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This work focuses on improving rotorcraft Computational Fluid Dynamic

(CFD) simulations through the incorporation of an appropriate Galilean invariant

transition model suitable for rotating flows and a blended implicit time-marching

scheme to reduce unphysical early tip-vortex breakdown.

A correlation-based Galilean invariant transition model is coupled to the Spalart–

Allmaras (S–A) turbulence model. The transition model is derived from Menter’s

1-eq γ transition model and reformulated to incorporate with the S–A turbulence

model. A constant freestream turbulence is applied for local correlations to account

for wind tunnel test conditions in CFD simulations. Convergence of the model is

improved for implicit time methods by applying the positivity in the implicit opera-

tors. The model is extended with two crossflow transition models, one proposed by

Langtry et al. and the other one by Menter and Smirnov. The extended model has

capability to predict the natural transition, bypass transition, separation-induced

transition, and crossflow transition. Calibrations of the transition model are per-



formed based on results of flat plate cases, and a new set of the model constants

are proposed. The model is validated against various 2-D airfoils and 3-D cases.

Accuracy and robustness of the transition model is demonstrated with comparisons

with experimental data. For a 3-D hovering rotor case, the transition model shows

similar trends with other CFD, for integrated quantities, but without nonphysical

behaviors in transition locations.

The wake breakdown of a hovering rotor in CFD simulations is investigated

with a focus on the effect of time marching. Several factors are tested such as 1)

time step sizes, 2) temporal accuracy of time-marching schemes (BDF2 and BDF1),

and 3) adding temporal damping to the BDF2 scheme. For this purpose, a blended

formulation of the BDF2 and BDF1 schemes is derived with a temporal damping

variable. Numerical studies are performed for NASA Langleys PSP hovering rotor,

and results are compared such as wake structures, integrated rotor performance, and

FFT analysis of the thrust coefficient. The results show that adding a small amount

of temporal damping to the BDF2 scheme makes the integrated rotor performance

settled down and reduces unphysical secondary vortex braid instability in wake

structure. It is shown that the blended BDF scheme with a temporal damping can

be used as an engineering solution of the wake structure breakdown in CFD rotor

simulations without significant loss of temporal accuracy.
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Chapter 1: Introduction

1.1 Motivation

1.1.1 Galilean invariant transition model

Prediction of laminar-turbulent transition is important in the design of a new

wing, fuselage, rotor blade, or wind turbine blade. Laminar-turbulent transition

affects viscous drag, flow separation, and heat transfer, and ignoring the effect of

transition often results in inaccurate predictions of the drag and flow development.

For fixed wing aircraft, maintaining laminar flow on wings or a fuselage is con-

sidered one of the key requirements for next generation aircraft. Laminar flow on

wings and fuselage reduces total vehicle drag, and thus decrease fuel burning and

gas emission. For rotorcraft, laminar-turbulent transition affects fuselage drag and

rotor performance. In a recent experimental study by Overmeyer and Martin [10],

it was observed that the rotor with the natural transition has 7.1 and 4.9 counts

higher Figure of Merits (a hovering efficiency) at low and high thrusts, respectively,

than the rotor with the fixed transition on the both upper and lower surfaces of the

blade. One count of the Figure of Merit difference is approximately equivalent to

170 lbs of payload for an UH-60 class helicopter at standard sea-level conditions [11].
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7.1 and 4.9 count differences are approximately 1207 lbs and 833 lbs, respectively,

and these are non-negligible amounts in a helicopter design. In NASA’s CFD Vision

2030 Study: A Path to Revolutionary Computational Aerosciences [12], the capa-

bility for prediction of turbulent flow with laminar turbulent transition and flow

separation is considered “the single, most critical area” among five pacing items in

CFD simulations by 2030. The importance of the accurate prediction of the laminar

turbulent transition cannot be overstated.

To predict laminar-turbulent transition in general purpose CFD simulations,

an additional transition model is required. Direct Numerical Simulation (DNS)

or Large Eddy Simulation (LES) can predict laminar turbulent transition directly

without any modeling, but they are prohibitively expensive for engineering appli-

cations. In the Reynolds Averaged Naiver–Stoke (RNAS) simulations, turbulence

models, such as the S–A [13] or k − ω SST [14] model, were developed based on

the assumption of fully turbulent flow, so they require additional corrections to pre-

dict laminar-turbulent transition. Several transition models have been developed

for this purpose based on the stability theory methods (eN methods) or partial-

differential equation (PDE) methods. Among them, one of the most successful

models is Langtry–Menters γ-Reθt model [15]. The model is suitable for modern

CFD methodologies such as parallelization (due to only needing local quantities)

and is compatible with both structured and unstructured meshes. For this reason,

the model has become the most widely used transition model in industrial CFD

simulations since its publication in 2009.

However, one of the limitations of Langtry–Menters model is a lack of Galilean
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invariance. Galilean invariance implies an independence on the frame of reference

and is a well known requirement of turbulence modeling [16]. However, Langtry–

Menter’s model is not Galilean invariant because the model uses 1) flow quantities

along the streamwise direction and 2) the local velocity vector for the local correla-

tions. The lack of Galilean invariance does not matter for a stationary object but

can cause issues for general multiple moving objects such as for a helicopter rotor

system. Several numerical studies already have shown irregular behaviors of the

transition model for rotor simulations, such as nonphysical trends of transition lo-

cations or unphysically high turbulent intensity [5,17–20]. Therefore, to avoid these

issues, a transition model with Galilean invariance is required for general applica-

tions. The first objective of the present work is to develop an appropriate Galilean

invariant transition model for the S–A turbulence model.

1.1.2 Wake breakdown of a hovering rotor

In rotorcraft CFD simulations, wake structure breakdown is a phenomenon

where the vortical structures of a rotor are destroyed by the secondary vortex braid

instability (also called vortical worms, vortex soup). Figure 1.1 shows wake break-

down from a 3-bladed TRAM rotor simulation by Chaderjian [21]. The instability

appears in both hover and forward flight simulations, but its effect on the wake

structure is more dominant in hover cases because in forward flight, the non-zero

freestream velocity convects the wake downstream away from the rotor system and

helps stabilize the wake. Figure 1.2 shows a development of the wake breakdown

3



Figure 1.1: Wake breakdown of a TRAM rotor by the secondary vortex braid insta-
bility.

for a hovering S-76 rotor. The mechanism responsible for wake breakdown in CFD

simulations has not been fully understood yet, but, in general, its process is as

follows:

1. Secondary vortex braid instability appears in the middle or far wake region

after rotor revolution 5∼8.

2. The secondary vortex braids propagate to the entire flowfield.

3. Helical vortex structures are destabilized by the secondary vortex instability.

4. The tip vortices are destroyed in the middle or far wake.

The wake breakdown has been observed since a high-order numerical scheme and/or

adaptive mesh refinement (AMR) were applied in rotor CFD simulations. It was

not observed in hover simulations in 1990s, but it is frequently observed in recent

hover simulations such as UH-60 rotor simulations by Hariharan et al. [22], TRAM

rotor by Chaderjian [21], S-76 rotor by Jain [23].

In order to identify factors causing wake breakdown, several numerical studies

have been performed. Abras et al. [24–26] tested different conditions such as 1) the

4



Figure 1.2: Development of wake breakdown of S-76 rotor. Image reproduced from
Abras et al. (2019)

number of blades, 2) the turbulence model, and 3) type of off-body grid for an S-76

hovering rotor; and showed less wake breakdown with a large torus mesh rotating

together with the blade. The current author also looked at the effect of temporal

accuracy on wake breakdown for an S-76 hovering rotor [17]. In the work, a reduced

temporal accuracy from 2nd order to 1st order suppress generation of secondary

vortices and better preserve tip vortices with minimum effects on integrated rotor

performances and blade loadings. However, it is known that eventually rotor wakes

will breakdown, just not in the vicinity of the rotor. Since critical factors causing

the wake breakdown are still not clear, there are no engineering solutions of the

wake breakdown yet. The second goal of the present study is further investigation

of the wake breakdown with a focus on time-marching schemes in CFD simulations

and to propose an engineering solution for more physical wake structures.

5



1.2 Background

This chapter reviews 1) basic ideas of laminar-turbulent transition, 2) Galilean

invariance, and 3) transition prediction methods. The first part of the chapter

discusses four modes of laminar-turbulent transition that will be mentioned through

the present dissertation. Then, Galilean invariance is described with various flow

quantities. Finally, PDE-based transition models are discussed.

1.2.1 Physics of laminar-turbulent transition

Laminar-turbulent transition (or transition) is the process by which the lami-

nar flow becomes turbulent. In 1883, Osborne Reynolds first reported the phenom-

ena using a critical non-dimensional parameter, Reynolds number, from pipe flow

experiments [27]. The transition process begins with perturbations in the boundary

layers by disturbances such as freestream acoustic waves, surface roughness, and

interaction with turbulent flows, which are referred as the receptivity. Based on

the disturbances, the transition undergoes different paths and can be described as

different modes. This section reviews four types of transition; natural transition,

bypass transition, crossflow transition, and separation-induced transition.

1.2.1.1 Natural transition

Natural transition is one of the most common types in aerodynamic flows. It

occurs for conditions with low freestream turbulence level. The turbulence level can

be represented with the turbulence intensity (Tu), which is a ratio of the root mean
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square of the turbulent fluctuation velocity to the mean velocity. Natural transition

occurs when the turbulence intensity is less than 1%. The transition is triggered by

infinitesimal disturbances, and two dimensional Tollmien-Schlichting waves start to

grow. Figure 1.3 shows the development of natural transition. Flow changes from

two dimensional Tollmien-Schlichting waves to three dimensional vortex breakdown

to turbulent spots to fully turbulent flow. The natural transition is well predicted

by linear stability theory.

Figure 1.3: Schematic of natural transition process. Image reproduced from White
(2006) [1].

1.2.1.2 Bypass transition

For high freestream turbulence intensity (Tu > 1.0%) or rough surfaces, the

first or second/third stages of the natural transition are bypassed, and the vortex

breakdown or turbulent spots are directly formed. This type of transition is known as
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bypass transition. The bypass transition is often observed in turbomachinery flows

due to high disturbances in the downwash of blades or large surface roughness. It

is generally believed that Tollmien-Schlichting waves are not observed in the bypass

transition if the turbulent intensity is larger than 1% [28].

1.2.1.3 Crossflow transition

On a swept wing, the laminar boundary layer has three-dimensional velocity

profiles: tangential and crossflow velocity profiles. Figure 1.4 shows velocity profiles

of the three-dimenional boundary layer on a swept wing. The instability in the

tangential direction is similar to two-dimensional Tollmien-Schlichting waves. On

the other hand, when a sweep angle is large, instability in the crossflow becomes

dominant and can also cause transition. The phenomenon is referred to as crossflow

Figure 1.4: Boundary layer velocity profiles on a three-dimensional sweep. Image
reproduced from Dagenhart and Saric (1999) [2]

transition. The crossflow transition occurs earlier than the transition by Tollmien-
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Schlichting waves (natural transition), if it occurs.

1.2.1.4 Separation-induced transition

When a laminar boundary layer separates under strong adverse pressure gra-

dient, it forms a separation bubble and reattaches due to increased mixing in the

downstream turbulent shear layers. This process is called the separation-induced

transition. The separation-induced transition is often observed near the leading

edge of an airfoil on the upper surface. Figure 1.5 shows the separation-induced

Figure 1.5: Pressure distribution across the separation bubble. Image reproduced
from Russell (1979) [3].

transition on an airfoil and corresponding surface pressure distribution. The pres-

sure distribution remains flat (constant) at the forward portion of the bubble and

then rapidly drops after the transition. The length of the bubble is a function of

Reynolds number and/or angle of attack. Sudden changes of bubble length from

“short” to “long” is called “bursting” and can result in significant loss of lift or

increase in drag.
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1.2.2 Galilean invariance in CFD simulations

A flow quantity that remains the same under Galilean transformation is re-

ferred to as Galilean invariant. Galilean transformation is a transformation between

two inertial frames of reference with a constant relative velocity. Figure 1.6 shows a

schematic of two coordinate systems with a constant relative velocity, v. Under the

Figure 1.6: Schematic of two coordinate systems for Galilean transformation.

Galilean transformation, relations between two coordinate systems, (x, y, z, t) and

(x′, y′, z′, t′), can be written as

x′ = x− vt

y′ = y

z′ = z

t′ = t

(1.1)

where v is a relative velocity (constant). From the above relations, it can be shown

that the flow velocity vector is not Galilean invariant because the relative velocity
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is subtracted (or added) from the original velocity as

u′ = u− v (1.2)

where u and u′ are the velocity components in the x and x′ directions, respectively,

and v is a constant. Similarly, streamlines, which are parallel to the velocity vector,

are not Galilean invariant for the same reason. On the other hand, scalar quantities

such as density and pressure are Galilean invariant. Also, the velocity gradient is

Galilean invariant, and it can be shown that

∂u′

∂x′
=

∂

∂x′
(u− v) =

∂

∂x′
u =

∂u

∂x

∂x

∂x′
+
∂u

∂t

∂t

∂x′
=
∂u

∂x
(1.3)

Therefore, quantities related to the velocity gradients such as the rate of strain (Sij),

the magnitude of vorticity (Ωij), vorticity vector (ωij) are also Galilean invariant.

Although the helicity (u · ω) includes the vorticity vector, it is not Galilean invari-

ant due to the velocity vector. A partial derivative of the velocity vector (∂u
∂t

) is

not Galilean invariant, whereas the total derivative of the velocity vector (Du
Dt

) is

Galilean invariant. Finally, the Navier-Stokes equations are Galilean invariant [16].

Table 1.2.2 lists Galilean invariant/non-Galilean invariant flow quantities and vari-

ables.

Galilean invariance is one of the necessary requirements in turbulence model-

ing. Because the Navier-Stokes equations are Galilean invariant, the model equa-

tions should follow the property of the governing equations. In other words, the
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Galilean invariant non-Galilean invariant
density,
pressure,

velocity gradient,
vorticity,
strain,
Du/Dt

velocity,
streamline,

helicity,
∂u/∂t

Table 1.1: Galilean invariant and non-Galilean invariant quantities in the fluid dy-
namics.

model equations should give the same solutions regardless of the frame of reference

in the inertial system. Turbulence models, such as the S–A [29] or k − ω SST [30]

model, were developed such that they satisfy Galilean invariance.

Figure 1.7: Two inertial systems with and without the grid motion.

Figure 1.7 shows a notional case in two different inertial systems to show

Galilean invariance in CFD simulations. Case 1 has a stationary airfoil with freestream

Mach number of 0.2. On the other hand, Case 2 has freestream Mach number of

0.1, but the airfoil is moving with Mach number of 0.1. CFD simulations for the

two cases should give the same solutions because the relative velocity to the airfoil

wall is the same. Figure 1.8 compares predicted lift and drag coefficients for the two

cases from fully turbulent CFD simulations using the S-A turbulence model. The

figure shows that Case 1 and Case 2 have the same time histories of lift and drag
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coefficients, respectively.

(a) Lift coefficient. (b) Drag coefficient.

Figure 1.8: Comparison of lift and drag coefficients for the two cases: fully turbulent
simulations.

Figure 1.9 compares solutions of Case 1 and Case 2: ρ, ρu, and ν̃ (the solution

from the S-A turbulence model). Because density is Galilean invariant, the two

contours from Case 1 and 2 are exactly the same. On the other hand, ρu is not

Galilean invariant, so the results from the two cases show different contours. Note

that the Navier-Stoke equations are Galilean invariant, but their solutions can be

non-Galilean invariant. For ν̃, the solution of the S-A turbulence model, the results

from the two cases have the same contours because the turbulence model is Galilean

invariant. In other words, the S-A turbulence model does not use any non-Galilean

invariant variables, so it gives the same solutions for the two cases whether the airfoil

is moving or not.

The same cases are simulated using two transition models: 1) Medida-Baeder

2-eq transition model (non-Galilean invariant) and 2) a new 1-eq Galilean invariant

transition model from the current study. Details of the each transition model is
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(a) Case 1: ρ. (b) Case 2: ρ.

(c) Case 1: ρu. (d) Case 2: ρu.

(e) Case 1: ν̃. (f) Case 2: ν̃.

Figure 1.9: Comparison of contours between the case 1 and case 2: fully turbulent
simulations using the S-A turbulence model.
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given in a later section of this dissertation. Figure 1.10 compares time histories of

lift and drag coefficients resulting from the two transition models. It is seen that

the non-Galilean invariant 2-eq transition model results in different time histories of

lift and drag coefficients for Case 1 and 2, whereas the new Galilean invariant 1-eq

transition model gives the same lift and drag coefficients for the two cases.

(a) Lift coefficient. (b) Drag coefficient.

Figure 1.10: Comparison of lift and drag coefficients for the two cases: transition
simulations.

Figure 1.11 compares solutions from the 2-eq transition model, intermittency

(γ) and the transition momentum thickness Reynolds number (Reθt). For the in-

termittency contours, a ratio of x-axis to y-axis is adjusted to see differences on the

surface more clearly. Because the transition model is not Galilean invariant, results

from the two cases show different contours of γ and Reθt. Transition locations of

Case 1 and Case 2 are also different on both the upper and lower surfaces of the

airfoil, resulting in the different lift and drag coefficients in Fig. 1.10. On the other

hand, Figure 1.12 shows intermittency contours from the 1-eq transition model. Be-

cause the model is Galilean invariant, results from Cases 1 and 2 give the same

intermittency contours like ν̃ shown in Figure 1.9.
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(a) Case 1: γ. (b) Case 1: Reθt.

(c) Case 2: γ. (d) Case 2: Reθt.

Figure 1.11: Comparison of solutions from the 2-eq transition model.

(a) Case 1: γ. (b) Case 2: γ.

Figure 1.12: Comparison of solutions from the 1-eq transition model.
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As mentioned earlier, the 2-eq transition model is not Galilean invariant, and

it depends on the frame of reference. However, for an inertial motion, the velocity

vector can be corrected such that the local velocity is relative to the moving wall.

This is simple work because the relative velocity between two inertial systems is just

a constant. If the corrections of the velocity vector are made for Case 2, then the

transition model gives the same solutions for Case 1 and 2, shown in Figures 1.13

and 1.14.

(a) Lift coefficient. (b) Drag coefficient.

Figure 1.13: Comparison of lift and drag coefficients for the two cases: transition
simulations.

(a) Case 1: γ. (b) Case 2 with correction: γ.

Figure 1.14: Comparison of solutions from the 2-eq transition model for the case 1
and case 2.
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Figure 1.15: 2-D rotating NACA0012 airfoil.

A problem with non-Galilean invariant models is a non-inertial motion. As a

second notional case, a 2-D rotating NACA0012 airfoil is shown in Figure 1.15. The

NACA0012 airfoil is located at 20 chord lengths from the center of rotation, and

the tip Mach number is 0.3. The effective pitch angle of the airfoil is zero and does

not change. Although the airfoil is symmetric, it has an effective camber because

rotational velocities are different at different locations on the airfoil. Figure 1.16

compares the normal and axial forces of the rotating airfoil resulting from the two

transition models. As it was discussed in the previous cases, the correction should be

made for the non-Galilean invariant 2-eq transition model to account for the motion

of the airfoil. However, the corrections for non-inertial motion are not simple any-

more unlike the correction for an inertial motion with a constant relative velocity.

In Figure 1.16, the corrections are made such that the local velocity vector is with

respect to the moving wall. However, other CFD work [18–20,31] show such velocity

corrections give some nonphysical behaviors of the transition model for 3-D hovering

rotor such as requiring a much higher input freestream turbulence intensity. Consid-
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(a) Lift coefficient. (b) Drag coefficient.

Figure 1.16: Comparison of the normal and axial forces of rotating NACA0012
airfoil: transition simulations.

ering the momentum equations of the Navier-Stokes equations from inertial frame

to the rotational frame with the addition of Coriolis and centrifugal force terms, not

just changes to the velocity for the flux terms, there may be some missing terms

in the corrections. However, it is not clear how the corrections should be made for

non-inertial motions such as due to rotating or pitching. This explains why non-

Galilean invariant models should be avoided for simulations of moving objects. In

summary, non-Galilean invariant turbulent and/or transition model is not desirable

because 1) it depends on the frame of reference, and 2) the correction should be

made for moving objects, but 3) the corrections for general non-inertial motions are

not clear. On the other hand, a Galilean invariant model does not depend on the

frame of reference and thus does not require such corrections. Finally, a Galilean

invariant model follows the characteristics of the governing equations.
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1.2.3 Transition prediction method

This section discusses prediction methods of the transition. Transition can be

predicted using 1) en method based on linear stability theory, 2) local correlation

methods, 3) PDE-based methods, or 4) Direct Numerical Simulations (DNS) / Large

Eddy Simulations (LES). Among them, this section mainly focuses on PDE-based

methods. The other two prediction methods, 1) en method based on linear stability

theory and 2) local correlation methods, are discussed in Appendix A. DNS or LES

also gives precious insights to understand physics of the transition, but they are too

costly to use in general engineering applications. For this reason, DNS or LES is

not reviewed in this dissertation.

The PDE-based methods consist of one or two partial differential transport

equations. They should be solved using a numerical algorithm, and an output from

the model is coupled to a baseline turbulence model to control the turbulent eddy

viscosity generation. Table 1.2.3 shows the most widely used PDE-based transition

models, which will be mentioned in this dissertation repeatedly. Each model is

discussed in the following chapters.

Transition model Turbulence model Galilean invariant Year
Langtry-Menter [15]

2-eq γ −Reθt
k-ω-SST No 2009

Medida-Baeder [32]
2-eq γ −Reθt

SA No 2014

Menter et al. [33]
1-eq γ

k-ω-SST Yes 2015

Coder [34,35]
2-eq AFT

SA Yes 2019

Table 1.2: List of the PDE-based transition models.
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1.2.3.1 Langtry-Menter’s 2-eq γ −Reθt model

Langtry-Menter’s 2-eq γ−Reθt model [15] is one of the most successful model

in RANS-based transition modelling. The model is based on local correlations and

doesn’t require non-local operations. The model consists of two transport equa-

tions, one for intermittency (γ) and one for transition onset momentum-thickness

Reynolds number (Reθt). The output intermittency turns on/off the source terms

of the turbulent kinetic energy of the SST turbulence model [14], and the transition

onset momentum-thickness Reynolds number couples the empirical correlation to

the transition onset criteria.

A key idea of the model is using the vorticity Reynolds number (Rev) like Van

Driest and Blumer Correlation [36] instead of the momentum thickness Reynolds

number (Reθt) to avoid non-local operations based on the following relations:

Reθt =
max(Rev)

2.193
(1.4)

Transition onset occurs when the scaled vorticity Reynolds number exceeds the

critical value of the momentum thickness Reynolds number (Reθc) as

Fonset =
Reθt
Reθc

≈ Rev
2.193Reθc

(1.5)

The model has a capability to predict natural transition, bypass transition, and

separation-induced transition, and it has been extended with crossflow transition
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models proposed by Langtry et al. [37], Muller and Herbst [38], and Grabe et al. [39].

Similarly, the model has been coupled with roughness-induced transition models

suggested by Dassler et al. [40] and Langel et al. [41]. The transition model was

originally developed for k − ω SST turbulence model; but Medida and Baeder [32]

coupled it to the S-A turbulence model with modifications, which will be discussed

in the following section.

One of the limitations of the model is a lack of Galilean invariance. The model

is not Galilean invariant because the transport equation for the transition onset

momentum-thickness Reynolds number requires flow quantities along the streamwise

direction as well as the local velocity vector.

1.2.3.2 Medida-Baeder 2-eq γ −Reθt model

Medida–Baeder model [32] was derived from Langtry–Menter’s model [15].

The model is incorporated with the S–A turbulence model and was reformulated

to remove the dependence on the k and ω of the SST turbulence model. There

are four primary differences between Langtry–Menter’s model and Medida–Baeder

model. Firstly, Medida–Baeder model employs modified transport equation for in-

termittency with a new transition onset function (Gonset) to improve recovery of

intermittency in the turbulent boundary layers. Because the function requires op-

erations along the boundary layer, however, the model is not fully local. Secondly,

in Medida–Baeder model, a constant freestream turbulence intensity is used in the

computational domain because the local turbulence intensity is not available with
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the S–A turbulence model. Thirdly, the separation-induced transition modification

of Langtry–Menter’s model is omitted. Finally, for Medida-Baeder model, the out-

put intermittency is applied to the production term of the S–A turbulence model.

Because Medida-Baeder model employs the same transport equation for the mo-

mentum thickness Reynolds number (Reθt), it is not Galilean invariant either.

1.2.3.3 Menter’s 1-eq γ model

The motivation of Menter’s 1-eq γ transition model [33] is to improve lim-

itations of Langtry–Menter’s γ − Reθt model: 1) the lack of Galilean invariance,

and 2) complexity in the Reθt transport equation. The new transition model has

only one transport equation for intermittency, and the second transport equation in

Langtry-Menter’s model is simplified with algebraic relations. The model also uses

the relation between the vorticity Reynolds number and the critical momentum

thickness Reynolds number for the transition onset criteria as

Fonset1 =
Rev

2.2Reθc
(1.6)

like Langtry-Menter’s model. The intermittency transport equation is newly formu-

lated based on the new local correlations.

The model achives Galilean invariance by replacing quantities along the stream-

wise direction with the wall normal direction as

dU

dx
= −dV

dy
(1.7)
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where U and x are the streamwise velocity and coordinate, respectively, and simi-

larly, V and y are the wall-normal velocity and coordinate, respectively. In addition,

the magnitude of the local velocity (U) for the turbulence intensity is replaced with

the specific rate of dissipation (ω) and the wall distance (dw) as

U ≈ ωdw (1.8)

Nichols [42] first made efforts to integrate Menter’s 1-eq γ transition model

with the S–A turbulence model and showed promising results. However, in the

work, the initial condition of the SA turbulence model (ν̃) is used as an input of the

transition model instead of the freestream turbulence intensity from experiments.

Therefore, it cannot account for the experimental flow condition (physical value),

but the numerical value of the turbulence model should be adjusted to match the

experimental data.

1.2.3.4 Coder’s Amplification Factor Transport (AFT) 2-eq transi-

tion model

Coder’s Amplification Factor Transport (AFT) model [34, 35] is based on the

linear stability theory. A key idea of the model is using the simplified linear sta-

bility theory by employing the approximate envelope method proposed by Drela

and Giles [43] instead of full application of linear stability theory or computational

expensive database look-up. The original version of the model [34] solves one trans-

port equation for the envelope amplification factor (ñ), but the latest version [35]
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consists of two transport equations, one for the envelope amplification factor (ñ)

and one for modified intermittency. The envelope amplification factor is calculated

from the boundary layer shape factor with the pressure gradient and then used for

the transition onset criteria. The modified intermittency is coupled to the ft2 term

of the SA turbulence model and triggers the transition onset. The original version

of the model was not Galilean invariant, but the latest version is Galilean invariant

by applying Menter’s approach shown in Eq. 1.7 for calculations of the pressure gra-

dient parameter. Similarly, the modified intermittency equation is also derived from

Menter’s 1-eq transition model [33]. For example, in the AFT model, transition

onset criteria shown in Eq. 1.6 is replaced with stability theory as

Fonset1 =
ñ

Ncrit

(1.9)

where ñ is the envelope amplification factor and Ncrit is the critical amplification

factor from Mack [44].

1.3 Literature Review

This section reviews research work about two main topics of the present dis-

sertation: 1) application of a transition model for helicopter rotor simulations and

2) rotor wake structure breakdown. In the first section, transition predictions of a

hovering rotor using a transition model are reviewed. Several issues and limitations

of the work are also identified. In the second section, numerical and experimental

investigations of rotor wake breakdown are presented. Because there is very lim-
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ited experimental work, the section mainly focuses on numerical studies from CFD

simulations.

1.3.1 Prediction of transition on a hovering rotor

This section reviews papers presented as part of the AIAA Hover Prediction

Workshop since 2015 with regard to transition modelling of a rotor blade. Numerical

simulations of a rotor have been performed using either stability based models or

PDE based transition models by several research groups. Before the experimental

study of PSP rotor by Overmeyer and Martin [10] was published in 2017, however,

most work included limited transition prediction validation from a lack of available

experimental data.

Jain [23] investigated the effect from including a transition model for S-76 rotor

using CREATE-AV Helios (NASA’s OVERFLOW as a near-body flow solver) [45]

with Langtry–Menter’s transition model [15]. However, in the work, the transi-

tion model over-predicts Figure of Merit and gives less accurate prediction than the

fully turbulent simulations. Lee et al. [4] compared fully turbulent and transition

simulations of S-76 rotor using OVERTURNS flow solver with the Medida-Baeder

transition model [32]. In the results, Figure of Merit was only reasonably predicted

with very high freestream turbulence intensity around 2.0%. In addition, the lower

surface of the blade shows suspicious earlier transitions near the swept tip of the

blade regardless of thrust levels, which is shown in Figure 1.17. Garcia et al. [46] per-

formed hover simulations of XV-15 proprotor using HMB flow solver with Menter’s
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Figure 1.17: Intermittency contour on the S-76 rotor blade: Red-turbulent, Blue-
laminar flow. Image reproduced from Lee et al. (2017) [4].

γ transition model [47]. In the work, the transition model improves comparisons

of the skin friction coefficient with the experiment but doesn’t affect the integrated

rotor performance. Similarly, Sheng [48] made comparisons of the integrated of ro-

tor performances of XV-15 proprotor between transition simulations using UN2CLE

flow solver and fully turbulent simulations using CREATE-AV Helios [45]. However,

in the integrated rotor performance, no meaningful differences are observed between

the fully turbulent and transition results. It is considered that laminar flows on S-76

rotor or XV-15 rotor are very limited, so these cases are not proper to validate the

transition modeling.

Recently, the limitations are relieved by the experimental study for NASA

Langley’s PSP rotor by Overmeyer and Martin [10]. In the experiment, hover per-

formances were investigated as a function of various transition conditions, and tran-

sition locations were measured on the blade surfaces using the infrared thermogra-

phy techniques. With the release of the experimental data, numerical simulations of

PSP hovering rotor have been conducted using various transition models as shown

in Table 1.3.1.

Jain [5] performed transition simulations using CREATE-AV Helios (NASA’s

OVERFLOW as a near-body flow solver) with Langtry–Menter’s transition model.
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Authors Flow Solver
Turublence

model
Transition

model
Tu

Jain [5]
Helios

(OVERFLOW)
SST

Langtry-Menter
2-eq

0.08%

Vieira et al. [49] STAR-CCM+ SA-RC
Coder’s AFT

1-eq
0.07%

(Ncrit=9)

Coder et al. [35, 50] OVERFLOW SA-neg-RC
Coder’s AFT

2-eq
0.07%

(Ncrit=9)

Zhao et al. [51, 52] UN2CLE
SST
SA

Langtry-Menter
2-eq

Unkown

Lee et al. [18] OVERTURNS SA-R
Medida-Baeder

2-eq
0.75%

Fitzgibbon et al. [53] HMB SST Menter’s 1-eq Unknown

Kwon et al. [19, 20]
In-house

Unstructured
SST

Langtry-Menter
2-eq

1.0%

Table 1.3: Transition simulations of NASA Langley’s PSP hovering rotor.

The work compared predicted rotor performances and transition locations on the

blade surfaces with the experimental data. Overall, the transition model captures

the first-order effect of transition on the rotor performances well. However, pre-

dicted transition locations on the upper surface of the blade shows peculiar behav-

iors regardless of collective pitch angles as shown in Fig. 1.18. Vieira et al. [49]

Figure 1.18: Comparison of transition locations on the upper surface of the blade.
Image reproduced from Jain (2017) [5]
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conducted the isolated rotor simulations using STAR-CCM+ with Coder’s AFT

transition model (old version). For transition simulations, Ncrit = 9 is specified

as transition criteria. Although the transition model gives promising results in the

rotor performance and transition locations, a slope of Figure of Merit from the tran-

sition simulations changes irregularly as the thrust level increases. Later, Parwani

and Coder [50] and Carnes and Coder [35] performed similar simulations including

the fuselage using OVERFLOW flow solver with the latest version of AFT transi-

tion model. Lee et al. [18] investigated the effect of a transition model with and

without a crossflow transition correction using OVERTURNS flow solver with the

Medida-Baeder transition model. In the work, non-Galilean invariant variables were

modified with the local velocity vector relative to the blade wall to account for the

grid motion. Overall, transition simulations give good comparisons of the integrated

rotor performance with the experiment, but transition simulations require quite high

freestream turbulence intensity, 0.75%. It was not published, but transition simu-

lations were also performed without the modifications of non-Galilean invariant

variables. In such case, a lower freestream turbulence intensity, 0.075% gives bet-

ter comparisons with the experimental data. However, the results show unphysical

earlier transition on the lower surface of the blade near the swept tip, which was

similarly observed in S-76 rotor simulations. In the work by Kwon et al. [19, 20], a

high freestream turbulence intensity value (1.0%) was used with Langtry-Menter’s

transition model. It is considered that they also performed simulations with the

modifications of transition model to account for the motion of the blade. Similar

numerical studies are performed by Zhao et al. [51, 52] using UN2CLE flow solver
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with Langtry-Metner’s model, and Fitzgibbon et al. [53] using HMB flow solver with

Menter’s 1-eq transition model, but they do not include information of the turbu-

lence intensity in the papers. It is not a PSP rotor simulation, but Kaufmann et

al. [31] reported that Langtry-Menter’s model gives too delayed transition on a rotor

blade when turbulence intensity is lower than 1% in simulations accounting for the

rotating frame of reference. On the contrary, the semi-empirical method predicts

transition locations reasonably with turbulence intensity around 0.08%. It is not

clarified how the rotating frame of reference was accounted for, but a high turbu-

lence intensity value around 1% is required in the paper to match the experimental

data.

Several numerical work are reviewed here, but they have similar issues, which

can be summarized as follows:

1) A correct range of free stream turbulence intensity is not clear for a rotor

simulation. The freetream turbulence intensity is one of the most important param-

eter in transition simulations. For fixed wing aircraft, a typical range of freestream

turbulence intensity is from 0.07% (Ncrit = 9) to 0.161% (Ncrit = 7). However, for

rotorcraft, it has not been measured in an experiment, and its correct range is still

unknown. In the CFD simulations mentioned above, the freestream turbulence in-

tensity varies from 0.07% to 1%, the maximum values is more than ten times larger

than the minimum value.

2) Non-Galilean invariant transition models such as Langtry-Menter or Medida-

Baeder model depend on the frame of reference. For simulations in the inertial frame

of reference, the transition models give reasonable prediction of the rotor perfor-
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mances with freestream turbulence intensity less than 0.1%. However, in such cases,

the transition models show unphysical behaviors in transition locations regardless

of thrust levels as shown in Jain [5] and Lee [17]. On the other hand, in transition

simulations accounting for the grid motion or rotational frame of reference, high

freestream turbulence intensity around 1% is required to match experimental data.

It is not clear whether such high freestream turbulence intensity is reasonable or not

for rotor simulations.

3) For transition simulations with the SST turbulence model, detailed infor-

mation of implementation of the turbulence model are not clarified. For the SST

turbulence model, there are nonphysical decay mechanisms of turbulence quanti-

ties, so the sustaining terms or decay limiters are proposed to prohibit that [54].

Employing the terms change the behavior of transition models. In addition, there

are many variants of the SST turbulence model with different source terms such

as SST [14], SST-V [30], and SST-KL [55]. All these variations affects transition

predictions, but this information is not included in many papers.

1.3.2 Wake breakdown of a hovering rotor

This section reviews numerical and experimental work of wake breakdown of a

hovering rotor. In numerical simulations, wake breakdown by the secondary vortex

braids (also called ”vortical worms” or ”vortex soup”) is observed in simulations

with the adaptive mesh refinement (AMR) and/or high-order numerical schemes.

Figure 1.19 shows development of the wake break down of UH-60A rotor by Hari-
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Figure 1.19: Development of wake breakdown by secondary vortex structures: UH-
60A hover simulations at time steps 30, 40, 50, 60, 70, 80, 90, 100 thousand steps.
Image reproduced from Hariharan et at. [6].

haran et al. [6] using CREATE-AV Helios. NSU3D was used for a near-body solver

and the fifth-order accurate invicid flow solver (SAMRC) was applied for off-body

simulations. The adaptive mesh refinement was performed, and the simulation was

conducted using the rotational source terms. In the figure, after the starting vortex

leaves the refinement region (Figs. (a) and (b)), the ”secondary vortex braids” ap-

pear although the wake structures are still stable (Fig. (c)). Then, the secondary

vortex braids propagate to the entire flow field and make the wake structures un-

stable (Fig. (d) and Fig. (e)). Finally, vortical structures are destroyed by the

instabilities (Fig. (f)). Chaderjian and Buning [21] conducted hover simulations of

the 3-bladed Tilt Rotor Aeroacoustics Model (TRAM) using OVERFLOW with 5th
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order spatial scheme and the SA-DES model. In the work, two levels of the AMR are

performed with the finest cell size of 2.5% of the tip chord length. Figure. 1.20(a)

shows small ”vortical worms” dominate the entire wake structures except the very

near wake region. Jain [56] performed a hovering rotor simulations for 4-blade S-

(a) The TRAM rotor. Image re-
porduced from Chaderjian and Bun-
ing [21].

(b) S-76 rotor. Image reproduced from Jain [56].

Figure 1.20: Wake breakdown of high-resolution hover simulations.

76 rotor using OVERFLOW with the fifth order central scheme, SA-DES model,

and the AMR with the finest cell size of 2.5% of the reference chord length. Fig-

ure 1.20(b) shows the tip vortical structures become unstable within one revolution

by vortical ”wormlike” structures. In addition to the previous work, other CFD

work also shows similar phenomena for S-76 rotor [4, 57], and PSP rotor [5, 18, 50]

using the AMR and/or high-order numerical schemes.

On the other hand, there have been very limited experimental work that iden-

tifies the secondary vortex. Wolf et al. [7] recently performed experiments on a sub-

scale rotor in ground effect and investigated wake structures using the time-resolved
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particle tracking method. Figure 1.21 show a part of the measured wake structures

from the experiment. In the figure, the secondary vortex braids are observed be-

tween the tip vortices. However, the extent of the vortex braids in the experiment

is still much less than that of CFD simulations. More experimental studies are re-

quired, but the wake breakdown in CFD simulations, only stable vortical structure

in the very near wake, is considered physically incorrect.

Figure 1.21: Experiment measurement of the secondary vortex structures on a sub-
scale rotor. Image reproduced from Wolf et al. [7].

There have been several numerical studies to identify factors causing the wake

breakdown in CFD simulations. Significant efforts are made by Abras, Hariharan,

and Narducci [24–26]. In their work, several factors are investigated for S-76 blade

such as 1) the number of blades, 2) flow solver, 3) turbulence model, and 4) off-body

grid. Among them, the type of off-body grids is one of the key factors affecting the

wake structures, and a rotating torus mesh with the blades reduces non-physical

wake breakdown the most. The authors considered that a potential ”culprits” is the
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data transfer between the overset boundaries, and the numerical issue exacerbates

the wake breakdown with some types of off-body meshes.

The current author also looked at the effect of the temporal accuracy on the

wake breakdown [17]. In the work, the BDF2 and BDF1 schemes were investigated,

and a reduced temporal accuracy from 2nd-order to 1st-order gives less unphysical

secondary vortex braids with minor changes in the rotor performances. However,

the BDF1 scheme removed entire secondary vortex braids, and it may not be phys-

ical either considering the experimental work by Wolf et al. [7]. In addition, the

previous work only considered the BDF2 and BDF1 schemes and did not investi-

gate other time-maching factors such as time step sizes or temporal damping of the

BDF scheme. To better understand wake breakdown and suggest an engineering

solutions, further analyses are required with various time-marching factors.

1.4 Objectives

The present study has two primary research objectives: 1) Development of a

Galilean invariant transition model for the S-A turbulence model, and 2) Further

investigation of the effect of time marching on wake breakdown of a hovering rotor.

For the first objective, the S–A turbulence model is chosen as a baseline tur-

bulence model instead of the SST turbulence model. The S-A turbulence model has

been widely validated for external flows and has a capability for hybrid RANS/LES

simulations. In addition, the S-A turbulence model has less variants of the source

terms and doesn’t require sustaining terms or decay limiters unlike the SST turbu-
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lence model.

For the transition model, it should be Galilean invariant to avoid the depen-

dence on the frame of reference. Moreover, for an input of transition simulations,

the model should use a physical value from experiments instead of a numerical value

such as the initial condition of the S–A turbulence model (ν̃). The transition model

also should meet the following requirements:

• Able to predict various transition mechanisms such as natural transition,

separation-induced transition, bypass transition, and crossflow transition.

• Fully local and compatible with both structured/unstructured meshes.

• Give good convergence for implicit time-marching methods.

• Robust results for various meshes and/or Reynolds numbers.

Finally, for rotor simulations, the transition model should predict rotor performance

reasonably within a typical range of the freestream turbulence intensity without non-

physical behaviors. Although there are no experimental evidence yet, the current

author believes that a correct range of the freestream turbulence intensity in rotor

simulations is not around 1.0% that can cause bypass transition but instead closer

to 0.1%, which is a range of natural transition more comparable to that for a fixed

wing aircraft.

The second objective of the present study is to investigate the effect of time

marching on wake breakdown with various factors such as time step sizes, the BDF2

and BDF1 schemes, and temporal damping of the BDF scheme. To control the
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temporal damping of the BDF scheme, a new formulation of the BDF scheme needs

to be derived with a damping variable. In addition, the formulation should be

coupled to dual-time stepping for unsteady simulations. The final goal of the present

analysis is to propose an engineering solution to reduce unphysical wake breakdown

of a hovering rotor without significant loss of the temporal accuracy.

1.5 Scope and Organization of Thesis

Chapter 1 discusses the motivation, background, literature review, and re-

search objective of the present work. The remainder of the dissertation is as follows:

• Chapter 2 presents numerical methodology of the present study. The work is

performed using a compressible, structured, finite volume, hybrid RANS/LES

flow solver, OVERTURNS. The section gives details about the flow solver

including the governing equations and numerical algorithms. Also, a blended

BDF scheme coupled to dual-time stepping is derived.

• Chapter 3 derives formulations of the SA-γ transition model. First of all,

Menter’s 1-eq γ transition model is presented. Secondly, integration with

the S–A turbulence model is discussed with improvements in the convergence

of the transition model. Finally, the extension of the transition model with

crossflow transition models are shown.

• Chapter 4 provides validation cases of the SA-γ transition model for various

two-dimensional and three-dimensional cases including flow overs flat plate,
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airfoils, and a hovering rotor. The chapter shows the accuracy and robustness

of the transition model for various flow conditions and meshes.

• Chapter 5 discusses the effect of the time-marching on wake breakdown of a

hovering rotor. Various factors such as time step sizes, time-marching schemes,

and temporal damping of the time-marching schemes are investigated. The

chapter shows that adding a small amount of temporal damping to the BDF2

scheme can be used as an engineering solution for reducing unphysical wake

breakdown of a hovering rotor.

• Finally, in Chapter 6, conclusions and an overall summary of the present study

is presented with recommendations for future work.

38



Chapter 2: Computational Methodology

The following chapter discusses numerical methods of the present work. The

work is performed using Overset Transonic Unsteady Rotor Navier–Stokes (OVER-

TURNS) [58] flow solver. OVERTURNS is compressible, structured, finite volume,

hybrid RANS/LES flow solver and has been developed at the University of Mary-

land over decades. In the first section of the chapter, the governing equations and

their modifications are discussed. Then, in the second part, numerical algorithms

employed in OVERTURNS flow solver are presented.

2.1 Governing equations

2.1.1 Navier–Stokes Equations

To describe the behavior of flow, the three-dimensional, unsteady, compress-

ible Navier–Stokes equations are employed as the governing equations, consisting of

conservation of mass, momentum, and energy. In the Cartesian coordinate system,

Navier–Stokes equations in the strong conservation form are expressed as

∂Q

∂t
+
∂Fi
∂x

+
∂Gi

∂y
+
∂Hi

∂z
=
∂Fv
∂x

+
∂Gv

∂y
+
∂Hv

∂z
+ S (2.1)
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where Q is the vector of conserved variables, Fi, Gi and Hi are the inviscid flux

vectors, Fv, Gv and Hv are the viscous flux vectors, and S is the vector of sources

from body forces or effects of a frame of reference.

The vector of conserved variables, Q, is given

Q =



ρ

ρu

ρv

ρw

e



(2.2)

where ρ is the density, u, v, w are velocity components in the Cartesian coordinate,

and e is the total energy per unit volume.

The inviscid flux vectors, Fi, Gi, Hi, are given by

Fi =



ρu

ρu2 + p

ρuv

ρuw

u(e+ p)



, Gi =



ρv

ρvu

ρv2 + p

ρvw

v(e+ p)



, Hi =



ρw

ρwu

ρwv

ρw2 + p

w(e+ p)



(2.3)

where p is the pressure from the equation of state for a perfect gas as

p = (γ − 1)

{
e− 1

2
(u2 + v2 + w2)

}
(2.4)
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with the ratio of specific heat (γ) of 1.4 for air.

The viscous flux vectors, Fv, Gv, Hv, are given by

Fv =



0

τxx

τyx

τzx

uτxx + vτyx + wτzx − qx



(2.5)

Gv =



0

τxy

τyy

τzy

uτxy + vτyy + wτzy − qy



(2.6)

Hv =



0

τxz

τyz

τzz

uτxz + vτyz + wτzz − qz



(2.7)

where qx, qy, and qz are thermal conduction terms expressed as as a function of

temperature, T , and coefficient of thermal conductivity, k, as follows:

qi = −k ∂T
∂xi

(i = x, y, z) (2.8)
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The viscous stress, τij, is formulated based on Stokes’ hypothesis as

τij = µ

[(
∂ui
∂xj

+
∂uj
∂xi

)
− 2

3

∂uk
∂xk

δij

]
(2.9)

where µ is molecular viscosity calculated using Sutherlands law and δij is the Kro-

necker delta.

Most simulations in this dissertation do not include body forces. However,

for three-dimensional hovering rotor simulations, the source vector, S, is applied

to employ advantages of the rotating frame of reference. The rotating frame of

reference and source vector are described in the following section.

2.1.2 Simulation in the rotating frame of reference

For a general unsteady simulation with moving bodies, the governing equations

are solved in the inertial frame of reference. In such case, an overset connectivity

between meshes should be searched at every time-step with re-calculations of the

metric terms. On the other hand, for a hovering rotor, the governing equation can

be solved in the rotating frame of reference. In this case, computational costs can

be saved, since the calculations of the overset connectivity and metric terms are

only required at the beginning of a simulation. A simulation in the rotating frame

of reference requires 1) modifications of the governing equations (i.e., momentum

equations) and 2) source terms accounting for the Coriolis and centrifugal forces.

The modified momentum equations from Eq. 2.3 are
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Fi =



ρ(u− ug)

ρ(u− ug)u+ p

ρ(u− ug)v

ρ(u− ug)w

(u− ug)(e+ p)



, Gi =



ρ(v − vg)

ρ(v − vg)u

ρ(v − vg)v + p

ρ(v − vg)w

(v − vg)(e+ p)



, Hi =



ρ(w − wg)

ρ(w − wg)u

ρ(w − wg)v

ρ(w − wg)w + p

(w − wg)(e+ p)


(2.10)

where Ug = (ug, vg, wg) = Ω×r is the vector of grid velocities and Ω = (Ωx,Ωy,Ωz) is

the vector of angular velocities. For a hovering rotor rotating about z-axis, angular

velocities are Ω = (0, 0,Ωz), and thus, grid velocities are Ug = (−yΩz, xΩz, 0). Also,

the rotational source terms accounting for the Coriolis and centrifugal forces, S, are

given as

S =



0

ρvΩz

−ρuΩz

0

0



(2.11)
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2.1.3 Non-dimensionalization of the Navier–Stokes Equations

The governing equations are non-dimensionalized for the similarity. The non-

dimensionaliation of variables is performed using the reference variables as:

t∗ =
ta∞
c
, x∗ =

x

c
, y∗ =

y

c
, z∗ =

z

c
(2.12)

µ∗ =
µ

µ∞
, u∗ =

u

a∞
, v∗ =

v

a∞
, w∗ =

w

a∞
(2.13)

ρ∗ =
ρ

ρ∞
, T ∗ =

T

T∞
, p∗ =

p

ρ∞a∞
, e∗ =

e

ρ∞a∞
(2.14)

where the superscript ∗ represents a non-dimensionalized variables, the subscript∞

represents free-stream conditions, c is the chord of the airfoil, and a is the speed

of sound. The above variables are substituted into the Navier-Stoke equations,

and then it results in the identical equations except the viscous stress and thermal

conduction terms:

τij =
µM∞
a∞

[(
∂ui
∂xj

+
∂uj
∂xi

)
− 2

3

∂uk
∂xk

δij

]
(2.15)

qi = − µM∞
Re∞Pr(γ − 1)

∂T

∂xi
(2.16)

where M∞, Re∞, Pr are Mach number, Reynolds number, and Prandtl number,

respectively, defined as

M∞ =
V∞
a∞

, Re∞ =
ρ∞V∞c

µ∞
, P r =

µ∞cp
k

(2.17)
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where V∞ is a magnitude of the freestream velocity and cp is the specific heat at

constant pressure. At the standard air conditions, the Prandtl number is assumed

Pr = 0.72. The superscript ∗ is intentionally dropped in Eqs. 2.15 and 2.16 for

simplicity.

2.1.4 Reynolds-Averaged Navier–Stokes

Direct simulation of the time-dependent Navier–Stokes equations, called Di-

rect Numerical Simulation (DNS), or Large Eddy Simulations (LES) is prohibitively

expensive for practical engineering problems at high Reynolds numbers. As an al-

ternative to DNS or LES, the current work employs the Reynolds-Averaged Navier–

Stokes (RANS) approach, resolving statistically steady turbulence without transient

features. In the RANS approach, flow variables are decomposed into the mean and

fluctuation parts, called Reynolds decomposition, as:

f = f + f ′ (2.18)

where f is the mean part and f ′ is the fluctuation part. The mean part, f , is defined

as

f = lim
∆t→∞

1

∆t

∫ t+∆t

t

f(t)dt (2.19)

Also, by the definition, time-averaging of the fluctuation part is

f
′
= lim

∆t→∞

1

∆t

∫ t+∆t

t

f(t)′dt = 0 (2.20)
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Substitution of the decomposed flow variables into the Navier-Stokes equations

and time-averaging of the equations give Reynolds-Averaged Navier–Stokes (RNAS)

equations. Many fluctuation terms cancel out because of the time-averaging, and

the resultant equations are identical to the Navier-Stokes equations except the time-

averaging variables in the equations and additional terms in the momentum and

energy equations. The additional term in the momentum equation is known as the

Reynolds-stress tensor and calculated based on Boussinesq’s eddy viscosity hypoth-

esis using a turbulence model as

(τij)turb = −ρu′iu′j ≈ 2µt

(
Sij −

1

3

∂uk
∂xk

δij

)
− 2

3
ρkδij (2.21)

where Sij is the strain rate tensor, and k is the turbulent kinetic energy, and µt

is the turbulent eddy viscosity. To calculate the turbulent eddy viscosity, µt, the

Spalart-Allmaras one-equation turbulence model [13] is applied in the present work.

Details of the turbulence model is given in Chapter 2.1.5. The additional term in

the energy equations is ignored, since there is no heat transfer.

2.1.5 Turbulence model

The present work calculates the turbulent eddy viscosity using the Spalart-

Allmaras (SA) one-equation turbulence model [13]. The model consists of a trans-

port equation for a working variable, ν̃, as

Dν̃

Dt
= cb1S̃ν̃ − cw1fw

(
ν̃

d

)2

+
1

σ

[
∇ · ((ν + ν̃)∇ν̃) + cb2(∇ν̃)2

]
(2.22)
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where d is the distance from the nearest wall and ν is the molecular viscosity. The

original SA model has a trip term, ft2, but it is often unused in many implementa-

tions. This version of the SA turbulence model is called SA-noft2, and the present

work also employs the SA-noft2 version. Other variables of the model are given as

S̃ = Ω +
ν̃

k2d2
fv2, fv2 = 1− χ

1 + χfv1

, χ =
ν̃

ν
, fv1 =

χ3

χ3 + c3
v1

(2.23)

fw = g

[
1 + c6

w3

g6 + c6
w3

]1/6

, g = r + cw2(r6 − r), r = min

[
ν̃

S̃k2d2
, 10

]
(2.24)

The model constants are

cb1 = 0.1355, σ = 2/3, cb2 = 0.622, κ = 0.41 (2.25)

cw2 = 0.3, cw3 = 2, cv1 = 7.1, cw1 =
cb1
κ2

+
1 + cb2
σ

(2.26)

After the transport equation for ν̃ is solved, the turbulent eddy viscosity is calculated

as

µt = ρν̃fv1 (2.27)

2.1.5.1 Rotation correction of the SA model

The production term of the SA turbulence model is proportional to the mag-

nitude of the vorticity. However, this causes excessive generation of the turbulent

eddy viscosity in pure rotation regions, such as vortex cores, that should not generate

turbulence. To remedy this, the rotation correction of the SA turbulence model [59]
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is employed to reduce the turbulent eddy viscosity generation in regions where the

vorticity exceeds the strain rate. In the correction, the magnitude of vorticity Ω in

Eq. 2.23 is replaced with

Ω + Crotmin(0, S − Ω), Crot = 2.0, S =
√

2SijSij, Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(2.28)

2.1.6 Curvilinear Coordinate Transformation

The governing equations in a non-uniform spaced Cartesian coordinate system

(physical domain) is transformed onto an equispaced curvilinear coordinate system

(computational domain) as shown in Fig. 2.1. The transformation is performed

using the chain-rule of derivative as:

Figure 2.1: Curvilinear coordinate transformation of physical domain onto compu-
tational domain. Image reproduced from [8].

∂Q̂

∂t
+
∂F̂

∂ξ
+
∂Ĝ

∂η
+
∂Ĥ

∂ζ
= Ŝ (2.29)

48



where

Q̂ =
1

J
Q (2.30)

F̂ =
1

J
[ξtQ+ ξx(Fi − Fv) + ξy(Gi −Gv) + ξz(Hi −Hv)] (2.31)

Ĝ =
1

J
[ηtQ+ ηx(Fi − Fv) + ηy(Gi −Gv) + ηz(Hi −Hv)] (2.32)

Ĥ =
1

J
[ζtQ+ ζx(Fi − Fv) + ζy(Gi −Gv) + ζz(Hi −Hv)] (2.33)

Ŝ =
1

J
S (2.34)

and J = det
(
∂(ξ,η,ζ)
∂(x,y,z)

)
is the Jacobian of the coordinate transformation.

2.2 Numerical Algorithm

This section present numerical algorithms employed in OVERTURNS for solv-

ing the governing equations

2.2.1 Finite Volume

The curvilinear form of the governing equations are spatially discretized using

the node-based finite volume method. In the method, a fictitious volume, called

control volume, is created around grid points by joining the interfaces passing the

midpoints of two grid points as shown in Fig. 2.2 (2-D control volume for a simplic-

ity). Inviscid and viscous fluxes are calculated at the faces of the control volume. The

governing equations are discretized based on the node-based finite volume method
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Figure 2.2: Schematic of the control volume. Image reproduced from [9].

as

∂Q̂

∂t
= −

F̂j+ 1
2
− F̂j− 1

2

∆ξ
−
Ĝk+ 1

2
− Ĝk− 1

2

∆η
−
Ĥl+ 1

2
− Ĥl− 1

2

∆ζ
+ Ŝj,k,l (2.35)

where (j, k, l) are the indices in the (ξ, η, ζ) directions, respectively, and (j ± 1
2
, k ±

1
2
, l ± 1

2
) are interfaces of the control volume.

2.2.2 Inviscid Flux

In OVERTURNS, inviscid fluxes are calculated in two steps: (1) reconstruction

of the primitive variables at cell interfaces, and (2) evaluation of inviscid fluxes

from the left and right states using a flux difference scheme. Figure 2.3 shows a

schematic of the left and right states at a cell interface for a simple one-dimensional

case. The left and right states at the cell interface are calculated using the third-

order Monotone Upstream-Centered Scheme for Conservation Laws (MUSCL3) [60]

or the fifth-order Weighted Essentially Non-Oscillatory (WENO5) [61]. Then, the
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Figure 2.3: Schematic of one dimensional piecewise reconstruction. Image repro-
duced from [9].

left and right states can be considered as a local Riemann problem, and inviscid

fluxes are computed using Roe’s flux difference splitting (FDS) scheme [62] at the

each interface as

F (qL, qR) =
F (qL) + F (qR)

2
− |Â(qL, qR)|q

R − qL

2
(2.36)

where qL, qR are the left and right states, and Â is the Roe-averaged Jacobian

matrix. Harten’s entropy correction [63] is employed to modify the eigenvalues of

the Jacobian matrix to avoid nonphysical behaviors of the Roe scheme. As stated

earlier, reconstruction of the primitive variables is perform using either MUSCL3 or

WENO5 scheme. Each scheme is further discussed in the following sections.
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2.2.2.1 MUSCL3 scheme

The third-order Monotone Upstream-Centered Scheme for Conservation Laws

(MUSCL3) [60] is given as

qLi+1/2 = q̄i + φi

[
1

3
(q̄i+1 − q̄i) +

1

6
(q̄i − q̄i−1)

]
(2.37)

qRi−1/2 = q̄i − φi
[

1

3
(q̄i+1 − q̄i) +

1

6
(q̄i − q̄i−1)

]
(2.38)

where qLi+1/2 and qRi−1/2 are reconstructed variables, ¯qi+1, q̄i, ¯qi−1 are the cell-averaged

values, and φ is Koren’s differentiable limiter [64] defined as:

φi =
3∆q̄i∇q̄i + ε

2(∆q̄i −∇q̄i)2 + 3∆q̄i∇q̄i + ε
(2.39)

where ε is a small number (= 10−6) to prevent division by zero, and ∆ and ∇ are

forward and backward difference operators, respectively, defined as ∆q̄i = (q̄i+1− q̄i)

and ∇q̄i = (q̄i− q̄i−1). The MUSCL3 has third-order of accuracy in smooth regions,

whereas it reduces the order of accuracy to the first order at high gradient regions

such as shock discontinuities.

2.2.2.2 WENO5 scheme

The fifth-order Weighted Essentially Non-Oscillatory (WENO5) [61] is defined

as

qL
i+ 1

2
=

2∑
r=0

wrf̂
L
r (2.40)
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where wr are the weights defined as

wr =
αr∑2
s=0 αs

, αr =
dr

(βr + ε)p
(2.41)

The ideal weights, dr are given as

d0 =
1

10
, d1 =

3

5
, d2 =

3

10
(2.42)

The smoothness indicators βk are defined as

β0 =
13

12
(q̄i−2 − 2q̄i−1 + q̄i)

2 +
1

4
(q̄i−2 − 4q̄i−1 + 3q̄i)

2

β1 =
13

12
(q̄i−1 − 2q̄i + q̄i+1)2 +

1

4
(q̄i−1 − q̄i+1)2

β2 =
13

12
(q̄i − 2q̄i+1 + q̄i+2)2 +

1

4
(3q̄i − 4q̄i+1 + q̄i+2)2

(2.43)

The three stencil lists are

f̂L0 =
1

6
(2q̂i−2 − 7q̂i−1 + 11q̂i)

f̂L1 =
1

6
(−q̂i−1 + 5q̂i + 2q̂i+1)

f̂L2 =
1

6
(2q̂i + 5q̂i+1 − q̂i+2)

(2.44)

The WENO5 scheme has the fifth-order of accuracy at smooth regions, whereas it

becomes third-order at discontinuities and/or high gradient regions. The WENO5

scheme with the weights shown above is often called WENO5-JS. Henrick et al. [65]

and Borges et al. [66] propose different weights, and their versions of the WENO5

scheme are called WENO5-M and WENO5-Z, respectively. They are also available
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in OVERTURNS flow solver.

2.2.3 Viscous Flux

Inviscid fluxed were computed using the upwinding Roe scheme that accounts

for directions of wave propagation. On the other hand, viscous fluxes are calculated

using the central differencing. Viscous fluxes shown Eqs. 2.5-2.7 are expressed as

derivative terms in the following form:

∂

∂ξ

(
α
∂β

∂η

)
(2.45)

They are calculated using the second order central differing as:

1

2

([
αj+ 1

2
,k

βj+ 1
2
,k+1 − βj+ 1

2
,k

∆η

]
−

[
αj− 1

2
,k

βj− 1
2
,k − βj− 1

2
,k−1

∆η

])
(2.46)

where δj+ 1
2
,k =

δj,k+δj+1,k

2
and δ = (α, β)

2.2.4 Time Integration

After the calculations of the inviscid and viscous fluxes, the time integration is

performed for the vector of the conservative variables, Q. The time integration can

be performed using either an explicit or implicit method. An explicit method doesn’t

require expensive matrix inversions. However, it has the stability restriction on time

step size and thus not suitable for stiff problems such as viscous flow or boundary

layer simulations. In the current work, an implicit time marching method, the first
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order or second order Backward Difference Formula (BDF) is employed. Both BDF1

and BDF2 are unconditionally stable (A-stable). The governing equations with the

BDF1 or BDF2 are written as

∂Q̂n+1

∂t
= −

F̂ n+1
j+ 1

2

− F̂ n+1
j− 1

2

∆ξ
−
Ĝn+1
k+ 1

2

− Ĝn+1
k− 1

2

∆η
−
Ĥn+1
l+ 1

2

− Ĥn+1
l− 1

2

∆ζ
+ Ŝn+1

j,k,l (2.47)

where the left hand side with BDF1 is

∂Q̂n+1

∂t
=
Q̂n+1 − Q̂n

∆t
(2.48)

or the left hand side with BDF2 is

∂Q̂n+1

∂t
=

3Q̂n+1 − 4Q̂n + Q̂n−1

2∆t
(2.49)

The right hand side of the equation can be linearized in time using Taylor series as

F̂ n+1 = F̂ n + Â∆Q̂+O(∆t2)

Ĝn+1 = Ĝn + B̂∆Q̂+O(∆t2)

Ĥn+1 = Ĥn + Â∆Q̂+O(∆t2)

(2.50)

where ∆Q̂ = Q̂n+1 − Q̂n is the difference between the solutions at the new and old

time steps, and A,B,C are flux Jacobians given as Â = ∂F̂

∂Q̂
, B̂ = ∂Ĝ

∂Q̂
, Ĉ = ∂Ĥ

∂Q̂
. With

these relations, the linearized form of the Eq. 2.47 can be written in the delta form
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for BDF1 as:

[
I + ∆t(∂ξÂ

n + ∂ηB̂
n + ∂ζĈ

n)
]

∆Q̂n = −∆t
[
∂ξF̂

n + ∂ηĜ
n + ∂ζĤ

n − Ŝn
]

(2.51)

and similarly, for BDF2 as:

[
I +

2∆t

3
(∂ξÂ

n + ∂ηB̂
n + ∂ζĈ

n)

]
∆Q̂n =

−2∆t

3

[
∂ξF̂

n + ∂ηĜ
n + ∂ζĤ

n − Ŝn − Q̂n − Q̂n−1

2∆t

] (2.52)

Finding ∆Q̂n requires the matrix inversion of the left hand side. However, the

direct inversion of the left hand side of Eq. 2.51 or Eq. 2.52 is computationally

too expensive. Therefore, further approximations are made to the left hand side

using an approximate factorization method. The OVERTURNS flow solver employs

either Lower-Upper Symmetric Gauss-Seidel (LUSGS) method [67] or Diagonalized

Alternating Direction Implicit (DADI) [68] method for this purpose.

2.2.5 LUSGS

The LUSGS method factorizes the left hand side of the linearized governing

equations into three groups: a lower diagonal (L), a main diagonal (D), and an
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upper diagonal (U). Then, it approximates the left hand side as:

[L+D + U ]∆Q̂n = D[D−1L+ I +D−1U ]∆Q̂n

≈ D[I +D−1L][I +D−1U ]∆Q̂n

= [D + L]D−1[D + U ]Q̂n

= −∆t[RHS]n

(2.53)

where

L = ∆t(−Â+
j−1,k,l − B̂

+
j,k−1,l − Ĉ

+
j,k,l−1)

D = I + ∆t(Â+
j,k,l − Â

−
j,k,l + B̂+

j,k,l − B̂
−
j,k,l + Ĉ+

j,k,l − Ĉ
−
j,k,l)

U = ∆t(Â−j+1,k,l + B̂−j,k+1,l + Ĉ−j,k,l+1)

(2.54)

This can be solved using the forward and backward sweeps as:

[D + L]∆Q̃ = −∆t[RHS]n

[D + U ]∆Q̂ = D∆Q̃

(2.55)

Additional simplifications are made by using the spectral radius approximation of

the flux Jacobians. For example, in the ξ direction, it is given as

Â+ =
1

2
(Â+ σξ), Â− =

1

2
(Â− σξ). (2.56)
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where σξ is contributions from the both inviscid and viscous fluxes as

σξ = |Uξ|+ c+
2µ(ξ2

x + ξ2
y + ξ2

z )

ρ
(2.57)

where, Uξ is the contravariant velocity in the ξ direction. By applying the approxi-

mation, the matrix inversion reduces to a scalar inversion.

2.2.6 DADI

The second method for the approximate factorization is DADI. In the DADI,

the left hand side is approximated as

[
I + ∆t(∂ξÂ

n + ∂ηB̂
n + ∂ζĈ

n)
]

∆Q̂n

≈ [I + ∆t∂ξÂ][I + ∆t∂ηB̂][I + ∆t∂ζĈ]Q̂n

(2.58)

The inviscid flux Jacobians can be factored into eigenvectors and eigenvalues as

λξ = T−1
ξ ÂTξ, λη = T−1

η B̂Tη, λζ = T−1
ζ ĈTζ (2.59)

Assuming that changes of the eigenvectors is negligible in space, the approximated

left hand side in Eq 2.58 can be re-written with factoring out of the eigenvalues as:

Tξ[I + ∆t∂ξλξ]T
−1
ξ Tη[I + ∆t∂ηλη]T

−1
η Tζ [I + ∆t∂ζλζ ]T

−1
ζ = ∆tRHSn (2.60)
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The DADI algorithm approximates the block tridiagonal inversion to scalar tri-

diagonal inversion that can be solved using the Thomas algorithm. The eigenvalues

and eigenvectors described above are only for inviscid fluxes. The effect of viscous

fluxes can be included with the following eigenvalues:

λv(ξ) = νJ−1(ξ2
x + ξ2

y + ξ2
z )J

λv(η) = νJ−1(η2
x + η2

y + η2
z)J

λv(ζ) = νJ−1(ζ2
x + ζ2

y + ζ2
z )J

(2.61)

The final formulation with the both inviscid and viscous parts are as below:

Tξ[I + ∆t(∂ξΛξ − ∂ξξλv(ξ))]T−1
ξ Tη[I + ∆t(∂ηΛη − ∂ηηλv(η))]T−1

η

Tζ [I + ∆t(∂ζΛζ − ∂ζζλv(ζ))]T−1
ζ ∆Q̂n = −∆t[RHSn]

(2.62)

where the first derivatives represent discretizations using upwinding, and the second

derivatives are discretizations with the second order central differecing.

2.2.7 Dual-time stepping

The approximation of the left hand side saves computational costs but it results

in factorization errors. To reduce the factorization errors, dual time-stepping is

employed with a fictitious pseudo-time. The governing equations with a pseudo-

time step, τ , are given as

∂Q̂

∂τ
+
∂Q̂

∂t
+
∂F̂

∂ξ
+
∂Ĝ

∂η
+
∂Ĥ

∂ζ
= Ŝ (2.63)
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The BDF1 is the most common way to discretize the pseudo-time as below

Q̂p+1 − Q̂p

∆τ
+
∂Q̂p+1

∂t
+
∂F̂ p+1

∂ξ
+
∂Ĝp+1

∂η
+
∂Ĥp+1

∂ζ
= Ŝp+1 (2.64)

where p represents the solution at the pth sub-iteration and ∆τ is a pseudo-time

step size. For BDF1, ∂Q̂p+1/∂t is discretized as

∂Q̂p+1

∂t
=
Q̂p+1 − Q̂n

∆t
(2.65)

Similarly, for BDF2,

∂Q̂p+1

∂t
=

3Q̂p+1 − 4Q̂n + Q̂n−1

2∆t
(2.66)

where n means the solutions at the physical time step. The remaining spatial

operators are discretized using the same way shown in Eq. 2.47.

2.2.7.1 Derivation of a blended BDF scheme for dual-time stepping

In the present work, a blended formulation of the BDF2 and BDF1 is derived

to investigate the effect of temporal damping on the rotor wake breakdown. Then,

the formulation is coupled to dual-time stepping for unsteady rotor simulations.

First, the BDF1 is given as:

du

dt
=
un+1 − un

∆t
(2.67)
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The BDF2 is

du

dt
=

3un+1 − 4un + un−1

2∆t
=
un+1 − un

∆t
+
un+1 − 2un + un−1

2∆t
(2.68)

From these, the BDF1 and BDF2 can be written in a blended form with a factor,

ε, as

un+1 − un

∆t
+

1− ε
2

un+1 − 2un + un−1

∆t
if

ε=0: BDF2

ε=1: BDF1

(2.69)

The BDF2 has more dominant dispersion errors than the dissipation errors. A

physical meaning of ε is adding the temporal damping to the BDF2 scheme. A

range of ε is from 0 to 1.

The blended formulation is applied to dual-time stepping, and the governing

equation becomes

Q̂p+1 − Q̂p

∆τ
+
Q̂p+1 − Q̂n

∆t
+

1− ε
2

Q̂p+1 − 2Q̂n + Q̂n−1

∆t
+Rp+1 = 0 (2.70)

where R contains all spatial operators shown in Eq. 2.64. Putting the equation into

the delta form and linearizing one can write:

∆Q̂p

∆τ
+

∆Q̂p + Q̂p − Q̂n

∆t
+

1− ε
2

∆Q̂p + Q̂p − 2Q̂n + Q̂n−1

∆t
+
∂Rp

∂Q̂
∆Q̂p = −Rp (2.71)
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Multiply by ∆t and group together the ∆Q̂p terms on the LHS:

(
∆t

∆τ
+ 1 +

1− ε
2

)
∆Q̂p + ∆t

∂Rp

∂Q̂
∆Q̂p =

−∆t

[
Q̂p − Q̂n

∆t
+

1− ε
2

Q̂p − 2Q̂n + Q̂n−1

∆t
+Rp

] (2.72)

Defining h = ∆t
3−ε

2
+ ∆t

∆τ

and rearranging:

[
I + h

∂Rp

∂Q̂

]
∆Q̂p = −h

[
Q̂p − Q̂n

∆t
+

1− ε
2

Q̂p − 2Q̂n + Q̂n−1

∆t
+Rp

]
(2.73)

where ∂Rp

∂Q̂
= (∂ξÂ

n + ∂ηB̂
n + ∂ζĈ

n) and Rp = (∂ξF̂
n + ∂ηĜ

n + ∂ζĤ
n − Ŝn).

The temporal damping of the blended BDF scheme is controlled with ε. For

ε = 1, Eq. 2.73 becomes

[
I + h

∂Rp

∂Q̂

]
∆Q̂p = −h

[
Q̂p − Q̂n

∆t
+Rp

]
, h =

∆t

1 + ∆t
∆τ

(2.74)

which is dual time-stepping with BDF1.

Similarly, for ε = 0,

[
I + h

∂Rp

∂Q̂

]
∆Q̂p = −h

[
3Q̂p − 4Q̂n − Q̂n−1

2∆t
+Rp

]
, h =

∆t
3
2

+ ∆t
∆τ

(2.75)

which is dual time-stepping with BDF2.

The above equations have similar form as Eq. 2.51 or Eq. 2.52, so, they can be

solved using the same approximate factorization method, either LUSGS or DADI.

The right hand side of the equation is the unsteady residual that measures the
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convergence of unsteady simulations. During the sub-iterations, it should decrease

as the solutions converge.

2.2.8 Boundary Condition

This section discusses boundary conditions employed in the present work. Sev-

eral boundary conditions are implemented in OVERTURNS flow solver. Among

them, the following boundary conditions are used: wall, wake-cut, far-field, sym-

metric, periodic, and parallel boundary conditions.

2.2.8.1 Wall boundary

At the wall, the viscous wall condition (the no slip condition) is applied. For

a stationery wall, velocity components at the wall are zero. For a moving wall,

velocity components are set to the grid velocity. The density is extrapolated from

the interior domain, and the pressure is calculated from the normal momentum

equation.

2.2.8.2 Wake-cut boundary

In a C-type or O-type structured mesh, there are grid layers collapsing to a

single line (2-D) or a plane (3-D), which is called the wake-cut. Figure 2.4 shows

the wake-cut boundary from the trailing edge of the airfoil. The wake-cut boundary

is located at the trailing edge of an airfoil (2-D or 3-D) or on the root and tip of

the blade (3-D). The solutions should be continuous across the boundary, and, for
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Figure 2.4: Boundary conditions of a C-type structured mesh.

this, the solutions from either side of the wake-cut are averaged at the wake-cut

boundary.

2.2.8.3 Far-field boundary

In a simulation of external flow such as an airfoil, wing, or rotor blade, a

computational mesh has a finite domain with artificial outer boundaries. The outer

boundaries should not affect the solutions, and any characteristic waves should not

reflect there. For this, the characteristic boundary conditions are applied at the

far-field boundary. The boundary condition extrapolates flow variables using the

Riemann invariants from the interior domain or the prescribed freestream values.

In general, for 2-D airfoil cases, the outer boundaries located at 20∼30 chord lengths

away from the wall are enough for the far-field boundary condition.
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2.2.8.4 Symmetric boundary

For a symmetric domain to a plane, simulations can be performed only with a

half domain using the symmetric boundary condition. In the symmetric boundary

condition, the velocity normal to the plane and the fluxes across the boundary should

be set to zero. In the present work, transition simulations of the 6:1 Prolate Spheroid

are performed using the symmetric boundary condition with a computational mesh

consisting of a half domain.

2.2.8.5 Periodic boundary

In a simulation of a hovering rotor, the flowfield can be assumed periodic in

the azimuthal direction. For example, a four-bladed rotor has the periodicity of

the flowfield every 90◦ in the azimuthal direction as shown in the Fig. 2.5. With

this assumption, a hovering rotor simulation can be performed only with a quarter

domain of the background and one blade instead of a full domain of the background

and four blades. To employ the periodic boundary conditions, the background

mesh should have additional ”ghost layers” in the azimuthal direction for high-

order reconstructions. In the ”ghost layers”, the solutions are extrapolated from the

interior domain based on the periodicity of the flowfield.

2.2.8.6 Parallel boundary conditions

A 2-D airfoil simulation can be performed using a single CPU core, but 3-D

wing or rotor simulations requires multiple CPU cores (approximately up to 1,000
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Figure 2.5: Periodicity in a hovering rotor simulation: four-bladed rotor

cores) with the parallelization. OVERTURNS flow solver is parallelized using the

message passing interface (MPI) library. The computational domain is sub-divided

in to multiple domains, and each domain communicates with adjacent domains

through MPI library. In the parallel computation, OVERTURNS still maintains a

high order of accuracy by employing the parallel boundaries that consisting of three

”ghost layers”. Figure 2.6 shows a schematic of the parallel boundaries. In the figure,

black points represent the physical domains, and blue points show ”ghost layers”

for the parallel boundaries. The solutions at the parallel boundaries are transferred

from the adjacent domains, and thus, simulations are performed without loss of

order of accuracy in the sub-divided domains.
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Figure 2.6: Schematic of the sub-division of the computational domain. Black:
physical domain, Blue: parallel boundaries.

2.2.9 Overset Mesh Technique

Rotor simulations often require multiple meshes in the computational domain

such as a blade mesh and background mesh or blade, fuselage, and background

meshes. To transfer the solutions between the different meshes, OVERTURNS flow

solver employs two overset mesh techniques: 1) an Implicit Hole Cutting (IHC)

method developed by Lee [69] and further developed by Lakshminarayan [9] or 2)

the open source Topology Independent Overset Grid Assembler (TIOGA) [70]. Each

technique has different search algorithms, but they mainly consists of the following

three steps: 1) identifying hole, fringe, and field points, 2) finding donor points

and calculating interpolation weights, and 3) interpolating the data from the donor

points to fringe points. Hole points represent points in one mesh that are within the

solid wall of another mesh. In the hole points, the flow solutions are not calculated.
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Fringe points are defined as points where the flow solutions are interpolated from

the donor points of another mesh. Field points are regular points where the flow

solutions are calculated. In general, fringe points are located at the outer boundaries

of a mesh or in a region where another finer mesh is located. The information of

the identified points are saved in an integer array called IBLANK with values of

-1, 0, and 1 for hole, fringe, and field points, respectively. The IBLANK arrarys

are coupled to the flow solver, and the flow solutions are updated only if IBLANK

values are larger than zero.

For a general rotor simulation, the identification of the points should be done

at every time step. However, in the present work, the identification is done only

once at the beginning of the simulations because hovering rotor simulations are

performed with the rotational source terms.
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Chapter 3: Development of a Transition Model for the S–A Turbu-

lence Model

This section discusses a Galilean invariant transition model for the S-A tur-

bulence model. First of all, Menter’s 1-eq γ transition model [47] is investigated

as a baseline model, and modifications are made to integrate with the S–A turbu-

lence model. Calibrations of the model constants are performed for more accurate

predictions. Secondly, convergence of the transition model is improved with the

application of the positivity of the implicit operator. Finally, the transition model

is extended by coupling to two crossflow transition models.

3.1 Model Formulation

3.1.1 Transport equation for intermittency

Menter’s 1-eq γ transition model solves a transport equation for intermittency

(γ) . The transport equation for intermittency is defined as:

D(ργ)

Dt
= Pγ −Dγ +

∂

∂xj

[
(µ+

µt
σγ

)
∂γ

∂xj

]
(3.1)
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The production term, Pγ, is given as:

Pγ = FlengthρSγ(1− γ)Fonset (3.2)

where S is the strain rate magnitude. The destruction term, Dγ, is defined as:

Dγ = Ca2ρΩγFturb(Ce2γ − 1) (3.3)

where Ω is the vorticity magnitude. Transition onset criteria are defined as:

Fonset1 =
Rev

2.2Reθc
, Fonset2 = (Fonset1, 2.0) (3.4)

Fonset3 = max

(
1−

(
RT

3.5

)3

, 0

)
, Fonset = max(Fonset2 − Fonset3, 0) (3.5)

Fturb = e
−
(
RT
2

)4

, RT =
µt
µ
, Rev =

ρd2
wS

µ
, Reθc = f(TuL, λθL) (3.6)

where dw is the wall distance. RT of the original model is calculated with k and ω

from the SST turbulence model, but they are not available in the S–A turbulence

model. So, in this study, they are replaced with a ratio of the turbulent eddy

viscosity to laminar eddy viscosity.

The model constants are:

Flength = 100, ce2 = 50, ca2 = 0.06, σγ = 1.0 (3.7)
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3.1.2 Local formulations for Tu, λθL, and Reθc

The original transition model calculates the local turbulence intensity with k

and ω as below:

TuL = min

(
100

√
2k/3

ωdw
, 100

)
(3.8)

As mentioned earlier, k and ω are not available in the S–A turbulence model. To

circumvent this issue, Nichols [42] replaced them with ω = S/0.3 and µt = ρk/ω.

However, as Nichols states, with these modifications, there is no way to account for

experimental freestream turbulence intensity in the transition model. Moreover, the

initial condition of the S–A turbulence model (ν̃) should be adjusted to match the

experimental data. To overcome these limitations, the present work employs a con-

stant turbulence intensity in the entire computational domain. An input turbulence

intensity is a measured value from the experiment. The assumption of the constant

turbulence intensity is valid for external aerodynamic flow [47] and has been already

extensively validated in the work by Medida [32] and Jung and Baeder [71].

The pressure gradient variable of the model is given:

λθL = −7.57× 103dV

dy

d2
w

ν
+ 0.0128

λθL = min(max(λθL,−1.0), 1.0)

(3.9)
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The critical Reynolds number is defined as:

Reθc = CTU1 + CTU2 exp[−CTU3TuLFPG(λθL)] (3.10)

The original coefficients are:

CTU1 = 100.0, CTU2 = 1000.0, CTU3 = 1.0 (3.11)

Colonia et al. [72] suggested a new set of the constants based on 2-D airfoil simula-

tions as:

CTU1 = 163.0, CTU2 = 1002.25, CTU3 = 1.0, (3.12)

Because Colonia et al. performed calibrations of the model constants with 2-D

airfoil cases at low turbulence intensity, however, the new set of the constants does

not work well at high turbulence intensity. Therefore, the current work employs

linear blending of the model constants based on simulation results of flow over the

zero-pressure gradient flat plate. The constants by Colonia et al. [72] are applied for

the turbulence intensity below Tu=0.51%, whereas the original model constants are

used for the turbulence intensity above Tu=2.0%. Between the turbulence intensity
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of 0.51% and 2.0%, two sets of model constants are linearly blended as below:

Tu = min(max(Tu, 0.51), 2.0)

CTU1 = (100.0− 163.0)/(2.0− 0.51)× (Tu− 2.0) + 100.0

CTU2 = (1000.0− 1002.25)/(2.0− 0.51)× (Tu− 2.0) + 1000.0

CTU3 = 1.0

(3.13)

FPG function is given:

FPG(λθL) =


min(1 + CPG1λθL, C

lim
PG1)) , λθL ≥ 0

min(1 + CPG2λθL + CPG3 min[λθL + 0.0681, 0], C lim
PG2), λθL < 0

(3.14)

Constants of FPG are as below:

CPG1 = 14.68, CPG2 = −7.34, CPG3 = 0.0, C lim
PG1 = 1.5, C lim

PG2 = 3.0 (3.15)

Finally, a limit of FPG is applied as to guarantee non-negative values:

FPG = max(FPG, 0) (3.16)

3.1.3 Coupling with S–A turbulence model

For the original transition model, the output intermittency is coupled to the

transport equation for the k of the k−ω SST turbulence model. On the other hand,

in the present work, the output intermittency is applied to the source terms of the
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S–A turbulence model as Nichols did [42]:

Dν̃

Dt
= γsPν̃ −max(γs, 0.1)Dν̃ +

1

σ

[
∇ · ((ν + ν̃)∇ν̃) + cb2(∇ν̃)2

]
(3.17)

where Pν̃ and Dν̃ are the production and destruction terms of the S–A turbulence

model, respectively. In the original transition model, the minimum value of inter-

mittency at the wall in the laminar boundary layer is not zero but 0.02 (=1/ce2).

However, Nichols proposed the scaling of the intermittency so that it goes to zero in

the laminar boundary layer. During the implementation, it was checked that scaling

intermittency gives more accurate results for the S–A turbulence model. Therefore,

the current work employs the scaling of intermittency as

γs =
min(γ, 1)− 1/ce2

1− 1/ce2
, γs = max(min(γs, 1), 0) (3.18)

The original transition model has an additional production term P lim
k in the turbu-

lent kinetic transport equation to make transition prediction more robust at arbi-

trary low turbulence intensities and/or in the separation bubbles.

P lim
k = 5Ckmax(γ − 0.2, 0)(1− γ)F lim

on max(3Csepµ− µt, 0)SΩ (3.19)

Nichols applied this term with modifications for the production of the S–A turbu-

lence model as

P lim
ν̃ = 5Ckmax(γ − 0.2, 0)(1− γ)F lim

on max(3Csepµ− µt, 0)
√
SΩ (3.20)
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However, the additional production term is not employed in the current work, since

significant effects of the term were not found in simulations with the S–A turbulence

model.

3.2 Application of the positivity in the implicit operator for implicit

methods

During tests of the transition model, it was found that the transition model

shows convergence issues in some cases due to non-physical negative intermittency

values. The negative intermittency values are corrected to zero by Eq. 3.18 but

caused convergence stall as shown in Fig. 3.1(a). To improve the convergence, the

positivity of the implicit operator is enforced using a similar way proposed by Spalart

and Allmaras [29]. The positivity is applied to the source, diffusion, and convection

terms of the transition model. Because the positivity for the diffusion and convection

terms are very similar to those of the S–A turbulence model, however, the positivity

for the source terms are only shown here. The original production and destruction

of the transition model are

Pγ = FlengthρSγ(1− γ)Fonset, Dγ = Ca2ρΩγFturb(Ce2γ − 1) (3.21)

This can be written in the form given by Spalart and Allmaras [29] as

P = FlengthρS(1− γ)Fonset, P ′ = −FlengthρSFonset (3.22)
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D = Ca2ρΩFturb(Ce2γ − 1)D, D′ = Ca2ρΩFturbCe2 (3.23)

They are combined together for Jacobians

D − P = pos[D − P ] + pos[D′ − P ′]γ where pos(x) =


x if x ≥ 0

0 if x < 0

(3.24)

Figure 3.1 compares convergences of intermittency for NLF(1)-0416 airfoil at α =

12◦. The residual without the positivity shows convergence stalls, whereas the resid-

ual with the positivity of the implicit operator shows significantly improved conver-

gences.

(a) Without the positivity (b) With the positivity

Figure 3.1: Convergence of intermittency without and with the positivity of the
implicit operator.

3.3 Extension of the model for prediction of crossflow transition

The original transition model is only available for streamwise transition such as

natural transition, bypass transition, and separation induced transition. To include
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the effect of 3-D crossflow transition, the transition model is coupled to two crossflow

transition models proposed by Menter and Smirnov [33] and Langtry et al. [37].

Menter and Smirnov’s model uses the wall normal change of the normalized vorticity

vector to measure the local crossflow strength, and thus, the model is Galilean

invariant. On the other hand, Langtry et al.’s model employs the helicity as an

indicator of the crossflow strength, so it is not Galilean invariant. However, Langtry

et al.’s model accounts for the effects of surface roughness on the crossflow transition,

whereas Menter and Smirnov’s model does not. Because Galilean invariance is not

an issue for a stationary object, Langtry et al.’s model is still useful for stationary

objects such as a fuselage.

Menter and Smirnov’s model is derived from the Arnals C1 correlation. The

crossflow transition onest criterion is given

TC1local =
CRSF
150

(GΨRev) > 1 (3.25)

where the G accounts for the pressure gradient (shape factor), Ψ indicates the

strength of crossflow, and Rev includes the effects of Reynolds number. The corre-

lation constant CRSF is given as 1.0, but it is set to 1.35 with the S–A turbulence

model based on calibration results. The function G is calculated as:

g(λθL,CF ) = 27864.0λ3
θL,CF − 1962.0λ2

θL,CF + 54.3λθL,CF + 1.0 (3.26)

g(λθL,CF ) = min [max (g(λθL,CF ), 1.0) , 2.3] (3.27)
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G(λθL,CF ) = 0.684/g(λθL,CF ) (3.28)

where the λθL,CF is a variable for the local pressure gradient and calculated as

λθL,CF = −7.57× 10−3dV

dy

d2
w

ν
+ 0.0174 (3.29)

λθL,CF = min[max(λθL,CF , 0), 0.0477] (3.30)

The indicator of crossflow strength, Ψ, is calculated based on the wall normal change

of the normalized vorticity as follow

Ψ =
∣∣∣~φ∣∣∣ dw, ~φ = ~n · 5~eω, ~eω =

~ω

|~ω|
(3.31)

where ~eω is the vorticity vector and ~n is the wall normal vector. Rev is from the base-

line transition model. Finally, the crossflow transition onset criterion is integrated

with the baseline transition model as:

Fonset,CF = min(max(100(TC1local − 1), 0), 1) (3.32)

Fonset = max(Fonset, Fonset,CF ) (3.33)

Langtry et al.’s crossflow transition model is given

Rescf =
ρ
(
U

0.82

)
θt

µ
= −35.088ln

(
h

θt

)
+319.51+f(+∆Hcrossflow)−f(−∆Hcrossflow)

(3.34)
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where h is a root mean square (RMS) value of surface roughness height. Because the

momentum thickness, θt is on both left and right hand sides of the equation, it should

be solved using an iterative method such as the shooting method or Newton method.

The crossflow strength is calculated using the non-dimensionalized crossflow strength

Hcrossflow with the streamwise vorticity Ωstreamwise (helicity) as

Hcrossflow =
yΩstreamwise

U
, Ωstreamwise =

∣∣∣~U · ~Ω∣∣∣ (3.35)

~U =

(
u√

u2 + v2 + w2
,

v√
u2 + v2 + w2

,
w√

u2 + v2 + w2

)
(3.36)

where y is the wall normal distance and ~Ω is the vorticity vector. Remaining parts

of the right hand side of the Eq. 3.34 are calculated as

∆Hcrossflow = Hcrossflow (1.0 +min [RT , 0.4]) (3.37)

+ ∆Hcrossflow = max(0.1066−∆Hcrossflow, 0.0) (3.38)

f(+∆Hcrossflow) = 6200(+∆Hcrossflow) + 50000(+∆Hcrossflow)2 (3.39)

−∆Hcrossflow = max(−(0.1066−∆Hcrossflow), 0.0) (3.40)

f(−∆Hcrossflow) = 75tanh

(
−∆Hcrossflow

0.0125

)
(3.41)

In the original model, the output Rescf is applied to the transport equation for R̃eθt.

However, in the 1-eq γ transition model, the transport equation is not available. To

integrate Langtry et al.’s model with the current transition model, a new transition
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onset criterion is added in the baseline transition model as

Fonset1 = max

[
Rev

2.2Reθc
,

cRev
2.2Rescf

]
(3.42)

where c is a calibration constant and set to 0.98 in the present work. A similar

approach was applied in Carnes and Coder [35] to couple the Langtry et al.’s model

with the AFT2019b transition model.
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Chapter 4: Validation of the SA-γ transition model

SA-γ transition model is validated against various 2 dimensional and 3 di-

mensional cases such as flow over zero pressure gradient flat plate, airfoils, prolate

spheroid, and a hovering rotor. All transition simulations use ν̃/ν = 0.1 as an initial

conditions of the S–A turbulence model based on the recommendation by Spalart

and Allmaras [29]. Comparisons are made with available experimental data and

fully turbulent simulation results.

4.1 2-D zero-pressure gradient flat plate

SA-γ transition model is tested for flow over the zero-pressure gradient flat

plate. Simulations are performed for the Schubauer-Klebanoff (S-K) case [73] and

T3 cases [74]. Table 4.1 shows freestream turbulence intensity of the each case.

A computational mesh is from NASA Turbulence Modeling Resource (TMR) web-

site [75], and the grid consists of 273 and 193 points in the streamwise and the wall

normal directions. The same boundary conditions and inflow conditions (M=0.2,

ReL=5M) are applied as the conditions given for the fully turbulent simulation.

Figure 4.1 compares skin friction on the flat plate between the current predic-

tions and the experimental data. For the S-K case that has the lowest freestream
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turbulence intensity, the SA-γ model predicts slightly delayed transition than the

experiment. For the T3 cases, predicted transition locations are in good correlations

with the experimental data. For the T3B case, the current result shows slightly lower

skin friction than the experiment after the transition onset. However, this is also

observed in other transition simulations using the S-A turbulence model.

S-K [73] T3A- [74] T3A [74] T3B [74]
0.03% 0.51% 2.0% 5.25%

Table 4.1: Turbulence intensity of zero pressure gradient flat plate cases

(a) S-K, T3A- (b) T3A, T3B

Figure 4.1: Comparison of skin frictions on the zero-pressure gradient flat plate.

4.2 2-D airfoil cases

SA-γ transition model is validated against four 2-D airfoil cases. Table 4.2

summarizes flow conditions of the cases. All cases are subsonic, and Reynolds num-

ber ranges from 2×105 to 4×106. Comparisons are made with fully turbulent simu-

lation results and available experimental data, such as skin friction, surface pressure,
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lift, drag, and transition locations.

Figure 4.2 shows computational grids of the cases, C-type structured grids.

The grids of the Aerospatiale-A and Eppler 387 airfoils are generated using an

in-house C-type structured mesh generator, whereas S809 and NLF(1)-0416 airfoil

grids are the ”Medium” grids provided by 2018 AIAA CFD Transition Modeling

Discussion Group [76]. A number of grid points in the wrap around and wall normal

direction is 705 and 97, respectively, and 513 points are located on the airfoil surface.

The wall normal spacing (y+) of the grids is less than 1. The far-field boundaries of

the Aerospatiale-A and E387 grids are located at 40 chord lengths away from the

surface, whereas the S809 and NLF(1)-0416 grids have the far-field boundaries at

1000 chord lengths away from the surface. The meshes generated by the in-house

grid generator has a smaller outer-boundaries, but it is still enough for the far-field

boundary conditions to avoid unphysical reflections of the waves.

Airfoil Mach Re [×106] Tu [%] AoA [◦]
Aerospatiale-A [77] 0.15 2.1 0.1 13.3

S809 [78] 0.1 2.0 0.05 multiple
NLF(1)-0416 [79] 0.1 4.0 0.15 multiple

E387 [80] 0.1 0.2 0.1 multiple

Table 4.2: Flow conditions of 2-D airfoil cases.

4.2.1 Aerospatiale-A Airfoil

The Aerospatial-A airfoil was tested in ONERA F-1 wind tunnel in 1997 [77].

The experimental results at the angle of attack of 13.3◦ have been widely used as a

validation case for transition simulations [15, 32, 71]. Figure 4.3 shows comparisons

of skin friction and pressure coefficients on the airfoil surface. In the experiment,
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(a) Aerospatiale-A (b) S809

(c) NLF(1)-0416 (d) Eppler 387

Figure 4.2: 2-D airfoil grids (C-type structured mesh).

a laminar separation bubble exists on the suction side (upper surface) of the airfoil

around 12% of the chord, and separation-induced transition results in a development

of the turbulent boundary layer downstream. In Fig. 4.3(a), SA-γ model captures a

decrease of skin friction due to the laminar-separation bubble and a rapid increase

after the separation-induced transition. On the other hand, baseline SA turbulence

model doesn’t predict this trend at all. In Fig. 4.3(b), comparisons of surface pres-

sure distribution are shown. SA-γ result shows a slightly higher suction peak than
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the experiment and the fully turbulent simulation result, but overall agreement with

the experiment is very good on both suction and pressure sides. Drag coefficients

from the experiment, SA-γ model, and baseline SA turbulence model, are 0.0208,

0.0182, and 0.0273, respectively. The transition model under-predicts the drag coef-

ficient by 12.5%, but it gives a better agreement with the experiment than the fully

turbulent simulation result that over-predicts the drag coefficient by 31.25%.

(a) Skin friction coefficient (b) Pressure coefficient

Figure 4.3: Comparison of skin friction and pressure distributions.

4.2.2 S809, Wind-Turbine Airfoil

The S809 is a laminar-flow airfoil designed for wind turbine applications. The

airfoil was tested in the low-turbulence wind tunnel of the Delft University of Tech-

nology, Netherlands in 1986 [78]. Predicted lift and drag polar are plotted in Fig. 4.4

against the experimental data. For the lift coefficient in Fig. 4.4(a), SA-γ model

slightly over-predicts the lift coefficient at low angles of attack, whereas the baseline

SA turbulence model under-predicts the lift coefficient. However, overall agreement
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in the linear range of the lift curve is reasonable. On the other hand, at angles of

attack higher than 10◦, both fully turbulent and transition simulations over-predict

lift coefficients due to a known limitation of the SA turbulence model under the ad-

verse pressure gradient. For the drag polar in Fig. 4.4(b), SA-γ model significantly

improves the prediction of the drag bucket at low angles of attack by including the

effects of laminar flow over airfoil surfaces. Figure 4.5 shows comparisons of surface

(a) AoA Vs. Lift coefficient (b) Drag Polar

Figure 4.4: Comparison of lift and drag polar between CFD and the experiment for
S809 airfoil.

pressure coefficients between CFD predictions and the experiment at four angles of

attack. At angles of attack 1◦ and 5◦, SA-γ results are in better correlations with

the experiment than the fully-turbulent results and successfully captures laminar-

separation bubbles on the airfoil. At angles of attack 9◦ and 14◦, there are no

important differences between SA-γ and fully-turbulent results. At angle of attack

9◦, both results show a good comparison with the experiment, but at angle of attack

14◦, both SA-γ and fully turbulent simulations over-predict pressure distributions
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Figure 4.5: Comparison of surface pressure coefficients between CFD and the ex-
periment for S809 airfoil.

on the upper surface.

Finally, a grid study is performed with the meshes ”Tiny” to ”Ultra”, provided

by 2018 AIAA CFD Transition Modeling Discussion Group [76]. Table 4.3 shows the

number of grid points from the Tiny to Ultra mesh. The grid study is particularly

important because some CFD results such as OVERFLOW with Langtry–Menter’s

transition model [81] show spurious oscillations on the surface pressure distributions

with a very fine mesh (”Ultra mesh”). Figure 4.6 shows results of the grid study

for the pressure, skin friction, and lift and drag coefficients at two angles of attack,

α = 1◦ and α = 6◦. For the pressure coefficient (Fig. 4.6(a) and 4.6(b)), the Tiny

mesh (coarsest mesh) gives oscillations near the separation bubble on the upper

surface, but it disappears as the mesh becomes finer. Figures 4.6(c) and 4.6(d)
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shows the skin friction coefficient for the different meshes. As it was observed in the

pressure coefficient, the tiny mesh results are slightly off from the other results, but

all meshes give relatively similar trends. As the mesh becomes finer, the peaks in

the skin friction coefficient due to the separation bubble become more sharp on the

both upper and lower surfaces. Finally, Figs 4.6(e) and 4.6(f) show convergences of

the lift and drag coefficients with respect to a number of grid points on the airfoil

surface. At α = 1◦, the lift coefficient shows a converged trend from the medium

mesh. On the other hand, for the drag coefficient, a slope of change decreases as

the mesh becomes finer, but it is still converging with the finest mesh. At α = 6◦,

the lift and drag coefficients change significantly between the Tiny to the Coarse

mesh, and then they converge very rapidly. Overall, SA-γ model gives robust results

for all meshes and show good comparisons with the experimental data. Suspicious

oscillations shown in OVERFLOW results [81] for S809 airfoil with the ”Ultra” mesh

are not observed in the current results.

Mesh JMAX KMAX Points on the wall
Tiny 353 49 257

Coarse 529 73 385
Medum 705 97 513

Fine 1057 145 769
Extra 1409 193 1025
Ultra 2113 289 1537

Table 4.3: Number of grid points for grid study.
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(a) Pressure coefficient at α = 1◦ (b) Pressure coefficient at α = 6◦

(c) Skin friction coefficient at α = 1◦ (d) Skin friction coefficient at α = 6◦

(e) Convergence of Cl and Cd at α = 1◦ (f) Convergence of Cl and Cd at α = 6◦

Figure 4.6: Grid study results for the S809 airfoil.
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4.2.3 NLF(1)-0416, General-Aviation Airfoil

NLF(1)-0416 is a ”Natural-Laminar-Flow” airfoil for general aviation appli-

cations. The airfoil was designed to obtain high maximum lift with the low-drag

characteristics. The experiment was performed in the Low-Turbulence Pressure

Tunnel (LTPT) at the NASA Langley Research center [79].

Figure 4.7 shows comparisons of lift coefficient and drag polar. In the lift

coefficient in Fig. 4.7(a), SA-γ and fully turbulent simulations show very similar

results. They compare well with the experiment in the linear range of the lift curve

but over-predict the lift coefficients after the stall angle of attack. For drag polar in

Fig. 4.7(b), SA-γ results shows much better comparison with the experiment than

the fully turbulent simulation results.

(a) AoA Vs. Lift coefficient (b) Drag Polar

Figure 4.7: Comparison of lift and drag polar between CFD and the experiment for
NLF(1)-0416 airfoil.

Predicted surface pressure distributions are compared against the experiment

in Fig. 4.8. At α=0◦, SA-γ result shows a better comparison on the upper surface
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Figure 4.8: Comparison of surface pressure coefficients between CFD and the ex-
periment for NLF(1)-0416 airfoil.

at x < 0.4c, but overall results from SA-γ and fully-turbulent simulations are very

similar at all angles of attack.

As it was performed for the S809 airfoil, a similar grid study is performed for

the NLF(1)-416 airfoil using the six different meshes from ”Tiny” to ”Ultra” mesh,

provided by 2018 AIAA CFD Transition Modeling Discussion Group. A number of

grid points for the each grid is given in Table 4.3. Figure 4.9 shows results of the

grid study for the pressure, skin friction, and lift and drag coefficients at α = 0◦

and α = 5◦. In OVERFLOW results using Langtry–Menter’s transition model [81],

unphysical oscillations of the pressure distributions were observed with the Ultra

mesh for NLF(1)-0416 airfoil too, but the current SA-γ model gives reliable results

from the Tine to Ultra meshes with good comparisons with the experimental data in
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(a) Pressure coefficient at α = 0◦ (b) Pressure coefficient at α = 5◦

(c) Skin friction coefficient at α = 0◦ (d) Skin friction coefficient at α = 5◦

(e) Convergence of Cl and Cd at α = 0◦ (f) Convergence of Cl and Cd at α = 5◦

Figure 4.9: Grid study results for the NLF(1)-0416 airfoil.
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Figs. 4.9(a) and 4.9(b). For the skin friction coefficient, all mesh shows similar trends

of the skin friction distribution except the tiny mesh that shows delayed transition

at α = 0◦ and earlier transition at α = 5◦. For the lift and drag coefficients in

Figs. 4.9(e) and 4.9(f), they both converge well as a number of grid points on the

airfoil surface increases.

4.2.4 E387, Low Reynolds Number Airfoil

Eppler E387 airfoil is a low Reynolds number airfoil designed for model sailplanes.

The airfoil has been widely tested at various low Renolds number wind tunnels, and

the experimental data in this work are obtained from UIUC low-speed subsonic wind

tunnel in 2002 [80].

Predicted lift and drag polar are plotted against the experimental data in

Fig. 4.10. For the lift coefficient in Fig. 4.10(a), the SA-γ and the baseline turbulence

model give very similar results at the linear range of the lift curve. However, after

the stall angle of attack, the baseline SA turbulence model over-predicts the lift

coefficient, whereas the transition model captures decrease of the lift coefficient well.

For the drag polar in Fig. 4.10(b), the turbulence simulation inaccurately predicts

the drag through the entire range. In contrast, SA-γ model results compare very

well with the experiment. Figure 4.11 shows a comparison of the drag breakdown

between the fully turbulent and transition simulations. In the fully turbulent results,

the viscous drag is larger than the pressure drag at low angles of attack and it mainly

accounts for the total drag at angles of attack lower than 7◦. On the other hand,
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(a) AoA Vs. Lift coefficient (b) Drag Polar

Figure 4.10: Comparison of lift and drag polar between CFD and the experiment
for E387 airfoil.

(a) SA turbulent (b) SA transition: SA-γ

Figure 4.11: Comparison of drag component breakdown between the SA and SA-γ
results.

in the transition simulation results, the pressure drag is a major source of the total

drag, and it is larger than the pressure drag through the entire range of the angles

of attack.

Figure 4.12 compares predicted surface pressure distributions against the ex-

perimental data at four angles of attack. In all results, SA-γ model captures the
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effect of the laminar-separation bubble on the upper surface of the airfoil well,

whereas the turbulent simulations do not at all. The higher pressure drag predicted

from the transition simulations shown in Fig. 4.11(b) is due to the separation bubble

on the upper surface of the airfoil.

Figure 4.12: Comparison of surface pressure coefficients between CFD and the ex-
periment for E387 airfoil.

Figure 4.13 shows predicted skin friction distributions on the upper surface of

the airfoil and locations of the laminar separation and turbulent reattachment. In

Fig. 4.13(a), locations of the laminar separation are points where the skin friction

becomes negative, and locations of the turbulent reattachment are points where

the skin friction becomes positive again. In Fig. 4.13(b), predicted locations of the

laminar separation and turbulent reattachment are compared against the measured

locations in the experiment. In the experiment, the laminar separation bubble
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(a) Predicted skin friction on the upper surface (b) Locations of laminar separation and turbu-
lent reattachment

Figure 4.13: Comparison of transition locations on the upper surface of E387 airfoil.

extends to more than 30% of the chord at low angles of attack, and it becomes smaller

and moves forward as the angle of attack increases. In the figure, it is seen that the

SA-γ model captures locations of the laminar separation and turbulent reattachment

very well except at the high angles of attack where the laminar separation bubble

becomes smaller and the type of transition changes from the separation-induced

transition to the natural transition. Overall, SA-γ model gives reliable predictions

at the low Reynolds number as well.
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4.3 3-D cases

SA-γ model is applied to 3-D cases such as an infinite swept wing, prolate

spheroid, and a hovering rotor. The effect of crossflow transition is investigated using

two different crossflow transition models by Langtry et al. and Menter and Smirnov.

All simulations use ν̃/ν = 0.1 as the initial conditions of the S–A turbulence model

like the previous 2-D cases. For a hovering rotor, simulations are performed in

the time-accurate manner. Detailed flow conditions of the cases are given in each

section.

4.3.1 NLF(2)-0415 swept wing

The NLF(2)-0415 swept wing was tested in the Arizona State University Un-

steady Wind Tunnel by Dagenhart et al. [2] and Radeztsky et al. [82]. A Reynolds

number sweep was performed at a constant angle of attack of -4◦ with a swept angle

of 45◦ to investigate crossflow instability on a swept wing. Before a comparison is

made between CFD predictions and the experiment, the experimental data should

be mentioned. Figure 4.14 shows the experimental data by Dagenhart et al. [2]

and Radeztsky et al. [82]. Radeztsky et al.’s data accounts for the effect of surface

roughness on the transition locations, and Langtry et al.’s crossflow transition model

was calibrated using them. On the other hand, Dagenhart et al.’s data do not in-

clude the effect of the surface roughness but flow conditions of the experiments are

clearly clarified. Many crossflow transition models are developed using Dagenhart

et al.’s data. An issue is that there are some consistent shift of Reynolds number
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between Dagenhart et al.’s data and Radeztsky et al.’s data for h = 3.3µm. It’s not

clear which data are correct, but Venkatachari et al. [83] assumes Dagenhart et al.’s

data are correct for h = 3.3µm because Dagenhart et al.’s paper [2] includes more

clear information about flow conditions. For this reason, Venkatachari et al. used

Dagenhart et al’s data for h = 3.3µm and Radeztsky et al.’s data for h = 0.5µm

and h = 0.25µm to validate their OVERFLOW simulations. The current work

also follows this assumption for calibrations of the model and comparisons with the

experiment.

Figure 4.14: Comparison of experimental data of NLF2-0415.

Simulations are performed for the experimental conditions of Re = 1.92×106 ∼

3.73×106, Tu=0.09%, α = −4◦, and β = 45◦. A C-type structured grid is generated

using an in-house mesh generator, and the grid consists of 705 points in the wrap

around direction (513 points on the surface), 97 points in the wall normal direction,

and 7 points in the spanwise direction. Initial wall normal spacing of the grid is

3.5e-6 chords, and the far-field boundaries are located at 20 chords from the surface.

Figure 4.15(a) shows predicted transition locations with and without crossflow tran-
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(a) Comparison of transition location with
crossflow transition models.

(b) Effect of surface roughness with Langtry et
al. model.

Figure 4.15: Prediction of transition locations with crossflow transition models.

sition models against the Dagenhart et al.’s data [2]. For Langtry et al.’s model,

3.3µm is used for the surface roughness height. In the figure, the baseline transi-

tion model is unable to predict locations of crossflow transition correctly. On the

contrary, the two crossflow transition models improve the prediction of transition lo-

cations significantly. Both transition models show earlier transition at Re=1.92×106

but the agreement becomes better as the Reynolds number increases.

The crossflow transition model by Langtry et al. accounts for surface rough-

ness. In Fig. 4.15(b), the predicted transition locations for different surface rough-

ness heights are compared against the experimental data. In the results, the effect

of surface roughness on crossflow transition are well captured with Langtry et al.’s

crossflow transition model.
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4.3.2 Inclined 6:1 Prolate Spheroid

SA-γ model is applied to the inclined 6:1 Prolate Spheroid [84]. The Pro-

late Spheroid was tested in DFVLR low speed wind tunnel at Gottingen, Germany,

and dominating transition modes, Tollmien–Schlichting and/or crossflow, are inves-

tigated as functions of Reynolds numbers and angles of attack [84]. Figure 4.16

shows a computational mesh near the spheroid surface. The grid is ”Medium grid”

provided by the AIAA CFD Transition Modeling Discussion group and consists of

193 points in the streamwise direction, 97 points in the spanwise direction, and 97

points in the wall normal direction. The grid only includes a half domain, and thus,

it requires the symmetric boundary condition at the xz plane. Table 4.4 shows flow

conditions of simulations. Computations are performed at three angles of attack,

and results are compared against the measured transition locations on the spheroid

surface.

Figure 4.16: Surface and volume grid of the 6:1 Prolate Spheroid.

Mach Re [×106] Tu [%] AoA[◦]
0.13 6.5 0.15 5, 10, 15

Table 4.4: Flow conditions of the inclined 6:1 prolate spheroid.
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(a) Baseline SA− γ (b) SA − γ-cross: Menter and
Smirnov.

(c) SA−γ-cross: Langtry et al..

Figure 4.17: Predicted turbulence index against the measured transition locations
of the 6:1 Prolate Spheroid.

Figure 4.17 shows contours of predicted turbulence index [29] on the spheroid

surface. In the figure, red area represents turbulent flow, whereas blue area means

laminar flow. For a comparison with the experiment, measured transition locations

are also plotted in the figure as yellow lines. At α = 5◦, both Tollmien-Schlichting

and crossflow instabilities are dominant in the experiment. However, in CFD results,

the SA − γ model and crossflow transition model by Langtry et al. only predict

Tollmien–Schlichting instability. Menter and Smirnov’s model gives larger turbulent

area than the two results, but it still captures less effects of the crossflow transi-

tion. As the angle of attack increases, the results from crossflow transition models

show better agreement with the experiment than those from the baseline transition

model. At α = 10◦, Menter and Smirnov’s model gives the best agreement with the

experiment, but Langtry et al.’s model also predicts larger turbulent area than the

baseline transition model. At α = 15◦, both crossflow transition models show rea-

sonable agreements with the experiment. The two crossflow transition models show
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different trends with respect to the angle of attack, but, in general, they improve

comparisons with the experiment as the angle of attack increases.

4.3.3 NASA Langley’s PSP hovering rotor

Finally, the transition model is applied to NASA Langleys PSP hovering ro-

tor [10]. The rotor was tested at NASA Langley Research Centers Rotor Test Cell

(RTC) in 2016. In the experiment, the hover performance of the installed rotor was

investigated with a ROBIN Mod-7 fuselage underneath for various transition condi-

tions, and boundary layer transition locations on the blade surfaces were measured

using the infrared thermography technique.

4.3.3.1 Computational mesh system

Figure 4.18 shows a computational mesh system consisting of a single O-O type

blade mesh and 1/4 domain Cartesian background mesh with periodic boundary

conditions. The blade mesh has 291 x 204 x 78 points in the wrap around, spanwise,

and normal directions, respectively with the wall normal spacing (y+) of 0.4. The

background mesh is a quarter domain Cartesian background mesh and contains 174

x 174 x 164 points in radial and vertical directions. A mesh adaptation is performed

on the background mesh based on the tip vortex trajectory. A minimum cell size of

the original background mesh is 0.12C, whereas a size of the adapted mesh is 0.06C

in the refined region. Top, bottom, and radial boundaries are located at 4.2R, 8.1R,

and 6.0R respectively. The original experiment includes the ROBIN Mod-7 fuselage
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(a) Single O-O type blade mesh.

(b) Upper and side view of the background mesh.

Figure 4.18: Total mesh system: O-O type blade mesh and 1/4 Cartesian back-
ground mesh.

beneath the rotor, but it’s not included in the current simulations.

4.3.3.2 Simulation setup

Simulations are performed from low to high thrust levels for six collective pitch

angles from 6◦ to 11◦. In order to remove artifact effects of CFD simulations such

as starting vortices, calculations were performed in two phases. The first 12 rotor

revolutions were computed with the third-order MUSCL scheme, BDF1, and only 2

sub-iterations in fully-turbulent simulations. In the second phase, the solution was
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restarted and run for 10 more revolutions with the fifth-order WENO scheme, the

blended BDF (ε = 0.1), and 10 sub-iterations in SA-γ transition simulations. In

both phases, a time step size of 0.25◦ was maintained with a constant CFL number

of 10 for a pseudo-time step during the sub-iterations.

For transition simulations, the freestream turbulence intensity is a key pa-

rameter of transition simulations. However, the experimental value is not available

because it was not measured. In the current work, a constant freestream turbulence

intensity of 0.075% (≈ Ncrit = 9) is applied in the computational domain. Then,

other values are tested at low and high thrust levels based on the simulations re-

sults. For the simulations using Langtry et al.’s crossflow transition model, a RMS

roughness height of 0.5µm was applied, which is equivalent to a RMS roughness

height of a polished surface. However, the experimental measurement of the RMS

roughness height is not available.

4.3.3.3 Result: fully-turbulent simulations

To validate the baseline computational setup, fully turbulent simulations are

performed first. Figure 4.19 shows predicted Figure of Merit plotted against the ex-

perimental data and other CFD results using the SST turbulence model by Jain [5].

As mentioned earlier, the current work doesn’t include the fuselage. The data from

Jain’s work [5] are also for the ”isolated rotor” without the fuselage. In the fully

turbulent simulations, the current predictions compare well with the experimental

data with the fixed upper surface at the low and medium collective pitch angles. On
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the other hand, at the high collective pitch angles, a better comparison is observed

with the experimental data where the both surfaces are fixed. Compared to the

other CFD results by Jain [5], the trends of the predicted Figure of Merit are very

similar although the present study and Jain’s work [5] use different computational

setups in terms of flow solvers, computational meshes, and turbulence models.

Figure 4.19: Comparison of Figure of Merit against the experiment: fully-turbulent
simulations.

4.3.3.4 Result: transition simulations

Figure 4.20 shows predicted Figure of Merit against the experimental data and

other available CFD results from transition simulations. For the other CFD results,

Jain used the SST-γ-Reθt model (non-Galilean invariant) [5], whereas Fitzgibbon et

al. used the SST-γ model (Galilean invariant) [53]. In the figure, transition simula-
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Figure 4.20: Comparison of Figure of Merit against the experiment: transition
simulations.

tion results show better comparisons with the natural transition data (black square

symbol) than the fixed-surface data (red or green symbols). Overall trends are in

reasonable agreement with the experiment, but the slope of the predicted Figure

of Merit is slightly different from the experimental measurements; over-prediction

of Figure of Merit at low thrust levels and under-prediction at high thrust levels.

At the low thrust levels, the SA−γ model shows slightly more over-prediction than

the other CFD results. There can be some possibilities for this. In the SST-γ-Reθt

or SST-γ transition model, the local turbulence intensity is calculated with the k

and ω from the SST turbulence model. However, in the current SA− γ model, the

constant turbulence intensity is applied in the computational domain because k and

ω are not available. The assumption of the constant turbulence intensity may not

be accurate at the low thrust levels where the rotor wake remains near the rotor
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disk plane and is possibly re-ingested into the rotor disk plane, which can result in

higher turbulence intensity than that at high thrust levels. To investigate the effect

of turbulence intensity, other values of turbulence intensity are tested in the later

section of the current chapter.

4.3.3.5 Result: effects of crossflow transition

Figure 4.21: Comparison of Figure of Merit against the experiment: the effect of
crossflow transition.

The effects of the crossflow transition are investigated with the two crossflow

transition models by 1) Menter and Smirnov and 2) Lantry et al.. Figure 4.21

compares the predicted Figure of Merit with and without the crossflow transition

models. As it was mentioned earlier, a RMS value 0.5µm is applied for the Langtry

et al.’s crossflow transition model, which is equivalent to a RMS roughness height
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of the ”polished surface”.

In the Figure, Menter and Smirnov’s model (green line) predicts slightly lower

Figure of Merit at low thrust levels than the baseline transition model but it does

not show noticeable effects on the rotor performance. On the other hand, Langtry

et al.’s crossflow transition model gives under-prediction of Figure of Merit through

the entire thrust levels. Because the calibrations of the two crossflow transition

models were performed for h=3.3µm, Langtry’s model with the RMS height of

0.5µm should give higher Figure of Merit than the Menter and Smirnov’s model. It

is considered that the non-Galilean invariance in the Langtry et al.’s model results

in the inaccurate predictions for the rotor simulations. It should be mentioned that

Langtry’s crossflow transition model was also tested for the same rotor in the work

by Carnes and Coder [35], and there was no significant effects of the model in the

work. However, the work didn’t clarify the RMS roughness height of the simulations.

In addition, it is not clear whether the non-Galilean invariant variables are corrected

or not in the work. Therefore, it is difficult to directly compare the current results

with Carnes and Coder’s work [35].

4.3.3.6 Result: comparisons of transition locations

Figures 4.22 and 4.23 show contours of predicted turbulence index on the blade

surfaces at the low and high collective pitch angles. Measured transition locations

in the experiment are added as square symbols in the figure. At the low collective

pitch angle (θ = 6◦), the SA-γ model shows better agreement with the experimental
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(a) SA-γ. (b) SA-γ-crossflow (Menter and Smirnov).

(c) SA-γ-crossflow (Langtry et al.).

Figure 4.22: Comparison of turbulence index contours against the experiment at
θ = 6◦. CFD: Ct/σ=0.043. Exp: Ct/σ=0.040 (Black). Exp: Ct/σ=0.045 (Yellow)

(a) SA-γ. (b) SA-γ-crossflow (Menter and Smirnov).

(c) SA-γ-crossflow (Langtry et al.).

Figure 4.23: Comparison of turbulence index contours against the experiment at
θ = 11◦. CFD: Ct/σ=0.093. Exp: Ct/σ=0.090 (Black).

transition locations at Ct/σ=0.040 (black symbols). Overall, the current results

show lagged turbulent areas on the both upper and lower surfaces especially at the

inboard and middle sections. Menter and Smirnov’s crossflow transition model gives

slightly larger turbulent areas than the baseline transition model, but their trends

are very similar. On the other hand, in the result from Langtry et al.’s model,
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larger turbulent areas are observed on the both upper and lower surfaces than the

experiment or Menter’s model results. This may be due to the lack of Galilean

invariance as it was mentioned in the previous section. At the high collective pitch

angle (θ = 11◦), all results show very good comparisons with the experiment on

the upper surface. On the other hand, on the lower surface, the baseline transition

model gives the best comparison. The crossflow transition models captures larger

turbulent areas than the experiment near the tip and the trailing edge, but overall

agreement looks still reasonable. In the current results, unphysical transition trends

observed in Jain’s work [5] using non-Galilean invariant model are not found.

4.3.3.7 Result: effect of turbulence intensity

Figure 4.24: Effect of freestream turbulence intensity on Figure of Merit.

To investigate the gap between the predicted Figure of Merit and the exper-
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imental data, the effect of freestream turbulence intensity is tested at the low and

high collective pitch angles. Figure 4.24 shows results with different freestream tur-

bulence intensity values at the collective pitches of 6◦ and 11◦. At the low collective

pitch angle, two higher freestream turbulence intensity values, 0.161% (Ncrit = 7)

and 0.371%(Ncrit = 5), are tested, whereas at the high collective pitch, a lower

freestream turbulence intensity value, 0.03% (Ncrit = 11), is tested. At the low

collective pitch angle, Figure of Merit is still over-predicted with the freestream tur-

bulence intensity of 0.161%, but it is well matched to the experiment with 0.371%.

Figure 4.25 compares turbulence index on the blade surfaces from the simulations

at the low collective pitch. It is seen that the turbulence intensity of 0.371% gives

better comparisons with the experimental data at Ct/σ=0.045 than other results.

Figure 4.26 shows spanwise distributions of the thrust and power coefficients on the

blade for the three freestream turbulence intensity values. For the sectional thrust,

the effect of turbulence intensity is minor, whereas there are some differences in the

torque distribution at r/R = 0.55 ∼ 0.95. It is considered that the low thrust level

has higher turbulence intensity than the higher thrust levels due to the remaining

rotor wake near the rotor disk plane. For this reason, the higher turbulence intensity

gives better comparisons with the experimental data at the low thrust level. On

the other hand, at the collective pitch of 11◦, the low turbulence intensity (0.03%)

gives almost the same Figure of Merit, still with under-prediction. Because 0.03%

is already very low, it is expected that a even lower value like 0.01% may give the

same result. Since the lower turbulence intensity does not improve the prediction,

one of other possibilities for the under-prediction, the effect of blade aeroelasticity,
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(a) 0.075%. (b) 0.161%.

(c) 0.371%.

Figure 4.25: Effect of the freestream turbulence intensity on turbulence index con-
tours at θ = 6◦. CFD: Ct/σ=0.043. Exp: Ct/σ=0.040 (Black). Exp: Ct/σ=0.045
(Yellow).

(a) Sectional thrust. (b) Sectional power.

Figure 4.26: Comparison of the sectional thrust and power distributions at θ = 6◦.

is investigated in the next section.

4.3.3.8 Result: effect of aeroelasticity at the high thrust condition

The effect of blade aeroelasticity on the rotor performance is examined at

the high thrust level (θ = 11◦) with a tip twist. The tip twist angle, 2◦, is esti-

mated based on Jain’s work [85] in which the effect of aeroelasticity is studied with
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CFD/CSD simulations for the PSP rotor. Figure 4.27 compares twist distributions

of the original blade and the blade with the tip twist angle 2◦. Figure 4.28 shows

Figure 4.27: Comparison of blade pitch distributions with and without the tip twist.

the predicted Figure of Merit with the tip twist (red diamond) and the original

predictions. In the figure, the additional tip twist actually gives reduced thrust and

Figure of Merit, and thus the predicted value is less than that at the collective pitch

of θ = 10◦ although the predicted value is still on the curve of Figure of Merit. The

work by Jain [85] also shows very similar trends to the current study. Therefore,

the effect of blade aeroelasticity is not a source of the under-prediction of Figure of

Merit at the high thrust level. To identify a correct reason for that, further studies

are required in the future work.
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Figure 4.28: Effect of blade aeroelasticity on the rotor performance at θ = 11◦.
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Chapter 5: Effect of time-marching on the wake structure breakdown

in a hovering rotor simulation

This section discuss the second part of the current dissertation, the wake break-

down of a hovering rotor. The section investigates the effect of time-marching with

1) time step sizes, 2) the BDF1 and BDF2 schemes, and 3) a temporal damping of

the BDF scheme. The effect of grid size of the background mesh is also studied, since

it affects the effective CFL numbers. Simulations are performed at a collective pitch

of 11◦ for the NASA Langley’s PSP hovering rotor, and the computational setup

presented in Chapter 4.3.3 was used. To investigate the effect of temporal damping

of the BDF scheme, the blended BDF formulation derived in Chapter 2.2.7.1 was

applied in simulations.

5.1 Effect of the time step size

The effect of the time step size on wake breakdown is investigated for four

different time step sizes, 0.0625◦, 0.125◦, 0.25◦ (baseline) and 0.5◦. To save com-

putational costs, simulations were restarted at the solutions of revolution 20 with

time step size 0.25◦ and run for 2 additional revolutions with the different time

step sizes. Figure 5.1 compares wake structures (Q-criterion) at revolution 22. All
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results show wake breakdown with the secondary vortex braid instabilities, but the

largest time step size, 0.5◦, gives the most severe wake breakdown. As the time

step size decreases, there are less secondary vortex braids in the solutions, and the

wake structures from the time step sizes 0.0625◦ and 0.125◦ are relatively similar.

Considering the relation between the CFL number and the time step size, a smaller

CFL number gives less secondary vortex braids.

(a) BDF2 with dt=0.0625◦. (b) BDF2 with dt=0.125◦.

(c) BDF2 with dt=0.25◦. (d) BDF2 with dt=0.5◦.

Figure 5.1: Effect of the time step size on wake structures (Q-criterion=0.001) at
revolution 22.

Figure 5.2 compares the thrust and torque coefficients from the simulations
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during the last 1 revolution. A range of the Y-axis is adjusted to see differences

between the results more clearly. In the figures, the larger time step size gives more

high frequency oscillations in the thrust and torque although their time-averaged

values are similar. Considering the wake structures shown in Fig. 5.1, it is considered

that wake breakdown with the secondary vortex braids affect the upstream rotor

wake and thus make the rotor performance more oscillatory.

(a) Thrust coefficient. (b) Torque coefficient.

Figure 5.2: Effect of the time step size on the thrust and torque coefficients.

Figure 5.3 shows FFT results of the thrust coefficients up to 80/revs for the

different time step sizes. In the figure, the larger time step size gives more high

frequency components in the thrust coefficient. In the results from the time step

size 0.5◦, two most dominant frequencies are 32/rev and 24/rev. However, in the

results from the time step size of 0.25◦, 32/rev and 31/rev are most dominant. In

the result from the time step sizes 0.125◦ and 0.0625◦, 4/rev is the most dominant

frequency, and the higher frequency components observed in the previous results

are almost gone. It is seen that the wake breakdown significantly increases high
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(a) dt=0.0625◦. (b) dt=0.125◦.

(c) dt=0.25◦. (d) dt=0.5◦.

Figure 5.3: Comparison of frequency components in the thrust coefficient for differ-
ent time step sizes.

frequency components in the predicted rotor performance.

Figure 5.4 compares sub-iteration convergences of the background mesh. The

convergences from the time step sizes 0.0625◦ to 0.25◦ are very similar although

there some differences in the wake structures. For the time step size 0.5◦, it shows

the residual drop more than one order but has the least convergence.
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Figure 5.4: Comparison of sub-iteration convergence of the background mesh.

5.2 Effect of the background mesh

The effect of the background mesh is investigated with a finer background

mesh. The cell size is not directly related to the time-marching, but it still affects

the CFL number. In the original mesh, a smallest cell size in the clustering region

is 6% of the chord length, whereas, in the finer mesh, the minimum cell size is 4% of

the chord length. Figure 5.5 compares wake structures from two cases at revolution

22. In the results, the finer background mesh gives more secondary vortex braids in

the near and far wakes than the original background mesh.

Figure 5.6 compares predicted thrust and torque coefficients from the two

cases. In both the thrust and torque coefficients, the finer background mesh gives

larger magnitudes of oscillations. For the torque coefficient, the finer mesh gives a

reduced time-averaged value by 1.13%, but for the thrust coefficient, the difference

between the time-averaged values is less than 0.2%.

In Figure 5.7, FFT results of the thrust coefficient are shown. In the results,
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(a) Original background mesh. (b) Finer background mesh.

Figure 5.5: Effect of a grid size on wake structures (Q-criterion=0.001) at revolution
22.

(a) Thrust coefficient. (b) Torque coefficient.

Figure 5.6: Effect of a grid size on the thrust and torque coefficients.

32/rev is the most dominant component, but the finer background mesh gives more

higher frequency components in the thrust coefficient.

Figure 5.8 compares sub-iteration convergences of the background mesh. The

finer mesh has slightly higher magnitudes of the residual than the original mesh,

but the orders of the residual drop of the two cases are very similar.

From the point of view of the CFL number, a smaller mesh size means a larger
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(a) Original background mesh. (b) Finer background mesh.

Figure 5.7: Effect of a grid size on the thrust and torque coefficients.

Figure 5.8: Comparison of sub-iteration convergence of the background mesh.

CFD number. As it was observed in the results from the different time step sizes, a

larger CFD number gives more wake breakdown with secondary vortex braids.

5.3 Comparison between the BDF2 and BDF1 schemes

The effect of time marching schemes is investigated between the BDF2 and

BDF1 schemes. In Figure 5.9, wake structures are compared between the BDF2

and BDF1 results at revolution 22. Computations are performed using the BDF2
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scheme up to revolution 20. Then, solutions are restarted with the BDF2 or BDF1

and run for additional two revolutions. In the BDF2 result, the tip vortex becomes

(a) BDF2. (b) BDF1.

Figure 5.9: Comparison of wake structures (Q-criterion=0.001) at revolution 22:
BDF1 Vs. BDF2.

unstable in the near wake due to the secondary vortex braid instabilities, and wake

structure breakdown occurs from the third blade passage. As a result, it is difficult

to observe coherent vortical structures in the middle and far wake regions. On the

other hand, in the BDF1 result, the secondary vortex instability is gone, and wake

structures become very stable with the tip vortices preserved up to the fifth blade

passages. The reduced temporal accuracy gives the more stable and diffused wake

structures.

Figure 5.10 compares predicted thrust coefficient and Figure of Merit using the

BDF2 and BDF1 schemes. In the figure, BDF2 shows high frequency oscillations in

the thrust coefficient and Figure of Merit, whereas BDF1 gives settled down results

with less oscillations. For the Figure of Merit, the result from the BDF2 slightly
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changes even after revolution 20, but the BDF1 result is relatively flat.

(a) Thrust coefficient. (b) Figure of Merit.

Figure 5.10: Comparison of integrated rotor performance: BDF2 Vs. BDF1.

Figure 5.11 shows spanwise distributions of thrust and torque loadings from

the BDF2 and BDF1 schemes. Overall trends are very similar, but there is a gap

in the torque loading at r/R =0.95 caused by differences in the returning vortex

and the wake structures. In the BDF2 result, the returning vortex is destabilized

by the secondary vortex braids, but it is not the case in the BDF1 result. The more

stable wake structures in the BDF1 results in a larger drop in the section torque

distribution around 95% of the spanwise section.

5.4 Effect of temporal damping: Blended BDF scheme

Finally, the effect of temporal damping of the time-marching scheme is in-

vestigated using the blended BDF scheme. Figure 5.12 shows wake structures (Q-

criterion) for different temporal damping values from zero to one. In the figure, the

BDF2 ( ε = 0.0) and the blended BDF with ε = 0.02 give unstable wake structures

123



(a) Sectional thrust. (b) Sectional torque.

Figure 5.11: Comparison of blade loadings: BDF2 Vs. BDF1.

with lots of secondary vortex braids. The blended BDF with ε = 0.02 give slightly

less secondary vortex braids in the near wake, but overall trends are very similar to

the BDF2 result. It is seen that the returning vortex from the previous blade also

becomes unstable by the instabilities in the both results. In the previous section, it

was shown that the unstable returning vortex caused the lower distribution of the

torque at r/R = 0.95 of the blade spanwise section. For the blended BDF with

ε = 0.1, the wake structures becomes more stable in the near wake region up to

the third blade passages, and wake breakdown occurs in the middle and far wake

regions, which is more physical than the previous two results. Also, it shows signif-

icantly less the secondary vortex braid instabilities in the flow field. Finally, for the

BDF1 ( ε = 1.0) result, tip vortices are very well preserved for 4-5 blade passages,

but perhaps, it is too stable.

Figure 5.13 compares thrust and torque coefficients for the BDF2 ( ε = 0.0),

BDF1 ( ε = 1.0), and the blended BDF with ε=0.02 and 0.1. Range of Y-axis is
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(a) Blended BDF with ε = 0.0 (BDF2) (b) Blended BDF with ε = 0.02

(c) Blended BDF with ε = 0.1 (d) Blended BDF with ε = 1.0 (BDF1)

Figure 5.12: Comparison of wake structures (Q-criterion=0.001) for different tem-
poral damping.

adjusted from Fig. 5.10 to see differences between each other more clearly. As shown

in the previous section, the BDF2 gives lots of high frequency oscillations by the

secondary vortex instability, whereas BDF1 doesn’t show the oscillations. For the

blended BDF with ε=0.02, although magnitudes of oscillations in the thrust and

torque coefficients decrease slightly from the BDF2 results, overall trends are very

similar to the BDF2 results. For the blended BDF with ε=0.1, it shows less high
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(a) Thrust coefficient. (b) Torque coefficient.

Figure 5.13: Comparison of integrated rotor performance.

frequency oscillations in the thrust and torque coefficients than the results from the

BDF2 or the blended BDF with ε=0.02. As it was discussed earlier, it is considered

that the high frequency components in thrust and torque coefficients are caused by

the secondary vortex braid instabilities in the wake.

Figure 5.14 shows FFT result of the thrust coefficients. In the figure, a larger

damping value gives less high frequency components in the thrust coefficient. The

BDF2 or the blended BDF with ε=0.02 has 32/rev as the most dominant com-

ponent. On the other hand, in the results with blended BDF with ε = 0.1, the

magnitude of 32/rev is less than that of 4/rev, and in the BDF1 result (ε = 1.0),

4/rev is the most dominant and higher frequency components are not observed well.

Figure 5.15 shows sub-iteration convergences of the background mesh for the

different temporal damping values. All cases show very similar trends of the residual

drop except the blended BDF with ε = 1.0 (BDF1) despite significant differences

in the wake structures and the predicted rotor performance. It is considered that
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(a) Blended BDF with ε = 0.0 (BDF2) (b) Blended BDF with ε = 0.02

(c) Blended BDF with ε = 0.1 (d) Blended BDF with ε = 1.0 (BDF1)

Figure 5.14: Comparison of frequency contents in the thrust coefficients.

Figure 5.15: Comparison of sub-iteration convergence of the background mesh.
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the global convergence of the background may not be directly related to the wake

breakdown.

In summary, the current study shows that the time-marching is one of factors

affecting the numerical prediction of wake breakdown of a hovering rotor. It was

shown that reducing the CFL number with a smaller time step size and/or a larger

cell size makes wake structures more stable with less secondary vortex braids. In

addition, adding a small amount of temporal damping helps relieve the problem.

However, reducing the CFL number may result in an increase of computational times

due to a smaller time step size or the dissipation of wake structures due to larger

cell sizes. On the other hand, adding a small amount of temporal damping using the

blended BDF scheme does not lose temporal accuracy significantly while it reduces

unphyscial early wake breakdown. Therefore, it can be used as an engineering

solution of the problem.
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Chapter 6: Conclusion and Summary

6.1 Galilean invariant transition model for the S–A turbulence model

Prediction of laminar-turbulent transition is still one of the key challenges in

general purpose CFD simulations. Although Langtry-Menter’s γ − Reθt model has

become one of the most successful models in industrial CFD applications since its

release, it has several limitations such as 1) lack of Galilean invariance, 2) complex-

ity in local correlations (the critical momentum thickness Reynolds number trans-

port equation), and 3) dependence on the variations in the SST turbulence model.

These limitations motivates the first goal of the current study, the development of

a Galilean invariant transition model for the SA turbulence model.

In the present work, Menters one-equation γ transition model is coupled to

the SpalartAllmaras turbulence model. Calibrations of the transition model are

performed on flat plate cases to ensure accurate predictions, and a new set of cor-

relation constants are proposed. Convergence of the transition model is improved

for implicit time marching methods by applying the positivity of implicit opera-

tors. A constant freestream turbulence intensity from the experiment is employed

to account for experimental flow conditions. The transition model is extended with

crossflow transition models. The model is validated against various 2-D and 3-D
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transition cases and shows good comparisons with experimental data.

6.1.1 Key observation

Transition simulations with a constant turbulent intensity from experiments

give very good comparisons with the experiment. The initial condition of the SA

turbulent model does not need to be adjusted, unlike Nichols’s work [42].

Application of the positive principle in the implicit operators significantly im-

proves convergence of the model for both 2-D and 3-D cases and does not give

non-physical negative intermittency values.

Validations of the SA-γ model is performed for four 2-D subsonic airfoil cases.

Reynolds number ranges from 0.2×106 to 4×106 and freestream turbulence intensity

is from 0.05% to 0.15%. In the results, SA-γ simulations significantly improved

drag prediction from the fully turbulent simulations for all four cases. The model

captures the effect of laminar-turbulent transition on the skin friction, pressure

coefficient, and drag coefficient very well. The grid study results show that the SA-

γ model gives robust prediction for different meshes. The model shows converging

trend of lift and drag coefficient as the mesh becomes finer, and the SA-γ model

does not show nonphysical oscillations in the results with the finest mesh. At the

low Reynolds number (Re=0.2×106), the transition model predicts the separation-

induced transition very well with accurate locations of the laminar separation and

turbulent reattachment.

The SA-γ transition model is applied to three-dimensional cases with two
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crossflow transition models. Simulations are performed for the following three cases:

1) NLF(2)-0415 swept wing, 2) Inclined 6:1 Prolate Spheroid, and 3) NASA Lang-

ley’s PSP hovering rotor.

For the NLF(2)-0415 swept wing, both crossflow transition models give better

comparisons of transition locations with the experiment than the baseline transi-

tion model. For Langtry et al.’s model, it accounts for the surface roughness and

reasonably captures the effect of surface roughness on crossflow transition.

For the inclined 6:1 Prolate Spheroid, the baseline transition model does not

capture the trends of the experiment through the entire range of angles of attack.

On the other hand, both crossflow transition models give reasonable agreement with

the experiment at the medium and high angles of attack (α = 10◦ and 15◦). Overall,

the crossflow transition model by Menter and Smirnov shows earlier transition onset

than the model proposed by Langtry.

Finally, the SA-γ transition model is applied to the NASA Langley’s PSP rotor

simulations. The experimental freestream turbulence intensity is unknown, and a

range of the freestream turbulence intensity in other CFD simulations is very wide:

from 0.07% to 1.0%. In the current work, a freestream turbulence intensity of 0.075%

is applied for simulations, and other values are tested at low and high thrust levels

based on the results. Overall, the current prediction shows reasonable agreements

with the experiment and similar trends with other CFD results; over-prediction of

Figure of Merit at low thrust levels and under-prediction at high thrust levels. The

effect of crossflow transition model is investigated using the two crossflow transition

models. From the result, the crossflow transition model by Menter and Smirnov
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shows minor effects, whereas the model by Langtry et al. shows significant under-

prediction of the Figure of Merit than the baseline results. Langtry et al.’s model

may give different results due to the lack of Galilean invariance and/or inaccurate

surface roughness heights. To figure out the correct reasons, further investigations

are required with additional rotor test data.

At the low and high thrust levels, the effect of freestream turbulence intensity

is investigated. At collective pitch of 6◦, a higher turbulence intensity value, 0.371%

gives better comparison with the experiment than the original value, 0.075%. It is

considered that at low thrust levels the rotor wake remains near the rotor and tur-

bulence may be re-ingested into the rotor disk plane, which results in an increase of

turbulence intensity of the inflow. On the other hand, at a high thrust level (collec-

tive pitch of 11◦), a lower turbulence intensity, 0.03%, does not improve correlations

with the experiment. The effect of aeroelasticity is investigated with the tip twist,

but it does not give a solution for the under-prediction either. Further investigations

are required to figure out the under-prediction at the high thrust level.

The predicted transition locations on the blade surfaces are compared with

the experiment. The new baseline transition model with the crossflow transition

model by Menter and Smirnov gives reasonable comparisons with the experiments

without unphysical transition behaviors near the swept tip of the blade where the

blade-vortex interaction occurs. On the other hand, the crossflow transition model

by Langtry et al. (non-Galilean invariant) gives excessive turbulent areas on the

blade surfaces.
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6.1.2 Contributions of Thesis

Key Contributions of this thesis are as follows:

1. Coupled Menter’s 1-eq γ transition model to the S-A turbulence model and

accounted for experimental conditions by employing a constant turbulence

intensity

2. Improved convergence of the transition model with application of the positivity

in the implicit operator

3. Extended the transition model by coupling two crossflow transition models

and re-calibrated the model constants

4. Preformed hovering rotor simulations with the transition model and show that

the Galilean invariant model doesnt show unphysical transition behaviors on

the blade surfaces

6.1.3 Recommendations for Future Work

1. For the PSP hovering rotor, the SA-γ transition model slightly over-predicts

Figure of Merit at the low thrust levels than the experiment and other CFD

results. It is considered that this is due to higher turbulence intensity in the

experiment caused by turbulent inflow near the rotor disk plane. Further

studies are required to investigate correlations between turbulence intensity

and thrust levels with additional experimental data.
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2. Results from using the crossflow transition model by Langtry et al. show

good comparisons with the experimental data for NLF(2)-0415 wing or Prolate

Spheroid. However, it captures excessive effects of crossflow transition for the

NASA Langley’s PSP hovering rotor. It is considered that this may be due

to lack of Galilean invariance of the model, and the effect of non-Galilean

invariance in the crossflow transition model needs to be further investigated.

3. Surface roughness is one factor that affects laminar-turbulent transition. Al-

though Langtry et al.’s crossflow transition model accounts for roughness

height as a model input, the baseline turbulence and transition models are

only for a smooth surface. For more physical simulations of wing, fuselage,

or rotor blade, the effect of surface roughness on the transition needs to be

considered. Dassler [40] and Langel [41] proposed the roughness-induced tran-

sition models that employs an additional transport equation for the roughness

amplification factor. A similar approach can be tried for the current SA-γ

transition model.

4. In a recent study by Jung et al. [86], it was found that the SA-γ model becomes

inaccurate at high Reynolds number flow (Re ≥ 9 × 106) and gives earlier

transition than it should be. The capability of the SA-γ transition model for

high Reynolds number flow should be improved with further calibrations of

the model constants and/or a machine-learning approach.
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6.2 Wake breakdown of a hovering rotor

Wake breakdown of a rotor has been observed in CFD simulations with ap-

plications of high-order numerical schemes and/or the adaptive mesh refinement.

Wake breakdown begins with the secondary vortex braid instability, and it destroys

the vortical structures except the very near wake structures. Although, a recent ex-

perimental study confirms the existence of the secondary vortex braids, the extent

of the instability in CFD simulations is considered physically incorrect.

The second objective of the present study is to investigate the effects of time-

marching on the wake breakdown of a hovering rotor. Several factors are tested

such as 1) time step sizes, 2) temporal accuracy (BDF2 and BDF 1 schemes), and

3) adding a temporal damping to the BDF2 scheme. For this purpose, a blended

formulation of the BDF1 and BDF2 scheme is derived with a temporal damping

variable and coupled to dual-time stepping. Simulations are performed for NASA

Langleys PSP hovering rotor, and wake structures (iso surface of Q-criterion), inte-

grated rotor performance, and FFT analysis of the thrust coefficient are examined.

6.2.1 Key observation

6.2.1.1 Effect of the time step size

The effect of the time step size on the wake breakdown is analyzed for four

different time step sizes, 0.0625◦, 0.125◦, 0.25◦, and 0.5◦. The larger time step size

gives more secondary vortex braids with higher frequency oscillations in the thrust
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and torque coefficients although their converged time-averaged values are not sig-

nificantly different. The secondary vortex braid instability affects the tip vortical

structures, resulting in high frequency oscillations in the predicted rotor perfor-

mance. The larger time step size shows higher magnitudes of frequency contents of

the thrust coefficient in the FFT analysis.

6.2.1.2 Effect of background mesh

The effect of grid size of the background mesh is checked for two different

background mesh. Although it is not a time-marching factor, it does modify the

effective CFL numbers. The smallest cell size of the original mesh is 6% of the chord

length, whereas, the finer mesh has 4% of the chord length in the refined region.

Regarding wake structures, the finer background mesh gives more secondary vortex

braids in the near and far wake regions than the original background mesh. However,

because both meshes show severe wake breakdown, it is difficult to identify the tip

vortex after only 2 or 3 blade passages. In the FFT analysis of the thrust coefficient,

32/rev is the most dominant component for both meshes, but the finer background

mesh gives more high frequency components.

6.2.1.3 Effect of temporal accuracy

Effect of temporal accuracy on the wake breakdown is studied with the BDF2

and BDF1 scheme. The BDF2 scheme gives lots of secondary vortex braids in the

wake structures, whereas BDF1 shows very stable vortical structures without any
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secondary vortex braids. However, BDF1 result may be too stable considering the

experimental work by Wolf [7]. In the thrust and torque coefficients, the BDF2

gives high frequency oscillations, whereas the BDF1 shows very flat trends. For

the spanwise distributions of thrust and torque coefficients, the BDF1 gives more

drop of torque coefficient at r/R=0.95 where the returning vortex interacts with the

blade because the wake structure (tip vortex) from the BDF1 is more stable and

diffused than that from the BDF2 result.

6.2.1.4 Effect of temporal damping

The BDF2 scheme has dominant dispersion errors, whereas the BDF1 scheme

has more dissipation errors. The effect of temporal damping is checked with the

blended BDF scheme. In the results, a small amount of the temporal damping (10%

of the BDF1 scheme) reduces the secondary vortex braids and delays wake structure

breakdown, which results in more physical wake structures. High frequency oscilla-

tions in the predicted rotor performance also decrease with the temporal damping.

The blended BDF scheme with a temporal damping can be used as an engineer-

ing solution of the wake breakdown for more physical wake structures in a rotor

simulation without significant loss of temporal accuracy.

6.2.2 Contributions of Thesis

Key Contributions of this thesis are as follows:

1. Showed that the time-marching is a factor affecting the wake breakdown in a
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hovering rotor simulation

2. Derived a blended formulation of the BDF schemes with a temporal damping

variable

3. Demonstrated adding a small amount of temporal damping to the BDF scheme

gives more physical wake structures with less secondary vortex braid instability

4. Proposed an engineering solution of the wake breakdown for more physical

wake structures

6.2.3 Recommendations for Future Work

1. Duraisamy [87] proposed a time-limited implicit scheme. A key idea behind

the scheme is to reduce the temporal accuracy of the scheme locally where the

time integration is not smooth so that the scheme is non-oscillatory in time.

The scheme can be compared with the blended BDF scheme.

2. Abras et al. [24–26] shows a rotating torus mesh with a blade reduces wake

breakdown. The blended BDF scheme with a rotating torus mesh needs to

be tested to check if the combination reduces non-physical wake breakdown

further.

3. The blended BDF scheme is implemented in flow solvers at the University of

Maryland. It would be useful if the scheme is implemented in DoD flow solvers

such as NASA’s OVERFLOW or SAMCART of CREATE-AV Helios.
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Appendix A: Transition Prediction

A.1 en method based on linear stability theory

en method [88–90] is based on linear stability theory. Linear stability theory

is based on solutions of the the Orr-Sommerfeld equation [91, 92]. The equations

are derived from the Navier–Stoke equations with assumptions that flow is locally

parallel and flow components consist of mean and small perturbations. The velocity

perturbations are given as a perturbation stream function as

Ψ = φ(y)A0e
[i(αx−ωt)] (A.1)

where φ is an amplitude function, y is the wall normal coordinate, A0 is an undeter-

mined coefficient, and x is a streamwise coordinate. If the perturbation amplitude

grows, then the boundary layer becomes unstable and transition begins, whereas

the boundary layer becomes stable if the perturbation amplitude decays. The Orr-

Sommerfeld equation can be extended to include the effects of non-parallel flow by

using the Parabolized Stability Equations (PSE) [93].

In en method [88–90], transition is triggered once the perturbation amplitude

ratio (en) is approximately equal to the critical amplification ratio. The exponent
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of the critical amplification ratio is called the critical N factor, and a typical range

of that is from 7 to 9 for aerodynamic flows. en methods have been widely used in

many design and analysis codes such as XFOIL [43], LILO [94], and LASTRAC [95]

and have given very good comparisons with experimental data.

However, there are some difficulties to apply en method in 3-D CFD simu-

lations. First of all, the stability theory requires non-local operations such as the

integration along the boundary layer or tracking perturbations along the stream-

lines. Not only are they not available or desirable in modern CFD methodology,

but also they cause many issues for complicated 3-D geometries. Secondly, full

application of en method requires to track all possible frequencies that can reach

the critical amplification factor. Although this can be simplified with the database

look up, it is still computationally expensive. To apply the en method in general

problems, further simplifications may need to be applied such as approximations

by Drela and Giles [43]. Finally, to use the en method, additional boundary layer

codes are required. Because CFD simulations do not provide sufficient solutions for

the en method, CFD flow solvers are coupled to the en method and boundary layer

prediction codes in most work [96–98].

A.2 Local correlation methods

Local correlation methods are based on empirical relations between the transi-

tion onset and the transition momentum thickness Reynolds number or the vorticity

Reynolds number calculated from the freestream turbulent intensity and pressure
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gradient parameter. If a local value exceeds the critical value, transition process

begins. Many PDE-based methods are also based on local correlations methods,

but in this section, only non PDE-based methods are presented.

A.2.1 Mayle’s Correlation

Mayle’s correlation [28] for transition momentum thickness Reynolds number

is given as a function of the freestream turbulence intensity as

Reθt = 400Tu−5/8 (A.2)

The correlation is for flow over zero-pressure gradient flat plate only.

A.2.2 Abu-Ghannam and Shaw Correlation

The Abu-Ghannam and Shaw correlation [99] accounts for not only the effect

of the freestream turbulence intensity but also the pressure gradient parameter on

the transition onset as

Reθt = 163.0 +

{
F (λθ)−

F (λθ)

6.91
Tu

}
(A.3)

F (λθL) =


6.91 + 12.75λθ + 63.64(λθ)

2 for λθ ≤ 0

6.91 + 2.48λθ − 12.27(λθ)
2 for λθ < 0

and λθ =
θ2

ν

dU∞
dx

(A.4)
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A.2.3 Van Driest and Blumer Correlation

Van Driest and Blumer Correlation [36] proposed using the vorticity Reynolds

number for transition onset criteria, which is defined as

Rev =
(du/dy)y2

ν
(A.5)

The onset criteria includes the effect of the freestream turbulence and the pressure

gradient parameter using the Pohlhausen fourth-degree velocity profile as

9860/Reδ = 1− 0.0485Λ + 3.36Reδ(u
′/Ue)

2 (A.6)

where Λ is the Pohlhausen parameter defined as Λ = −(δ2/µUe)(dp/dx) and δ is

the boundary layer thickness.
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