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Abstract

This paper documents the features and the design of XMTSim, the cycle-accurate simulator of the Explicit Multi-Threading
(XMT) computer architecture. The Explicit Multi-Threading (XMT) is a general-purpose many-core computing platform,
with the vision of a 1000-core chip that is easy to program but does not compromise on performance. XMTSim is a primary
component in its publicly available toolchain along with an optimizing compiler. Research and experimentation enabled by
the toolchain played a central role in supporting the ease-of-programming and performance aspects of the XMT architecture.
The compiler and the simulator are also important milestones for an efficient programmer’s workflow from PRAM algorithms
to programs that run on the shared memory XMT hardware. This workflow is a key component in accomplishing the goal of
ease-of-programming and performance.

The applicability of the XMT simulator extends beyond specific XMT choices. It can be used to explore the much greater
design space of shared memory many-cores by system researchers or by programmers. As the toolchain can practically run on
any computer, it provides a supportive environment for teaching parallel algorithmic thinking with a programming component.

XMTSim is the highly-configurable cycle-accurate simulator of the XMT computer architecture [38, 39, 48, 49]. It is tuned to
approximate the behavior of major on-die components of XMT, such as the cores, interconnect and on-chip caches. Additionally
XMTSim features a power model and a thermal model, and it provides means to simulate dynamic power and thermal manage-
ment algorithms. We made XMTSim publicly available as a part of the XMT programming toolchain [7,9], which also includes
an optimizing compiler [45]. Detailed information on XMT architecture and the programming model can be found in [30].

XMT envisions bringing efficient on-chip parallel programming to the mainstream, and the toolchain is instrumental in obtaining
results to validate these claims, as well as making a simulated XMT platform accessible from any personal computer. XMTSim
is useful to a range of communities such as system architects, teachers of parallel programming and algorithm developers due to
the following four reasons:

1. Opportunity to evaluate alternative system components. XMTSim allows users to change the parameters of the
simulated architecture including the number of functional units and organization of the parallel cores. It is also easy to add
new functionality to the simulator, making it the ideal platform for evaluating both architectural extensions and algorithmic
improvements that depend on the availability of hardware resources. For example, Caragea, et. al [8] searches for the optimal size
and replacement policy for prefetch buffers given limited transistor resources. Furthermore, to our knowledge, XMTSim is the
only publicly available many-core simulator that allows evaluation of architectural mechanisms/features, such as dynamic power
and thermal management. Finally, the capabilities of our toolchain extend beyond specific XMT choices: system architects can
use it to explore a much greater design-space of shared memory many-cores.

2. Performance advantages of XMT and PRAM algorithms. A number of publications [6, 10, 15, 16, 17, 18, 19, 41] list
the performance advantages of XMT compared to exiting parallel architectures, and also document the interest of the academic
community in such results. XMTSim was the enabling factor for the publications that investigate planned/future configurations.
Moreover, despite past doubts in the practical relevance of PRAM algorithms, results facilitated by the toolchain showed not
only that theory-based algorithms can provide good speedups in practice, but that sometimes they are the only ones to do so.

3. Teaching and experimenting with on-chip parallel programming. As a part of the XMT toolchain, XMTSim
contributed to the experiments that established the ease-of-programming of XMT. These experiments were presented in pub-
lications [23, 40, 44, 46] and conducted in courses taught to graduate, undergraduate, high-school and middle-school students
including at Thomas Jefferson High School, Alexandria, VA. The curriculum at Thomas Jefferson High School has featured
XMT programming since 2008; more than two hundred of its students have already programmed XMT and in 2012 forty of these
high-school students demonstrated Ph.D. level parallel programming [14]. In addition, the XMT toolchain provides convenient
platform for teaching parallel algorithms and programming, because students can install and use it on any personal computer
to work on their assignments.
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Figure 1: XMT overview from the perspective of XMTSim software structure.

4. Guiding researchers for developing similar tools. This paper also documents our experiences on constructing a
simulator for a highly-parallel architecture, which, we believe, will guide other researchers who are in the process of developing
similar tools.

The remainder of this paper is organized as follows. Section 1 gives an overview of the simulator. Section 2 elaborates on the
mechanisms that enable users to customize the reported statistics and modify the execution of the simulator during runtime.
Sections 3 and 4 describe the details of the cycle-accurate simulation and present the cycle verification against the FPGA
prototype. Power and thermal models are explained in Section 5 and the dynamic management extensions are explained in
Section 6. Sections 8 and 9 list the miscellaneous features that are not mentioned in other sections and possible improvements.

1 Overview of XMTSim

XMTSim accurately models the interactions between the high level micro-architectural components of XMT shown in Figure 1,
i.e., the Thread Control Units (TCUs, lightweight processing cores), functional units, caches, interconnection network, etc.
Currently, only on-chip components are simulated, and DRAM is modeled as simple latency. XMTSim is highly configurable
and provides control over many parameters including number of TCUs, the cache size, DRAM bandwidth and relative clock
frequencies of components. XMTSim is verified against the 64-TCU FPGA prototype of the XMT architecture [49].

The software structure of XMTSim is geared towards providing a suitable environment for easily evaluating additions and
alternative designs. XMTSim is written in the Java programming language and the object-oriented coding style isolates the code
of major components in individual units (Java classes). Consequently, system architects can override the model of a particular
component, such as the interconnection network or the shared caches, by only focusing on the relevant parts of the simulator.
Similarly, a new assembly instruction can be added via a two step process: (a) modify the assembly language definition file of
the front-end, and (b) create a new Java class for the added instruction. The new class should extend Instruction, one of the
core Java classes of the simulator, and follow its application programming interface (API) in defining its functionality and type
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Figure 2: Overview of the simulation mechanism, inputs and outputs.

(ALU, memory, etc.).

Each solid box in Figure 1 corresponds to a Java object in XMTSim. Simulated assembly instruction instances are wrapped in
objects of type packet. An instruction packet originates at a TCU, travels through a specific set of cycle-accurate components
according to its type (e.g., memory, ALU) and expires upon returning to the commit stage of the originating TCU. A cycle-
accurate component imposes a delay on packets that travel through it. In most cases, the specific amount of the delay depends
on the previous packets that entered the component. In other words, these components are state machines, where the state input
is the instruction/data packets and the output is the delay amount. The inputs and the states are processed at transaction-level
rather than bit-level accuracy, a standard practice which significantly improves the simulation speed in high-level architecture
simulators. The rest of the boxes in Figure 1 denote either the auxiliary classes that help store the state or the classes that
enclose collections of other classes.

Figure 2 is the conceptual overview of the simulation mechanism. The inputs and outputs are outlined with dashed lines. A
simulated program consists of assembly and memory map files that are typically provided by the XMTC compiler. A memory
map file contains the initial values of global variables. The current version of the XMT toolchain does not include an operating
system, therefore global variables are the only way to provide input to XMTC programs, since OS dependent features such as
file I/O are not yet supported. The front-end that reads the assembly file and instantiates the instruction objects is developed
with SableCC, a Java-based parser-generator [21]. The simulated XMT configuration is determined by the user, typically via
configuration files and/or command line arguments. The built-in configurations include models of the 64-TCU FPGA prototype
(also used in the verification of the simulator) and an envisioned 1024-TCU XMT chip.

XMTSim is execution-driven (versus trace-driven). This means that instruction traces are not known ahead of time, but
instructions are generated and executed by a functional model during simulation. The functional model contains the operational
definition of the instructions, as well as the state of the registers and the memory. The core of the simulator is the cycle-accurate
model, which consists of the cycle-accurate components and an event scheduler engine that controls the flow of simulation. The
cycle-accurate model fetches the instructions from the functional model and returns the expired instructions to the functional
model for execution, which is illustrated in Figure 2.

The simulator can be set to run in a fast functional mode, in which the cycle-accurate model is replaced by a simplified mechanism
that serializes the parallel sections of code. The functional simulation mode does not provide any cycle-accurate information,
hence it is faster by orders of magnitude than the cycle-accurate mode and can be used as a fast, limited debugging tool for
XMTC programs. However, the functional mode cannot reveal any concurrency bugs that might exist in a parallel program
since it serializes the execution of the parallel code blocks, called spawn blocks in XMT terminology. Another potential use for
the functional simulation mode is fast-forwarding through time consuming steps (e.g., OS boot, when made available in future
releases), which would not be possible in the cycle-accurate mode due to simulation speed constraints.
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2 Simulation Statistics and Runtime Control

As shown in Figure 2, XMTSim features built-in counters that keep record of the executed instructions and the activity of the
cycle-accurate components. Users can customize the instruction statistics reported at the end of the simulation via external
filter plug-ins. For example, one of the default plug-ins in XMTSim creates a list of most frequently accessed locations in
the XMT shared memory space. This plug-in can help a programmer find lines of assembly code in an input file that cause
memory bottlenecks, which in turn can be referred back to the corresponding XMTC lines of code by the compiler. Furthermore,
instruction and activity counters can be read at regular intervals during the simulation time via the activity plug-in interface.
Activity counters monitor many state variables. Some examples are the number of instructions executed in functional units and
the amount of time that TCUs wait for memory operations.

A feature unique to XMTSim is the capability to evaluate runtime systems for dynamic power and thermal management. The
activity plug-in interface is a powerful mechanism that renders this feature possible. An activity plug-in can generate execution
profiles of XMTC programs over simulated time, showing memory and computation intensive phases, power, etc. Moreover,
it can change the frequencies of the clock domains assigned to clusters, interconnection network, shared caches and DRAM
controllers or even enable and disable them. The simulator provides an API for modifying the operation of the cycle-accurate
components during runtime in such a way. In Section 5, we will provide more information on the power/thermal model and
management in XMTSim.

3 Details of Cycle-Accurate Simulation

In this section, we explain various aspects of how cycle-accurate simulation is implemented in XMTSim, namely the simulation
strategy, which is discrete-event based, and the communication of data between simulated components. We then discuss the
factors that affect the speed of simulation. Finally, we demonstrate discrete-event simulation on an example.

3.1 Discrete-Event Simulation

Discrete-event (DE) simulation is a technique that is often used for understanding the behavior of complex systems [4]. In
DE simulation, a system is represented as a collection of blocks that communicate and change their states via asynchronous
events. XMTSim was designed as a DE simulator for two main reasons. First is its suitability for large object-oriented designs.
A DE simulator does not require the global picture of the system and the programming of the components can be handled
independently. This is a desirable strategy for XMTSim as explained earlier. Second, DE simulation allows modeling not only
synchronous (clocked) components but also asynchronous components that require a continuous time concept as opposed to
discretized time steps. This property enabled the ongoing asynchronous interconnect modeling work mentioned in Section 9.

The building blocks of the DE simulation implementation in XMTSim are actors, which are objects that can schedule events.
Events are scheduled at the DE scheduler, which maintains a chronological order of events in an event list. An actor is notified
by the DE scheduler via a callback function when the time of an event it previously scheduled expires, and as a result the actor
executes its action code. Some of the typical actions are to schedule another event, trigger a state change or move data between
the cycle-accurate components. A cycle-accurate component in XMTSim might extend the actor type, contain one or more actor
objects or exist as a part of an actor, which is a decision that depends on factors such as simulation speed, code clarity and
maintainability.

Figure 3 is an example of how actors schedule events and are then notified of events. DE scheduler is the manager of the simulation
that keeps the events in a list-like data structure, the event list, ordered according to their schedule times and priorities. In
this example, Actor 1 models a single cycle-accurate component whereas Actor 2 is a macro-actor, which schedules events and
contains the action code for multiple components.

It should be noted that XMTSim diverges from discrete-time (DT) architecture simulators such as SimpleScalar [2]. The
difference is illustrated in Figure 4. The DT simulation runs in a loop that polls all the modeled components and increments
the simulated time at the end of each iteration. Simulation ends when a certain criterion is satisfied, for example when a halt
assembly instruction is encountered. On the other hand, the main loop of the DE simulator handles one actor per iteration by
calling its notify method. Unlike DT simulation, simulated time does not necessarily progresses at even intervals. Simulation is
terminated when a specific type of event, namely the stop event, is reached. The advantages of the DE simulation were mentioned
at the beginning of this section. However, DT simulation may still be desirable in some cases due to its speed advantages and
simplicity in modeling small to medium sized systems. Only the former is a concern in our case and we elaborate further on
simulation speed issues in Section 3.4.

A brief comparison of discrete-time versus discrete-event simulation is given in Table 1. As indicated in the table, DT simulation
is preferable for simulation of up to mid-size synchronous systems, and the resulting code is often more compact compared to
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Figure 3: The overview of DE scheduling architecture of the simulator.

i n t time = 0 ;
whi l e ( t rue ) {

. . .
i f ( . . . ) break ;
time++;

}

i n t time ;
whi l e ( t rue ) {

Event e = eventL i s t . next ( ) ;
time = e . time ( ) ;
e . ac to r ( ) . n o t i f y ( ) ;
i f ( . . . ) break ;

}

(a) (b)

Figure 4: Main loop of execution for (a) Discrete-time simulation, (b) Discrete-event simulation.

the DE simulation code. For larger systems DT simulation might require an extensive case study for ensuring correctness. Also,
for the cases in which a lot of components are defined but only few of them are active every cycle, DT simulation typically
wastes computation time on the conditional statements that do not fall through. Advantages of DE simulation were discussed
earlier in this section. The primary concern about DE simulation is its performance, which may fall behind DT simulation as
demonstrated in the next section.

3.2 Concurrent Communication of Data Between Components

In DE simulation, if the movement of data between various related components is triggered by concurrent events, special care
should be paid to ensure correctness of simulation. As a result the DE simulation might require more work than DT simulation.
We demonstrate this statement on an example for simulating a simple pipeline. We first show how the simulation is executed
on a DT simulator, as it is the simpler case, and then move to the DE simulator.

Figure 5 illustrates how a 3 stage pipeline with a packet at each stage advances one clock cycle in case of no stalls. Figure 5(a)
is the initial status. Figures 5(b), 5(c) and 5(d) show the steps that the simulation takes in order to emulate one clock cycle.
In the first step, the packet at the last stage (packet 3) is removed as the output. Then packets 2 and 1 are moved to the next
stage, in that order. By starting at the end, it is ensured that packets are not unintentionally overwritten.

Figure 6 shows the same 3 stage pipeline example of Figure 5 in DE simulation. We assume that each stage of the pipeline is
defined as an actor. For advancing the pipeline, each actor will schedule an event at time T to pass its packet to the next stage.
In DE simulation, however, there is no mechanism to enforce an order between the notify calls to the actors that schedule events
for the same time (i.e., concurrent events). For example, the actors can be notified in the order of stages 1, 2 and 3. As the
figure exhibits, this will cause accidental deletion of packets 2 and 3.

Figure 7 repeats the DE simulation but this time with intermediate storage for each pipeline stage, which is denoted by smaller
white boxes in Figures 7(b) and 7(c). For this solution to work, we also have to incorporate the concept of priorities to the
simulation. We define two priorities, evaluate and update. The event list is ordered such that evaluate events of a time instant
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Table 1: Advantages and disadvantages of DE vs. DT simulation.

Discrete Time Simulation Discrete Event Simulation
Pros ·Efficient if a lot of work done for every ·Naturally suitable for an object-oriented structure

simulated cycle ·Can simulate asynchronous logic
·More compact code for smaller ·More flexible in quantization of simulated time
simulations

Cons ·Requires complex case analysis for a ·Event list operations are expensive
large simulator ·Might require more work for emulating one
·Slow if not all components do work clock cycle
every clock cycle

1 2 3

1 2 3

1 2 3

1 2 3

(a) Initial State

(d) After 1

simulated cycle

(b)

(c)

Figure 5: Example of discrete time pipeline simulation.

in simulation come before the update events of the same instant. In the example, at T-1 (initial state, Figure 7(a)) all actors
schedule events for T.evaluate. At the evaluate phase of T, T.evaluate (Figure 7(b)), they move packets to intermediate
storage and schedule events for T.update. At the update phase of T, T.update (Figure 7(c)), they pass the packets to the next
stage.

Next, we compare the work involved in simulating the 3-stage pipeline in DT and DE systems. In DT simulation, 3 move
operations are performed to emulate one clock cycle. In DE simulation, 6 move operations and 6 events are required. Clearly,
DE simulation would be slower in this example not only because of the number of move operations but also the creation of events
is expensive, since they have to be sorted when they are inserted to the event list. This example supports the simulation speed
argument in Table 1.

3.3 Optimizing the DE Simulation Performance

As mentioned earlier, DT simulation may be considerably faster than DE simulation, most notably when a lot of actions fall
in the same exact moment in simulated time. A DT simulator polls through all the actions in one sweep, whereas XMTSim
would have to schedule and return a separate event for each one (see Figure 4), which is a costly operation. A way around this
problem is grouping closely related components in one large actor and letting the actor handle and combine events from these
components. An example is the macro-actor in Figure 3. A macro-actor contains the code for many components and iterates
through them at every simulated clock cycle. The action code of the macro-actor resembles the DT simulation code in Figure 4a
except the while loop is replaced by a callback from the scheduler. This style is advantageous when the average number of events
that would be scheduled per cycle without grouping the components (i.e., each component is an actor) passes a threshold. For
a simple experiment conducted with components that contain no action code, this threshold was 800 events per cycle. In more
realistic cases, the threshold would also depend on the amount of action code.
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Figure 6: Example of discrete-event pipeline simulation. Simulation creates wrong output as the order of notify calls to actors cause packets to be
overwritten.
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Figure 7: Example of discrete-event pipeline simulation with the addition of priorities. Intermediate storage is used to prevent accidental deletion of
packets.

In XMTSim, clusters and shared caches are designed as macro-actors, as well as each of the interconnection network (ICN) send
and return paths. This organization not only improves performance, it also facilitates maintainability of the simulator code and
provides the convenient means to replace any component by an alternative model, if needed. We define the following mechanism
to formalize the coding of macro-actors.

Ports: A macro-actor accepts inputs via its Port objects. Port is a Java interface class which is defined by the two methods:
(a) available(): returns a boolean value which indicates that a port can be written to, (b) write(obj): accepts an object as its
parameter, which should be processed by the actor; can only be called if available method returns true.

2-phase simulation: The phases refer to the priorities (evaluate and update) that were defined in the previous section. The
evaluate phase of a simulation instant is the set of all events with evaluate priority at that instant. The update phase is defined
similarly. Below are the rules for coding a macro-actor within the 2-phase framework.
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Table 2: Simulated throughputs of XMTSim.

Benchmark Group Instruction/sec Cycle/sec

Parallel, memory intensive 98K 5.5K
Parallel, computation intensive 2.23M 10K
Serial, memory intensive 76K 519K
Serial, computation intensive 1.7M 4.2M

1. The available and write methods can only be called during the evaluate phase.

2. The output of the available method should be stable during the evaluate phase until it is guaranteed that there will be no
calls to the write method of the port.

3. The write method should not be called if a prior call to available for the same simulation instant returns false.

4. If the write method of a port is called multiple times during the evaluate phase of a simulation instant, it is not guaranteed
that any of the writes will succeed. Typically the write method should be called at most once for a simulation instant.
However, specific implementations of the Port interface might relax this requirement, which should be noted in the API
documentation for the class.

5. Typical actions of a macro-actor in the update phase are moving the inputs away from its ports, updating the outputs of
the available methods of the ports, and scheduling the evaluate event for the next clock cycle (in XMTSim, evaluate phase
comes before the update phase). However, these actions are not requirements.

An example implementation of a MacroActor is given in Figure 8.

3.4 Simulation Speed

Simulation speed can be the bounding factor especially in evaluation of power and thermal control mechanisms, as these ex-
periments usually require simulation of relatively large benchmarks. We evaluated the speed of simulation in throughput of
simulated instructions and in clock cycles per second on an Intel Xeon 5160 Quad-Core Server clocked at 3GHz. The simulated
configuration was a 1024-TCU XMT and for measuring the speed, we simulated various hand-written microbenchmarks. Each
benchmark is serial or parallel, and computation or memory intensive. The results are averaged over similar types and given in
Table 2. It is observed that average instruction throughput of computation intensive benchmarks is much higher than that of
memory intensive benchmarks. This is because the cost of simulating a memory instruction involves the expensive interconnec-
tion network model. Execution profiling of XMTSim reveals that for real-life XMTC programs, up to 60% of the time can be
spent in simulating the interconnection network. When it comes to the simulated clock cycle throughput, the difference between
the memory and computation intensive benchmarks is not as significant, since memory instructions incur significantly more clock
cycles than computation instructions, boosting the cycle throughput.

4 Cycle Verification Against the FPGA Prototype

We validated the cycle-accurate model of XMTSim against the 64-core FPGA XMT prototype, Paraleap. The configuration
of XMTSim that matches Paraleap is given in Table 3. In addition to serving as a proof-of-concept implementation for XMT,
Paraleap was also set up to emulate the operation of a 800MHz XMT computer with a DDR2 DRAM. The clock of the memory
controller was purposefully slowed down so that its ratio to the core clock frequency matches that of the emulated system. The
simulator configuration reflects this adjustment.

Even though XMTSim was based on the hardware description language description of Paraleap, discrepancies between the two
exist:

• Due to its development status, certain specifications of Paraleap do not exactly match those of the envisioned XMT chip
modeled by XMTSim. Given the same amount of effort and on-chip resources that are put towards an industrial grade
ASIC product (as opposed to a limited FPGA prototype), these limitations would not exist. Some examples are:

– Paraleap is spread over multiple FPGA chips and requires additional buffers at the chip boundaries which add to the
ICN latency. These buffers are not necessary for modeling an ASIC XMT chip, and are not included in XMTSim.

– Due to die size limitations, Paraleap utilizes a butterfly interconnection network instead of the MoT used in XMTSim.
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c l a s s ExampleMacroActor extends Actor {
// The only input port o f the ac to r . I t takes ob j e c t s o f type
// InputJob as input .
Port<InputJob> inputPort ;

// Temporary s to rage f o r the input jobs passed v ia inputPort .
InputJob inputPortIn , inputPortOut ;

// Constructor −− Contains the i n i t i a l i z a t i o n code f o r a new
// ob j e c t o f type ExampleMacroActor .
ExampleMacroActor ( ) {

inputPort = new Port<InputJob>() {
pub l i c void wr i t e ( InputJob job ) {

inputPortIn = job ;
// Upon r e c e i v i n g a new input , ac to r should make sure
// that i t w i l l r e c e i v e a ca l l ba ck at the next update
// phase . That code goes here .

}
pub l i c boolean av a i l a b l e ( ) {

re turn inputPortIn == nu l l ;
}

}
}

// Implementation o f the ca l l ba ck func t i on ( c a l l e d by the s chedu l e r ) .
// Event ob j e c t that caused the ca l l ba ck i s passed as a parameter .
void not i f yActo r ( Event e ) {

switch ( e . p r i o r i t y ( ) ) {
case EVALUATE:

// Main ac t i on code o f the actor , which p ro c e s s e s
// inputPortOut . The ac to r might wr i t e to the por t s o f
// other a c t o r s . For example :
// i f ( anotherActor . inputPort . a v a i l a b l e ( ) )
// anotherActor . inputPort . wr i t e ( . . . )
// Actor s chedu l e s next eva luate phase i f the re i s more
// work to be done .
break ;

case UPDATE:
i f ( inputPortOut == nu l l & inputPortIn != nu l l ) {

inputPortOut = inputPortIn ;
inputPortIn = nu l l ;

}
// Here ac to r s chedu l e s the next eva luate phase , i f the re
// i s more work to be done .
// For example :
// s chedu l e r . s chedu le (new Event ( s chedu l e r . time + 1) ,
// Event .EVALUATE)
break ;

}
}

}

Figure 8: Example implementation of a MacroActor.
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Table 3: The configuration of XMTSim that is used in validation against Paraleap.

Principal Computational Resources

Cores 8 clusters, each with 8 TCUs
32-bit RISC ISA
5 stage pipeline (4th stage may be shared and variable length)

Integer Units 64 ALUs (one per TCU), 8 MDUs and 8 FPUs (one each per cluster)
On-chip Memory

Registers 8 KB integer and 8 KB FP (32 integer and 32 FP reg. per TCU)

Prefetch Buffers 1 KB (4 buffers per TCU)

Shared caches 256 KB total (8 modules, 32 KB each, 2-way associative, 8 word lines)

Read-only caches 64 KB (8 KB per cluster)

Global registers 8 registers
Other

Interconnection Network (ICN) 8 x 8 Mesh-of-Trees

Memory controllers 1 controller, 32-b (1 word) bus width

Clock frequency ICN, shared caches and the cores run at the same frequency. Memory
controllers and DRAM run at 1/4 of the core clock to emulate the core-
to-memory controller clock ratio of the FPGA.

– In Paraleap, an idle TCU constantly executes a poll instruction in order to detect the beginning of a new parallel
thread. A sleep-wake mechanism, where the TCU is woken by an external signal, would arguably be more power
efficient. XMTSim makes this assumption in the modeling of TCUs. However, the difference between the two
implementations would not cause more than a few clock cycles of difference per parallel spawn block.

• Our experiences show that some implementation differences do not cause a significant cycle-count benefit or penalty however
their inclusion in the simulator would cause code complexity and slow down the simulation significantly (as well as requiring
a considerable amount of development effort). Note that one of the major purposes of the XMT simulator is architectural
exploration and therefore the simulation speed, code clarity, modularity, self documentation and extensibility are important
factors. Going into too much detail for no clear benefit conflicts with these objectives. For example, some of the cycle-
accurate features of the Master TCU are currently under development. The benchmarks that we use in our experiments
usually have insignificant serial sections therefore the inefficiencies of the master TCU should not affect simulation results
significantly.

• XMTSim models DRAM communication as constant latency. An accurate external DRAM model would be beneficial to
include in XMTSim [47]. Beside improving accuracy, this would allow for testing new DRAM technologies, such as DDR3,
not supported by Paraleap, as well as exploring different design choices for the DRAM controller.

• Currently XMT does not feature an OS, therefore I/O operations such as printf’s and file operations cannot be simulated
in a cycle-accurate way.

Another difficulty in validating XMTSim against Paraleap is related to the indeterminism in the execution of parallel programs.
A parallel program can take many execution paths based on the order of concurrent reads or writes (via prefix-sum or memory
operations in XMT). If the program is correct it is implied that all these paths will give correct results, however the cycle or
assembly instruction count statistics will not necessarily match between different paths. The order of these concurrent events is
arbitrary and there is no reliable way to determine if Paraleap and XMTSim will take the same paths if more than one path is
possible. For this reason, a benchmark used for validation purposes should guarantee to yield near identical cycle and instruction
counts for different execution paths.

Table 4 lists the first set of micro-benchmarks we used in verification. Each benchmark is hand-coded in assembly language for
stressing a different component of the parallel TCUs as described in the table. The difference in cycle counts is calculated as

Difference =
(CY Csim − CY Cfpga)

CY Cfpga
× 100 (1)

where CY Csim and CY Cfpga are the cycle counts obtained on the simulator and Paraleap, respectively. These benchmarks fulfill
the determinism requirement noted earlier and the only significant deviations in cycle counts are observed for the MicroPar4
benchmark (33%) and the MicroPar6 benchmark (26%). The deviation in the former can be explained by the differences
between the interconnect structures and the DRAM models of XMTSim and Paraleap. Latter benchmark contains a significant
serial section and execution of serial code on XMTSim is not accurate as mentioned earlier.
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Table 4: Microbenchmarks used in cycle verification

Cycles

Name Description Paraleap XMTSim Diff.

MicrPar0 Start 1024 threads and for each thread run a 50000 iteration
loop with a single add instruction in it.

1600513 1600327 <1%

MicrPar1 Start 102400 threads and for each thread issue a sw instruction
to address 0.

204943 204918 <1%

MicrPar2 Start 1024 threads and for each thread run a 18000 iteration
loop with an add and a mult instruction in it.

3456482 3456318 <1%

MicrPar3 Start 1024 threads and for each thread run a 150 iteration loop
with an add and a sw to address 0 instruction in it.

307349 307710 <1%

MicroPar4 Start 1024 threads and for each thread run a 1800 iteration loop
with a sw instruction (and wrapper code) in it. Sw instructions
from different TCUs will be spread across the memory modules.

935225 626908 -33%

MicroPar5 Start 1024 threads and for each thread run a 10K iteration loop
with an add, a mult and a divide instruction in it.

8320486 8320318 <1%

MicroSer6 Measure the time to execute a starting and termination of 200K
threads.

6226029 4587533 -26%
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Figure 9: Operation of the power/thermal-estimation plug-in.

5 Power and Temperature Estimation in XMTSim

Power and temperature estimation in XMTSim is implemented using the activity plug-in mechanism. (The activity plug-
in mechanism was first mentioned in Section 2). XMTSim contains a power-temperature (PTE) plug-in for a 1024 TCU
configuration by default. Computation of the power model parameters for this configuration is beyond the scope of this paper
but can be found in [30, 31, 32]. Other configurations can easily be added, however power model parameters should also be
created for the new configurations.

As the thermal model, we incorporated HotSpot [25,27,42]. HotSpot is written in the C language and in order to make it available
to XMTSim we created HotSpotJ, a Java Native Interface (JNI) [36] wrapper for HotSpot. HotSpotJ is available as a part of
XMTSim but it is also a standalone tool and can be used with any Java based simulator. We extended HotSpotJ with a floorplan
tool, FPJ, that we use as an interface between XMTSim and HotSpotJ. FPJ is essentially a hierarchical floorplan creator, in
which the floorplan blocks are represented as Java objects. A floorplan is created using the FPJ interface and passed to the
simulator at the beginning of the simulation. During the simulation it is used as a medium to pass power and temperature data
of the floorplan blocks between XMTSim and HotSpotJ. More information on HotSpotJ (and FPJ) will be given in Appendix 7.

Figure 9 illustrates the working of XMTSim with the PTE plug-in. Steps of estimation for one sampling interval are indicated
on the figure. XMTSim starts execution by scheduling an initial event for a callback to the PE plug-in. When the PE plug-in
receives the callback, it interacts with the activity trace interface to collect the statistics that will be explained in the next section
and resets the associated counters. Then, it converts these statistics, also called activity traces, to power consumption values
according to the power model. It sets the power of each floorplan module on the floorplan object and passes it to HotSpotJ.
HotSpotJ computes temperatures for the modules. Finally, the PTE plug-in schedules the next callback from the simulator.
Users can create their own plug-ins with models other than the one that we will explain next, as long as the model can be
described in terms of the statistics reported by the activity trace interface.

5.1 The Power Model

XMTSim uses the framework proposed by Martonosi and Isci [28] to estimate the total power of the system from its dynamic
and static power components. According to the model, the simulation provides the access rate for each component (Ci), which
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is a value between 0 and 1. The power of a component is a linear function of the access rate with a constant offset.

Power(Ci) =AccessRate(Ci) ·
MaxActPower(Ci) + (2)

Const(Ci)

C is the set of microarchitectural components for which the power is estimated. We will give the exact definition ofAccessRate(Ci)
shortly. MaxActPower(Ci) is the upper bound on the power that is proportional to the activity and Const(Ci) is the power of
a component which is spent regardless of its activity.

The total power of a component, which is the sum of its dynamic power and leakage power, is expressed as:

P = Pdyn,max ·ACT · CF +DUTYclk · Pdyn,max · (1− CF ) +DUTYV · Pleak,max (3)

The configuration parameters in the simulation are Pdyn,max and Pleak,max, which are the maximum dynamic and leakage powers
and CF, which is the activity correlation factor.

ACT is identical to AccessRate(Ci) above, which is the average activity of a the component for the duration of the sampling period
and obtained from simulation. XMTSim utilizes internal counters that monitor the activity of each architectural component.
We will discuss the definition of activity on a per component basis in the remainder of this section. DUTYclk and DUTYV are
the clock and voltage duty cycles (i.e., the fraction of the time that the clock and the power supply of a component are active –
see [30] for details). Note that DUTYV is always greater than DUTYclk since voltage gating implies that clock is also stopped.

If we assume that no voltage gating or coarse grain clock gating is applied (i.e., both duty cycles are 1), Equation (3) can be
simplified to:

P = Pdyn,max ·ACT · CF + Pdyn,max · (1− CF ) + Pleak,max (4)

In this form, the Pdyn,max ·ACT ·CF and the Pdyn,max · (1−CF ) + Pleak,max terms are the equivalents of MaxActPower(Ci)
and Const(Ci) in Equation (2), respectively.

If CF is less than 1, Const(Ci) not only contains the leakage power but, also contains a part of the dynamic power. A common
value to set the activity correlation factor (CF ) for aggressively fine-grained clock gated circuits is 0.9, which is the same
assumption as Wattch power simulator [5] uses.

Next, we provide details on the activity models of the microarchitectural components in XMTSim. Parameters required to
convert the activity to power values can be obtained using tools such as McPAT 0.9 [35] and Cacti 6.5 [37,50].

Computing Clusters. The power dissipation of an XMT cluster is calculated as the sum of the individual elements in it,
which are listed below: The access rate of a TCU pipeline is calculated according to the number of instructions that are fetched
and executed, which is a simple but sufficiently accurate approximation. For the integer and floating point units (including
arbitration), access rates are the ratio of their throughputs to the maximum throughput. The remainder of the units are all
memory array structures and their access rates are computed according to the number of reads and writes they serve.

Memory Controllers, DRAM and Global Shared Caches. The access rate of these components are calculated as the
ratio of the requests served to the maximum number of requests that can be served over the sampling period (i.e. one request
per cycle).

Global Operations and Serial Processor. We omit the power spent on global operations, since the total gate counts of the
circuits that perform these operations were found to be insignificant with respect to the other components, and these operations
make up a negligible portion of execution time. In fact, prefix-sum operations and global register file accesses make up less
than 1.5% of the total number of instructions among all the benchmarks. We also omit the power of the XMT serial processor,
which is only active during serial sections of the XMTC code and when parallel TCUs are inactive. None of our benchmarks
contain significant portions of serial code: the number of serial instructions, in all cases, is less than 0.005% of the total number
of instructions executed.

Interconnection Network The power of the Mesh-of-Trees (MoT) ICN includes the total cost of communication from all TCUs
to the shared caches and back. The access rate for the ICN is equal to its throughput ratio, which is the ratio of the packets
transferred between TCUs and shared caches to the maximum number of packets that can be transferred over the sampling
period.
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The power cost of the ICN can be broken into various parts [29], which fit into the framework of Equation (2) in the following
way. The power spent by the reading and writing of registers, and the charge/discharge of capacitive loads due to wires and
repeater inputs can be modeled as proportional to the activity (i.e. number of transferred packets). All packets travel the same
number of buffers in the MoT-ICN, and the wire distance they travel can be approximated as a constant which is the average of
all possible paths. The power of the arbiters is modeled as a worst-case constant, as it is not feasible to model it accurately in a
fast simulator.

6 Dynamic Power and Thermal Management in XMTSim

Dynamic Power and Thermal Management (DPTM) in XMTSim works in a similar way to the PTE plug-in with the addition
of a DPTM algorithm stage. The DPTM algorithm changes the clock frequencies of the microarchitectural blocks in reaction to
the state of the simulated chip with respect to the constraints.

Figure 10 shows the changes to the PTE plug-in. The two mechanisms are identical up to step 5, at which point the PTE plug-in
finishes the sampling period, while the DPTM plug-in modifies the clocks according to the chosen algorithm. The clocks are
modified via the standardized API of the clocked components.

7 HotSpotJ

HotSpotJ is a java interface for HotSpot [25,27, 42], an accurate and fast thermal model, which is typically used in conjunction
with architecture simulators. Even though we use HotSPotJ with XMTSim, it can be used by any other Java based simulator.

HotSpot is written in C and so far has been available for use with C based simulators. We have originally developed HotSpotJ as
an Application Programming Interface (API) to bridge between HotSpot and Java based architecture simulators and eventually
it became a supporting tool that enhances the workflow with HotSpot by offering features such as alternative input forms, a
floorplan GUI that can display color coded temperature and power values, etc.

The current version of HotSpotJ is based on HotSpot version 4.1. This documentation assumes that readers are familiar with
the concepts of HotSpot.

7.1 Summary of Features

With HotSpotJ one can:

• Create floorplans in an object oriented way with Java or directly in a text file (using the FLP format of HotSpot),

• View a floorplan in the GUI and save the floorplan as an image or a FLP file,

• Run steady or transient temperature analysis experiments on a floorplan on the command line – this feature uses HotSpot
as the analysis engine,
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Figure 11: Workflow with the command line script of HotSpotJ.

• Interface with a Java based cycle-accurate simulator in order to feed the HotSpot engine with power values for an experi-
ment,

• View the results of an experiment in the temperature/power viewer GUI, save the results as image files or data files that
can later be opened in the GUI.

A noteworthy item in this list is the methodology to express a HotSpot floorplan with object oriented Java programming, which
is particularly useful in constructing repetitive floorplans that contain a large number of blocks. HotSpotJ API defines methods
to construct hierarchical blocks, which can be replicated and shifted to fill a 2-D grid. As a result, a floorplan that contains a
few thousand blocks can easily be expressed under a hundred lines of Java code.

There are two ways that you can use the HotSpotJ software. First is to call the hotspotj script to process your input, which is
in the form of a compiled Java floorplan/experiment or text files describing the floorplan and power consumption. The workflow
with this option is shown in Figure 11. Second is to write your own Java executable that utilizes the HotSpotJ API, in which
case all the functionality of the first option (and more) is provided in the form or function calls. Incorporating HotSpotJ into
your cycle-accurate simulator falls into the second category.

7.2 HotSpotJ Terminology

In HotSpotJ, the building blocks of a floorplan are called simple boxes. A simple box is identified by its location, dimensions
and power consumption value. While location and dimensions are immutable, power consumption value can change over time
in the context of a transient experiment with consecutive runs.

In order to introduce the concept of hierarchy, HotSpotJ API defines composite boxes which can contain other simple or composite
boxes. We refer the highest level composite box in the hierarchy as the floorplan. When a box is nested in a composite box,
it is said to be added to a parent. The hierarchy graph of a floorplan should always be a connected tree, i.e. each box should
have exactly one parent except the floorplan which has none. On the other hand, there is no limit to the number of children a
composite box can have. Hierarchical boxes can be cloned at different locations, which allows for easy construction of repetitive
floorplans with a large number of elements.
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The hierarchy concept of HotSpotJ is just an abstraction for convenience. Internally, a floorplan is stripped off its hierarchical
structure (in other words flattened) before it is passed to the HotSpot engine for temperature analysis. Therefore attributes such
as location and color are not relevant for composite boxes.

A simple box has the following attributes:

• Name Box names do not need to be unique. Each simple box is assigned an index according to the order that it is added
to its parent. In cases that uniqueness is required, this index will be appended to the name of the box.

• Dimensions Simple box dimensions are set through its constructor in micrometers. The resolution is 1µm.

• Location The location of a box is defined as the coordinates of its corner with the smallest coordinates on a 2-D cartesian
system. When a box is created it is initially located at the origin. It can later be shifted to any location on the coordinate
system (negative coordinate values are allowed). A box can be shifted multiple times, in which case the effect will be
accumulative. In the GUI, boxes are displayed in a upside-down cartesian coordinate system, i.e. positive-x direction is
east and positive-y direction is south. Coordinates are set in micrometers at the resolution of 1µm.

• Power The total power spent (static and dynamic) in watts per second.

• Color The color attribute is used by the GUI to display a simple box in color.

Above attributes (except for the location and the GUI color as explained before) are valid for a composite box as well. However
dimensions and the power are automatically derived from its sub-boxes therefore they cannot be directly set. The dimensions
of a composite box are defined as the dimensions of its bounding box, which is the smallest rectangle that covers all the boxes
in it. Similarly, power of a composite box is defined as the sum of powers of all the simple box instances that it contains. The
only user definable attribute of a composite box is its name which is passed in the constructor override (super(...) call).

A floorplan is valid if its bounding box is completely covered by the simple boxes in it and none of the simple boxes overlap.
Composite box class API provides two geometrical check methods to ensure validity: checkArea reports an error if gaps or
overflows in the floorplan exist by comparing the bounding box area of the floorplan with the total area of the simple boxes in
the floorplan and checkIntersections checks for overlaps between boxes. These two methods form a comprehensive geometric
check. However they might require a considerable amount of computation especially for floorplans that consist of many simple
boxes. These overheads can be a problem if numerous experiments are to be performed on a floorplan, therefore one might
choose to remove the checks after the initial run to optimize performance.

The relevant Java classes for creating floorplans are SimpleBox, CompositeBox and Box. A floorplan in a CompositeBox object
can be displayed in a GUI via the showFloorplan method of the FloorplanVisualizationPanel class (which is equivalent to
the -fp option of the hotspotj script). In the GUI, each SimpleBox object of the floorplan will be shown in the color that it is
assigned (or gray if no color is assigned). Options for converting the image to grayscale and displaying box names are provided.
The floorplan can be exported as an image file (jpeg, gif, etc.) from the GUI.

7.3 Creating/Running Experiments and Displaying Results

The command line of HotSpotJ allows running steady-state and transient experiments on a user provided floorplan without
further setup. The input should either be in the form of a compiled Java floorplan class extending CompositeBox or a HotSpot
floorplan (FLP) file. HotSpot configuration values and the initial temperatures/power consumption values can be set from text
files or can be directly set in the constructor of the Java class. For details see the documentation of -steady and -transient
options of the hotspotj script.

A typical experiment is built as follows. First the HotSpot engine and the data structures that will be used as the communication
medium between the C and the Java code are initialized. Then the stages of the experiment, which can be any combination
and number of steady-state and transient calculations, are executed. Finally the resources used by the HotSpot engine are
deallocated and results are displayed and/or saved.

7.4 Limitations

A known limitation of HotSpotJ is, no floorplan layer configuration can be provided with the grid model. Users are limited
to the default number of layers provided by HotSpot, which is a base layer (layer 0) and a thermal interface material layer1.
Consequently, experiments where only the base layer dissipates power are supported. Other limitations of which we are not
aware may exist and may be revealed over time. HotFloorplan, which is another tool that comes with HotSpot, is not supported
through HotSpotJ.

1For the specifications of these layers, see the populate default layers function in temperature grid.c file of HotSpot.
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8 Other Features

In this section we will summarize some of the additional features of XMTSim.

Execution traces. XMTSim generates execution traces at various detail levels. At the functional level, only the results of
executed assembly instructions are displayed. The more detailed cycle-accurate level reports the components through which the
instruction and data packets travel. Traces can be limited to specific instructions in the assembly input and/or to specific TCUs.

Floorplan visualization. The FPJ package of the HotSpotJ tool can be used for purposes other than interfacing between
XMTSim and HotSpotJ. The amount of simulation output can be overwhelming, especially for a configuration that contains
many TCUs. FPJ allows displaying data for each cluster or cache module on an XMT floorplan, in colors or text. It can be
used as a part of an activity plug-in to animate statistics obtained during a simulation run. FPJ is explained in further detail
in Appendix 7.

Checkpoints. XMTSim supports simulation checkpoints, i.e., the state of the simulation can be saved at a point that is given
by the user ahead of time or determined by a command line interrupt during execution. Simulation can be resumed at a later
time. This is a feature which, among other practical uses, can facilitate dynamically load balancing a batch of long simulations
running on multiple computers.

9 Potential Improvements

XMTSim is an experimental tool that is under active development and as such, some features are in its future roadmap.

More accurate DRAM model. As mentioned earlier, an accurate external DRAM model, such as DRAMSim, would
improve accuracy of XMTSim [47].

Phase sampling. Programs with very long execution times usually consist of multiple phases where each phase is a set of
intervals that have similar behavior [22]. An extension to the XMT system can be tested by running the cycle-accurate simulation
for a few intervals on each phase and fast-forwarding in-between. Fast-forwarding can be done by switching to a fast mode that
will estimate the state of the simulator if it were run in the cycle-accurate mode. Incorporating features that will enable phase
sampling will allow simulation of large programs and improve the capabilities of the simulator as a design space exploration tool.

Asynchronous interconnect. Use of asynchronous logic in the interconnection network design might be preferable for its
advantages in power consumption. Following up on [24], work in progress with our Columbia University partner compares the
synchronous versus asynchronous implementations of the interconnection network modeled in XMTSim.

Increasing simulation speed via parallelism. The simulation speed of XMTSim can be improved by parallelizing the
scheduling and processing of discrete-events [20]. It would also be intriguing to run XMTSim as well as the computation hungry
simulation of the interconnection network component on XMT itself. We are exploring both.

10 Related Work

Cycle-accurate architecture simulators are particularly important for evaluating the performance of parallel computers due to the
great variation in the systems that are being proposed. Many of the earlier projects simulating multi-core processors extended
the popular uniprocessor simulator, SimpleScalar [2]. However, as parallel architectures started deviating from the model of
simply duplicating serial cores, other multi/many-core simulators such as ManySim [51], FastSim [12] and TPTS [13] were built.
XMTSim differs from these simulators, since it targets shared memory many-cores, a domain that is currently underrepresented.
GPU simulators, Barra [43], Ocelot [33] and GPGPUSim [3] are closer to XMTSim in the architectures that they simulate but
they are limited by the programming models of these architectures. Also, Barra and Ocelot are functional simulators, i.e., they
do not report cycle-accurate measures. Kim, et al extended Ocelot with a power model, however it is not possible to simulate
dynamic power and thermal management with this system.

Cycle-accurate architecture simulators can also be built on top of existing simulation frameworks such as SystemC. An example is
the simulator presented by Lebreton, et al. [34]. Instead, we chose to build our own infrastructure since XMTSim is intended as a
highly configurable simulator that serves multiple research communities. Our infrastructure gives us the flexibility to incorporate
second party tools, for example SableCC [21], which is the front end for reading the input files. In this case, SableCC enabled
easy addition of new assembly instructions as needed by users of XMTSim.

Simulation speed is an issue, especially in evaluating thermal management. Atienza, et al. [1] presented a hardware/software
framework that featured an FPGA for fast simulation of a 4-core system. Nevertheless, it is not feasible to fit a 1024-TCU XMT
processor on the current FPGAs.
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Appendix A Extended XMTSim Documentation

This appendix contains detailed documentation of XMTSim, including installation instruction, a command line usage manual
and a list of configurable parameters for XMT architecture research.

A.1 General Information and Installation

XMTSim is typically used with the XMTC compiler which is a separate download package. It can be used standalone in cases
that the user directly writes XMT assembly code.

To use XMTSim, you must:

• Download and install the XMTC compiler (typically).

• Download and install XMT memory tools (optional).

• Build/install XMTSim.

The XMT toolchain can be found at

http://www.umiacs.umd.edu/users/vishkin/XMT/index.shtml#sw-release

and also on Sourceforge

http://sourceforge.net/projects/xmtc/

A.1.1 Dependencies and install

Pre-compiled binary distribution consists of a Java jar file and a bash script file. Due to platform independent nature of Java,
this distribution is platform independent as well. The cygwin/linux dependent bash script is distributed for convenience and is
not an absolute requirement. In future distributions, simulator may include platform dependent components.

System requirements:

• You must have Sun Java 6 (JRE - Java Runtime Environment) or higher on your system. Java executable must be on your
PATH, i.e. when you type ”java -version” on command line you should see the correct version of Java. XMTSim might
work with other implementations of Java that are equivalents of the Sun Java 6 (or higher) however it is only tested with
the Sun version of Java. Note that the XMTC compiler and memory tools come with their own set up system requirements
that are independent of the simulator.

• In order to use the script provided in the package, you must have bash installed on your system. XMTSim can directly be
run via the ”java -jar” command. Read the xmtsim script if you would like to use the simulator in such a way.

Follow these steps to install XMTSim:

1. Create a new directory of your choice and place the contents of this package in the directory. Example: /xmtsim

2. Make sure java is on the PATH:

> java -version

The commands should display the correct java version.

3. Add the new directory to the PATH. Example (bash):

> export PATH=~/xmtsim:$PATH

4. Test your installation:

> xmtsim -version

> xmtsim -check

Type “xmtsim -help” and “xmtsim -info” for information on how to use the simulator. For detailed examples see the XMTC
Manual and Tutorial [11].
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A.2 XMTSim Manual

This manual lists the usage of all command line controls of XMTSim and also includes a brief manual of the trace tool. The
manual is also available on the command line and can be displayed via xmtsim -info all.

Usage: xmtsim [<input assembly file> | -infile <input assembly file>]

[-cycle ]

[-conf <configName>]

[-confprm <prmName> <value>]

[-timer <?num | num~>]

[-interrupt <num>]

[-starttrace <num>]

[-savestate <filename>]

[-checkpoint <num>,<num>...]

[-stop <num | actsw+num> | <+num>]

[-activity | -activity=<options>]

[-actout <filename>]

[-actsw]

[-preloadL1 | -preloadL1=<num>]

[-debug | -debug=<num>]

[-randomize <num>]

[-count | -count=<options>]

[-trace | -trace=<options>]

[-mem <debug <?val> | simple | paged>]

[-binload <filename>]

[-textload <filename>]

[-loadbase <address>]

[-bindump <filename>]

[-textdump <filename>]

[-hexdump <filename>]

[-dumprange <startAddr> <endAddr>]

[-dumpvar <variableName>]

[-printf <filename>]

[-out <filename>]

[-traceout <filename>]

[-argfile <filename>]

For running a program, choose from the appropriate options

listed in square braces ([...]). A pipe character (|) means one

of the multiple variants should be chosen. Mandatory parameters to

an option are indicated with angle braces (<...>). Optional

parameters are indicated with angle braces with a question mark

(<?...>). Options indented under ’cycle’ option can only be used

when ’cycle’ is specified.

Below are different forms of the xmtsim command, that show options

that should be used standalone and not with each other or with the

ones above.

xmtsim -resume <filename>

xmtsim (-v|-version)

xmtsim (-h|-help)

xmtsim -info [<option>]

xmtsim -check

xmtsim -diagnose <?number> [-conf <configName>]

xmtsim -diagnoseasm <?number>

xmtsim -conftemplate <configName>

xmtsim -checkconf <filename>

xmtsim -listconf <filename>
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OPTIONS

-h -help

Display short help message.

-info

Display this info message.

-v -version

Display the version number.

-check

Runs a simple self test.

-diagnose <?number> [-conf <configName>]

Runs a simple cycle-accurate diagnostics program to show how

fast the user system is under full load (all TCUs working).

Depending on the number (0 - default, 1, 2, etc.) a different

test will be run. -conf can optionally be used to change the

default configuration.

-diagnoseasm <?number>

Runs a simple diagnostics program in assembly simulation mode to

show how fast the user system is under full load.

Depending on the number (0 - default, 1, 2, etc.) a different

test will be run.

-conftemplate <configName>

Creates a new template file that can be modified by the user

and passed to the ’conf’ option. The file created will have

the name ’configName.xmtconf’.

-checkconf <filename>

As input, takes a file that is typically passed to the

’conf’ option. Checks if the field types and values are all

correctly defined, if all fields exist and if all the

configuration parameters are set in the input file.

-listconf <filename>

As input, takes a file that is typically passed to the

’conf’ option. Lists all the field names and their values sorted

according to names. Can be used to compare two conf files.

For this option to return without an error the conf file should

pass checkconf with no errors.

-argfile <filename>

Reads arguments from a text file and inserts them on the command

line at the location that this argument is defined. Lines

starting with the ’#’ character are ignored. Multiple argument

files can be defined using multiple occurrences of this

parameter, ex: -argfile file1.prm -argfile file2.prm. The

parameters from these file will be inserted in the order that

they appear on command line.

-cycle

Runs the cycle accurate simulation instead of the assembly

simulation. For obtaining timing results, this option should

be used. It comes with a list of sub-options.

-timer <?num | num~>

Provides an updated cycle count every 5 seconds. The default

value of 5 can be overridden by passing an integer number

after the timer option.

Timer option can be used in tandem with the count (or

detailed count) option to display the detailed instruction

counts as well as the cycle count.

If passed integer is followed with a ’~’ character

(ex. -timer 2500~), the information will be printed periodically

in simulation clock cycles rather than real time.

-interrupt <num>

If this option is used, the cycle accurate simulation will be

interrupted before completion and the simulator will exit with

an error value. Interrupt will happen after N minutes after the

simulation starts where N is the value of this parameter.
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If the simulation is completed before the set value, it will

exit normally.

-conf <configName>

Reads the simulator cycle accurate hardware configuration.

This might be a built-in configuration or an externally

provided configuration file. The search order is as follows:

1. Search <configname> among the built-in configurations.

2. Search for the file <configname>.xmtconf

3. Search for the file <configname>

The built-in configurations are ’1024’, ’512’, ’256’

(names signify the tcu counts in the configuration) and ’fpga’

(64 tcu configuration, similar to the Paraleap FPGA computer).

-confprm <prmName> <value>

Sets the value of a configuration parameter on command line.

It will overwrite the values set by the -conf option.

-starttrace <num>

Starts the tracing (as specified by the -trace option)

only after <num> cycles instead of from the beginning of the

simulation.

-stop <num | actsw+num | +num>

Schedules the simulation to stop at a used defined time. If

actsw+num is passed the stop time will be relative to the

actsw instruction. The latter requires actgate option. If +num

is used in conjunction with the resume option, simulation will

stop at current time plus num.

-activity

-activity=<options>

This is an experimental option that logs activity of actors

that implement ActivityCollectorInterface. For a list of

available options, try -activity=help. Requires -cycle option.

-actout <filename>

Redirects the output of the activity option to a file. If no

activity option is defined, this option will not have an effect

except for creating an empty file.

-actgate

Gates the output of the activity collector unless its state is

on. The state can be switched on and off via the actsw

instruction in assembly. Initial state is off. The activity

collection mechanism still works in the background but it

doesn’t print its output.

-savestate <filename>

Dumps the state of the simulator in a file. This option is used

in order to pause simulation and restart it at a later time.

The paused simulation is resumed via the resume option.

Simulation can be stopped and state can be saved in three

different ways: simulation can terminate naturally at the

end of the execution of the input (meaning a halt, hex/textdump,

bindump, ... instruction is encountered), at a user defined

time via the ’stop’ argument or a via a SIGINT (CTRL-C)

interrupt. If the simulation ends naturally the state dump

is only useful for inspection with a debugging tool since

there is nothing to resume.

The output file should not already exist or the command will

fail with an error.

All command line arguments that are used during this

call will be lost during the save operation. Exceptions are

the arguments that directly affect the state of the simulation

such as the input file, ’binload’, ’conf’, etc. Other

exceptions are the ’count’ and ’activity’ arguments. If the

activity option is using a user provided plug-in that cannot

be saved (not implementing the serializable interface), it will

be lost as well. Arguments that have been lost can be redefined

while the simulation is resumed (see the ’resume’ argument).

Also see: checkpoint
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-checkpoint <num>,<num>...

Used to dump states during execution without quitting the

simulation. Should be used with the savestate option.

The names of the state files are based on the filename passed to

savestate. They will be appended with .[time] suffix. Checkpoint

option takes a mandatory comma separated list of numbers which

represent the clock cycles that the states will be saved.

The state dump events have low priority, meaning the state will

be saved after all events of a clock cycle are processed.

The state will still be saved at the end as if savestate option

was used stand-alone.

Also see: savestate

-resume <filename>

Resumes a simulation that has been paused by the ’savestate’

option. Implies the ’cycle’ flag. This argument can be used

with other command line arguments such as trace, count,

bindump, dumpvar, out, printf. This is how a user can redefine

the options that were lost during save state (see savestate

argument). However command line

arguments that directly affect the state of the simulation

should not be used; the results are undefined. Such arguments

are redefinition of input file, infile, conf, preloadL1,

check/warnmemreads, bin/textload and loadbase. If count and

activity arguments were defined in the original run,

redefining them during resume will not have an effect.

"-activity=disable" option can be used to remove an activity

collection plug-in that was saved from the original run.

-trace

-trace=<options>

By default dumps out the instruction results filtering out

all instructions marked as skipped.

When used with additional options -trace is a powerful tool

to monitor the system for tracing instructions through the

hardware and reading results of instructions.

For more information see the "Trace Manual" section below.

-count

-count=<options>

Displays the number of instructions executed. In case of

parallel programs, this will be the total number of

instructions executed by all TCUs. The instructions that are

marked by the @skip directive are not counted.

The simulator can have only one counter. To change the default

counter specify the plugin:[class path]. The full path for the

built-in counters (ones in the utility package of the simulator)

is not required, only the class name is sufficient. For a list

of available options, try -count=help.

-binload <binary memory file>

Load the data memory image from a binary file. This option is

compatible with the XMT Memory Map Creator tool.

-textload <text memory file>

Load the data memory image from a text file. The format of the

text file is, numerical values of consecutive words

separated by white spaces. Each word is a 64-bit signed

integer.This option is compatible with theXMT Memory Map

Creator tool.

-loadbase <address>

Loads the data file specified by a -binload or -textload

option at the address <address>. Default address is 0.

-bindump <filename>

Dump the contents of the data memory to the given file in

little-endian binary format. This option is compatible with

the XMT Memory Map Reader tool.

Either a range of addresses using -dumprange, or a global

variable using -dumpvar needs to be specified.
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-textdump <filename>

Dump the contents of the data memory to the given file in

text format. The output file is in the same format described

for ’textload’ option.

Either a range of addresses using -dumprange, or a global

variable using -dumpvar needs to be specified.

-hexdump <filename>

Dump the contents of the data memory to the given file in

hex text format.

Either a range of addresses using -dumprange, or a global

variable using -dumpvar needs to be specified.

-dumprange <startAddr> <endAddr>

Defines the start and end addresses of the memory section that

will be dumped via ’hex/textdump’ or ’bindump’ options.

Without the ’hex/textdump’ or ’bindump’ options, this parameter

has no effect.

-dumpvar <variableName>

Marks a global variable to be dumped after the execution via

’hex/textdump’ or ’bindump’ options. This option can be repeated

for all the variables that need to be dumped.

Without the ’hex/textdump’ or ’bindump’ options, this parameter

has no effect.

-out <filename>

Write stderr and stdout to an output file. The display order of

stderr and stdout will be preserved.

If the printf option is defined, output of printf instructions

will not be included.

If the traceout option is defined, output of traces will not be

included.

-printf <filename>

Write the output of printf instructions to an output file.

-traceout <filename>

Write the output of traces to an output file.

-mem <paged | debug <?val> | simple>

Sets the memory implementation used internally. Default is

paged.

Paged memory allocates memory locations in pages as they are

needed. This allows non-contiguous accesses over a wide range

(i.e. up to 4GB) without having to allocate the whole memory.

For example, if the top of stack (tos) is set to 4GB-1,

simulator will allocate one page that contains the tos and one

page that contains address 0 at the beginning instead of

allocating 4GB of memory. In this memory implementation

all addresses are automatically initialized to 0, however it

is considered bad coding style to rely on this fact. This is

the default memory type.

Debug parameter is used to keep track of initialized

memory addresses for code debugging purposes. Paged and simple

memory implementations do not report if an uninitialized memory

location is being read (remember that they automatically

initialize all addresses to 0), whereas the debug

implementation reports a warning or an error. If no additional

parameter is passed to debug, simulator will print out a

warning whenever an uninitialized address is read.

If ’err’ is passed as a parameter (-mem debug err), simulation

will quit with an error for such accesses. If a decimal integer

address is passed as a parameter a warning will be displayed

every time this address is accessed (read or write) regardless

of its initialization status. Users should be aware that

underlying memory implementation for debug is a hashtable which

is quite inefficient in terms of storage/speed, therefore it

should not be used for programs with large data sets.

Simple memory allocates a one dimensional memory with no

paging. It remains as an option for internal development and
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should not be chosen by regular users.

-infile <filename>

If the name of the input file starts with a ’-’ character it

can be passed through this argument. Otherwise this argument is

not required.

-preloadL1

-preloadL1=<num>

Preloads the L1 cache with data in order to start the cache

warm. If used with no number it should be used with -textload

or -binload, in which case the passed binary data will be

preloaded into L1 caches. If a number is provided and no

-textload or -binload is passed, given number of words will

be assumed preloaded with valid garbage (!) startng from the

data memory start address. Latter case is intended for

debugging assembly etc.

If the data to be preloaded is larger than the total L1 size,

smaller addresses will be overwritten.

-debug

-debug=<num>

Used to interrupt the execution of a simulation with the

debug mode. If a cycle time is specified, the debug mode will be

started at the given time. If not, the user can interrupt

execution to start the debug mode by typing ’stop’ or just

simply ’s’ and pressing enter. In the debug mode, a prompt will

be displayed, in which debugging commands can be entered. Debug

mode allows stepping through simulation and printing the states

of objects in the simulation. For a list of commands, type

’help’. Commands in debugging mode can be abbreviated.

-randomize <num>

Used with cycle-accurate simulation to introduce some

deterministic variations. The flag expects one argument

that will be used as the seed for the pseudo-random

generators.

TRACE TOOL MANUAL

Trace option can take additional options in the form below

-trace=<option 1>,<option 2>,<option 3>,...,<option n>

Each option is separated with commas and no white spaces exist.

Following are the list of trace options:

track

Displays instruction package paths through all the hardware

actors. This option cannot be used unless the -cycle option

is specified for the simulator.

result

Displays the dynamic instruction traces.

tcu=<num>

Limits the instructions traced to the ones that are generated

from the TCU with the given hardcoded ID.

directives

Displays only the instructions that are marked in the

assembly source (see below for a list of directives).

This option can only be used with tcu=<num>.

It will not display an instructions if it is marked as ’skip’.

’-trace’ with no additional options is equivalent to ’-trace=result’.

What are the assembly trace directives?

Assembly programmers can manually add prefixes to lines of

assembly to track specific instructions. This feature is

activated from command line via the -trace=directives option.
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Otherwise all such directives are ignored.

A trace directive should be prepended to an assembly line.

Example:

@track addi $1, $0, 0

Following is the list of directives:

@skip: Excludes the instruction from execution and job traces.

Check for the specific trace command line option you are using

for exceptions.

@track <?num>: Turns on the track suboption just for this

instruction. If a number is specified, only the instructions

that are generated from the TCU with the given hardcoded ID

will be tracked.

@track <?num>: Turns on the track suboption just for this

instruction. If a number is specified, only the instructions

that are generated from the TCU with the hardcoded ID that is

given with this directive and/or on command line via tcu=<num>

will be tracked.

@result <?num>: Turns on the result suboption just for this

instruction. If a number is specified, only the instructions

that are generated from the TCU with the hardcoded ID that is

given with this directive and/or on command line via tcu=<num>

will be tracked.

A.3 XMTSim Configuration Options

The configuration options of XMTSim are passed in a text file via the conf command line option or one by one via the confprm
option. The default configuration file, which is listed in this section, can also be generated using the conftemplate option of
XMTSim.

The initial configuration given here models a 1024 core XMT in 64 clusters. DRAM clock frequency is 1/4 of the to emulate a
system with 800MHz core clock frequency and 200MHz DRAM controller. If features 8 DRAM ports with 20 DRAM clock cycle
latency.

# Number o f c l u s t e r s in the XMT chip exc lud ing master TCU c l u s t e r .
i n t NUM OF CLUSTERS 64

# Number o f TCUs per c l u s t e r .
i n t NUM TCUS IN CLUSTER 16

# Number o f p i p e l i n e s t ag e s in a tcu be f o r e the execute s tage .
# ( I n i t i a l l y the s t ag e s are IF/ID and ID/EX) .
i n t NUM TCU PIPELINE STAGES 3

#∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
# CLOCK RATE PARAMETERS
#∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

# Period o f the Clus te r c l o ck . This number i s an i n t e g e r that
# i s r e l a t i v e to the other cons tant s ending with T .
i n t CLUSTER CLOCK T 1

# Period o f the i n t e r c onne c t i on network c l o ck . This number i s an
# in t e g e r that i s r e l a t i v e to the other cons tant s ending with T .
i n t ICN CLOCK T 1
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# Period o f the L1 cache c l o ck . This number i s an i n t e g e r that
# i s r e l a t i v e to the other cons tant s ending with T .
i n t SC CLOCK T 1

# Period o f the DRAM clock f o r the s imp l i f i e d DRAM model . This
# number i s an i n t e g e r that i s r e l a t i v e to the other cons tant s
# ending with T .
i n t DRAMCLOCKT 4

#∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
# FU PARAMETERS
#∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

# Number o f ALUs per c l u s t e r . Has to be in the i n t e r v a l
# (0 , NUM TCUS IN CLUSTER ] .
i n t NUMOF ALU 16

# Number o f s h i f t un i t s per c l u s t e r . Has to be in the i n t e r v a l
# (0 , NUM TCUS IN CLUSTER ] .
i n t NUM OF SFT 16

# Number o f branch un i t s per c l u s t e r . Has to be in the i n t e r v a l
# (0 , NUM TCUS IN CLUSTER ] .
i n t NUM OF BR 16

# Number o f mult ip ly / d iv id e un i t s per c l u s t e r . Has to be in the
# i n t e r v a l (0 , NUM TCUS IN CLUSTER ] .
i n t NUMOFMD 1

# Latency in terms o f C lus te r c l o ck c y c l e s .
i n t DECODELATENCY 1

# Latency in terms o f C lus te r c l o ck c y c l e s . Does not
# inc lude the a r b i t r a t i o n la t ency .
i n t ALU LATENCY 1

# Latency in terms o f C lus te r c l o ck c y c l e s . Does not
# inc lude the a r b i t r a t i o n la t ency .
i n t SFT LATENCY 1

# Latency in terms o f C lus te r c l o ck c y c l e s . Does not
# inc lude the a r b i t r a t i o n la t ency .
i n t BR LATENCY 1

# I f true , branch p r ed i c t i on in TCUs w i l l be turned on .
boolean BR PREDICTION true

# The s i z e o f the branch p r ed i c t i o n bu f f e r ( i . e . maximum number
# of branch PCs f o r which p r ed i c t i o n can be made ) .
i n t BRANCH PREDICTOR SIZE 4

# The number o f b i t s f o r the branch p r ed i c t o r counter .
i n t BRANCH PREDICTOR BITS 2

# Latency in terms o f C lus te r c l o ck c y c l e s . Does not
# inc lude the a r b i t r a t i o n la t ency . Does not in c lude
# the MD r e g i s t e r f i l e l a t ency .
i n t MULLATENCY 6

# Latency in terms o f C lus te r c l o ck c y c l e s . Does not
# inc lude the a r b i t r a t i o n la t ency . Does not in c lude
# the MD r e g i s t e r f i l e l a t ency .
i n t DIV LATENCY 36
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# Latency o f mflo /mtlo/mfhi /mflo ope ra t i on s in terms o f
# Clus te r c l o ck c y c l e s . Does not in c lude the a r b i t r a t i o n
# la t ency . Does not in c lude the MD r e g i s t e r f i l e l a t ency .
i n t MDMOVELATENCY 1

# Latency o f the MD uni t i n t e r n a l r e g i s t e r f i l e in terms
# of Clus te r c l o ck c y c l e s .
i n t MDREGLATENCY 1

# Latency in terms o f base c l u s t e r c l o ck c y c l e s .
i n t PS LATENCY 12

# This i s the ha l f−pena l ty f o r a TCU that i s r eque s t i ng
# a PS to a g l oba l r e g i s t e r that i s not the one that i s
# cu r r en t l y being handled . See the s imula to r t e c hn i c a l
# repor t f o r d e t a i l s . This i s in terms o f base c l u s t e r
# c lock c y c l e s .
i n t PS REGMATCH PENALTY 4

# Latency at the c l u s t e r input in terms o f i n t e r c onne c t i on
# network c l o ck c y c l e s .
i n t LS RETURN LATENCY 1

# Latency in terms o f base c l u s t e r c l o ck c y c l e s .
# Found emp i r i c a l l y from the FPGA via microbenchmarks .
# This i s an average but might not exac t l y match a l l c a s e s due
# to mechanism d i f f e r e n c e s between the s imu lato r and FPGA.
i n t SPAWNSTART LATENCY 23

# Latency in terms o f C lus te r c l o ck c y c l e s . This i s the l a t ency
# of the SJ un i t to re turn to s e r i a l mode a f t e r a l l TCUs go i d l e .
# Cannot be 0 .
i n t SPAWNENDLATENCY 1

#∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
# FLOATING POINT FUNCTIONAL UNITS PARAMETERS
#∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

# Number o f F loat ing Point ALUs per c l u s t e r .
i n t NUM OF FPU F 1

# Al l f o l ow ing l a t e n c i e s are in terms o f C lus te r c l o ck c y c l e s .
# Do not in c lude the a r b i t r a t i o n la t ency .
i n t MOV F LATENCY 1

in t ADD SUB F LATENCY 11

in t MUL F LATENCY 6

in t DIV F LATENCY 28

in t CMP F LATENCY 2

in t CVT F LATENCY 6

in t ABS NEG F LATENCY 1

#∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
# MEMORY PARAMETERS
#∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

# Total number o f memory por t s . Has to be a 2 ’ s power mul t ip l e o f
# NUM OF CLUSTERS.
i n t NUMCACHEMODULES 128
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# Total number o f DRAM port s . Has to be o f the form
#NUMCACHEMODULES / 2ˆk
# with k >= 0 . Defau l t i s i s one DRAM port per CACHEMODULE
# (no content ion ) . This parameter i s ignored un l e s s the memory
# model does not imply that DRAM i s s imulated .
# NUMCACHEMODULES should be a mul t ip l e o f t h i s parameter . I f
# they are not equal the type o f the DRAM port that w i l l be
# in s t an t i a t e d i s SharedSimpleDRAMActor . I f not the type i s
# SimpleDRAMActor .
i n t NUMDRAMPORTS 8

# I f the ICN MODEL parameter i s s e t to ” const ” , t h i s va lue
# w i l l be used as the constant ICN la t ency . The de lay time
# w i l l be equal to ICN CLOCK T x CONST SC LATENCY.
i n t CONST ICN LATENCY 50

#∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
# ADDRESS AND CACHE PARAMETERS
#∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

# The number o f words ( not bytes ) that a cache l i n e conta in s .
# The number o f bytes in a word i s de f ined by MEMBYTEWIDTH in
# xmtsim . core . Constants .
i n t CACHE LINE WIDTH 8

# Master Cache parameters

# S i z e o f the MasterCache in bytes .
i n t MCACHE SIZE 16384

# Master cache can se rve only t h i s many d i f f e r e n t cache l i n e misses . For
# example , i f master cache r e c e i v e s 5 s t o r e word i n s t r u c t i o n s a l l o f
# which are mis se s to d i f f e r e n t cache l i n e s , 5 th i n s t r u c t i o n w i l l s t a l l .
i n t MCACHE NUM PENDING CACHE LINES 4

# Master cache can se rve only t h i s many d i f f e r e n t misse s f o r a
# given cache l i n e . For example , i f master cache r e c e i v e s 9 s t o r e
# word i n s t r u c t i o n s a l l o f which are misse s to the same cache l i n e ,
# 9th i n s t r u c t i o n w i l l s t a l l .
i n t MCACHE NUM PENDING REQ FOR CACHE LINE 8

# L1 parameters

# S i z e o f the L1 Cache in bytes ( per module ) .
i n t L1 SIZE 32768

# As s o c i a t i v i t y o f the L1 cache . 1 f o r d i r e c t mapped and
# Int eg e r .MAXVALUE f o r f u l l y a s s o c i a t i v e .
# Note that s e t t i n g t h i s va lue to In t eg e r .MAXVALUE has the same
# e f f e c t as MCACHE SIZE / (MCACHE LINEWIDTH ∗ MEMBYTEWIDTH)
in t L1 ASSOCIATIVITY 2

# L1 cache can se rve at most t h i s many d i f f e r e n t pending cache l i n e
# misses . For example , i f master cache sends 9 s t o r e word i n s t r u c t i o n s
# a l l o f which are misses to d i f f e r e n t cache l i n e s , 9 th i n s t r u c t i o n w i l l
# s t a l l .
i n t L1 NUM PENDING CACHE LINES 8

# L1 cache can se rve at most t h i s many d i f f e r e n t pending misses f o r a
# given cache l i n e . For example , i f L1 cache r e c e i v e s 9 s t o r e word
# i n s t r u c t i o n s a l l o f which are misses to the same cache l i n e ,
# 9th i n s t r u c t i o n w i l l s t a l l .
i n t L1 NUM PENDING REQ FOR CACHE LINE 8

27



# The s i z e o f the DRAM reques t bu f f e r , which i s the module that the
# reque s t s from L1 to DRAM wait u n t i l they are picked up by DRAM.
# NOTE: Se t t i ng t h i s to a s i z e that i s too smal l (8 ) causes dead locks .
# Deadlocks can be encountered even with b igge r s i z e s i f the
# DRAMLATENCY i s not l a r g e enough .
# NOTE2: In Xingzhi ’ s t h e s i s , t h i s bu f f e r i s c a l l e d L2 REQ BUFFER fo r
# h i s t o r i c a l r ea sons .
i n t DRAM REQ BUFFER SIZE 16

# The s i z e o f the DRAM response bu f f e r , which i s the module that the
# re sponse s from DRAM to L1 wait u n t i l they are picked up by L1 .
# NOTE: In Xingzhi ’ s t h e s i s , t h i s bu f f e r i s c a l l e d L2 RSPS BUFFER fo r
# h i s t o r i c a l r ea sons .
i n t DRAM RSPS BUFFER SIZE 2

#∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
# ADDRESS HASHING PARAMETERS
#∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

# I f t h i s i s s e t to true , hashing w i l l be app l i ed on phy s i c a l memory
# addre s s e s be f o r e they get sent over the ICN . This v a r i a b l e does not
# change the cyc le−accurate de lay that i s incur r ed by the hashing un i t
# but i t turns on/ o f f the ac tua l hashing o f the address .
boolean MEMORYHASHING true

# Constant s e t by the operat ing system (? ) f o r hashing
# See ASIC document f o r a lgor i thm .
i n t HASHING S CONSTANT 63

#∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
# PREFETCHING PARAMETERS
#∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

# The number o f words that f i t in the TCU Pre f e tch bu f f e r .
i n t PREFETCH BUFFER SIZE 16

# The replacement po l i c y f o r the p r e f e t ch bu f f e r un i t :
# RR − RoundRobin
# LRU − Least Recently Used
# MRU − Most Recently Used
St r ing PREFETCH BUFFER REPLACEMENT POLICY RR

# The number o f words that f i t in the read only bu f f e r .
i n t ROB SIZE 2048

# The maximum number o f pending r eque s t s to ROB per TCU.
i n t ROB MAX REQ PER TCU 16

#∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
# MISC PARAMETERS
#∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

# The in t e r c onne c t i on network model used in the s imu la t i on .
# const − Constant de lay model . I f t h i s model i s chosen , the cache and
# DRAM models w i l l be ignored . The amount o f de lay i s taken
# from CONST ICN LATENCY.
# mot − Separate send and r e c e i v e Mesh−of−Trees networks between
# c l u s t e r s and caches .
S t r ing ICN MODEL mot

# The shared cache model used in the s imu la t i on . This has no e f f e c t i f
# const model i s chosen f o r the ICN model .
# const − Constant de lay model . I f t h i s model i s chosen , the DRAM
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# model w i l l be ignored . The amount o f de lay i s taken from
# CONST SC LATENCY.
# L1 − One l ay e r shared cache as i t i s implemented in the Paraleap
# FPGA computer .
# L1 old − One l ay e r shared cache as in L1 model . This i s an old
# implementation o f the L1 cache and should not be used by the
# typ i c a l user due to p o s s i b l e bugs .
S t r ing SHAREDCACHEMODEL L1

# The DRAM model used in the s imu la t i on . This has no e f f e c t i f e i t h e r
# const model i s chosen f o r the ICN model or const model i s chosen f o r
# the shared cache model .
# const − Constant de lay model . The amount o f de lay i s taken from
# CONSTDRAMLATENCY.
St r ing DRAMMODEL const

# The memory model f o r the master tcu :
# h i t − Al l memory r eque s t s w i l l be h i t s in the cache . The amount o f
# the de lay can be s e t through the MCACHE HIT LATENCY.
# miss − Al l memory r eque s t s w i l l go through the ICN model de f ined in
# MEMORYMODEL. The master cache w i l l add two c l o ck
# cy c l e s to the ICN la t ency ( one on the way out one on the way
# back ) .
# f u l l − f u l l MCACHE implementation .
S t r ing MCLUSTERMEMORYMODEL miss

# The number o f CLUSTER c lock c y c l e s that Master cache s e r v e s a cache
# h i t in case o f the ’ h i t ’ va lue o f MCLUSTERMEMORYMODEL.
i n t MCACHE HIT LATENCY 1

# The number o f c l o ck c y c l e s that a shared cache module s e r v e s a r eque s t
# f o r the constant de lay implementation o f shared cache . The de lay time
# w i l l be equal to SC CLOCK T x CONST SC LATENCY.
# See SHAREDCACHEMODEL.
i n t CONST SC LATENCY 1

# The number o f DRAM cyc l e s that DRAM se rv e s a memory reque s t in case
# of the s imp l i f i e d implementation o f DRAM. See DRAMMODEL parameter .
# Also see the note at DRAM RSPS BUFFER SIZE .
# The t yp i c a l l a t ency o f DRAM fo r DDR2 at 200MHz i s about 20 c y c l e s . I f
# s c a l i n g t h i s number f o r a h igher c l o ck f requency the l a t ency should
# a l s o be in c r ea s ed p r opo r t i ona l l y to g ive the same delay in abso lu t e
# time .
i n t CONSTDRAMLATENCY 20

# I f ’ grouped ’ , c l u s t e r 0 w i l l get TCUs 0 , 1 , 2 , . . . , (T−1) and
# c l u s t e r 1 w i l l get T, T+1, T+2, T+3, e t c . T i s the number o f TCUs in
# a c l u s t e r .
# I f ’ d i s t r i bu t ed ’ c l u s t e r 0 w i l l get TCUs 0 , N, 2N and c l u s t e r 1 w i l l
# get TCUs 1 , N+1, 2N+1, e t c . N i s the number o f c l u s t e r s .
# This parameter makes a d i f f e r e n c e in programs with low pa r a l l e l i sm .
# ’Grouped ’ opt ion might be used i f power i s a concern , o therw i s e
# ’ d i s t r i bu t ed ’ opt ion should r e s u l t in be t t e r performance .
S t r ing TCU ID ASSIGNMENT d i s t r i b u t e d

Appendix B HotSpotJ Extended Documentation

This appendix contains detailed documentation of HotSpotJ, a command line including installation instructions, a command
line usage manual and a tutorial for constructing a new floorplan.
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B.1 Installation

B.1.1 Software Dependencies

HotSpotJ relies on Java Native Interface (JNI) [36] for interfacing with C-language which is platform dependent unlike pure
Java code. Development and testing is done under Linux OS. In earlier development stages, it has been tested on Windows
OS/Cygwin and the build system still supports compilation under Cygwin. It is very probable that the Cygwin build still works
without problems however, we are not actively supporting it. Table 5 lists the specifications of the system under which HotSpotJ
is tested.

Linux OS kernel: 2.6.27-13
distribution: ubuntu 8.10

Bash 3.2.48
GNU Make 3.81
Sun Java Development Kit (JDK) 1.6.0
GNU C Compiler (GCC) 4.3.3

Table 5: Specifications of the HotSpotJ test system.

HotSpotJ package contains a copy of the HotSpot source code therefore a separate HotSpot installation is not required.

B.1.2 Building the Binaries

HotSpotJ installation is built from source code. Prior to running the build script, you should make sure that the required tools
are installed and their binaries are on the PATH environment variable (see Table 5 for the list).

Following are the steps to build HotSpotJ. Each step includes example commands for the bash shell.

• Download the source package at http://www.ece.umd.edu/~keceli/web/software/HotSpotJ/.

• Uncompress the package in a directory of your choice (/opt in our example, xxx is the version). A hotspotj directory will
be created.

> tar xzvf hotspotj_xxx.tgz /opt/

• Make sure that the javac, java and javah executables are on the path (you can check this using the linux which command).
If not, set the PATH environment variable as in the example below.

> export PATH=$PATH:/usr/lib/jvm/java-6-sun/bin

• Include the bin directory under the HotSpotJ installation in the PATH environment variable.

> export PATH=$PATH:/opt/hotspotj/bin

• Run the make command in the installation directory.

> cd /opt/hotspotj

> make

For proper operation, the PATH variable should be set everytime before the tool is used (which can be done in the .bashrc file
for the bash shell). You can turn on a math acceleration engine for HotSpot by editing the hotspotj/hotspotcsrc/Makefile

file. For more information on the math acceleration engines that can be used with HotSpot, see the HotSpot documentation.

Compiling the floorplans written in Java requires the CLASSPATH environment variable to include the HotSpotJ java package.
For example,

> export CLASSPATH=$CLASSPATH:/opt/hotspotj

If you are using Sun Java for MS Windows under Cygwin, the colon character should be exchanged with backslash and semi-colon
characters (\;).
In order to use HotSpotJ as an API in another Java based software (e.g. a cycle-accurate simulator or a custom experiment),
you should set the LD LIBRARY PATH environment variable to include the HotSpotJ java package. For example,

> export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/hotspotj/bin
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Figure 12: 21x21 many-core floorplan viewed in the floorplan viewer of HotSpotJ. Red boxes denote the cores and white boxes are the cache modules.
The GUI displays information about a box as a tooltip when the mouse pointer is held steady over it.

B.2 Tutorial – Floorplan of a 21x21 many-core processor

In this tutorial, we will show how to construct a floorplan using the HotSpotJ Java API, compile it, check it for geometric errors
and view it using the GUI.

The examples that we will demonstrate are taken from a paper by Huang et al. [26], in which they investigate the thermal
efficiency of a processor with 220 simple cores and 221 cache modules. Cores and caches are assumed to be shaped as squares
and they are placed in a 20mm by 20mm die using a checkerboard layout. 1W power is applied to each core and caches do not
dissipate any power. Figure 12 shows the floorplan.

Below is the self documented Java code for this floorplan2. It should be noted that the code contains less than 20 statements if
the inline comments are ignored.

In the code, first, one non-hierarchical box (also called simple box ) per cache module and core is created and its attributes are
set. Each simple box is then added to its parent level hierarchical box (or composite box ). As the last step of the code, the
floorplan is checked for geometric errors.

B.2.1 The Java code for the 21x21 Floorplan

package t u t o r i a l ;

import java . awt . Color ;

import ho t s po t j s r c . CompositeBox ;
import ho t s po t j s r c . SimpleBox ;

2The associated Java file can be found at tutorial/ManyCore21x21.java.
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pub l i c c l a s s ManyCore21x21 extends CompositeBox {

pr i va t e s t a t i c f i n a l long ser ia lVers ionUID = 1L ;

pub l i c ManyCore21x21 ( ) {
// Pass the name o f the f l o o r p l a n to the con s t ruc to r o f
// CompositeBox .
super ( ”21x21 Many−core ” ) ;

// A bu i l d i ng block i s a cache or a core .
// This i s the dimension o f the r e c t angu l a r un i t in um.
i n t BOX DIM = ( in t ) ( ( 2 0 . 0 / 2 1 . 0 ) ∗ 1 0 0 0 ) ;

// Total power o f one core in watts .
double COREPOWER = 1 ;

// This i s the two l e v e l loop where the f l o o r p l a n i s c r ea ted .
f o r ( i n t x = 0 ; x < 21 ; x++) {

f o r ( i n t y = 0 ; y < 21 ; y++) {
SimpleBox bb ;
i f ( ( y+x∗21)%2 == 1) {

// The odd numbered e lements are the co r e s .
// Build a non−h i e r a r c h i c a l square box f o r a core .
bb = new SimpleBox ( ”Core” , BOX DIM, BOX DIM) ;
// Cores d i s s i p a t e power .
bb . setPower (COREPOWER) ;
// Set the c o l o r o f the co r e s to red in the GUI .
bb . s e tF loo rp lanCo lo r ( Color . red ) ;

} e l s e {
// The even numbered e lements are the caches .
// Build a non−h i e r a r c h i c a l square box f o r a cache module .
bb = new SimpleBox ( ”Cache” , BOX DIM, BOX DIM) ;
// The even numbered e lements are the caches and they
// do not d i s s i p a t e power .
bb . setPower ( 0 . 0 ) ;
// Set the c o l o r o f the caches to white in the GUI .
bb . s e tF loo rp lanCo lo r ( Color . white ) ;

}
// Sh i f t the box to the c o r r e c t l o c a t i o n in the checkerbox
// g r id .
bb . s h i f t ( x ∗ BOX DIM, y ∗ BOX DIM) ;
// Add the new s imple box to the ManyCore21x21 ob j e c t .
addBox (bb ) ;

}
}

// Check the f l o o r p l a n f o r geometr ic e r r o r s . These checks
// might take a long time f o r a l a r g e f l o o r p l a n .
checkArea ( ) ;
c h e c k I n t e r s e c t i o n s ( ) ;

}
}

B.3 HotSpotJ Command Line Options

-fp <class path>

Loads a CompositeBox class to view its floorplan on the

HotSpotJ GUI. Class path should be expressed in Java

notation, the associated class file should have been

previously compiled and the CLASSPATH environment variable

should be set appropriately in order to load the class. See

the HotSpotJ tutorials for detailed examples.
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-steady <class path>

Loads a CompositeBox class to run a steady state

experiment on it. It is assumed that the power values are

already set in the floorplan. Class path should be expressed

in Java notation, the associated class file should have been

previously compiled and the CLASSPATH environment variable

should be set appropriately in order to load the class. See

the HotSpotJ tutorials for detailed examples.

This option internally uses the steadySolve method of

CompositeBox class.

-transient <class path> <num>

Loads a CompositeBox class to run a transient experiment

with constant power values on it. It is assumed that the

power values are already set in the floorplan. The number of

iterations is set by the num parameter. The iteration period

is controlled by the const_sampling_intvl field in the

HotSpotConfiguration class, which can be set in the

floorplan file in compilation time.

Class path should be expressed in Java notation, the

associated class file should have been previously compiled

and the CLASSPATH environment variable should be set

appropriately in order to load the class. See the HotSpotJ

tutorials for detailed examples.

This option internally uses the transientSolve method of

CompositeBox class.

-loadhjd <?filename>

Loads a previously saved data file. If no data file is

specified, a GUI window will be brought up to select a file

from the file system.

-experiment <classpath> [-save [-base <name>]] [-showinfo] <run_options>

This option is used to call the run method of a class that

extends Experiment. The classpath argument should point to

the full java name of the Experiment class (for example

tutorial.TutorialExperiment), which should be on the

CLASSPATH. If save option is defined, returned panels will

be saved in HJD files. File names will be derived from the

name of the class. If the base option is defined the file

names will use it as the base. If no save option is defined

panels will be shown in the GUI. The showinfo option prints

the info text (see hjd2info option) for each panel to

standard out.

See HotSpotJ documentation for more information on setting

up experiments.

-showflp <FLP file>

Reads a HotSpot floorplan (FLP) file and loads it into the

floorplan viewer GUI.

-fp2flp <class path>

Converts a CompositeBox class to a HotSpot floorplan (FLP)

file representation and prints it on standard output. This

option can be used to write a complex floorplan in HotSpotJ

and then work on it in HotSpot.

-hjd2image [-savedir <dirname>]

[-mintemp <value>] [-maxtemp <value>]
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[-minpower <value>] [-maxpower <value>] <hjd filenames..>

This is a batch processing option that saves the power and

temperature map images in the HJD files to image files.

Multiple image types are supported (platform dependent) and

a list of supported types can be obtained via the "hotspotj

-hjd2image -type list" command. The image type is set with

the "-type" option. If a type is not provided, default is

jpeg.

By an output file is written to the same directory that

the associated input file is read from. This can be changed

via the savedir option. The relative paths of the input

files will be conserved in the save directory.

Arguments that are not options are considered as input

files.

A purpose of batch converting HJD files to images is to

assemble movies that show the change in power and

temperature maps over the course of an experiment. For this,

the experiment should periodically save the data. The the

user can use the hjd2image option to convert the data to

image files and these files can be converted to an mpeg

movie (a script that does this conversion is provided in the

HotSpotJ package).

Note that, the color scheme in a temperature or power map

is derived relative to the minimum and maximum values in the

map (i.e. minimum and maximum will be at the opposite ends

of the color spectrum). However in order to make a

meaningful movie, the color schemes should be consistent

between all maps. Therefore below options are provided for

the user to set minimum and maximum values for the

temperature and power map color schemes:

[-mintemp <value>] [-maxtemp <value>]

[-minpower <value>] [-maxpower <value>]

Values are in Kelvins. If a value is not provided, it will

be set from the minimum/maximum found in the associated map.

If a value is outside the user provided range, it will be

truncated to the minimum/maximum.

-hjd2info [-intbase <float>] <filenames...>

This is a batch processing command that works in the same

way as the hjd2image option but instead of saving map images

it prints the information of each input hjd file on standard

output. The information is the text displayed in the power

and temperature tabs below the maps.

If instbase is specified, the base value for the

temperature integral will be set. See HotSpotJ documentation

for information on temperature integral.
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