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This dissertation includes two chapters on topics related to market microstruc-

ture and high frequency trading.

In the first chapter, I explore the effects of speed differences among front-

running high frequency traders (HFTs) in a model of one round of trading. Traders

differ in speed and their speed differences matter. I model strategic interactions

induced when HFTs have different speeds in an extended Kyle (1985) framework.

HFTs are assumed to anticipate incoming orders and trade rapidly to exploit normal-

speed traders’ latencies. Upon observing a common noisy signal about the incoming

order flow, faster HFTs react more quickly than slower HFTs. I find that these

front-running HFTs effectively levy a tax on normal-speed traders, making markets

less liquid and prices ultimately less informative. Such negative effects on market

quality are more severe when HFTs have more heterogeneous speeds. Even when

infinitely many HFTs compete, their negative effects in general do not vanish. I

analyze policy proposals concerning HFTs and find that (1) lowering the frequency of



trading reduces the negative impact of HFTs on market quality and (2) randomizing

the sequence of order execution can degrade market quality when the randomizing

interval is short. Consistent with empirical findings, a small number of HFTs can

generate a large fraction of the trading volume and HFTs’ profits depend on their

speeds relative to other HFTs.

In the second chapter, I study the effects of higher trading frequency and

front-running in a dynamic model. I find that a higher trading frequency improves

the informativeness of prices and increases the trading losses of liquidity driven noise

traders. When the trading frequency is finite, the existence of HFT front-runners

hampers price efficiency and market liquidity. In the limit when trading frequency is

infinitely high, however, information efficiency is unaffected by front-running HFTs

and these HFTs make all profits from noise traders who do not smooth out their

trades.
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Chapter 1: High Frequency Trading with Speed Hierarchies

1.1 Introduction

High frequency trading (HFT) has emerged as a prominent feature of today’s

financial markets. Empirical studies find that high frequency traders (HFTs) have

high trading volume, very short holding horizons, and invest astonishing amounts of

capital to be slightly faster.1 Consistent with these stylized facts, I model the front-

running HFTs who anticipate incoming orders, trade rapidly, and have short holding

horizons. In contrast to existing models of front-running, such as Brunnermeier and

Pedersen (2005) and Carlin, Lobo and Viswanathan (2007), I allow HFTs to have

different speeds to examine the impact of speed competition. Speed differences among

HFTs affect all traders: (1) profits of a high frequency trader depend on her speed

relative to other HFTs and (2) the aggregate profits of all HFTs, effectively a “speed

tax” levied on other traders, depend on the distribution of HFTs’ relative speeds. The

presence of HFTs makes markets less liquid and prices ultimately less informative.

Such negative effects are more severe when HFTs have more heterogeneous speeds.2

1 See Kirilenko, Kyle, Samadi and Tuzun (2011) and Laughlin, Aguirre and Grundfest (2013).
2 This paper focuses on the front-running HFTs who trade mainly with market orders. Other

types of HFT strategies could have different impact on market quality.
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I introduce fast traders into an extended Kyle (1985) framework with trading

and quoting latencies. There are three types of “normal-speed” traders: (i) a strategic

informed trader who privately observes the true value of a risky asset, (ii) noise

traders who trade randomly for non-informational motives, and (iii) a continuum of

competitive market makers who passively absorb order flow imbalance. Normal-speed

traders’ actions suffer from short latencies and fast traders exploit these latencies

with their speed advantage.

Specifically, at the beginning of a trading round, competitive market makers

post a linear pricing function that others can trade against. The slope of the pricing

function is fixed during the trading round because market makers are not fast enough.

After observing the pricing function, the informed and noise traders submit market

orders. Before the orders arrive in the market, fast traders observe a common noisy

signal about the orders and rapidly front-run by trading in the same direction at

better prices ahead of the orders. When the informed and noise traders’ orders arrive

slightly later, fast traders reverse their early trades and exit their positions at profits.

At the end of the trading round, competitive market makers update the final quoted

price.

Fast traders effectively levy a speed tax and the tax makes the market less

liquid for both the informed and noise traders. Because market makers cannot adjust

the pricing function instantaneously, they suffer additional losses trading with fast

traders. To make up for the additional losses, market makers increase the slope of

the pricing schedule to charge more for absorbing order flow imbalance. Because

trading is anonymous, market makers have to set a steeper pricing schedule for all
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other traders. Effectively, fast traders levy a speed tax on market makers and market

makers shift the tax burden to the informed and noise traders by making liquidity

more costly. Hence the informed trader profits less on given private information and

noise traders lose more to trade the same amount.

Speed differences lead to short-term price momentum and reversals in a trad-

ing round. Prices exhibit short-term momentum when front-running fast traders

sequentially “pick off” the stale pricing schedule to establish positions. The informed

and noise traders’ orders arrive slightly later and the orders are executed at worse

prices due to the steeper pricing schedule. At the end of the trading round, knowing

that prices have overshot, market makers partially reverse the final quoted price back

to the informationally efficient level.

Prices are ultimately less informative when front-running fast traders are

present. In the brief time before the informed and noise traders’ orders arrive, fast

traders’ front-running trades bring information to the market and the intermediate

prices are more informative. Information value of the intermediate prices, however,

is quickly superseded by the more informative orders from the informed and noise

traders. Ultimately, price informativeness is determined by the fraction of informed

trader’s orders in the aggregate order flow. Because the informed trader lowers trading

intensity in response to higher liquidity costs, the aggregate order flow becomes less

informative. This makes prices ultimately less informative after normal-speed traders

have traded and fast traders have exited their positions.

A fast trader’s effect on the informativeness of the order flow is similar to

a prying messenger’s effect on the information content of a letter. Suppose right

3



before delivering a letter, a messenger glances at it and summarizes the letter

to the receiver. Although the summary is informative, its information value is

supplanted momentarily by the letter itself. Furthermore, expecting the letter to

be pried into, the sender is less likely to write clearly and ultimately the receiver is

less informed. The informed and noise traders share the direct cost of paying the

speed tax; indirectly, decision makers who rely on price signals also suffer from less

informative prices.

The negative impact of fast traders on market quality is more severe when

they make more profits. Fast traders’ aggregate profits in turn depend on the

distribution of their relative speeds. I prove that for a given number of fast traders,

their aggregate profits are minimized if every fast trader has the same speed and their

aggregate profits are maximized if every fast trader has a different speed. Similarly,

the entry of a fast trader could improve or degrade market quality depending on the

entrant’s speed relative to existing fast traders. If the entrant has the same speed

as an existing fast trader, the aggregate fast trading profits decline. If the entrant

has a different speed from all existing fast traders, the aggregate fast trading profits

increase.

Intuitively, fast traders with the same speed compete against one another on

quantity in a Cournot competition. In the limit when infinitely many fast traders

compete on quantity, their aggregate profits converge to zero because they collectively

push their entry price to equal their exit price. On the other hand, when more

fast traders with different speeds are present, they collectively have more trading

opportunities, march along the price schedule more gradually, and extract higher

4



profits from market makers’ stale pricing function. Intuitively, their aggregate profits

are higher in this model because the “combined” trading frequency of all fast traders

is higher than the trading frequency of any individual fast trader. In the limit when

infinitely many fast traders with different speeds compete, the fastest front-runners

still make positive profits and the slowest front-runners’ profits converge to zero.

Market quality tends to settle on the suboptimal case in which fast traders have

different speeds. First, fast traders have strong incentives to break away from a same-

speed scenario. A higher speed leads to two-fold advantages for faster front-runners:

they are able to establish larger positions at better prices than slower ones. In this

model, a fast trader could quadruple the expected trading profits by moving up one

spot in the ranking of relative speeds among fast traders. Second, the increasingly

finer time granularity of modern markets opens up more space for fast traders to

differ on speed. In a continuously operating market, no one could ever attain zero

latency and traders can always beat competitors by any slight speed advantage. If

fast traders engage in “arms race” in speed, they are unlikely to have the same speed

and increased competition among fast traders may not improve market quality.

The model sheds light on several policy proposals concerning HFTs. (1)

Lowering the entry cost to become HFTs may not improve market quality significantly

if it does not reduce the heterogeneity of relative speeds among HFTs. (2) Converting

a continuous market to a market with periodic uniform price auctions reduces the

negative impact of front-running by enforcing Cournot competition among HFTs.

(3) Randomizing the sequence of order execution is far less effective than the periodic

uniform price auction. When the interval of randomizing is short, it can even
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degrade market quality. Intuitively, while randomizing reduces profits of the fastest

HFT, it could help some slower HFTs; the net effect depends on the number of

HFTs pooled in the same randomizing interval. (4) Requiring quotes to stay for a

minimum duration or charging a fee for quote updating might aggravate the impact

of front-running. Such rules could make the order flow easier to predict and extend

the durations of profitable front-running.

My model also generate many empirical predictions. (1) In a continuous market,

if front-runners trade on the same signal, only a few can survive; the markets for

front-runners saturates quickly. (2) Entry of a fastest front-running HFT reduces

the volume and profits of all existing front-running HFTs. It does not affect market

quality significantly when the existing market for front-runners is almost saturated.

(3) When front-running HFTs predict the order flow more accurately or when their

relative speeds become more heterogeneous, their impact becomes more severe. Short-

term price volatilities increase, short-term price momentum and reversal become

stronger, normal-speed traders initiate less trading volume, and front-running HFTs’

profits become a larger fraction of noise traders’ implementation shortfall. (4) Faster

front-running HFTs tend to trade more shares, have higher inventory levels, hold

inventory for longer durations, and make more profit per share because they establish

larger positions earlier at better entry prices.

1.1.1 Related literature

Angel, Harris and Spatt (2011) and Litzenberger, Castura and Gorelick (2012)

6



recently survey literature related to HFT and modernization of the financial market.

This paper focuses on the impact of speed differences on the competition among

front-running fast traders. Assuming predatory front-runners have the same speed,

Brunnermeier and Pedersen (2005) find that “predation is most fierce if there are

few predators”. I show that when front-runners have different speeds, the impact

of “predation” does not vanish even when infinitely many front-runners compete

and their impact can be more severe when more front-runners are present. Hence,

increasing the trading frequency tends to weaken the price or quantity competition

and encourage socially wasteful speed competition among front-runners.

Many existing papers also assume that fast traders have homogeneous speeds

and thus are not suitable to explore the implications of speed differences among

fast traders. For instance, some studies, such as Pagano and Röell (1993), Brunner-

meier (2005), Bernhardt and Taub (2008), Cohen and Szpruch (2012), and Foucault,

Hombert and Rosu (2012), consider the situation with one monopolistic fast trader;

others, such as Hirshleifer, Subrahmanyam and Titman (1994), Brunnermeier and

Pedersen (2005), Carlin et al. (2007), Jarrow and Protter (2012), Hoffmann (2012),

and Biais, Foucault and Moinas (2013), assume that fast traders have the same

deterministic speed. Recently Budish, Cramton and Shim (2013) model high fre-

quency market makers with the same speed in probability. In their model, when

a high frequency market maker’s quote of one share becomes stale, it is randomly

“sniped” by another market maker. This leads to a positive bid-ask spread without

information asymmetry or risk aversion. They also advocate using periodic batch

auctions to eliminate this inefficiency. Penalva and Cartea (2012) discuss the situa-
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tion when each HFT randomly intercepts a profitable trade according to her skill

level. Essentially in their model multiple HFTs have the same speed but different

market shares. Martinez and Rosu (2013) discuss one case in which two groups of

HFTs have different speeds. HFTs in their model behave very differently because

they are faster and more informed.

Unlike in Goldman and Sosin (1979), Hirshleifer et al. (1994) and Martinez

and Rosu (2013), HFTs in my paper are faster than the informed trader but the

informed trader has better information about the fundamentals. This assumption

reflects the underlying costs of information production. Information processing takes

time. So traders face the trade-off between information accuracy and trading speed.

This trade-off is not reflected in existing models in which some traders are both

faster and (weakly) more informed than all others. By contrast, in my paper fast

traders start trading earlier on a less accurate signal while the informed trader trades

later on a more accurate signal.

In addition, fast traders in this paper focus on information about incoming order

flow not the fundamental value. In the short-term, the resale value of a risky security

is more likely driven by the order flow rather than the fundamental value. Hence,

consistent with the insight of Froot, Scharfstein and Stein (1992), fast traders with

limited holding horizons and limited resource should focus on producing information

about the short-term order flow and tend to become less informed about long-term

fundamentals. Consequently, in contrast to Martinez and Rosu (2013), in this paper

the presence of fast traders reduces overall price informativeness ex post because it is

an impediment to the slower but better informed trader. In Brunnermeier (2005), a
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short-run trader has noisy information about an incoming public news release. This

trader trades less when his signal is less informative about the fundamentals. In my

model, HFTs trade the same even when the fraction of informed trading volume is

low because HFTs make the same profits no matter whom they front-run.

In this paper, fast traders are partially informed because of their information

on the order flow. They differ from an informed trader in existing models in two

respects: (1) fast traders have higher speeds and shorter holding horizons than

the better informed trader, and (2) fast traders have no source of information that

is independent from slow traders’ order flow. Such features imply that the more

informed yet slower trader cannot avoid being front-run and she does not need to

speed up to avoid information decay: fast traders cannot learn her information

if the informed trader does not trade. Therefore, unlike in existing models with

multiple informed traders such as Holden and Subrahmanyam (1992), Foster and

Viswanathan (1996), Vayanos (1999), Back, Cao and Willard (2000), Bernhardt and

Miao (2004), and Li (2013), in this paper, the better informed trader always reduces

her trading intensity in the presence of less informed fast traders and prices become

less informative.

Some theoretical papers focus on other aspects of HFTs and algorithmic trading.

Cvitanic and Kirilenko (2010) model HFTs as a machine which immediately “snipes”

out a human order when its price deviates too far from a benchmark level. Gerig and

Michayluk (2010) model HFTs as automatic market makers who use the relationships

between multiple securities to price order flow in an extension of the Glosten and

Milgrom (1985) model. Jovanovic and Menkveld (2012) model HFTs as competitive

9



intermediaries who can process hard information. Pagnotta and Philippon (2012) use

a search model to investigate the exchanges’ incentives to lower latencies. Yueshen

(2013) models the strategic interactions among limit order traders when they cannot

condition orders on positions in the queue. Weller (2013) develops a model in

which fast market makers specialize in immediacy provision and slow market makers

specialize in risk bearing.

My model is consistent with many empirical characteristics of HFTs. My model

predicts that only a few HFTs can survive in the market. Many empirical studies

identify only a very small number HFTs. My model predicts that when there are

already a handful of HFTs, the entry of new HFTs does not affect the aggregate

HFT trading profits significantly. Budish et al. (2013) find that the profitability

of HFTs’ trading opportunities remains almost constant over the years 2005-2011

despite the fierce competition among HFTs. HFTs in this paper are front-runners.

Hirschey (2013) finds that HFTs have the ability to anticipate non-HFTs’ large trades.

Clark-Joseph (2013) finds that aggressive HFTs use smallest orders to explore market

conditions and choose the timing to front-run large incoming demands. In my model

HFTs mainly use market orders. Studies using individual account data, such as

Baron, Brogaard and Kirilenko (2012), Breckenfelder (2013), Brogaard, Hagströmer,

Norden and Riordan (2013a), and Hagströmer and Nordén (2013) all find that some

HFTs predominantly trade with market orders and they tend to make more profits

than other HFTs.

My model predicts that HFTs’ trades are informative and improve short-term

intermediate price informativeness. Brogaard, Hendershott and Riordan (2013b) find
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that the marketable orders of HFT have high predictive power about future price

changes in less than 5 seconds. Brogaard et al. (2013a) find that co-located traders

have an informational advantage. Zhang (2012) finds that HFTs profit on “hard”

information and their profits realize quickly. Carrion (2013) also finds HFTs have

intra-day market timing capability. My model also predicts that front-running HFTs

can reduce information efficiency in the long run. Differentiating the two information

efficiencies poses new empirical challenges.

In this paper, front-running HFTs increase short-term volatility and reduce

long-term volatility. Breckenfelder (2013) finds that HFTs increase intra-day volatility

but not inter-daily volatility. Jiang, Lo and Valente (2013) and Boehmer, Fong

and Wu (2012) find that HFT or algorithmic trading tend to increase short-term

volatility.

In this model, HFTs follow similar strategies and their profits depend on their

relative speeds. Chaboud, Chiquoine, Hjalmarsson and Vega (2013) find algorithmic

traders tend to use correlated strategies. Gai, Yao and Ye (2012) and Egginton,

Van Ness and Van Ness (2013) find evidence that some traders use the “quote-stuffing”

strategy to slow down other traders.

My model predicts that although their trading volume is high, front-running

HFTs reduce market liquidity. Hendershott and Moulton (2011) find that automation

increases bid-ask spreads. Tong (2013) finds that HFTs increase the trading costs of

institutional traders. Many empirical studies find that algorithmic trading or high

frequency trading improve liquidity. This could be due to three main reasons. First,

some studies, such as Hasbrouck and Saar (2013), Hendershott, Jones and Menkveld
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(2011), Hendershott and Riordan (2012), Menkveld (2013), investigate either all

algorithmic traders or market making HFTs. Isolating the effects of front-running

HFTs and assessing their relative importance are open empirical questions. Second,

traditional measures could underestimate illiquidity in the presence of front-running

HFTs. For example, bid-ask spreads and depth of the limit order book may not

capture market liquidity when HFTs can quickly cancel limit orders. In addition, a

large order would move the price before it arrives in the market when front-runners

are present. Third, liquidity might be improved because of other contemporaneous

factors.

1.2 Benchmark model of a monopolistic fast trader

I introduce delays in trading and quoting into the static model of Kyle (1985)

and add a new type of trader fast enough to exploit the short delays. The section

presents the benchmark model with only one fast trader.

1.2.1 Model setup

Assets and Traders Traders trade two assets: a risk free numeraire asset

with zero interest rate and a risky asset with normally distributed fundamental

value v ∼ N (v0, σ
2
v). All traders are risk neutral.3 As in Kyle (1985), three types of

traders have normal speeds: (1) a strategic monopolistic informed trader privately

observes the true value v of the risky asset; (2) noise traders randomly trade normally

3 In Appendix A.1.4, I discuss the implication of fast traders’ risk aversion.
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distributed z ∼ N (0, σ2
z) shares for exogenous non-informational motives;4 and (3)

competitive fringe market makers set the pricing functions, absorb the residual order

flow imbalances, and make zero expected profit.5

I introduce a new type of traders: the fast traders who anticipate the size of

the incoming market orders and rapidly trade twice in one trading round. Unlike

normal-speed traders, fast traders do not carry inventory when the trading round

ends. In the benchmark model, only one fast trader is present. In the general model

of Section 1.3, multiple strategic fast traders with possibly different speeds compete

with one another.6

Timeline and Information Structure The paper presents models of one

trading round. Figure 1.1 illustrates the timeline of the benchmark model. At

4 Although noise traders on average lose in trading, they are not necessarily irrational. For

example, they could have idiosyncratic liquidity demands unrelated to the valuation of the risky

asset.
5 Following the literature, I name a continuum of competitive fringe traders market makers. They

do not, however, act like specialists or designated market makers in a dealer market. These market

makers represent the large population of traders who have no information or speed advantage, and

also no incentives to initiate trades.
6 Empirical studies such as Baron et al. (2012) and Breckenfelder (2013) have documented a large

heterogeneity among HFTs in terms of order aggressiveness, i.e., the ratio of market versus limit

orders. In this paper fast traders could be interpreted as the front-running HFTs who predominantly

trade with market orders and reap the largest trading profits among all HFTs. As pointed out by

Hasbrouck and Saar (2009), however, the difference between limit orders and market orders is not

necessarily crucial. In practice, front-running strategies could be implemented with a mixture of

market orders and limit orders.
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time 0, the trading round starts. Market makers set a publicly observable pricing

function P (·, ·). An order of yt shares arrives at time t ∈ (0, 1] and is filled by the

market makers at the average price of pt = P (yt,Ft). Ft denotes market makers’

information by time t. To model market makers’ latency, the pricing function P (·, ·)

is fixed in time interval (0, 1+).

At time 0+ after observing the pricing function P (·, ·) the informed trader

submits a market order of x shares and noise traders submit a market order of z

shares. Their orders suffer from a short latency and will not arrive in the market

until time 1. Since the market is continuously operating, trades and quote updates

may take place between time 0+ and time 1. The delay is so short that no one other

than the fast trader could exploit it.

Right after time 0+ the fast trader observes a private signal Iy = y + ey

about the incoming order flow y = x+ z where ey ∼ N (0, σ2
e) denotes the normally

distributed observation error. The quality of the signal Iy is represented by ρ, the

squared correlation between Iy and y, i.e.,

ρ ≡ Corr2(y, Iy) ∈ (0, 1] (1.2.1)

I take information quality ρ as exogenously given.7 A more informative signal Iy

has a higher ρ. If Iy reveals y precisely, ρ = 1; if Iy is almost all noise, ρ→ 0. The

projection theorem for normal random variables implies that ŷ ≡ E[y|Iy] = ρ · Iy.

At time 1−, based on her signal Iy the fast trader trades u shares. Market

7 A fixed ρ implies that variance of the observation error σ2
e = 1−ρ

ρ

(
σ2
x + σ2

z

)
. For example, if it

is know that the informed trader almost does not trade (σ2
x → 0), the observation error is almost

entirely about noise trading size z.

14



makers fill the order at the price of p1− = P (u,F1−).

At time 1, the informed trader’s order x and the noise traders’ order z arrive

in the market. At the same time, the fast trader submits a order of −u shares to

liquidate her position because she is not allowed to carry inventory when the trading

round ends.8 Trades are all anonymous and market makers fill all orders at the same

price of p1 = P (x+ z − u,F1).

Finally, at time 1+, right after time 1, market makers look back at the order

flow history of the trading round and update the final quoted price to be p1+ . The

trading round ends.

At time 0, it is common knowledge that value of the risky asset v, noise traders’

order size z, and the fast trader’s observation error ey are mutually independent.

1.2.2 Discussion on speed

In many models of strategic trading, such as Holden and Subrahmanyam (1992),

Foster and Viswanathan (1996), and Vayanos (1999), all traders move at the same

frequency: they act once per round. The defining feature of high frequency traders,

however, is not that they are fast but that they are faster than others. In this paper,

the fast trader has speed advantage over all other traders in various ways.

First, while the fast trader is able to trade twice without latencies in one

trading round, the informed and noise traders can only trade once. Moreover, they

8 The fast trader trade the −u shares with market orders. In practice, the fast trader might try

to trade the −u shares with limit orders to reduce transaction costs.
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t = 0 t = 1− t = 1 t = 1+
+ + + +

Time

Pricing function

Event Initialize 1st Trade 2nd Trade Final Quote

Price

Order flow

p0 = E[v]

P (·)

Fast: u

p1−

Informed: x
Noise: z
Fast: −u

p1 p1+ = E[v|F1]

Figure 1.1: Timeline of the benchmark model of a monopoly fast trader.At time 0,

market makers set the pricing function P (·). At time 1−, the monopolistic fast trader

trades u shares at price p1− . At time 1, the informed trader’s order x, noise traders’ order

z, and the fast trader’s second order −u arrive simultaneously and are executed at price

p1. At time 1+, market makers update the quote price to p1+ .

place orders at time 0+ and the orders are executed at time 1 after a short delay.

Second, the fast trader is also faster than market makers because market makers

cannot update the pricing function when multiple trades take place within the short

time window [1−, 1]. Ideally market makers would like to adjust the pricing schedule

P (·) whenever they observe new information. In practice many traders who submit

limit order do not have the most powerful computers or the fastest connections.

They can only update their limit orders with delays. During the delays, their limit

orders become stale and faster traders could quickly pick off the stale orders. To

capture the lagged adjustment of the limit orders, pricing function P (·) is set at time

0 and cannot be updated until time 1+.

Although market makers are perfectly competitive, trade prices deviate from

the informationally efficient levels. Effectively, lags in adjusting the pricing schedule
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P (·) prevent market makers from using all information to price the orders in the

time window [1−, 1].

The opening quote p0 and the closing quote p1+ are still informationally efficient

by assumption. In practice limit order submitters eventually update their orders

when trading activities wane and markets cool down.

1.2.3 Discussion on the holding horizon and information

The fast trader is averse to holding inventory and must liquidate her position

by the end of a trading round. This assumption of short holding horizons, although

restrictive, is consistent with most empirical studies of high frequency traders such

as Kirilenko et al. (2011) and Baron et al. (2012). In fact, one characteristic used by

SEC (2010) to define high frequency traders is that they have “very short time-frames

for establishing and liquidating positions.”

The short holding horizon has important implication on the fast trader’s

behavior and choice of information. Unlike the informed trader, the strategic fast

trader incurs price impact twice in one trading round. When establishing a position,

the fast trader must have a plan to exit within a short time window. The fast

trader’s profit is not determined by the difference between her entry price and the

fundamental value, but by the difference between her entry and exit prices. Hence,

the fast trader do not try to infer the long-term fundamental value of the risky asset

but focus on predicting short-term price dynamics.

Consistent with the short holding horizon, I assume that the fast trader
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produces a signal Iy about the aggregate incoming order flow y = x+ z, not about

the fundamental value v. The fast trader has no incentive to differentiate orders

from the informed trader and orders from the noise traders as long as the orders have

the identical price impact per share. In fact, if noise traders’ order size z dominates

the informed trader’s order size x as in the continuous time models of Kyle (1985)

and Back (1992), the fast trader would try to correlate her trades mostly with the

noise trading z.

The fast trader’s advance information about incoming order flow could come

from various sources. In practice, HFTs often have faster access to the exchanges’

more detailed data feeds. Coupled with their computation power, HFTs could

continuously track updates to the limit order books and quickly detect patterns in

the order flow. They could also gain information advantage in more fragmented

markets when orders are constantly routed between different trading venues.

Specifying the fast trader’s information Iy as a noisy signal of the incoming

order also encompasses several alternative information sources. For example, if a fast

trader could parse a public news faster but less accurately, the fast trader effectively

anticipates the informed trader’s order x; if a fast trader is able to detect some

retail noise traders’ less sophisticated execution algorithm, the fast trader effectively

predicts noise trading order flow z.9

9 Budish et al. (2013) find that when observed at the millisecond precision, price correlation of

highly related securities breaks down. Such short-lived price divergence can be another source of

HFTs’ information advantage.
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1.2.4 Equilibrium

Definition 1.2.1 (Equilibrium conditions). The fast trader chooses her trade

size using a strategy function U(·) and the informed trader chooses her trade size

using a function X(·). Market makers commit to a pricing function P (·) and set

the final quote using a function Q(·). The equilibrium is defined by four functions

U(·), X(·), P (·) and Q(·) such that the following conditions hold:

1. Informed trader profit maximization. Given P (·), U(·), and the asset’s true

value v, the informed trader’s profit πI = x(v − p1) is maximized if she trades

x∗ shares, i.e.,

x∗ = X(v;U(·), P (·)) = argmax
x

E
[
πI |v, P (·), U(·)

]
(1.2.2)

where p1 is the execution price of her trade.

2. Fast trader profit maximization. Given P (·), X(·), and a signal about the

incoming order flow Iy = x+ z + ey the fast trader’s profit πF = u(p1 − p1−) is

maximized if she trades u∗ shares at time 1− and liquidates at time 1, i.e.,

u∗ = U(Iy;P (·), X(·)) = argmax
u

E
[
πF |Iy, P (·), X(·)

]
(1.2.3)

where p1 − p1− is the difference between her entry and exit prices.

3. Competitive pricing function. Given X(·) and U(·), market makers choose a

pricing function P (·) such that their expected profit E[πM ] at time 0 equals

zero, i.e.,

0 = E
[
πM |P (·), X(·), U(·)

]
(1.2.4)
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4. Informationally efficient quotes. Market makers set quotes p0 and p1+ to be

their expected value of v conditional on available information F0 and F1+ .

p0 = E[v] (1.2.5)

p1+ = E[v|F1+ , X(·), U(·)] = Q(F1+ ;X(·), U(·)) (1.2.6)

Remark 1.2.1. Market makers’ profits in Equation (1.2.4) is πM = up1− + (x+ z −

u)p1 − (x+ z)v because they trade −u shares at price p1− and −(x+ z − u) shares

at price p1.

Remark 1.2.2. Setting p1+ has no impact on equilibrium because the game ends at

time 1+. When there are multiple rounds of trading, setting p1+ to be the posterior

expectation makes it an appropriate initial reference quote for the next trading

round.

The strategy functions U(·), X(·), P (·) and Q(·) can be very general. For tractability,

I assume that market makers choose the pricing function P (·) from the following

class of linear functions.

Assumption 1 (Linear pricing function). Upon receiving the j-th market order

of ytj shares at time tj ∈ (0, 1], market makers fill the order at the average price of

ptj = P (ytj ,Ftj) = ptj−1
+ λTytj , j ≥ 1 (1.2.7)

If ytj is the first arriving order (j = 1), the reference price pt0 is the initial quote p0;

if j > 1, ptj−1
is the average price of the previous traded market order. The price

impact (market depth) factor λT is fixed in the trading round.
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Assumption 1 reduces the choice of the pricing function P (·) to the choice of two

parameters: the initial quote p0 and the price impact factor λT . As discussed in the

previous section, a fixed λT captures the latency in limit order book adjustment. It

also seems reasonable that the price impact factor λT is fixed in short intervals when

all market orders are anonymous. In practice traders break their large meta-orders

into small trades and execute over time. The small trades are all stochastically

sequenced together and there is no clear start or end of a trading round. It is unlikely

that the limit order submitters would be able to infer the originator of orders and

change pricing function accordingly, especially in very short intervals.

Lemma 1.2.1. In the benchmark model, t0 = 0, t1 = 1−, and t2 = 1. Given

Assumption 1, the traded prices are

p1− = p0 + λTu (1.2.8)

p1 = p1− + λT (x+ z − u) = p0 + λT (x+ z) (1.2.9)

It might seem that the execution price p1 for the informed and noise traders

are not affected by the fast trader’s trading u because the fast trader completely

liquidates her position at time 1. The observation, however, is not correct because

in equilibrium the price impact factor λT is endogenously determined by the fast

trader’s trading intensity. We now examine the equilibrium.

Theorem 1.2.2 (Equilibrium of the benchmark model). Given Assumption
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1, there is a unique equilibrium where

Fast trading size: u∗ = U(Iy; p0, λ
T ) = αŷ = αρIy (1.2.10)

Informed trading size: x∗ = X(v; p0, λ
T ) = β (v − p0) (1.2.11)

Market order pricing: ptj = P (yj, ptj−1
) = ptj−1

+ λTyj (1.2.12)

Initial quote: p0 = v0 (1.2.13)

Final quote: p1+ = Q(u, y − u) = p0 + λPy (1.2.14)

The endogenous parameters α, β, λT , and λP are:

α =
1

2
, β =

σz
σv
θ, λT =

σv
σz

1

2θ
, λP =

σv
σz

θ

1 + θ2
(1.2.15)

where the market quality parameter

θ ≡
√

1− ρ/4
1 + ρ/4

∈ [
√

0.6, 1] (1.2.16)

Proof. See Appendix A.1. The proof covers the more general case where the fast

trader is risk averse with an exponential utility functions. Theorem 1.2.2 here is a

special case when risk aversion coefficient equals zero.

1.2.5 Equilibrium analysis

The strategy functions X(·), U(·), and Q(·) are all linear if the pricing function

P (·) is linear. The equilibrium is then fully characterized by the four endogenous

parameters α, β, λT , and λP illustrated in Figure 1.2:

The parameter α is fast trader’s trading intensity. The fast trader first observes

a signal Iy of the incoming order flow y and estimate the order flow to be ŷ = ρIy.
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Then, the fast trader choose to trade u = αŷ shares at time 1− and −αŷ at time 1.

A higher intensity α indicates that the fast trader trades more given an estimated

order flow ŷ.

Trading intensity β characterizes the informed trader’s strategy. The informed

trader first calculates the pricing error v − p0 using her private information v and

the initial quote p0. She then submits a market order of x = β(v − p0) shares. A

higher β indicates that the informed trader trades more aggressively based on the

same pricing error v − p0.

The parameter λT represents the temporary price impact per share of an market

order on the transaction price pt.
10 Transaction price responds to the order flow

according to the pricing function ∆pt = λTyt. Effectively, market makers charge

λTy2 to execute a market order of y shares. Competitive market makers set λT

just enough such that their revenues for executing trades exactly offset their loss in

trading with the informed and the fast trader. A higher λT means that it costs more

to execute a market order of any given size.

The slope λP represents the permanent price impact per share on the final

quote p1+ of the aggregated order size x + z. The difference between the closing

quote p1+ and the opening quote p0 equals λP (x+ z). Because market makers are

competitive, the quote update p1+ − p0 is determined by the information content

of the order flow x+ z. A higher λP indicates that the aggregate order flow x+ z

contains more information about the fundamental value v and thus the quote update
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∆p
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p1+ πF

O

A B

C

Figure 1.2: Equilibrium strategies. ∆p = λy is the pricing function without fast trader.

When a fast trader is present, market makers raise λT and lower λP . At time 0, market

makers set p0 and λT ; at time 1−, the fast trader trades u = ŷ/2 shares at price p1− =

p0 + λTu; at time 1, the informed trades x shares, the noise traders z shares, and the fast

trader −u shares at the price p1 = p1− + λT (x + z − u) = p0 + λT y; finally at time 1+,

market makers set the quote to p1+ = p0 + λP y. The shaded rectangle is the fast trader’s

profit πF . Its area is 1/4 of rectangle OABC which corresponds to market makers’ price

impact surplus λT ŷ2.
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p1+ − p0 is more sensitive to x+ z.

The fast trading intensity α always equals 1/2. Both the fast trader and

the informed trader are risk neutral, strategic, and monopolistic. They maximize

expected profit by pushing the price half way toward the level at which they expect

to exit their positions.11

The other three endogenous parameters β, λT , and λP are determined by three

exogenous parameters: volatility of the fundamental value σv, volatility of noise

trading σz, and information quality of the fast trader ρ ∈ [0, 1]. The equilibrium

effects of σz and σv are similar to the Kyle (1985). In addition, we can set σv = σz = 1

by choosing certain units of currency and trade size.

Fast trader’s information quality ρ, however, is invariant to change of units.

When the fast trader has no information (ρ = 0), the equilibrium reduces to the

equilibrium of the static model of Kyle (1985). When the fast trader has some

information ρ > 0, the equilibrium differs qualitatively.

Corollary 1.2.3. Other things equal, when the fast trader’s information becomes

more accurate (ρ ↑), temporary price impact increases (λT ↑), permanent price

impact decreases (λP ↓), informed trading intensity declines (β ↓), and the fast

trading intensity α is unchanged.

10 λT is not entirely temporary. It includes the permanent price impact λP .
11 When the fast trader is risk averse, her trading intensity is indeed lower when σv ↑, σz ↑, or

her information quality ρ ↓. See Appendix A.1 for a generalize Theorem where the fast trader has

a negative exponential utility and Appendix A.1.4 for a brief discussion of the equilibrium impact

of the fast trader’s risk aversion.
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Proof. Follows from Theorem 1.2.2.

Figure 1.3 illustrates the equilibrium impact of fast trader’s information quality

ρ. Due to the existence of fast traders, market makers cannot break-even if they set

the price p1 to equal their posterior expectation. The fast trader profitably intercepts

u shares of the order flow x + z: she acquires u shares from market makers at a

discounted price p1− and supplies the shares back to the informed and noise traders

at a profit. To make up for the loss to the fast trader, market makers have to charge

more to absorb the same order imbalance. They raise the temporary price impact

factor λT above the permanent price impact λP implied by the informativeness of

the order flow. Market makers’ break-even price at time 1 thus differs from their

posterior conditional expectation.

When the signal Iy is more accurate signal (ρ ↑), the fast trader makes more

profit. Market makers raise the temporary price impact (λT ↑) more to break even.

The informed trader responds by reduce her trading intensity (β ↓). Because the

informed trader’s order x is the only informative component of the order flow x+ z,

the aggregate order flow x+ z becomes less informative (λP ↓).

This section develops the benchmark model with one fast trader and illustrates

that the fast trader can profit on a less accurate signal Iy if she is faster than others.

In addition to the “information rents”, market makers have to pay the “speed rents”.

Because market makers are not the fastest, they protect themselves by setting a

steeper pricing schedule. The informed traders reduce her trading intensity faced

with a higher cost of transacting. These results are not surprising given the assumed

26



behavior of the fast traders. Profits attract the entry of similar fast traders. How

does the equilibrium change if more fast traders compete? In the next section, I

develop the general model in which multiple strategic front-runners with different

speeds compete.

0 0.2 0.4 0.6 0.8 1

0.5

0.55

0.6

0.65

Te
mp

or
ar
y
pr
ice

im
pa
ct
λ
T

Permanent price impact λP

Fast trader’s information quality ρ

(a) Equilibrium price impact /σv
σz
.

0 0.2 0.4 0.6 0.8 1

0.5

0.6

0.7

0.8

0.9

1
Informed trading intensity β/ σz

σv

Fast trading intensity α

Fast trader’s information quality ρ

(b) Equilibrium trading intensity

Figure 1.3: Equilibrium parameters of the benchmark model normalized by volatility

of fundamental value σv and volatility of noise trading σz. Theorem 1.2.2 implies that

when the fast trader’s information Iy is more informative (higher ρ) about the incoming

order, temporary price impact per share λT increases, permanent price impact per share

λP decreases, informed trading intensity β decreases, and fast trading intensity α stays

the same.

1.3 Model of multiple fast traders

In the benchmark model, after controlling for noise trading volatility σz and

fundamental uncertainty σv, the monopolistic fast trader’s information quality ρ
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fully characterizes the equilibrium. I now consider the case in which multiple high

frequency traders with different speeds compete in the same market. I characterize

the equilibrium with multiple fast traders and examine parameters that affect the

equilibrium apart from the fast traders’ information quality ρ.

1.3.1 Generalized model setup

Normal-speed traders have the same action timings as in the benchmark model:

the informed and noise traders trade once at time 1; market makers set the pricing

function P (·) at time t0 = 0 and update the quote to p1+ when the trading round

ends.

I modify the timeline to accommodate multiple fast traders. There are N

strategic fast traders. As in the benchmark model, each fast trader is able to trade

twice until time 1 and fast traders are not allowed to carry inventory after time 1.

At time 0+ a signal Iy = y + ey with exogenous quality ρ = Corr2(Iy, y) ∈ (0, 1] is

generated. To focus on the effect of speed differences, the same signal is distributed

to all N fast traders.12

Each fast trader receives the signal Iy with different delays, analyzes it at

different speeds, and submits an order with different latencies. Fast traders’ orders

also suffer from latencies but their latencies are much shorter than normal-speed

traders’. Between time 0+ and time 1, fast traders’ orders sequentially arrive in

12 Possible information cascades phenomena as in Bikhchandani, Hirshleifer and Welch (1998) are

not modeled because the common signal assumption makes it unnecessary for slower fast traders to

learn from earlier trades.
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J instants 0+ < t1 < t2 · · · < tJ < 1. At time tj, nj orders arrive simultaneously.

Naturally N =
∑

j nj. The speed of a fast trader is measured by the her order

arrival time tj. The difference between tj and 0+ includes the signal transmitting

time, the signal processing time, and her order latency. A fast trader is indexed by

j ∈ {1, 2, · · · , J} and k ∈ {1, 2, · · · , nj}.

Definition 1.3.1 (Speed profile of fast traders). The speed profile of fast traders

is a vector of J numbers {n1, n2, · · · , nJ} where nj ≥ 0 is the number of fast traders

arriving at time tj. The speed profile is common knowledge among all traders.

Two special speed profiles are particularly important because their equilibrium

properties are on the two extremes among all possible speed profiles.

Definition 1.3.2 (Stackelberg-N speed profile). Each of the N fast traders arrives

at a different moment and the speed profile is {1, 1, · · · , 1}.

Definition 1.3.3 (Cournot-N speed profile). All N fast traders arrive at the same

time and the speed profile is {N}.

Upon arriving at time tj, fast trader (j, k) uses all available information,

including the signal Iy and the last traded price ptj−1
, to chooses a trade size uj,k. I

introduce two notations of fast traders’ order sizes: uj denotes the total order size

from fast traders arriving at time tj and Sj−1 denotes the total order size from fast

traders arriving before time tj.

Definition 1.3.4 (Fast traders’ order sizes). For j = 1, 2, · · · , J ,

uj ≡
nj∑
k=1

uj,k, Sj−1 ≡
j−1∑
i=0

ui =

j−1∑
i=0

ni∑
k=1

ui,k (1.3.1)
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u0,k = 0 and n0 = 1 for completeness.

Since fast traders could not carry inventory beyond time 1, each fast trader

must completely exit her position uj,k using the second trade. When is the best time

to exit? In the benchmark model the monopolistic trader exits at time 1 because

exiting any earlier would make her profit zero. When there are multiple fast traders,

it is still optimal for all fast traders to exit at time 1 simultaneously. All fast traders

have the same information and same preference (risk neutral). A fast trader arriving

earlier knows that a later fast trader would only enter a position if it is profitable. If

it is profitable for a later fast trader to enter, then it is profitable for the earlier fast

trader to wait. Hence all fast traders liquidate at time 1 when they cannot wait any

longer. The time 1 net order flow is y −∑j,k uj,k.

Market makers observe J + 1 net market orders {u1, u2, · · · , uJ , y −
∑

i ui}

at J + 1 moments {t1, t2, · · · , tJ , 1}. They execute the orders at the prices of

{pt1 , pt2 , · · · , ptJ , p1} according to the pricing function P (·) set at time 0.

1.3.2 Equilibrium

Equilibrium conditions differ from Definition 1.2.1 only in the condition about fast

traders. I select the symmetric equilibrium where fast traders arriving at the same

time trade the same quantity.

Definition 1.3.5 (Modified equilibrium condition for fast traders). Given

the pricing function P (·), the informed trader’s strategy X(·), a signal Iy = y + ey

about the incoming order flow y, the price of the last trade ptj−1
, and strategies
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Uj,l() of other fast traders (l 6= k) arriving simultaneously at time j, fast trader (j, k)

maximizes her profit πFj,k if she trades u∗j,k shares at time tj and liquidate her position

at time 1, i.e.,

u∗j,k = Uj,k(Iy, ptj−1
;P (·), X(·), Uj,l(·) for l 6= k) (1.3.2)

= argmax
u

E
[
πFj,k = u(p1 − ptj)

∣∣Iy, P (·), X(·), ptj−1
, Uj,l(·) for l 6= k

]
In the symmetric equilibrium u∗j,k = u∗j,l for all j ∈ {1, 2, · · · , J} and k, l ∈

{1, 2, · · · , nj}.

Theorem 1.3.1 (Equilibrium with oligopolistic fast traders). Given a linear

pricing function as in Assumption 1, there is a unique symmetric equilibrium where

(j, k)-th fast trading size: u∗j,k = Uj,k (ŷ, Sj−1) =
αj
nj

(ŷ − Sj−1) (1.3.3)

Informed trading size: x∗ = X(v, p0) = β (v − p0) (1.3.4)

Pricing function: ptj = P (yj, ptj−1
) = ptj−1

+ λTyj, (1.3.5)

Initial quote: p0 = v0 (1.3.6)

Final quote: p1+ = Q(u, y − u) = v0 + λPy (1.3.7)

for all 1 ≤ j ≤ J and 1 ≤ k ≤ nj. The endogenous parameters αj, β, λ
T , and λP

are:

αj =
nj

1 + nj
, β =

σz
σv
θ, λT =

σv
σz

1

2θ
, λP =

σv
σz

θ

1 + θ2
(1.3.8)

where

θ =

√
1− ργ
1 + ργ

, γ =
J∑
j=1

(
αj(1− αj)

j−1∏
i=0

(1− αi)2

)
(1.3.9)
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Let α0 = 0 for completeness.13

Proof. See Appendix A.2.2.

Remark 1.3.1. When there is only one fast trader, J = 1, n1 = 1, and γ = 1/4.

Equilibrium reduces to the special case given in Theorem 1.2.2.

Remark 1.3.2. Observing the last traded price ptj−1
is equivalent to observing the

shares trade by earlier fast traders Sj−1 because ptj−1
= p0 + λTSj−1. In addition,

ŷ = E[y|Iy] = ρIy. So the fast trader’s strategy can be equivalently expressed as

u∗j,k =
αj
nj

(
ρIy −

ptj−1−p0

λT

)
. In equilibrium, since all fast traders observe the same

signal Iy, each fast trader can calculate the earlier fast traders’ order sizes. Hence,

they do not have to observe the last traded price.

Remark 1.3.3. As discussed in the benchmark model, one can always set σv = σz = 1

by changing the units of currency and order size. In the following discussion, the

effects of σv and σz are normalized.

Fast trader (j, k) is k-th of the nj fast traders arriving at time tj. Each of the

nj traders acts like a Cournot competitor and trades 1
nj+1

of the residual incoming

order size ŷ− Sj−1. After time-tj fast traders trade uj shares, the residual order flow

is reduced to ŷ − Sj = ŷ − Sj−1 − uj. Traders arriving next at time tj+1 follow a

similar Cournot strategy and trade
nj+1

1+nj+1
of the residual order flow ŷ − Sj. Figure

1.4 illustrates the equilibrium strategies when the speed profile is {2, 1}.
13 ρ ∈ [0, 1] by definition. Proposition A.3.1 on page 126 proves that 0 ≤ γ < 1 for any J ≥ 0.

Hence, θ is well defined.
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∆p
= λy

p0

∆p
= λ

T y

∆p
= λ

P y

u1

pt1
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pt2

ŷ

p̂1

p1+

πF1 πF2

O
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C

Figure 1.4: Equilibrium strategies when speed profile is {2, 1}. ∆p = λy is the pricing

function without fast trader. When fast traders are present, market makers raise λT and

lower λP . At time 0, market makers set p0 and λT ; at time t1, two fast traders arrive

and together trade u1 = 2ŷ/3 shares at price pt1 = p0 + λTu1; at time t2, one fast trader

trades u2 = ŷ/6 shares at price pt2 = p0 + λT (u1 + u2); at time 1, the informed trades x

shares, the noise traders trade z shares, and the fast traders −u1 − u2 shares at the price

p1 = p0 + λT y; at time 1+, market makers set the quote to p1+ = p0 + λP y. The shaded

rectangles are the profits of the two groups of fast traders πF1 and πF2 . The sum of πF1

and πF2 equals 1/4 of rectangle OABC which corresponds to market makers’ price impact

surplus λT y2.
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Normal-speed traders’ strategies X(·), P (·), and Q(·) and the choice parameters β,

λT , and λP in Eq.(1.3.8) have exactly the same functional forms as in the benchmark

model of Theorem 1.2.2. The key difference between the benchmark model and the

general model lies in the new parameter γ.

Definition 1.3.6 (Speed friction γ). Given a speed profile {n1, n2, · · · , nJ} of

fast traders, the speed friction is defined as follows

γ =
J∑
j=1

(
αj(1− αj)

j−1∏
i=0

(1− αi)2

)
(1.3.10)

where αj =
nj

1+nj
for all 1 ≤ j ≤ J . Proposition A.3.1 shows that γ ∈ [0, 1).

Speed friction γ is the crucial parameter that summarizes all equilibrium-

relevant information in the profile of fast traders’ relative speeds. Roughly speaking,

speed friction γ is increasing in the heterogeneity of fast traders’ relative speeds. For

example, we calculate the speed friction for several special types of speed profile as

follows.

Proposition 1.3.2. Speed friction γ is easily calculated from Definition 1.3.6.

1. Monopoly speed profile {1}. γ = 1
4
.

2. Stackelberg-N speed profile {1, 1, · · · , 1}. γ = 1
3

(
1− 1

4N

)
.

3. Cournot-N speed profile {N}. γ = N
(1+N)2 .

Fast traders have more heterogeneous speeds in a Stackelberg speed profiles

than in a Cournot speed profile. And we can see that given the number of fast
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traders, a Stackelberg speed profile has higher speed friction than the Cournot speed

profiles.

Before investigate the properties of speed friction γ in detail, let’s first examine

its impact on equilibrium parameters. Speed friction γ and fast traders’ information

quality affect equilibrium through their impact on θ. Later, we will see that that

market quality is better when θ is higher.

Definition 1.3.7 (Market quality parameter θ).

θ ≡
√

1− ργ
1 + ργ

∈ [0, 1] (1.3.11)

where ρ is fast traders’ information quality and γ is the speed friction.

Proposition 1.3.3. Keeping σv and σz constant, when speed friction decreases (γ ↓)

or fast traders’ information becomes less accurate (ρ ↓), market quality parameter

goes up (θ ↑), informed trading intensity goes up (β ↑), temporary price impact

declines (λT ↓), and permanent price impact increases (λP ↑). Fast trading intensity

αj is not affected.

Proof. Follows from Theorem 1.3.1.

For given levels of uncertainty σv and σz, market quality parameter θ fully

characterizes the equilibrium for normal-speed traders. By definition, market quality

θ is solely determined by ργ, the product of fast traders’ information quality and

speed friction γ. Therefore, in equilibrium normal-speed traders only care about fast

traders’ information precision ρ and speed friction γ after controlling for σv and σz.
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Figure 1.5 illustrates the impact of fast traders’ information quality ρ and speed

friction γ on equilibrium parameters.14
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Figure 1.5: Equilibrium parameters of the general model normalized by volatility

of fundamental value σv and volatility of noise trading σz. Theorem 1.3.1 shows that

equilibrium is characterized by ργ where ρ ∈ [0, 1] is fast traders’ information quality and

γ ∈ [0, 1] is level of speed friction. Market quality parameter θ, informed trading intensity

β, and permanent price impact λP are decreasing in ργ; whereas temporary price impact

λT is increasing in ργ.

14 Because speed friction γ = 1/4 when only one fast trader is present, in the benchmark model,

equilibrium market quality θ =
√

1−ρ/4
1+ρ/4 is determined only by ρ.
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1.3.3 Discussion on ργ as a speed tax rate

Intuitively, fast traders levy a “speed tax” on the market makers with ργ being

the effective expected tax rate. When market makers receive an order of y shares,

they mark the price up by λTy and fill the order. The price impact surplus for

executing the trade is λTy2. Market makers use the surplus to offset the loss to the

informed trader and to pay the speed tax to fast traders. Later we will see that fast

traders’ aggregate profit is γE[λT ŷ2] = ργE
[
λTy2

]
. Conditional on her signal Iy,

fast traders take away a fraction γ of the expected price impact revenue E[λT ŷ2]. As

shown in Figure 1.2, the monopolistic fast trader takes away 1/4 of the total price

impact revenue and thus γ = 1/4 for the benchmark model. Unconditioned on Iy,

the effective tax rate on market makers’ price impact surplus is ργ.15

We can write an alternative model of financial transaction tax with this intuition.

Suppose after a trading round, with probability ρ market makers are taxed at the

rate of γ on their price impact surplus λTy2. This setup would generate the same

equilibrium strategies for the informed trader and market makers.

The effective tax rate ργ goes down either because fast traders have less

accurate signal (ρ ↓) or fast traders take away a smaller fraction (γ ↓) of market

makers’ price impact revenue. When the speed tax rate drops (ργ ↓), market makers

are able to use a larger fraction of the surplus E[λTy2] to cover loss to the informed

trader. Competition among market makers then drives down the temporary price

15 Subrahmanyam (1998) models the impact of a quadratic financial transaction tax levied on

the informed and noise traders’ orders.
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impact λT . Seeing a lower cost to trade (λT ↓), the informed trader increases trading

intensity (β ↑). As a result, the aggregate order flow contains more orders from the

informed trader. The permanent price impact λP increases since the order flow is

more informative.

1.4 Speed competition among fast traders

While they are already much faster than most other traders, HFTs keep invest-

ing in the latest speed technology to shave a few millisecond or even microseconds off

the latency. They co-locate computers with the exchange’s central matching engine;

they build fiber optic cables under the Arctic ocean; they build algorithms directly

into the hardware. Such investment is driven by the competition among peer HFTs.

The exchanges seem to be catering to the incessant demand for speed. They

continue to reduce latencies of order processing; they build large data centers and

lease co-location spots to traders; they provide sophisticated order types to facilitate

faster and conditional order execution; and they provide faster data feeds with

increasing granularity.

Regulators or market designers can introduce new rules to mitigate the impact

of front-running. The impact of such rules on normal-speed traders boils down to their

effects on fast trader’s information quality ρ and the speed friction γ. It is relatively

easy to conjecture a policy measure’s impact on ρ. In this section, I investigate

the properties of speed friction and examine the effect of speed competition on fast

traders and on normal-speed traders. Specifically, I address the following questions:
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(1) Why is speed vital to HFTs? (2) How does increased speed competition among

HFTs affect speed friction γ?

1.4.1 Fast traders’ profits and relative speeds

We can calculate the expected profit of all fast traders from Theorem 1.3.1.

Proposition 1.4.1 (Fast traders’ profit). In equilibrium, the expected profit of

fast trader (j, k) is

E
[
πFj,k
]

=
σvσz

2
× ρ

(
1

θ
+ θ

)
αj(1− αj)

nj

j−1∏
i=0

(1− αi)2 (1.4.1)

The profit of all fast traders arriving at time tj is

nj∑
k=1

E
[
πFj,k
]

=
σvσz

2
× ρ

(
1

θ
+ θ

)
× αj(1− αj)

j−1∏
i=0

(1− αi)2 (1.4.2)

and the profit of all fast traders is

E
[
πF
]

=
∑
j,k

E
[
πFj,k
]

=
σvσz

2
× 1− θ2

θ
(1.4.3)

where θ =
√

1−ργ
1+ργ

, αj =
nj

1+nj
, and nj is the number of fast traders of the j-th fastest

speed as in Theorem 1.3.1.

Proof. See Appendix A.2.3.

Not surprisingly, aggregate fast trading profit E[πF ] is increasing in the effective

speed tax rate ργ. Fast traders also make more profits when there is more uncertainty

about the fundamental value (σv ↑) or there is more noise trading (σz ↑). Fast traders’

profits come from the price impact of others’ trades. When there is more fundamental
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uncertainty (σv ↑), the price impact of trades is higher and front-running an order

of given size is more profitable. When there is more noise trading (σz ↑), trading

volume is higher and there are more orders to front-run.16

For an individual fast trader (j, k), the expected profit E[πFj,k] depends not on

her absolute speed but on her relative speed. As long as nj fast traders arrive at a

time in (tj−1, tj+1), their speed ranking stays the same and their expected profits do

not change.17

Proposition 1.4.2 (Fast traders’ profits and relative speed). Suppose nj > 0

fast traders arrive at time tj and nj+1 > 0 arrive at time tj+1. Then,

Expected profit of all fast traders at time tj
Expected profit of all fast traders at time tj+1

=
nj(1 + nj+1)2

nj+1

≥ 4

Expected profit of one fast trader at time tj
Expected profit of one fast trader at time tj+1

= (1 + nj+1)2 ≥ 4

The ratios are minimized when nj = nj+1 = 1.

Proof. Follows from Eq. (1.4.2) of Proposition 1.4.1.

Speed establishes a pecking order. Fast traders have very strong incentives

to be relatively fast because higher speed translates to a two-fold advantage: faster

traders are able to acquire larger positions at better prices. For example, if each fast

16 This is consistent with the popular belief: “... two things [HFT] needs the most: trading

volume and price volatility”, Bloomberg Businessweek, http://goo.gl/NEQOV
17 In this model fast traders’ arrival timings are deterministic. Absolute speed could also matter

when arrive times are random because a larger advantage in absolute speed translates to a higher

probability of arriving earlier.
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trader has a different speed, then the j-th fast trader could pick up twice as many

shares as the (j + 1)-th fast trader and the price discount is twice as large. As a

result, a fast trader could quadruple her expected trading profits by moving up one

spot in the speed ranking among fast traders. Consistent with the model prediction,

Baron et al. (2012) find aggressive HFTs’ profits increase with their relative speeds.

The increasing return to being relatively fast offers one explanation of high

frequency traders’ obsession with speed. It might also explain the exchanges’ motive

to increase the trading frequency. Higher trading frequencies tend to create more

space for speed competition. For example, suppose the informed and noise traders’

latency is 1 second. If the trading platform allows 10 trades per second, fast traders

would have the highest profit if their orders arrive within the first 0.1 second. Suppose

the exchange upgrade the trading platform. Normal-speed traders’ latency is 0.1

second and the trading frequency is 1000 times per second. Then fast traders need

to arrive within the first 0.001 second to reap the highest profit. Exchange could

extract large rents by offering tiered access speeds to the markets.

1.4.2 Speed competition and speed friction γ

I have shown that the fast traders have strong incentives to engage in speed

competition because their profits decay rapidly as they go down in the speed ranking.

The impact of speed competition is not limited to fast traders. In this section, I

show that speed competition among fast traders affects speed friction γ and in turn

affects normal-speed traders by changing the effective speed tax rate ργ.
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Roughly speaking, speed friction γ increases with the heterogeneity of fast

traders’ relative speeds. Recall that the speed profile {n1, n2, · · · , nJ} describes the

number of fast traders arrive at each of the J moments and speed friction γ is defined

as

γ =
J∑
j=1

(
αj(1− αj)

j−1∏
i=0

(1− αi)2

)
(1.4.4)

where the equilibrium fast trading intensity is αj =
nj
nj+1

for all j. Speed friction γ is

not affected by other exogenous parameters σv, σz, v0, or ρ. It is determined solely

by fast traders’ speed profile {n1, n2, · · · , nJ}.18

Definition 1.4.1 (Equivalent speed profiles). Two speed profiles are equivalent

if they have the same speed friction γ.

Proposition 1.4.3. Adding 0 to (or removing 0 from) a speed profile does not change

speed friction.

Proof. {n1, n2, · · · , nj−1, 0, · · ·nJ} and {n1, n2, · · · , nj−1, nj+1, · · ·nJ} are equivalent

speed profiles because setting nj = 0 is equivalent to remove all nj related terms

from γ.

Proposition 1.4.4. Only the relative speeds of fast traders affect the speed friction

γ.

Proof. Follows from Proposition 1.4.3 because changing absolute speed without

changing relative speed is equivalent to changing the ranking of some 0s in the speed

profile.

18 If fast traders are risk averse, ρ and γ become codependent through αj (Appendix A.1).
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The two results simplify analysis on speed friction γ. For example, consider

three speed profiles {1, 0, 0, 0, 2}, {1, 0, 2}, and {0, 0, 0, 1, 2}. At the first glance they

look quite different. In the three profiles, fast traders arrive at different times and

the speed differences between the two groups of fast traders are not the same. The

speed profiles, however, are all equivalent because after removing the 0s they all

reduce to the speed profile {1, 2}. The equilibrium is exactly the same as long as 1

trader is the fastest and 2 traders are the second fastest.

Example 1: We illustrate the effect of speed competition on fast traders’ profit and

on the overall speed friction with an example. The example is illustrated in Figure

1.6. Suppose four fast traders, A,B,C, and D, are trading.

1. Initially four traders have the same speed and the starting speed profile is

Cournot {4}. The speed friction γ = 4
25

= 0.16. All traders make the same

expected profit.

2. Suppose the exchange increases the trading frequency. Trader A, B, and C

subscribe to the upgraded co-location service. The speed profile becomes {3, 1}

and the speed friction γ increases to 13
64
≈ 0.20. According to Proposition 1.4.2,

trader A,B, and C each makes 4 times as much profit as trader D. The ratio of

the four traders’ profits is 4 : 4 : 4 : 1.

3. Suppose trader A purchases the most advanced computer and becomes even

faster than B and C. The speed profile becomes {1, 2, 1} and the speed friction

γ increases to 0.31. The ratio of the four traders’ profits is 36 : 4 : 4 : 1.
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4. Suppose trader B improves the algorithm and becomes faster than C but is

slower than A. The speed profile becomes Stackelberg {1, 1, 1, 1} and the speed

friction γ further increases to 0.33. The ratio of the four traders’ profits is

64 : 16 : 4 : 1.
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γ = 0.16

E
x
p

ec
te

d
P

ro
fi

t

Speed profile {4}

A B C D

γ = 0.20

Speed profile {3 1}

A B C D

γ = 0.31

Speed profile {1 2 1}

A B C D

γ = 0.33

Speed profile {1 1 1 1}

Figure 1.6: Effect of speed competition on fast traders’ profits.

We see from the example that fast traders have strong incentive to become

relatively faster. As the trading frequency increases, fast traders race to step ahead.

Normal-speed traders could experience higher or lower speed frictions depending on

how the speed profile evolves.

Example 2: Equation (1.4.4) is all one needs to compute the speed friction γ of

any given speed profile. For example, suppose 3 fast traders are in the market. We

know from Proposition 1.4.3 and 1.4.4 that all speed profiles can be reduced to one
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of {1, 1, 1}, {1, 2}, {2, 1}, and {3}. Their speed frictions are:

Stackelberg-3 profile {1, 1, 1} : γ{1,1,1} =
1

2

(
1− 1

2

)
+

1

2

(
1− 1

2

)(
1− 1

2

)2

+
1

2

(
1− 1

2

)(
1− 1

2

)4

=
21

64

Profile {1, 2} : γ{1,2} =
1

2

(
1− 1

2

)
+

2

3

(
1− 2

3

)(
1− 1

2

)2

=
11

36

Profile {2, 1} : γ{2,1} =
2

3

(
1− 2

3

)
+

1

2

(
1− 1

2

)(
1− 2

3

)2

=
1

4

Cournot-3 profile {3} : γ{3} =
2

3

(
1− 2

3

)
=

2

9

We have two important observations from the example and it turns out they

are true in general.

1. Because γ{1,1,1} > γ{1,2} > γ{2,1} > γ{3}, the Cournot-3 speed profile {3} has

the lowest speed friction γ and the Stackelberg-3 speed profile {1, 1, 1} has the

highest among all possible speed profiles with 3 fast traders.

2. Recall that in the monopoly fast trader model, speed friction γ = 1
4
. Here,

γ{1,1,1} > γ{1,2} > γ{2,1} = 1
4
> γ{3}. When 3 fast traders compete, the speed

friction γ can be higher, equal, or lower than the speed friction when there is

only one monopolistic fast trader.

Remark 1.4.1. Speed friction γ is increasing in the heterogeneity of fast traders’

relative speeds. So γ{1,1,1} > γ{2,1} > γ{3}. Speed friction γ includes additional

information about the competition among fast traders. For example, speed profile

{2, 1} and {1, 2} have the same speed heterogeneity but γ{2,1} < γ{1,2}. Intuitively,

increased competition at time t1 reduces aggregate fast trading profits more because

fast traders at time 1 are more profitable.
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Proposition 1.4.5. Suppose N fast traders are in the market.

1. Speed friction γ is maximized if every fast trader has a different speed. γ ≤

γ{1,1,··· ,1} = 1
3

(
1− 1

4N

)
.

2. Speed friction γ is minimized if every fast trader has the same speed. γ ≥

γ{N} = N
(1+N)2 .

Proof. See Appendix A.3.3.

Proposition 1.4.6. Suppose one new fast trader enters the market.

1. If the new fast trader has the same speed as some existing fast traders, after

the entry, speed friction γ declines; 19

2. If the new fast trader has a different speed from all existing fast traders, after

the entry, speed friction γ increases.

Proof. See Appendix A.3.2.

The entry of fast traders can increase or decrease the level of speed friction γ

depending on the entrant’s speed relative to existing fast traders.

19 When fast traders are risk averse, same speed entries could increase speed friction. Intuitively,

two risk averse Cournot fast traders in aggregate may trade like a monopolistic risk neutral fast

trader. A risk averse fast trader chooses a trading intensity α lower than the risk neutral monopoly

level of 1/2. As more of such risk averse fast traders enter, their aggregate trading intensity increases

and could be closer to 1/2. Eventually, however, α keeps increasing beyond 1/2 when more such

fast traders enter. Speed friction γ keeps dropping and converges to the same limit as the risk

neutral case.
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On one hand, suppose all existing fast traders and entrants have the same speed.

Then, as new fast traders enter, they form a series of Cournot-N speed profiles. As

N increases, the speed friction γ = N
(N+1)2 keeps dropping and converges to zero

when N →∞. Intuitively, when fast traders have the same speed, they compete on

quantity in a Cournot competition. When more fast traders are present, they bid

up their entry price (when they buy). The profit margin becomes smaller and their

aggregate profits keep declining. Aggregate fast trading profits become a smaller

fraction γ of market makers’ expected price impact revenue. Since the effective speed

tax rate ργ decreases, market makers pay less speed tax to fast traders and they

can lower the temporary price impact amplifier λT/λP . In the limit when N →∞,

speed tax goes to zero and λT/λP → 1. The impact of fast traders vanishes. 20

On the other hand, suppose every entrant has a different speed. Then, as new

fast traders enter, they form a series of Stackelberg-N speed profiles. The speed

friction γ = 1
3

(
1− 1

4N

)
keeps increasing with N and converges to 1

3
as N → ∞.

Intuitively, each new fast trader is a local monopoly before the next trader arrives.

Each of them trades away half of the residual order ŷ − Sj−1 and makes 1
4
ρ of

the residual profits. Multiple fast traders effectively split a large trade into small

pieces and march along the supply curve. A series of monopolies are worse than one

monopoly fast trader because their combined speed is higher than the speed of any

individual fast trader. In aggregate, fast traders have more trading opportunities in

a trading round. Although fast traders do not collude, in aggregate they are more

20 Brunnermeier and Pedersen (2005) find that when infinitely many predators compete, their

effect vanishes because predators effectively have the same speed in their model.
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profitable. The market does not break down as N →∞ because the effective speed

tax rate ργ < ρ
3
< 1. Market makers can still afford to pay the speed tax and cover

their loss to the informed trader by raising the temporary price impact λT . Entry

of more fast traders does not drive the total speed tax to zero. It only drives the

slowest fast trader’s profit to zero.21

Figure 1.7 illustrates an example. Starting from the profile {2, 1}, speed friction

γ keeps declining if new entrants all have the same speed as the fastest trader. The

speed profile evolves from {2, 1} to {3, 1}, {4, 1}, {5, 1}, and so on. Speed friction γ

becomes closer to the Cournot-N lower bound.

Alternatively, if every new entrant is faster than all existing traders, speed

friction γ keeps increasing. The speed profiles evolves from {2, 1} to {1, 2, 1},

{1, 1, 2, 1}, {1, 1, 1, 2, 1} and so on. Speed friction γ approaches the Stackelberg-N

upper bound very quickly.

Remark 1.4.2. Entry of multiple fast traders at one new speed could reduce speed

friction. For example, if an infinite number of traders with the highest speed enter,

then speed friction γ goes to zero. A change from speed profile {n1, n2 = 0, n3} to

speed profile {n1, n2 = n, n3} can be achieved in multiple steps by adding 1 to n2 in

each step. The first entry changes n2 from 0 to 1 and it increases speed friction γ;

the subsequent entries at t2 reduce speed friction γ. The net effect depends on the

number of fast traders entering at t2.

21 If N fast traders collude, the key result still holds: allowing them to have different speeds

weakens the price competition among fast traders. When fast traders have different speeds, they
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Figure 1.7: Effect of entry fast traders on speed friction γ. Given the number of

fast traders N , a speed profile’s level of speed friction γ is bounded by Stackelberg-N

from above and by Cournot-N from below. Starting from speed profile {2, 1}, speed

friction γ keeps going down if new fast traders keep entering at t1 and speed profiles

become {3, 1} → {4, 1} → {5, 1} → {6, 1}; whereas speed friction γ keeps increasing

if new fast traders keep entering with higher speeds than existing fast traders and

speed profile becomes {1, 2, 1} → {1, 1, 2, 1} → {1, 1, 1, 2, 1}.
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Without knowing the cost of speed, we cannot pin down the long-term equilib-

rium level of speed friction γ. The following result suggests that under quite general

conditions, the impact of fast traders does not vanish even when infinitely many fast

traders compete.

Proposition 1.4.7 (Speed friction in the limit). Suppose N fast traders are

present and n1 > 0 of the N traders are the fastest. In the limit when N → ∞,

speed friction vanishes if and only if n1 →∞, i.e.,

lim
N→∞

γ = 0 ⇐⇒ lim
N→∞

n1 =∞ (1.4.5)

Proof. See Appendix A.3.4.

Due to physical limits, e.g. the number of co-location spots, only a very limited

number of traders can be the fastest in a continuous market. Even adding infinite

number of traders at the second highest speed would not eliminate speed friction γ.

1.5 Market quality

I have shown that speed competition affects the relative profit of each fast

trader and affects the speed friction γ. In this section, I study how fast traders’

information quality ρ and speed friction γ affect the information aggregation and

liquidity provision functions of a financial market.

extract more aggregate profits than when they have the same speed. See Appendix A.7.
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1.5.1 Information efficiency

In the context of this paper, fundamental value of the risky asset v is the

informed trader’s private information. If people learn more about v by observing the

trading process, the market is more informationally efficient.

Definition 1.5.1 (Information efficiency). Information efficiency at time t is

defined as φt = 1 − Var[v|Ft]
Var[v]

∈ [0, 1] where Ft represents the public information at

time t. Specifically,

Intermediate information efficiency: φt1 = 1− Var[v|Ft1 ]

Var[v]
(1.5.1)

Ex post information efficiency: φ1+ = 1− Var[v|F1+ ]

Var[v]
(1.5.2)

where t1 is the time when the first fast trader arrives.22

Information efficiency φt measures how much uncertainty about the fundamental

value v is resolved by time t. If people have learned the true value v precisely by time

t, then Var[v|Ft] = 0 and information efficiency φt = 1; if people have not learned

any information about v by time t, Var[v|Ft] = Var[v] and φt = 0.

We need two information efficiency measures to describe the information

revealed at different moments of the trading round. The intermediate information

efficiency φt1 measures how much information about v is revealed by the first fast

trader. Because fast traders observe the same signal Iy, no additional information

about v is revealed in the time window (t1, 1). The ex post information efficiency φ1+

22 Variance captures the level of uncertainty about the normally distributed v. For general

distributions, we could use entropy in lieu of variance.
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measures how much information about v is revealed by the end of the trading round.

Proposition 1.5.1 (Equilibrium information efficiency). In equilibrium,

1. intermediate information efficiency φt1 = ρθ2

1+θ2 = ρ(1−ργ)
2

,

2. and ex post information efficiency φ1+ = θ2

1+θ2 = 1−ργ
2

,

Proof. See Appendix A.4.1.

Corollary 1.5.2. Speed friction γ and fast traders’ information quality ρ determine

the information efficiency of the market.

1. When speed friction is higher (γ ↑), intermediate and ex post information

efficiencies are both lower (φ1− ↓ and φ1+ ↓).

2. When fast traders’ information quality is more accurate (ρ ↑), intermediate

information efficiency goes up (φ1− ↑) while ex post information efficiency goes

down (φ1+ ↓).

Proof. Follows from Proposition 1.5.1.

Figure 1.8 illustrates the impact of fast traders’ information quality ρ and

speed friction γ on information efficiency. The intermediate information efficiency

equals a fraction ρ of the ex post efficiency, i.e., φt1 = ρφ1+ . Fast traders effectively

bring part of the information to the market earlier at time t1.

A high speed friction γ impedes informed trading because it raises the temporary

price impact λT . Ex post information efficiency φ1+ is lower because the order flow

contains less orders from the informed trader. The intermediate efficiency φt1 is also
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Figure 1.8: Equilibrium information efficiency. Intermediate information efficiency

φt1 increases with fast traders’ information quality ρ and decreases with speed

friction γ; ex post information efficiency φ1+ decreases with ρ and γ. Intermediate

information efficiency φt1 equals a fraction ρ of the ex post information efficiency

φ1+ for all cases.
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lower because fast traders bring a fixed fraction ρ of the ex post information to t1.

To improve information efficiency we need to lower speed friction γ.

In models of informed trading such as Holden and Subrahmanyam (1992),

Foster and Viswanathan (1996), Back et al. (2000), Bernhardt and Miao (2004),

and Li (2013), an informed trader often ramps up her trading intensity when faced

with the competition from other informed traders with highly positively correlated

information.23 The elevated informed trading intensity then leads to more informative

prices.

In this study, fast traders infer similar but less accurate information about v

from the order flow signal Iy. Yet, faced with the pressure from fast traders, the

informed trader reduces rather than increases her trading intensity. As a result ex

post information efficiency φ1+ is lower.

The opposite impact on ex post information efficiency highlights the difference

between fast traders and competing informed traders. Typically when a informed

trader chooses a trading intensity, she faces the trade-off of price impact and informa-

tion decay. If an informed trader slows down, her private information is traded away

by competing informed traders; if an informed trader speeds up, her price impact is

higher.24

23 Foster and Viswanathan (1996) and Back et al. (2000) show that the trading game eventually

turns into the “waiting game” stage when multiple informed traders refrain from trading. By the

time the game reaches the waiting game stage, however, the informed traders’ residual private

information has become negatively correlated.
24 Kyle, Obizhaeva and Wang (2013) recently develop a continuous time model where every

trader is overconfident, has a flow of private information, and endogenously chooses an optimal
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In this model, the informed trader does not have the incentive to speed up for

two reasons: (1) she cannot reduce information decay by trading more intensively

because fast traders always anticipate the order flow; and (2) if the informed does

not trade, her information is not traded away by fast traders because fast traders

do not have an independent source of information about fundamentals. Hence the

informed trader always slow down the trading in response to a higher temporary

price impact λT . As a result, the more information fast traders know, the slower

the informed trader trades and the less information is revealed by the end of each

trading round.

A higher ρ, however, improves intermediate information efficiency φt1 . Proposi-

tion 1.5.1 shows that φt1 = ρφ1+ . Despite the dampening effect on φ1+ , in equilibrium

intermediate information efficiency φt1 increases with ρ because fast traders bring a

larger fraction ρ of the ex post information to intermediate moments.

Nevertheless, the social value of intermediate information efficiency is ques-

tionable. Intermediate information efficiency could be socially valuable if (1) people

can use the intermediate information to make a welfare enhancing economic decision

and (2) the cost of delaying the decision from time t1 to time 1+ is very high. Both

conditions are unlikely to be true when holding horizons are at the minute or second

level. It is hard to imagine a case when normal-speed traders and outside agents

must use p1− to make economic meaningful decisions. Even if the information is

crucial, they could wait until time 1+ and use a more informative price p1+ . After

all, fast trading is profitable because other traders cannot react fast enough in the

trading speed.
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time window [1−, 1+].

Therefore, although we face a trade-off between intermediate and ex post

information efficiency, from the social welfare perspective, one probably should

not raise ρ to improve the intermediate information efficiency at the expense of ex

post information efficiency. Fast traders’ production of order flow information Iy

is a classic example of socially wasteful production of “foreknowledge” (Hirshleifer

(1971)).

Fast traders make intermediate prices more informative by trading earlier during time

(t1, 1) on a noisy signal Iy. The closing quote p1+ , however, is less informative because

the informed trader reduces trading intensity. Fast traders’ effect on the order flow

is similar to a prying messenger’s effect on a letter. Suppose a messenger (HFT)

glances at a letter (order flow) and summarizes it to the receiver (market) right before

delivering it. The summary (a HFT trade) is informative but its information value is

fleeting: the letter itself is much more informative than the summary. Furthermore,

the sender (the informed) is less likely to write clearly ex ante worrying about privacy

issues and ultimately the receiver (market) is less informed.

In sum, to improve the more economically meaningful ex post information

efficiency, one should try to reduce speed friction γ and fast traders’ information

quality ρ.
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1.5.2 Market liquidity

In this paper, noise traders trade for non-informational motives; a market is

less liquid if noise traders expect to lose more to trade the same number of shares.

Market liquidity also affects the informed trader because trading is anonymous.

Vayanos and Wang (2012) point out that different measures of market liquidity

are designed to capture different market frictions. In the end, however, all the

measures attempt to capture the impact of market friction on traders’ economic

profits. Thus, in addition to the traditional measure λT , I also use normal-speed

traders’ expected profit to measure market liquidity.

Proposition 1.5.3 (Equilibrium expected profits). In equilibrium,

Informed trader’s profit: E
[
πI
]

=
σvσz

2
× θ (1.5.3)

Noise traders’ profit: E
[
πN
]

=
σvσz

2
× −1

θ
(1.5.4)

Fast traders’ total profit: E
[
πF
]

=
∑
j,k

E
[
πFj,k
]

=
σvσz

2
× 1− θ2

θ
(1.5.5)

where θ =
√

1−ργ
1+ργ

as in Theorem 1.3.1.

Proof. See Appendix A.4.2.

Corollary 1.5.4 (Market liquidity and fast trading). Keep σvσz fixed. In

equilibrium, market is less liquid when fast traders’ information becomes more accurate

(ρ ↑) or speed friction goes up (γ ↑): temporary price impact is higher (λT ↑), the

informed trader is less profitable (E[πI ] ↓), and noise traders lose more (E[πN ] ↓).

Only fast traders’ aggregate profit is higher (E[πF ] ↑).
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Proof. Follows from Proposition 1.5.3.

Figure 1.9 illustrates the effect of fast traders’ information quality ρ and the

speed friction γ on market liquidity. When fast traders levy a higher speed tax rate

ργ on market makers’ price impact revenue E[λTy2], market makers raise temporary

price impact λT so that they can still break even. As a result, it becomes harder for

the informed trader to extract rent based on the same information. Noise traders

face less adverse selection because the informed trader trades less. Nonetheless noise

traders suffer more losses to trade the same number of shares. Effectively, noise

traders must pay information rent to the informed trader and speed rent to the fast

trader. The reduction in information rent is not enough to cover the higher speed

rent. Hence, the market is less liquid for the informed and noise traders.

We can also look at the impact of fast trading from a tax incidence perspective.

As discussed earlier, fast trading effectively impose a speed tax on market makers’

price impact revenue. In the model market makers’ demand is the most elastic and

noise traders’ demand is the least elastic. Thus the burden of the tax is paid mostly

by the noise traders, less so by the informed trader, and not by market makers.

Do fast traders provide liquidity? Based on the way they trade, it might seem

that they do. Fast traders “take liquidity” during time (t1, 1) when liquidity is cheap

and “provide liquidity” at time 1 to the informed and noise traders when liquidity

is expensive. One might do a reduced-form counter-factual analysis and find that

the price would have been much worse for the liquidity demanders if fast traders

were not trading at time 1. In the context of this paper, the conclusion is incorrect
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Figure 1.9: Equilibrium market liquidity.normalized by the volatility of fundamental

value σv and volatility of noise trading σz. Proposition 1.5.3 imply that equilibrium

liquidity is determined by ργ where ρ ∈ [0, 1] represents fast traders’ information quality

and γ ∈ [0, 1/3] represents the level of speed friction. The informed and noise traders’

expected profits are decreasing in ργ, whereas temporary price impact λT and fast traders’

total expected profits are increasing in ργ.
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because if fast traders were not present, the temporary price impact λT would have

been much lower. Liquidity demanders, including the informed and noise traders,

would have been better off without fast traders.

In sum, to improve market liquidity, one should try to lower fast traders’

information quality ρ and speed friction γ.

1.6 Policy discussion

Regardless of one’s desired balance of liquidity and price informativeness, when

front-running fast traders have a more informative signal ρ or when speed friction

γ is higher, the market quality is unambiguously worse: prices are less (ex post)

informative and liquidity is more costly. The only possible social value is a more

informative intermediate price which quickly becomes obsolete. Considering its short

life, it hardly improves social welfare.

When considering a potential policy about high frequency trading, one should

focus on gauging its impact on fast traders’ information precision ρ and speed friction

γ. A policy that reduces ργ is going to improve ex post price informativeness and

market liquidity.

Speed competitions

Reducing the entry cost to become a fast trader does not necessarily improve

market quality. Not all competitions are equal. One needs to carefully induce

Cournot competition and avoid Stackelberg competition among fast traders. When

fast traders engage in Cournot competition on quantities, increased competition
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drives down their aggregate profit and enhance social welfare. When fast traders

engage in Stackelberg competition on speed, increased competition may not result in

lower aggregate front-running profits. Relative speed might only serve as a tiebreaker

among front-runners to split the front-running profits. Under the setting of this

paper, the aggregate front-running profit can even be higher when more front-runners

with different speed are present. At the very least, the possibility to competite on

speed weakens the competition on quantity or on price. It is puzzling to see that

existing markets typically have no limit on speed competition while imposing tick

size and minimum trade size to limit competition on price and quantity.

We may examine the effect of speed competition on market quality in Figure

1.10. The Cournot speed profile could be stable when the trading frequency (time

granularity) is not too high. In a market where time is almost continuous, the slightest

speed advantage counts. A fast trader has very strong incentive to develop and

invest in new speed technologies to shave every nanosecond off her latency. Existing

markets with high trading frequency are more likely to be close to the Stackelberg

bound where front-running traders’ profits are the highest, market liquidity is the

most expensive, and ex post information efficiency is the lowest.

Periodic batch auctions

A natural way to deter the arms race in speed is to convert a continuous market
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Figure 1.10: Market quality and speed competition. Fast traders information

precision ρ = 0.8. (a) Speed friction increases (decreases) with number of fast

traders if fast traders follow the Stackelberg-N (Cournont-N) speed profiles. (b)

Ex post price informativeness decreases (increases) with number of fast traders

if fast traders follow the Stackelberg-N (Cournont-N) speed profiles. (c) Total

fast trading profit increases (decreases) with number of fast traders if fast traders

follow the Stackelberg-N (Cournont-N) speed profiles. (d) Expected noise traders’

profits decrease (increases) with number of fast traders if fast traders follow the

Stackelberg-N (Cournont-N) speed profiles.
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to a periodic uniform price auctions market as proposed by Budish et al. (2013).25

Effectively, by eliminating the time priority of orders arriving withing a batching

interval, the periodic auction enforces a Cournot speed profile. Given the information

structure of this model, such a market design reduces the speed friction γ caused by

front-running fast traders.

The result of this paper could shed light on the choice of the optimal batching

interval ∆t. To be consistent with the model of this paper, suppose that at the

beginning of each batching interval, a pricing function is announced. Then, traders

are allowed to submit market orders. Orders are accumulated until time ∆t and

executed at the same price according to the pricing function.

The batching interval ∆t should be long but it does not need to be very long.

Once several fast traders fall into the same batching interval, knowing that they

would all get the same price, they follow the Cournot strategy. Speed friction γ goes

down from 1
3

(
1− 1

4N

)
to N

(N+1)2 where N is the number of fast traders in the same

batch. Figure 1.10 shows that the improvement on market quality is substantial when

∆t is long enough to batch the 5 fastest traders together. Considering the speed of

existing high frequency traders, a batching interval of 1 second would probably make

most of them barely profitable. The only cost is that we do not observe intermediate

price updates during the one second interval and some liquidity demanders need to

wait one second to fill their orders.

25 Goldman and Sosin (1979) show that when speculators have a convex payoff, they tend to

over speculate and cause price overshooting. Thus a market with finite trading frequency could

have more “efficient” prices than a continuous market because less price overshooting.
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Random order delays and latency floors

Recently, some trading venues have implemented innovative rules to curb the

speed advantage of high frequency traders. They relax the time priority rule in

various ways. In April 2013, a new foreign exchange trading platform ParFX adds

a 20-80 millisecond random delays to orders arriving at the matching engine; in

August, a major foreign exchange trading platform EBS introduced a “latency floor”

on trades of AUD/USD: orders are first bundled within one to three milliseconds

and then randomly placed in the queue.26

It might seem that these rules would have similar effects to those under periodic

batch auctions. Surprisingly, however, they are far less effective and when the random

delays or the latency floors are not long enough, these measures could even make

market quality worse than the Stackelberg case.

The random order delays or latency floors turn a deterministic speed advantage

into a random advantage. For the ParFX case, the fastest trader still has a speed

advantage in probability because other traders are also subject to random delays.

For the EBS case, each fast traders arrive during the same 1-3 millisecond interval

has the same probability of being the first. Let’s analyze the EBS’s floor latency as

an example.

Assume that N fast traders fall into the same batch and they all estimate that

the incoming order flow of the next batch is ŷ. EBS randomly shuffles their positions

in the queue so that each fast trader has a 1
N

probability of being placed at each

position j for all 1 ≤ j ≤ N . To be comparable with the previous results, suppose all

26 Retrieved from Reuters.com http://goo.gl/30SiwH
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fast traders exit together in the next batch when y arrives.27 We have the following

results.

Proposition 1.6.1 (Speed friction under the EBS latency floor). In a sym-

metric equilibrium where all N fast traders trade the same, each fast trader trades:

u = 2
N+3

ŷ and equivalent speed friction γ = 4N
(N+3)2

Proof. See Appendix A.5.
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Figure 1.11: Speed friction and each fast trader’s order size under the EBS latency

floor rule.

The proposition is illustrated in Figure 1.11. Under the latency floor rule,

speed friction is always higher than the Cournot case N
(N+1)2 for all N . When N ≤ 3,

it could be even higher than speed friction of the Stackelberg case 1
3
(1− 1

4N
).

27 Like before, a fast trader j could add −uj to the limit order book. In the next batch, the

order of y shares arrives and is executed at p1 = p0 + λT
∑
j uj + λT (y −∑j uj) = p0 + λT y.
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The impact of the latency floor rule on fast traders is subtle. On one hand, the

rule equalizes the speed of fast traders in the same batching interval in probability.

So each fast trader submits an order of the same size. On the other hand, unlike in

the periodic uniform price auctions, fast traders still receive different prices under

the latency floor rule.

Compared with the case in which all fast traders have deterministically different

speeds, the latency floor rule induces fast traders to choose different order sizes.

Under the latency floor rule, the fast trader who ends up being the first in the queue

makes less profit because her trade size is too small ( 2
N+3
≤ 1

2
). This leaves more

profits to the second and third fast traders. The fast trader who ends up being the

last in the queue, however, makes less profits because her trade size is too large(
2

N+3
≥ 1

2N

)
. Hence, the impact of the latency floor rule on the aggregate profits of

fast traders depends on the length of the randomizing interval.28

When the randomizing interval is short (N ≤ 3), the speed friction γ can even

be higher than the Stackelberg case. Although the first fast trader’s expected profit

is lower, the second and third fastest traders make more profits. As a result the total

profit for the top three fast traders are higher. Intuitively, when the randomizing

interval is short, the latency floor effectively turns a race to be the first into a race

to be the top three.

When the randomizing interval is long, the number of fast traders in the same

interval N increases. In the limit when N → ∞, the total fast trading volume

28 Under the latency floor rule, when fast traders collude, each fast trader chooses an order size

of ŷ/(N + 1). See Appendix A.7.
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Nu = 2N
N+3

ŷ → 2ŷ. Fast traders who end up in the first half of the queue make

profits and fast traders in the second half of the queue suffer losses. Their profits and

losses almost cancel and speed friction γ converges to zero. The rate of convergence,

however, is much slower than under the uniform price periodic auction (Cournot), as

illustrated in the panel (b) of Figure 1.11.

In short, the well intentioned latency floor could worsen the market quality

when the randomizing interval is short. Even if the interval is long enough, market

quality under the latency floor is still worse than a market with uniform price batch

auctions.

Minimum order life time and order cancellation fee

Some high frequency traders cancel an excessively high fraction of the limit

orders they submit. For example, Gai et al. (2012) find that order cancella-

tion/execution ratio is around 30:1 on the NASDAQ exchange in two weeks of

year 2010. Although the motive of such behavior is not well understood,29 it consti-

tutes a cost to exchanges and raises concerns of manipulative strategies like “quote

stuffing”. Exchanges and regulators have been discussing and experimenting mea-

sures, such as a minimum order life and order cancellation fees, to curb the high

message volume.

In this paper, front-running HFTs are assumed to trade with market orders.

To fully understand the effect of these rules, we need a more complete model of both

29 Baruch and Glosten (2013) show that liquidity providers submit flickering quotes to play a

mixed strategy. Hasbrouck and Saar (2009) provide evidence suggesting that short-lived quotes are

used to search for latent liquidity.
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aggressive and passive HFTs, which is outside of the scope of this paper. I provide

some analysis based on the likely impact on the aggressive front-running HFTs.

First, between the two measures, a minimum order life time has the additional

drawback of creating more room for the front-running HFTs. It makes the temporary

price impact factor λT less flexible for longer durations. Second, reduced message

volume might improve the quality ρ of front-running fast traders’ information. With

fewer updates to the limit order book, front-runners potentially have less noise to

filter out and large trades become easier to detect. Third, liquidity providers would

need to demand high compensation for posting limit orders due to the higher direct

fees or the higher indirect speed tax levied by front-running HFTs. The extra cost is

shared among all market participants; traders whose demands are most inelastic pay

a higher fraction of the cost.

Hence, we could observe a less liquid market following the implementation of

such a rule as found by Malinova, Park and Riordan (2012). The effect could be

partially due to the heightened impact of aggressive front-running HFTs ex post.

1.7 Empirical implications

Empirical studies, for example Baron et al. (2012) and Hagströmer and Nordén

(2013), have revealed that HFTs use diverse strategies. This paper mainly models the

impact of front-running HFTs. It is an empirical challenge to identify front-runners.

Some HFTs initiate most of their trades rather than passively absorb others’ orders.

These HFTs are more likely to be front-runners. The empirical implications are
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likely to be more relevant for the aggressive HFTs than the passive ones. It should

be noted that front-running is not limited to aggressive traders; passive HFTs also

effectively front-run when they detect a large incoming order and cancel their limit

orders.

1.7.1 Market capacity

Prediction 1.7.1. In a continuous market, only a few front-running HFTs can

survive if they trade on the same order flow information.

Prediction 1.7.2. In a continuous market, the entry of a fastest front-running HFT

reduces trading volume and profits of all existing HFTs. It might not significantly

affect aggregate trading volume, aggregate HFT profits, or market quality if the

existing market is almost saturated.

In a continuous market, practically all traders have different speeds. As is

shown in panel (c) of Figure 1.10, the aggregate fast trading profit flattens out quickly

along the Stackelberg bound when all fast traders have different speeds. Considering

the high costs of staying relatively fast, only a very limited number of HFTs are

likely to make net profits.30

After the entry of a fastest front-running HFT, all existing HFTs drop one spot

in the rankings of relative speeds. They capture fewer shares at worse prices than

before. Thus their trading volume and profit decline. Because the market capacity

30 This prediction is contingent on the assumption that all front-runners have the same order

flow information. More HFTs can survive if they specialize in predicting different components of

the order flow.
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for front-running HFTs is limited, the entry of a faster HFT might simply crowd

out slower existing HFTs. The total trading volume and HFT profts are almost

unaffected by the entry. This is consistent with the findings of Breckenfelder (2013)

and Budish et al. (2013).

1.7.2 Market quality

Prediction 1.7.3. A new policy does not affect market quality significantly if it does

not change front-running HFTs’ information quality about the incoming order flow

or the heterogeneity of HFTs’ relative speeds.

Gai et al. (2012) find that after the NASDAQ reduces trading latency from

microsecond to nanosecond, there is no significant change in market quality. The

findings are consistent with my paper because such a reduction does not change

HFTs’ relative speeds, especially in the short run. The reduction could, however,

trigger a new round of socially wasteful investment in speed technology among HFTs

due to a finer time granularity.

Impact of technology shocks on speed friction γ could be difficult to determine.

Roughly speaking, speed friction increases with the heterogeneity of fast traders’

relative speeds. For example, introduction of co-location service could reduce speed

heterogeneity and thus reduces the speed friction γ. Without co-location service

provided by the exchange, HFTs rent rooms nearby the exchange to reduce latencies.

With co-location, all HFTs are able to place their computers in the same room.

Hence co-location could reduce the speed differences among HFTs and improve

70



market quality. Boehmer et al. (2012) and Frino, Mollica and Webb (2013) find that

the introduction of co-location improves market liquidity.

1.7.3 Volatility, momentum, and reversal

Prediction 1.7.4 (Volatility). Other things equal, more severe HFT front-running

(ργ ↑) increases short-term volatility and reduces long-term volatility.

Prediction 1.7.5 (Momentum and reversal). Other things equal, more severe HFT

front-running (ργ ↑) causes stronger short-term momentum and reversal.

Front-running fast traders’ impact is higher when they have better information

ρ or when the speed friction γ is higher. Here, “more severe HFT front-running”

means that ργ is higher.

The two predictions are both related to the divergence of temporary price

impact λT and permanent price impact λP . The higher short-term price volatility is

caused by a higher temporary price impact λT . Long-term volatility, for example

volatility calculated with daily closing prices, is mainly determined by the permanent

price impact λP , which is determined by the trading intensity of the informed trader.

Faced with a higher price impact λT , the informed trader trades slower. Daily

volatility might not be affected when the informed trader finishes trading within a

day. In the long run, informed trader produces less information, resulting in lower

daily price volatilities.

Short run price momentum is caused by fast traders trading on the similar

information; short run price reversal is caused by the price adjustment after fast
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traders have exited. As illustrated in Figure 1.4, fast traders with different speeds

trade in the same direction and march along the supply curve of the steeper slope λT .

After they have exited, price reverse to the efficient level implied by the flatter slope

λP . Market makers amplify λT/λP when front-running traders extract more profits.

We can characterize short-term price reversal with −Cov[p1− p0, p1+ − p1] = σ2
v

4
2ργ

1−ργ .

The magnitude increases with front-runners’ impact ργ and fundamental volatility

σ2
v .

1.7.4 Trading volume

Proposition 1.7.1 (Trading volume). Suppose fast traders (HFT) exit with market

orders. Then,

Volume initiated by non-HFT: E [|y|] =

√
2

π

√
1 + θ2σz

Volume initiated by HFT: E [2|SJ |] =

√
2

π

√
1 + θ2σz2

√
ρ · Ω

Fraction initiated by HFTs :
E [2|SJ |]

E [|y|+ 2|SJ |]
=

2
√
ρ · Ω

1 + 2
√
ρ · Ω

where Ω = 1−∏J
i=0(1− αi).

Proof. See Appendix A.6.

Prediction 1.7.6. When there is more noise trading (σz ↑), the market becomes

more liquid (λT ↓), the informed trades more (β ↑), and HFTs initiate higher trading

volume (E[|SJ |] ↑).

The prediction is based on Theorem 1.3.1 and Proposition 1.7.1. The observed

positive correlation between HFT volume and market liquidity could be induced by

time varying levels of noise trading.
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Prediction 1.7.7. Keeping volatility of noise trading σz constant, normal-speed

traders initiate less volume when there is more front-running high frequency trading

(ργ ↑).

A higher total trading volume E[|y|+ 2|SJ |] does not mean that the market is

more liquid. Volume could be generated by intermediaries including HFTs. Other

things equal, volume initiated by long-term buy-side traders (proxy of E[|y|]), however,

is a good indicator of market liquidity.

Buy side liquidity demanders can monitor the costs of their own trades and

choose the trading venue in response to their trading costs. The increasing popularity

of dark pools among institutional traders suggests that trading on exchanges has

become expensive relative to trading in dark pools. Recently, Tong (2013) uses a

dataset on institutional trades and finds that HFTs increases the execution shortfalls

of traditional institutional traders.

Prediction 1.7.8. Keep the number of front-running high frequency traders and

their relative speeds fixed. The fraction of volume initiated by these high frequency

traders is determined by their information quality ρ.31

More specifically, if there are N front-runners. The fraction of volume initiated

by HFTs E[2|SJ |]
E[|y|+2|SJ |] is

2
√
ρ·N/(N+1)

1+2
√
ρ·N/(N+1)

for the Cournot case and
2
√
ρ(1−2−N)

1+2
√
ρ(1−2−N )

for the

Stackelberg case. Both ratios approximate
2
√
ρ

1+2
√
ρ

when N is reasonably large,

especially for the Stackelberg case.32 Empirically, we can use the ratio to back out

31 If HFTs are more risk averse than other investors, the ratio would be lower when HFTs’ risk

exposure is higher. See Appendix A.1.4.
32 For example, if 5 HFTs having different speeds are in the market, the entry of a new HFT
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fast traders’ information quality ρ in cross-section and in time series. For example,

Brogaard et al. (2013a) find that on days when the fastest co-located traders initiate

a larger fraction of the volume, market is less liquid. This finding is consistent with

my model prediction that front-running HFTs initiate a larger fraction of the volume

when they predict the order flow more accurately and this renders the market less

liquid.

Even when HFTs only have a very noisy signal about the order flow, they

could generate a high fraction of the trading volume. For example, let’s assume 5

aggressive HFTs initiate 30% of the volume. Then, fast traders’ information quality

is ρ =
(

1
2

0.3
1−0.3

1
1−2−5

)2 ≈ 0.05. It implies that the probability for fast traders to trade

in the right direction is 58%, only slightly higher than 50%.

1.7.5 Profits and inventory management

Prediction 1.7.9. Front-running HFTs’ profits increase with fundamental uncer-

tainty σv, noise trading σz, HFTs’ information quality ρ, and speed friction γ.

Prediction 1.7.10. Aggregate front-running HFTs’ profits represent a higher frac-

tion of noise traders’ implementation shortfall when front-running is more severe

(ργ ↑).

Proposition 1.5.3 shows that fast traders’ profit E[πF ] = σvσz
2

(
1
θ
− θ
)

where

θ =
√

1−ργ
1+ργ

. If we use implementation shortfall to proxy the trading loss of noise

traders −E[πN ] = σvσz
2

1
θ
, then E[πF ]/E[−πN ] = 1−θ2. The effect of σvσz is canceled

with a different speed would barely change the ratio because 2−5 and 2−6 are too close.
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once we take the ratio. Empirically, we can use the ratio to measure the overall

impact of all front-running HFTs on market quality θ.

Prediction 1.7.11. Faster front-running HFTs tend to trade more shares, have

higher inventory levels, hold inventory for longer time periods, and make larger profit

per share.

The fastest HFTs do not necessarily trade more frequently. When trading

on similar signals, a higher speed allows an HFT to acquire more shares at better

prices. Larger inventory and longer holding horizons could result from better market

timings. Consistent with this prediction, Brogaard et al. (2013a) recently find that

after a subgroup of HFTs upgrade to the fastest co-location service, these HFTs

hold larger inventory for longer durations.

1.8 Conclusion

I analyze the implications of traders’ speed differences in a strategic model of

asymmetrically informed traders. In this model, front-running HFTs use their speed

advantage to extract rents from normal-speed traders and the extracted rents are

allocated among HFTs according their relative speeds.

A higher trading frequency makes it less likely for HFTs to compete on quantity

and more likely to compete on speed. Unlike price or quantity competitions, speed

competition may not benefit normal-speed traders. Even when infinitely many front-

running HFTs compete against one another on speed, their negative market impact

in general does not vanish because the fastest HFTs still make positive profits. At
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the very least, higher trading frequency weakens the effectiveness of pro-competition

policies designed to mitigate the negative impact of HFTs.

We already limit competition on price and quantity by imposing rules of the

minimum price variation (one tick) and the minimum quantity variation (one share).

Findings of this paper suggest that imposing an upper limit on trading frequency is

equally, if not more, justifiable because such a limit would deter the socially wasteful

competition on speed.

Inevitably, I have made simplifying assumptions. Nevertheless, the key results

seem to be robust in more general settings. First, speeds are exogenous in the paper.

When speed is costly, a higher granularity of time would still encourage investment

in speed because being relatively faster generates high payoffs.

Second, I assume that each fast trader can only trade twice in each trading

round. As a result, only relative speed matters. If a fast trader can trade multiple

times before the next fast trader arrives, both absolute and relative speed differences

would affect their profits. The faster one would have more trading opportunities in

addition to the advantage of trading earlier. In the limit when the fastest trader can

trade infinitely many times before the second fastest trader, only the fastest makes

positive profits. Nevertheless, lowering the trading frequency can still reduce the

aggregate front-running profits because it reduces the number of trading opportunities

of the fastest front-runners.

Finally, this paper focuses on the front-running HFTs. Many other HFT

strategies can have benign or beneficial effects on the market. It seems, however, that

lowering the frequency of trading would also help many liquidity enhancing HFTs
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because they could spend less resource on protecting themselves against front-runners.

A lower trading frequency, of course, has its drawbacks. For example, the

noise traders would have to wait longer before their liquidity demands are met. In

addition, in the next Chapter, I show that a higher trading frequency enables the

patient informed traders to lower their price impact and extract more profits from

their private information. The results of this paper suggest that a higher trading

frequency is not always socially beneficial. Policy makers need to carefully weigh the

costs and benefits of imposing no limit on the frequency of trading.
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Chapter 2: The Fast and the Faster: Trading Frequency and Market

Quality

2.1 Introduction

Financial markets have undergone considerable changes in recent years. In

particular, many securities are being traded almost continuously. In this paper,

I investigate the impact of higher trading frequencies on the quality of financial

markets.

First, I develop a dynamic model in which traders with different trading motives

interact. All traders act at the same frequency. Using a variant of the dynamic model

of Kyle (1985), I show that when trading frequency is higher, prices become more

informative. The informed trader produces more private information and trades

more aggressively. As a result, the market incorporates more information faster.

I also find that when the trading frequency is higher, market is less liquid in the

beginning but the illiquidity decays more quickly because the information asymmetry

decays faster. Overall, a higher trading frequency benefits the informed trader and

leads noise traders to lose more.

Second, I extend the benchmark model to include high frequency traders
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(HFTs) who anticipate other traders’ order flow and quickly trade to profit from the

order flow information. I embed HFT front-runners as modeled in the first chapter

of this dissertation. When the trading frequency is finite, I show that a higher HFT

intensity reduces price efficiency and market liquidity. The informed trader trades

more slowly and market prices incorporate his private information less quickly. Such

negative impact of HFT on price efficiency decreases with the expected lifetime of

the private information. An informed trader with long-lived private information is

less affected by HFTs.

Third, I show that when the trading frequency goes to infinity, the impact of

HFTs on the informed trader vanishes. The informed trader trades in the same way

and makes the same amount of profits for any HFT intensity. Consequently, price

efficiency is unaffected by HFTs in the continuous time limit. HFT front-runners

make all their profits from noise traders who demand immediacy.

2.2 Trading game

In this section, trading is modeled as a dynamic game in which traders with

different trading motives interact. In the benchmark model, everyone operates at

the same frequency. The time interval between two adjacent trading opportunities is

∆t. As ∆t decreases, everyone acts at a higher and equal frequency. In the limit, as

∆t → 0, trading can be approximated by a continuous time game. In the extended

model, I add HFTs who act at a higher frequency than other traders.
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2.2.1 Model setup

2.2.1.1 Assets and agents

Two assets are traded. The risk free asset has a fixed value of 1. The risky

asset’s fundamental value v is normally distributed as

v ∼ N (0, σ2
v) (2.2.1)

The distribution and volatility σv of v are common knowledge to all agents.

Three types of risk neutral agents anonymously trade in the market: (1) One

informed trader has monopolistic access to a costly technology that can generate

private information about v. The informed trader’s time discount factor equals the

risk free rate 0.1 (2) A continuum of noise traders trade for liquidity reasons that are

unrelated to fundamentals of the risky asset. They demand immediate execution.2

(3) A continuum of perfectly competitive risk neutral market makers set prices and

absorb the net order flow imbalance coming from other traders.3

1 The model can be extended such that the informed trader’s time discount factor is greater

than the risk free rate. It represents the impatience of the monopolistic informed trader and may

be due to his higher cost of capital or margin requirement. The informed trader would then choose

to produce information that decays at the same rate as his discount factor.
2 Noise traders demand immediacy at the cost of expected trading losses. The losses may be

offset by gains outside of the trading game.
3 Risk sharing motives are not modeled explicitly. We can consider the risk neutrality of market

makers as a good approximation when many market makers compete to absorb a very small amount

of risk transferred in each transaction.
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2.2.1.2 Timeline

The game starts at time 0 when the monopolistic informed trader chooses an

observable level of accuracy of his signal and produces private information about the

risky asset’s value v.

Starting from time ∆t, periodic batch auctions are held and the time interval

between any two adjacent auctions is ∆t. The first trade occurs at ∆t. The fair

value v is revealed to the public at a random time T . At time T , the game ends. All

traders liquidate their positions at the fair price v.

Right before time n∆t, the inventory of the informed trader is xn−1, the

aggregate inventory of all noise traders is zn−1, and the cumulative shares sold by

the market makers is yn−1. The initial inventories of all traders are zero (x0 = y0 =

z0 = 0).

At time n∆t, if news has not been announced (T > n∆t), the informed

traders submit an order of ∆xn = xn−xn−1 shares, the noise trader submit orders of

∆zn = zn−zn−1 shares, and the market makers set a price pn and sell ∆yn = yn−yn−1

shares. The market clearing condition requires that

∆yn = ∆xn + ∆zn. (2.2.2)

Noise traders’ order flow follows the process

∆zn = zn − zn−1 = σz(Bn∆t −B(n−1)∆t) (2.2.3)

where Bt is a standard Brownian motion independent from the risky asset’s funda-

mental value v. The volatility σz is common knowledge to all agents.
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The announcement time T is exponentially distributed with probability density

function as follows

fT (t) = ηe−ηt, t ≥ 0 (2.2.4)

At any trading time n∆t before the public announcement T , it is possible that the

risky asset’s value v is announced in the interval T ∈ (n∆t, (n+ 1)∆t] such that the

game ends before time (n+ 1)∆t and all traders liquidate their positions at the price

of pT = v. The probability of this event is

Pr {T < (n+ 1)∆t|T > n∆t} = 1− e−η∆t (2.2.5)

The expected lifetime of the informed trader’s signal is E[T ] = 1/η. A longer

lived information has a smaller information arrival rate η. For a given η, the

likelihood of news announcement occuring in the next interval η∆t is lower when

trading frequency 1/∆t is higher

This paper investigates the impact of trading frequency, lifetime of private

information, and front-running HFTs on the quality of the financial market.

2.2.1.3 Information

The informed trader produces one noisy signal Iv about the fundamental value

v only at time 0. The precision of this signal is observable but the realization Iv is

private information to the informed trader. No further information is produced after

time 0. Starting from time ∆t, the informed trader trades on this signal until time

T when the fair value v is revealed to the public. It is common knowledge that the
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signal Iv satisfies

Iv = v + e, e ∼ N (0, σ2
e) (2.2.6)

The Gaussian noise term e is independent from v. Quality of the informed trader’s

signal Iv is captured by ρi, the squared correlation coefficient of S and v.

ρi = Corr2(Iv, v) =
σ2
v

σ2
v + σ2

e

(2.2.7)

ρi is in bounded in [0, 1]. A more informative signal Iv has a larger ρi. When ρi = 0,

the signal is entirely noise; when ρi = 1, the signal equals v with probability 1. From

the projection theorem of normally distributed random variables,

E[v|Iv] =
Cov(v, Iv)

Var(Iv)
Iv = ρiIv (2.2.8)

Var[v|Iv] = Var[v]− Cov2(v, Iv)

Var(Iv)
= (1− ρi)σ2

v (2.2.9)

It is assumed that information production is observable and thus the market makers

do not need to estimate the informed trader’s information quality ρi. Knowing ρi

does not eliminate the adverse selection problem because the signal Iv is private to

the informed trader and trading is anonymous.4

Price history {pn} is public information. The informed trader observes the

signal Iv and his own inventory history {xn}. In equilibrium, due to the monotonicity

of the pricing rule, the informed trader can also perfectly infer the history of the noise

4 The informed trader possibly has an incentive to hide his information production effort so that

the market makers may underestimate ρi. There may be a “forecast the forecasts of others” problem

because the informed trader then has to estimate the market makers’ estimate of ρi. Extending the

model to allow for hidden information production can be explored in the future.

83



trades {zn}. Denote the expectation taken over the informed trader’s information

set by

EI
n [·] = E

[
·
∣∣Iv, xn,F {{pm, xm}0≤m<n

}]
(2.2.10)

where F {·} is the σ-algebra generator. Notice that at time n∆t, the informed trader

does not observe price pn and liquidity trades zn.

The market makers observe price history {pn} and the order flow imbalance

process {yn = xn + zn}. Because trading is anonymous, market makers cannot

differentiate informed trading xn and liquidity demand zn. Denote the expectation

taken over the market makers’ information by

EM
n [·] = E

[
·
∣∣yn,F {{pm, ym}0≤m<n

}]
(2.2.11)

where F {·} is the σ-algebra generator. The market makers set the price pn conditional

on their information set. The degree of information asymmetry between the informed

trader and market makers can be measured in

Σn = VarMn [v̂] (2.2.12)

2.2.2 Trading with equal frequency

From the informed trader’s perspective, this is a two stage game. (1) In the

information production stage, he chooses the quality of information ρi and produce

a signal Iv with quality ρi. (2) In the trading stage, he choose a trading strategy to

maximize his expected trading profit conditioning on the signal Iv. The two stages

are separable because once trading starts the informed trader receives no additional

information.
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In this section I solve the trading game after the informed trader has chosen

the quality ρi of the signal Iv. As introduced before, market makers observes the

quality of the informed trader’s signal ρi but not the signal Iv itself. The informed

trader’s estimate of the liquidation value v is

v̂ = E[v|Iv] = ρiIv (2.2.13)

2.2.2.1 Continuous time trading

To provide some intuition, let’s first examine the limiting case where interval

between trades ∆t converges to 0 and assets are traded in continuous time. Nota-

tions are adapted accordingly. The expectation taken with respect to the insider’s

information and market makers’ information are

EI
t [·] = E

[
·
∣∣Iv, xt,F {{xs, ps}s<t}] (2.2.14)

EM
t [·] = E

[
·
∣∣yt,F {{ys, ps}s<t}] (2.2.15)

and the informed trader’s perceived pricing error of the market price pt− is

Dt = v̂ − pt− . (2.2.16)

Magnitude of Dt reflects the advantage of the informed over the public information.

And the degree of information asymmetry is represented by

Σt = VarMt [v̂] (2.2.17)

At time t, the informed trades dxt shares, the noise traders dzt shares, and

the market makers clear the market at price pt after observing the aggregate order
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dxt + dzt. In equilibrium, market price is semi-strong efficiency and the informed

maximize expected current and aggregate future profits. I assume that the informed

trader’s value function exists and it is defined as follows:

V (t,Dt) := max
dxt

{
EI
t

[∫ T

t

(v − pt)dxt
]}

(2.2.18)

In this paper, I only consider the linear equilibrium as defined below.

Definition 2.2.1 (Continuous time trading game equilibrium). The informed trader

and market makers follow strategies characterized by βt and λt:
5

Informed’s trade size: dxt = βtdt (2.2.19)

Price updating rule: dpt = λt(dxt + dzt) (2.2.20)

with the constraint6 that

EI
0

[∫ T

0

(v − pt)dxt
]
<∞. (2.2.21)

In equilibrium, prices are semi-strong form efficient and the informed trader maximizes

5 In the conjectured equilibrium, informed order flow dxt has no diffusion term. Back (1992)

proves it’s not optimal for the insider order flow to have a diffusion term even when the insider can

effectively observe the noise trading in the continuous trading limit. In Foucault et al. (2012) high

frequency news traders’ (HFNT) order flow does have a Brownian motion term. It comes from

a piece of information that is going to expired at the next instant and thus HFNT trades very

aggressively despite the high price impact. The trading game is essentially a repeated static game

of the Kyle (1985) model. The intuition is similar to Chau and Vayanos (2008) and Li (2013).
6 The constraint rules out the doubling strategies as in Back and Baruch (2004).
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expected aggregate trading profits from time t on

pt = EM
t [v] = EM

t [v̂] (2.2.22)

EI
t

[∫ T

t

(v − pt)βtdt
]
≥ EI

t

[∫ T

t

(v − pt)β′tdt
]
∀β′t (2.2.23)

Theorem 2.2.1 (Continuous time trading game equilibrium). There exists a linear

equilibrium where

βt = 2η
Dt

λt
=

√
2η

ρi

σz
σv
eηtDt (2.2.24)

λt = λ0e
−ηt =

√
2ηρi

σv
σz
e−ηt (2.2.25)

The information asymmetry

Σt = VarMt [v̂] = ρiσ
2
ve
−2ηt, t ≥ 0 (2.2.26)

and the informed trader’s value function is

V (t,Dt) =
D2
t

2λt
+
λt
4η
σ2
z =

(
D2
t

ρiσ2
v

eηt + e−ηt
)

1

2

√
ρi
2η
σvσz, t ≥ 0 (2.2.27)

Proof. See Appendix B.1.

As pointed out by Back (1992), there are in general multiple optima for the

informed trader in the continuous time limit. When price impact λt is set as above,

the informed trader can achieve maximum expected profits with multiple trading

strategies. For example, an alternative expression of the value function is

V (t, v̂ − pt) =
(E[v|Iv]− pt)2

2λt
+

1

2
E

[∫ T

t+
dpsdzs

∣∣∣∣ Iv] (2.2.28)

The first term is the profit of pushing price to equal v̂ at time t; the second term is

the noise traders’ expected loss from time t+ to the ending time T when the informed

trader follows the given equilibrium strategy from t+ on.
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So informed trader’s trading intensity βt cannot be uniquely determined. The

above equilibrium is chosen such that the market makers’ belief updating is correct

at any time instant t not only over the interval [0, T ]. This equilibrium refinement

implies that the continuous equilibrium is an approximation of the discrete time

reality where ∆t is small yet still strictly positive.

Corollary 2.2.2. [Equilibrium properties of βt, λt, and Σt] Price impact λt and

decay exponentially at the rate −η, i.e.,

dλt
λt

= −ηdt, (2.2.29)

The expected pricing error EM
t [Dt] = EM

t [v̂ − pt] and the information asymmetry

measured in variance Σt = VarMt [v̂] both decay exponentially at the rate of −2η, i.e.,

EM
t [dDt+ ]

Dt

=
dΣt

Σt

= −2ηdt, (2.2.30)

Informed trader’s trade size βtdt is proportional to pricing error normalized by price

impact Dt/λt, i.e.,

dxt =
βtdt

Dt/λt
= 2ηdt (2.2.31)

Initially, the price impact λ0 and information asymmetry Σ0 = VarM0 [v̂] are

λ0 =
√

2ηρi
σv
σz
, Σ0 = ρiσ

2
v (2.2.32)

Proof. Trivial.

Key feature of the equilibrium is that the price impact factor λt decays expo-

nentially, unlike in the continuous time model of Kyle (1985) where λt is constant. In
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this model, the informed trader is faced with the risk that their private information

may expire at the next instant with probability e−ηdt. Hence, the informed trader

trades more when he still can. He does not trade away all his information in one

trade because the price impact is lower at the next time instant.

Since the noise traders do not change their trading intensity σz, the fraction of

volume initiated by the informed trader is higher in early trading periods. Hence,

market makers learn more and the information asymmetry reduces by more (2ηΣt)

in early trading periods when Σt is higher.

2.2.2.2 Market quality of the continous time equilibrium

Market liquidity and information efficiency are two important measures of the

quality of a financial market. In this paper, market liquidity is measured by the

price impact factor λt and information efficiency is measured by the level of residual

information asymmetry Σt = VarMt [v̂]. Market is more liquid when price impact λt

is lower and prices are more informationally efficient if Σt is lower.

Several factors given in the following proposition only affect the initial market

quality, captured by λ0 and Σ0, when trading starts at time 0.

Proposition 2.2.3. [Effect of σz,σv, and ρi] Initial price impact λ0 is higher when

there is more total fundamental uncertainty (σv ↑), the informed trader’s information

is more accurate (ρi ↑), or there is less noise trading (σz ↓). Initial information

asymmetry is higher (Σ0 ↑) when there is more total fundamental uncertainty (σv ↑)

or the informed trader’s information is more accurate (ρi ↑).

89



Proof. Follows from Corollary 2.2.2.

In the continuous time equilibrium, the only parameter that affects the dynamics

of the equilibrium is η, the arrival rate of the public information. The public news

announcement follows a Poisson arrival process. Due to the memoryless property

of Poisson process, at each instant, the game is essentially the same after proper

normalization. For the informed trader, the only relevant state variable is Dt/λt, the

number of shares one can trade to drive the pricing error Dt to zero. In equilibrium,

the informed trader trades a fraction 2ηdt of Dt/λt at every instant. As a result, the

pricing error Dt on average is reduced by a fixed fraction 2ηdt. The price impact

factor λt is also reduced by a fixed fraction ηdt.

Proposition 2.2.4 (Effect of lifetime of private information 1/η). When the

public news arrives faster (η ↑) or equivalently the expected lifetime of the private

information is shorter (1/η ↓), the informed trader trades away a higher fraction of

the residual information ( βtdt
Dt/λt

↑). Consequently,

1. the initial market liquidity is worse (λ0 ↑) but the speed of liquidity improvement

is higher (−dλt/λt ↑);

2. the initial information asymmetry (Σ0) is unchanged and the speed of informa-

tion revelation through prices is faster (−dΣt/Σt ↑).

Proof. Follows from Corollary 2.2.2.
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Figure 2.1: Dynamics of price impact λt and public information arrival rate η

Figure 2.2: Dynamics of information asymmetry Σt and public information arrival

rate η
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Arrival speed of the public news (η), or equivalently the expected lifetime of

the informed trader’s private information (1/η), has ambiguous effect on market

liquidity as illustrated in Figure 2.1. An important observation is that η affects both

the initial price impact factor λ0 and the speed of the decay of price impact dλt/λt.

When the public information arrives faster and the expected lifetime of the private

information is shorter (η ↑), the initial price impact λ0 is higher and its speed of

decay ηdt is also higher. Intuitively, when private information expires faster (η ↑),

the informed trader chooses to trade more aggressively at the beginning. Hence,

market is less liquid initially (λ0 ↑) due to higher intensity of informed trader.

On the other hand, a faster arrival rate of public news (η ↑) improves in-

formation efficiency of market prices as illustrated in Figure 2.2. The variance

Σn = VarMt [v̂] measures the information asymmetry between the informed trader and

the market maker. Its initial value Σ0 is determined by the amount of information

the informed trader choose to produce and is unaffected η. Its rate of decay −Σt/Σt,

however, is higher when the informed trades more aggressively (ηdt ↑). Hence, the

residual information asymmetry Σt is lower at any time t when public information

arrives faster (η ↑).

2.2.2.3 Discrete time trading

The continuous time equilibrium illustrates the impact of expected lifetime of a

private information (1/η) when the trading frequency is infinitely high. This section

investigates the discrete time trading game where trading frequency 1/∆t is finite.
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Right before time n∆t, the informed trader believes that the error of the last

traded price is

Dn = v̂ − pn−1. (2.2.33)

Since the news announcement time T is exponentially distributed, the conditional

probability of T occurring in the next ∆t interval is time invariant and always equals

1− exp(−η∆t).

In this paper, I consider linear equilibrium of the following form

∆xn = xn − xn−1 =
Dn

λn
· β∆t, β∆t ∈ [0, 1] (2.2.34)

∆pn = pn − pn−1 = λn(∆xn + ∆zn) = λn∆yn (2.2.35)

In the continuous time equilibrium, dxt
Dt/λt

= βdt is time-invariant. Hence, I conjecture

that in the discrete time equilibrium ∆xn
Dn/λn

is also time invariant. β∆t is bounded in

[0, 1] so that the informed trader does not expected to incur losses in each trade.7

Given the linearity of the informed trader’s strategy and the normality of the random

variables, the market makers’ pricing rule is also linear.

Given such a conjectured equilibrium, at the beginning of each interval, the

structure of the game is essentially the same after proper normalization. The only

difference to the informed trader is Dn
λn

, which measures the expected number of

shares he can submit to push the execution price to v̂.

The informed trader’s expected terminal profit from trading from time n∆t to

7 I do not rule out the possibility of other forms of equilibria.
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the news announcement time T is

Π(β, n,Dn) = EI
n

bT/∆tc∑
i=n

(v − pn) ·∆xi

 (2.2.36)

where b T
∆t
c equals the smallest integer no less than T

∆t
.

Definition 2.2.2. A linear equilibrium of the trading game is defined as a pair of β

and {λn} such that the two following conditions hold.

1. Semi-strong market efficiency. For a given β, {λn} are chosen such that

pn = EM
n [v] =


0 n = 0

pn−1 + λn(∆xn + ∆zn) n > 0

(2.2.37)

2. Profit maximization. For given {λn}, β is chosen such that

EI
n [Π(β, n,Dn)] ≥ EI

n [Π(β′, n,Dn)] ∀β′ (2.2.38)

The semi-strong market efficiency condition is natural given the assumption

of a continuum of perfectly competitive market makers.8 It implies that both the

returns and the order flows are unpredictable based only on the public information.

EM
n−1[∆pn] = EM

n−1[pn]− pn−1 = EM
n−1[EM

n [v]]− EM
n−1[v] = 0 (2.2.39)

EM
n−1[∆xn + ∆zn] = EM

n−1

[
β
Dn

λn
∆t

]
=

β

λn
∆t E

M
n−1[v̂ − pn−1] = 0 (2.2.40)

Hence, {pn} and {yn} are martingales adapted to the information set of the market

makers. The profit maximization condition is forward looking. It ensures that trade

8 Bernhardt and Hughson (1997), Guo and Kyle (2009), and Liu and Wang (2010) relax the

assumption of perfectly competitive risk neutral Bertrand market makers in different ways.
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at any instant optimally balance the instantaneous expected profit and the impact

to all subsequent periods.

Assume that there exists an optimal strategy {xn} for the informed trader.

Definition 2.2.3 (Value function of the informed trader). The informed trader

trades optimally in the time interval of [n∆t, T ) and the expected profit equals

V (n,Dn) = max
∆xn

EI
n

bT/∆tc∑
i=n

(v − pi)∆xi


Theorem 2.2.5 (Continuous time trading game equilibrium). There exists an

equilibrium where the equilibrium trading intensity β∆t ∈ [0, 1/2] is the unique

solution to the equation

1− 2β∆t

(1− β∆t)3/2
= e−η∆t (2.2.41)

where Pr {T < (n+ 1)∆t|T ≥ n∆t} = 1−e−η∆t ∈ [0, 1]. The price impact coefficients

are

λ0 =
σv
σz

√
ρi
√
β (2.2.42)

λn = λ0 · (1− β∆t)
n/2 (2.2.43)

The informed trader’s trade sizes are

∆xn = β∆t
Dn

λn
(2.2.44)

and the informed trader’s value function at time n∆t is

V (n,Dn) = (1− β∆t)
D2
n

2λn
+ (1− 2β∆t)

σ2
z

2β
λn (2.2.45)
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The information asymmetry is

Σ0 = ρiσ
2
v (2.2.46)

Σn = Σ0 · (1− β∆t)
n, n ≥ 1. (2.2.47)

Proof. See Appendix B.2.

Theorem 2.2.6. As trading frequency goes to infinity (∆t → 0), the discrete time

equilibrium of Theorem 2.2.5 converges to the continuous time equilibrium of Theorem

2.2.1.

Proof. See Appendix B.3.

The discrete time equilibrium is characterized by β, which is determined by

the public information arrival rate η and inter-trade interval length ∆t. Specifically,

(1) the decaying speeds of price impact λn and information asymmetry Σn are

determined by β∆t and (2) the initial price impact λ0 depends on β. The following

result summarizes the effects of public news arrival rate η and duration between

trades ∆t.

Proposition 2.2.7. The probability of public news announcement in the next ∆t

interval equals 1− e−η∆t. Equation (2.2.41) defines a function g(·) implicitly such

that

β∆t = g(1− e−η∆t), η,∆t ≥ 0. (2.2.48)

Then, the function g(·) is increasing and concave (g′(·) > 0 and g′′(·) < 0) when

η > 0 and ∆t > 0. In addition, ∂(β∆t)
∂η

> 0, ∂(β∆t)
∂∆t

> 0, ∂β
∂η
> 0 and ∂β

∂∆t
< 0.

Proof. See Appendix B.4.
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2.2.2.4 Market quality of the discrete time equilibrium

Similar to Section 2.2.2.2, the quality of the market in a discrete time setting

is also captured by the price impact factor λn and information asymmetry Σn. As

in Proposition 2.2.3 of the continuous time game, the levels of the fundamental

uncertainty σv, noise trading σz, and the informed trader’s information production

ρi only affect the initial market liquidity and information efficiency.

Proposition 2.2.8. [Effect of σz,σv, and ρi] Initial price impact λ0 is higher when

there is more total fundamental uncertainty (σv ↑), the informed trader’s information

is more accurate (ρi ↑), or there is less noise trading (σz ↓). Initial information

asymmetry is higher (Σ0 ↑) when there is more total fundamental uncertainty (σv ↑)

or the informed trader’s information is more accurate (ρi ↑).

Proof. Follows from Theorem 2.2.5.

The dynamics of equilibrium is reflected by the speeds of decay of price impact

λn and information asymmetry Σn. In the continuous time, the arrival speed of

public news η determines these speeds. In the discrete time, the trading frequency

1/∆t also affects the dynamics of the equilibrium.

In a discrete time game, we need to measure the speed of decay carefully. For

example, when we reduce ∆t, the number of trades per unit of time increases. Hennce

the information asymmetry Σn decays less per trade but decays more per unit time.

The speed of decay per unit of time is captured by the parameter’s half-life.

Definition 2.2.4 (Half life of information asymmetry Σn and price impact λn). Half
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life of information asymmetry TΣ is the solution to (1− β∆t)
TΣ

∆t = 1
2

and half life of

liquidity improvement T λ is the solution to (
√

1− β∆t)
Tλ

∆t = 1
2
. Hence,

T λ = 2TΣ =
∆t log 2

− log(1− β∆t)
(2.2.49)

Proposition 2.2.9. [Effect of η and ∆t on half-life of information asymmetry Σn

and illiquidity λn] When public information arrives faster (η ↑) or when trading

frequency increases ( 1
∆t
↑), information asymmetry Σn and price impact λn decay

faster per unit of time and have shorter half-lives. Formally speaking, ∂Tλ

∂η
= 2∂T

Σ

∂η
< 0

and ∂Tλ

∂∆t
= 2∂T

Σ

∂∆t
> 0 for β∆t ∈ [0, 1/2] and ∆t > 0. In the continuous limit as

∆t → 0, T λ = 2TΣ = log 2
η
≈ 0.69 E[T ].

Proof. * See Appendix B.5.

Proposition 2.2.10 (Effect of lifetime of private information 1/η on liquidity and

efficiency). When the lifetime of the private information is shorter ( 1
η
↓), initial

price impact is higher (λ0 ↑), initial information asymmetry (Σ0) is unchanged, price

impact and information asymmetry decay faster per trade (1− β∆t) ↓ and per unit

of time (T λ ↓ and TΣ ↓).

Proof. Follows from Proposition 2.2.7 and Proposition 2.2.9.

The effects of η here are similar to its effects in the continuous time limit.

Proposition 2.2.11 (Effect of trading frequency 1/∆t on liquidity and effi-

ciency). When trading frequency is higher ( 1
∆t
↑) and time duration between trades

is lower (∆t ↓), initial price impact is higher (λ0 ↑), initial information asymmetry
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(Σ0) is unchanged, price impact and information asymmetry decay less per trade

(1− β∆t) ↑ and decay more per unit of time (T λ ↓ and TΣ ↓).

Proof. Follows from Proposition 2.2.7 and Proposition 2.2.9.

The effect of trading frequency 1/∆t on liquidity is illustrated in Figure 2.3. A

higher trading frequency results in a higher initial price impact λ0, a slower decay

of λn per trade, and a faster decay of λn per unit of time. Intuitively, when the

informed trader has more trading opportunity, he can extract more profits from

the price deviation generated by the randomly arrived noise trades. Market makers

initially set a higher price impact λ0 so that they can offset the increased loss to the

informed trader. Although the informed trades less in each round and reveals less

information, he reveals more information per unit of time because he trades more

often.

A higher trading frequency 1/∆t does not affect the initial information asym-

metry (Σ0) and improves the speed of information revelation through prices. The

effect is illustrated in Figure 2.4 in which the expected public information arrival

time is E[T ] = 1/η = 5. By the time t = 4, about 80% of the private information is

revealed if ∆t = 0.01, and about 60% of the private information is revealed if ∆t = 1.
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Figure 2.3: Price impact λt for different ∆t when expected lifetime of the private

information is E[T ] = 1/η = 5.

Figure 2.4: Information asymmetry Σt for different ∆t when expected lifetime of

the private information E[T ] = 1/η = 5.
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2.3 Trading with high frequency traders

In the benchmark model of last section, we investigate the impact of trading

frequency on the financial market when every trader acts at the same trading

frequency.

High frequency traders (HFT), however, are generally perceived as those who

can trade and quote much faster than others. HFTs use a variety of strategies and

this paper does not attempt to be comprehensive. In this section, I extend the

benchmark model to include HFTs as modeled in Chapter 1.

HFTs in this paper, as in Chapter 1, use their speed advantage and advance

information of others’ order flow to front-run slower traders. To be more specific, I

assume that HFTs anticipate the incoming order flow within a small time window.

They cannot differentiate informed trading ∆xn from noise trading ∆zn. HFTs only

have noisy information about the size of the total incoming order of ∆yn = ∆xn+∆zn.

The continuum of market makers in aggregate effectively runs a market with the

pricing rule ∆pn = λn∆yn. HFTs first trades in the same direction of ∆yn and then

reverses the trade.

The net effect of HFTs on other traders is captured by the divergence of

temporary price impact λ̂ and permanent price impact λ. When the informed and

noise traders trade, they pay the temporary price impact λ̂; market makers, however,

only update prices with permanent price impact λ. The temporary price impact λ̂

is higher than the permanent price impact λ such that the market makers can still

break even when HFTs are present. For example, when buying ∆yn shares, liquidity
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demanders pay the price of pn−1 + λ̂n∆yn per share while the market makers set the

end of period price as pn−1 + λn∆yn. HFTs make low risk profits in a small time

window around every trading instant. They cannot, however, compound the profits

because the capacity of their strategy is limited by the liquidity demander’s trading

volume.

Definition 2.3.1 (HFT Intensity). HFT intensity ξn is defined as the amplifying

factor of temporary price impact caused by HFTs:

ξn :=
λ̂n
λn
− 1 (2.3.1)

As is shown in Chapter 1, ξn is determined by the quality of HFTs’ information

ρ and the degree of their competition γ. Assume that ρ and γ are constant over

time, then the HFT intensity is also constant and9

ξ := ξn ∈ [0, 1] (2.3.2)

Here HFT intensity ξ is exogenously given. It can be endogenous when we know

the costs functions of HFTs’ information and speed. A more complete model would

consider the HFTs’ technology, capital constraint, risk aversion, information precision,

and belief about the market condition. A given ξ can be think of an equilibrium

level resulting from the complete model.

Definition 2.3.2. A linear equilibrium of the trading game with HFT is a pair of

informed trading intensity β̂ and market makers’ price updating rule λ̂n satisfying

9 Using the notations of Chapter 1, λ̂
λ = λT

λP = 1+θ2

2θ2 = 1
1−ργ where ρ ∈ [0, 1] and γ ∈ [0, 0.5].

Therefore, ξ = λT

λP − 1 = ργ
1−ργ ∈ [0, 1]
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1. Information efficiency

pn = EM
n [v̂] = pn−1 + λ̂n∆yn (2.3.3)

2. Profit maximization

β̂ = argmax
β

EI
n

bT/∆tc∑
i=n

(v − pi−1 − (1 + ξ)λ̂i)∆xi


where ∆xi = βDi

λi
∆t.

Theorem 2.3.1. [Equilibrium with HFTs] There exists a linear equilibrium where

the informed trading intensity β̂ is the solution to the equation

e−η∆t =
1− 2β̂(1 + ξ)∆t√

1− β̂∆t(1− β̂(1 + 2ξ)∆t)

(2.3.4)

where η∆t ∈ (0, 1] and β̂∆t ∈
(

0, 1
2(1+ξ)

)
. In addition, for n ≥ 0,

Informed trading size: ∆xn =
Dn

λn
β̂∆t (2.3.5)

Information asymmetry: Σn = ρiσ
2
v(1− β̂∆t)

n (2.3.6)

Permanent price impact: λn =

√
β̂
√
ρi
σv
σz

(1− β̂∆t)
n/2 (2.3.7)

Temporary price impact: λ̂n = (1 + ξ)λn (2.3.8)

And the informed trader’s value function is

V (n,Dn) = (1− (1 + 2ξ)β̂∆t)

(
D2
n

2λn
+
λnσ

2
z

2β̂

1− 2(1 + ξ)β̂∆t

1− β̂∆t

)
(2.3.9)

Proof. See Appendix B.6.

When HFT intensity ξ = 0, the equilibrium reduces to the discrete time

equilibrium of Theorem 2.2.5.
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Corollary 2.3.2. Let β̂∆t = ĝ(η∆t). Then, ĝ(·) > 0 and ĝ′′(·) < 0. We can also

write β̂ = ĝ(η∆t)/∆t. We have that ∂β̂
∂η
> 0, ∂β̂

∂∆t
< 0, and ∂β̂

∂ξ
< 0.

Proof. Omitted. See Figure 2.5 and Figure 2.6.

Corollary 2.3.3. The half life of information asymmetry Σt and price impact λt is

increasing in HFT intensity ξ.

Proof. It follows directly from ∂β̂
∂ξ
< 0 and the Theorem 2.3.1.

Figure 2.5: β∆t as a function of η∆t and HFT intensity ξ

In the discrete time equilibrium, when HFT intensity is higher (ξ ↑), the

informed agent trade less β∆t on given information advantage Dn/λn. As a result,

the market learns about the private information slower and the illiquidity decays

slower.

HFTs do not affect all informed traders equally. Figure 2.6 illustrates that the

impact of HFTs on informed traders is lower when the private information has a
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Figure 2.6: Informed trading intensity β as a function of HFT intensity ξ and public

news arrival rate η

longer expected lifetime (E[T ] = 1/η ↑). When η = 0.1, the expected number of

trading opportunity is E[T ]/∆t = 100. The informed’s trading intensity β is almost

unaffected by HFT intensity ξ. By contrast, when η = 2 and the informed expects to

trade E[T ]/∆t = 5 times, informed trading intensity is significantly mitigated when

HFT intensity ξ is higher.

Figure 2.7 illustrates this more clearly. As is shown in the figure, as the

expected number of trading opportunities goes up (E[T ]
∆t

= 1
η∆t
↑), the effect of HFT

on the trading intensity of the informed trader is reduced.

Keep the lifetime of information η fixed. The impact of HFT on the informed

trader can also be reduced when the trading frequency is increased (∆t ↓). In fact,

the following theorem result shows that in the continuous time limit when ∆t → 0,
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Figure 2.7: Impact of HFT on informed trading intensity
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informed trader’s trading intensity β becomes independent of HFT intensity ξ.

Proposition 2.3.4 (Continuous time limit informed trading). In the limit when

∆t → 0, the informed trading intensity β̂ → 2η and his value function V (n,Dn)→

D2
n

2λn
+ λnσ2

z

4η
.

Proof. See Appendix B.7.

Corollary 2.3.5 (Market quality in the continuous time limit with HFTs). In the

continuous time limit when ∆t → 0, the information efficiency Σt and the permanent

price impact λt are unaffected by HFT intensity ξ. The temporary price impact

λ̂t = (1 + ξ)λt.

We see that the impact of HFT front-running on the informed trader vanishes

as trading frequency goes to infinity. The informed trader trades in exactly the same

way as if there is no HFT. His value function is also exactly the same regardless

of the level of HFT intensity ξ. This result might seem contradictory because the

informed pays a higher price impact λ̂t = (1 + ξ)λt when HFT ξ is positive. Yet this

higher cost of trading has no impact on the informed trader’s strategy or his profits.

The result is due to the fact that the informed trader perfectly smooth out

his trades in the continuous time limit. As long as his information has a positive

expected lifetime η <∞, in the continuous time limit, the informed trader expects

to have infinitely many trading opportunities ( 1
ηdt
→∞). At any time instant, the

informed’s order size has the magnitude of dt while the noise traders’ order size has

the magnitude of
√
dt. Thus, the fraction of volume from the informed at any instant

is zero. The price change dpt is completely driven by noise trading dzt.
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Noise traders also trade the same amount for any HFT intensity ξ. Hence, the

information content of the order flow is thus the same regardless of the intensity of

HFT ξ. Market makers use the same permanent price impact factor λt to update

the prices from period to period.

Note that the informed trader chooses trading size dxt based on the permanent

price impact λt rather than the temporary price impact λ̂t. This suggests that in the

continuous time limit, the informed trader maximizes his trading profits when he

chooses the optimal rate to use his information. Although the actual price impact

costs λ̂t is affected by HFT intensity ξ, the rate of information decay is not. From

this perspective, this result resonates the original Kyle (1985) model where the

informed trades trades away the same amount of information no matter how higher

is σv/σz.

Noise traders suffer extra losses because they do not smooth out their trades

and pay a higher price impact cost λ̂t = (1 + ξ)λt when HFT intensity ξ is higher.

Noise traders’ extra losses equal exactly the profits made by the HFTs. The informed

trader is indifferent.

Result in this section suggests that in the current market where trading

frequency is extremely high, HFTs are effectively collecting a “transaction tax” from

noise traders who cannot smooth out their trades. For the informed trader who

can perfectly smooth out his trading, the impact of such front-running HFTs with

extremely short holding horizons is minimal.

Information efficiency of prices is unaffected in the continuous time limit because

the informed is not affected. Hence, a higher trading frequency tends to encourage
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production of information, especially short-run information, even when there are

front-runners.

Once information production is costly and trading frequency is finite, HFTs

would tend to reduce the information efficiency of prices since HFTs reduces the

marginal profit of information production. The effects of endogenous information

production is explored in Appendix B.8.

2.4 Conclusion

In this paper, I show that a higher trading frequency has mixed effects on the

financial market.

First, when all traders share the same trading frequency, the market price is

unambiguously more informative. The informed trader’s private information gets

revealed faster and the informed trader is encouraged to produce more information.

The impact of a higher trading frequency on liquidity, however, is less clear. The

market is less liquid in the beginning but the illiquidity decays faster. The total

trading losses of the liquidity driven noise traders are higher. Effectively, noise

traders who trade in the beginning subsidize both the informed traders and the

liquidity traders who trade later. The cost of a more informative price is borne by

noise traders who have to trade when the informed asymmetry is most severe.

Second, when there exists high frequency traders who can front-run others, the

market price is less informative because the informed trader trades less aggressively

and produces less information. In the continuous time limit, however, the negative
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effect of HFT front-running on price informativeness vanishes. The patient informed

trader perfectly smooths out his trading and HFTs effectively only front-run the

impatient noise traders who are unable to trade smoothly.

Hence, HFT front-running reduces market liquidity and tends to reduce infor-

mation efficiency. Such negative impact on price efficiency is mitigated when the

trading frequency is high.

Results of this paper suggest an additional benefit of trading smoothly. The

patient traders are less affected by short-horizon front-running HFTs. Impatient

noise traders are most susceptible to short-horizon front-running because they have

to trade quickly.
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Chapter A: Appendices to Chapter 1

A.1 Proofs of Section 1.2

Section A.1.1 states a more general Theorem A.1.1 where the fast trader is risk

averse with an exponential utility functions − exp(−Aπ). Then, section A.1.2 proves

several necessary lemmas. Section A.1.3 proves the general theorem. Theorem 1.2.2

is a special case where the risk aversion coefficient is A = 0.

A.1.1 A generalized theorem

The equilibrium condition Equation (1.2.3) is generalized to allow risk aversion.

Definition A.1.1. Fast trader utility maximizing. Given the pricing function set

by market makers P (·), the informed trader’s strategy X(·), and a signal about the

incoming order flow Iy = x + z + ey the fast trader’s utility is maximized if she

trades u∗ shares at time 1− and −u∗ shares at time 1, i.e.,

u∗ = U(Iy;P (·), X(·)) = argmax
u

E
[
U(πF ) |Iy, P (·), X(·)

]
(A.1.1)

where πF = u(p1 − p1−) and U(π) = − exp(−Aπ).

Theorem A.1.1 (Equilibrium when the fast trader is risk averse). Given

Assumption 1, there is a unique equilibrium where the four strategy functions X(·),
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U(·), P (·), and Q(·) are

Informed trading size: x∗ = X(v; p0, λ
T ) = β (v − p0) (A.1.2)

Fast trading size: u∗ = U(Iy; p0, λ
T ) = αρIy (A.1.3)

Market order pricing: ptj = P (yj, ptj−1
) = ptj−1

+ λTyj (A.1.4)

Final quote: p1+ = Q(u, y − u) = v0 + λPy (A.1.5)

The four endogenous parameters β, α, λT , and λP are:

β =
σz
σv
θ, α =

1

2 + (1− ρ)Aσvσz
θ2+1

2θ

, λT =
σv
σz

1

2θ
, λP =

σv
σz

θ

1 + θ2

where θ =
√

Θ and Θ is the unique positive root in the range
[

1−ρ/4
1+ρ/4

, 1
]

of the cubic

equation

0 = (Aσvσz(1− ρ))2 (Θ + 1)2(Θ− 1) + Aσvσz(1− ρ)

× (Θ + 1)

(
Θ− 1− ρ/4

1 + ρ/4

)
(4 + ρ) + 4Θ

(
Θ− 1− ρ/4

1 + ρ/4

)
(4 + ρ) (A.1.6)

Corollary A.1.2. If the fast trader is risk neutral (A = 0) the unique positive root

of Equation (A.1.6) is θ2 = Θ = 1−ρ/4
1+ρ/4

and we have Theorem 1.2.2.

Proof. The first two terms on the right hand side of the equation equal 0 if A = 0

or 1 − ρ = 0. Only the third term remains. Eliminate the case where Θ = 0 and

λT = ∞. Then the unique equilibrium is θ =
√

1−ρ/4
1+ρ/4

and it reduces to Theorem

1.2.2.

A.1.2 Strategies of each trader

Lemma A.1.3. Given the pricing function of Assumption 1, the fast trader’s optimal

trade size is u∗ = αŷ where α = 1
2+AλT (1−ρ)σ2

y
and her maximized expected profit at
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time 1− is E
[
πF∗
∣∣λT , Iy] = α(1 − α)λT ŷ2 where ŷ = E[y|Iy] = ρIy. In particular,

when A = 0, the fast trader is risk neutral and α = 1
2

and E[πF∗] = 1
4
λT ŷ2.

Proof. market makers absorb residual order of size y − u at time 1. Given the

linear pricing function ptj = ptj−1
+ λTytj , the difference of between the fast trader’s

exit price and entry price is p1 − p1− = λT (y − u). The fast trader’s expected

profit is E[πF |p0, λ
T , Iy, u] = E

[
uλT (y − u)

∣∣ Iy, u] = uλT (ŷ − u) and its variance

Var[πF |p0, λ
T , Iy, u] = (uλT )2 Var[y − u|Iy, u] = (uλT )2(1 − ρ)σ2

y. The fast trader

chooses u to maximize E[πF |p0, λ
T , Iy, u] − A

2
Var[πF |p0, λ

T , Iy, u]. Solve the first

order condition to get u∗ = αŷ and πF∗ = α(1− α)λT ŷ2.

Remark A.1.1. The fast trader’s trading intensity α is independent from price impact

factor λT and information quality ρ only if she is risk neutral A = 0 or her information

is perfect ρ = 1.

Lemma A.1.4. Given Assumption 1, the informed trader’s optimal size of trade is

x∗ = 1
2λT

(v − p0) and her maximized expected profit at time 0+ is

E
[
πI∗ = x∗(v − p1)

∣∣ v, p0, λ
T
]

=
1

4λT
(v − p0)2.

Proof. Given the pricing function ptj = ptj−1
+ λTytj , the informed trader estimates

that E[p1|v, p0, λ
T ] = p0 + λT E[x + z] = p0 + λTx Her expected profit is then

E[πI |v, p0, λ
T ] = x(v − p0 − λTx). Solve the first order condition to find x∗ and

πI∗.

Lemma A.1.5. Assuming that the informed trader choose x = β(v − p0) and the

fast trader chooses u = αŷ, the informationally efficient quotes p0 = E[v|F0] = v0

and p1+ = E[v|F1] = v0 + λP (x+ z) where λP = βσ2
v

β2σ2
v+σ2

z
.
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Proof. First, p0 equals the ex ante expected value v0. Second, the fast trader’s trade

size u = αŷ = αρIy = αρ(x+ z + ey). Given αρ, u is informationally equivalent to

sy = x+ z + ey, a noisy observation of y = x+ z. It has no extra information about

v when y = x + z is observed. Market makers can find x + z by summing up two

observed orders u and x+ z − u at time 1. From the projection theorem of normally

distributed random variables,

p1+ = E[v|F1] = E[v|y] = E[v|F0] + λPy = v0 +
Cov(y, v)

Var[y]
(x+ z)

Given the assumed normality and independence of z and v, we find that

λP =
Cov(y, v)

Var[y]
=

Cov [β(v − p0) + z, v]

Var[β(v − p0) + z]
=

βσ2
v

β2σ2
v + σ2

z

Lemma A.1.6. Given Assumption 1 and the informed trader chooses x = β(v− p0)

and the fast trader chooses u = αŷ, market makers makes zero expected profit if they

set λT = λP

1−ρ(1−α)α
, ρ ∈ [0, 1].

Proof. Follows from Lemma A.2.5 on Page 122

A.1.3 Proof of the generalized theorem of A.1.1

Lemma A.1.3,A.1.4, A.1.5, and A.1.6 imply that equilibrium strategies are all

linear given Assumption 1. And the four strategy functions are fully characterized by

four parameters α, β, λP , and λT . In equilibrium, the following system of equations
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must hold.

β =
1

2λT
, α =

1

2 + AλT (1− ρ)(β2σ2
v + σ2

z)
,

λP =
βσ2

v

β2σ2
v + σ2

z

λT =
λP

1− ρα(1− α)
(A.1.7)

There are three exogenous parameters: volatility of the fundamental value of the

risky asset σv, volatility of noise trading σz, and the fast trader’s information quality

ρ as defined in Equation (1.2.1).

Define two unitless parameters as follows: θ := β σv
σz

and η := Aσvσz. θ is

endogenous and it measures the informed trader’s trading intensity. We will see that

η and ρ are the only relevant exogenous parameters in equilibrium and they are

also unitless. Changing the unit of v and z would have no effect on the exogenous

parameters η and ρ and the endogenous parameter θ.

Then, we express β, α, λP , and λT all in terms of θ, η, and ρ as follows.

β =
σz
σv
θ, λT =

σv
σz

1

2θ
λP =

σv
σz

θ

1 + θ2
, α =

1

2 + (1− ρ)η θ
2+1
2θ

The system of equations can be reduced to one equation of θ in terms of the exogenous

variable η = Aσvσz and ρ.

λPβ = λTβ (1− ρ(1− α)α)

⇒ θ2

1 + θ2
=

1

2
(1− ρ(1− α)α) (A.1.8)

⇒ 2θ2

1 + θ2
= 1− (1 + η(1− ρ)1+θ2

2θ
)ρ

(2 + η(1− ρ)1+θ2

2θ
)2

(A.1.9)

115



Equation (A.1.9) is a sixth order polynomial equation of b:

0 = θ6η2(1− ρ)2 + 2θ5(4 + ρ)η(1− ρ) + θ4
(
η2(1− ρ)2 + 4(ρ+ 4)

)
+ 4θ3η(1− ρ)ρ− θ2

(
η2(1− ρ)2 − 4(ρ− 4)

)
+ 2θ(ρ− 4)η(1− ρ)

− η2(1− ρ)2 (A.1.10)

It can be reduced to a cubic equation of θ2. Let us define

U1 := η(1− ρ) ≥ 0, U2 :=
1− ρ/4
1 + ρ/4

∈ [0.6, 1] (A.1.11)

U1 and U2 are bounded since ρ ∈ [0, 1]. Then, Equation (A.1.10) can be rewritten

as a cubic equation of θ2

U2
1 (θ2 + 1)2(1− θ2) = U1(θ2 + 1)(θ2 − U2)(4 + ρ) + 4θ2(θ2 − U2)(4 + ρ) (A.1.12)

We can express θ2 in closed-form as a function of ρ and η. The following Lemma

suffice to conclude the proof of Theorem A.1.1.

Lemma A.1.7. For η ≥ 0 and ρ ∈ [0, 1], the cubic equation (A.1.12) has an unique

real root of θ2 in the range [U2, 1].

Proof. For η ≥ 0 and ρ ∈ [0, 1], U1 = η(1 − ρ) ≥ 0 and U2 ∈ [0.6, 1]. Define

Θ = θ2 > 0. Let g(Θ) denote the right hand side of Equation (A.1.12), i.e.,

g(Θ) = U2
1 (Θ + 1)2(Θ− 1) + U1(Θ + 1)(Θ− U2)(4 + ρ) + 4Θ(Θ− U2)(4 + ρ)

1. g(Θ) < 0 if 0 < Θ < U2 ≤ 1 because the first and the second term of g(Θ) are

weakly negative and the third term is strictly negative.

2. g(Θ) > 0 if Θ > 1 ≥ U1 because the first two terms of g(Θ) are weakly positive

and the third term is strictly positive.
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3. g(Θ) = 0 has at least one root in [U2, 1] since g(U2) ≤ 0 ≤ g(1) and g(Θ) is

continuous.

g(U2) = U2
1 (U2 + 1)2(U2 − 1) ≤ 0, g(1) = 2(U1 + 2)(1− U2)(4 + ρ) ≥ 0

4. The root in [U2, 1] is unique because g(Θ) is increasing in [U2, 1]. The second

and third terms of g(Θ) are increasing in Θ. The first term is also increasing

in Θ for Θ > 1
3

because

d

dΘ
(Θ + 1)2(Θ− 1) = 3Θ2 + 2Θ− 1 > 0 if Θ >

1

3
(A.1.13)

Since Θ ≥ U2 ≥ 0.6, all three terms of g(Θ) are increasing for Θ ∈ [U2, 1].

Therefore, there is a unique real Θ ∈ [U2, 1] that satisfies g(Θ) = 0.

Corollary A.1.8. If A = 0 or ρ = 1, U1 = 0 and Θ = U2 is the unique positive root.

If ρ = 0, U2 = 1 and Θ = 1 is the unique positive root.

A.1.4 Equilibrium impact of fast trader’s risk aversion

As illustrated in Figure A.1, risk aversion mitigates the impact of the fast

trader on equilibrium when her information is noisy ρ < 1. The fast trader’s trading

intensity α is now increasing with her information quality ρ and decreasing with her

risk exposure Aσvσz.

As the fast trader becomes more risk averse (A ↑), the fast trader reduces

trading intensity (α ↓), market makers amplify temporary price impact less λT

λP
↓,

and the informed trader increases trading intensity (β ↑).

117



Proposition A.1.9. θ2 ∈
[

1−ρ/4
1+ρ/4

, 1
]

increases with η = Aσvσz and decreases with ρ.

Particularly, as η → 0 or ρ→ 1, U1 → 0 and θ2 → U2 = 0.6; as η →∞ or ρ→ 0,

θ2 → U2 = 1.

Proof. Omitted. It can be derived from the closed-form representation of θ2 as a

root of the cubic equation or the implicit function theorem.

Proposition A.1.9 shows that when A > 0, limη→∞ θ = 1. When the fast trader

is risk neutral (A = 0), θ is unaffected by σvσz. This highlights the importance of

risk aversion especially when risk exposure Aσvσz is high. When the fast trader is

risk averse, her impact becomes less important as her risk exposure Aσvσz →∞.

For example, Proposition 1.5.3 implies that the ratio of the fast trader’s

expected profit and the informed trader’s expected profit is E[πF ]
E[πI ]

= 1−θ2

θ2 . Assume

that the fast trader’s information is noisy (ρ < 1). Then,

When A > 0 : lim
σvσz→∞

E[πF ]

E[πI ]
= lim

σvσz→∞
1− θ2

θ2
= 0 (A.1.14)

When A = 0 :
E[πF ]

E[πI ]
=

1− θ2

θ2
=

ρ/2

1− ρ/4 > 0 (A.1.15)

Keeping the fast trader’s risk aversion A > 0 fixed and ρ < 1, the fast trader’s

expected profit E[πF ] still increases with σvσz but increases slower than E[πI ]. In the

limit when σvσz →∞, the fast trader’s profit is negligible compared to the informed

trader’s profit.

Intuitively, the fast trader is more risk averse than the informed trader. As

σvσz increases, the risk exposure is higher. The fast trader reduces trading intensity

more than the informed trader. In the limit, σvσz →∞, the fast trader stop trading
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Figure A.1: Equilibrium of model with a risk averse fast trader. A is the fast

trader’s risk aversion. ρ is the fast trader’s information quality. Aσvσz measures the

fast trader’s risk exposure. ρ and Aσvσz are both unitless.

(a) Fast trading intensity α increases with her information quality ρ and decreases

with the risk exposure Aσvσz. (b) Normalized informed trading intensity β · σv
σz

decreases with the fast trader’s information quality ρ and increases with risk exposure

Aσvσz. (c) Normalized temporary price impact per share λT increases with the fast

trader’s information quality ρ and decreases withe Aσvσz. Normalized permanent

price impact per share λP decreases with ρ and increases with Aσvσz. (d) Temporary

price impact amplifier λT

λP
measures the extra friction caused by the fast trader. It

increases with ρ and decreases with Aσvσz.
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due to high risks and all profits go to the informed trader.

A.2 Proofs of Section 1.3

A.2.1 Trader strategies with multiple fast traders

Lemma A.2.1 (Prices). The order flow is {u1, · · · , uJ , y − SJ}. The linear pricing

function specified in Assumption 1 implies that the traded prices are

ptj = ptj−1
+ λTuj = p0 + λTSj, j = 1, 2, · · · J (A.2.1)

p1 = ptJ + λT (y − SJ) = p0 + λTy (A.2.2)

By equilibrium condition, market makers set initial and final quotes to their condi-

tional expectation of v.

p0 = E[v] = v0, p1+ = E [v|F1] = E [v |u1, u2, · · · , uJ , y − SJ ] (A.2.3)

where Ft denotes the information of market makers at time t.

Lemma A.2.2 (Each fast trader’s order size). Given all others’ strategy β, λT , λP ,∑
j,l 6=k uj,l, the last traded price ptj−1

, and the signal Iy, fast trader (j, k)’s optimal

trader size u∗j,k = 1
2

(
ŷ − Sj−1 −

∑
l 6=k uj,l

)
.

Proof. Fast trader (j, k)’s expected profit after submitting uj,k is

E[πFj,k|Iy, ptj−1
] = E

[
uj,k

(
p1 − ptj

)
|Iy, ptj−1

]
= uj,k E

[
p1 − ptj−1

− λTuj|Iy, ptj−1

]
= λTuj,k E

[
(y − SJ−1)−

∑
l 6=k

uj,l − uj,k
∣∣∣∣∣ Iy, ptj−1

]

= λTuj,k

(
ŷ − SJ−1 −

∑
l 6=k

uj,l

)
− λTu2

j,k (A.2.4)
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First order condition then gives us u∗j,k = 1
2

(
ŷ − Sj−1 −

∑
l 6=k uj,l

)
.

Lemma A.2.3 (Fast trading size in symmetric equilibrium). In the symmetric

equilibrium where fast traders arriving at time j submit the same order, u∗j,k =

1
nj
u∗j = 1

1+nj
(ŷ − Sy−1).

Proof. Sum u∗j,k of Lemma A.2.2 over k ∈ {1, 2, · · · , nj}.

u∗j =

nj∑
k=1

u∗j,k =
nj
2

(ŷ − Sy−1)− nj−1

2

nj∑
k=1

u∗j,k

⇒ u∗j =
nj

1 + nj
(ŷ − Sy−1) u∗j,k =

1

nj
u∗j =

1

1 + nj
(ŷ − Sy−1) (A.2.5)

The last step uses the symmetry.

Lemma A.2.4 (Fast trading size uj and Sj). Assume that the aggregate fast trading

at time tj is uj = αj (ŷ − Sj−1), then for 1 ≤ j ≤ J

uj = ŷαj

j−1∏
i=0

(1− αi), Sj =

j∑
i=0

ui = ŷ

(
1−

j∏
i=0

(1− αi)
)

(A.2.6)

Proof. Proof by induction. S0 = u0 = α0 = 0 by definition. u1 = α1(ŷ − S0) = α1ŷ

and S1 = u0 + u1 = u1 = α1ŷ (1− (1− α1)(1− α0)). Suppose the Lemma holds for

j ≤ K. Then,

uK+1 = αK+1 (ŷ − SK) = αK+1

(
ŷ − ŷ

(
1−

K∏
i=0

(1− αi)
))

= ŷαK+1

K∏
i=0

(1− αi)
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and

SK+1 = uK+1 + SK = αK+1(ŷ − SK) + SK

= αK+1ŷ + (1− αK+1)SK

= αK+1ŷ + (1− αK+1)ŷ

(
1−

K∏
i=0

(1− αi)
)

= ŷ

(
1− (1− αK+1)

K∏
i=0

(1− αi)
)

= ŷ

(
1−

K+1∏
i=0

(1− αi)
)

Lemma A.2.5 (Equation of λT and λP ). Given Assumption 1 and assume that the

aggregate fast trading at time tj is uj = αj (ŷ − Sj−1), the following equation must

hold if market makers make 0 expected profit at time 0:

λP = λT (1− ργ) , α0 = 0, γ =
J∑
j=1

(
αj(1− αj)

j−1∏
i=0

(1− αi)2

)
(A.2.7)

Proof. From Lemma A.2.1 and A.2.4, ptj = p0+λTSj = p0+λT ŷ
(

1−∏j
i=0(1− αi)

)
.

The final quote is p1+ = p0 + λPy. At time 1, market makers absorb the residual

order flow y −∑J
i=0 ui. Their expected profit ex ante of the trade is

E

[(
y −

J∑
i=0

ui

)
(p1 − p1+)

]
= E

[(
y − ŷ

(
1−

J∏
i=0

(1− αi)
))

(λT − λP )y

]

= σ2
y(λ

T − λP )

(
1− ρ

(
1−

j∏
i=0

(1− αi)
))

market makers expect to lose by trading with fast traders at each time tj. Their
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expected loss ex ante is

E
[
E
[
uj
(
p1+ − ptj

)
|Iy
]]

= E

[
uj

(
λP ŷ − λT ŷ

(
1−

j∏
i=0

(1− αi)
))]

= E
[
ŷ2
]
αj

j−1∏
i=0

(1− αi)
(
λP − λT + λT

j∏
i=0

(1− αi)
)

= ρσ2
yαj

j−1∏
i=0

(1− αi)
(
λP − λT + λT

j∏
i=0

(1− αi)
)

Their total expected loss is then

J∑
j=1

ρσ2
yαj

j−1∏
i=0

(1− αi)
(
λP − λT + λT

j∏
i=0

(1− αi)
)

=ρσ2
y

J∑
j=1

((
λP − λT

)
αj

j−1∏
i=0

(1− αi) + λTαj(1− αj)
j−1∏
i=0

(1− αi)2

)

=ρσ2
y

((
λP − λT

) J∑
j=1

αj

j−1∏
i=0

(1− αi) + λT
J∑
j=1

αj(1− αj)
j−1∏
i=0

(1− αi)2

)

=ρσ2
y

((
λP − λT

)(
1−

J∏
j=1

(1− αj)
)

+ λT
J∑
j=1

αj(1− αj)
j−1∏
i=0

(1− αi)2

)

The last step uses Lemma A.2.4. The 0 profit condition requires that the market

makers’ total expected loss equal their expected profit. Hence,

σ2
y(λ

T − λP )

(
1− ρ

(
1−

j∏
i=0

(1− αi)
))

= ρσ2
y

((
λP − λT

)(
1−

J∏
j=1

(1− αj)
)

+ λT
J∑
j=1

αj(1− αj)
j−1∏
i=0

(1− αi)2

)

Eliminate σ2
y > 0 from both sides and rearrange the terms and we have

λP = λT

(
1− ρ

J∑
j=1

(
αj(1− αj)

j−1∏
i=0

(1− αi)2

))
, α0 = 0
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Lemma A.2.6. Suppose all fast traders choose uj,k = αj,k (ŷ − Sj−1) and the in-

formed trader chooses x = β(v−p0). The final quote is p1+ = E[v|FV1 ] = v0+λP (x+z)

where λP = βσ2
v

β2σ2
v+σ2

z
.

Proof. The aggregate order flow over the entire trading round equals y = SJ + x+

z−SJ = x+ z. Fast traders choose uj,k based on ŷ = ρIy. Because Iy = x+ z+ ey is

a noisy observation of x+ z, observing uj has no additional information about v once

y is observed. Thus, E[v|F1] = E[v|x + z] = v0 + βσ2
v

β2σ2
v+σ2

z
based on the projection

theorem for normal random variables.

A.2.2 Proof of Theorem 1.3.1

Proof. Lemma A.1.4, A.2.3, A.2.5 and A.2.6 imply that equilibrium strategies are

x = β(v − v0), p1+ = v0 + λTy, p0 = v0 ptj = ptj−1
+ λTyj, ∀j

uj,k =
αj
nj

(ŷ − Sj−1) , ∀j, k

And the parameters satisfy

αj =
nj

1 + nj
, β =

1

2λT
, λP =

βσ2
v

β2σ2
v + σ2

z

λP = λT

(
1− ρ

J∑
j=1

αj(1− αj)
j−1∏
i=0

(1− αi)2

)
, α0 = 0

Define θ := β σv
σz
> 0, γ :=

∑J
j=1 αj(1− αj)

∏j−1
i=0 (1− αi)2. Then,

λPβ =
θ2

θ2 + 1
=

1

2
(1− ργ) ⇒ θ =

√
1− ργ
1 + ργ

(A.2.8)

And it follows that

β =
σz
σv
b, λT =

1

2β
=
σv
σz

1

2θ
λP =

1

β

θ2

1 + θ2
=
σv
σz

θ

1 + θ2
(A.2.9)
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A.2.3 Proof of Proposition 1.4.1

The (j, k)-th fast trader chooses uj,k =
αj
nj

(ŷ − Sj−1). Her execution price is

ptj = p0 + λTSj and she expects p1 = p0 + λTy. Plus, Lemma A.2.4 implies that

ŷ − Sj = ŷ
∏j

i=0(1− αi). Thus,

E
[
uj,k(p1 − ptj)|Iy

]
= λT

αj
nj

(ŷ − Sj−1) E [y − Sj|Iy] = λT
αj
nj

(ŷ − Sj−1)(ŷ − Sj)

= λT
αj
nj
ŷ2(1− αj)

j−1∏
i=0

(1− αi)2

Hence, her expected profit ex ante is

E
[
uj,k(p1 − ptj)

]
= E

[
E
[
uj,k(p1 − ptj)|Iy

]]
= λT

αj(1− αj)
nj

E
[
ŷ2
] j−1∏
i=0

(1− αi)2 = λTρσ2
y

αj(1− αj)
nj

j−1∏
i=0

(1− αi)2

= λTρ(θ2 + 1)σ2
z

αj(1− αj)
nj

j−1∏
i=0

(1− αi)2

= σvσzρ
θ2 + 1

2θ

αj(1− αj)
nj

j−1∏
i=0

(1− αi)2 (A.2.10)

By the definition of γ and θ,

ρ
J∑
j=1

(
αj(1− αj)

j−1∏
i=0

(1− αi)2

)
= ργ =

1− θ2

1 + θ2
(A.2.11)

Thus, total fast trading profit equals

J∑
j=1

nj∑
k=1

E
[
uj,k(p1 − ptj)

]
= σvσz

θ2 + 1

2θ
ργ = σvσz

1− θ2

2θ
(A.2.12)

125



A.3 Proofs of Section 1.4

A.3.1 Basic properties of speed friction γ

Proposition A.3.1. 0 ≤ γ < 1 for J > 0.

Proof. γ ≥ 0 since αj ∈ [0, 1). Let γ(J) =
∑J

j=1

(
αj(1− αj)

∏j−1
i=0 (1− αi)2

)
. We

can prove by induction that γ(J) < 1−∏J
i=0(1− αi)2.

1. γ(1) = (1− α1)− (1− α1)2 < 1− (1− α1)2.

2. Assume γ(k − 1) < 1−∏k−1
i=0 (1− αi)2 for k − 1 ≥ 1. Then,

γ(k) = γ(k − 1) + αk(1− αk)
k−1∏
i=0

(1− αi)2

< 1−
k−1∏
i=0

(1− αi)2 + αk(1− αk)
k−1∏
i=0

(1− αi)2

< 1− (1− αk)2

k−1∏
i=0

(1− αi)2 = 1−
k∏
i=0

(1− αi)2

3. Therefore, γ(J) < 1−∏J
i=0(1− αj)2 < 1 for all J ≥ 1.

Lemma A.3.2. ∂γ
∂αk

< 0 if αk ≥ 1
2
.

Proof. αk is not included in the terms where j < k. Thus,

∂γ

∂αk
=

(
k−1∏
i=0

(1− αi)2

)
· ∂

∂αk

(
αk(1− αk) +

J∑
j=k+1

(
αj(1− αj)

j−1∏
l=k

(1− αl)2

))
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Since αi < 1 for all i ≤ k − 1,
∏k−1

i=0 (1− αi)2 > 0. ∂γ
∂αk

< 0 ⇐⇒

∂

∂αk

αk(1− αk) + (1− αk)2

αk+1(1− αk+1) +

J∑
j=k+2

αj(1− αj)
j−1∏
l=k+1

(1− αl)2

 < 0

⇐⇒

(1− 2αk)− 2(1− αk)

αk+1(1− αk+1) +

J∑
j=k+2

αj(1− αj)
j−1∏
l=k+1

(1− αl)2

 < 0

⇐⇒ 1− 2αk < 2(1− αk)

αk+1(1− αk+1) +

J∑
j=k+2

αj(1− αj)
j−1∏
l=k+1

(1− αl)2

 (A.3.1)

Since αk ≥ 1
2
, the left hand side of Eq. (A.3.1) 1− 2αk ≤ 0. The right hand side of

Eq. (A.3.1) is positive because αj < 1. Hence, ∂γ
∂αk

< 0.

Lemma A.3.3. Consolidating the last two groups of fast traders reduces speed

friction, i.e.., γ{··· ,m+n} < γ{··· ,m,n}.

Proof. First, γ{··· ,m+n} < γ{··· ,m} because entry of n fast traders at the same time as

the m fast traders reduces speed friction when m > 0; second, γ{··· ,m} = γ{··· ,m,∞}

because infinite number of fast traders at the end are perfectly competitive and act

like the competitive market makers; third, γ{··· ,m,∞} < γ{··· ,m,n} because reducing

the number of fast traders at time tJ increases speed friction. In sum, γ{··· ,m+n} <

γ{··· ,m} < γ{··· ,m,∞} < γ{··· ,m,n} and it follows that γ{··· ,m+n} < γ{··· ,m,n}.

A.3.2 Proof of Proposition 1.4.6

Proof. First, if nj > 0, αj =
nj

1+nj
≥ 1

2
. After a new fast trader enters, the new

α′j =
nj+1

nj+2
>

nj
nj+1

= αj. Lemma A.3.2 then implies that γ decreases.

Then I prove entry of one fast trader with a different speed from existing risk

neutral fast traders increases speed friction γ. Suppose that there are J instants that
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the fast traders can trade. Compare the following two speed profiles of fast traders:

Speed profile 1: {n1, n2, · · · , 0, nk+1, · · · , nJ} ,

Speed profile 2: {n1, n2, · · · , 1, nk+1, · · · , nJ}

for 1 ≤ k ≤ J . Speed profile 2 is obtained if 1 fast trader enter at time tk. The

aggregate trading intensities of the two speed profiles are:

profile 1: {α1, α2, · · · , 0, αk+1, · · · , αJ}

and profile 2: {α1, α2, · · · , αk, αk+1, · · · , αJ}

Speed friction of profile 2 is as follows:

γ2 =
J∑
j=1

(
αj(1− αj)

j−1∏
i=0

(1− αi)2

)

=
k−1∑
j=1

(
αj(1− αj)

j−1∏
i=0

(1− αi)2

)
+

(
αk(1− αk)

k−1∏
i=0

(1− αi)2

)

+
J∑

j=k+1

(
αj(1− αj)

j−1∏
i=0

(1− αi)2

)

=
k−1∑
j=1

(
αj(1− αj)

j−1∏
i=0

(1− αi)2

)
+

(
αk(1− αk)

k−1∏
i=0

(1− αi)2

)

+
J∑

j=k+1

αj(1− αj)(1− αk)2

j−1∏
i=0
i 6=k

(1− αi)2


Setting αk = 0 in γ2 and we have speed friction of the first profile γ1:

γ1 =
k−1∑
j=1

(
αj(1− αj)

j−1∏
i=0

(1− αi)2

)
+

J∑
j=k+1

αj(1− αj) j−1∏
i=0
i 6=k

(1− αi)2


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Hence, the difference in speed frictions between the two profiles are:

γ2 − γ1 =

(
αk(1− αk)

k−1∏
i=0

(1− αi)2

)

+
(
(1− αk)2 − 1

) k−1∏
i=0

(1− αi)2

αk+1(1− αk+1) +

J∑
j=k+2

αj(1− αj)
j−1∏
i=k+1

(1− αi)2


= αk

k−1∏
i=0

(1− αi)2

(1− αk)− (2− αk)

αk+1(1− αk+1) +

J∑
j=k+2

(
αj(1− αj)

j−1∏
i=k+1

(1− αi)2

)
Since αk ∈ (0, 1), αk

∏k−1
i=0 (1− αi)2 > 0 . Hence, γ2 > γ1 ⇐⇒

1− αk
2− αk

> αk+1(1− αk+1) +
J∑

j=k+2

(
αj(1− αj)

j−1∏
i=k+1

(1− αi)2

)
(A.3.2)

Because αj ∈ [0, 1), αj(1− αj) ≤ 1
4
. Thus,

RHS of Eq. (A.3.2) ≤ 1

4
+

1

4

J∑
j=k+2

j−1∏
i=k+1

(1− αi)2

Since all existing traders are risk neutral, αj ≥ 1
2

for all j ≥ k + 1. Thus,

J∑
j=k+2

j−1∏
i=k+1

(1− αi)2 ≤
J∑

j=k+2

j−1∏
i=k+1

1

4
=

1

3

(
1− 1

4J−k−1

)

Hence,

RHS of Eq. (A.3.2) ≤ 1

4

(
1 +

1

3

(
1− 1

4J−k−1

))
=

1

3

(
1− 1

4J−k

)
<

1

3

Because only one fast trader enters at time tk, αk ∈ (0, 1
2
]. LHS of Eq. (A.3.2) is

decreasing in αk. It follows that 1−αk
2−αk ∈ [1/3, 1/2]. Therefore,

LHS of Eq. (A.3.2) =
1− αk
2− αk

≥ 1

3
> RHS of Eq. (A.3.2) ⇐⇒ γ2 > γ1

Entry of one fast trader at a different time tk increases αk from 0 to at most 1
2
. The

entry always increases speed friction. γ.
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A.3.3 Proof of Proposition 1.4.5

1. Suppose there are J time instants with positive number of fast traders. nj ≥ 1,

hence αj ≥ 1
2

for all ∀1 ≤ j ≤ J a since all fast traders are risk neutral. Lemma

A.3.2 shows that ∂γ
∂αj

< 0 if αj ≥ 1
2
. Thus,

γ =
J∑
j=1

(
αj(1− αj)

j−1∏
i=0

(1− αi)2

)
≤

J∑
j=1

(
1

2
(1− 1

2
)

j−1∏
i=0

(1− 1

2
)2

)
=

J∑
j=1

(
1

4j

)

=
1

3

(
1− 1

4J

)

J ≤ N since each fast trader can only arrive at one time. Hence, γ ≤

1
3

(
1− 1

4J

)
≤ 1

3

(
1− 1

4N

)
. If N fast traders follow the Stackelberg-N speed

profile, αj = 1
2

for all j and γ reaches the maximum which equals 1
3

(
1− 1

4N

)
.

2. Starting from the speed profile {n1, n2, · · · , nJ}, we can obtain the speed profile{∑J
i=1 ni

}
by recursively consolidating the last two groups as follows:

{n1, · · · , nJ−1, nJ} → {n1, · · · , nJ−2, nJ−1 + nJ}

→
{
n1, · · · , nJ−3,

N∑
i=j−2

ni

}
· · · →

{
n1,

J∑
i=2

ni

}
→
{

J∑
i=1

ni

}

Lemma A.3.3 implies that speed friction is reduced after each consolidation

and thus the end Cournot-N speed profile
{
N =

∑J
i=1 ni

}
has lower speed

friction than any starting profile.

A.3.4 Proof of Proposition 1.4.7

I prove sufficiency and necessity respectively.
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1. Prove ⇒. Assume limN→∞ γ = 0. By definition γ ≥ α1(1− α1) = n1

(1+n1)2 . It

follows that 0 = limN→∞ γ ≥ limN→∞
n1

(1+n1)2 ≥ 0 and thus limN→∞
n1

(1+n1)2 = 0.

We can then prove by contradiction that limN→∞ n1 =∞.

2. Prove ⇐. Assume limN→∞ n1 =∞. By definition,

lim
N→∞

γ = lim
N→∞

(
α1(1− α1) + α2(1− α2)(1− α1)2

)
+ lim

N→∞

(
(1− α1)2

J∑
j=3

αj(1− αj)
j−1∏
i=2

(1− αi)2

)

We have that limN→∞ 1−α1 = limN→∞
1

1+n1
= 0 and

∑J
j=3 αj(1−αj)

∏j−1
i=2 (1−

αi)
2 < 1 due to Proposition A.3.1. Hence, limN→ γ = 0.

A.4 Proofs of Section 1.5

A.4.1 Proof of Proposition 1.5.1

Proof. At time t1, order flow u1 reveals fast traders’ information Iy perfectly.

Var [v|Ft1 ] = Var[v|u] = Var[v|Iy] =
σ2
z + σ2

e

β2σ2
v + σ2

z + σ2
e

σ2
v (A.4.1)

⇒ φt1 =
β2σ2

v

β2σ2
v + σ2

z + σ2
e

=
β2σ2

v

σ2
y + 1−ρ

ρ
σ2
y

= ρ
β2σ2

v

β2σ2
v + σ2

z

= ρ
θ2

1 + θ2
= ρ

1− ργ
2

(A.4.2)

Ex post, information is revealed through the order flow y = x+ z = β(v − v0) + z.

The projection theorem of normal random variables implies that Var[v|F1+ ] =

Var[v|y = β(v − v0) + z] = σ2
vσ

2
z

β2σ2
v+σ2

z
= σ2

v

1+θ2 . Plug in the equilibrium θ and we find

that φ = θ2

1+θ2 = 1−ργ
2

.

131



A.4.2 Proof of Proposition 1.5.3

Proof. Noise traders’ trade z shares at price of p1. Their profit is

E
[
πN
]

= E [−z(p1 − p0)] = −λTσ2
z = − 1

2θ
σvσz.

Fast traders’ total profit is given in Proposition 1.4.1. The informed trading profit

equals the difference between noise traders’ loss and fast traders’ profit

σvσz

(
1

2θ
− 1− θ2

2θ

)
=
θ

2
σvσz.

A.5 Proof of Proposition 1.6.1

Proof. Suppose trader 1 chooses order size u1. In a symmetric equilibrium, all others

have the same probability being placed at each position in the queue and each of

them chooses to trade u. Conditional on ŷ and others’ choice of u, trader 1 has an

equal probability of being at each position. Her expected profit is

E [u1(p1 − pu1)|ŷ] =
λT

N
(u1(ŷ − u1) + u1(ŷ − u− u1) + · · ·+ u1(ŷ − (N − 1)u− u1))

= λT
(
ŷu1 − u2

1 −
N − 1

2
uu1

)

Alternatively, pu1 = p0 +λTu1 +λTku where k is the number of fast traders executed

before trader 1 after the shuffling. k has equal probability of being 0, 1, · · · , N − 1.

Hence, E[pu1|u1] = p0 + λTu1 + λT (N − 1)u/2. The first order condition implies that

u∗1 = (ŷ−(N−1)u/2)/2. Due to symmetry, u∗1 = u and we have that u∗ = 2ŷ/(N+3).
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The aggregate profit of fast traders conditional on Iy is

N∑
i=1

u∗λT (ŷ − iu∗) = λT ŷ

(
ŷ − N + 1

2
u∗
)
Nu∗ = λT ŷ

(
1− N + 1

N + 3

)
2N

N + 3

= λT ŷ2 4N

(N + 3)2
(A.5.1)

Therefore, the effective speed friction is γ = 4N
(N+3)2 . If γ = 1, γ = 1/4 and if γ = 2,

γ = 8/25.

A.6 Proof of Proposition 1.7.1

Proof. Lemma A.2.4 implies that the total fast traders’ order flow SJ satisfies

E[SJ ] = 0 and

Var[SJ ] =

(
1−

J∏
i=0

(1− αi)
)2

ρ2(σ2
y + σ2

z)
2 =

(
1−

J∏
i=0

(1− αi)
)2

ρσ2
y

=

(
1−

J∏
i=0

(1− αi)
)2

ρ(θ2 + 1)σ2
z

Because SJ is normally distributed, trading volume |SJ | follows a half-normal distri-

bution.

E [|SJ |] =
√

Var[SJ ]

√
2√
π

=

√
2√
π

√
ρ (θ2 + 1)σz

(
1−

J∏
i=0

(1− αi)
)

(A.6.1)

The informed and noise traders order flow is y = x+z. y is normally distributed with

E[y] = 0 and Var[y] = (1 + θ2)σ2
z . Hence, trading volume |y| follows a half-normal

distribution.

E [|y|] =

√
2

π

√
Var[y] =

√
2

π

√
1 + θ2σz (A.6.2)
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A.7 Fast traders collusion

HFTs are unlikely to collude because trading is anonymous. Nevertheless, the

collusion equilibrium could be relevant because it is the upper bound of fast traders’

profit. If fast traders with the same speed collude, in aggregate they would act like

a monopoly as in the benchmark model and γ = 1/4. If fast traders with different

speeds collude, they would make speed friction γ even higher than the Stackelberg

case.

Proposition A.7.1 (Fast traders’ collusion). Suppose J fast traders collude and

trade at different time instants. Then,

Fast trader j trades: uj =
ŷ

J + 1
= αj (ŷ − Sj−1) , where αj =

1

J − j + 2

for j ∈ {1, 2, · · · , J}. The market quality parameter θ =
√

1−ργ
1+ργ

and the speed

friction γ = J
2(J+1)

. In the limit when J →∞, γ → 1
2
, θ →

√
1−ρ/2
1+ρ/2

,

Proof. Fast traders’ aggregate expected profit after observing the signal Iy can be

found as follows:

πFj = uj
(
p1 − ptj

)
= ujλ

T (y − Sj−1 − uj) (A.7.1)

E

[
J∑
j=1

πFj

∣∣∣∣∣ Iy
]

= λT
J∑
j=1

uj(ŷ − Sj−1 − uj) (A.7.2)

Hence, the maximization problem for collusive fast traders is

max
ui,1≤i≤J

J∑
i=1

ui

(
ŷ −

i−1∑
j=1

uj − ui
)

(A.7.3)
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First order conditions imply that ∀j, uj = 1
2

(
ŷ −∑i 6=j ui

)
. It follows that

∑
i ui =

1
2

(Jŷ − (J − 1)
∑

i ui) and

∑
i

ui =
J

J + 1
ŷ ⇒ uj =

1

2

(
ŷ −

∑
i

ui + uj

)
=

1

2

(
1

J + 1
ŷ + uj

)

⇒ u∗j =
1

J + 1
ŷ ∀j (A.7.4)

Fast traders’ trade sizes are the same as in the Cournot competition. The difference

is that they submit the orders sequentially and march up the supply curve gradually.

We can easily verify that the strategy is equivalent to choosing αj = 1
J−j+2

. Hence,

the speed friction of the collusive equilibrium is

γ =
J∑
j=1

(
αj(1− αj)

j−1∏
i=0

(1− αi)2

)
=

J∑
j=1

(
J − j + 1

(J − j + 2)2

(J + 2− j)2

(J + 1)2

)

=
J∑
j=1

J − j + 1

(J + 1)2
=

J

2(J + 1)
(A.7.5)

The collusive speed friction γ = J
2(J+1)

is greater than the Stackelberg speed friction

γ = 1
3

(
1− 4−J

)
and limJ→∞ γ = 1/2 as illustrated in Figure A.2.

Remark A.7.1. Each of the colluding fast trader trades 1
1+J

of the total estimated

order ŷ. Side payments from the slower traders to the faster ones are necessary to

sustain the collusion because faster front-runners make less profits in trading when

they collude with slower front-runners.

Remark A.7.2. J colluding fast traders with the same speed can at best mimic a

monopoly fast trader, i.e., γ = 1/4. Allowing colluding fast traders to have different

speeds resulting in a much higher speed friction.

Remark A.7.3. Interpreting the result differently, J colluding fast traders with

different speeds is equivalent to a monopolistic fast trader who can trade J times
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in a trading round. If all fast traders can trade multiple times in a trading round,

the resulting speed friction curve would lie between the collusive curve and the

competition curve under different speeds in Figure A.2. Competition from slower

fast traders improves market quality. Even when fast traders collude, the market

quality would be much better if all fast traders have the same speed. The key result

of this paper still holds: higher trading frequency (or finer time granularity) allows

front-runners to extract more trading profits. Lowering the frequency of periodic

uniform price auction can improve market quality because it limits the number of

front-runners’ trading opportunities and it also tends to encourage price competition

among front-runners.

No front-running lower-bound

Upperbound

Collusion under different speeds

Collusion under the same speed

Competition under the same speed

Competition under different speeds

0 2 4 6 8 10 12 14 16 18 20

0

0.1

0.2

0.3

0.4

0.5

Number of fast traders

Speed friction γ

Figure A.2: Speed differences and competitions among fast traders
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Chapter B: Appendices to Chapter 2

B.1 Proof of Theorem 2.2.1

The value function for the informed is

V (t,Dt) = max
βt

EI
t

[∫ T

t

(v − pt)βtdt
]

= max
βt

EI
t

[∫ T

t

(v̂ − pt)βtdt
]

(B.1.1)

where T is the random news announcement time. If the news has not been announced

by time t, its probability of being announced in the [t, t+ dt) interval is e−ηdt. Thus,

we can write

V (t) = max
βt

{
EI
t (v − pt)βtdt+ e−ηdt EI

t V (t+ dt)
}

(B.1.2)

The Bellman’s equation is

0 = max
{
Dtβtdt− ηVtdt+ EI

t [dVt]
}

(B.1.3)

By definition,

dDt = Dt+ −Dt = pt − pt− = −dpt = −λt(βtdt+ dzt) (B.1.4)

Hence,

EI
t [dDt] = EI

t [−dpt] = −λtβtdt (B.1.5)

dDtdDt = dptdpt = λ2
t (dxt + dzt)

2 = λ2
tσ

2
zdt (B.1.6)
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From Ito’s lemma,

EI
t [dVt] =

∂V

∂t
dt− ∂V

∂D
EI
t [dpt] +

1

2

∂2V

∂D2
t

(dDt)
2

=
∂V

∂t
dt− ∂V

∂D
λtβtdt+

1

2

∂2V

∂D2
t

λ2
tσ

2
zdt (B.1.7)

Hence, the Bellman’s equation implies

0 = max
βt

{
Dtβt − ηVt +

∂V

∂t
− ∂V

∂D
λtβt +

1

2

∂2V

∂D2
t

λ2
tσ

2
z

}
⇒ 0 = max

βt

{
βt

(
Dt −

∂V

∂D
λt

)
+
∂V

∂t
+

1

2

∂2V

∂D2
t

λ2
tσ

2
z − ηVt

}
Because it’s linear in βt, the maximal exists and equals 0 only if

0 = Dt −
∂V

∂D
λt (B.1.8)

0 =
∂V

∂t
+

1

2

∂2V

∂D2
t

λ2
tσ

2
z − ηVt (B.1.9)

From equation (B.1.8),

∂V

∂D
=
Dt

λt
(B.1.10)

It implies that

∂2V

∂D2
=

1

λt

Hence, equation (B.1.9) implies that

∂V

∂t
= ηV − λt

2
σ2
z (B.1.11)

Thus, we need to solve V (t,D) such that

∂V

∂D
=
D

λt
(B.1.12)

∂V

∂t
= ηV − λt

2
σ2
z (B.1.13)
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∂2V

∂t∂D
= D

(
− 1

λ2
t

dλt
dt

)
= η

∂V

∂D
= η

D

λt
(B.1.14)

Hence, we can find λt as follows

dλt
dt

= −ηλt ⇒ λt = λ0e
−ηt (B.1.15)

Market makers must set an exponentially decaying price impact λt such that the

informed trader’s value function exists.

Then, we can find the value function in terms of λt. From equation (B.1.13),

value function must have the form:

V (t,D) = eηtQ(t,D) (B.1.16)

where

∂Q(t,D)

∂t
= − λt

2eηt
σ2
z (B.1.17)

⇒ Q(t,D) =
λ0σ

2
z

4η
e−2ηt + g(D) (B.1.18)

In addition,

∂V

∂D
= eηt

∂Q

∂D
=
D

λt
(B.1.19)

⇒ g′(D) =
D

λ0

(B.1.20)

⇒ g(D) =
D2

2λ0

+ C (B.1.21)

where C is a constant. Hence,

V (t,D) = eηtQ(t,D)

= eηt
(
λ0σ

2
z

4η
e−2ηt +

D2

2λ0

+ C

)
=

D2

2λ0e−ηt
+
λ0e

−ηt

4η
σ2
z + Ceηt (B.1.22)
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V (t, 0) is the continuation value when pt = Et
I v. It is generally not 0 because noise

trading would push the price away from the correct value. If the news is going to be

announced very soon, the continuation value must converge to 0.

0 = lim
η→∞

V (t, 0) = lim
η→∞

Ceηt ⇒ C = 0 (B.1.23)

Therefore, value function can be expressed as a function of λt.

V (t,Dt) =
D2
t

2λ0e−ηt
+
λ0e

−ηt

4η
σ2
z =

D2
t

2λt
+
λt
4η
σ2
z (B.1.24)

We can find λ0 from the 0 expected profit of the market makers. The expected loss

of the noise trader is

EM
t [dptdzt] = EM

t [λt(dxt + dzt)dzt] = λtσ
2
zdt (B.1.25)

Hence, the total expected loss of the noise trader until the game ends at time T is

EM
0

[∫ T

0

dptdzt

]
= EM

0

[∫ T

0

λtσ
2
zdt

]
= λ0σ

2
z EM

0

[∫ T

0

e−ηtdt

]
= λ0σ

2
z EM

0

[
1− e−ηT

η

]
= λ0σ

2
z

1− EM
0 [e−ηT ]

η

= λ0σ
2
z

1−
∫∞

0
e−ηTηe−ηTdT

η

=
1

2η
λ0σ

2
z (B.1.26)

The expected gain for the informed trader at time 0 is

EM
0 [V (0, D0)] =

1

2λ0

EM
0 [D2

0] +
λ0

4η
σ2
z =

ρi
2λ0

σ2
v +

λ0

4η
σ2
z (B.1.27)
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Given the 0 profit condition,1 we have the equation

1

2η
λ0σ

2
z =

ρi
2λ0

σ2
v +

λ0

4η
σ2
z ⇒ λ0 =

√
ρi
√

2η
σv
σz

(B.1.28)

Therefore, value function is

V (t,Dt) =
D2
t

2λ0e−ηt
+
λ0e

−ηt

4η
σ2
z =

(
D2
t

ρiσ2
v

eηt + e−ηt
)

1

2

√
ρi
2η
σvσz (B.1.29)

Hence, for the market makers, the expected informed profit is

EM
0 [V (0, D0)] =

√
ρi
2η
σvσz (B.1.30)

Next, let’s find the residual information asymmetry Σt = VarMt [v̂]. Due to

orthogonality and equation (B.1.15),

VarM0 [v̂]−VarMT [v̂] =

∫ T

0

VarMt [dpt] =

∫ T

0

λ2
tσ

2
zdt = σ2

zλ
2
0

1− e−2ηT

2η

Plug in λ0 found in Equation (B.1.28),

VarMt [v̂] = VarM0 [v̂]− σ2
zλ

2
0

1− e−2ηt

2η

= VarM0 [v̂]− σ2
zρi2η

σ2
v

σ2
z

1− e−2ηt

2η

= σ2
vρie

−2ηt (B.1.31)

Therefore,

Σt = Σ0e
−2ηt (B.1.32)

Σ0 = σ2
vρi (B.1.33)

dΣt

dt
= −2η (B.1.34)

1 Note here the zero profit condition is imposed on the [0,T] interval. The condition cannot be

imposed for each dt interval because the informed trader’s strategy is indeterminate. There are

multiple βt strategies that would reach the value function.
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Finally, let’s find the informed trader’s trading intensity βt. Note that the

informed trader have multiple optimal strategy as in Kyle (1985) and Back (1992).

We look for the equilibrium where the market maker’s price updating rule is correct

at each instant. The candidate strategy has the form

dxt = βtdt = β̄t(v̂ − pt)dt

where β̂t := βt/(v̂ − pt). Then, the order flow

dyt = dxt + dzt = β̄tDtdt+ σzdBt

Since Dt = v̂ − pt = v̂ − EM
t [v̂], we have that

EM
t [dyt · v̂] = EM

t

[
β̄tDtdt · v̂

]
= β̄t VarMt [v̂]dt (B.1.35)

EM
t [dyt] E

M
t [v̂] = EM

t

[
β̄tDtdt

]
EM
t [v̂] = 0 · pt = 0 (B.1.36)

Using the standard filtering theorem (see Back (2004) for an introduction),

EM
t [dv] = EM

t [dv̂]

=
CovMt (dyt, v̂)

VarMt (dyt)
(dyt − EM

t−[dyt])

=
(
EM
t

[
β̄tDtdt · v̂

]
− EM

t

[
β̄tDtdt

]
EM
t [v̂]

) 1

Vart[dyt]
(dyt − EM

t−[dyt])

= β̄t VarMt [v̂]
1

σ2
z

dyt (B.1.37)

Therefore,

dpt = λtdyt = EM
t [dv] =

β̄t
σ2
z

VarMt [v̂]dyt

β̄t =
λtσ

2
z

VarMt [v̂]
=
λ0e

−ηtσ2
z

σ2
vρie

−2ηt
=

2η

λt
(B.1.38)
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The trading intensity can also be measured in

β =
dxt

(Dt/λt)dt
= 2η (B.1.39)

In sum, the equilibrium is

price updating rule: dpt = λtdyt =
√

2ηρi
σv
σz
e−ηt(dxt + dzt) (B.1.40)

informed trading size: dxt = 2η
v̂ − pt
λt

dt =

√
2η

ρi

σz
σv
eηt(v̂ − pt)dt (B.1.41)

informed value function: V (t,Dt) =

(
D2
t

ρiσ2
v

eηt + e−ηt
)

1

2

√
ρi
2η
σvσz (B.1.42)

total expected information rent: EM
0 [V (0, D0)] =

√
ρi
2η
σvσz (B.1.43)

residual information: VarMt [v̂] = σ2
vρie

−2ηt (B.1.44)

B.2 Proof of Theorem 2.2.5

Lemma B.2.1. Given the conjectured equilibrium form specified in equations (2.2.34)

and (2.2.35),

Σn =


ρiσ

2
v n = 0

(1− β∆t)
nΣ0 n ≥ 1

(B.2.1)

λn =


√
ρi
√
β σv
σz

n = 0

(1− β∆t)
n/2λ0 n ≥ 1

(B.2.2)

Σn decays as fast as λ2
n at rate of

Σn

Σn−1

=
λ2
n

λ2
n−1

= 1− β∆t ∈ [0, 1], n ≥ 1 (B.2.3)
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Proof. Suppose that the informed trader follows a linear strategy

∆xt = β
Dn

λn
∆t (B.2.4)

Then,

pn = E [v̂ |pn−1,∆yn = ∆xn + ∆zn ] (B.2.5)

= pn−1 + E[v̂ − pn−1|∆yn = ∆xn + ∆zn, pn−1] (B.2.6)

= pn−1 + E

[
Dn

∣∣∣∣ λnβ∆t

∆yn = Dn +
λn
β∆t

∆zn

]
(B.2.7)

= pn−1 +
Σn−1

Σn−1 + λ2
nσ

2
z∆t/(β∆t)2

1

β∆t

· λn∆yn (B.2.8)

Thus,

1 =
Σn−1

Σn−1 + λ2
nσ

2
z∆t/(β∆t)2

1

β∆t

(B.2.9)

Solve for λ2
n and we have

λ2
nσ

2
z∆t = β∆t(1− β∆t)Σn−1 (B.2.10)

Because σ2
z and β∆t(1− β∆t) are time invariant, Σn is decreases at the same rate

as λ2
n.

In addition, ∆pn is orthogonal to pn−1. Due to normality,

Σn−1 − Σn = VarMn−1[∆pn] = VarMn−1[βDn∆t + λn∆zn] (B.2.11)

= β2Σn−1(∆t)
2 + λ2

nσ
2
z∆t (B.2.12)

From equation (B.2.10), Σn−1 − Σn = βΣn−1∆t. Hence,

Σn

Σn−1

=
λ2
n

λ2
n−1

= 1− β∆t (B.2.13)
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Equation (2.2.13) that v̂ = ρiS. Hence,

Σ0 = VarM0 [v̂] = VarM0 [ρi(v + e)] = ρ2
i (σ

2
v + σ2

e) = ρiσ
2
v (B.2.14)

Σn = Σ0(1− β∆t)
n, n ≥ 1 (B.2.15)

It follows that

λ2
1σ

2
z∆t = β∆t(1− β∆t)Σ0 (B.2.16)

⇒ λ2
0 =

β∆t(1− β∆t)Σ0

σ2
z(1− β∆t)∆t

=
βρiσ

2
v

σ2
z

(B.2.17)

⇒ λ0 =
√
ρi
√
β
σv
σz

(B.2.18)

λn = λ0(1− β∆t)
n/2, n ≥ 1 (B.2.19)

Informed trader’s expected profit from trading starting at time n is

V (n,Dn) = max EI
n

bT/∆tc∑
i=n

∆xn(v − pn)

 = max EI
n

bT/∆tc∑
i=n

∆xn(v̂ − pn)


The Bellman’s equation of this dynamic programming problem is

V (n,Dn)

= max
∆xn

{
EIn[∆xn(v̂ − pn−1 − λn∆xn − λn∆zn)] + e−η∆t EIn [V (n+ 1, Dn+1)]

}
= max

∆xn

{
Dn∆xn − λn(∆xn)2 + e−η∆t EIn[V (n+ 1, Dn − λn(∆xn + ∆zn)]

}

The first order condition is

0 = Dn − 2λn∆xn − λne−η∆t EI
n

[
∂V

∂Dn+1

]
(B.2.20)

and the Envelope theorem implies that

∂V

∂Dn

= ∆xn + e−η∆t EI
n

[
∂V

∂Dn+1

]
(B.2.21)
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Together, it follows that

0 = Dn − 2λn∆xn − λn
(
∂V

∂Dn

−∆xn

)
(B.2.22)

⇒ ∆xn =
Dn

λn
− ∂V

∂Dn

(B.2.23)

Given the conjectured form ∆xn = βDn
λn

∆t. We can write that

∂V

∂Dn

= (1− β∆t)
Dn

λn

⇒ V (n,Dn) = (1− β∆t)
D2
n

2λn
+ f(n) (B.2.24)

where ∂f(n)
∂Dn

= 0. Then, from equation (B.2.21)

∆xn =
∂V

∂Dn

− e−η∆t EI
n

[
∂V

∂Dn+1

]
⇒ β∆t

Dn

λn
= (1− β∆t)

Dn

λn

− e−η∆t(1− β∆t) EI
n

[
Dn − λn∆xn − λn∆zn

λn+1

]
⇒ (1− 2β∆t)

Dn

λn
= e−η∆t(1− β∆t)

Dn(1− β∆t)

λn+1

⇒ λn+1

λn
=
e−η∆t(1− β∆t)

2

1− 2β∆t

From Lemma B.2.1, we also know that λn+1

λn
=
√

1− β∆t. Therefore, the equilibrium

informed trading intensity β solves the equation

√
1− β∆t =

e−η∆t(1− β∆t)
2

1− 2β∆t

⇒ e−η∆t =
1− 2β∆t

(1− β∆t)3/2
(B.2.25)

As illustrated in Figure B.3, β∆t is a concave and increasing function of η∆t. It can

be easily proved using calculus.
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Next, we need to find the second term of the value function f(n). When

Dn = 0, the informed trading at this instant ∆xn = 0 and Dn+1 = −λn∆zn. In

addition, from equation (B.2.24),

f(n)

e−η∆t
=
V (n, 0)

e−η∆t
= EI

n[V (n+ 1,−λn∆zn)]

= EI
n

[
(1− β∆t)

λ2
n(∆zn)2

2λn+1

+ f(n+ 1)

]
= (1− β∆t)

λ2
nσ

2
z∆t

2λn+1

+ f(n+ 1)

=
σ2
z∆tλn+1

2
+ f(n+ 1)

Multiply both side by e−(n+1)η∆t and rearrange the terms.

e−(n+1)η∆tf(n+ 1) = e−nη∆tf(n)− σ2
z∆t

2
λ0(1− β∆t)

n+1
2 e−(n+1)η∆t

= e−nη∆tf(n)− σ2
z∆t

2
λ0

(
1− 2β∆t

1− β∆t

)n+1

(B.2.26)

Take the summation of the above equation over n from 0 to k − 1.

k−1∑
n=0

e−(n+1)η∆tf(n+ 1) =
k−1∑
n=0

e−nη∆tf(n)− σ2
z∆tλ0

2

k−1∑
n=0

(
1− 2β∆t

1− β∆t

)n+1

⇒ e−kη∆tf(k) = f(0)− σ2
z∆tλ0

2

k−1∑
n=0

(
1− 2β∆t

1− β∆t

)n+1

= f(0)− σ2
zλ0∆t

2

1−2β∆t

1−β∆t

1− 1−2β∆t

1−β∆t

(
1−

(
1− 2β∆t

1− β∆t

)k)

= f(0)− σ2
zλ0

2β
(1− 2β∆t)

(
1−

(
1− 2β∆t

1− β∆t

)k)
(B.2.27)

The transversality condition limk→∞ e−kη∆tf(k) = 0 implies that

f(0) =
σ2
zλ0

2β
(1− 2β∆t) (B.2.28)

Thus,

f(k) = f(0)ekη∆t

(
1− 2β∆t

1− β∆t

)k
= f(0)(1− β∆t)

k/2 (B.2.29)
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Therefore,

V (n,Dn) = (1− β∆t)
D2
n

2λn
+ (1− 2β∆t)

σ2
zλn
2β

(B.2.30)

B.3 Proof of Theorem 2.2.6

Define B = β∆t ∈ [0, 1/2] and G = 1 − e−η∆t ∈ [0, 1]. We know from

Theorem 2.2.5 that

1− 2B

(1−B)3/2
= 1−G (B.3.1)

Thus,

lim
∆t→0

G

B
= lim

B→0

1

B

(
1− 1− 2B

(1−B)3/2

)
=

1

2
(B.3.2)

lim
∆t→0

G

B
= lim

∆t→0

1− e−η∆t

β∆t

= lim
∆t→0

e−η∆tη

β
= lim

∆t→0

η

β
(B.3.3)

Hence, lim∆t→0 β = 2η. Rest of the proof follows.

B.4 Proof of Proposition 2.2.7

The probability of public news announcement in the next ∆t interval equals

1− e−η∆t . The function g(·) is implicitly defined by the equantion

1− 2β∆t

(1− β∆t)3/2
= 1− (1− e−η∆t) (B.4.1)

such that β∆t = g(1 − e−η∆t). It is easy to show that g′(x) > 0 and g′′(x) < 0

for x ∈ [0, 1] with calculus. Figure B.1 illustrates function g(·), which reflects the

relationship between the trading intensity β∆t and probability of news announcement

in the next ∆t interval 1− e−η∆t . As η∆t →∞, it’s almost for sure the news is going
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to be announced before the next period. The trading game reduces to the one period

game of Kyle (1985) where the informed trader trade away half of the information

(β∆t = 1/2) in one trade. When η∆t → 0, the probability of news announcement is

minimal and the informed trade very patiently (β∆t → 0).

Figure B.1: β∆t = g(1− e−η∆t) where g(·) > 0 and g′′(·) < 0.

In addition, ∂
∂η

(1 − e−η∆t) = e−η∆t∆t > 0 and ∂
∂∆t

(1 − e−η∆t) = e−η∆tη > 0.

Hence, β∆t increases with η or ∆t. Intuitively, when η or ∆t is higher, it’s more

likely that the public news arrives before the next trading opportunity. Thus, the

informed trades away more information when he still has the information advantage.

We also needs to find how public information arrival rate η and trading frequency

1
∆t

affect β. Figure B.3 illustrates the effects.
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Figure B.2: β∆t increases with public information arrival rate η and time duration

between trades ∆t.

First, β increases with η because

∂β

∂η
=
g′(1− e−η∆t)e−η∆t∆t

∆t

= g′(1− e−η∆t)e−η∆t > 0 (B.4.2)

Second, β is higher when the trading frequency 1
∆t

is higher. Let G = 1 − e−η∆t .

Then, β = g(G)/∆t and

∂β

∂∆t

=
g′(G) ∂G

∂∆t
∆t − g(G)

(∆t)2
=
g′(G)e−η∆tη∆t − g(G)

(∆t)2
(B.4.3)

It’s easy to show with Taylor expansion that eη∆t − 1 > η∆t. It follows that

e−η∆tη∆t < e−η∆t(eη∆t − 1) < 1− e−η∆t (B.4.4)

Moreover, applying mean value theorem to g(x) and use the concavity that g′′(·) < 0,

we have that there exists for κ ∈ [0, 1] such that

0 = g(0) = g(x)− xg′(x) +
1

2
(x)2g′′(κx) < g(x)− xg′(x) (B.4.5)

⇒ xg′(x) < g(x) (B.4.6)
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Therefore,

∂β

∂∆t

<
1

∆2
t

(g′(G)G− g(G)) < 0 (B.4.7)

Figure B.3: β = g(1− exp(−η∆t))/∆t increases with η and decreases with ∆t.

B.5 Proof of Proposition 2.2.9

(*) It’s obvious that T λ(∆t) = 2TΣ(∆t) and thus we only prove it for TΣ.

Following the definition,

TΣ(∆t) = − ∆t log 2

log(1− β∆t)

Note that β = g(ζ∆t)/∆t is a function of ∆t for a given ζ. Thus,

dTΣ

d∆t

=
− log 2

log2(1− β∆t)

(
log(1− β∆t) + ∆t

∂β
∂∆t

+ β

1− β∆t

)
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It’s easy to check that log(1− β∆t) + β∆t

1−β∆t
is increasing in β∆t when β∆t ≥ 0 and

log(1 − β∆t) + β∆t

1−β∆t
= 0 when β∆t = 0. In addition, Proposition 2.2.7 implies

that ∂β
∂∆t

> 0. Hence, when β∆t ≥ 0,

(
log(1− β∆t) + ∆t

∂β
∂∆t

+β

1−β∆t

)
> 0 and dTΣ

d∆t
< 0.

The continuous limit T λ and TΣ can be found immediately from 2.2.6 because

lim∆t→0(1− β∆t) = 2η. This result is illustrated in Figure B.4. The TΣ(∆t) curve

illustrates that the information efficiency of the trading game monotonically increases

with trading frequency. As ∆t goes from 1 to 0.01, the half life of Σt goes down from

about 2.7 to about 1.7. Half of the private information is revealed to the market

in 1.7 unit of time in the continuous time limit. Check Figure 2.4 for a different

presentation of the result. The T λ(∆t) curve illustrates that the illiquidity factor λt

decays twice as fast as Σt. As ∆t goes down, λt also decays faster.

Figure B.4: Half life of information asymmetry TΣ and price impact T λ for different

∆t when public information arrival rate η = 0.2 and E[T ] = 1/η = 5.

152



B.6 Proof of Theorem 2.3.1

Assume the market makers set the end of period price at pn = pn−1 +λn(∆xn +

∆zn) but the liquidity demanders get the prices p′n = pn−1 + (1 + ξ)λn(∆xn + ∆zn)

where ξ ∈ [0, 1]. Then,

Informed trader’s expected profit from trading starting at time n is

V (n,Dn) = max EI
n

[
T∑
i=n

∆xn(v − p′n)

]
= max EI

n

[
T∑
i=n

∆xn(v̂ − p′n)

]

The Bellman’s equation of this dynamic programming problem is

V (n,Dn) = max
∆xn

{
EIn[∆xn(v̂ − pn−1 − (1 + ξ)λn∆xn − (1 + ξ)λn∆zn)]

+ e−η∆t EIn [V (n+ 1, Dn+1)]
}

= max
∆xn

{
Dn∆xn − (1 + ξ)λn(∆xn)2

+ e−η∆t EIn[V (n+ 1, Dn − λn(∆xn + ∆zn))]
}

(B.6.1)

The first order condition is

0 = Dn − 2(1 + ξ)λn∆xn − λne−η∆t EI
n

[
∂V

∂Dn+1

]
(B.6.2)

and the Envelope theorem implies that

∂V

∂Dn

= ∆xn + e−η∆t EI
n

[
∂V

∂Dn+1

]
(B.6.3)

Then, it follows that

0 = Dn − 2(1 + ξ)λn∆xn − λn
(
∂V

∂Dn

−∆xn

)
(B.6.4)

⇒ ∆xn =
1

1 + 2ξ

(
Dn

λn
− ∂V

∂Dn

)
(B.6.5)
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Given the conjectured form ∆xn = β̂Dn
λn

∆t. We can write that

∂V

∂Dn

= (1− (1 + 2ξ)β̂∆t)
Dn

λn
(B.6.6)

⇒ V (n,Dn) = (1− (1 + 2ξ)β̂∆t)
D2
n

2λn
+ f(n) (B.6.7)

where ∂f(n)
∂Dn

= 0. Then, from equation (B.6.3)

∆xn =
∂V

∂Dn

− e−η∆t EI
n

[
∂V

∂Dn+1

]
(B.6.8)

⇒ β̂∆t
Dn

λn
= (1− (1 + 2ξ)β̂∆t)

(
Dn

λn

− e−η∆t EI
n

[
Dn − λn∆xn − λn∆zn

λn+1

])
(B.6.9)

⇒ (1− 2(1 + ξ)β̂∆t)
Dn

λn
= e−η∆t(1− β̂(1 + 2ξ)∆t)

Dn(1− β̂∆t)

λn+1

(B.6.10)

⇒ λn+1

λn
=
e−η∆t(1− β̂∆t)(1− (1 + 2ξ)β̂∆t)

1− 2β̂(1 + ξ)∆t

(B.6.11)

From Lemma B.2.1, we also know that λn+1

λn
=

√
1− β̂∆t. Therefore,√

1− β̂∆t =
e−η∆t(1− β̂∆t)(1− β̂(1 + 2ξ)∆t)

1− 2(1 + ξ)β̂∆t

(B.6.12)

⇒ e−η∆t =
1− 2(1 + ξ)β̂∆t√

1− β̂∆t(1− (1 + 2ξ) · β̂∆t)

(B.6.13)

Then, β̂∆t ≤ 1
2(1+ξ)

to ensure that the RHS is not negative. β̂∆t is a concave

and increasing function of η∆t as illustrated in Figure 2.5. Following the similar

derivation as in Theorem 2.2.5, for n ≥ 0,

Σn = ρiσ
2
v(1− β̂∆t)

n (B.6.14)

λn =

√
β̂
√
ρi
σv
σz

(1− β̂∆t)
n/2 (B.6.15)

λ̂n = (1 + ξ)λn = (1 + ξ)

√
β̂
√
ρi
σv
σz

(1− β̂∆t)
n/2 (B.6.16)

∆xn = β̂
Dn

λn
∆t (B.6.17)
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To fully determine the value function, we need to find f(n) in Equation (B.6.7).

When Dn = 0, ∆xn = 0. Thus,

f(n) = V (n, 0) = e−η∆t EI
n[V (n+ 1,−λn∆zn)]

= e−η∆t EI
n

[
(1− (1 + 2ξ)β̂∆t)

(λn∆zn)2

2λn+1

+ f(n+ 1)

]
= e−η∆t

(
(1− (1 + 2ξ)β̂∆t)

σ2
z∆tλn+1λ

2
n

2λ2
n+1

+ f(n+ 1)

)
= e−η∆t

(
1− (1 + 2ξ)β̂∆t

1− β̂∆t

σ2
z∆tλn+1

2
+ f(n+ 1)

)
(B.6.18)

Multiply both sides by e−nη∆t , we have that

e−(n+1)η∆tf(n+ 1) = e−nη∆tf(n) + e−(n+1)η∆t
1− (1 + 2ξ)β̂∆t

1− β̂∆t

σ2
z∆tλn+1

2

= e−nη∆tf(n) +
λ0σ

2
z∆t(1− 2(1 + ξ)β̂∆t)

n+1

2(1− β̂∆t)(1− (1 + 2ξ) · β̂∆t)n
(B.6.19)

Take the summation over n from 0 to k − 1. Then,

e−kη∆tf(k) = f(0)− λ0σ
2
z∆t

2

1− (1 + 2ξ) · β̂∆t

1− β̂∆t

k−1∑
n=0

(
1− 2(1 + ξ)β̂∆t

1− (1 + 2ξ) · β̂∆t

)n+1

= f(0)− λ0σ
2
z∆t

2

1− (1 + 2ξ) · β̂∆t

1− β̂∆t

(
1− 2(1 + ξ)β̂∆t

1− (1 + 2ξ) · β̂∆t

)
1−

(
1−2(1+ξ)β̂∆t

1−(1+2ξ)·β̂∆t

)k
1−

(
1−2(1+ξ)β̂∆t

1−(1+2ξ)·β̂∆t

)
= f(0)− λ0σ

2
z∆t

2

1− (1 + 2ξ) · β̂∆t

1− β̂∆t

(
1− 2(1 + ξ)β̂∆t

β̂∆t

)

×

1−
(

1− 2(1 + ξ)β̂∆t

1− (1 + 2ξ) · β̂∆t

)k (B.6.20)

From the transversality condition that limk→∞ e−kη∆tf(k) = 0, we have that

f(0) =
λ0σ

2
z∆t

2

1− (1 + 2ξ) · β̂∆t

1− β̂∆t

(
1− 2(1 + ξ)β̂∆t

β̂∆t

)

=
λ0σ

2
z

2β̂

1− (1 + 2ξ)β̂∆t

1− β̂∆t

(
1− 2(1 + ξ)β̂∆t

)
(B.6.21)
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Then,

f(k) = ekη∆tf(0)

(
1− 2(1 + ξ)β̂∆t

1− (1 + 2ξ) · β̂∆t

)k

= f(0)
(

1− β̂∆t

)k/2
(B.6.22)

Therefore, the value function is

V (n,Dn)

=(1− (1 + 2ξ)β̂∆t)
D2
n

2λn
+
λ0σ

2
z

2β̂

1− (1 + 2ξ)β̂∆t

1− β̂∆t

× (1− β̂∆t)
n/2
(

1− 2(1 + ξ)β̂∆t

)
=(1− (1 + 2ξ)β̂∆t)

D2
n

2λn
+
λnσ

2
z

2β̂

1− (1 + 2ξ)β̂∆t

1− β̂∆t

(
1− 2(1 + ξ)β̂∆t

)
=(1− (1 + 2ξ)β̂∆t)

(
D2
n

2λn
+
λnσ

2
z

2β̂

1− 2(1 + ξ)β̂∆t

1− β̂∆t

)
(B.6.23)

B.7 Proof of Proposition 2.3.4

We can prove that lim∆t→0 β̂ = 2η using the similar derivations as in Appendix

B.3. Let G = 1− e−η∆t and B̂ = β̂∆t. Then,

1−G =
1− 2(1 + ξ)B̂√

1− B̂(1− (1 + 2ξ)B̂)
(B.7.1)

Thus,

lim
∆t→0

G

B̂
= lim

B̂→0

1

B̂

(
1− 1− 2(1 + ξ)B̂√

1− B̂(1− (1 + 2ξ)B̂)

)

= lim
B̂→0

∂

∂B̂

(
2(1 + ξ)B̂ − 1√

1− B̂(1− (1 + 2ξ)B̂)

)
(B.7.2)
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From calculus,

∂

∂B̂

√
1− B̂(1− (1 + 2ξ)B̂)

=
−1

2
√

1− B̂
(1− (1 + 2ξ)B̂)−

√
1− B̂(1 + 2ξ)

=
−1

2
√

1− B̂

(
(1− (1 + 2ξ)B̂ + 2(1 + 2ξ)(1− B̂)

)
=

−1

2
√

1− B̂

(
(3 + 4ξ)− 3(1 + 2ξ)B̂

)
(B.7.3)

Thus,

lim
∆t→0

G

B̂
=

lim
B̂→0

2(1 + ξ)
√

1− B̂(1− (1 + 2ξ)B̂) + 2(1+ξ)B̂−1

2
√

1−B̂

(
(3 + 4ξ)− 3(1 + 2ξ)B̂

)
√

1− B̂
2

(1− (1 + 2ξ)B̂)2

= lim
B̂→0

2(1 + ξ)− 1

2
(3 + 4ξ)

=
1

2
(B.7.4)

Also,

lim
∆t→0

G

B̂
= lim

∆t→0

1− e−η∆t

β̂∆t

= lim
∆t→0

1− e−η∆t

∆t

1

lim∆t→0 β̂

=
η

lim∆t→0 β̂
(B.7.5)

Therefore, lim∆t→0 β̂ = 2η. Then, it is trivial to show that as ∆t → 0, β̂ → 2η and

the value function converges to

lim
∆t→0

V (n,Dn) =
D2
n

2λn
+
λnσ

2
z

4η
(B.7.6)
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B.8 Information production

In this section, I find the optimal level of information production. The informed

trader has to decide on the amount of information production ρi before the trading

game starts. Thus, at the information production stage, he chooses a ρi to maximize

the expected trading profit V (0, D).

B.8.1 Informed trader’s profits

The informed trader extract “information rent” by trading on his private

information. The magnitude of the information rent is affected by the parameters of

the trading game.

Note that β is determined by η and ∆t and it does not depend on ρi. This does

not mean the informed trader does not care about ρi. Even though the informed

trader is risk neutral, the level of information production would change λ0 through

the market makers and thus change the expected trading profit.

Proposition B.8.1. The expected trading profit at time 0 as

U(ρi; η,∆t) = E [V (0, D0)] =

(
1− 3

2
β∆t

) √
ρiσvσz√
β

(B.8.1)

where β = g(1 − e−η∆t)/∆t is the unique solution to equation (2.2.41) such that

β∆t ∈ [0, 1/2]. In the continuous time limit when ∆t → 0,

U(ρi; η) =

√
ρiσvσz√

2η
(B.8.2)
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Proof. Before receiving the signal Iv, we have that

E[D2
0] = E

[
(ρiIv)

2
]

= ρ2
i (σ

2
v + σ2

e) = ρiσ
2
v (B.8.3)

From Theorem 2.2.1, in the continuous time equilibrium,

U(ρi; η) = E [V (0, D0)] =

(
E[D2

0]

ρiσ2
v

+ 1

)
1

2

√
ρi
2η
σvσz =

√
ρi
2η
σvσz (B.8.4)

From Theorem 2.2.5, in the discrete time equilibrium,

U(ρi; η,∆t) = E [V (0, D0)]

=
1− β∆t

2λ0

E[D2
0] + (1− 2β∆t)

σ2
z

2β
λ0

=
1− β∆t

2σv
√
ρiβ/σz

ρiσ
2
v + (1− 2β∆t)

σ2
z

2β
σv
√
ρiβ

1

σz

= (1− β∆t)

√
ρiσvσz

2
√
β

+ (1− 2β∆t)

√
ρiσvσz

2
√
β

=
2− 3β∆t

2
√
β∆t

·
√

∆t ·
√
ρiσvσz (B.8.5)

When ∆t → 0, β → 2η and

lim
∆t→0

U = lim
∆t→0

(
1− 3

2
∆t

)√
ρi
2η
σvσz (B.8.6)

So U becomes linear in ∆t with a slope of −3/2.

Corollary B.8.2. The informed trader’s profit is increasing in the total fundamental

uncertainty σv, the amount of his private information ρi, and noise trading σz.

Proof. From Theorem 2.2.5, β is determined by η and ∆t. Then, the corollary

immediately follows from Proposition B.8.1.

The initial information asymmetry Var[v̂] = ρiσ
2
v captures the information

advantage of the informed trader and the volatility σz captures the volume of noise

159



trading. The informed expects to make more profits when he has higher information

advantage or there is more noise trading volume.

In addition to the above factors, the informed trader’s profits are also affected

by the expected lifetime of his private information 1/η and the frequency of the

trading game 1/∆t.

Proposition B.8.3. The informed trader’s expected trading profit increases the

expected lifetime of the private information 1/η, i.e., ∂U
∂η
< 0. In the continuous time

limit ∆t → 0,

U(ρi, η1)

U(ρi, η2)
=

√
η2√
η1

(B.8.7)

When probability of public news is low (η∆t � 1), informed trader’s expected trading

profit increases with trading frequency (1/∆t).2

Proof. * Follows from Proposition 2.2.7 and Proposition B.8.1.

Given the same degree of information advantage ρiσ
2
v and level of noise trading

σz, the informed expects to make more profits when his private information has

a longer lifetime or when the trading frequency is higher. Figure B.5 illustrates

2 A definitive bound is yet to be found. Informed trader’s profit could increase with ∆t when

η∆t is large. This result is due to the assumption that the first trade occurs at ∆t and the amount

of noise trading at the first trading opportunity is σz∆t, which increases with ∆t. For example,

suppose η∆t � 10 and the probability of trade is close to 0. The benefit of smoothing out trade

becomes negligible because the probability of trading more than once is extremely low. Then the

informed chooses β∆t ≈ 1/2 and his expected profits is proportional to 1/
√
β, which increases with

∆t and is mainly driven by the level of noise trading σz∆t. Intuitively, when ∆t → 0, β → 2η and

the informed trader’s profit is approximately proportional to 1− 3
22η∆t, which increases with 1/∆t.
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U(η,∆t) as a function of η and ∆t. Informed trader’s profits are more sensitive to η

than to ∆t.

Figure B.5: Expected informed trading profit U = E[V (0, D0)] decreases with public

information arrival speed η and time duration between trades ∆t.

It shows that as everyone trades at a higher frequency, the ex ante expected

trading profit for informed trader is higher, despite that his private information gets

incorporated faster into the price and despite the higher initial market illiquidity.

Informed trader’s expected trading profit increases with the expected lifetime

of the private information E[T ] = 1/η. It seems to suggest that the informed trader

would achieve infinite expected trading profit if he could produce private information

that would never be revealed (E[T ] → ∞). This unrealistic result is due to the

assumption of zero discount rate. If the informed trader has a positive time discount

rate, he would prefer to produce information that would be realized sooner than
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later so that his trading profit is discounted less. In fact, once the time discount

is positive, the informed trader would prefer a private information whose speed of

expiration matches his discount rate. A more patient trader would choose to produce

longer lived information.

B.8.2 Optimal information production

Next, let’s investigate the optimal level of information production ρi. To explore

the effects of trading frequency 1/∆t, we need to specify the information production

cost function C(ρi, ω).

Definition B.8.1. Aggregate expected profit combining the information production

stage and the trading stage is defined

V(ρi, η,∆t, ω) = U(ρi, η,∆t)− C(ρi, ω), ρi ∈ [0, 1] (B.8.8)

for the discrete time model and

V(ρi, η, ω) = U(ρi, η)− C(ρi, ω), ρi ∈ [0, 1] (B.8.9)

for the continuous time model.

Definition B.8.2 (Information production equilibrium). Equilibrium Information

production ρi of the discrete time model satisfies

V(ρi, η,∆t, ω) ≥ V(ρ′i, η,∆t, ω) ∀ρ′i ∈ [0, 1] (B.8.10)

The equilibrium ρi is a function of ζ,∆t, and ω. For the continuous time model, ρi

satisfies

V(ρi, η, ω) ≥ V(ρ′i, η, ω) ∀ρ′i ∈ [0, 1] (B.8.11)

162



The marginal expected trading profit of information is

∂U
∂
√
ρi

=

(
1− 3

2
β∆t

)
σvσz√
β

(B.8.12)

for the discrete time model and

∂U
∂
√
ρi

=
σvσz√

2η
(B.8.13)

for the continuous time model. In addition, β is determined by η and ∆t and not

affected by ρi.

Assume that C(ρi, ω) is twice differentiable for ρi ∈ (0, 1) and for a parameter

ω that I will specify later. Denote the marginal cost function C1(ρi, ω) = ∂C(ρi,ω)
∂
√
ρi

,

C2(ρi, ω) = ∂C1(ρi,ω)
∂
√
ρi

, and the marginal trading profit U1 = ∂U
∂
√
ρi

.

Theorem B.8.4 (Equilibrium Information production ρi). The equilibrium ρ∗i might

be one of the following cases:

1. If limρi→0+C1(ρi, ω) ≥ U1(ρi, η,∆t) and C2(ρi, ω) ≥ 0, ρ∗i = 0. It’s optimal not

to produce any information because the marginal cost of information is always

higher than the marginal expected trading profit.

2. If limρi→1−C1(ρi, ω) ≤ U1(ρi, ζ,∆t) and C2(ρi, ω) ≥ 0, ρ∗i = 1. It’s optimal

to produce all information because the marginal cost of information is always

lower than the marginal expected trading profit.

3. If limρi→0+C1(ρi, ω) ≤ U1(ρi, ζ,∆t) ≤ limρi→1−C1(ρi, ω) and C2(ρi, ω) ≥ 0,

there exists an unique interior level of information production ρ∗i ∈ (0, 1).

4. If C2(ρi, ω) < 0 for some ρi, there might exists multiple equivalent level of

optimal ρ∗i in [0, 1].
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The continuous time result is similar.

Proof. It follows directly from the first order and second order condition of V(ρi, η,∆t, ω).

Corollary B.8.5. Assume C2(ρi, ω) ≥ 0, C1(0, ω) = 0 and C1(1, ω) = ∞. Under

these assumptions, equilibrium information production ρ∗i ∈ (0, 1) is unique. Then,

1. If the noise trading does not affect the marginal cost of information production

( ∂C1

∂σz
= 0), the informed trader produces more information when there is more

noise trading then
∂ρ∗i
∂σz

> 0.

2. If the total uncertain about v does not affect the marginal cost of information

production ( ∂C1

∂σv
= 0), the informed trader produces more information when

there is more fundamental uncertainty
∂ρ∗i
∂σv

> 0.

3. If information production becomes cheaper without affecting trading frequency

1/∆t and public information arrival rate ζ, then the informed trader produces

more information.

4. If trading frequency 1/∆t does not affect the marginal cost of information

production ∂C1

∂∆t
= 0, then the informed trader produces more information when

trading frequency increases
∂ρ∗i
∂∆t

< 0.

5. If public information arrival rate η does not affect the marginal cost of informa-

tion production (∂C1

∂η
= 0), then the informed trader produces more information

as the expected life of the private information 1
η

increases (
∂ρ∗i
∂η

< 0).
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Proof. The first three cases are straightforward. The fourth and fifth cases follow

from Lemma B.8.3 noticing that ∂2U
∂ρi∂∆t

has the same sign as ∂U
∂∆t

and ∂2U
∂ρi∂η

has the

same sign as ∂U
∂η

.

Higher frequency induces the informed trader to produce more private infor-

mation and especially short-lived information. When trading frequency is high,

the informed would have more trading opportunity to exploit a short-lived private

information.

For a given public information arrival rate η, a higher trading frequency ( 1
∆t
↑)

induces the informed trader to produce more information (ρi ↑) and to trade more

aggressively (β ↓). Thus, more fundamental information is produced and such

information is revealed to the market through trading faster. The informativeness of

the market price unambiguously increases with trading frequency 1
∆t

.
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Hagströmer, Björn and Lars Nordén, “The Diversity of High-frequency Traders,”

Journal of Financial Markets, 2013, 16 (4).

Hasbrouck, Joel and Gideon Saar, “Technology and Liquidity Provision: the

Blurring of Traditional Definitions,” Journal of Financial Markets, 2009, 12 (2),

143–172.

and , “Low-latency Trading,” Journal of Financial Markets, 2013,

16 (4).

Hendershott, Terrence and Pamela C. Moulton, “Automation, Speed, and

Stock Market Quality: the NYSE’s Hybrid,” Journal of Financial Markets, 2011,

14 (4), 568–604.

and Ryan Riordan, “Algorithmic Trading and the Market for Liquidity,”

Journal of Financial and Quantitative Analysis, Forthcoming, 2012.

170



, Charles M. Jones, and Albert J. Menkveld, “Does Algorithmic

Trading Improve Liquidity?,” Journal of Finance, 2011, 66 (1), 1–33.

Hirschey, Nicholas H., “Do High-Frequency Traders Anticipate Buying and Selling

Pressure?,” Working Paper, 2013.

Hirshleifer, David, Avanidhar Subrahmanyam, and Sheridan Titman, “Se-

curity Analysis and Trading Patterns when Some Investors Receive Information

before Others,” Journal of Finance, 1994, 49 (5), 1665–1698.

Hirshleifer, Jack, “The Private and Social Value of Information and the Reward

to Inventive Activity,” American Economic Review, 1971, 61 (4), 561–574.

Hoffmann, Peter, “A Dynamic Limit Order Market with Fast and Slow traders,”

Working Paper, Available at SSRN 1969392, 2012.

Holden, Craig W. and Avanidhar Subrahmanyam, “Long-lived Private Infor-

mation and Imperfect Competition,” Journal of Finance, 1992, pp. 247–270.

Jarrow, Robert A. and Philip Protter, “A Dysfunctional Role of High Frequency

Trading in Electronic Markets,” International Journal of Theoretical and Applied

Finance, 2012, 15 (03).

Jiang, George J, Ingrid Lo, and Giorgio Valente, “High Frequency Trading in

the US Treasury Market: Evidence Around Macroeconomic News Announcement,”

Working Paper, 2013.

171



Jovanovic, Boyan and Albert J. Menkveld, “Middlemen in Limit-order Mar-

kets,” Working Paper, 2012.

Kirilenko, Andrei, Albert S. Kyle, Mehrdad Samadi, and Tugkan Tuzun,

“The Flash Crash: the Impact of High Frequency Trading on an Electronic Market,”

University of Maryland Working Paper, 2011.

Kyle, Albert S., “Continuous Auctions and Insider Trading,” Econometrica, Novem-

ber 1985, 53 (6), 1315–1336.

, Anna A. Obizhaeva, and Yajun Wang, “Smooth Trading with Over-

confidence and Market Power,” University of Maryland Working Paper, 2013.

Laughlin, Gregory, Anthony Aguirre, and Joseph Grundfest, “Information

Transmission Between Financial Markets in Chicago and New York,” ArXiv

e-prints, February 2013.

Li, Su, “Imperfect Competition and Long-lived Flow of Private Information,” Work-

ing Paper, 2013.

Litzenberger, Robert, Jeff Castura, and Richard Gorelick, “The Impacts of

Automation and High Frequency Trading on Market Quality,” Annual Review of

Financial Economics, 2012, 4, 59–98.

Liu, Hong and Yajun Wang, “Asymmetric Information, Endogenous Illiquidity,

and Asset Pricing With Imperfect Competition,” Working Paper, 2010.

172



Malinova, Katya, Andreas Park, and Ryan Riordan, “Do Retail Traders

Suffer from High Frequency Traders?,” Available at SSRN 2183806, 2012.

Martinez, Victor and Ioanid Rosu, “High Frequency Traders, News and Volatil-

ity,” Working Paper, 2013.

Menkveld, Albert J., “High Frequency Trading and the New Market Makers,”

Journal of Financial Markets, 2013, 16 (4), 712–740.
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