewicz, and F. D. Batista. 2008. CD19 is essential for B cell activation 
by promoting B cell receptor-antigen microcluster formation in response to 
membrane-bound ligand. Nat Immunol 9:63-72. 

187. Rodriguez-Pinto, D. 2005. B cells as antigen presenting cells. Cell Immunol 
238:67-75. 

188. Kaksonen, M., H. B. Peng, and H. Rauvala. 2000. Association of cortactin with 
dynamic actin in lamellipodia and on endosomal vesicles. J Cell Sci 113 Pt 
24:4421-4426. 

 159 
 



 

189. Orth, J. D., E. W. Krueger, H. Cao, and M. A. McNiven. 2002. The large GTPase 
dynamin regulates actin comet formation and movement in living cells. Proc Natl 
Acad Sci U S A 99:167-172. 

190. Schymeinsky, J., A. Sindrilaru, D. Frommhold, M. Sperandio, R. Gerstl, C. Then, 
A. Mocsai, K. Scharffetter-Kochanek, and B. Walzog. 2006. The Vav binding site 
of the non-receptor tyrosine kinase Syk at Tyr 348 is critical for beta2 integrin 
(CD11/CD18)-mediated neutrophil migration. Blood 108:3919-3927. 

191. Deckert, M., S. Tartare-Deckert, C. Couture, T. Mustelin, and A. Altman. 1996. 
Functional and physical interactions of Syk family kinases with the Vav proto-
oncogene product. Immunity 5:591-604. 

192. Damke, H., D. D. Binns, H. Ueda, S. L. Schmid, and T. Baba. 2001. Dynamin 
GTPase domain mutants block endocytic vesicle formation at morphologically 
distinct stages. Mol Biol Cell 12:2578-2589. 

193. Ando, A., K. Yonezawa, I. Gout, T. Nakata, and H. Ueda. 1994. A complex of 
GRB2-dynamin binds to tyrosine-phosphorylated insulin receptor substrate-1 
after insulin treatment. EMBO J. 13:3033. 

194. Seedorf, K., G. Kostka, R. Lammers, P. Bashkin, and R. Daly. 1994. Dynamin 
binds to SH3 domains of phospholipase C gamma and GRB-2. J. Biol. Chem. 
269:16009. 

195. Solvason, N., W. W. Wu, D. Parry, D. Mahony, E. W. Lam, J. Glassford, G. G. 
Klaus, P. Sicinski, R. Weinberg, Y. J. Liu, M. Howard, and E. Lees. 2000. Cyclin 
D2 is essential for BCR-mediated proliferation and CD5 B cell development. Int 
Immunol 12:631-638. 

196. Ventura, J. J., N. J. Kennedy, J. A. Lamb, R. A. Flavell, and R. J. Davis. 2003. c-
Jun NH(2)-terminal kinase is essential for the regulation of AP-1 by tumor 
necrosis factor. Mol Cell Biol 23:2871-2882. 

197. Lamb, J. A., J. J. Ventura, P. Hess, R. A. Flavell, and R. J. Davis. 2003. JunD 
mediates survival signaling by the JNK signal transduction pathway. Mol Cell 
11:1479-1489. 

 160 
 



 

198. Toshima, J., J. Y. Toshima, A. C. Martin, and D. G. Drubin. 2005. 
Phosphoregulation of Arp2/3-dependent actin assembly during receptor-mediated 
endocytosis. Nat Cell Biol 7:246-254. 

199. Sekiya-Kawasaki, M., A. C. Groen, M. J. Cope, M. Kaksonen, H. A. Watson, C. 
Zhang, K. M. Shokat, B. Wendland, K. L. McDonald, J. M. McCaffery, and D. G. 
Drubin. 2003. Dynamic phosphoregulation of the cortical actin cytoskeleton and 
endocytic machinery revealed by real-time chemical genetic analysis. J Cell Biol 
162:765-772. 

200. Cope, M. J., S. Yang, C. Shang, and D. G. Drubin. 1999. Novel protein kinases 
Ark1p and Prk1p associate with and regulate the cortical actin cytoskeleton in 
budding yeast. J Cell Biol 144:1203-1218. 

201. Lee, D. W., X. Wu, E. Eisenberg, and L. E. Greene. 2006. Recruitment dynamics 
of GAK and auxilin to clathrin-coated pits during endocytosis. J Cell Sci 
119:3502-3512. 

 
 

 161 
 


	Olusegun O Onabajo, Doctor of Philosophy, 2008
	Dedication
	 Acknowledgements
	 Table of Contents
	 List of Figures
	List of abbreviations 
	Chapter 1: Introduction
	1.1 Humoral immunity
	1.2 BCR Signaling
	1.3 BCR-mediated antigen processing and presentation
	1.4 The role of signaling in the intracellular trafficking of the BCR 
	1.5 Clathrin-mediated endocytosis
	1.6 A role for the actin cytoskeleton during clathrin-mediated endocytosis
	1.7 Regulation of the actin cytoskeleton
	1.8 The actin cytoskeleton and the intracellular trafficking of the BCR
	1.9 Dynamin and clathrin-mediated endocytosis
	1.10 The role of dynamin in linking the actin cytoskeleton to the endocytosis machinery
	1.11 Abp1 in Endocytosis
	1.12 Role of Abp1 in Lymphocyte activation
	1.13 Significance

	Chapter 2: Actin binding protein 1 regulates BCR-mediated antigen processing and presentation in response to BCR activation
	2.1 Abstract
	2.2 Introduction
	2.3 Materials and Methods 
	2.3.1 Mice, cells and cell culture  
	2.3.2 DNA constructs and transfection
	2.3.3 Analysis of the movement of the BCR from the cell surface to late endosomes
	2.3.4 Analysis of BCR internalization
	2.3.5 Antigen presentation Assay
	2.3.6 Analysis of cellular distributions of Abp1, F-actin, and dynamin 2
	2.3.7 Analysis of tyrosine phosphorylation of Abp1
	2.3.8 Co-immunoprecipitation and coprecipitation of Abp1 and dynamin 2
	2.3.9 Statistics

	2.4 Results
	2.4.1 Abp1 is required for BCR-mediated antigen uptake 
	 
	 
	 
	2.4.2 B cells with Abp1-deficiency are defective in BCR-mediated antigen presentation
	2.4.3 BCR activation induces recruitment of Abp1 to the plasma membrane and the internalizing BCR
	2.4.4 BCR-induced redistribution of Abp1 depends on BCR-induced tyrosine phosphorylation of Abp1
	2.4.5 BCR-induced Abp1 redistribution depends on the actin cytoskeleton
	2.4.6 The interaction of Abp1 with dynamin 2

	2.5 Discussion

	Chapter 3: Dynamin is regulated by BCR signaling and is required for BCR internalization
	3.1 Abstract
	3.2 Introduction.
	3.3 Materials and Methods
	3.3.1 DNA constructs and transfection.   
	3.3.2 Analysis of the movement of the BCR from the cell surface to late endosomes. 
	3.3.3 Analysis of BCR internalization.  
	3.3.4 Analysis of cellular distributions of BCR, F-actin, and dynamin 2. 
	3.3.5 Live cell imaging. 

	3.4 Results
	3.4.1 BCR crosslinking induces the recruitment of Dynamin 2 to the plasma membrane and to the BCR.  
	3.4.2 Dynamin 2 is important for BCR internalization.  
	3.4.3 Dynamin regulates F-actin and BCR interaction following BCR crosslinking. 

	3.5 Discussion  

	  Chapter 4: Abp1, an actin adapter protein, is important for optimal activation of JNK and ERK in response to BCR activation 
	4.1 Abstract
	4.2 Introduction
	4.3 Materials and method
	4.3.1 Mice, cells and cell culture.  
	4.3.2 Developing of Abp1 shRNA. 
	4.3.3 Analysis of phosphorylation.  

	4.4 Results
	4.4.1 Abp1 deficiency alters BCR-induced protein tyrosine phosphorylation.
	 
	 
	 
	4.4.2 Abp1 deficiency alters BCR-induced phosphorylation of JNK and ERK.
	 
	 
	 
	4.4.3 Alteration of BCR signaling in Abp1-/- B cells is not simply caused by reduced BCR internalization.


	 
	 
	4.5 Discussion

	  Chapter 5: General discussion
	5.1 .Future studies

	Bibliography

