TECHNICAL RESEARCH REPORT

Non-Smooth Simultaneous Stabilization of
Nonlinear Systems: Interpolation of
Feedback Laws

by B. Ho-Mock-Qai, W.P. Dayawansa

T.R. 96-11

INSTITUTE FOR SYSTEMS RESEARCHI

Sponsored by
‘ ‘ the National Science Foundation

Engineering Research Center Program,

“ the University of Maryland,
‘ Harvard University,

and Industry






Non-Smooth Simultaneous Stabilization of Nonlinear
Systems: Interpolation of Feedback Laws

Bertina Ho-Mock-Qai * Wijesuriya P. Dayawansa, *
bertina@src.umd.edu wpd@src.umd.edu
Electrical Engineering Department Electrical Engineering Department
and Institute for Systems Research and Institute for Systems Research
University of Maryland University of Maryland
College Park, MD 20742 College Park, MD 20742
Abstract

In this paper, we introduce a method that enables us to construct a continuous simultaneous
stabilizer for pairs of systems in the plane that cannot be simultaneously stabilized by smooth
feedback. We extend this method to higher dimensional systems and prove that any pair of
asymptotically stabilizable nonlinear systems can be simultaneously stabilized (not asymptot-
ically) by means of continuous feedback. The resulting simultaneous stabilizer depends on a
partition of unity and we show how to circumvent the computation of this partition of unity by
constructing an explicit simultaneous stabilizer.

Keywords: Continuous feedback, simultaneous stabilization, partition of unity, nonlinear
systems.

1 Introduction

The simultaneous stabilization problem was first introduced in [13] and consists in finding a
controller that stabilizes each one of the systems of a finite collection of systems. In [13, 14],
tractable necessary and sufficient conditions for the simultaneous stabilizability of two linear
systems by linear feedback are given. Necessary and sufficient conditions for the existence of a
linear feedback law that simultaneously stabilizes three linear systems are proposed in [1, 3, 14],
but none of them is tractable.

To overcome the limitation of linear time invariant controller, the use of alternative feed-
back need to be investigated. For linear time invariant systems, Khargonekar et al. [10] proved
that a finite family of stabilizable linear systems can be simultaneously stabilized by linear pe-
riodically time-varying feedback, while Kabamba et al. [8] showed that such a family can be
simultaneously stabilized by a controller based on generalized sample and hold functions. On
the other hand, by using a sampler and zero** order hold functions, Zhang et al. [15] proposed
a scheme for the simultaneous stabilization of single input single output linear systems. Finally,
in {12] an implicit (and therefore not really applicable) necessary and sufficient condition for
the simultaneous quadratic stabilization of single input linear systems by means of continuous
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feedback is given.

To the best of our knowledge, the simultaneous stabilization of a collection of nonlinear
systems has not been addressed in the literature.

Before introducing our results, we need some definitions and notation. A feedback law
u: R™ = IR™ is said to be continuous if it is continuous on a neighborhood of the origin with
2(0) = 0 and almost C¥, if it is C* on a neighborhood of the origin except at the origin. For a
given system, we let z(-, zo) denote its trajectory that starts from zo at time ¢t = 0.

Definition 1.1 Consider the system (S) : £ = f(x) where the state x is in R™ and the mapping
f:R™ =5 R” is continuous with f(0) = 0.

1) The system (S) is stable if for each £ > 0, there exists 6 > 0 such that for each t > 0 and
each solution z(.,zg) of (S), we have ||x(t,z0)|| < € whenever ||zo|| < d.

il) The system (S) is locally asymptotically stable if it is stable and if there exists oo > 0
such that z(t,z0) — 0 as t — oo whenever ||2o|| < do.

A feedback law u stabilizes a system if the closed-loop system obtained once u is fed back into
the system, is stable per Definition 1.1 (i).

We emphasize that we use the word “stable” in the basic sense, i.e, stable according to
Definition 1.1 (i), while in the control theory literature it is commonly used to denote “locally
asymptotically stable” per Definition 1.1 (ii).

Finally a feedback law u simultaneously stabilizes (resp. asymptotically stabilizes) a col-
lection of controlled systems if u stabilizes (resp. asymptotically stabilizes) each system of the
collection.

Inspired by the elegant results that have been recently obtained in the context of stabilization
of nonlinear systems by continuous feedback [2, 9], we investigate in this paper some simultaneous
stabilization issues by using merely continuous feedback. More precisely, we first consider the
pair of systems

S . {231 = a_x; +b_zo and s, : {i‘l = a+:c1+b+:v2

:i:2=u :&2=u ’

where a_, a,, b, are positive, b_ is negative and u is a scalar control. Upon noticing that
these two systems are not simultaneously asymptotically stabilizable by smooth feedback, we
introduce a method that enables us to construct a continuous stabilizer by using two particular
feedback laws that asymptotically stabilizes S_ and S, respectively. Secondly, we consider a
pair {S; : ¢ = 1,2} of locally asymptotically stabilizable [at the origin] systems

Si: & = filz,u), i=1,2,

where the state ¢ lies in R”™, the input u, is in IR™ and for each i = 1,2 the mapping
fi t R®xXR™ — R" is continuous on a neighborhood of the origin with f;(0,0) = 0. By
extending the aforementioned method, we exhibit a continuous feedback law that simultane-
ously stabilizes S; and S;. The resulting simultaneous stabilizer depends on a partition of unity
and we show how to circumvent the computation of this partition of unity by constructing an
explicit simultaneous stabilizer.

The paper is organized as follows. The simultaneous asymptotic stabilization of S_ and S,
is solved in section 2, while the simultaneous stabilization of S; and S, is addressed in section 3
and 4. After some concluding remarks in section 5, we present in section 6 the technical lemmas
used in the proofs of the main theorems.



2 Simultaneous stabilization in the Plane

In this section, we consider two systems in the plane

g . :?:1 = a_.z1+b_x and S, : 1 = apz1+bxe
T = u + T2 = u

?

where a_, a4, b, are positive reals, b_ is a negative real, and u is a scalar control. By using
elementary linear algebra, it is easily checked that there exists no smooth feedback law that si-
multaneously locally asymptotically stabilizes S_ and S,. However, as we shall see below there

exists a merely continuous feedback law that simultaneously globally asymptotically stabilizes
S_ and S,.

This result is proved in the following theorem. The general line of the proof is to construct
two feedback laws Up, and u;: that globally asymptotically stabilize S_ and S, respectively.
We introduce two bases at the origin {W5 }g>0 and {WB’ }s>0 such that for each § > 0, the
neighborhoods Wj and W+ are invariant with respect to the systems S_ (with u = up )
and S, (with u = uk ) respectlvely We then construct a new base at the origin {W;}, 7z .
such that the odd (resp. even) sets Wapni1 (resp. Way,) belong to the family {Wj }s>o (resp.
{W }s>0). Finally, we define a continuous feedback law uy, which is equal to (R (resp. u ko)
on the boundary of the odd sets Wy,41 (resp. even sets Way,). It follows that the closure of
each neighborhood of the base at the origin {Wap1} neZ (resp. {Way,} neZ is invariant with
respect to the closed-loop system obtained once ug, is fed back into S_ (resp. S, ). This implies
that ug, simultaneously stabilizes S_ and S,. Asymptotic stability is then obtained by proving
that the only positive limit set of the system S_ (resp. S,) with u = uy,, in the sets Wap41
(resp. Wan), is the origin.

Theorem 2.1 Let a_, a, and b, be positive, and let b_ be negative. Then, there exists a
continuous and almost smooth feedback law that simultaneously globally asymptotically stabilizes
the systems S_ and S,.

Proof: Throughout the proof, we use the following notation: The set Z denotes the set of
integers. For each = in R2, we denote by z; and x5 its coordinates, and we define the mappings,
f-fs : R? = R by setting f_ (£) =a.x1 +b_xzs and f (x) = ayz1 + brxo respectwely For a
subset Y of R?, we denote by Y its symmetric with respect to the origin, i.e., ya = {—y: yeY}
Finally, for each real a, we let £, denote the half-line

o = {mE]RQ: x1 = axq, 1 > 0}.

Construction of uy and u',::

(Et' —b_
ay?’ a_ /°

Consider Fig. 1, and for each 8 > 0, let W and W; be the open subsets of R? bounded by
the closed curves in bold. The sets W5 and Wg' are symmetric with respect to the origin.

The segments []4\5,,41] and [Ag, A3] are respectively horizontal and vertical, while the segments
[As, A4] and [A4, As] have respective slopes z—% = -6 and g—glz- = u. Furthermore, the segments
[§5, Bi1] and [Bg, By| are respectively horizontal and vertical, while the segments [B;, Bs] and
[Bs, B;] have respective slopes % = 4 and % = —pu. From the assumptions made on 8, &

and p, it is easily checked that Wg and Wg' are well-defined for each # >.0. We now define the
following open subsets of R*\{0}:

R; : region between the half-lines b3} sy and X s,
a+ -
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Figure 1: Neighborhoods W5 and W

region between the half-lines ¥ ._ and Dy,
~Fac

region between the half-lines £y and X_g,

region between the half-lines ¥_54, &, ,
- 2a+
region delimited by ¥ ._, ¥ s and the segment [A2, A3,

T Za_

(1)
(2)

a

region delimited by ¥ &, , ¥ », and the segment [Bs, By].
_a.+ _2a+

Because {Ry, .., R4, ﬁl, . R;} [where ﬁ, is the symmetric set of R; with respect to the ori-
gin for each ¢ = 1,2,3,4] is an open cover of R*\{0}, there exists a C™ partition of unity
{p1,-sp4,D1,..,P4} subordinate to it such that the support of p; (resp. ;) is included in R;
(resp. R;) for each i = 1,2,3,4 [4].

For each k > 0, we now define the mappings u;,u;: :R? 5 R, by setting

0 ifx=0
up (w) = —kz2 (pi(e) +Pi(2)) + (2021 + b_x2) (p2(w) + p3(z) + Pa(x) + Ps(x))
—1(E 21 + b_w) (palz) + Palz)) otherwise,
and
0 ifr=0
up (@) = —koa (p1(®) +P1(2)) + 3(Fo1 +b,72) (p2(2) + Pa() )

— (20421 + byx2) (ps(x) + pa(z) + Pa(x) + pa(z))

otherwise .
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Because the mapping p; (regp. P;) is smooth on R? \{0} for each i = 1,2, 3,4, it is plain that
uj, and u} are smooth on IR*\{0}. Furthermore, the mappings of a partition of unity summing

up to 1, it is readily seen from the definition of u; and u] that

1l a_ .
- a—xl +b_a:2|) , =€ R2

— 1
lug, (z)] < max (Ikw2|, ;)2(1_:1:1 + b_xs|, 515

and

6 2

and continuity of u; and u;'c' at the origin follows for each k& > 0.

1 1
luf (z)] < max (|kw2|, ;|2a+w1 + b, x4, —|a—+w1 +b+x2|) , z€R?

Construction of uy:
We first note that the families {W }s50 and {Wj }s>0 are bases at the origin such that
Wz C Wg and W C W for all 8 < f'. This, together with the fact that for each bounded

subset U of R? there exists 8 > 0 such that U C Wg and U C W,;' , yield the existence of a
sequence of positive reals {;},.7 satisfying

B; -0 as j = +0 and B; = +00 as j = —oo, (3)
with N
— + _ _
Wﬂ2n+1 C Wﬁzn and Wﬁ2n C Wﬂﬁn—l’ ne Z. (4)
With the notation

Wen SWg  and  Wannn 2Wj ., neZ,

the inclusions (4) translate to

Wj+1 - VVj7 J€ Z. (5)
It is easily checked from (3) and (5) that {Wj—l\Wj‘f'l}_jeZ is an open cover of R?\{0}. Let
{g;};cz be a partition of unity subordinate to {W;_1\Wj41};.7z such that the support of g;

is included in W;—;\W j41, for each j in Z [4].
Finally, for each k > 0, we define the feedback law uy : R?> — R by setting

0 ifz=0

up(z) = ¢ uf () Z @n(z) + ug (2) Z ¢on+1{x) otherwise.
neZ neZ

Fix k > 0 and let = be in R? \{0}. It is easily checked that there exists a neighborhood U, of
z such that U, intersects with at most three sets of the collection {W;_1\Wj1},cz. As the

support of the mapping g; is included in Wj_l\Wj+1 for each j in Z, it follows that on U,,
the infinite sums in the expressions of ug(x) reduce to the sum of at most three terms. This
last comment combined with the smoothness on R? \ {0} of the mappings up,uf and g, j€Z
implies that uy is smooth on R?\{0}. Furthermore, the mappings ¢; summing up to 1, we get

lur(2)| < max (|uf (@), ug (2)]), =R’
and for each k£ > 0, continuity of uy at the origin follows from that of ug and uz.‘

Invariance of the sets W; : . _
We now show that there exists ko > 0 such that for each n in Z, the sets Wan4; and @ Bamt1

(resp. Way, and T'g,,) are invariant with respect to the vector-field [f_,u,]* (vesp. [fy,ur,])-



Recall that Qg,,,, and Tg,, denote the sectors of Wan41 and Wa, [or equivalently Wit
and Wﬁ ] defined by (1) and (2) respectively.

We note that for each m in Z, the boundary OW,, is included in Wm_l\Wm_,.l and does not
mt;ersect with any other set W;_; \WJ_H Because the support of the mapping g; is included in
W;_ 1\WJ+1 for each j in Z, and the mappings g; sum up to 1, we obtain

ug(z) = uf(x), z€0Wan and  uk(z) = ug(z), = €OWaps1, n€Z. (6)

Next, because uj (z) and u} (z) are both equal to —kz, for z in theset & »_ U X _ by , We get

“2a_ 2a.+
up(z) = —kz2, T € T 5. U &, . (7)
. 2a._ ay
By definition of uy we also have
ug(z) >0, = € X _»_ UE_B_ and up(z) <0, =z € ﬁ_b__ UX sy . (8)
@ G+ @ __ a+

Let k- and k4 be obtained through Lemmas 6.1 and 6.2 [with x and & as defined here] and set
ko = max (k_, ky). We now fix n in Z and show that the set Wan41 is invariant with respect to
the vector-field [f_,ug,]*. This will be proved if for each z in the boundary 8Way,,1, the vector
[f-(x), up, (z)]® points inside the set Woyy1.

Because the intersection of more than two sets of the family {R,.. R4,§1, R;} is
empty, for each z in OWay,11, the vector [f_(z), Uy (z)]t either reduces to one of the vectors
listed in the different assertions of Lemma, 6.1, and therefore pomts inside Wa,41, or is a con-
vex combination of two of them. In the latter case, [f_(%),u, (z)]* points inside Wapyy either
because we have a convex combination, or because we have f_( ) <0 (resp. f_(z) > 0) on the
segments [As, As] (resp. [Az,A3]) of OWany1. By (6), we have ug, = uy, on OWsyiy and it
follows that the vector [f_(z), ug,(x)]! points inside Wy, for each z in 6W2n+1

Therefore, the set Wy, is invariant with respect to the vector-field [f-,uk,]t, for each n
in Z.

Similarly, (7), (8) and Assertion (i) of Lemma 6.1 yield the invariance of the set Qﬁ2 gy With
respect to the vector-field [f.,u,]?, for each n in Z.

On the other hand, (6), (7), (8) and Lemma 6.2 imply that the sets Ws, and Tg,, are
invariant with respect to the vector-field [f,,ug,]?, for each n in Z.

Asymptotic stability:

We now show that the feedback law u, globally asymptotically stabilizes the system S_.
Let S_ denote the system obtained once uy, is fed back into S_. Fix n in Z and let z be in
Want1. In view of (8), we have Ugy () # 0 for all  in R?\{0} with f_(z) = 0, so that the origin
is the unique equilibrium point of S_in W2n+1 Thus, by the invariance with respect to S_ of
the compact set W2n+1, and the Poincaré-Bendixson Theorem [5, p. 151], the positive limit set
P(w0) of g in Wapn41 is either equal to {0} or to a nontrivial periodic orbit ©. If we assume
that P(zo) = O, then by Theorem 3.1 in [5, p. 150], O encircles the origin. This contradicts the
invariance of Q Bany: With respect to S_, and we conclude that P(zg) = {0}. Therefore, each

trajectory of S_ starting in W, remains in Wanys1 and converges to the origin [5, Corollary
1.1 p. 146].



Because this last result holds for each n in Z, and the family {Wan41},,.7 is a base at the

origin that covers R?, the feedback law uy globally asymptotically stabilizes the system S_.
Similarly, from the invariance of the sets Wa, and Tg,, with respect to the vector-field

[f+,uk,]* for each n in Z, and the Poincaré-Bendixson Theorem [5], it follows that uy, globally

asymptotically stabilizes the system S,. Hence the theorem. | |

3 Simultaneous stabilization of nonlinear systems

Throughout this section we consider a more general pair {S;, i = 1,2} of systems
S;: & = fix,u), 1=1,2,

where the state z lies in R", the input u, is in R™, and for each i = 1,2, the mapping
fi :R*"xR™ — R" is continuous on a neighborhood of the origin with f;(0,0) = 0.

In the following theorem, we show that if there exist continuous feedback laws u; and wus
that locally asymptotically stabilize the systems S; and S, respectively, then there exists a
continuous feedback law v that simultaneously stabilizes S; and S,. To prove this result we
extend the interpolation method introduced in the proof of Theorem 2.1 as follows: For each
t = 1,2, we let V; denote a Lyapunov function for the system & = f;(z,u;(x)). We define a
sequence of neighborhoods of the origin {W;}2; such that the boundaries of the odd sets Wap,_1
(resp. even sets Ws,,) are level sets of Vi (resp. V3). Then, we design a continuous feedback law
v which is equal to u; (resp. to us) on the boundaries of the sets Way,—; (resp. Way,). It follows
that the sets Way_; (resp. Way,) are invariant with respect to the system obtained once v is fed
back into Sy (resp. S2). We conclude that v stabilizes S; (resp. S2) upon noting that the family
{Wan—1}32, (resp. {Wa,}32,) is a base at the origin.

Theorem 3.1 Assume that for each i = 1,2, there exists a continuous and almost C* feedback
law u; that locally asymptotically stabilizes the system S; at the origin. Then, there exists a
continuous and almost C* feedback law that simultaneously stabilizes the systems S1 and Ss.

Proof: Throughout the proof, we adopt the usual convention that the infimum of a real-valued
mapping over the empty set is +00.

Note that for each 5 = 1,2, the mapping z — f;(z,u;(z)) is continuous. By the Converse
Lyapunov Theorem [11], the local asymptotic stability (resp. global asymptotic stability) of the
system & = f;(z,u;(x)) for each i = 1,2 yields the existence of a Lyapunov function (resp.
radially unbounded Lyapunov function) V; : D; — [0, ), where D; is a bounded neighborhood
of the origin (resp. D; = R™). If D; = Dy = R™, we set D £ IR", and otherwise we let D be a
bounded neighborhood of the origin such that D € Dy N D,. In both cases, we have

VVi(z) fi(z,ui(z)) < 0, € D\{0}, i=1,2. (9)
For each i = 1,2 and each 8 > 0, we define Wf by setting
wf £ {seD:Vi() < B},

and we construct a sequence of neighborhoods of the origin as follows: By applying Lemma 6.6
(with D, Vi and V3), we obtain a sequence of positive reals {8;}32, satisfying

Pan—1 < zle%fD Vl(a")a n=12,..., (10)
Ban < Eie%fD%(w), n=12,..., (11)
B;i  — 0 as j— oo, (12)



with ., o,
Wy™ c WP and WY WP n=1,2,.... (13)

Upon setting
Wop—y & WP=*  and  We, & Wi n=1,2....

the inclusions (13) translate to

Wi C W;, 3=1,2,.... (14)

From (10) and Lemma 6.6 (i) we get W; C D and we therefore have a sequence of nested
neighborhoods
D O W D W, D W3 D W, D...

such that each neighborhood contains the closure of the neighborhood that follows. We now
define the set Aj for each j = 1,2,..., by setting

Ay = D\We  and  A; = Wjmi\Wjp1, j=2,3,....

By combining the inclusion (14) with the fact that {W;}$2, is a base at the origin [which follows
from (12) and Lemma 6.3], it is not hard to check that {A;}$2, is an open cover of D\{0}. Let
{g;}32: be a partition of unity subordinate to {A;}%2, such that the support of g; is included
in Ay, for each j = 1,2,... [4].

Finally, we let the feedback law v : D — IR™ be given by

0, z=0
v(@) =91 (@) > @n-1(@) + uz(z) Y @ale), =€ D\{0}.
n=1 n=1

By a similar argument to that used in the proof of Theorem 2.1 to prove continuity of the
feedback law uy, it is easily checked that v is almost C* and continuous on D.

Stability :

From the definitions of the sets W; and A, it is not hard to see that for each j = 1,2,...,
the boundary 0Wj is included in A; and does not intersect with any other set A,,. Thus,
because the support of the mapping g; is included in A; for each j = 1,2.. ., it follows from the
definition of v that for each n = 1,2,..., we have

v(z) =ui(z), =€ OWap_s and  v(z) = us(z), = € OWa,.
This, together with (9) and the fact that W; is included in D for each j = 1,2,.. ., yield

YWV (z) fi(z,v(z)) < 0, z€ OWap—1, n=12,... (15)
and
VVa(z) folz,v(x)) < 0, 2€0Way,, n=1,2,.... (16)

For each n = 1,2, ..., by combining (15) with Lemma 6.5 applied with D, V1, f; and Bap—1 we
obtain that the set Wy,_; is invariant with respect to the system & = fi (z, v(x)).

Finally, because the family {Wa,_1}52, is a base at the origin, by using the invariance of
the sets Wo,,_1, n =1,2,..., it is easily checked that v stabilizes the system 5;.

Similarly, from (16) together with Lemma 6.5 and the fact that {W,,}3 ; is a base at the

n=1

origin, we deduce that v stabilizes S;. Hence the theorem. [ ]



4 An explicit simultaneous stabilizer

The simultaneous stabilizing feedback law v defined in the proof of Theorem 3.1 is based on the
partition of unity {g;}$2, which might be difficult to explicitly express. This prevents us from
obtaining an explicit expression for the stabilizing feedback law v. In this section, we show that
we can circumvent this problem, and give an explicit stabilizing feedback law.

Throughout we assume that for each i = 1,2, there exists a continuous and almost C*
feedback law u; that locally asymptotically stabilizes the system S; as defined in section 3. As
mentioned in Theorem 3.1, this yields the existence of a bounded neighborhood of the origin
(resp. D = R™) and a C’k Lyapunov function (resp. a C*" radially unbounded Lyapunov
function) V; : D — [0, 00) for each ¢ = 1,2, such that

VVi(z) fi(z,ui(z)) < 0, =z € D\{0}. 17)

We let k denote the integer k£ = min (k', k") and for each ¢ = 1,2 and each 8 > 0 we set

A

Wf £ DnV;7'([0,8)). By applying Lemma 6.7 (with D, V; and V5), we obtain three
sequences of positive reals {a;}721, {6;}721, and {v;}32; such that

a;,05,7% = 0 as §j = o (18)
with
a; <,6j < Y, j=1,2,.... (19)
We also have
Yon—-1 < a:lenafDVl(w) and 7o, < zg}stVg(ac), n=12,..., (20)
with
W, ¢ Wt and W, WP, n=1,2,.... (21)

For each n = 1,2,. .., we now define the mappings §y,,,G2,—1 : D — [0, 1} by setting

(Vi(2)=Ban—1)>
2 .
AP Bam i Vi(2) € (Qanmt, Bonet)

g = (V1 (z)=Ban_1)2
an_12) =
Ton-1(2) e Fan- T an1 P2 1?  if Vi(2) € [Bane1yVonm1)

0, otherwise

and
(Va(=)—B3,)2
e(Vae}=Fan)=Ban-a2.)®  if Vi(z) € (aon, Bon)

a - (Va(=)—Bg,)?
Ton(2) = e(Vz(c)—ﬁi:)n—(i];n—ﬁnn)z if Va(x) € [Ban,¥2n)

0, otherwise

Finally, we let 7: D — R™ be given by

[o o]

v(z) = wi(z Z 2n-1(@) + u2(®) Y Ton(a), @€D (22)

Theorem 4.1 The feedback law T is continuous and almost C* on D. Moreover, T simultane-
ously stabilizes S, and Ss.



Proof: For a given sequence of positive real {J;}32; we set

A

Whan-1 A szn-1 and Wi 2 Wgzn, n=12,....

With this notation (19), (20), (21) and Lemma 6.4 (i) imply that we have a sequence of neigh-
borhoods

DOWM OWA DWW > W™ > Wh oW >wPs ..., (23)

such that each neighborhood contains the closure of the neighborhood that follows. For each
J=1,2,..., welet II; denote the set

I; £ {z€D:gz) #0}.
The inequalities (20) together with Lemma 6.4 (i) then yield

Io; = Wn\wW>, j=1,2,.... (24)

and it follows that
I; N I, =0, j#m. (25)

Let z be in D\{0} and let r be in (0, lz[|). Because {W™}32, is a base at the origin composed
of nested neighborhoods [from (18), (23) and Lemma 6.3], there exists an integer n, such that

W% C B.0), j=2n.+1,2n,+2,...,

where B,(0) denote the set B,(0) = {z € R" : ||z|| < r}. It follows from the definition of 7
together with the fact that II; is included in W™ for each j = 1,2,... [by (24)], that

9Y) = w(®) D Tacr@) + w(®) Y Do), v € D\B,(0). (26)
n=1 n=1
Because u1, uz and the mappings g;,j = 1,2,... are C* on D\{0} [follows from Lemma 6.8],
we easily obtain from (26) that T is C* on D\{0}. Furthermore, (25) implies that
lo9(z)ll < max (|lus (@)}, lluz(2)l), =€ D,
and continuity of ¥ at the origin follows from that of u; and us.

Stability:
From (25) and the definition of the mappings q;, we deduce that for each j = 1,2,...

gj(x) =1 with g,(z) = 0, z€dWF, m+#j,
so that the definition of U yields for each n = 1,2,...,
v(z) = ui(z), =€ WP and  T(z) = ux(x), =z € IWF,
Thus, it follows from (17) that
VVi(z) fi(z,5(z)) < 0, zedWPfr-1 p=12..., (27)

and
VVa(z) fo(z,B(z)) < 0, z€dWF», n=1,2,.... (28)
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Finally, by combining (27) with Lemma 6.5 applied with D, Vi, fi and fBon_; for each n =

1,2,..., we obtain that the set W’ s invariant with respect to the system & = fi(z,7(z)),
and stability of this system follows from the fact that {W#2-1}%2_ is a base at the origin.

Similarly, because {W9»}% | is a base at the origin, it is easily checked from (28) and
Lemma 6.5 that v stabilizes Sy. Hence the theorem. ]

This theorem reduces the problem of designing a simultaneous stabilizer for S; and S, to that
of finding the sequences of reals {a;}32,, {#;}$2, and {y;}32,. To obtain these sequences in case
the system S; and the feedback law u; are linear for each ¢ = 1, 2, we proceed as described below.

The linear case:

Assume that for each ¢ = 1,2, the system S; and the feedback law u; are linear and let
Vi : R" = [0,00) be a Lyapunov function for the system & = f;(z,u;(z)) given by Vi(z) =
z* P; z, where P; is a positive definite matrix. By applying Lemma 6.9 with P; and P, we
obtain explicit sequences {c;}52, {8;}32; and {7;}52, such that the assertions of Lemma 6.7
are satisfied. Therefore, we can use these sequences to define T as given by (22) and Theorem
4.1 implies that T simultaneously stabilizes S; and S,.

5 Concluding remark

In this paper, we have introduced a feedback law interpolation method that has enabled us to
prove that any pair of locally asymptotically stabilizable systems is simultaneously stabilizable
by continuous feedback. The resulting simultaneous stabilizer depending on a partition of unity,
we then show how to circumvent the computation of this partition of unity and construct an
explicit simultaneous stabilizer. These results in fact extend to a countable number of systems

[6]-

Following the results presented here as well as those of [7], we believe that the few techniques
developed recently in the context of stabilization of nonlinear systems are good sources of inspi-
ration for robust and simultaneous stabilization issues. We hope that this work will yield some
new insight into these problems.

6 Appendix

We present here several technical lemmas that were used in the proof of Theorems 2.1 and 3.1.
The next two lemmas were needed in Theorem 2.1.

Lemma 6.1 Leta_, a, and b, be positive, and let b_ be negative. Let p and § be some positive

reals with p < —3—: and -2(%"- < 8. Then, there exists k— > O such that the following holds.

i) For each k > k_, the vector [f_(z), —kzs]' points into the region below £ »_  for each

2a

in ¥ _s_ , and into the region above E_b__. for each z in E_ b_ .

T %a_ 2a_, Ta_

ii) For each 8 > 0, let Dy denote the set Dg = {z € R®: zy = pxs + B, 71 > 0}. Then, for
each 8 > 0, the vector [f_(x), %(Za_wl + b_x2)]t points towards the left of Dg for each

in Dg below ¥ —s_ , and towards the right of ﬁg for each = in ﬁg above /2\3-_:;__
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_iii) For each T > 0, let L, denote the set L, = {:c €R?: z) = —0zy — 7, 71 > 0}. Then, for
each T > 0, the vector [f_(x),— 5( 7 %1 +b_zy)]! poznts into the region above L, for each
z in L., and into the region below L for each x in L

Proof: We only prove the first part of the assertions of the lemma as the arguments carry over
to the second part of the assertion.

(i) Let z be in E o= . We have f_(z) = —2—a:2, so that —7;— . Because . é‘:) is

less than —27‘— for k 1arge enough, the claim follows.
(i1) Let 8 > 0 and let x be in Dg below £-s_. As we have f_(z) > 0 and a_z; > 0, we

immediately obtain ﬁq}— < p for all 8 > 0. Hence the claim.

_1cc=
(iii) Let 7 > 0 and let z be in D,. Because we have 521 > 0, we easily get ——7(—%(1—5—174—2) <

—(lg for all 7 > 0. Hence the result. n

The proof of the following lemma, is similar to that of Lemma 6.1 and is therefore omitted.

Lemma 6.2 Let a_, a, and b, be positive, and let b_ be negative. Let p and 6 be some positive
reals with p < %i— and —--2ab—_“ < 6. Then, there exists ki > 0 such that the following holds.

i) For each k > ky, the vector [f,(z), —kz2]' points into the region above & v, for each z
T Zag
in ¥ o, , and into the region below ¥_», for eachx in X_ oy .
T 2agy —2a+ _2a+
ii) For each 3 > 0, let Dg denote the set Dg S{reR*: 2y = —pzs + B, 11 > 0}. Then, for
each B > 0, the vector [f(z), —l(2a+x1 + b+a:2)]t points towards the left of D,@ for each x

in Dg above 2__-t’ and towards the right of Dﬁ for each x in Dg below E
°+

iii) For each 7 > 0, let L, denote the set L, = {:1: eR?: &y =0z — 7,21 > 0}. Then, for
each T > 0, the vector [f4+(z), J(—"'-a:l + byzo)]? poznts into the region below L, for each z
in L., and into the region above L, for each x in L,.

The next three lemmas are used in the proofs of Theorem 3.1 and Theorem 4.1. The proof
of the next two lemmas being elementary, we omit them; details are available in [6].

Lemma 6.3 Let D be a bounded neighborhood of the origin in R™ (resp. D = R"™) and let
V : D — [0,00) be a Lyapunov function (resp. a radially unbounded Lyapunov function). For
each B > 0, let WP denote the set WP = {z € D : V(z) < 8}. Then, the family {WP}gs0 is a
base at the origin such that W* C WP whenever a < j.

Lemma 6.4 Let D be a bounded neighborhood of the origin in R"™ (resp. D = R™) and let

V :D — [0,00) be a Lyapunov function (resp. a radially unbounded Lyapunov function). Let 3

be in the interval (0, ie%fD V(z)) and define the set U by setting U= DNV~1([0,8)). Then,
T

the following holds:

i) U=DnVv~([0,8]).
ii) Let 2o be in U and let the mapping f : R™ — R"™ be continuous. If the tm]ectory z(, o)

of the system & = f(z) does not remain in U forever, then there exists £ > 0 and h > 0 such
that

z(t,z) € U with V(z(t,20)) = B,
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zE+h,m) ¢ VI0,8]), he(0,h),
z(E+h,z0) € D, hE(O,Tl).

Lemma 6.5 Let D be a bounded neighborhood of the origin (resp. D = R™) and let V : D —
[0,00) be a Lyapunov function. Let f : D — R™ be a continuous mapping and denote by (S) the
system & = f(x). Let B be in (0, Zie%fDV(:v)) and let WP denote the set WP = DNV=1([0,4)).
Assume that

VV(z) f(z) < 0, z€dWh, (29)

then, the set W’ is invariant with respect to the system (S).
Proof: We prove the lemma by a contradiction argument. Assume that W is not invariant
with respect to (S). Then, there exists zg in W” such that the trajectory z(-,zo) of (S) does
not remain forever in W, By combining Lemma 6.4 (with D, V and W#) with the fact that
B < ienafD V(x), we obtain £ > 0 and & > 0 such that
T
z(t, z0) € OWF and  V(z(% z0)) = B. (30)

For each A in (0, %), we also have

z(E+ h,z0) € V7I([0,4]) and z(t+ h,z0) € D. (31)
From (29) and (30) we get

oV (z(t,zo))

Thus, in view of (30), there exists & in (O,TL] such that
V(a(E+h20) < V(e 20) = 8, he(0h),
a contradiction with the strict inequality

V(zE+ h,zo)) > B, he(0,h),

which follows from (31). Hence the result. n

Lemma 6.6 Let D be a bounded neighborhood of the origin (resp. D = R"™). For each i =1,2,
let Vi : D — [0,00) be a Lyapunov function (resp. a radially unbounded Lyapunov function) and
let Wf denote the set Wf = {x € D : Vi(z) < B} for each B > 0. Then, there exists a sequence
of positive reals {8;}32, converging to 0 such that for each n =1,2,..., we have:

Bon—1 < mleréfDW(w) and  fon < zlenafD%(w),
with — — g
Wy Whn-t and W Wi,

Proof: For each n =1,2..., we define 82,1 and By, by induction on n.
For n = 1, we first pick 3 in (0, gngVl(w) ). Then, because the family {W£} 450 is a base
T

at the origin with Wg ¢ W2 for all o < # (Lemma 6.3), there exists 3, in (0, g:?fD Va(z)) such
T

that —s
Wy c WP,
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For eachn = 2,3, ..., we define 82,1 and B2, from Ba(n_1)—1 and By(n—1) as follows: By lemma
6.3 applied to {Wlﬁ }s>0, there exists Bo,—1 in the interval (0, &‘—";—”“—1] such that

Wf’"“ C sz‘"‘”.

Similarly, using Lemma 6.3, we select Bs,, in (0, Ez";;”] such that

W ¢ whe-r,

It is now plain from this construction that the assertions of the lemma hold. [ ]

Lemma 6.7 Let D be a bounded neighborhood of the origin (resp. D = R"™). For each i = 1,2,
let V; : D = [0,00) be a-Lyapunov function (resp. a radially unbounded Lyapunov function) and
let WP denote the set WP 2 {z € D:Vi(z) < B} for each 8 > 0. Then, there exist sequences
of positive reals {0 }521, {B;}521, and {7;}321 converging to the origin with Yan—1 < miglg Vi(z)

and yap, < igg Va(z) for each n =1,2,..., satisfying
T

a; < B < v, F3=12,...
with
Wy c wie? and W, c W, n=1,2,....

Proof: For each n = 1,2..., we define vapn—1, Bon—1, Q2pn—1, Yon, Pon and ag, by induction
on n.

For n = 1, we pick v in (0, ie%fDVl(a:) }, and we choose 81 and a; such that 0 < o3 < 1 <
z

1. Then, because the family {W3'},>0 is a neighborhood base at the origin with W' C Wy~
for all ¥/ < 4" (Lemma 6.3), there exists 72 in (0, iE%fD Va(x) ) such that
z

W, c wp.
We choose (2 and as such that 0 < as < B2 < %.
For each n = 2,3,..., we define von—1, Bon—1,02n—1, Y2n, Bon and agn from ¥o(n_1y_1,

Yo(n—1) and a1y as follows: By lemma 6.3 applied to {W},>0, there exists Yo,,—1 in the
interval (0, 22251=1] such that

W oW,
We then pick aap—1 and Bo,—1 such that 0 < agp—1 < fon—1 < Yon—1.
Similarly, by using Lemma, 6.3, we select 72, in (0, 22(4=2] such that
Wo c Wit

and we choose tep, and fay, such that 0 < ag, < fon < 725, It is now clear from this construc-
tion that the assertions of the lemmma hold. [ ]

The remaining two lemmas are used in section 4. The proof of the next lemma being
elementary, we omit it and refer the reader to [6] for further details.

Lemma 6.8 Let X be a subset of R™ and let V : X — R be C* on X. Let a, B and v be some
positive reals such that o < § <. Then, the mapping h : X — [0,1] given by

THST  if V(o) € (a,f)
h@) =\ comemitmar i V() € [B,y)

0, otherwise

is C* on X.
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Lemma 6.9 For eachi = 1,2, let P; be a positive definite matriz, let 1\—}1." and mL denote respec-
tively the smallest and the largest eigenvalue of P;, let 6; be in (0,1), and let V; : R™ — (0, 00)
be given by V;(z) = «*P;z. Furthermore, let m and my be in (0, %1) and (0,%) respectively,
and let 7, be an arbitrary positive real. Assume that

T T 9% 9.'5 < 1, (32)

and let the sequences of positive reals {v;}52,, {8;}321, and {a;}32, be defined by

A a a a
M=% with fop—1 = 61%n-1, Q2n—1 = 010n—1, Yon = Tadop—1, n=12,...

and
Pon 2 Grman,  an 2 03B, Yons1 £ mogs, n=12,....
Then, we have
aj,ﬂj,'yj — 0 as j - (33)

and for eachn=1,2,..., we have

Vil ([0,7n]) € ViH([0,00n-1))  and VN[0, 72n41]) C V5TH(0,024)) . (34)

Proof: In what follows we fix n in Z. Let § > 0. It is well known that for each 7 = 1,2, the

set V71 ([0, 8]) is the volume bounded by the ellipsoid centered at the origin with smallest axis
vm; ¢ and largest axis v/ M; 8. Thus, (34) will hold if

M 1 M2
Yo < ——azp  and.  Yopqp1 < — Qop
mo mi

respectively. Because 7; and m are in (0, %f) and (0, %) respectively, the definitions of vy,
and 72n41 clearly yield (34). On the other hand, it is easily checked from the assumptions that
we have

,Bj+2 = (7r17r20%0§)ﬂj, j=1,2,
so that (33) follows from (32) and the definitions of v;, ; and «;. [ ]
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