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Positron Emission Tomography (PET) is being widely used in veterinary

medicine in recent years. Although it was limited to small animals because of its

classical design and the large amount of radionuclide doses required, PET imaging in

horses became possible with the introduction of a portable PET scanner developed

by Brain Biosciences Inc. It was observed that this new modality could capture

abnormalities like lesions that Computed Tomography (CT), Magnetic Resonance

Imaging (MRI) and other modalities could not. Since 2016, PET imaging in horses

is being studied and analysed.

While PET provides functional information characterizing the activity of le-

sions, it is useful to combine information from other modalities like CT and match

the structural information to develop an accurate spatial representation of the data.

Since biochemical changes occur much earlier than structural changes, this helps

detect lesions and tumours during the early stages. Multimodal image registration

is used to achieve this goal. A series of steps are proposed to automate the pro-

cess of registration of equine PET and CT images. Multimodal image registration



using landmark-based and intensity-based techniques are studied. It is observed

that a few tissues are not imaged in the PET, which makes image segmentation,

an important preprocessing step in the registration process. A study of the seg-

mentation algorithms relevant to the field of medical imaging is presented. The

performance of segmentation algorithms improved with the extent of manual in-

teraction and intensity-based registration gave the smallest time complexity with

reasonable accuracy.
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Chapter 1: Introduction and Motivation

1.1 Positron Emission Tomography(PET)

Positron (Positive electron) is a positively charged subatomic particle with the

same mass and magnitude of charge as electron. It is an antiparticle of a negative

electron, first discovered by a Nobel Prize winner, Carl David Anderson in 1932 [2].

Positrons quickly react with the electrons of ordinary matter by annihilation (con-

version of a particle and antiparticle into energy) to produce gamma radiation, the

shortest wavelength and highest energy radiation in the electromagnetic spectrum.

Amongst other sources of positrons, the one that interests us are the positrons emit-

ted from man-made radioactive sources which can be used in medical diagnosis in

a technique known as positron emission tomography (PET). Tomography means a

technique of displaying a cross-section of a body using penetrating waves like ultra-

sound or X-rays. PET uses radionuclides that decay by emission of positrons like

carbon-11, nitrogen-13, oxygen-15 and fluorine-18.

The annihilation radiation emitted consists of two photons emitted simultane-

ously and travelling in opposite directions. This radiation can be detected by a pair

of radiation detectors which localize the site of annihilation event to a straight line

joining the two detectors as shown in Fig. 1.1. Among the emerging medical imag-
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Figure 1.1: The Cerepet Scanner of Brain Biosciences Inc. The radiation
detected by two opposite detectors enables localizing the annihilation
event to a straight line.

ing modalities, PET belongs to the class of nuclear medicine. This is because the

image forming variable is the distribution of a radionuclide which is administered

using a radiopharmaceutical prior to the imaging procedure. [33].

Physiological and biochemical changes in an organ trigger each other. The

objective of PET is to noninvasively study the biochemical changes in an organ that

are significant to the organ studied. This helps in early discovery of changes in

tissues, since changes in function often occur before changes in anatomy [10].

PET imaging in horses was not possible until recent past because of the clas-

sical design of the PET scanner and the large amounts of radioactive tracer re-

quired. A portable PET scanner was introduced by Brain Biosciences Inc, overcom-

ing these difficulties. Fig. 1.2 shows a classical PET scanner and the one developed

by Brain Biosciences Inc. The most commonly used tracer is FDG (fluorodeoxyglu-
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cose) which is an analogue of glucose. The regional glucose intake depends on the

tissue metabolic activity. It has been observed that the PET modality could detect

lesions which went unnoticed using other modalities [31]. This motivates us to im-

prove the techniques and analyse images obtained from the portable PET scanner.

Figure 1.2: (left) Classical PET scanner, (Right) A portable PET scanner

1.2 Computed Tomography (CT)

Computed Tomography makes use of X-rays to obtain the structure of a organ.

As X-rays pass through an organ, they are absorbed to various extents by different

tissues thus creating a matrix of X-ray beams of various strengths. This matrix is

processed to obtain a CT image. CT images are particularly useful while imaging

bone fractures, bone tumors or eroded joints. Although some lesions can be imaged
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in a CT, they are difficult to identify because of the low contrast. PET image on

the other hand, provides a very good contrast with the area surrounding the lesion.

This is demonstrated in Fig. 1.3. This motivates us to study image registration of

PET and CT images to combine information from the two modalities.

Figure 1.3: (left) A PET image showing Occult Navicular lesion in a
horse, (middle) A CT image of the same organ, (Right) A registered
image of PET and CT

1.3 Equine PET and CT registration

Image registration refers to matching features in different images to obtain a

single image with common spatial coordinates. Image registration, in general, has

varied applications like panorama creation, virtual/augmented reality, live stream-

ing, surveillance and many more. This thesis discusses image registration by con-

sidering two types of tomographies discussed in section 1.1 and 1.2, the Positron

Emission Tomography (PET) and the Computed Tomography (CT). While CT pro-

vides structural information, PET provides functional information. Having access
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to both types of information helps to gain a better understanding of the subject.

The multi-modal image registration algorithm can be used to obtain accurate spatial

representation of data. Throughout the thesis, we will consider the coordinates of

the PET image as the reference. Hence, our aim is to find a transformation to the

CT image which will match the coordinates of the PET image. There are a plethora

of techniques already proposed in the literature for image registration. Recent ad-

vancements in this area are minor variations to some of the existing algorithms for

specific applications. We will design a sequence of steps required to automate/semi-

automate the process of equine PET and CT registration. Challenges include differ-

ence in voxel sizes, difference in the regions imaged and computational complexity

due to large image sizes.

1.4 The equine bone anatomy

Before going into further details of the equine PET and CT registration prob-

lem, we present here the equine bone anatomy. Fig. 1.4 shows the equine forelimb

and rearlimb anatomy [6]. Most of our analysis and results will be on the foot,

fetlock, tarsus and carpus.

1.5 Summary of thesis

In chapter 2, we present an overview of related works in image registration and

image segmentation. In chapter 3, we discuss in detail, the importance of image seg-

mentation, define our registration problem, implement some standard segmentation
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Figure 1.4: The Equine Forelimb anatomy

algorithms and evaluate the performance. In chapter 4, we perform registration

using landmark-based and intensity-based methods. We also discuss a deformable

registration problem specific to the equine anatomy. In chapter 5, we put together

all the techniques to design a sequence of steps to automate/semi-automate the

registration of equine PET and CT images. Finally, in chapter 6, we present some

conclusions and possible future work.
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Chapter 2: Related work

2.1 Image Segmentation

Image Segmentation refers to dividing an image into regions which are more

meaningful and easier to analyse. It is a well studied research topic and a huge

topic on its own. We will bias our discussion to applications of image segmentation

in the medical imaging domain. Image segmentation algorithms in medical imaging

domain are required to delineate anatomical structures and other regions of inter-

est. Fig. 3.2 shows an example of an MRI image of the brain, showing gray matter

(blue), white matter (yellow), and cerebral spinal fluid (red). The general goal of

any image segmentation algorithm is to automate the process of segmentation in

order to be able to handle large amount of data as well as to achieve fast and accu-

rate results. Image segmentation algorithms are specific to the application, image

modality and the type of organ under study. Though some generic algorithms do

exist, application specific algorithms are generally more faster and accurate because

of the prior information.

Before diving into the study of image segmentation algorithms, we discuss

some of the issues encountered in the performance of algorithms.
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Figure 2.1: Example of an MRI image of the brain, showing gray matter
(blue), white matter (yellow), and cerebral spinal fluid (red).

[21]

1. Partial volume effect: This occurs when more than one tissue contributes

to the intensity of a voxel causing blurring of the image across boundaries.

Soft segmentations allow a voxel to belong to different classes allowing for an

uncertainity. Fig. 2.2 shows an example of partial volume effect. A number

of techniques have been proposed to overcome the partial volume effect.( [34],

[5], [38])

2. Intensity inhomogeneity: Intensity inhomogeneity refers to the variation

of intensity of the same tissue across the image. This is particularly seen

in MRI images due to image acquisition process. Different methods have

been proposed to rectify intensity inhomogeneity, a review of such methods is

presented in [37]

3. Presence of artifacts: Presence of noise can effect algorithms based on
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edge information. Motion blurring is caused due to the motion of the subject

during the image acquisition process. Different methods have been proposed

for corrections, one method for the correction of motion blur in PET images

can be found in [27] and an interesting method using blind deconvolution is

presented in [29]

4. Closeness in the gray level of different tissues: Low contrast between the

tissues makes it difficult for segmentation algorithms that depend on intensity

values to identify regions of interest.

5. Tradeoff between interaction and accuracy: Even the ”automated” im-

age segmentation algorithms require some kind of manual interactions such as

providing the initial conditions or a seed point. To look at extreme cases, man-

ual segmentation is the most accurate and segmentation without any input is

the most uncertain.

Figure 2.2: Partial volume effect.(Left) Ideal Image, (Right) Acquired Image [26].
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Fig. 2.3 shows a broad taxonomy of image segmentation algorithms. We will

present an overview of some of these algorithms here.

Figure 2.3: Classification of Image segmentation algorithms

1. Histogram-based: In this class of algorithms, segmentation is done using

a histogram feature, which in most cases is the gray level intensity. We can

either use a single threshold for bi-modal histogram or use multiple thresholds

for multi-modal histogram. The threshold is applied as follows:

10



M(i, j) =



1 T1 < p(i, j) ≤ T2

2 T2 < p(i, j) ≤ T3

.. ..

0 otherwise

(2.1)

The main limitation of intensity-based threshold is that the performance is

affected by the choice of threshold. Also, the approach does not take into

consideration the spatial information and hence is affected by noise and inten-

sity inhomogeneities. Selection of a proper threshold is difficult, automating

the choice of the threshold is even bigger a challenge. Ostu’s method tries

to automate the selection of a threshold by trying to minimize the intra-class

variance and set a global threshold assuming a bi-modal image. [24]

2. Edge-based segmentation: The main idea of the edge-based segmenta-

tion is to divide the image based on boundaries. The first step is to detect

edges in the image using different edge detection operators like Prewitt, So-

bel, Roberts(first derivative), Laplacian (second derivative), Canny and Marr-

Hilclrath. Once the edges are detected, they need to be combined to form

an edge chain to achieve segmentation. Fake and weak edges pose a chal-

lenge and can be removed by thresholding operations. The class of algorithms

based on edge detection can further be subdivided into those that use edge

relaxation [13], border detection [20], [19] and Hough transform. [18]. The

main limitations of these methods is that they are affected by noise. Since
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edge detection is essentially high pass filtering, we end up amplifying the high

frequency noise. It is found that the edge-based methods used in conjunction

with region-based methods provide very good results.

3. Region-based methods Region-based methods are based on the principle

of homogeneity. Pixels/voxels with similar properties are clustered together

to form homogeneous regions. A common property used is the gray level of

the pixels [17]. Region-based segmentation algorithms can be further classified

into those that use region merging, region splitting, region split and merge,

watershed transformation, k-means clustering. The limitations of region-based

methods are due to over-segmentation and under-segmentation. One way to

overcome this is to combine it with edge-based approaches.

4. Texture-based features Texture-based segmentation algorithms subdivide

the image into regions based on different texture properties. Some methods

for extracting texture features are co-occurrence matrix method based on sta-

tistical description of gray levels of an image, gray level run length method,

fractal texture description method, syntactic method and the Fourier filter

method. [28]
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Figure 2.4: A typical Equine PET Image

2.2 CT and PET Image Registration

Integrating PET and CT in one image helps morphological and functional

imaging characteristics to be studied at the same time. The registration also gives

scope for improving the location accuracy of the detected lesions in the PET images.

Rigid body deformation in combination with localized cubic B-splines can be used

to capture small deformities in multimodal images. These deformities could corre-

spond to movement in the subject during the image acquisition process or the chest

movement, for example. It has been reported that the 3D PET-CT registration

process takes approximately 100 minutes. [22]
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Chapter 3: Image Segmentation in CT images

3.1 Importance of Image Segmentation

PET images use a radioactive nuclide (18F − FDG) to record activity as

discussed in section 2.1. Hence the coffin bone is not imaged using PET since the

emission of positrons in not possible. Image segmentation is used in medical imaging

to study anatomical structures, identify some regions of interest and applications

such as measuring tissue volume to estimate the growth of a tumor. In the equine

PET and CT registration problem, image segmentation is used to remove the hoof

of the horse foot before registering with the PET image. One case of a PET and CT

image registration problem which requires segmenting the hoof is shown in Fig. 3.1.

Depending on the age of the horse, the regions of activity vary as shown in

Fig. 3.2. We would either choose to remove the coffin bone or both the coffin and

pastern bones. This requirement is based on the portions imaged in PET so as to

achieve better registration. Once we obtain the transformation, we can apply the

transformation on the original image to get the registered PET and CT image.

We will apply histogram based thresholding, graph-cut and fast-march algo-

rithms for image segmentation in CT images. These methods are explained in the

next sections.
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Figure 3.1: (From Left) Original CT, Original PET, segmented CT and
PET aligned, Registered original CT and PET images.

Figure 3.2: (Left) Adult horse, (Right)Young horse
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3.2 Histogram based thresholding

We will demonstrate the histogram based thresholding technique using the

test case shown in Fig. 3.3.

Figure 3.3: CT image before segmentation

Since this is not a bi-modal image, one threshold cannot achieve the required

segmentation. We used two thresholds to segment the hoof region. (Refer to section

2.1 on multilevel thresholding). Let us call the thresholds, lower threshold (lth) and

upper threshold(uth). We design lth to remove the soft tissue regions and the uth

to remove the bone tissues. Since the thresholding technique does not take into

consideration the region information, this method is sensitive to noise and intensity

inhomogeneities. Hence, to make it more robust, we find the largest connected

component in the resultant mask to extract the hoof. Once, a mask is extracted, we

16



Figure 3.4: Steps in histogram thresholding in CT image.

subtract the mask regions from the original CT to obtain the segmented CT image.

The series of steps are shown in Fig. 3.4. (a) Shows the original CT image, (b)

shows the result of applying the lower threshold, (c) shows the result of applying

the two thresholds, (d) is the largest connected component mask, (e) is the original

CT mask, (f) is the segmented CT ,(g) is the segmented CT with filtering out the

small regions and (h) is the final segmented CT image. The corresponding PET

image is shown in Fig. 3.5. The selection of thresholds is demonstrated in Fig. 3.6.

More results after applying this algorithm to CT images are as shown in Fig. 3.7.
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Figure 3.5: (Left) Original CT image, (Middle) Segmented CT ,(Right)
Corresponding PET image.

3.2.1 Graph-cut based method

Graph-cut methods of image segmentation apply the techniques of graph the-

ory to image processing. Each pixel in an image is considered as a node in the graph.

The edges are weighted according to the probability that the pixels are related. We

used one type of graph-cut algorithm called the lazysnapping [30]. We draw lines

on the image specifying regions of foreground and background called scribbles. The

algorithm then computes a graph-cut suggesting the foreground and the background

regions.

Fig. 3.8 shows a sample segmentation using the graph-cut method.

The graph-cut problem is posed as a binary labelling problem i.e to assign a

unique label to each pixel of the image (1 if the pixel belongs to the foreground and

0 otherwise).

18



Figure 3.6: Histograms of a CT Images and the selection of thresholds
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Figure 3.7: Segmentation using histogram-based thresholding
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Figure 3.8: Graph-cut Method of Segmentation. The red line indicates
the marking as background and the green marker indicates the region
marked as foreground.

The solution X = {xi} can be obtained by minimizing a Gibbs energy E(X)

[12]

E(X) =
∑
iεν

E1(xi) + λ
∑
(i,j)εε

E2(xi, xj) (3.1)

where E1(xi) encodes the cost of labelling node i as xi and is called the like-

lihood energy, E2(xi, xj) denotes the cost when adjacent nodes i and j are labeled

as xi and xj respectively. The energy terms E1 and E2 are defined according to the

user input. The method of solving the equation is elaborated in [4].

The likelihood energy E1 indicates if a node belongs to the foreground or

background and encodes the color similarity of a node. The colors in seeds in the

background and foreground are clustered using the k-means algorithm. [9]. E2 is

used to represent energy along the object boundary due to the gradient. E2 is

defined as follows:
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E2(xi,xj) = |xi − xj|.g(Cij) (3.2)

where g(ξ) = 1
1+ξ

and Cij = ||C(i)− C(j)||2 is the L2-norm of the RGB color

difference of two pixels i and j. The |xi−xj| captures the gradient information along

the segmentation boundary i.e E2 is a cost term if the adjacent pixels are allotted

to different categories. E(X) is minimized using the maxflow algorithm described

in [3]. The efficiency of this algorithm can be improved by using a pre-segmented

image using the watershed transformation. [36].

3.2.2 Fast March Algorithm

Level set methods attempt to solve the level-set equation,

Ψt + F |∇Ψ | = 0 (3.3)

where F is a function describing the speed at which the surface should propagate

and Ψt is the difference between the current surface and the next surface. γ(t) is

the set of points where Ψt(x, y, t) = 0. The solution for γ(t) can be obtained by

solving the above equation and then taking the corresponding level set. In this

formulation, we find the propagation of an N dimensional front in terms of the

N+1 dimensional front. This gives us the flexibility to deal with the locations of

discontinuities. The level set method is an iterative approach to solve the above

equation and is computationally very expensive. Fortunately, one constraint on the

F function enables us to use a discretized and optimized algorithm called the Fast-

March Method. The constraint implies that the surface should be expanding in only
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Figure 3.9: Evolving curve using using Fast-March for Image Segmentation[ [1]

one direction which is satisfied by our application.

Let F(x,y) be the front movement i.e the speed of the front at the point (x,y).

Let the front reach the point (x,y) at T(x,y). Then the equation above reduces to

|∇T |F = 1. (3.4)

An algorithm to solve this equation is described in [14]. To use these ideas for image

segmentation, the function F is defined as

F (x) = e−τ(|∇I(x)|), (3.5)

where |∇I(x)| is the magnitude of the image gradient at that point and τ > 0 is

a parameter which can be adjusted to define the strength of the function. When

the curve passes over points with smaller gradient values, the curve expands quickly

and when the curve passes points with higher gradient values, it slows down. An

evolving curve is shown in Fig. 3.9 [1].

3.3 Results and Discussion

Fig. 3.10 highlights the segmented regions in a CT image.

We have applied the above algorithms on a test data of 15 images. Fig. 3.11

23



Figure 3.10: Segmentation of CT (3D)
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below shows the results of using the algorithms. The first column shows the original

images, the second column shows the segmented images using histogram threshold-

ing, the third column shows the result of using graph-cuts while the fourth column

shows the results of using the Fast-March Algorithm.

Image segmentation algorithms can be evaluated using different metrics. They

can be classified into supervised and unsupervised techniques. In supervised meth-

ods, we have a reference image called the ”ground truth” which we use to calculate a

similarity metric. Unsupervised methods do not require a reference image and eval-

uate the quality of segmentation based on certain criteria like uniformity of regions

segmented, continuity of region interiors etc. A detailed study of the unsupervised

methods is presented here [39]. We will evaluate the segmentation using supervised

techniques defined below. Our reference image is generated using an interactive

segmentation tool for each of these test cases.

Dice coefficient, also called the coincidence Index or similarity index is origi-

nally proposed in [8] to quantify the association between two species using a metric

which is independent of which species is treated as the base. For images, it can be

defined as twice the information present in both the images divided by the sum of

information in each of the images. The Dice coefficient ranges from 0 to 1, where

0 implies no association and 1 implies complete association. Information in this

case refers to the number of non-zero elements. Fig. 3.12 plots the values of Dice

Coefficient for the three methods. It is defined as follows:

Let R be the ground reference image and S be the segmented image using a

particular algorithm. Let NR and NS denote the region of foreground of the ground
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Figure 3.11: The first column shows the original CT images, the sec-
ond column is the result of segmentation using thresholding, the third
column shows Graph-cut method, the fourth column shows Fast-March
Algorithm

27



truth and the segmented image respectively and |.| denote the number of pixels

present in the region.

Dice Similarity index =

2[NR ∩NS]

|NR|+ |NS|
(3.6)

Some other metrics commonly used in the literature to evaluate image seg-

mentation algorithms are as follows [24]:

True Negative Fraction(TNF) =

|NR ∪NS|
|NR|

(3.7)

False Negative Fraction(FNF) =

|NR −NS|
|NR|

(3.8)

True Positive Fraction(TPF) =

|NS ∩NR|
|NR|

(3.9)

False Positive Fraction(FPF) =

|NS −NR|
|NR|

(3.10)

Percentage difference in the area of pixels =

||NR| − |NS||
|NR|

× 100 (3.11)

Fig. 3.13 plots the percentage difference in area for different test cases using

the three segmentation methods.
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Figure 3.12: Dice Coefficient for the test cases above for three segmen-
tation methods

Figure 3.13: Absolute percentage area difference for three segmentation methods
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Table 3.1: Dice similarity index for various algorithms.

Subject No. Fast-March Threshold Graph-cut

1 0.8017 0.9185 0.9153

2 0.9305 0.394 0.9187

3 0.8511 0.8767 0.9367

4 0.795 0.7879 0.8463

5 0.862 0.8524 0.9192

6 0.7041 0.7868 0.8681

7 0.8225 0.9905 0.8636

8 0.7122 0.9227 0.8912

9 0.8939 0.8246 0.8785

10 0.8798 0.9652 0.8892

11 0.9017 0.9313 0.8491

12 0.7963 0.4293 0.8648

13 0.8683 0.9527 0.8624

14 0.8932 0.9005 0.8981

15 0.8912 0.9779 0.9587
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Table 3.2: True Negative Fraction for different segmentation algorithms

Subject No. Fast-March Threshold Graph-Cut

1 0.9889 0.9184 0.9153

2 0.9830 0.3939 0.9187

3 0.9880 0.8766 0.9366

4 0.9767 0.7879 0.8463

5 0.9760 0.8523 0.9192

6 0.9962 0.7867 0.8680

7 0.9961 0.9904 0.8635

8 0.9898 0.9227 0.8912

9 0.9871 0.8246 0.87841

10 0.98881 0.9652 0.8891

11 0.9856 0.9313 0.8491

12 0.9896 0.9527 0.8623

13 0.9897 0.9005 0.8980

14 0.9880 0.9778 0.9586

15 0.9594 0.4293 0.8648
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Table 3.3: False Negative Fraction for different segmentation algorithms

Subject No. Fast-March Threshold Graph-Cut

1 0.0036 0.0050 0.0014

2 0.0036 0.1066 0.00098

3 0.0011 0.00024 0.0004

4 0 0.00020 0.0014

5 0.0188 0.00049 0.0030

6 0.0162 0.00047 0.0011

7 0.0292 0.0014 0.01459

8 0.0213 0.00099 0.0011

9 0.0001 0.00026 0.0014

10 0.0026 0.00063 0.0036

11 0.0005 0.00022 0.0046

12 4.8395E-06 0.00022 0.0023

13 0.00137 0.0090 0.00067

14 0.0016 0.00029 0.0022

15 0.0089 0.0766 0.0073
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Table 3.4: True Positive Fraction for different segmentation algorithms

Subject No. Fast-March Threshold Graph-Cut

1 0.8908 0.8493 0.9573

2 0.9744 0.2453 0.9930

3 0.9701 0.9937 0.9895

4 1 0.9954 0.9689

5 0.8763 0.9967 0.9803

6 0.5943 0.9881 0.9711

7 0.7237 0.9862 0.8620

8 0.6459 0.9834 0.9815

9 0.9979 0.9951 0.9741

10 0.9507 0.9881 0.9317

11 0.9918 0.9967 0.9326

12 0.9998 0.9932 0.9322

13 0.9725 0.8194 0.9865

14 0.9710 0.9948 0.9614

15 0.9155 0.2733 0.9301
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Table 3.5: False Positive Fraction for different segmentation algorithms

Subject No. Fast-March Threshold Graph-Cut

1 0.0110 2.4278E-06 0.0044

2 0.0169 0 0.0238

3 0.0119 0.0105 0.0047

4 0.0232 0.0239 0.0144

5 0.0239 0.0522 0.0233

6 0.0037 0.0210 0.0106

7 0.0038 0.0005 0.0142

8 0.0101 0.0089 0.0133

9 0.0128 0.0228 0.0133

10 0.0111 0.0031 0.0087

11 0.0143 0.0099 0.0182

12 0.0103 0.0031 0.0078

13 0.0102 0.00002 0.0105

14 0.0119 0.0022 0.0025

15 0.0405 0 0.0233
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Chapter 4: Image Registration of Equine PET and CT Images

An image registration algorithm finds a transformation that can be applied

on the source image to register with the target image. Throughout this thesis, we

assume that the PET image is the target image and the CT image is the source or

moving image. Hence, our aim is to find a transformation to apply on the CT image

which registers it with the PET image.

There are two broad classes of transformations: Rigid and Non-rigid. Similar

to the idea of a rigid body, rigid transformation assures that the relative position

of the pixels is maintained. Thus, a rigid transformation can only include rotation,

translation and reflection. Allowing for the scaling parameters results in a simi-

larity transformation with four parameters in two dimensions. Further relaxation

to include the skew operations results in an affine transformation with six degrees

of freedom in two dimensions. Non-rigid transformations on the other hand, have

no restrictions and in the extreme case, can deal with an infinitely deformable ob-

ject with infinite parameters. Such transformations are achieved by estimating the

transformation vectors at each pixel. We will discuss multimodal image registra-

tion using rigid transformation in the next sections and formulate a deformable

registration problem for equine PET and CT images.
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4.1 Registration using Fiducial Points

Fiducial points

Fiducial points are markers used in images as points of reference. Given few

sets of fiducial points, we can estimate a transformation. The exact number of

points required to estimate the transformation depends on the type of transforma-

tion used. For example, affine transformations would have six unknown parameters

and requires atleast six pairs of fiducial points else it will result in an underdeter-

mined system with infinite number of solutions. If we have more number of fiducial

points, we have an overdetermined system of equations, and we need a criteria to

fit the data into the transformation. This problem is called the absolute orientation

problem. [15] One criterion used, is to minimize the difference between the target

points and the transformed points in the least squares sense. [35] . Fig. 4.1 shows

a pattern of 2D source points which need to be transformed to match a pattern of

target points. We design a similarity transformation (Rotation R, translation t and

Scaling c) as follows: The lemma follows from [35].

Lemma: Given a set of source points {x1,x2,x3, ......,xn} and a set of target

points {y1,y2,y3, ......,yn} in a m-dimensional space (m=2 or m=3), the optimum

transformation parameters are obtained from

R = USV T (4.1)

t = µy − cRµx (4.2)

c =
1

σ2
x

tr(DS) (4.3)
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where

ABT = UDV T (4.4)

S =


I ifdet(U)det(V ) = 1

diag(1, 1, ..., 1,−1) ifdet(U)det(V ) = −1

when rank(
∑

xy) = m− 1 and

S =


I ifdet(

∑
xy) ≥ 0

diag(1, 1, ..., 1,−1) ifdet(
∑

xy) < 0

when rank(
∑

xy) ≥ m− 1

and
∑

xyis a covariance matrix of X and Y, µx and µy are mean vectors of X

and Y, σ2
x and σ2

y are variances of X and Y. X and Y are m x n matrices created from

the data points. Fig. 4.2 shows the transformed source points using the similarity

transformation designed above and the target points. Observe that though we do

not reach the exact location of the target points, we can approximately satisfy all

the pattern constraints.
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Figure 4.1: (left) Source Points, (Right) Target Points

The same can be extended to a 3D volume. Fig. 4.3 shows two 3D images

where the user is allowed to select pairs of matched points by visual inspection. We

then use these points to estimate a similarity transformation and the result is as

shown in Fig. 4.4. There is a possibility of small deviations in the coordinates of the

points due to human errors. We will see how the transformation parameters change

with some deviation from a fixed point. Table.5.1 shows how the Euler-Rodriguez

parameters [7] change with varying noise(N).
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Figure 4.2: (left) Transformed Image, (Right) Original Target Image

Figure 4.3: (Left) Source Object ,(Right) Target Object
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Figure 4.4: (Left) Transformed Object, (Right) Original Target Image
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Table 4.1: The points taken are (3, 10, 2) , (9, 5, 1) , (12, 3, 4) , (-2, 1, -1) , (3, -3,
3) . The third point is changed as ( x +N/2 , y+N, z +3N/2 ) . α , β and γ are
the Euler Angles in Radians. e1 , e2, e3 and θ are Rodriguez parameters.

N C Tx Ty Tz α β γ e1 e2 e3 θ

0 1.5 3 2 1 0.314 0.52 0.78 0.094 0.66 0.74 0.91

0.1 1.502 3.012 2.004 0.986 0.312 0.517 0.785 0.0951 0.658 0.743 0.913

0.2 1.506 3.037 2.013 0.959 0.307 0.505 0.785 0.096 0.646 0.748 0.908

0.3 1.512 3.075 2.026 0.919 0.301 0.488 0.784 0.098 0.627 0.756 0.900

0.4 1.521 3.129 2.043 0.869 0.293 0.465 0.784 0.100 0.603 0.766 0.891

0.5 1.533 3.198 2.063 0.808 0.283 0.437 0.784 0.103 0.572 0.778 0.880

0.6 1.549 3.286 2.084 0.741 0.271 0.404 0.784 0.106 0.536 0.791 0.868

0.7 1.568 3.394 2.106 0.668 0.258 0.367 0.785 0.109 0.494 0.806 0.856

0.8 1.592 3.524 2.128 0.594 0.243 0.326 0.786 0.112 0.448 0.821 0.844

0.9 1.621 3.676 2.148 0.522 0.226 0.283 0.789 0.114 0.397 0.836 0.833

1 1.655 3.852 2.164 0.455 0.209 0.237 0.790 0.116 0.343 0.851 0.824

We now demonstrate the use of fiducial points on a PET-CT image pair. The

user selected points are shown in Fig. 4.5, the correspondence between the respective

pair of points is shown in Fig. 4.6 and the result obtained is shown in Fig. 4.7.
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Figure 4.5: (left) Data points on CT Image, (Right) Data points on PET Image

Figure 4.6: The lines show the correspondence between points chosen on
CT(Left) and PET(Right)
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The transformation parameters calculated are as shown in the table.

Table 4.2: Source and Target Fiducial Points

X(Source) Y(Source) X(Target) Y(Target) X new Y new

371 217 72 126 67.1166 123.3772

282 215 100 171 109.6826 167.1735

229 220 143 185 138.0095 190.2265

224 296 179 161 177.0187 155.4617

302 280 129 119 131.1726 125.7611

Table 4.3: Transformation Parameters for PET-CT pair

Scale Tx Ty Theta(Radians)

0.6860 144.1669 407.9968 2.3644
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Figure 4.7: Registration using Fiducial points given.

Registration using fiducial points can be used as a supplemental technique to

automatic multi-modal image registration. It can be used to fine tune the registra-

tion as well.

In fiducial points-based registration, we will need a human to input and mon-

itor the registration continuously. Even for a very experienced person, this process

might take a few hours to complete registration with acceptable accuracy. Hence,

we try to use an automatic registration algorithm that can ease the whole process of

registration. In the next section, we will discuss an entropy-based similarity metric

called the mutual information.
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4.2 Registration using Mutual Information

Mutual information of two random variables is the amount of information one

variable can provide about the other. Mutual Information is used as the similarity

measure in multi-modal image registration in the field of medical imaging. [16].

Higher mutual information implies better registration as shown in the Fig. 4.8. It is

calculated using the individual and joint entropies of the two images using the joint

histogram.

If u and v are any two random variables, mutual information is calculated as

follows [16]:

I(U, V ) =
∑
u,v

pUV (u, v)log
pUV (u, v)

pU(u)pV (v)
(4.7)

where pU(u) and pV (v) are the marginal probability distributions and pUV (u, v) is

the joint probability distribution. When the variables U and V are statistically

independent, pUV (u, v) = pU(u).pV (v) and mutual information is zero, i.e knowing

information about one variable does not help in estimating the other variable.

Let x and y be the voxel intensities of PET and CT images respectively. Let

h(x), h(y) be the histograms of the two images and h(x, y) be the joint histogram

of the two images.

Define entropy of PET image as

H(X) = −
∑
x

pX(x)log(pX(x)) (4.8)

and entropy of CT image as
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Figure 4.8: The figure demonstrates the change in mutual information
value and the registration performance. Higher mutual information im-
plies better registration. From left to right, the similarity percentages
calculated are 25.4, 36.8, 44.8 and 45.1.

H(Y ) = −
∑
y

pY (y)log(pY (y)) (4.9)

Then the mutual information is defined as
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MI(X, Y ) = H(X) +H(Y )−H(X, Y ) (4.10)

Mutual information is robust in the sense that there are no assumptions on the

image intensities, and no assumption about the image content in different modalities.

The probable parameters of the geometric transformation are estimated from an

initial estimate. The initial estimate could either be random or from any previous

registration method. We will use the center of intensities as the initial estimate of

the transformation parameters.

Interpolation at higher orders do not result in significant improvements in reg-

istration whereas quadratic and cubic interpolation gives significantly better consis-

tent results than linear. [23]. A non-linear optimization technique called one-plus-

one evolution algorithm used to solve this is described in Appendix B of [32]. The

multiresolution Image Pyramid is as shown in Fig. 4.9

The value of the transformation parameters are obtained iteratively as follows:

[16]

φn+1 = φn ± w∗∆φ (4.11)

where φn is the parameter at the nth iteration. Let M be the moving Image,

F be the fixed Image and M(φn) denote the Image after transforming M using the

parameter at nth iteration. Let I(F,M(φn)) denote the mutual information between

the fixed and moving Image transformed after nth iteration. The weight value w∗ is

given by
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Figure 4.9: Multiresolution Image Pyramid [11]

w∗ =



1
w

ifI(F,M(φn))≥ I(F,M(φn−1))

w otherwise

where w = I(F,M(φn−1))
I(F,M(φn))

. We will see that the parameters converge to a final

value after several iterations.
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4.3 Registration using Edge Information

The motivation to use edge information in the registration process is two-fold.

One is the sparsity of the matrix values and the other is the reduced redundancy

in the image. Observe that in a CT image, there is a lot of redundant information

i.e in grey level intensities. Our aim is to somehow find a transformation to the

CT image which can be applied on the original CT image to achieve registration.

Instead of using the CT image, we use the edge image of the CT and align it with

the edge image of the PET.

One of the main challenges is to extract the edges in the images. Edge detection

in a CT image is straight forward whereas edge detection in a PET image requires

some preprocessing since PET images are generally very noisy.

Edges in images are detected by computing the gradient magnitudes. Different

gradient operators are used for edge detection like the ones proposed by Roberts

[4.13], Prewitt [4.14] and Sobel [4.15].

Gx =

 0 1

−1 0

 ;Gy =

 1 0

0 −1

 (4.13)

Gx =


−1 0 1

−1 0 1

−1 0 1

 ;Gy =


−1 −1 −1

0 0 0

1 1 1

 (4.14)
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Gx =


−1 0 1

−2 0 2

−1 0 1

 ;Gy =


−1 −2 −1

0 0 0

1 2 1

 (4.15)

These operators are applied on the image pixels to compute the gradients

in orthogonal directions and threshold the gradient magnitude to recover an edge.

The gradient operators do high pass filtering on the images thus amplifying high

frequency noise. Prewitt and Sobel kernels reduce the effect of noise by computing

the horizontal and vertical differences of local sum.

To compute the edges in a volume, the first step is to compute the partial

gradient for each axis. The partial gradient vector is given by:

∇f =

(
∂f

∂x
,
∂f

∂y
,
∂f

∂z

)
We will apply a 3x3x3 kernel to compute the partial derivatives. Let Hx,Hy

and Hz be the x, y and z direction kernels given by

Hx(m,n, p) =




−1 −3 −1

−3 −6 −3

−1 −3 −1

 ,


0 0 0

0 0 0

0 0 0

 ,


1 3 1

3 6 3

1 3 1



 (4.16)

Hy(m,n, p) =




1 3 1

0 0 0

−1 −3 −1

 ,


3 6 3

0 0 0

−3 −6 −3

 ,


1 3 1

0 0 0

−1 −3 −1



 (4.17)
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Hz(m,n, p) =




−1 0 1

−3 0 3

−1 0 1

 ,

−3 0 3

−6 0 6

−3 0 3

 ,

−1 0 1

−3 0 3

−1 0 1



 (4.18)

We shift the above gradient operators across the voxels and compute a inner

product. Let the inner products obtained be gx(m,n, p) , gy(m,n, p) and gz(m,n, p).

The square of the gradient vector magnitude is given by

g(m,n, p)2 = gx(m,n, p)
2 + gy(m,n, p)

2 + gz(m,n, p)
2 (4.19)

We set a threshold for this gradient vector magnitude to compute the edges in

a volume. It has been observed that Sobel operators provide a very good estimate

of the gradients and are also effective in reducing the noise and aliasing artefacts. A

good study of the edge detection algorithms is presented in [25]. We will use the 3D

Sobel edge detector to detect edges in PET and CT images. The next two sections

discuss edge detection in PET and CT images. Once we obtain the edges of both

the images, we will discuss the metric used and the method of alignment.

4.3.1 Edge Detection in PET images

Before we try to detect edges in the PET image, we observe that the PET

image is very noisy. We hence apply a smoothening or averaging filer of high order

(15) to compensate noise. The resultant PET image is as shown in Fig. 4.10 (mid-

dle). Since, the image is much smoother now, we use the standard edge detection

techniques discussed in the previous section. Our aim is to obtain the edges of the
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bone and soft tissue regions. Direct application of edge detection has the result as

shown in Fig. 4.10 (right). To improvise this further, we will detect the inner and

outer edges separately. The algorithm is described in Fig. 4.11.

Figure 4.10: (Left) Original PET Image, (Middle) Filtered PET Image,
(Right) Direct Edge Detection on PET Image
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Figure 4.11: Edge Detection on PET Image

4.3.2 Edge Detection in CT images

Direct edge detection on the image has resulted in an edge as shown in

Fig. 4.12. For improved edge detection, we have separately identified the inner and

outer edges. The CT images are not noisy, hence did not require any smoothening

filter. We would like to have two clear boundaries for the bone and the tissue hence

use the method used above in the case of PET images to detect boundaries and the

final result is as shown in Fig. 4.13. The steps are described below.

1. Contrast stretch the original Image to cover the entire intensity range and

threshold the image at nearly 100 to have the bone region separated. Fill
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Figure 4.12: (Left) Original CT, (Right)Direct Edge Detection in CT Image

Figure 4.13: Edge Detection in CT images
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holes in the binary image obtained and perform edge detection.

2. Multiply the image intensities by a large number (say 10) to obtain a binary

image which on edge detection gives the outer boundary of CT image.

3. Combine the edges obtained in step 1 and 2 to get the final boundary image.

We now use the edge images of CT and PET as the new moving and fixed

images respectively in our registration problem. Since we have only binary images,

the metric for alignment can be simplified. It can be taken as the logical AND of

the two images, for example. The two edge images are shown in Fig. 4.14.

Figure 4.14: The pink lines show the edges of a PET image and the
green lines show the edges in a CT image.

The PET and CT edges detected in the above sections are aligned using the
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translation parameter search. The new metric is the number of ones in the result

obtained by performing logical AND on both the binary images. Fig. 4.15 shows

the result of using the translation parameters search.

Figure 4.15: Edge Alignment using the Edge Metric and Translational
Parameters search

4.4 Some Results

Providing a good initial condition is important for the fast convergence of any

registration algorithm. One such good initial transformation is given by matching

the center of intensities of the PET and CT images. This is discussed in detail in

Chapter 5 in the coarse registration section.

One example of a PET-CT registration is shown in Fig. 4.16. The center slices

on each axis is shown. Fig. 4.19 shows the percentage of time taken to import data,
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Figure 4.16: Registered 3D PET-CT shown as three 2D Images

pre-process and do coarse registration.
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Figure 4.17: Percentage of time taken for each step in coarse registration
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Figure 4.18: Mutual Information similarity percentage in the registration
of PET-CT (N is the number of Iterations)
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Figure 4.19: Time Complexity for Registration of PET-CT (N is the
number of Iterations)
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Chapter 5: Automatic equine PET and CT image registration

Even in ”automatic” image registration, we will have user interaction to some

extent. Fig. 5.4 shows the different steps in the PET and CT registration process.

We will discuss the details of these steps in this chapter.

Figure 5.1: Different steps in the PET and CT registration.
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The main stages in the registration process are:

I Data import and validation

II Preprocessing

III Create equal volumes

IV Registration

V Export data

I Data import and validation

(i) Read PET and CT raw data

To achieve compatibility between imaging systems present world wide, the

Digital Imaging and Communications in Medicine (DICOM) standard is

created. Fig. 5.2 shows a sample DICOM header which is followed by

the raw data. Consider a three dimensional array with dimensions as

Height, Width and Depth. Let x , y and z be the corresponding indices.

The three dimensional matrix threeDim(Height, Width, Depth) can be

converted to a one-dimensional matrix oneDim(Height, Width, Depth)

using the relation below:

oneDim[x+Height×(y−1+Width×(z−1))] = threeDim[x, y, z] (5.1)

(ii) Check for flipped dimensions
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Figure 5.2: Sample DICOM header

One of the steps in validation, before preprocessing, is to check for flipped

dimensions before actual alignment. This can be done by visual inspec-

tion. One challenge with the equine scans is that the coronal section

appears symmetric as shown in Fig. 5.3, it requires an experienced pro-

fessional to figure out the orientation.

II Preprocessing

(i) Interpolate to match voxel sizes: The voxel in different modalities could

be different and hence we need to interpolate before trying to apply any

registration algorithms. The CT and PET voxels are shown in Fig. 5.4

(ii) Image Segmentation: We have dealt with the image segmentation problem
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Figure 5.3: (a) shows a CT section, (b1) and (b2) show the corresponding
PET section flipped with respect to each other. Observe that it is difficult
to judge the correct alignment.

in detail in chapter 3. The regions to be segmented in CT before register-

ing with PET also depend on the age of the horse. While the young horses

require segmenting only the hoof part, the adult horses need to have the

bones to be segmented along with the hoof region.

III Create equal volumes: We append zeros to match the two volumes so that we

do not lose any information.
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Figure 5.4: The PET and CT voxels: Interpolation

IV Registration

(i) Coarse registration: Before using the algorithms for registration, a good

initial condition is provided by the coarse registration. This is achieved by

matching the center of intensities of the two images. Center of intensity

is calculated similar to the center of mass of an object. The difference

between the centers correspond to the translational parameters in the
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coarse registration.

Cx =

∑N
i=1 Iixi∑N
i=1 Ii

(5.2)

Cy =

∑N
i=1 Iiyi∑N
i=1 Ii

(5.3)

Cz =

∑N
i=1 Iizi∑N
i=1 Ii

(5.4)

Here N is the total number of voxels in the image.

(ii) Fine registration: Some algorithms for registration have been discussed in

chapter 4. The result of coarse registration is used as an initial condition

for fine registration.

V Export data

(i) Crop to original size of PET : After registration, since we have used the

PET image as the reference, the aligned CT image would also be in the

same coordinates as of PET and hence we can crop it to the original

dimensions of the PET image.

(ii) Export transformed CT raw data: The three- dimensional array can be

converted to one-dimensional array using the Eq. 5.1 and saved as a DI-

COM file.
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Chapter 6: Conclusions and Future Work

In the recent past, a new modality for horses, the PET imaging has been

developed. Analysis showed that the PET images have information which is not

present in other modalities like CT and MRI. Access to the functional and structural

information in the same spatial coordinates enables us to identify and diagnose

different lesions in horses. We considered the problem of registering PET and CT

images in horses and tried to automate the process. We have described the different

steps in detail and implemented a graphical user interface for the same. The next

steps would be to optimize the algorithm and different stages of registration and

reduce the time complexity from several minutes to a few seconds. Since the equine

PET and CT registration problem does not possess infinite degrees of freedom, we

can model the bone rotation and deal with deformable registration with two angles

as two additional parameters. Image processing and machine learning techniques

can be used to automatically announce the type of lesion present while reading the

PET and CT images.
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Appendix A: The 3D PET-CT Image Registration GUI

We have developed an interactive graphical user interface in Qt(C++) to reg-

ister 3D PET and CT images of horses. This implements automatic cropping,

segmentation and registration modules with a provision to take the user inputs and

modify, if necessary. This is being tested on new data sets and once proved to be

robust enough can get rid of many debugging options and made accessible to the

general audience.

Fig. A.1 shows the axes using which the 3D image is displayed as a combination

of three 2D images. The scroll bar adjacent to the 2D images can be used to traverse

different slices of the images in the respective axes. Fig. A.2 highlights some options

in the GUI and Fig. A.3 shows the MIP (Maximum Intensity Projection) Images.
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Figure A.1: Axes in GUI
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