
MFTV: A Zoomable Multifaceted Tree Viewer

Nizar Habash
Computer Science Department

University of Maryland
College Park MD 20740 USA

+1 301 405 6746
habash@cs.umd.edu

Jin Tong
Computer Science Department

University of Maryland
College Park MD 20740 USA

+1 301 405 6746
jintong@cs.umd.edu

ABSTRACT
In this paper, we describe a zoomable visualization tool for
large-scale hierarchical ambiguous data structures. The tool
uses different techniques such as a multifaceted tree
representation, semantic zooming, detail and overview
windows, subtree hiding, a space-efficient layout scheme,
and a search ability.

Keywords
Zoomable User Interface (ZUI), Multifaceted Tree,
Semantic Zooming, Subtree Hiding, JAZZ, Linguistics,
Natural Language Representation, Lexical Conceptual
Structures.

INTRODUCTION
Natural language processing tasks, such as Machine
Translation or Information Retrieval require the use of
complex representations that can capture the semantics of
real-world sentences. Such representations tend to be large-
scale ambiguous hierarchical structures that are very hard to
visualize for several interrelated reasons. Most important
of all is that ambiguity is represented in these structures by
explicit repetition. This increases the size of the tree. A
second issue is the amount of information that is recorded at
every node. It is rather large to account for semantic,
syntactic and lexical features. These different pieces of
information can clutter any visualization if given equal
significance, which is not the case since some of the
information is usually more relevant than others. Finally,
the size of these representations, although partly dependent
on the level of ambiguity and detail, can be enormous. In
this paper, we describe a visualization tool that we call the
Multifaceted Tree Viewer (MFTV). It attempts to address
these issues by utilizing different techniques such as a
multifaceted tree representation, semantic zooming, detail
and overview windows, subtree hiding, a space-efficient
layout scheme, and a search ability. This project was
implemented using JAZZ, a Zoomable User Interface (ZUI)
API that allows developers to quickly and easily build ZUI
applications in Java2. JAZZ is the current generation of the
ZUI APIs that started from Pad and Pad++ [2][3][7].

MOTIVATION
The need for such a visualization tool came out of work at
the Computational Linguistics and Information Processing
Lab (CLIP) at the University of Maryland College Park.
Specifically, different groups (analysis, generation, lexicon,
etc.) working on a Chinese-English interlingual machine
translation system needed a tool to debug the interlingua
that was used to represent the semantics of the translated
sentences and to debug the group modules themselves. This
interlingua is called Composed Lexical Conceptual
Structure (CLCS) [4]. CLCSes have been used as the
interlingual representation for many languages such as
English, Arabic, Spanish, and Korean in different Natural
Language Processing projects from Machine Translation to
Foreign Language Tutoring. CLCSes share with other
natural language representations all of the visualization
issues described above. The only visualization currently
available is a purely textual representation (Lisp format).
For an average sentence of length 36 words, the CLCS is
about 700 lines long. Ambiguity is explicitly represented
by duplication. This makes visualizing an unambiguous
instance of the CLCS very hard. Also, all of the
information is displayed with equal significance on the
screen, which is not true of the data itself. Figure 1 shows
part of the current textual visualization of the following
sentence:

In the 21st Session of the South-East Asia-Singapore-
Macao Symposium, vice president of the People’s Bank of
China, Yin Jieyan issued an idea about the situation of
large capital inflow and macroscopic economic policy.

SOLUTION
Background
In the beginning of our work, there was no clear
visualization solution to deal with the data structure. The
visualization needs of CLCSes are quite different from
other large-scale hierarchical data visualized by other
researchers using cone trees, zoomable hierarchically
clustered networks, etc. [5][8][9]. We interviewed some of
the people working on the machine translation project
mentioned above and discussed with them the needs and
limitations of the visualization they were using. Different
solutions were explored to visualize the data structure.

Tree diagrams have been used in different textbooks and
articles on CLCSes but never including ambiguity. Initially,
three ideas presented themselves as important elements for
a visualization solution to the issues described above:
multifaceted trees, detail+overview windows, and semantic
zooming.

Figure 1. List Format of one CLCS

The multifaceted tree data structure provides a paradigm to
deal with ambiguity and reduce the visible size of the
CLCSes to only unambiguous instances of it. A detail
window is used to view the different details in every node.
Thus reducing clutter and only displaying the most
important information in the overview display. Zooming
and semantic zooming are needed to provide detail-in-
context, compensating for the problems of using a detail
window separate from the overview.

Basic Solution Elements

Multifaceted Trees

Ambiguous branches in CLCSes are represented using a
special node called a possibles node that signifies that there
is a disjunction in the tree at the node’s position and that the
elements of the disjunction are the children of the possibles
node. Nodes and branches that are not ambiguous are
represented like any regular tree. In Figure 2, the black
node is a possibles node. The tree to the left corresponds to
an ambiguous CLCS and the trees to the right correspond to
unambiguous instances of it. We decided to normalize this
“ambiguity branching” over the whole tree thus abstracting
to a tree where every node is a disjunction of faces and
every face has its own children that are nodes themselves.
The result is a multifaceted tree (Figure 3). It is a
generalized tree since a regular tree is a special case of a
multifaceted tree where every node has one face only. It is
a generic data structure since is not specific to our CLCS
data structure.

To visualize a multifaceted tree node, we use a box that
displays the content of a single face only and different

buttons allowing access to all faces available (Figure 4).
Presenting a single face per node at a time reduces the
clutter of ambiguity. The selected face is marked by a gray
button. When the user clicks on a face button, the tree is
reconfigured to show the new face and its children. In
Figure 4, the two buttons to the left are different faces of a
single node. The button to the right is the fourth face of a
node with four faces.

Figure 2. Possibles Node

Figure 3. Multifaceted Tree Data Structure

Figure 4. Nodes in MFTV

Detail Window

The detail window is provided to hide less significant
information in the main view window (Figure 5). When a
user left-clicks on a node box, the node is selected. A red
box is drawn around the selected node. The contents of the
selected node, which include all the information available
on it in the CLCS, are displayed in the detail window. The
user can make the information about the tree as a whole to
be displayed in the detail window. Such information
includes the English translation or statistical information on
the number of objects in the tree. This is done by right-
clicking on the background while holding the shift button
(so as not to interfere with the panning mechanism

described in the next section). This action also causes the
de-selection of any selected tree nodes.

Zooming and Semantic Zooming

Zooming has been used in many applications and has been
shown to be an effective tool in navigating large-scale data
[1][5][9]. The advantages of using a zoomable interface for
visualizing CLCSes include the ease of navigation and
providing the user with the ability to view the trees at any
non-discrete scale. In addition, the use of semantic
zooming complements the restrictions of the detail window
by providing the ability to view details of a node in context
of other nodes. Figure 6 shows a CLCS subtree at three
different zoom scales. The ability to zoom and pan was
provided by the JAZZ API. Zooming is handled by right-
dragging the tree and panning is handled by left-dragging it.

Additional Solution Elements

The basic features above solved a large part of the
visualization problems. However some of the old problems
are still not solved. For example, large text size consumes
too much screen real estate and hiding information under
different faces made search harder. Also, using zooming
introduces the problem of desert fog. So we added several
other features to our system to deal with these issues.

Tree Layout

Our initial tree layout algorithm gave every subtree its own
rectangular bound that does not intersect with others. This
turned out to be quite wasteful of screen real estate (Figure
7). The solution was to implement a more complicated
algorithm that kept track of the borders of sibling subtrees
and tried to position them such that the space between them
is minimized without causing intersections. The results
were very encouraging (Figure 8).

Subtree Hiding

Subtree hiding is another enhancement feature to save
screen real estate. We implemented this feature such that
when a user right-clicks on a node while holding the shift
button, the whole subtree under this node is "collapsed"
into it, thus hiding the subtree. A node with collapsed
children is distinguishable from other nodes by a grayish
background that highlights it. Subtree hiding is especially
useful for hierarchical data, where parent nodes often carry
enough information for the whole subtree. With subtree
hiding, we can show an overview of the whole tree by
showing a few top-level nodes. This feature also proved
very effective for displaying CLCSes that tend to have
repeated subtrees. This "redundancy" can be avoided in the
visualization if all repeated subtrees were hidden except for
one. Thus users will not be daunted by the number of
repetitions of the same subtrees and the overall size of the

tree. Figures 9 and 10 showed the same CLCS with and
without hiding.

Search Ability

A large amount of data in our visualization is hidden. It is
either in faces other than the chosen ones or being collapsed
in ancestor nodes. This results in a need for a way to locate
nodes anywhere in the tree. Our query menu option allows
users to search the tree on a specific string. All nodes
matching the query are enclosed in blue boxes. If a node
matched but was in a face other than the current one, the
button that allows going to that face is highlighted with blue
too. Also, if a subtree was collapsed and something within
it matched the query, the collapsed node is enclosed in a
blue box. Figure 11 displays the tree from Figure 8 after a
search was done on the string NIL.

Camera Restoration

The use of zooming introduces its own visualization
problems. One such problem is desert fog, or the situation
when users are lost after having zoomed too far in or out
that their immediate environment is devoid of navigational
cues [6]. Our simple solution for this was to provide a
“Restore Camera” menu option that returns the tree to its
default zoom scale and location.

USABILITY TESTING

We did not conduct a formal usability test of this
visualization tool. However, every one who was
interviewed initially to help with the design issues was very
enthusiastic and appreciative of MFTV. Some members of
the CLIP lab have expressed interest in extending our tool
to visualize other linguistic data structures that they deal
with.

SCALABILITY
Because of the dense tree data structure inherited in multi-
faceted trees, MFTV can handle trees with a large number
of nodes. In the CLCS data set we used, the average number
of objects (nodes and faces) of a tree is 362 with a range
from 16 to 2307. Coupled with subtree hiding, MFTV can
accommodate significantly large trees.

SOFTWARE ARCHITECTURE
The overall architecture of MFTV is described in Figure
12. The application consists of two distinct parts: the LISP
writer and the JAZZ visualization application. The
interface between the two parts consists of a textual
representation of the multifaceted tree to be visualized.

Lisp Writer
The LISP writer is a program that converts CLCS data into
multifaceted tree data structures and writes the results to a
file in a JAZZ parseable format.

JAZZ Visualization Application
This part constitutes the full MFTV application. When
users open files created by the Lisp writer, the multifaceted
tree is parsed and constructed. Then a JAZZ scene graph
extended with our own visual components is created and
rendered. When the user selects a face or hides a subtree,
the multifaceted tree data structure is modified to track
these choices and a new scene graph is constructed.
Semantic zooming is handled by our visual components
together with JAZZ.

FUTURE WORK
Animation
With the change-of-face mechanism, the user is allowed
access to more data than what a screen area can usually
hold. However, the change of an entire subtree (sometimes
the whole tree when the root is multifaceted) can be
confusing to the user if it happens all of a sudden. It would
be nicer and less disorienting if the change of face is
animated so that the user will see a more vivid trace of
change.

Visual Design Enhancement
We also plan to explore enhancements to the visual design
of the tree. This includes possible changes to color-coding,
better text layout in each node and other changes of label
look-and-feel.

Exploring Visualizing Other Tree Data Structures
The key features of MFTV should also be applicable to
other types of multifaceted tree data structures. There are
data structures used in NLP that are similar to CLCSes. We
can visualize these structures with slight modifications to
MFTV. We are also interested in exploring other data
structures with similar encoded ambiguities and how they
can be properly visualized using the MFTV framework.
Moreover, we are open to exploring other uses of the
change-of-face and subtree hiding features in a multifaceted
tree visualization. One possibility is using the data
structure to provide a generalized version of the subtree
hiding mechanism. For example, allowing only a subset of
the subtrees to be active (visually or functionally) at one
time. Through a proper user interface, this data structure
can be exploited to present any hierarchical data, especially
large and dense trees.

ACKNOWLEDGMENTS
We thank Dr. Ben Bederson for all his help and support at
every point in the development of this project. Also, we
thank the members of the Computational Linguistics and
Information Processing Lab and fellow students in CMSC
838 B: Zoomable User Interfaces for their great help and
advice.

REFERENCES
1. Bartram, L., Henigman, F., & Dill, J. (1995).

Intelligent Zoom As Metaphor and Navigation Tool in
a Multi-Screen Interface for Network Control Systems.
Proceedings of IEEE International Conference on
Systems, Man and Cybernetics IEEE, pp. 3122-3127.

2. Bederson, B. B., Hollan, J. D., Perlin, K., Meyer, J.,
Bacon, D., & Furnas, G. W. (1996). Pad++: A
Zoomable Graphical Sketchpad for Exploring
Alternate Interface Physics. Journal of Visual
Languages and Computing, 7, 3-31.

3. Bederson, B. B., McAlister B. (1999). JAZZ: A
Toolkit for Object-Oriented 2D Graphics in Java (with
zooming). Submitted to CHI 99.

4. Dorr, Bonnie. Machine Translation: A View from the
Lexicon. MIT Press: Cambridge, 1993.

5. Hightower, R. R., Ring, L., Helfman, J., Bederson, B.
B., & Hollan, J.D. (1998). Graphical Multiscale Web
Histories: A Study of PadPrints. In Proceedings of
ACM Conference on Hypertext (Hypertext 98) ACM
Press, pp. 58-65.

6. Jul, S., & Furnas, G. W. (1998). Critical Zones in
Desert Fog: Aids to Multiscale Navigation. In
Proceedings of User Interface and Software
Technology (UIST 98) ACM Press, pp. 97-106.

7. Perlin, K., & Fox, D. (1993). Pad: An Alternative
Approach to the Computer Interface. In Proceedings of
Computer Graphics (SIGGRAPH 93). New York, NY:
ACM Press, pp. 57-64.

8. Robertson, G. G., Mackinlay, J. D., & Card, S. K.
(1991). Cone Trees: Animated 3D Visualizations of
Hierarchical Information. In Proceedings of Human
Factors in Computing Systems (CHI 91). ACM Press,
pp. 189-194.

9. Schaffer, D., Zuo, Z., Greenberg, S., Bartram, L., Dill,
J., Dubs, S., & Roseman, M. (1996). Navigating
Hierarchically Clustered Networks through Fisheye and
Full-Zoom Methods. ACM Transactions on Computer-
Human Interaction, 3(2), 162-188.

Figure 5. Overview + Detail

Figure 6. Semantic Zooming

Figure 7. Old Tree Layout

Figure 8. Efficient Tree Layout

Figure 9. CLCS without subtree hiding

Figure 10. CLCS with subtree hiding

Figure 11. MFTV after a search is done.

Figure 12. Software Architecture

