
ABSTRACT

Distributed embedded computing systems are special-purpose computer systems

designed for particular applications and set up in a networked or distributed manner. A

practical application domain for such a distributed system setup is the domain of wireless

sensor network (WSN) applications. In this thesis, studies of architectures, applications,

and methodologies for distributed embedded systems will be covered by addressing a

number of important energy and performance optimization problems for translating high-

level representations of distributed embedded applications into system implementations.

This thesis is also concerned about systematic design methodologies and optimization

problems for both software and hardware implementations.

With advances in integrated circuit technology, distributed embedded platforms

such as wireless sensor nodes can be equipped with increasing amounts of computational

resources, such as digital signal processing (DSP) subsystems that can handle intensive

Title of dissertation: ENERGY-DRIVEN OPTIMIZATION OF HARDWARE 
AND SOFTWARE FOR DISTRIBUTED EMBEDDED 
SYSTEMS

Chung-Ching Shen, Doctor of Philosophy, 2008

Dissertation directed by: Professor Shuvra S. Bhattacharyya
Department of Electrical and Computer Engineering, and 
Institute for Advanced Computer Studies



computational tasks. By incorporating such dedicated DSP processing, a distributed

embedded platform can enhance its functional capabilities for processing data before

transmitting the data to other parts of the network or to an associated base station (central

node). Therefore, this thesis presents a design methodology for distributing DSP applica-

tions across wireless sensor networks and optimizing associate trade-offs between compu-

tation and communication.

A low-power, application-specific sensor node platform for distributed WSN sys-

tems is designed and demonstrated in this thesis. This platform provides mixed-signal

integration of streamlined digital circuits for protocol control and data processing, along

with required analog subsystems, such as transceiver circuitry. Building on this optimized

platform, this thesis demonstrates a complete system design of an application-specific

WSN system with compact size and low power features. This system design is the result

of an integrated effort across design space exploration, algorithm development, cross-

layer protocol design, and most importantly, the completion of various hardware prototype

implementations for validating and demonstrating proposed design techniques.

This thesis also presents a system-level synthesis methodology for finding the most

suitable resource configurations for distributed, embedded systems. System-level synthe-

sis is attractive because the carefully designed system-level models can be analyzed and

evaluated rapidly, and the complex, inter-related design decisions can be explored and

evaluated at a high level before mapping into low level implementations. We demonstrate

the accuracy and efficiency of our system-level synthesis approach, and its ability to cap-

ture an important range of high level interactions that are relevant to the design of distrib-

uted, embedded systems.
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Chapter 1. Introduction

Embedded computing systems are special-purpose computer systems designed for

particular applications to perform dedicated tasks. As technology advances, such special-

ized systems are networked or distributed and can be applied to broad application

domains. In a distributed setup, computational tasks are carried out cooperatively by a col-

lection of embedded processors that is distributed over some region in space and intercon-

nected as a network by communication components in a wired or wireless fashion. A

practical application domain for such a distributed system setup is the domain of wireless

sensor network (WSN) applications [3]. A wireless sensor network (WSN) is a wireless

networked system consisting of spatially distributed sensor platforms (also called sensor

nodes). Typically, a sensor platform is equipped with various devices to capture, process,

transmit, and receive data. These devices include sensors for capturing data; a radio trans-

ceiver for executing communication tasks; a microcontroller (microprocessor) for execut-

ing control and processing tasks; and an energy source, such as a battery.

The study of embedded system design involves three key aspects — architectures,

applications, and methodologies [58]. Figure 1, which is adapted from [58], illustrates dif-

ferent characteristics associated with these aspects. Compared to designers of general-pur-

Figure 1. Aspects of embedded system design.
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pose computers, embedded system designers rely much more heavily on both

methodologies and application expertise. Methodology development for distributed

embedded systems must be carefully considered to meet quantifiable goals, such as real-

time performance, power/energy consumption, size, and cost. In many circumstances,

such as in WSN systems, portable devices are densely deployed in areas that are danger-

ous or otherwise inaccessible to humans. Considerations of energy and power consump-

tion are particularly important for such systems since the energy sources for the associated

devices are mainly in the form of batteries. Moreover, since these systems are dedicated to

specific tasks, designers can have more flexibility to optimize their design, including

reduction of power/energy consumption, size, and cost, and enhancement of performance,

reliability, and reconfigurability.

The design space of a WSN system is vast [60]. Varying design considerations for a

WSN system among protocols, software, and hardware can directly affect energy con-

sumption of the targeted sensor platforms in major ways. For example, the power con-

sumption of a transceiver usually dominates the overall power consumption on a sensor

node. Therefore, reducing the turn-on time of a transceiver while executing application

tasks intuitively improves energy consumption. Figure 1.1 compares power consumption

Figure 1.1 Power consumption comparison among various off-the-shelf platforms.

Vendor name
product name

MCU TX
(0 dBm)

RX

Texas Instruments/Chipcon
CC1110

15 mW 63 mW 61.2 mW

Texas Instruments/Chipcon
CC2510

20.2 mW 74.1 mW 81 mW

Ember 
Em250

25.5 mW 72 mW 84 mW

Atmel 
ATmega64RZAV

14.4 mW 49.5 mW 46.5 mW

Crossbow
MICAz

24 mW 52.2 mW 59.1 mW
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among microcontrollers and radio components in various off-the-shelf platforms that are

relevant for implementation of distributed embedded systems. In Figure 1.1, MCU denotes

the current consumed by the microcontroller component when it is running at full speed,

and TX (RX) denotes the current consumed by the radio component in transmit (receive)

mode.

As discussed before, a distributed embedded system such as a WSN is typically

designed for a specific purpose; has features of low power and small size; and has a vast

underlying design space leading to a wide range of implementation trade-offs. An impor-

tant emerging trend in the development of distributed embedded systems is the trend

toward system-on-chip (SoC) devices for use in embedded platforms. Such devices

involve integration of digital and analog processing parts into single-chip platforms, lead-

ing to significant reductions in cost, power consumption, and size. Designing wireless dig-

ital communication systems for WSN applications is a challenging task, especially for

implementing digital signal processing algorithms on application-specific integrated cir-

cuits (ASICs). ASICs are required to achieve the highest levels of application-specific

streamlining, and may be desirable, for example, in applications where performance and

power consumption constraints greatly dominate constraints on cost, or in scenarios where

very high volumes of components are produced (e.q. [57]). 

Many embedded systems in the domains of digital signal processing and digital

communication have cross-layer and complex system configurations, and therefore rapid

development strategies are strongly desired. High-level modeling and synthesis from such

high-level models is attractive because the carefully designed system-level models can be

analyzed and evaluated rapidly, and complicated design decisions can be made at high lev-
3



els of abstraction before synthesizing to low level implementations through an optimized,

automated process. Embedded platforms targeted by such an approach can include gen-

eral-purpose microprocessors or microcontrollers (e.g., see [29] [40]) or fully-customized

designs, such as application-specific integrated circuits (ASICs). 

1.1. Contributions of this thesis

This thesis work is concerned with systematic design methodologies and optimiza-

tion problems for software and hardware implementation on distributed embedded sys-

tems. We focus especially on energy-conscious design of distributed embedded systems

such as wireless sensor networks. First, we examine how to use the transceivers on sensor

nodes effectively so that the overall system lifetime (based on how long the sensor nodes

have sufficient power to remain operational) is managed well and/or maximized. Second,

the design of low power, application-specific embedded processors is explored under con-

straints involving throughput and circuit area. Therefore, the work developed in this thesis

centers around energy-driven hardware/software codesign, and the domain of distributed

embedded systems for wireless sensor networks is the primary targeted class of applica-

tions. The problems addressed in this thesis and our contributions are summarized in the

following subsections.

1.1.1. Energy-driven design methodology

In a typical WSN configuration, a distributed embedded platform such as a sensor

node is resource-limited (e.g., has limited memory storage, a single low performance

microcontroller/microprocessor, and relatively small energy resources) due to require-

ments on having small area, low cost, and low power consumption. Resource-limited sen-
4



sor nodes are unable to handle computationally-intensive tasks due to lack of hardware

and software support. Thus, sensor nodes are often equipped to carry out light-weight

computations and transmit only the required processed data to a central node for more

computationally-intensive tasks. In such a scenario, the set of central nodes is typically

made up of one or more higher performance nodes of the WSN that have much more

abundant resources for computation, energy, and communication.

With advances in integrated circuit technology, sensor nodes are gradually being

equipped with increasing amounts of computational resources, such as digital signal pro-

cessing (DSP) subsystems. Such extended sensor node platforms are still highly power

constrained, but provide for new power/performance trade-offs that can be exploited by

the application. With such advances, the microcontroller on a sensor node can be applied

to perform protocol functions and control tasks, while the DSP subsystem performs or

helps with more intensive computational tasks. DSP applications are often relevant to pro-

cessing sensor data, and usually require intensive computation. Here, DSP refers to the

digital analysis and manipulation of data streams, such as those arising from audio signals,

images, video streams and digital communication waveforms. By incorporating such ded-

icated DSP processing, a sensor node can enhance its functional capabilities for process-

ing data before transmitting the data to the associated base station (central node). As a

consequence, there is a significantly broadened design space for different trade-offs

between computation and communication functionality in the sensor node. In particular,

different kinds of preprocessing at the sensor node lead to different volumes and values of

data that need to be communicated from the node. 
5



To explore this significantly enhanced design space, we present a design methodol-

ogy for modeling and implementing DSP applications for WSN systems to optimize asso-

ciate trade-offs between computation and communication. This methodology explores

efficient modeling techniques for DSP applications, including acoustic sensing and data

processing; derives formulations of energy-driven partitioning for distributing such appli-

cations across wireless sensor networks; and develops efficient heuristic algorithms for

finding partitioning results that maximize the network lifetime.

1.1.2. System design and implementation for a distributed sensor network: 

line-crossing recognition application

We design and demonstrate a low-power application-specific embedded processor

for distributed WSN systems. This ASIC enables mixed-signal integration of digital cir-

cuits for protocol control and digital signal processing (DSP), along with required analog

subsystems, such as transceiver circuitry.

As an important step towards the design of such a mixed-signal, systems-on-chip for

WSN applications, our efforts have resulted in a complete system design of an applica-

tion-specific WSN system with compact size and low power features. Here, our efforts

have included application exploration, algorithm development, cross-layer protocol

design, and most importantly, the completion of various hardware prototype implementa-

tions for validating and demonstrating our developed design techniques.
6



1.1.3. System-level synthesis of configurations of application-specific embed-

ded systems

Distributed embedded systems require complex, inter-related high-level configura-

tion settings such as transmission power, data transmission rate, parallelism depth for data

processing. Finding the an efficient set of configurations and synthesizing them onto

application-specific embedded platforms is a challenging task since the associated design

space is vast. In this thesis, we study two application-specific system configuration prob-

lems for distributed embedded systems. Based on our formulations of these problems, we

develop evolutionary algorithms to derive optimized solutions, and demonstrate through

extensive experiments the effectiveness of these methods.

The globally asynchronous, locally synchronous (GALS) [14] design style is an

intermediate digital design style, between the fully-synchronous and fully-asynchronous

approaches (e.q., see [28], [48], [49], [73]). In this thesis, a preliminary exploration of

GALS-based design is discussed for low-power, application-specific processors in distrib-

uted WSN systems. We propose a novel synthesis framework as our future work for high-

level design and optimization of embedded SoCs based on GALS in which the framework

incorporates dataflow-based modeling, design analysis, and optimization techniques for

such an automatic, DSP-oriented synthesis process. More specifically, our approach in

developing a GALS-based design methodology involves formulating and analyzing func-

tional dataflow graph specifications for DSP applications, understanding problems that

may affect hardware that is derived from these dataflow graphs, and developing efficient

design methods and algorithms to overcome the problems. The overall goal of this effort is
7



to help improve the efficiency and degree of automation with which GALS-based design

can be applied to application-specific embedded system implementation.

1.2. Outline of the thesis

An outline of this thesis is as follows. Chapter 2 presents background on the data-

flow model of computation for DSP applications, and introduces associated opportunities

and problems associated with energy-driven software and hardware optimization. Chapter

3 introduces an energy-driven design and synthesis methodology for systematically

(re)distributing DSP applications across a distributed network environment. Chapter 4

demonstrates a case study for applying this energy-driven methodology to a distributed

embedded application for speech recognition. Chapter 5 presents a complete system

design and analysis — including algorithm streamlining, communication protocol config-

uration, hardware/software implementation, and lifetime modeling — for a compact and

low power, distributed, sensor network system. Chapter 6 demonstrates a case study for

implementing a distributed line-crossing recognition system on different platforms. Chap-

ter 7 introduces two system-level synthesis methods for generating efficient configura-

tions for application-specific embedded systems. Conclusions and summaries of the

research topics studied in this thesis are drawn in Chapter 8.
8



Chapter 2. Background

2.1. Dataflow Models of Computation

In embedded computing, models of computation help us understand how to cor-

rectly and efficiently design complex systems from a high-level point of view. This sec-

tion considers a number of models of computation that are useful for embedded signal

processing. Basic concepts pertaining to these models are discussed, as well as relation-

ships among the different models. The study of models of computation has significantly

influenced the way real embedded systems are designed (e.g., see [23]). In our work, we

apply dataflow models of computation, which are well-suited for the design and imple-

mentation of DSP systems.

Dataflow modeling techniques underlie many popular graphical tools for DSP sys-

tem design (e.g., see [10]). When dataflow is used to model applications, the applications

are modeled as directed graphs called dataflow graphs. A dataflow graph is a directed

graph in which each node (actor) represents a computational module for executing (firing)

a given task, and each directed edge represents a first-in-first-out (FIFO) buffer for hold-

ing data values (tokens) and imposing data dependencies. Actors can be executed only if

sufficient numbers of tokens are available on their input edges. Whenever an actor fires, it

consumes certain numbers of tokens from its input edges, executes its associated computa-

tional tasks, and produces certain numbers of tokens on its output edges. Also, a non-neg-

ative-integer delay is associated with each dataflow edge. Each unit of delay corresponds

to an initial data value that is stored in the associated buffer.
9



2.1.1. Synchronous Dataflow

Synchronous dataflow (SDF) [41] is a restricted form of dataflow that is useful for

an important class of applications in which certain behavioral properties are know a priori.

SDF is employed in a variety of commercial design tools (e.g., see [4], [23], [56]) due to

the powerful optimizations and performance guarantees that SDF’s restricted dataflow

model allows. In SDF, the number of data values (tokens) produced and consumed by each

graph vertex (actor) is fixed and known at compile time. As a result of this restriction,

graphs can be scheduled statically based on the so-called repetition vector , which is a

vector that is indexed by the actors in the graph, and gives the number of times that each

actor needs to be invoked in a static (periodic) schedule for the graph. The repetitions vec-

tor can be obtained through the topology matrix of  — shown as  in Eq. 2.1 — as well

as the balance equations for  — shown as the right-side equality in Eq. 2.1 — in matrix-

vector form [41]: 

 and . (2.1)

In Eq. 2.1,  is the number of tokens produced onto edge  by each execution

of , which denotes the source actor of . Similarly,  is the number of tokens

consumed from  by each execution of , which is the sink actor of .

When modeling signal processing applications using dataflow, it is often important

to analyze the memory requirements associated with the FIFO buffers for the dataflow

edges. The static schedule of a properly-constructed SDF graph (called a consistent SDF

graph) can be repeated indefinitely with bounded memory requirements to process the

q

G Γ

G

Γ e v,( )
prd e( ) if v, src e( )=

cns e( ) if v,– snk s( )=

0 otherwise,⎩
⎪
⎨
⎪
⎧

= Γ q• 0=

prd e( ) e

src e( ) e cns e( )

e snk e( ) e
10



kinds of indefinite-length data streams that are characteristic in the signal processing

domain.

2.1.2. Parameterized Dataflow

DSP applications that involve purely static dataflow behavior are modeled using

SDF. However, modern WSN applications do not always conform to the restricted seman-

tics of SDF. Instead, they may require more general semantics to model application-spe-

cific sensing activities. For example, in some applications, the analog data input must be

controlled so that the following digital processing sections are executed only when

needed. Therefore, in this thesis, we also use the more general parameterized synchronous

dataflow (PSDF) model of computation. PSDF results from the integration of SDF with

the meta-modeling framework of parameterized dataflow [8]. PSDF expresses a wide

range of dynamic dataflow behaviors, while preserving much of the useful analysis and

synthesis capability of SDF [4]. Furthermore, PSDF provides a systematic framework for

integrating various forms of SDF analysis techniques into a more general, dynamic data-

flow setting.

Each hierarchical subsystem in a PSDF specification consists of three distinct

graphs: the init graph ( ), subinit graph ( ), and body graph ( ). In our use of PSDF,

we employ the body graph to model the main functional behavior of an application and the

init and subinit graphs to describe any input-dependent changes to the body graph func-

tionality. According to PSDF semantics, the init graph is invoked prior to each invocation

of the associated (hierarchical) parent subsystem, while the subinit graph is invoked prior

to each invocation of the associated body subsystem. Such interaction allows for two dis-

tinct levels of reconfiguration control.

Φi Φs Φb
11



In this thesis, we choose PSDF for modeling WSN-oriented DSP applications

because the PSDF body graph concept is well-suited to modeling the main functional

behavior of such applications, while the init and subinit graphs are relevant to describing

application input behavior along with the interactions between input streams and the con-

trol of core processing functionality. For example, for WSN applications, sensor nodes are

often required to sense analog signals through various kinds of sensors, such as acoustic,

temperature, or image sensors. By applying these sensed signals to analog-to-digital con-

verters (ADCs), digitized data is generated for further processing. In some applications,

the continuous data input must be monitored carefully so that the subsequent digital pro-

cessing sections are executed only when necessary.

2.1.3. Dataflow Interchange Format

The Dataflow Interchange Format (DIF) [32] is a standard language for specifying

mixed-grain dataflow models for digital signal processing (DSP) systems. It is used as a

unified textual language for expressing different kinds of dataflow semantics. The associ-

ated DIF package is a software package that provides representations and utilities for ana-

lyzing dataflow graphs that are captured using DIF. The overall DIF-based design flow is

shown in Figure 2.1.

In this thesis, DIF is also used as an input interfacing tool for experimenting with the

developed methodology and framework for analyzing dataflow-based models of applica-

tions. A simple example described using DIF is shown in Figure 2.2, where a 2-channel

CD (compact disc) to DAT (digital audio tape) sample rate conversion application is pre-

sented. In DIF specifications, each dataflow actor is allowed to have a set of attributes.

This feature provides a convenient way to assign platform-specific properties of an actor
12



when a specific hardware platform is assumed to be used for implementing such an actor.

For example, an FIR actor can be implemented on different platforms, such as a program-

mable DSP or 8051 microprocessor, and its associated power consumption and execution

cycle estimates can be set as corresponding properties of the actor at design time when a

specific platform is being targeted. DIF graphs and actor attributes will be discussed and

utilized further in the parts of this thesis that pertain to energy-driven design methodology,

and system-level synthesis (Chapter 3 and Chapter 7, respectively).

2.2. Design Space Exploration using Evolutionary Algorithms

Evolutionary algorithms (EA) form a family of search methods belonging to the

field of evolutionary computing [5], which is inspired by biological evolution concepts

such as inheritance, crossover, mutation, and selection. Evolutionary algorithms are often

Figure 2.1 DIF-based design flow [31].
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Figure 2.2 An application example of 2-channel CD to DAT described in DIF format.
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used to solve optimization problems in which the design spaces quickly become intracta-

ble and difficult to understand. In an EA, candidate solutions are represented by abstract

individuals (candidate solutions), which consist of genes. Each gene of such a genotype

affects some feature of the solution. After creating the initial population, new generations

are created by crossing over [5] the selected “parents,” (candidate solutions from which

new candidate are derived) and the process is iterated, usually until a pre-specified maxi-

mum number of generations is reached. Each iteration of an EA involves a competitive

selection process that is carried out by evaluating and comparing “fitness values” for the

individuals. Then solutions with “good” fitness value are selected and randomly mutated

to generate new candidate solutions for the next iteration. 

In this thesis, different synthesis problems and related application-specific platform

optimization problems will be formalized and discussed in Chapter 7. Both single-objec-

tive (e.g. [34]) and multi-objective (e.g. [82][83]) evolutionary algorithms will be used to

explore the associated design spaces. Our methods here for synthesis and optimization are

to geared towards finding appropriate abstract, application-specific configurations on tar-

geted embedded platforms before further refinement to lower-level evaluation or imple-

mentation. 
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Chapter 3. Energy-driven Distribution of Signal Pro-

cessing Applications across Wireless Sensor 

Networks

Wireless sensor network (WSN) applications have been studied extensively in

recent years. Such applications involve resource-limited embedded sensor nodes that have

small size and low power requirements. Based on the need for extended network lifetimes

in WSNs in terms of energy use, the energy efficiency of computation and communication

operations in the sensor nodes becomes critical.

Digital signal processing (DSP) applications typically require intensive data pro-

cessing operations and as a result are difficult to implement directly in resource-limited

WSNs. The operational complexity of each sensor node and the amount of data to be

transmitted across sensor nodes strongly influence the energy consumption of the nodes,

which ultimately determines the network lifetime. In this thesis, we present a novel design

methodology for modeling and implementing high-level DSP applications applied to

wireless sensor networks. This methodology explores efficient modeling techniques for

DSP applications, including data sensing and processing; derives formulations of energy-

driven partitioning (EDP) for distributing such applications across wireless sensor net-

works; and develops efficient heuristic algorithms for finding partitioning results that

maximize the network lifetime. To address such an energy-driven partitioning problem,

this thesis provides a new way of reducing data traffic across nodes. By considering low
16



data token delivery points and the distribution of computation in the application, our

approach finds energy-efficient trade-offs between data communication and computation. 

3.1. Introduction

A wireless sensor network (WSN) system is composed of a collection of sensor

nodes, where each node contains components for sensing, data processing, and communi-

cation. Traditionally, sensor nodes are limited in size, power, and memory, and perform

relatively light-weight computational tasks. Also, sensor nodes are often deployed very

densely, or in remote, inaccessible, or dangerous areas, which makes replacement of their

batteries costly or infeasible. Therefore, WSN systems are typically designed with low

power consumption, and energy-constrained lifetime maximization as primary objectives.

Energy-constrained WSN applications include habitat monitoring, environmental obser-

vation, and battlefield surveillance (e.g., see [3], [40]).

In a sensor network, as we increase the number of nodes, requirements on network

lifetime, and volume of data traffic across the network, it is often efficient to move

towards hierarchical network architectures (e.g., see [39]). In a hierarchical WSN, sensor

nodes are clustered into groups, and the nodes within each clustered group are divided into

the “master” (e.g., the cluster head) and “slave” nodes for more efficient structuring of

network traffic. The master node is typically fully-featured — that is, the platform is

equipped with a relatively high-performance processor and transceiver, larger size mem-

ory storage, and sizable energy source. Conversely, slave nodes are lean in terms of fea-

tures — the platforms are equipped with simple processors (e.g., small microcontrollers),

simple transceivers, sensors, limited memory storage, and relatively small energy
17



resources. Thus, slave nodes are typically equipped to carry out simple computations and

transmit only the required processed data to the associated master nodes for more compu-

tationally-intensive tasks. 

In this thesis, we target this kind of hierarchical WSN organization. We assume that

after a self-organizing, cluster/network startup period, every slave node is able to commu-

nicate directly with its associated master node, and the size of each clustered group is in

the range of 2 to 10 nodes. Here, we define the network size as the number of active nodes

in a system. This type of network structure is similar to so-called infrastructure-based net-

works [60].

We assume that a fixed amount of processing must be performed within each cluster

so that minimal information needs to be communicated globally (across clusters) within

the overall network, and our objective is to maximize the energy efficiency of this pre-

defined amount of cluster-level processing. Such static configurations of network struc-

ture have simple routing characteristics, and protocol demands, and provide useful oppor-

tunities to optimize the network lifetime in terms of energy consumption, as well as

network scalability through hierarchical organization.

Digital signal processing (DSP) algorithms are widely used in the processing of sen-

sor data, and often require intensive computation. The behavior of many DSP applications

can be characterized by regular patterns of computation and modeled efficiently through

dataflow graphs. By analyzing a well-designed dataflow model of an application, opera-

tional efficiency can be estimated and optimized accordingly, such as with the use of data-

flow-based algorithms for scheduling, memory management, consistency analysis among

different sample rates, and hardware/software partitioning (e.g., see [10], [33], and [41]).
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In a typical WSN configuration, resource-limited slave nodes are unable to handle

computationally intensive tasks due to lack of hardware and software support. In such a

case, microcontrollers in slave nodes can perform relatively light-weight computations.

Conventionally, to minimize their computational requirements, slave nodes transmit all

sensed data (i.e., without any pre-processing) to the master node for further processing.

With advances in integrated circuit technology, slave nodes can be equipped with increas-

ing amounts of computational resources, such as digital signal processor subsystems. For

example, Calhoun et al. [13] propose a sensor node architecture that contains a DSP pro-

cessor for executing signal processing programs. In such platforms, microcontrollers can

perform protocol and control tasks, while the DSP processor performs more intensive

computational tasks. For many applications, doing some processing on the slave nodes

reduces the amount of data that must be communicated across the network. 

The energy consumption of the nodes in a wireless sensor network, including the

energy consumption for computation- and communication-related tasks, must be carefully

optimized to increase network lifetime. In general, the communication tasks carried out by

the transceiver dominate the overall power consumption on a sensor node (e.g., see [25],

[72]). 

To reduce the energy consumed by the transceivers on the sensor nodes, the amount

of data to be communicated across the wireless channel should be minimized. When dis-

tributing DSP-oriented computations across a WSN, this consideration is significant since

DSP applications usually process large amounts of data in an iterative fashion. We care-

fully consider this problem of workload distribution, including the costs associated with
19



computation and communication, so that we can maximize energy efficiency for WSN

applications. We define this problem as the energy-driven partitioning (EDP) problem. 

In this thesis, we develop a precise formulation of the EDP problem for DSP appli-

cations that are modeled as dataflow graphs, and we present an effective algorithm to

address the problem. Specifically, our algorithm finds an efficient trade-off between the

workload distribution of computation and communication tasks. The technique that we

develop in this thesis is novel in that it analyzes the pattern of internal data exchange rates

within an application to minimize the overall energy consumption of a sensor network sys-

tem, while also taking into account latency and/or real-time constraints based on applica-

tion requirements. The approach is especially well-suited for multirate signal processing

applications, which exhibit complex and nonuniform patterns of data exchange across

functional modules and subsystems.

3.2. Related Work

Many useful approaches have been suggested previously to reduce energy consump-

tion in sensor nodes. Shih et al. [68] have distributed the fast Fourier transform (FFT)

function over a master node and slave nodes to reduce energy consumption by moving the

function from a cluster head node to slave nodes. In [39], energy and latency trade-offs are

considered for different computational capabilities between master and slave nodes.

Many researchers have suggested a hierarchical, physical-layer driven sensor net-

work design to reduce data traffic and energy consumption of a sensor node in connection

with the physical-layer network functions (e.g., see [42], [69]). To manage network life-

time, design of distributed medium access control protocols based on integrating physical
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layer parameters has also been discussed in [16]. In these approaches, node optimization

needs to be performed carefully in conjunction with the underlying protocol characteris-

tics.

Park proposes different heuristics in [53] and [54] to maximize network lifetime

based on a well-designed topology and routing schemes. Wang [76] develops an approach

that partitions applications between master and slave nodes, and also applies dynamic

voltage scaling to further reduce power consumption. In contrast to the above approaches,

our proposed energy-driven analysis and partitioning for an application graph are targeted

at the application level. Moreover, the partitioning method presented in this thesis applies

coarse-grain analysis of dataflow graphs, as well as integration within a dataflow-based

DSP design tool. This tool, called the DIF (dataflow interchange format) package, is intro-

duced in [32]. In the proposed methodology, we use DIF to specify the behavior of DSP

applications. Moreover, we assign power and timing estimation results to the components

of each dataflow graph. These estimation results are based on measurements and simula-

tions carried out for those components on the targeted hardware platforms.

In [72], Tang and Xu develop adaptive data collection strategies to maximize the

accuracy of data collected by a base station from sensor nodes under constraints on net-

work lifetime. In contrast to Tang’s approach, we consider options for pre-processing data

on sensor nodes before information is transmitted to the “base station” (the master node, in

our context). Therefore, our objective is to maximize network lifetime by finding the most

appropriate resource distribution for data processing, while considering the computation

and communication requirements and their underlying trade-offs for a given application.
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Figure 3.1 presents the overall design flow associated with our proposed methodol-

ogy for energy-efficient master/slave signal processing in sensor networks.

3.3. Modeling Workload Distributions

When a DSP applications is mapped into a clustered sensor network, each slave

node generally captures data from its set of one or more sensors, and this captured data can

then be sent to the associated master node immediately, or the data can be pre-processed to

some degree within the slave node before it is sent to the master node. 

When analyzing data processing functionality within a dataflow graph in terms of

energy-efficient workload distribution, it is useful to consider carefully the rates at which

actors produce and consume data from their incident output and input edges, respectively.

For this purpose, we use a specialized form of dataflow called synchronous dataflow

Figure 3.1 Overall design flow.
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(SDF) [41], which is widely used in the design and implementation of DSP applications.

Background of SDF has been introduced in Chapter 2.

3.3.1. Partitions of SDF Graphs

Given a targeted WSN system, we start by modeling its signal processing function-

ality as an acyclic SDF graph. A broad class of useful signal processing applications can

be modeled in this way (e.g., see [10, 41]). Extensions of our techniques to arbitrary SDF

topologies (i.e., those containing cycles) are discussed in Section 3.5.3.

We model workload distributions between a master node and a slave node as feed-

forward partitions (FFPs) of the SDF graph that represents the overall signal processing

computation to be performed. Here, by an FFP of a directed graph, we mean a decomposi-

tion of the given graph into two disjoint subgraphs  and  such that all edges in 

that cross the partition are directed from vertices in  to vertices in  (i.e., the “cross-

ing edges” are oriented in the same direction with respect to the two subgraphs). Formally,

a subgraph of a directed graph  is a directed graph , where

, and  consists of all edges in  whose source and sink vertices are both con-

tained in  — in other words,

.

Thus, an FFP of  is an ordered pair  of subgraphs  and

 such that , , and for every edge  that is

not contained in  nor , we have that  and .

G1 G2 G

G1 G2

G V E,( )= G′ V′ E′,( )=

V′ V⊆ E′ G

V′

E′ e E∈ src e( ) V′∈( ) and snk e( ) V′∈( ){ }=

G G1 G2,( ) G1 V1 E1,( )=

G2 V2 E2,( )= V1 V2∩ ∅= V1 V2∪ V= e E∈

E1 E2 src e( ) V1∈ snk e( ) V2∈
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3.3.2. Parameterized Dataflow and Adaptive Distributions

In this thesis, DSP applications that involve purely static dataflow behavior are

modeled using SDF. However, modern WSN applications do not always conform to the

restricted semantics of SDF. Instead, they may require more general semantics to model

application-specific sensing activities. For example, in some applications, the sensed data

input must be controlled so that the following digital processing sections are executed

only when needed. Thus, in this thesis we also use the more general parameterized syn-

chronous dataflow (PSDF) model of computation. PSDF results from the integration of

SDF with the meta-modeling framework of parameterized dataflow [8]. PSDF expresses a

wide range of dynamic dataflow behaviors while preserving much of the useful analysis

and synthesis capability of SDF [8]. Furthermore, PSDF provides a systematic framework

for integrating various forms of SDF analysis techniques, such as the ones we develop in

this thesis, into a more general, dynamic dataflow setting. Background of PSDF has been

introduced in Chapter 2.

Another motivation that we have for using PSDF in this work — in addition to mod-

eling dynamic behavior in signal processing functionality — is to help develop an

advanced workload redistribution scheme for dynamic topology management. Based on

our redistribution approach, whenever the network size changes, a the overall workload

distribution result is efficiently adapted in terms of the new network structure. This is use-

ful for scenarios in which sensor nodes can enter or exit the system at run time. Such

dynamics may arise, for example, due to incremental node deployments and exhausted

batteries, respectively. 
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3.4. Energy-driven Partitioning

In our proposed concept of EDP, an application dataflow graph (e.g., an SDF graph)

 is taken as input, and an FFP  is computed for , where

 and  respectively represent the distribution of the parti-

tioned application graph onto master and slave nodes. The partition cut  associated

with such an FFP is defined to be the set of edges that “cross the partition”:

The network size is initialized at design time, and can be changed at run time. The

master node performs the function of collecting data from all other slave nodes; therefore,

the communication is one-way. In order to maintain predictability and fairness across the

slave nodes, we define a scheduled iteration ( ) of a partitioned application graph as one

functional iteration of the application such that all master and slave nodes complete a pre-

defined amount of computation and transmit/receive processed data as needed based on

the computation. When the application graph is an SDF graph, such an iteration in our

methodology corresponds to a minimal periodic schedule for the graph.

In the particular solution demonstrated in this thesis, we define such a scheduled

iteration based on the periodic behavior of the TDMA-based communication pattern in the

network. Our energy consumption analysis for partitioning an application graph is targeted

at the application level, and we assume that the underlying protocol design can handle

problems of packet loss and collision without changing the higher level application behav-

ior. Therefore, we formulate the system energy consumption model at a high level, based

on the schedule iteration concept, and independent of implementation details for the

G V E,( )= Gs Gm,( ) G

Gm Vm Em,( )= Gs Vs Es,( )=

Ec

Ec e E∈ src e( ) Vs∈( ) and snk e( ) Vm∈( ){ }=

S
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underlying communication protocols. We have validated the correctness and utility of this

multi-level design model in our experiments.

Each actor  of the application graph is characterized by two pairs of attributes

( , ) and ( , ), where  ( ) denotes the power consumed

and  ( ) denotes the execution time when actor  executes on the master node

(on a slave node). Similarly, each edge  of the application graph is characterized by pairs

of attributes ( , ) and ( , ) that represent the power consumption val-

ues and latencies for local (intra-node) communication on the master and slave nodes,

respectively. These values are associated with the transfer of one token of data across the

edge.

For modeling the energy consumption of communication, we distinguish between

edges that cross the partition cut (edges in ), and edges that do not (edges in ).

Note that, based in our application partitioning model, edges in  correspond to points in

the dataflow graph where tokens are transmitted and received through the wireless com-

munication channel.

3.4.1. Energy formulation on data processing and communicating

The total number of data values transferred across an SDF edge  in a minimal

scheduled iteration of an SDF graph  can be expressed [41] as

(3.1)

Thus, given an FFP for , the number of tokens  that crosses an FFP partition

within each scheduled iteration of an SDF application graph is expressed as

. (3.2)

v

Pm v( ) tm v( ) Ps v( ) ts v( ) Pm v( ) Ps v( )

tm v( ) ts v( ) v

e

Pm e( ) tm e( ) Ps e( ) ts e( )

Ec E Ec–( )

Ec

e

G

τ e( ) q e( )src( ) prd e( )⋅ q e( )snk( ) cns e( )⋅= =

G Xc

Xc τ l( )
l Ec∈
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The computational energy consumed on each scheduled iteration by the slave and

master nodes, respectively, can then be formulated as

, (3.3)

and

. (3.4)

Furthermore, the energy consumption of communication for transmitting and

receiving data tokens that cross the partition cut can be expressed as

, (3.5)

and

, (3.6)

where  represents receive-mode transceiver power consumption;  represents trans-

mit-mode transceiver power consumption; and  models the time required for inter-node

communication, including transceiver turn-on time and time for executing modulation/

demodulation tasks. The value of  is dependent on transceiver configuration settings,

such as data rate, that are associated with communication tasks.

3.4.2. Energy cost per scheduled iteration for EDP

The total energy consumption on a single node for one scheduled iteration is

denoted by . In a network cluster that consists of a single master node and  slave
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nodes, the master node iterates  times to process data frames from all of its slave nodes.

Therefore, the energy consumption on each slave node for one scheduled iteration is

, (3.7)

where,  denotes the energy consumption when a slave node stays in the power-

saving “idle” mode after processing and communicating data tokens. The total energy

consumption on the master node for one scheduled iteration is formulated as

. (3.8)

Note that  could be small because the workload on the master node is sig-

nificantly heavy compared to the slave nodes in each scheduled iteration. Therefore, the

system energy cost per scheduled iteration, which we refer to more concisely as the system

energy cost is defined as

. (3.9)

To compare the network lifetime according to the selection of different FFPs, we

define the worse case network lifetime as the total time that elapses before the first node in

the network runs out of energy. Thus, our network lifetime estimation is formulated as

, (3.10)

where .  is the average rate at which scheduled itera-

tions are executed;  is the total energy stored in a given energy source (e.g., bat-

tery). Based on a given partitioning result, the network lifetime is determined in terms of

the minimum lifetime between the resulting master and slave node configurations.

Ns

Eiter s( ) E s( ) E t( ) Eidle s( )+ +=

Eidle s( )

Eiter m( ) Ns E m( ) E r( )+( ) Eidle m( )+⋅=

Eidle m( )

Esys Eiter s( ) Eiter m( )+=

min Tlifetime master( ) Tlifetime slaves( ),{ }

Esource Tlifetime Eiter⋅= Ravg⋅ Ravg

Esource
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3.4.3. Latency and data dependency constraints

To apply our energy-aware optimization techniques in conjunction with a specific

sensor network communication protocol, we derive protocol-dependent local and global

latency constraints in our targeted partitioning problem. The protocol that we use to dem-

onstrate this approach is a TDMA-based protocol, and is described in more detail in Sec-

tion 3.4.4. Here, the local latency indicates the execution time period from the input of the

master (slave) subgraph to the output of the master (slave) subgraph. This is expressed as

. (3.11)

The global latency, , is defined as the latency of one scheduled iteration. This

represents the overall computation and communication time period from the input to the

output of a partitioned application graph. That is, 

, (3.12)

where,  is the propagation delay for transmitting each data token. The term, ,

is added to incorporate transmission delays in the network. In general,  is very small

compared to the local latency, and therefore the whole term  is negligible in our

latency model. From Eq. 3.12, we notice that the master node should process the data from

all of the slave nodes, and therefore the term  is induced for presenting

the total local latency that the master node requires in each scheduled iteration. However,

the slave nodes can operate in parallel within each scheduled iteration, and thus, the

latency required for slave node processing is independent of .

We incorporate the global latency across the network into the formulation of proto-

col latency. For this purpose, we first define  as the synchronization latency added

Ll q v( ) t v( )⋅
v∀ VsorVm∈
∑ 2τ e( ) t e( )⋅

e∀ EsorEm∈
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l∀ Ec∈
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Ns Ll master( )⋅
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during each synchronization period. Therefore,  denotes the total synchroniza-

tion latency within a scheduled iteration during each synchronization period. In our pre-

defined topology, the routing delay is omitted because of the one-hop distance between

master and slaves nodes. In our experiments, the MAC protocol design is based on TDMA

with  time slots of uniform time period . We define  (i.e., the length of a

complete TDMA time frame) as the protocol-dependent communication latency. There-

fore, the latency constraint across the network for one scheduled iteration can be bounded

as

. (3.13)

Here, both  and  are parameters determined by the TDMA configuration that is

being used. Recall that the scheduled iteration is defined to maintain predictability and

fairness for processing and communicating data tokens across the network. From Eq. 3.13,

we observe that this property is satisfied when the TDMA-based protocol is applied. In

TDMA, the nodes in a network communicates with one another at pre-defined time slots

to preventing collisions when accessing the wireless channel. Therefore, there is a consis-

tent frame-by-frame communication pattern for TDMA-based protocols. When the

TDMA frame length is fixed by setting  and , Eq. 3.13 captures the property that the

latency of scheduled iteration is also constrained. That is, the operations within one sched-

uled iteration across the network are predictable in terms of latency when the TDMA-

based protocol is applied and satisfies Eq. 3.13.

Note that if  (i.e.,  is small enough compared to ), , and

there exists a partitioning cut such that , then a fully-bal-

anced workload is achieved between the master node and the slave nodes. In such a case,

Ns Lsync⋅

Np tp Lp Np tp⋅=

Ns Lsync⋅ Lg+ Lp≤

Np tp

Np tp

Lsync Lp« Lsync Lp D 0≈

Ll slaves( ) Ns L⋅ l master( )=
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from Eq. 3.12 and Eq. 3.13, we can find the minimum requirement of  as

 if . Generally, , and it is difficult to find a fully bal-

anced partition in terms of given actor and edge attributes for an application graph.

To prevent cyclic dependencies (to avoid bi-directional communication complex-

ity), a data dependency constraint is developed. That is, given an application graph,

, a partition cut  is valid if

(3.14)

where  ( ) represents the set of immediate graph predecessors (succes-

sors) of actor . 

In summary, solving the energy-driven partitioning problem means to find a parti-

tion cut  of an application graph  so that a master-slave WSN topology having maxi-

mum lifetime results from the partitioned subgraphs  and . That is, we wish to find

a solution that satisfies

(3.15)

subject to 1) ; 2) ; 3) ; and 4)  is a valid partition

cut, based on Eq. 3.14.

3.4.4. Customized TDMA protocol

A simple but robust TDMA-based protocol is constructed to manage network traf-

fic. Based on this protocol, all slave nodes can receive information about the current net-

work status from the master node. Figure 3.2 illustrates the communication pattern in the

protocol between the master node and slave nodes. In this protocol design, we assume that

each node in the system has a unique identifier (ID). The master node uses some pre-

tp
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defined number of time slots to establish a time frame. These time slots will be requested

by slave nodes as the slave nodes join the network sequentially. We create several special

packets, as shown in Figure 3.2, which are used to progressively synchronize the master

node with the slave nodes that are joining the network. After synchronization, each slave

node occupies a single time slot in the periodic TDMA schedule for the network cluster,

and each slave node sends data to the master node at its reserved time slot.

For example, as shown in Figure 3.2, the master node broadcasts a packet initially

with control information in TDMA slot 0, while all other slots are in an idle state. When

the first slave node, S1, is turned on, it stays in the receiving mode until it receives a

broadcasted packet from the master node. Then S1 sends a packet to the master node

requesting that TDMA time slot 0 be reserved for node S1. The master node subsequently

sends an acknowledgement packet to S1 confirming this reservation for slot 0. Now, time

slot 0 of the master node is changed to the active state and is reserved exclusively for S1.

Henceforth, node S1 will transmit data packets to the master node at time slot 0 in each

TDMA time frame. 

Next, the master node broadcasts a control packet at slot 1 in the next time frame.

When the second node S2 joins the network, it follows the same procedure to synchronize

Figure 3.2 Communication pattern for TDMA-based protocol.
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with the master node as described above for S1. This process of adding nodes one-by-one

to the network continues until all slave nodes within communication range have been

added to the network. After all nodes have been added, the network enters a data process-

ing state in which TDMA time frames operate periodically, and in each such frame, each

slave node transmits its newly collected data during its corresponding time slot. Based on

this protocol design, the master node uses the utilization of time slots to track current net-

work size.

3.4.5. Dynamic topology management

By applying the PSDF model in conjunction with the EDP approach, we provide an

advanced form of workload redistribution that can be used for dynamically-changing net-

work sizes — i.e., for scenarios in which sensor nodes can enter or exit the system at run

time. Such dynamics may arise, for example, due to incremental node deployments and

exhausted batteries, respectively. The number of network nodes is characterized by a

dynamic parameter that represents the number of slave nodes existing in the system. This

parameter is maintained and broadcasted by the master node. From the customized proto-

col described previously, the master node can determine the number of active nodes exist-

ing in the system based on the requests it receives from the slave nodes and the usage of

time slots for its TDMA schedule. Thus, soon after any change in network size, all active

slave nodes are informed about the change by the master node, and furthermore, the asso-

ciated EDP configuration will generally be adjusted so that the workload distribution is

efficiently adapted to the new network structure.

Based on our PSDF modeling approach, at design time, a given application graph is

analyzed and the corresponding EDP configurations are determined in terms of different
33



network size settings. These EDP results correspond to different partition cuts on an appli-

cation graph as the network size varies. The results are stored on the sensor nodes for driv-

ing workload redistribution at run time. In other words, the number of slave nodes is a

parameter that is maintained on the master node, and broadcast periodically to the slave

nodes. On the slave nodes, this parameter drives a quasi-static schedule (a dynamic sched-

ule with a relatively large portion of the structure fixed statically, at design time) that

allows the schedule to adapt efficiently to changes in network size, and associated changes

in energy-driven partitions of network functionality. We refer to this integration of quasi-

static scheduling with the EDP approach as quasi-static energy-driven partitioning (QS

EDP). 

For a reasonable number of candidate EDP results (supported network sizes), many

practical platforms can easily accommodate the program memory requirements for the

scheduling information associated with QS EDP. For example, on the Texas Instruments

CC2430F128 platform, a total 128K bytes of on-chip program memory is available, and

based on our implementation, the program memory cost of QS EDP is approximately 1K

bytes per unit of supported network size.

Figure 3.3 gives an example to illustrate the idea of this work redistribution scheme.

Figure 3.3(a) shows an application graph with four partition cut candidates ( — ) that

are considered individually. We refer these EDP results to “static EDP” results. Then, we

compare these static EDP results in terms of system energy costs (i.e. Eq. 3.9) as a func-

tion of the number of slave nodes existing in the network. The workload redistribution

scheme with respect to QS EDP results is illustrated by the blue solid curve in Figure

3.3(b). From Figure 3.3(b), we observe that by adding sensor nodes to a system that allows

C1 C4
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for workload redistribution, a quasic-static EDP always adapts to the minimum energy

cost from its available static EDP results. This energy efficient adaptive approach results

in overall system lifetime improvement in our experiments, which are be demonstrated in

Sections 3.6.3 and 3.6.4.

3.5. Analysis and Solutions for the EDP Problem

The EDP problem is NP-complete, where the NP-hardness of EDP can be estab-

lished with a reduction from the well-known partition problem [26]. Here, we consider a

decision version of the EDP problem, where we are given latency and energy constraints,

and the objective is to determine whether an EDP solution exists that satisfies the con-

Figure 3.3 Example of workload redistribution scheme.
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straints. The energy constraint here refers to the maximum energy consumption among

master and slave nodes, which directly influences the lifetime of the network.

Claim 1: The EDP problem is NP-complete.

Proof: We show in this section that the energy-driven partitioning (EDP) problem is

NP-complete in the size of the input graph. We first show that the EDP problem is in NP

(i.e., ). The certificate for the EDP problem consists of a slave graph , a

master graph , and a partition cut . Given pairs of power consumption and time

attributes as the weights of actors and edges, we can compute  and

 with respect to various partition cuts based on Eq. 3.3, Eq. 3.4, Eq. 3.5, and

Eq. 3.6. Each such computation process can be performed in polynomial time by stepping

through each node and edge; summing up the node and edge weights; and summing the

cut-edge weights.

Next, we show that the partition problem is polynomially reducible to the EDP prob-

lem. The partition problem is a well-known NP-complete problem (e.g., see [17][26]).

Intuitively, in the partition problem, we are given a multiset  of positive integers, and

we must determine whether or not there is a way to partition  into two subsets  and

 such that the sum of the elements in  equals the sum of the elements in . 

To show that the partition problem is polynomially reducible to EDP, we first sup-

pose that we are given an instance  of the partition problem. From , we can derive a cor-

responding instance  of EDP by constructing a homogeneous SDF (HSDF) graph with a

single source actor , and a single sink actor , and in which every item in  is

instantiated as a corresponding actor in . An HSDF graph is an SDF graph in which

 for every edge , and hence,  for all every actor  [41].

EDP NP∈ Gs

Gm Ec

E s( ) E t( )+

E m( ) E r( )+

M

M M1

M2 M1 M2

I I

I′

vsrc vsnk I

I′

prd e( ) src e( ) 1= = e q A( ) 1= A
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Here, both  and  have 0-valued weights (for both power consumption and time).

The construction continues by having each “corresponding actor” in  (i.e., each actor in

 that corresponds to an element of ) connected with an edge from the source actor and

with another edge to the sink actor. The weight of each actors in  is assigned as 

, (3.16)

where  is the positive integer value of the corresponding element in . The weight of

each edge in  is assigned as 

. (3.17)

The latency constraint associated with the derived EDP instance  is taken to be infinite

(equivalently, the latency constraint can be taken to be so large compared to the actor exe-

cution time weights that it will always be satisfied), and the energy constraint is taken to

be

, (3.18)

where  is the sum of all elements of . By our construction,  can also be expressed as 

, (3.19)

where  is the set of all actors in , and  represents the power consumption weight

associated with actor  in .

Figure 3.4 illustrates this graph construction process with an instance  of the parti-

tion problem and the corresponding instance  of the EDP problem. Now for a graph

 with zero-valued edge weights, no constraint on latency, and energy con-

straint  as defined in Eq. 3.18, our decision version of EDP involves finding a
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FFP  and  such that the maximum master/slave energy

consumption associated with the partition is less than or equal to . By construc-

tion (since each actor execution requires unit time, and edges have zero cost), the energy

consumption associated with an FFP  for  can be expressed as

. (3.20)

From Eq. 3.18, Eq. 3.19, and Eq. 3.20, it follows that an FFP with the given energy

constraint (i.e., a solution that demonstrates feasibility of ) exists if and only if the verti-

ces can be partitioned into two subsets  and  such that

. (3.21)

This would in turn mean that

Figure 3.4 .An illustration of an EDP instance that is derived from an instance of the partition
problem.
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(3.22)

which demonstrates the feasibility of . 

In summary, we have shown that given an instance  of the partition problem, we

can derive a corresponding instance  of the EDP problem such that  is feasible (has a

solution) if and only if  is feasible.

In the example of Figure 3.4, 

, ,

, ,

and . (3.23)

Furthermore, , and the weight of the cut  is 0.

It is easily verified that all steps involved in the transformation between  and 

can be performed in polynomial time. Therefore, from the known NP-hardness of the par-

tition problem, we can conclude that EDP is NP-hard, and since we have already shown

that , it follows that EDP is NP-complete.

Our proof in this section actually demonstrates that a significantly restricted version

of the EDP problem (infinite-valued latency constraint, zero-valued edge weights, and

HSDF-based dataflow) is NP-complete. It should be noted that the partition problem is

readily solvable by approximation schemes, but the additional constraints and dimensions

of EDP appear to make a more complex heuristic approach more appropriate.

3.5.1. The heuristic approach for EDP

A variety of heuristic algorithms for graph partitioning have been developed. The

Kernighan-Lin (K-L) [35] and Fiduccia-Mattheyses (F-M) [24] algorithms are both popu-
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lar heuristic algorithms for graph partitioning. These algorithms involve incrementally

exchanging vertices across the partition cut if the exchange improves the targeted figure of

merit.

To formulate our heuristic approach for EDP, we adopt useful ideas from the K-L

and F-M algorithms. To help describe our algorithm, we define the cost function of a par-

titioning result as

. (3.24)

We seek to minimize CT so that the corresponding maximized network lifetime can

be obtained. Based on this, we formulate the Gain function  for moving actor  from

one side of a given cut to the other. Intuitively,  gives the potential energy reduction or

increase for both  and  whenever an actor  is switched from one subgraph to the

other.  values can be computed and updated efficiently based on the formulations devel-

oped earlier in the previous section. To discuss the algorithm formulation in more detail, it

is useful to define the “cost” of a given partitioning to be the maximum energy consump-

tion for transmitting ( ) and receiving ( ) data tokens across the partition cut, ,

plus the energy consumption of computation (  and ) for the two subgraphs, 

and . That is, we seek to minimize CT for a given SDF graph  so that the

corresponding maximum system lifetime can be obtained. 

To help derive , we define a gain pair function  for switching vertex 

from one subgraph into the other subgraph based on possible energy variations on master

and slave nodes. The value  is expressed as 
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where

,

,

, 

and .

Here,  is the set of edges of vertex  that cross the partition cut (thus,

), and  is the set of edges of vertex  that do not cross

the cut. Therefore,  denotes the number of data tokens to be transmitted and

received by  due to the existing partition cut, and  denotes corresponding number

of data tokens to be transmitted and received due to the partition cut that would result from

moving  across the existing cut. Moreover, for a given vertex ,  ( )

denotes the improvement in communication energy for transmitting (receiving) data

tokens respectively across the partition cut if vertex  is moved across the existing cut.

Here, a negative “gain” means that such a move would cause a net increase in communica-

tion energy.

Based on the gain pair function for each candidate vertex , we derive  by:

 . (3.25)

Note that  can be positive- or negative-valued. A positive value of  means

that there is an improvement in the cost function CT if node  is moved across the existing
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cut. On the other hand, a negative value for  represents a deterioration of CT if  is

moved.

3.5.2. Performance comparison and analysis

Based on the Gain formulation mentioned above, Figure 3.5 shows a pseudocode

specification of our heuristic for solving the EDP problem, and Figure 3.6 provides perfor-

mance comparisons between our heuristic approach and the exhaustive search for the

EDP. In Figure 3.6, we examine the performance of our approach on several randomly-

generated, synthetic SDF graphs. Figure 3.6(a) shows that while the exhaustive search

δ v( ) v

Figure 3.5 Algorithm pseudocode for our heuristic approach to solving the EDP problem.
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time quickly becomes infeasible for moderate size examples, our heuristic produces com-

parable results in a fraction of the time. In our implementation of exhaustive search, the

constraints in Eq. 3.15 are verified for each candidate partitioning to filter out invalid

results.

Figure 3.6(b) shows a comparison of  versus run time for successive algorithm

iterations (“run time testing iterations”) on several synthetic graphs. Here, the total num-

ber of run time testing iterations represent the maximum number of allowable node

Figure 3.6 Performance comparison for EDP schemes: (a) Run time comparison based on the
complexity of synthetic SDF graphs. (b) Cost versus run time comparison for selected synthetic
SDF graphs.
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switches. Moreover, to examine the impact of graph complexity in terms of the numbers

of actors and edges, we normalize certain graph attributes when constructing the synthetic

graphs. Specifically, we normalize the assignments of production and consumption rate to

1 for all the edges, and we also normalize all energy-related attributes (i.e. the power and

time estimates) to 1 for all the actors and edges. We observe from Figure 3.6(b) that our

heuristic algorithm converges significantly faster than exhaustive search for each synthetic

graph. Note here that if both search algorithms converge on the same point, then both

algorithm have targeted results that have identical (optimal) quality; in other cases, the

exhaustive search algorithm finds an optimal solution, whereas the solution returned by

the heuristic algorithm is suboptimal. Our heuristic algorithm for solving the EDP prob-

lem has  time complexity.

3.5.3. Extension to Application Graphs that Contain Cycles

Until now, we have assumed that the overall signal processing application is repre-

sented as an acyclic SDF graph. Our implementation of EDP assumes an acyclic input

graph, and our experimental results are carried out on graphs that are acyclic. Indeed,

many practical signal processing applications take the form of acyclic SDF or parameter-

ized SDF graphs. 

However, our partitioning techniques can be extended in a straightforward way to

handle more general topologies — in particular topologies that contain cycles. For this

purpose, it is useful to first pre-process the application dataflow graph by computing its

strongly connected components (SCCs). An SCC of a directed graph is a maximal sub-

graph  such that for any distinct vertices  and  in , there is a directed path in 

O V
2

E( )

C x y C C
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from  to , and a directed path in  from  to . SCCs can be computed efficiently

from arbitrary directed graphs (e.g., see [17]).

If the original SDF graph  is not acyclic, our extended EDP algorithm first com-

putes the SCCs of , and then applies the SDF clustering transformation to each SCC

[10]. This transformation allows each SCC to be abstracted as a single actor (a “hierarchi-

cal actor”) so that the EDP process can operate on an acyclic graph. Dataflow properties

(production and consumption rates) of the hierarchical actors are computed as part of the

clustering transformation. Once the partition is constructed, each hierarchical actor is

replaced by its corresponding subgraph as the partitions are mapped to their respective tar-

get processors. 

Implementation of this extended EDP algorithm and experimentation with the algo-

rithm on practical, cyclically-structured signal processing algorithms are useful directions

for further study.

3.6. Experiments and Results

3.6.1. Experimental DSP computations

In this chapter, we first choose several DSP computations modeled by SDF graphs

to illustrate the operation of EDP, and show the corresponding EDP results. Then, we

demonstrate the development of a practical application for distributed speech recognition

as a case study in Chapter 4. In the case study, we use PSDF to the real-time sensing activ-

ities and digital data processing associated with the speech recognition functionality at

each network node. We also provide a detailed analysis of real-time latency and buffer

management on this holistically-developed system implementation, integrating careful

x y C y x

G

G
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design considerations at the levels of the algorithm, application partitioning, network,

communication protocol, embedded software, and platform power analysis.

The first DSP computation, which involves maximum entropy power spectrum

(MEPS) computation, is adapted from the Ptolemy II design environment [23]. We use

this example to illustrate step-by-step the operations involved in EDP based on SDF mod-

eling. Here, we assume that there is 1 master node and there are 5 slave nodes in the tar-

geted network. Figure 3.7 shows three different cases of partition cuts for the MEPS

computation, where (a) and (b) show two extreme cases of workload distribution and (c)

shows one that has a more balanced distribution. MEPS processing can be divided into

two subgraphs, which are allocated to the master and slave nodes as illustrated in the fig-

ure. The dotted lines on graph edges represent partition cut candidates. The order (a

parameter relating to the complexity and accuracy of the operation) of the MEPS compu-

tation in this presented example is 8. Moreover, the repetitions vector of the associated

SDF graph model is shown in Figure 3.7(d).

In Figure 3.7(a), the slave nodes send raw data directly to the master node without

any processing, where all of the MEPS processing is performed. This configuration

involves a partition cut that assigns the source actor of the graph to  and the remaining

actors to . Therefore, the total data transmission (i.e., ) for each scheduled iteration

from the 5 slave nodes is  tokens.

In Figure 3.7(b), each slave node executes a complete MEPS computation, thereby

fully processing a captured data frame before communicating to the master node. This is a

fully distributed scenario, which minimizes the workload of the master node. In this sce-

Gs

Gm Xc

5 512× 2560=
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nario, each slave node sends 256 tokens to the master node. Thus, the  from the 5 slave

nodes is .

In Figure 3.7(c), on the other hand, the application graph is divided more evenly into

two subgraphs. The carefully-constructed partition cut between  and  reduces  to

9, which results in total slave-to-master  of  tokens per schedule iteration.

Figure 3.7 (a)-(c) show various partitioning cases for a WSN that performs maximum entropy 
power spectrum computation. (d) represents the repetition vector of the modeled SDF graph.
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The example of Figure 3.7 illustrates, in terms of the amount of data tokens to be

processed and communicated, trade-offs involved in workload balancing among sensor

nodes in a network. As discussed in the previous section, our heuristic algorithm can be

used to explore such trade-offs effectively in terms of our energy consumption formula-

tion, and the underlying dataflow graph modeling approach. Our experimental results for

this application will be demonstrated in the next section.

We have also examined two other DSP applications in our EDP experiments. The

first is spectrum computation [23], which can be used in converting signals from time

domain to frequency domain representations. The second is a seven-level, tree-structured

filter bank [75], which is commonly used in sub-band coding with perfect reconstruction

for audio coding applications.

3.6.2. Experimental setup

Our experiments are constructed using TDMA-based homogeneous and heteroge-

neous wireless sensor networks that have master-slave topologies. Here, by “heteroge-

neous,” we mean that the master and slave nodes, respectively, are equipped with different

kinds of data processing components (having, in general, different speeds, supply volt-

ages, etc.) in addition to the microcontrollers that are used for protocol control. Con-

versely, by “homogeneous,” we mean that the master and slave nodes are equipped with

identical data processing components.

Each experiment includes one master node and varying numbers of slave nodes. In

order to have each experiment satisfy latency constraints appropriately, we set parameters

such that  and

 

Np Ns=

tp max Ll slaves( ) Lm master( ),{ }=
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for the TDMA-based protocol setup. Thus, all computation and communication operations

for each scheduled iteration can be performed within a given TDMA time frame.

For our homogeneous WSN target systems, we use the Texas Instruments/Chipcon

CC2430 [88] system-on-chip (SoC) device on all master and slave node platforms for exe-

cuting processing and communication tasks. This device provides a single-chip, integrated

transceiver and embedded microprocessor.

For the heterogeneous systems, we again use the CC2430 device on all slave nodes.

However, for the master node, we incorporate, in addition to the CC2430, a Texas Instru-

ments TMS320C5509A [93] as a dedicated DSP processor. On the master node, we use

the transceiver subsystem in the CC2430 for executing communication tasks, and we use

the microcontroller in the CC2430 only for protocol control. We use simulators from the

IAR Embedded Workbench and Texas Instruments Code Composer Studio to derive task-

level timing estimates. Figure 3.8 shows hardware specifications for both of the proces-

sors that we use in the experiments.

Figure 3.8 Hardware specifications for the Texas Instruments/Chipcon CC2430 microprocessor
and TMS320C5509A DSP processor.
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We measure voltage variations and calculate the associated current, power, and

energy consumption for the CC2430-based platforms. The voltage variations are mea-

sured through the Tektronix 4GHz digital phosphor oscilloscope (TDS 7404). For measur-

ing the power consumption on the DSP core, we use the Texas Instruments C55X Power

Optimization DSK for the TMS320C5509A.

3.6.3. Simulation results

Figure 3.9 shows experimental results for the targeted DSP applications when dis-

tributed across homogeneous and heterogeneous WSNs. The EDP results are simulated to

derive partition cuts along with the changes of network size by using the proposed heuris-

tic algorithm on each application graph. In Figure 3.9,  denotes the initial partition cut

that assigns the source actor to  and remaining actors to , and  ( ) denotes the

EDP cut using the proposed heuristic approach in terms of different network sizes

(increases in the index  correspond to increases in network size). Note that the initial par-

titioning corresponds to the conventional configuration of having maximal data process-

ing performed on the master node.

For the tables shown in Figure 3.9, the profiled task-level timing estimates are

reported for showing the execution time of individual actors in each application. Note that

in a homogeneous WSN configuration, computation tasks on all nodes are executed by the

same kind of processor; therefore, the timing information in columns 2 and 3 of the tables

are valid for either master and slave nodes. However, in a heterogeneous WSN configura-

tion, since computation tasks on the master node and the slave nodes are executed by a dif-

ferent processor, the timing information in columns 4 and 5 of the tables shows each

C0

Gs Gm Ci i 0>
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actors’ execution on the master node, and the corresponding timing information on the

slave nodes are provided from columns 2 and 3 of the tables.

Figure 3.9 EDP results for experimental DSP applications across homogeneous and a heteroge-
neous WSNs with various network size settings (m = # of master nodes, s = # of slave nodes).

(a) EDP results for the MEPS computation

(b) EDP results for the spectrum computation

(c) EDP results for the seven-level tree-structured filter bank
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The EDP simulation results are shown graphically in Figure 3.9 based on derived

partition cuts. Here, the top and bottom figures represent the associated EDP results when

a target application is applied to a homogeneous and a heterogeneous WSN system,

respectively. The EDP results ( ) are compared with the initial partitioning ( ) in terms

of various network size settings for each WSN configuration. As shown in the figure, par-

tition cuts are shifted gradually from the  side to the  side of each application graph

as the network size is increased. This is because a more balanced workload distribution is

found between the master and slave nodes on the chosen applications. As more slave

nodes are added, more of the data processing burden should generally be assigned to the

slave nodes since the master node, as the central recipient of communication from all slave

nodes, needs to take care of more computational requests.

3.6.4. Energy cost comparison with the workload redistribution scheme

We demonstrate the associated system energy cost, (i.e. Eq. 3.9), in Figure 3.10

for the chosen applications in Figure 3.10 according to the simulated EDP results obtained

from Figure 3.9. For more detailed analysis,  can be applied to Eq. 3.10 along with the

appropriate battery capacity values so that  can be converted to an estimate of network

lifetime.

We compare the system energy cost with and without our the workload redistribu-

tion scheme for all of the experimental DSP applications. We initialize the targeted WSN

systems with 1 master node and 2 slaves. Then additional slave nodes are added into the

systems one at a time until a total of 10 slave nodes is reached for each system. 

We demonstrate a comparison in terms of system energy cost ( ) in Figure 3.10

for each experimental application. This comparison is based on a homogeneous WSN con-
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figuration. Here, “QS EDP” stands for the results from quasi-static EDP, and each parti-

tion cut ( , where ) is derived by using our proposed heuristic algorithm with an

appropriate network size setting as shown in Figure 3.9. In Figure 3.10, we observe that

the system energy cost is reduced consistently with the derived partitioning results for bal-

ancing the workload distribution between the master node and the slave nodes. Our

Figure 3.10 Simulation results involving energy cost for the experimental applications.
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approach obtains at least a 50% improvement in energy cost compared to the conventional

approach of having maximal data processing performed on the master node. Moreover, as

the network size changes, the EDP result is adapted automatically to solutions that are bet-

ter matched to the new scenarios.

Note that as discussed in Section 3.5.2, the exhaustive search algorithm always finds

an optimal solution, whereas a solution returned by the heuristic algorithm may be subop-

timal. We have used the exhaustive search approach to find EDP solutions for all of the

applications that we experimented with. In these experiments, we found that the result of

exhaustive search was 5% better on average; however, as we have shown in Figure 3.10,

our heuristic approach still improves energy consumption significantly compared to the

conventional master/slave processing approach, and also achieves results that are close in

quality to or equivalent to the optimal results obtained from exhaustive search.
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Chapter 4. Case Study: Distributed Automatic Speech 

Recognition

In this chapter, we present a case study involving the design and implementation of

a distributed sensor network application for embedded, isolated-word, real-time speech

recognition. In our system design, we adopt a parameterized-dataflow-based modeling

approach to model the functionalities associated with sensing and processing of acoustic

data, and we implement the associated embedded software on an off-the-shelf sensor node

platform that is equipped with an acoustic sensor. The topology of the sensor network

deployed in this work involves a clustered, hierarchical organization. A customized time

division multiple access protocol is developed to manage the wireless channel. We ana-

lyze the distribution of the overall computation workload across the network to improve

energy efficiency. In our experiments, we demonstrate the recognition accuracy for our

speech recognition system to verify its functionality and utility. We also evaluate improve-

ments in network lifetime to demonstrate the effectiveness of our energy-aware optimiza-

tion techniques. Summaries of the work presented in this chapter have been published in

[66] and [67].

4.1. Introduction

Speech recognition involves converting acoustic signals, captured by a microphone

or an acoustic sensor, to a set of words. Then, these words are compared with some pre-

defined words and some sort of indication is given if there is a match. The recognized
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words can then be analyzed and used for back-end applications such as command and con-

trol, commercial information retrieval, and linguistic processing for speech understanding.

Figure 4.1 presents a design flow for basic speech recognition systems.

From an embedded system design aspect, a major design challenge for speech rec-

ognition is to assure the processing of large amounts of data in real-time. Various prior

efforts on embedded speech recognition, e.g. [2], [52], and [59], focused on implementing

various speech recognition algorithms on embedded platforms, such as programmable

digital signal processors (PDSPs) and comparing their performance. These efforts typi-

cally have not explored further optimization for real-time operations and energy usage

beyond what is already available through a standard PDSP-based design flow. These exist-

ing design approaches therefore are not fully suited for heavily resource-limited, distrib-

uted systems, such as wireless sensor networks.

WSN systems have a variety of potential applications [40], such as environmental

monitoring and intrusion detection. Sensor nodes are often deployed in inaccessible or, in

the case of certain military and security-related applications, dangerous areas and commu-

nicate with each other through self-organizing protocols. To maximize the useful life of

these systems, power consumption must carefully be considered during sensor node

design.

Figure 4.1 Basic design flow for automatic speech recognition systems.
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Integrating speech recognition into a WSN system enables a new class of applica-

tions for speech recognition that have distributed configurations. We refer to such speech-

recognition-equipped WSN systems as distributed automatic speech recognition (DASR)

systems.

The DASR system developed in this thesis is an isolated-word and speaker-depen-

dent speech processing system, where templates of extracted coefficients of words have to

be created and stored at a central node. The system functionality is to have all sensor

nodes collect speech data within their sensing ranges, and transmit this data periodically

— in the form of recognized words (or simple indicators for the absence of any words) —

to the central node. Any application-specific analysis and usage of the recognized words is

handled as back-end processing on the central node.

Based on different requirements on recognition accuracy, we describe two practical

application scenarios in which our developed DASR system can be applied. The first sce-

nario involves using a DASR system as a speech-based command and control system in a

battlefield environment. Since the DASR system is speaker-dependent, its word templates

need to be trained by the person who will be using the system and, as we will show in our

experiments, it is capable of achieving a high accuracy for word recognition in this con-

text. When we apply the system in a battlefield for recognizing command words, the

speaker-dependent property provides a benefit by rejecting command words that are spo-

ken by enemies and author unauthorized people.

Another application scenario is to use a DASR system as a surveillance system for

collecting large amounts of speech data with similar patterns from arbitrary speakers.

Since sensor nodes are usually designed to be small, they can be hidden in a battlefield
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environment. Therefore, acoustic signals from the enemy can be secretly sensed, col-

lected, and translated into useful data on the sensor nodes. Through a well-designed com-

munication protocol, this data can then be transmitted to a central node for further

processing and back-end analysis. The recognized words, for example, can be used to dis-

tinguish among a diversity of languages or to survey specific words in a crowd for special

monitoring and detection purposes.

We observe, however, that it is difficult to apply speech recognition techniques for

secretive speech monitoring (e.g., for security- or defense-related applications) if the rec-

ognition is constrained to be performed on a single, stand-alone embedded platform. This

is because the sensing range of individual sensor nodes is limited, and sensors are often

deployed in difficult-to-reach areas, where their placement cannot be fine-tuned. How-

ever, a distributed WSN configuration can help make such applications feasible by distrib-

uting the computation across a multitude of embedded platforms (i.e., sensor nodes), and

then collecting and consolidating large amounts of monitored information in a systematic

way. 

4.2. Related Work

Pauwels [50] gives an overview of recent WSN developments for ambient intelli-

gence applications, including speech recognition. In these applications, information pro-

vided by sensors is used to drive systems that automatically analyze human behavior.

As shown in Figure 1, the main component in the front-end of speech processing

algorithms is feature extraction. Several popular feature extraction techniques, such as

Mel-Frequency Cepstral Coefficients (MFCC), Weighted OverLap Add (WOLA), and
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Noise-Robust Auditory Features (NRAF) have been used extensively in speech recogni-

tion technology. Ahadi [2] has demonstrated that both MFCC and WOLA approaches can

achieve high (reasonable) recognition accuracy for clean (noisy) speech. Ravindran [59]

presents a comparison between their proposed NRAF approach and the MFCC approach

and claims that their proposed NRAF approach can be implemented for low-power sensor

networks. 

A few research efforts have integrated speech recognition front-ends into WSN sys-

tems and demonstrated overall system feasibility. Phadke [52] presents a hardware/soft-

ware co-design solution to implementing an embedded speech recognition system with the

use of a modified MFCC approach for feature extraction, and a dynamic time warping

(DTW) technique for template alignment and matching. In this chapter, we build on

Phadke’s design flow for the embedded software development of our front-end speech

recognition processing.

Delaney [20] investigates both computation and communication energy consump-

tion of distributed speech recognition on a targeted embedded system and proposes opti-

mization techniques for energy reduction in the application and network layers. However,

Delaney’s design and optimization approach are developed for general wireless mobile

devices and sophisticated wireless networks such as 802.11b and Bluetooth. 

In contrast, our objective is to customize DASR systems for heavily resource-lim-

ited sensor nodes, and to employ an application-specific, point-to-point protocol configu-

ration for this purpose. Compared to the efforts of Phadke and Delaney, we target a very

different region of the DASR system design space involving potentially higher cost, due to

the use of more specialized and streamlined sensing devices, but also involving greater
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potential for miniaturization and longer-lifetime operation. The latter objectives are useful

for our targeted class of defense- and security-related speech recognition applications,

where it is important to have sensor nodes that are small enough so that they are not easily

detected, and that can be deployed for long periods of time without maintenance in

remote, difficult-to-access geographical areas.

4.3. Distributed Embedded System for Speech Recognition

4.3.1. Master-slave network topology

As we have introduced in the previous chapter, a hierarchical network organization

is efficient for lifetime management, and a master-slave network topology is a clustered-

based network. Within each cluster of the hierarchy, we refer to the designated central

node as the master node, and we refer to all other nodes in the same cluster as slave nodes. 

In the experiments, which are based on the off-the-shelf wireless transceiver

described in [88] as the communication device for each sensor node, the distance between

the master node and all slave nodes should be within approximately 30 meters to ensure

reliable communication. We define a parameter to indicate the number of nodes (i.e., the

initial network size) being used to set up the overall system. After the system has been ini-

tially established (i.e., all nodes have joined the network) based on this number of nodes,

the network size can be dynamically changed as nodes are added to or removed from the

system. We use the updated value of the network size as an input to our workload redistri-

bution scheme.

In summary, the network developed for the DASR system is a clustered, hierarchical

network, where each cluster forms a master-slave network topology. The analysis and
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experimental results throughout the remainder of the chapter are based on such a network

organization.

4.3.2. Real-time acoustic sensing

In our developed system, we employ a sampling frequency of 8KHz for human

speech; therefore, a 125ms timer is set up for the microcontroller [88] to enable an 8-bit

analog-to-digital Converter (ADC) for sampling and converting sensed signals from an

acoustic sensor. Since sampling and conversion by the selected ADC [88] takes around

20μs, all sensed samples by the targeted 8 KHz sampling frequency can be captured accu-

rately. Moreover, in order to use limited memory size efficiently, we select words of dura-

tion 0.25s or less in our experiments so that the number of samples at 8 KHz is bounded by

2000, where each sample is stored as an 8 bit integer value.

When the DASR system is initialized, slave sensor nodes capture samples from

background noise within a certain threshold, and calculate the average. The average noise

value is subsequently used to compare signal values that are being monitored and cap-

tured. In this process of monitoring, threshold-exceeding and zero-crossing schemes are

used to detect the start of an utterance in the presence of background noise. Typically,

ambient noise generates very few zero crossings compared to normal speech, so that

increasing the rate of detected zero crossings can be used as an indicator for the beginning

of a speech utterance [52]. Similarly, since the energy level of noise is typically low com-

pared to that for detected speech, a threshold-based scheme can be used to detect signal

levels that are likely to correspond to speech. 

Once a possible utterance is detected using one or both of the threshold- and zero-

crossing-based schemes described above, 2000 consecutive signal samples are captured
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and stored in the memory of the associated sensor node for further processing. The pro-

cessing steps for speech recognition are applied to such blocks of 2000 collected samples.

4.3.3. Parameterized dataflow modeling

We model and implement the targeted real-time sensing and speech recognition pro-

cessing behavior on slave nodes using the parameterized synchronous dataflow (PSDF)

model of computation [8]. According to PSDF semantics, the sensing inputs and start

detection schemes are modeled using init and subinit graphs, and the speech recognition

processing algorithm is modeled using a body graph. Based on this modeling approach,

and the scheduling features provided by PSDF, low-overhead, “quasi-static” schedules can

be generated for hand-coded implementation or software synthesis [8]. Here by a quasi-

static schedule, we mean an ordering of execution for the functional modules (dataflow

actors) whose structure is largely fixed at compile time, with a small number of decision

points or symbolic adjustments made at run-time based on the values of relevant input

data. 

Figure 4.2 illustrates our PSDF application model and an associated quasi-static

schedule. Here, ASR.init sets the length of a circular window for the past  samples at

each point of time, and the frame size  for each data frame. ASR.subinit reads sample

inputs and maintains a circular window of  samples for real-time processing. In our

experiments, we set , , and use synchronous dataflow (SDF) [41] to

model the core speech recognition processing functionality, which is integrated into the

enclosing PSDF body graph (i.e., ASR.body in Figure 4.2) of our overall PSDF-based

modeling framework. 

L 1–

M

L 1–

L 2000= M 200=
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If a valid speech token is detected from the acoustic input stream, a dynamic param-

eter  is configured to enable speech recognition processing in the body graph ASR.body.

This parameter is configured based on the number of speech tokens that should be pro-

cessed in the newly-initiated recognition step. Otherwise, the value of the parameter  is

set to zero, which effectively disables speech recognition processing for the current appli-

cation iteration.

4.3.4. Speech data processing and recognition

As described in Figure 4.2, speech recognition processing is modeled as an SDF

graph — i.e., the ASR.body graph — that is integrated into an enclosing PSDF frame-

work. Once ASR.body is triggered for execution on a block of 2000 collected samples, the

block of samples is first partitioned into 10 overlapping frames, where each frame consists

of 256 samples with padding zeros. On each frame, a 256-point FFT is applied. The result

of each frame-wise FFT is processed by a 16-tap Mel-scaled filter bank to implement the

Figure 4.2 PSDF modeling and associated quasi-static schedule for the DASR system.
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feature extraction function for the frame. The feature extraction function is used to iden-

tify the speaker’s vocal tract in the speech. From this feature extraction step, 15 coeffi-

cients are obtained from an inverse discrete cosine transform to represent the parameters a

given frame. Then, a dynamic timing warping (DTW) technique (e.g., see [12], [52]) is

used in the master node to search for a match between the spoken word and one of the

template words.

Regardless of which partitioning result of workload distribution is applied, spoken

word recognition is always executed at the master node under our WSN configuration.

Thus, we unconditionally store a set of parameters for template words in the master node;

these parameters are trained and stored a priori through a stand-alone speech recognition

process. The set of template words is chosen based on the back-end application.

In the master node, the DTW technique is used to find the best match (i.e., the small-

est DTW distance) between the parameters of the spoken word and each of the template

words. Here, the smallest DTW distance represents the best match for the spoken word

from the inventory of template words.

4.3.5. Memory management and real-time constraints

For embedded system design, memory management is important for real-time oper-

ation, especially if resource-limited platforms are used. We analyze buffer (i.e. memory

required during the computation process) and latency requirements based on the discussed

dataflow structure for modeling and implementing the DASR system. 

By applying a looped, single appearance schedule (a compact form of dataflow

graph schedule in which looping constructs are organized carefully so that each dataflow

actor appears only once in the schedule) to execute the ASR.body graph for the DASR
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system, the maximum data memory requirement for slave nodes ( ) can be

bounded as , in terms of bytes (each sample size is 8 bits). For

example, as shown in Figure 4.2, if the slave nodes only capture input signals and transmit

them directly without any pre-processing, 2000 bytes of memory are needed to buffer the

signal samples. In the other extreme, if the master node is designed to only execute the

recognition operation, and the slave nodes perform the entire signal processing chain

before transmitting their data, then the slave nodes require

 bytes of memory to buffer data values

throughout the computation process. However, in this case, the slave nodes need to trans-

mit only 150 bytes of data to the master node, since the volume of data is reduced signifi-

cantly through the signal processing that is performed on the slave nodes.

The memory requirement in the master node is determined in terms of the amount of

data required for storing the received data from the slave nodes, the required buffer size

for signal processing operations, and the size of the template word inventory. By analyz-

ing the dataflow structure in the system design of Figure 4.2, the memory requirement in

the master node ( ) can be bounded as 

bytes, where .

In order to achieve the goal of real time sensing and processing for this application,

we define a minimum duration  between consecutive spoken words that the application

must be able to handle. In a command-and-control context, for example, such a value

would impose a constraint on how fast successive commands could be applied at a given

node. The parameter  can be translated into a latency constraint on slave node process-

ing and communication. That is,  must be larger than the time needed to execute the

buf Gs( )

2000 buf Gs( ) 2982≤ ≤

2000 512 256 32 32 150+ + + + + 2982=

buf Gm( ) 150 bufT + buf Gm( ) 2982 bufT+≤ ≤

bufT # of template words( ) # of parameters per word( )⋅=

Td

Td

Td
65



ASR.subinit and ASR.body graphs plus the time needed to transmit the required data to the

master node.

For example, when the application is implemented on our target platform [88] with a

32 MHz processing speed, and 250 kbps transceiver data rate, and if all sensing and pro-

cessing tasks except for word matching are handled by the slave nodes, then the minimum

allowable “word interval”  is approximately 13.675s (0.27s sensing and detection time

plus 13.4s processing time and 4.8ms transmission time). On the other hand, if the slave

nodes only execute sensing tasks,  is constrained below by approximately 0.334s (0.27s

sensing and detection time plus 64ms transmission time). Therefore, when an EDP result

is applied to the target platform,  is bounded by . This kind of

analysis, which is based on the dataflow-based application model together with relevant

details of the target platform, can be used to constrain real-time specifications for the

implemented system. The corresponding latency measurements for the execution of indi-

vidual actors in the system are examined in the next section. Note that  is the real-time

constraint applied to the slave nodes of DASR system for satisfying requirement of sens-

ing and processing speech signals.

4.4. Experiments

4.4.1. Experimental setup

For demonstrating the DASR system and analyzing its performance in a complete

implementation, we use the Texas Instruments/Chipcon CC2430 [88] system-on-chip

(SoC) device as the main processor and transceiver on all sensor nodes. This device is

therefore used on each node for executing all processing and communication tasks. In

Td

Td

Td 0.334s Td 13.675s≤ ≤

Td
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addition, each slave node platform is equipped with an acoustic sensor. We use the profil-

ing tool in the IAR Embedded Workbench to derive a task-level timing estimate for each

actor’s execution in the DASR system.

For the simulated heterogeneous systems, we use the CC2430 device on all slave

nodes. However, for the master node, we incorporate, in addition to the CC2430, a Texas

Instruments TMS320C5509A [93] as a dedicated DSP processor. On the master node, we

use the transceiver subsystem in the CC2430 for executing communication tasks, and we

use the microcontroller in the CC2430 only for protocol control. We use simulators from

the IAR Embedded Workbench and Texas Instruments Code Composer Studio to derive

task-level timing estimates. The profiling results of task-level timing estimation for the

DASR system are shown in Figure 4.3.

We implement the DASR system, measure voltage variations and calculate the asso-

ciated current, power and energy consumption across multiple CC2430 platforms. The

voltage variations are measured through the Tektronix 4GHz digital phosphor oscilloscope

(TDS 7404). Figure 4.4 shows this experimental setup for energy consumption measure-

Figure 4.3 Task-level timing estimation for the DASR system implementation.

Actors Average 
execution cycle 

on CC2430

Average execution 
time (sec.) on 
CC2430 with 
32MHz CLK

Average execution 
cycle on 

TMS320C5509A

Average execution 
time (sec.) on 

TMS320C5509A with 
200MHz CLK

startDetection 364 1.14E-5 33 1.65E-7

SRC 2496 7.8E-5 1025 5.13E-6

Pre-emphasis 2372682 0.074 100150 5.0E-5

Framing 17285507 0.54 105120 5.26E-4

FFT 87028273 2.72 45053953 0.225

featureExtraction 218199980 6.82 10896790 0.54E-1

invFFT 87028273 2.72 45053953 0.225

Parameterization 20096 6.28E-4 3540 1.77E-5

Matching 126874305 3.96 57580815 0.288
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ment and the associated equations to estimate overall energy consumption of a sensor

node platform within a period of time , where  represents the total number of points

within  that are sampled by the oscilloscope.

We choose some common words as experimental examples and compare the recog-

nition accuracies for the different words after the master node receives its required infor-

mation from the slave nodes and finishes its recognition task. Figure 4.5(a) shows the

Figure 4.4 Experimental setup for energy consumption measurement.
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Figure 4.5 (a)Captured signal samples for example words: “one” and “two”. (b) Recognition 
accuracy.
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captured signal samples for some spoken word examples. Figure 4.5(b) shows a compari-

son of recognition accuracy for the example words. Note that our experiments are estab-

lished in a relatively clean (non-noisy) environment. This helps us to achieve the relatively

high recognition accuracies shown in Figure 4.5(b). 

Ahadi [2] has demonstrated that by applying different filter bank techniques, recog-

nition accuracy can be further improved even in noisy environments. Elaboration on this

method is beyond the scope of this thesis.

4.4.2. Simulation results

In similar to the experiments shown in Chapter 3, the simulated EDP results for the

developed DASR system across a homogeneous and a heterogeneous WSN have demon-

strated in Figure 4.6. The EDP results are simulated to derive partition cuts along with the

changes of network size by using the proposed heuristic algorithm on each application

graph. Both top and bottom figures represent the EDP results when the DASR application

Figure 4.6 EDP results for the experimental DASR system across a homogeneous and a hetero-
geneous WSN with various network size settings (m = # of master nodes, s = # of slave nodes).
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is simulated in a homogeneous and a heterogeneous WSN system, respectively. In Figure

4.6,  denotes the initial partition cut that assigns the source actor to the  and remain-

ing actors to the .  ( ) denotes the EDP cut using the proposed heuristic

approach in terms of different network size set to the system.

We also demonstrate the associated system energy cost, (i.e. Eq. 3.9), for the

developed DASR application in Figure 4.7 according to the simulated EDP results

obtained from Figure 4.6. Here, in similar to the scenario described in the previous chap-

ter, we compare the system energy cost with and without using the workload redistribution

scheme for the developed DASR system.

4.4.3. Measurement results and lifetime comparison

According to the TDMA-based communication protocol discussed in Chapter 3, a

sensor node in the DASR system transmits and receives data at its reserved time slot after

joining the network. Based on this regular communication pattern, we estimate the life-

time for sensor nodes in terms of the workload distribution for computation and communi-

cation activities. To this end, we first measure the energy consumption when the master

C0 Gs

Gm Ci i 0>

Esys

Figure 4.7 Simulation results of energy cost comparison with the workload redistribution
scheme for the experimental applications.
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node and slave nodes are at their reserved time slots for executing their assigned tasks.

Then, this measurement is translated into a lifetime analysis estimate by considering the

battery usage on each sensor node. Figure 4.8 shows the results from our measurements

and analysis.

In Figure 4.8, we show voltage variation measurements when two different parti-

tioning schemes are applied to distribute computations across the master and slave node

platforms. That is, Figure 4.8(a-d) shows the voltage variation on a TDMA active slot for

(a) slave nodes that transmit raw data (i.e., 2000 samples); (b) slave nodes that execute the

full signal processing chain and only transmit necessary parameters; (c) the master node

configuration that receives all raw data and executes a full computation including the rec-

ognition task; and (d) the master node configuration that only receives necessary parame-

ters and executes the recognition task.

By applying the equations in Figure 4.4 to the measured voltage variation presented

above, an estimate of the corresponding energy consumption of an active TDMA time slot

is obtained. 

In this experimental setup for the DASR system, the overall system consists of one

master node and three slave nodes; thus, we set  and  seconds so that a

TDMA time frame consists of four time slots and the whole computation on a sensor node

can be completed within an active time slot. For example, as we see in Figure 4.8(a), a

slave node takes around 10 seconds to transmit its raw data (i.e., 2000 samples) to the

master node and stays in the idle state (i.e., switches to its low power mode) for the

remaining 15 seconds of an active slot. Note that a sensor node may also stay in an idle

state whenever its designated slot is not active.

Ns 4= ts 25=
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Figure 4.8 Energy consumption measurement and lifetime comparison.

c o m p u ta tio n
s p e e c h  
s ig n a l

tra n s m is s io n

lo w  p o w e r 
m o d e

(a)

(b)

(c)

(d)

lo w  p o w e r  m o d e
s p e e c h  s ig n a l

tra n s m is s io n

N o d e  t y p e

P a r t i t i o n  t y p e
s l a v e

p a r t i t i o n  0

p a r t i t i o n  1

1 5 7 . 8 4  h o u r s

1 6 1 . 5 2  h o u r s

m a s t e r

3 2 . 5 5  h o u r s

1 4 7  h o u r s

re c e p t io n

c o m p u ta t io n

re c e p t io n

ts

re c e p tio n re c e p t io n

t s t s

c o m p u ta t io n

lo w  p o w e r  m o d e

(e)
72



Furthermore, by considering the use of a  Lithium battery on each

sensor node, lifetime analysis results for sensor nodes in the DASR system are shown in

Figure 4.8(e). Here, we compare sensor node lifetime (i.e., sensor nodes continuously exe-

cute their tasks frame-by-frame under the given TDMA protocol until they run out of

energy) in terms of hours between two different workload distributions. In Figure 4.8(e),

the label “partition 0” represents the conventional configuration of having maximal data

processing performed on the master node — i.e., the partition is “cut” on  of ASR.body

in Figure 4.2. On the other hand, the label “partition 1” represents a balanced workload

distribution after EDP analysis — i.e., the partition is cut on  of ASR.body in Figure

4.2. 

We observe from Figure 4.8(e) that the partitioning of computation and communica-

tion affects the lifetime of sensor nodes significantly. It can also be observed that if the

system lifetime is defined as the time that the first node in the network runs out of energy,

then a DASR system whose workload distribution is based on the EDP result has a system

lifetime improvement of approximately a factor of four compared to a system that uses a

conventional workload configuration (i.e., the configuration in which slave nodes transmit

raw data only).

3V 650mAh⋅
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Chapter 5. Design and Analysis for Distributed Sensor 

Networks

In the past, primary focus has been given to novel sensor elements for deployment

against urban terrorists and in limited force engagements. The issue explored in this chap-

ter is the adequacy of electronic system support for these new sensing elements. For exam-

ple, ad hoc distributed networks must lie dormant for long periods of time and “come

alive” when threats are nearby. This presents a unique challenge in the storage, generation,

and management of power. In this chapter, we demonstrate designs of processor algo-

rithms and telecommunication protocols that alleviate current power-system shortcomings

for these stationary networks. These advances include 1) low power protocols for data

fusion and fault tolerance; and 2) system-level energy modeling and analysis. As a con-

crete example, we define a distributed sensor support system for line crossing recognition.

We demonstrate that threat detection is a system-level problem. Single elements of the

system chain individually have small impact on overall performance. Through the devel-

opment of a pre-amplifier/amplifier chain for optimum signal-to-noise (S/N) ratio, we

show the degree to which system-level architecture can improve reliable detection. Specif-

ically, the use of sensor redundancy to improve performance is analyzed from a statistical

viewpoint. The work presented in this chapter has been published in [63], [64], [65], and

[79].
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5.1. Introduction and related work

Sensor support systems, such as wireless sensor networks (WSN), address a great

diversity of asymmetric defense and security applications. They include chem/bio threat

detection, explosive detection, intrusive detection, and battlefield surveillance [40]. In

many circumstances, sensor nodes are densely deployed in areas that are dangerous or oth-

erwise inaccessible to humans. Thus, nodes must communicate with one another wire-

lessly through self-organizing protocols [29], [38]. Often, when designing such a

distributed sensor system, the size of individual sensor nodes should be small enough so

that they can easily be hidden in the environment. Issues of energy and power consump-

tion are especially important due to the requirement of extended system lifetime [60]. A

long autonomous system lifetime is an important evaluation metric for sensor support sys-

tems since any system is required to stay alive as long as possible. Also, fault tolerance

features of the system are desired so that the system functionality can be reliably main-

tained.

Design of each element in a sensor support system is, in itself, a research topic. For

example, Figure 5.1 shows a typical block diagram for a system platform that consists of

distinct single elements. In order to extend the system lifetime, low-power design of single

elements for a sensor node platform has been extensively studied in recent years (e.g. see

Figure 5.1 Block diagram of a sensor support system platform
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[7] and [21]). However, few of these design techniques for lifetime improvement have

been discussed from a system-level point of view.

In this chapter, we consider the design of sensor support systems for threat detection

as a system-level problem. Here, the system-level problem is defined to be considered at

the application level, protocol level, physical design level, and performance modeling

level. For example, it includes algorithm streamlining, communication protocol configura-

tion, and hardware/software implementation. We target system lifetime as the key system-

level optimization objective and present our designs and experiments all aimed at lifetime

improvement. This includes integration of a sensor support system for threat detection

with single-element designs; system-level energy modeling and analysis; and simulation-

based experimental results.

We start with the introduction of a distributed sensor network for line-crossing rec-

ognition as a threat detection application. This system is sensor supported with an acoustic

sensor installed on each sensor node. Threats are detected via acoustic signals. The pur-

pose of this system is to periodically reach consensus in deciding whether or not an object

(“intruder”) has crossed a specific boundary (“line”) in a noisy environment that is contig-

uously monitored. Furthermore, upon detecting an intrusion, the system determines where

the line was crossed (i.e., between which nodes in the line). For example, in Figure 5.2, the

sensor nodes are placed in a circle inside a room. In this practical configuration, the sys-

tem recognizes when and where a subject has crossed the circle through an integrated

application, protocol, and system architecture development. 

When we consider lifetime improvement at the system level, the energy consump-

tion of each sensor node in the system must be carefully optimized to increase system life-
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time. Experimental results presented in [25] and [62] show that the power consumption for

communication devices such as transceivers dominates overall power consumption on a

sensor node. Therefore, for application-level algorithm development, we develop a light-

weight distributed algorithm for line-crossing recognition so that the transceiver use time

— in terms of the data size (decoded payload bits) to be communicated — can be mini-

mized. Furthermore, for protocol-level consideration, all sensor nodes in such a threat

detection application communicate with each other through an efficient, wireless time

division multiple access (TDMA) protocol so that each node can transmit and receive at

designated time slots, and can “sleep” during other times for energy savings. The packet

routing path for such an application is based on a ring topology.

In [30], Hirschberg and Sinclair proved an upper bound of  on the number

of bits that are sent by every node during a consensus task of  nodes arranged in a bidi-

rectional ring topology. Every node that executes its algorithm has an initial input, and has

no additional inputs during its execution. In [22], Dinitz, Moran, and Rajsbaum proved an

upper bound of  on the number of bits that is sent by all nodes during a consensus

Figure 5.2 An indoor environment scenario with the use of the threat detection system for line-
crossing recognition
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task of  nodes arranged in a tree topology (a chain topology is a special case). This proof

is based on the collection of information with feedback (CIF) algorithm. Every node that

runs the CIF algorithm may have an initial input without additional inputs during its exe-

cution. After one round that includes two phases — the ‘collect” phase and “feedback”

phase — all nodes reach consensus.

In our proposed distributed algorithm — in contrast to the approaches described

above — each node can obtain many inputs (i.e., either from the received data or from the

sensed data) during its execution, and based on these inputs, all of the nodes decide

whether or not a subject is approaching and crossing the given line. Also, our algorithm

has the property that either  or  data bits are needed depending on the

protocol stage (i.e., synchronization stage or communication stage), instead of  bits.

Furthermore, during most its lifetime, our system communicates with only  data

bits. Here,  — a design parameter — is the minimum number of nodes that must sense

the subject in order to reach consensus that an intruder is approaching and crossing the

line. Higher values of  provide higher system accuracy at the expense of higher commu-

nication requirements and higher recognition latency. Since energy consumption during

transmission and reception is high, our approach reduces energy consumption signifi-

cantly by reducing the number bits that need to be communicated for overall system oper-

ation.

Any sensor support system currently envisioned monitors threats in a noisy environ-

ment. False detection is inevitable at some level. This, in turn, creates unnecessary energy

consumption especially if the monitored environment is severely noisy. In this chapter, we

analyze that using a low-power pre-amplifier/amplifier chain (or called amplifier con-

N
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cisely) with ultra high signal-to-noise (S/N) ratio is effectively preventing such a false

detection problem and reducing redundant energy consumption. The amplifier that we

choose is referred to [1] and designed to use low noise read-out circuitry, including a pre-

amplifier and shaping amplifier, to increase the signal-to-noise ratio. The shaping ampli-

fier is used to achieve two conflicting goals. The first goal is to increase the signal-to-

noise ratio by restricting the bandwidth. A large bandwidth will increase the noise without

increasing the signal. The pulse shaper takes a narrow pulse and turns it into a broader,

gradually rounded peak. The second goal is to limit the pulse width in order to measure

consecutive signal pulses without pileup or overlap. A trade-off exists because reducing

the signal pulse width will increase the signal rate but at the expense of higher noise. Opti-

mum shaping depends on the desired application. In this case, the goal is to increase the

signal-to-noise ratio in detector sensors. Therefore, the main focus will be on limiting the

bandwidth to achieve a higher signal-to-noise ratio.

5.2. Distributed Sensor System for Line Crossing Recognition

5.2.1. Lightweight Distributed Algorithm for Line-Crossing Recognition

Our proposed distributed system uses a TDMA-based communication protocol that

consists of two stages: synchronization and communication. The maximum number of

nodes (upper bound) is determined according to the actual environment where the system

needs to be deployed. Therefore, the number of nodes is fixed at design time. All node-to-

node communications are based on a ring topology. Based on our experiments, we assume

that at most two nodes may fail in the system. Define  to be the neigh-

bor of node . Assuming that there is no node failure, the only requirement

N i 1–+( ) mod N

N i+( ) mod N
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is that every node “hears” (receives communication from) its neighbor. If there are at most

two node failures (e.g., node  and then ), the require-

ment is that node  hears nodes , , and

then , respectively. Therefore, under our assumption, it is not necessary

that all nodes hear all other nodes. All  nodes within the system run the distributed algo-

rithm, and reach a consensus based on local decisions of  nodes while a subject is being

detected ( ). Here,  is a pre-determined parameter that allows the designer to con-

trol a trade-off between recognition accuracy and communication requirements. 

The full operation of the line-crossing recognition application, which runs on each

node after the whole system is synchronized (i.e., at the communication stage), involves

two phases of operation (phase 0 and phase 1). In phase 0, the nodes reach a consensus

and decide whether the subject has crossed the line, and in phase 1, the nodes find the

place where the subject crossed the line.

Figure 5.3 shows a pseudo-code representation of the proposed distributed algo-

rithm, as well as an example to illustrate the message structure of the data packets used in

the communication protocol. According to the use of different phases of operation, only

the number of least significant bits is used in each phase. This is explained in our discus-

sion of Figure 3 later in this section. We implement such an algorithm at a node level in

terms of mode operations (i.e. Transmission and Reception) in a TDMA-based protocol

design. Note that in the algorithm operation, hardware-controlled receiving and transmit-

ting operations are dependent on the targeted transceiver module. Since this thesis is con-

cerned primarily with system-level design, we do not address the details of these

operations, which encapsulate lower level hardware configurations. 
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In phase 0 of the proposed algorithm (lines 4-22), the nodes use a counter  to

decide whether the subject is approaching based on local decisions of  nodes ( )

that sense the subject. In its turn, each node receives  from its previous neighbor (i.e.,

the node with ID  receives from node , which is its “left” neighbor in

Figure 5.3 Pseudocode specification for the proposed distributed algorithm of line-crossing rec-
ognition and an illustration of data packet structure.

0 function receiveMode() {
1    (FRX, CM, ID, Cglobal or Msense or MAXsense) = receiveOp(period TRX);
2    if (FRX is true) then
3        switch CM then
4            “phase 0, round 0”: 
5                update Cglo from the least 3 bits of the received message.
6     if (Fsen is true) then
7         if (Fapp is false and Csen is 0) then     
8             increment Cglo;
9             set Finc to true;
10             increment Csen;       
11
12         if (Fapp is false) then
13             if (Cglo is larger than CG) then
14                 set Fapp to true;
15             else
16     if (Fsen is false and Finc is true) then
17         decrement Cglo;
18         set Finc to false;
19
20     if (Cglo equals to 0) then       
21         update CM to “phase 1 and round 0”;
22         set Msen to Csen;
23
24            “phase 1, round 0”:
25                if (phase equals to 0) then
26                    update CM to “phase 1 and round 0”;
27            if (the least 6 bits of the received message is less than 
28       Csen) then
29                set Msen to Csen;
30            else
31   set Msen to the least 6 bits of the received message;
32    else 
33        update CM to “phase 1 and round 1”;
34        set MAXsen to the least 6 bits of the received message;
35       
36            “phase 1, round 1”:
37    set MAXsen to the least 6 bits of the received message;
38    if (round equals to 0) then
39        update CM to “phase 1 and round 1”;            
40
41    if (MAXsen equals to Csen) then
42        “the subject crossed the line near node I”;
43        reinitialize the system;
44 }

function transmitMode() {
    switch CM then
        “phase 0, round 0”:
            update CM to “phase 0, round 0”
            transmitOp(CM, ID, Cglo);

        “phase 1, round 1”:
            update CM to “phase 0, round 0”
            transmitOp(CM, ID, Msen);

        “phase 1, round 1”:
            update CM to “phase 0, round 0”
            transmitOp(CM, ID, MAXsen);
}

Notation for distributed line-crossing algorithm

N: number of nodes
FRX: local received flag
Fapp: global approaching flag
Finc: local incremented flag for Cglobal

Fsen: local sensed flag
phase: phase indicator
round: round indicator
CM: control mode message
Cglo: global sensed counter
Csen: local sensed counter
CG: global sensed threshold
Msen: local maximum sensed count
MAXsen: global maximum sensed count
TRX: maximum waiting time for receiving message

receiveOp: hardware-controlled receiving 
operations
transmitOp: hardware-controlled transmitting 
operations
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the circular, virtual linkage of nodes based on their identifiers). When a node senses that

the subject is approaching, it increments  by one (line 8). Every node increments 

at most once. Therefore, at any moment during the first stage of phase 0, the value of 

indicates the number of nodes that sense the subject. When  reaches , all the nodes

reach a consensus and decide that the subject is approaching. The node that increments

 to  is the first node to set its approaching flag ( ) to 1 (line 14). In their respec-

tive turns, all of the other nodes set their  values to 1. Note that in this phase of oper-

ation, the execution of the algorithm relies on the count of sensing samples. The reliability

of the sensing activities determines the system performance, which further affects the

energy consumption for the overall system. Thus, a high signal-to-noise ratio device is

preferred to help sensing elements improve performance. This will be discussed in more

detail in the following sections.

Then, the second stage of phase 0 starts (line 15). During the second stage of phase

0, the subject is stepping away from the line. Every node has increased  and stops

sensing the subject, decrements  by one (line 17). Since every node increments 

at most once, eventually all the nodes will stop sensing the subject. Then,  will be

decremented to zero. The first node, , that decrements  to zero, starts phase 1 (line

24).

In the message structure example shown in Figure 5.3, the system is assumed to

consist of at most 8 nodes. Thus, in phase 0, the least significant 6 bits are used to repre-

sent a set of 8 nodes using 3 bits, and to represent  by using the other 3 bits. In phase

1, where it is not necessary to identify the nodes, the least significant 6 bits are used to rep-

resent .
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In phase 1 of the proposed algorithm (lines 24-43), the nodes find the place where

the subject crossed the line. This is done by finding which node sensed the subject the

maximum number of times, which in turn is determined using a sensing counter  in

every node. Phase 1 consists of 2 rounds. In the first round (lines 24-34), the maximum

sensed number is found. Node  transmits  to its next neighbor. In its turn, each

node  transmits the maximum of the number it received from node 

and . At the end of the first round, node  receives the global maximum sensed

count, . Afterward, node  starts the second round (line 36),

where it transmits  to its next neighbor. Every node —in its turn—compares

 to  (line 41). If there is a match, node  claims that it obtained the maxi-

mum number of senses, which means that the subject crossed the line near node . Other-

wise, node  transmits  to its next neighbor. At the beginning of the second round,

node  holds , which is equal to ( ). Therefore, the second

round ends at node . That is, the subject crossed the line near node , and the system can

be reinitialized. Suppose several nodes sense the approaching subject the same number of

times which is equal to . In phase 1 round 0 the  is found, and in phase 1

round 1 the first node out of these nodes that receives  decides the approaching

subject has crossed nearby.

From our algorithm, it can be observed that only  are needed to represent 

and a maximum of  bits are needed to represent . However, the time that the sys-

tem operates in phase 1 is much less than the time of operation in phase 0. This is because

the subject is stepping across the line continuously, and when phase 1 starts, the nodes can
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find the place where the subject crossed the line relatively quickly. Therefore, the critical

number of data bits for transmitting and receiving is  instead of .

We determine the consensus threshold  based on noise in the actual environment.

For example, if the environment is clear and there is minimal noise, we set . If the

environment is noisy, we experiment with higher values of  so that multiple nodes must

filter out noise, and agree about an approaching subject.

Based on a worse case analysis of the distributed algorithm, we give our fault toler-

ance protocol a chance of  rounds for every node before another neighbor is chosen. Sup-

pose one round takes  time units and  nodes fail simultaneously. In this worse case,

each node requires  time units for a new neighbor to be found and assigned.

5.2.2. TDMA-based Low Power Protocol for Communication

TDMA-based communication protocols are often applied in small scale wireless

communication systems [19], [80] due to their simplicity and low power communication

patterns. Furthermore, with TDMA, collision avoidance can be guaranteed throughout the

system. Therefore, we have employed TDMA-based communication in the WSN system

presented in this chapter. The specific protocol that we have implemented consists of two

stages: synchronization and communication. During the synchronization stage, the nodes

are synchronized with each other. Whenever a node is powered on, it starts in the synchro-

nization stage with a periodic communication pattern of transmitting and receiving one

packet during each TDMA time frame, which consists of several pre-defined time lots. In

each time frame, each powered node transmits one packet and receives at most one packet.

Node  stays in the synchronization stage until it receives a packet from its previous node
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. Afterward, it enters the communication stage for regularly communi-

cating with other nodes in the network. 

During the communication stage, every node transmits, receives, and idles periodi-

cally based on a pre-defined TDMA time schedule. In such a case, each node can power

down its main computation and communication resources when the node is idle so that

energy consumption is reduced to a minimal level. Figure 5.4 shows a schedule for a four-

node TDMA-based communication protocol with the ring topology routing scheme.

5.2.3. The Fault Tolerance Approach

We enhance the TDMA-based protocol mentioned above so that the fault tolerance

feature is supported. This is preventing any node failures from translating into failures in

the overall system. Here, a node failure means that a node stops processing and communi-

cating, for example, due to lack of energy. Without considering fault tolerance, any node

failure, in general, causes abnormal termination of all other nodes in the system. 

The approach that we use in the synchronization stage is to have all of the nodes

separately determine whether or not the system is synchronized, in addition to the initial

N i 1–+( ) modN

Figure 5.4 TDMA-based communication pattern with a ring topology routing scheme for a four
node example.
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node clock synchronization process discussed previously. The system is synchronized

only if all of the functioning nodes are synchronized and agree on this situation. Once the

system is synchronized, the algorithm of system failure prevention at the communication

stage can be activated.

During the synchronization stage, there are only functioning (powered-on) nodes

and powered-off nodes. Moreover, powered-on nodes will be synchronized and will enter

the communication stage in a relatively short period of time. Our algorithm for system

failure prevention is not incorporated in the synchronization stage. This is because a node

might consider a powered-off neighbor as a failed node. Whenever a node fails in the

communication stage, the distributed system will be reorganized automatically within the

time period of a single TDMA frame.

The fault tolerance algorithm that we employ in the synchronization stage operates

in the following way. Suppose that there are  nodes in the system, and every node has a

unique identifier (ID)  such that . Initially, once node  is turned on, it peri-

odically transmits a packet to node , every  seconds. As mentioned previ-

ously, such a packet includes a control message field, an id field, and a global counter field

( ) with an initial value of 1. In the synchronization stage,  counts the number of

nodes that are on and are synchronized. In addition, node  keeps an internal synchroniza-

tion flag ( ), which is set to 0 when the node is powered-on.  indicates that node

 knows whether all the nodes in the system are synchronized. Note that during the syn-

chronization stage, some nodes might be on while others might be off. Therefore, the

overall distributed system is not necessarily synchronized at this time. 
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While node  transmits a packet every  seconds, where  denotes the duration of a

TDMA time frame, it continuously tries to receive a packet from node 

(i.e., from its “left” neighbor in the circular, virtual linkage of nodes based on their identi-

fiers). Whenever node  receives a packet from node  with

, it reads the associated value , increments this value by 1, and transmits

it within a data packet to node . 

Whenever a node  ( ) is the first to receive a packet from its predeces-

sor (i.e., from node ) with , node  sets its internal 

to 1. Then node  transmits a packet to node  with a unique control message

α, and  is set to 0. That is, at this point, node  knows that all the nodes are on and

that they are synchronized with their neighbors. Therefore, node  starts the process of

informing all other nodes in the system that all the nodes are on and are synchronized. It

does this by transmitting the control message α to its neighbor.

Now suppose that a node  (  and ) whose  value is 0

receives a packet from node  with the control message α. Then node 

sets its  value to 1, and transmits a packet to node  with the control

message α, and with a  value of 0. When node  (i.e., the first node that set its 

value to 1) receives a packet from node  with the control message α,

node  knows that all the nodes in the system have received α. Then, node  starts the

communication stage by transmitting a packet to node  with the control

message β and with a  value of zero. At this point, all the nodes are synchronized in

the system. 
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Note that α is transmitted as long as there are still nodes that are not synchronized,

and β is transmitted once all the nodes are on and are synchronized. Moreover, the time

period over which the whole system remains in the synchronization stage must be larger

than the time difference between when the first and the last nodes join the system plus an

additional  seconds. 

If our TDMA-based distributed system consists of  nodes, the TDMA time frame

of  seconds is divided into  time slots, and each such slot lasts for a period of  sec-

onds. During slot  ( ), node  transmits a packet, and node 

receives that packet in its receiving window. Here, the receiving window is defined as the

longest time period allowed for receiving packets within a given TDMA time slot. 

When node  does not receive packets from node  (i.e., if node

 has failed), then node  starts a process to find a new neighbor. Based

on the pre-defined TDMA schedule, node  shifts its receiving window from slot

 to slot  and tries to receive a packet from node

 during the next TDMA time frame. If node  succeeds in receiving a

packet from some node  ( ), then δ becomes the new

neighbor of  in the new, fault-adapted, virtual linkage structure of the remaining 

functional nodes. All the nodes between nodes  and  (non-inclusive)

are considered from this point onward as being non-functioning nodes. That is, the corre-

sponding TDMA time schedule on each node is pre-defined initially, and is adapted as

execution evolves based on changes in system status.

In our proposed system, acoustic sensors will require some amplifier and pre-pro-

cessing. Optimizing the analog pre-processing saves power, as shown in the next section.
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5.3. Low-Noise Pre-Amplifier/Amplifier Chain for High Capacitance 

Sensors

A low noise amplifier/pre-amplifier chain [1] is used for high capacitance sensors as

an example in this chapter. The large sensor capacitance increases the charge uncertainty

on the sensor node after reset. Due to the fact that a large capacitance enhances the reset

noise component of the system's signal-to-noise-ratio, innovative techniques need to be

incorporated in readout arrays to increase the signal-to-noise ratio. Figure 5.5(a) portrays

the block diagram of the used readout array from [1] for high capacitance sensors. The

Figure 5.5  (a)Preamplifier/amplifier chain block diagram. (b)Folded cascode amplifiers sche-
matic for each stage. [1]
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readout circuitry consists of a pre-amplifier and amplifier. Each stage is a folded cascode

with a class AB push-pull output stage, as shown in Figure 5.5(b). A large capacitor along

with a leakage current source is utilized for electronic simulation of the detector. The

detector capacitance is simulated by a 100nF capacitor. The capacitor used for simulating

the detector has a capacitance that is 5 orders of magnitude more than that of capacitors

used in previous techniques. The sensed signal is the voltage stored on the sensor capaci-

tance.

Capacitive matching is also used at the amplifier input to reduce the reset noise at

the sensor node. This method calls for an additional capacitor to be placed at the input of

the pre-amplifier/amplifier chain. The capacitance of this capacitor must be equivalent to

the capacitance seen at the pre-amplifier input. The capacitance seen at the input of the

pre-amplifier is the feedback capacitor, , multiplied by the open loop gain of the pre-

amplifier, . The capacitor referred to as  in Figure 5.5(a) is used at the amplifier

input for the purpose of matching, in order to increase the signal-to-noise ratio at the input

of the pre-amplifier/amplifier chain. The matching capacitor is chosen to be equal to the

product of  and . By using capacitive matching, the principle of impedance match-

ing is followed, which maximizes the signal power transmission into the amplifier system.

5.4. Energy Modeling and Lifetime Analysis

Based on the design schematic of a sensor support system platform shown in Figure

5.1 and the designed scheme of TDMA operations in the network, we integrate various

fine-grained energy models to evaluate energy consumption for the whole system. More-

over, the system-level energy model is used to evaluate the system lifetime in the experi-
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ments and to demonstrate how single elements of the system chain impact overall

performance.

5.4.1. System-level Energy Modeling

The proposed energy model estimates energy consumption from a system-level

point of view, i.e. considering the energy consumption from the use of all system devices

(including software and hardware components) within the framework of our TDMA-based

protocol control scheme. Therefore, the system energy model for which the system is run-

ning at various protocol modes can be generalized to

, (5.1)

where , , , , and  respectively denote the energy con-

sumed by the sensor, pre-amplifier/amplifier chain, analog-to-digital converter, microcon-

troller, and transceiver when the system runs in different protocol modes — i.e.,

transmission, reception, and idle modes. Figure 5.6 lists all notations with their descrip-

tions for system-level energy modeling as well as experimental values that are being used

in our tests, where , , and .
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Figure 5.6 Table of notations and experimental values for system-level energy modeling
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Specifically, when we consider the time to use various devices on a sensor node

platform, the energy consumption for which the system is in either transmission, recep-

tion, or idle mode is modeled as

. (5.2)

Here,  is considered as the energy con-

sumption for all sensing elements.  denotes the energy consumption for the proces-

sor when the processor stays in its low-power state. For example, in transmission

(reception) mode, the platform will turn to a low-power state after finishing its processing

and communicating tasks, and therefore . However, in idle mode,

each sensor node platform stays in a low-power state during the whole time slot without

executing processing and communicating tasks. That is,  and 

when . We define the sensing time, , as the time that a sensor and a sensor

support amplifier complete a signal processing operation for one sample. For example, our

designed amplifier takes approximately 1μs to complete such a signal processing opera-

tion for one sample in terms of its  time constant. Note that the timer device is turned

on all the time due to the execution of run-time TDMA protocol control and synchroniza-

tion, and therefore .

5.4.2. System Lifetime Analysis

We analyze the average system lifetime according to the system-level energy mod-

els described above. The system lifetime is represented in Eq. , where the lifetime analysis

is derived based on the pre-scheduled TDMA-based communication operations along with

the characteristics of hardware and software components on each sensor node. According

Em Npt Psens Pamp+( )tsens PADCtADC-on+[ ] Ptmrttmr-on
Pproctp Ptranttran-on Plptlp

+
+ + +

⋅=
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Em Eidle= tsens
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to the communication protocol discussed in Section 5.2 along with fault tolerance, all

operations within a TDMA frame ( ) are executed periodically, frame-by-frame, until

the system fails (i.e., all nodes run out of energy). Thus, in our lifetime model, we first

estimate the average energy consumption for each sensor node within a single communi-

cation time frame, and then based on this estimation, the average lifetime of the overall

system (i.e., ) can be estimated in terms of total energy stored in the available batteries

for each sensor node

, 

and (5.3)

where  denotes the number of sensor nodes in the system;  denotes the total

energy stored in a given battery and  denotes the power consumption for each TDMA

time frame for node , respectively; , , and  denote the number of transmis-

sion (tx), reception (rx), and idle (idle) mode occurrences in a , respectively.

The energy model shown in this section can be used to estimate energy consumption

in both the synchronization stage and the normal communication stage. However, the time

of the synchronization stage is relatively short (e.g., , and , ,

 are active at most once per ) compared to the time spent for the normal commu-

nication, so the energy consumption during this stage can be omitted with minimal loss in

accuracy. Our experiments corresponding to the use of system-level energy modeling out-

lined in this section will be demonstrated in Section 5.5.
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5.4.3. Fidelity Analysis

We calculate the fidelity of the system-level energy model based on the results of

simulated versus measured energy consumption. Our reason for using the metric of fidel-

ity here is that the design of sensor network systems depends on various cross-layer con-

figurations, and therefore, it is difficult to obtain perfect accuracy of simulated energy for

the purposes of fast energy consumption evaluation and associated design space explora-

tion considerations. For this estimation, we use the fidelity metric to determine the trend

of energy estimation based on our energy model as an alternative to physical measure-

ment. In this way, the proposed energy model can be shown, in a quantitative way, to have

high accuracy when compared to actual measured results. Thus, the model can be applied

with high confidence to evaluate our sensor support system — and in particular, to com-

pare alternative system configurations — in terms of lifetime for arbitrary network size.

Here, by network size, we mean the number of sensor nodes in the network.

To measure the accuracy of our approach to system-level energy modeling, we use

the estimation fidelity metric defined by

, (5.4)

where  if , and  otherwise. Here,  ( )

denotes the measured results and  ( ) denotes the simulated results, respectively.

For experimenting with fidelity calculation for the proposed system-level energy

modeling approach, we generated 20 testing points for configuring the sensor node plat-

forms with different combinations of supply voltages. The supply voltages across the dif-

ferent platforms in our experiments could be homogeneous or heterogeneous. For each
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configuration of supply voltages, we observed the energy consumption variation (simu-

lated results from the energy model versus measured results) on the nodes corresponding

to the voltage changes. Our fidelity experiments are summarized in Figure 5.7, where the

fidelity value is determined to be 0.91. Note that a fidelity value of 1 corresponds to per-

fect fidelity.

5.5. Experiments

5.5.1. Experimental Setup

Demonstration of the discussed sensor support system for line-crossing recognition

will be presented in the next chapter. Here, based on the use of pre-amplifier/amplifier

chain in [1], we construct a simulation-based experiment for estimating the system life-

time. An arbitrary number of sensor nodes in the system can be chosen for this simulation-

based experimental environment. According to the fidelity analysis in the previous sec-

tion, the analyzed results from this simulation-based experiment are similar to the results

that we observed when we implemented the system in actual hardware with the same con-

figurations.

Figure 5.7 Fidelity analysis for energy modeling
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For the experimental configurations in the thesis, we set up 10 sensor nodes for the

integrated sensor support system such that each sensor node takes 0.5 s to pass around

information across the whole system. That is, in this configuration, we set  s,

,  ms,  and . Based on these system-level

configurations, we conduct simulations for estimating the system lifetime of the integrated

sensor support system in the following context.

The chosen pre-amplifier/amplifier chain referred from [1] and designed in 0.13μm

CMOS8RF IBM technology using the Cadence design package (Assura). The circuit has a

gain of 63 dB.

The input to the pre-amplifier/amplifier chain from the capacitive sensor is simu-

lated by a pulse with a pulse width of 0.5μs and amplitude of 1mV. The pulse contains a

DC offset of 1.8V to provide the necessary input DC bias voltage for the signal processing

chain. The amplifier has a maximum equivalent output noise of 280 μV/ . The signal-

to-noise ratio for the pre-amplifier/amplifier chain is about 5300 V/V. This value is 80

times larger than the signal-to-noise ratio of previously-reported signal processing chains

[1].

5.5.2. Simulation Results for System Lifetime Analysis

In our experiments for lifetime analysis, we consider the case where all sensor nodes

in the system execute tasks for line-crossing recognition frame-by-frame periodically

without additional power-off mechanisms. As a practical example, Figure 5.8(a) first pres-

ents power consumption comparison between each single element used in the sensor node

platform, where the electrical specifications except for the designed amplifier are obtained

from [12] and [91]. Note that in [91], we only consider the power consumption of the sen-

Tfr 0.5=

N 10= tslot 50= Ntx Nrx 1= = Nidle 8=

Hz
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Figure 5.8 (a) Power consumption comparison among all devices on a sensor node platform. (b)
Energy consumption comparison depending on C. (c) Energy consumption and lifetime compar-
ison, where simulated results are calculated in terms of the specifications in [1], [12], [91].
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sor part for our experiments according to its provided gain information. In Figure 5.8(a), it

shows explicitly that the communication element (i.e., the transceiver) dominates overall

power consumption on a sensor node platform. Therefore, we need to consider the lifetime

problem at the system level so that designs of single elements become appropriately tai-

lored for integration into the overall system. Figure 5.8(b) shows how energy depends on

the number  of nodes needed to reach consensus, where  is assumed to be 128. In Fig-

ure 5.8(b), we use two experiments to compare energy consumption for data communica-

tion between our proposed distributed algorithm with two phase operation and a

conventional approach with single-phase operation, where the time ratios of the proposed

algorithm spent in phase 0 and phase 1 are assumed to be 2:1 and 5:1, respectively. We

observe from Figure 5.8(b) that the longer the duration of system operation, the more the

potential for energy savings by the proposed algorithm (compared to the single-phase

approach) for a smaller value of . Note that the data to be communicated in a conven-

tional approach only depends on  and is independent of .

To consider the lifetime problem at the system level, in Figure 5.8(c), we first dem-

onstrate a comparison between the total energy consumption and the energy consumption

for sensing elements on a node platform. This comparison is done based on energy con-

sumption values during a single TDMA time frame. With this system-level consideration,

we reduce the transceiver use time by minimizing the data that is required to be communi-

cated across sensor nodes. This minimization is based on our proposed algorithm for the

targeted threat detection application. Moreover, a TDMA-based communication protocol

is used to schedule the tasks among processing, communicating, and idling so that the pro-

C N

C

N C
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cessing and communicating elements can remain in idle states when their tasks are com-

plete.

As the statistical results show in Figure 5.8(c), once the number of required sensing

samples increases, the energy consumption for sensing elements increases and signifi-

cantly impacts overall energy consumption for the system. When using a traditional signal

processing chain with lower signal-to-noise ratio for processing sensing signals, multiple

sensing activities are required under different circumstances with different noise levels,

because noise interference is not predictable during the system run time. Many false sens-

ing detections may occur when producing samples from the received signals. As a result,

it is difficult to formulate a general, exact solution for the number of required sensing sam-

ples. 

Using the amplifier with high signal-to-noise ratio solves this problem when it is

integrated into the system. Regardless of interference at any noise level, the noise will be

canceled through the correlated double sampling technique in our design. Therefore, only

one sensing task is required for producing each sample from the received signal.

We also demonstrate the system lifetime comparison in Figure 5.8(c) in terms of the

number of sensing samples required in our system. In this lifetime experiment, a

 capacity lithium battery is provided in each sensor node platform so that a

practical result in terms of days of useful operation is shown in the figure. From the life-

time results, we observe that by using the designed amplifier with high signal-to-noise

ratio, the energy consumption for sensing elements is not critical anymore because there is

no redundant sensing activity executed for maintaining the system functionality, and one

sensing activity only consumes 0.02% of the overall energy consumption within a TDMA

3.3V 950mAh⋅
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time frame. In this case, our system can last 75 days since all sensor nodes are powered-

on. 

However, without using the optimized amplifier, the system lifetime drops since we

require too many undesirable sensing activities. For example, in the worse case statistical

results, the system lifetime will drop to approximately 37 days when 5000 sensing sam-

ples within a TDMA time frame are required. In this case, the energy consumption for

sensing elements may have equivalent influence to computation and communication ele-

ments on overall energy consumption - for example, 49.2% of overall energy consumption

is consumed by the sensing elements in our system when a conventional amplifier is used.

Note that in many practical applications where tamper-resistant deployment is important,

the size of each sensor node has to be limited so that the nodes cannot easily be found or

manipulated. In such cases, batteries with very limited capacity must be used, and the sys-

tem lifetime may drop significantly (e.g., well below a single day) if redundant sensing

activities cannot be avoided.
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Chapter 6. Case Study: Software and Hardware Imple-

mentations for the DLCR System

In this chapter, we present a complete system design flow for implementing the dis-

tributed application for line-crossing recognition (DLCR) on the platforms that we have

designed. Our developed platforms have been designed carefully to provide features of

low power usage and small size. In the previous chapter, we have presented the theoretical

development of the DLCR algorithm with the motivation for reducing computation and

communication energy consumption. In addition, we have also shown the developments

of a low power protocol for data fusion and fault tolerance, and system-level energy mod-

eling and analysis. Since DLCR is a sensor support system, we have analyzed from a sta-

tistical basis that single elements of the system chain individually have small impact on

overall performance, and we have examined how to consider the design of a single ele-

ment as a system-level problem when it is integrated into the overall system chain. We

also present an asynchronous handshaking approach for providing synchronization

between the transceiver and digital processing subsystem in a sensor node. This provides a

general method for achieving such synchronization with reduced hardware requirements

and reduced energy consumption compared to conventional approaches, which rely on

generic interface protocols.

In this chapter, we will demonstrate three designed platforms and corresponding

implementations of our DLCR system based on these platforms. These three platforms

include a microcontroller (MCU)-based design, field programmable gate array (FPGA)-
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based design, and application-specific integrated circuit (ASIC)-based design. Figure 6.1

shows the complete system design flow that encompasses all three designed platforms.

Summaries of these chapters have been published in [63], [64], and [79].

6.1. MCU-based Design

There are two types of platforms developed for our MCU-based designs. These are

based on the Texas Instruments CC1110 [87] and CC2430 [88] devices, and each platform

supports a customized miniature antenna [79]. This antenna operates at 916MHz center

frequency for the CC1110-based platform, and at 2.4GHz center frequency for the

CC2430-based platform. For example, for the antenna with a center frequency of

916MHz, with a return loss of 20dB and bandwidth of 13MHz, the reflection coefficient at

Figure 6.1 System design flows.
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the feeding point of the antenna is measured through the Agilent Network Analyzer (PNA

Series 8364B).

To implement the DLCR algorithm — based on the algorithms and protocols dis-

cussed in the previous chapter and shown in Figure 5.3 — we employed an emerging fam-

ily of system-on-chip (SoC) devices (e.g., see [87] [88]) as an integrated, single-chip

solution for performing computation and communication tasks as well as an acoustic sen-

sor [91] for sensing tasks. In addition to the main algorithm developed for DLCR, a simple

program is also developed for monitoring digitized sensed values using an acoustic sensor

[91] in the experiment. Figure 6.2 shows the implemented functional module for sampling

on the CC2430 embedded platform. Here, in order to confirm that the sensed data is com-

ing from the real-time sensed signal instead of noise, consecutive sensed samples, which

are already converted to the corresponding digital values, are stored and compared with a

user-defined threshold value (e.g., plus_ADC_OFFSET and minus_ADC_OFFSET in

Figure. 6.2). Such a threshold value is adjustable at design time based on the present envi-

ronment condition. A sense flag, which represents whether a real-time signal is sensed,

will be set to true if the distance between two consecutive sensed samples is greater than

the threshold value.

Figure 6.2 A program for sampling sensed data through digital I/O on the experimental
CC2430-based platform.

void sampling() {
oldSample = sample;
sample = halAdcSampleSingle(ADC_REF_1_25_V, ADC_8_BIT, ADC_AIN1);

  if (!sense) {
  if ((sample - oldSample >= plus_ADC_OFFSET) || (sample - oldSample < minus_ADC_OFFSET))
      sense = TRUE;

} else {
  if ((sample - oldSample < plus_ADC_OFFSET) || (sample - oldSample > minus_ADC_OFFSET))
      sense = FALSE;

}
}
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The designs of MCU-based sensor node prototypes are shown in Figure 6.3. The

designs include 4-layer Printed Circuit Boards (PCB) with integrations of microcon-

trollers, acoustic sensors, customized miniature antennas, and batteries. For example, Fig-

ure 6.3(a) demonstrates the designed platform with the CC1110 microcontroller and

916MHz customized antenna. Figure 6.3(b) demonstrates the designed platform with the

CC2430 microcontroller and 2.4MHz customized antenna. Compared to other designs of

sensor node platforms, e.g. [29], our designed platforms have the minimal size as shown

in the figure. This is gained from the customized miniature antenna since the antenna size

is one of the major limitations in miniaturizing wireless communication equipment [79].

Figure 6.3 MCU-based sensor node prototypes

(a) (b)
104



6.2. FPGA-based Design

As an intermediate step towards the development of and application-specific digital

integrated circuit that is fully specialized for our targeted sensor nodes, a field program-

mable gate array (FPGA)-based platform is designed and used to prototype the structure

of the targeted ASIC component. We use the FPGA to implement the digital processing

functionality that controls the sensor node. In addition, in this prototype, we use a com-

mercial transceiver for wireless communication, and an off-the-shelf acoustic sensor for

sensing tasks. This prototype system provides the complete functionality for a sensor node

in a distributed sensor system application.

When building a sensor node by combining various subsystem platforms, as

described above, synchronization must be handled across the different platforms, and such

synchronization requires special care when the platforms employ separate clocks. The

conventional approach to this synchronization problem is that both platforms negotiate

with each other via generic synchronization protocols, such as the universal asynchronous

receiver-transmitter (UART) or serial peripheral interface (SPI) protocols. To run these

protocols, the platforms that are being interfaced require additional hardware require-

ments, which may increase their size and energy usage. However, without generic syn-

chronization protocols, such as UART and SPI, synchronous interfacing of separately-

clocked platforms in a sensor node prototype system requires a master clock that is poten-

tially much faster than other clocks in the system. Such a synchronous interfacing

approach may cause major problems due to clock skew.

Thus, in this thesis we introduce an asynchronous approach based on a light-weight

handshaking scheme for interfacing two platforms for sensor node prototyping when the
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platforms have separate clocks. Unlike generic interfacing methods, such as UART and

SPI, this approach is specialized to the specific needs of sensor node integration, and

therefore involves less complexity, and therefore less hardware and energy cost. We dem-

onstrate this approach by interfacing an FPGA-based digital processing platform to an off-

the-shelf transceiver platform. We show in our experiments that through our interfacing

approach, the FPGA and transceiver platforms interact asynchronously in a robust man-

ner.

The proposed asynchronous interfacing approach can be generalized to any platform

pair that conforms to a master-slave structure. In our prototype implementation, the master

platform is the field programmable gate array (FPGA) platform, and the slave platform is

the transceiver platform. In our design, we use separate channels for the data, request, and

acknowledgement signals. The FPGA platform runs as the main processor to deal with

computation and control tasks, and the transceiver platform is controlled by the FPGA to

execute communication tasks (i.e., to transmit and receive signals through the wireless

channel). Therefore, in accordance with the TDMA-based protocol described previously,

the FPGA determines and sets control signals (e.g., requests and acknowledgments) to the

transceiver for executing tasks in transmit (TX) and receive (RX) modes, or for changing

its status to the idle mode. 

Without loss of generality, the scenario of the proposed asynchronous approach

between two separate clock platforms in TX mode is as follows. Whenever the FPGA is

running in the TX mode and is ready to transmit, it sends a TX signal (W-TX) to the trans-

ceiver platform. The transceiver platform receives the W-TX (R-TX) signal, enters TX

mode, acknowledges back (W-Ack) to the FPGA platform, and then monitors the request
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channel from the FPGA. Once the FPGA receives W-Ack (i.e., notification that the trans-

ceiver platform is ready in TX mode), it places a data bit on the data channel and changes

its request signal (C-Req). Whenever the transceiver platform detects the C-Req signal, it

reads a data bit from the data channel (R-Data), and then sends an acknowledgement back

to the FPGA (W-Ack). Every time the FPGA receives a W-Ack in this way, it can place

another data bit on the data channel and repeat the handshaking process described above

until it successfully passes all the data bits that it needs to send at a given point in time.

Once the FPGA passes all the data bits, the transceiver platform may enclose the data bits

in appropriate packets and transmit the resulting packets through the wireless channel.

Figure 6.4 illustrates the state transition graph for the handshaking schemes associated

with control signals in TX and RX mode.

In this prototype development, we use the Xilinx Virtex-4 FPGA [94] as the control

core for a sensor node. That is, the embedded software targeted to the microcontroller in

the first prototype is replaced by the FPGA. Therefore, in the second prototype, we only

use the transceiver part of the CC1110 device [87]. This prototype implementation demon-

strates a complete sensor node in our distributed sensor application with custom logic used

Figure 6.4 State transition diagrams for handshaking in (a) TX mode and (b) RX mode.

F P G A  p la tfo rm T ra n s c e iv e r p la tfo rm

W -D a ta

R -T X

R -D a ta

W -A c k

C -R e q

W -T X

W -A c k

F P G A  p la tfo rm T ra n s c e iv e r  p la tfo rm

R -R X

C -R e q

W -R X

W -A c k

W -D a ta

R -D a ta

W -A c k
107



to implement all control functionality. We have verified its correct operation (including

both communication and computation) in conjunction with other nodes in the system.

All control and associated data processing for the application has been modeled and

implemented in Verilog, and our Verilog implementation has been synthesized onto the

targeted FPGA device to demonstrate the sensor node behavior. For example, if the sensor

node is ready to transmit data, the FPGA will first set up the data and then send a request

signal to the transceiver. Conversely, each time the transceiver receives a request along

with the associated data from the FPGA, it will send an acknowledgement back to FPGA

to complete each transaction.

To interact between the FPGA and the transceiver for a sensor node using our pro-

posed asynchronous approach, the handshaking protocol mentioned previously is modeled

and implemented in Verilog for the FPGA platform, and in C for the CC1110 microcon-

troller subsystem. Figure 6.5 shows snapshots captured from an Agilent DSO 6041A

oscilloscope that depict handshaking interactions between the FPGA device and the

CC1110 transceiver subsystem in either transmit (TX) and receive (RX) mode.

6.3. Design of Hardware Modules for DLCR

The DLCR algorithm and the associated TDMA protocol is implemented in the

FPGA using Verilog-HDL so that the implemented digital circuits can be tested and veri-

fied before the final synthesis and implementation onto ASICs. There are totally 8 major

modules and 12 sub-modules to be designed and implemented for the DLCR algorithm

and the associated TDMA protocol. Figure 6.6 shows the corresponding schematic design,

and the functionality of all of the modules are illustrated in the following context:
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ReceivePacket: the functionality of this module is to receive the data of a transmit-

ted packet from another node in a bit-serial manner and reconstruct the packet with the

PacketFilter module. In our experiments, a 20KHz off-chip clock source is used, and the

Figure 6.5 Handshaking interactions between the FPGA and CC1110 platforms in (a) TX and
(b) RX mode.

(a)

(b)

Figure 6.6 Schematic design for the DLCR algorithm and the associated TDMA protocol.
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associated data rate is 20K bps. Thus, for receiving a data packet with  bits, the receiv-

ing time is about  seconds.

PacketFilter: the functionality of this module is to validate the received data pack-

ets. For data validation, it first confirms whether the packet was received from the node’s

neighbor by checking the identifier field (i.e., ) of a received packet. If the packet was

not received from its neighbor, then the packet is discarded. Also, this module confirms

whether the received packets have the desired format, where the format is defined experi-

mentally (illustrated in Figure 6.6). If the desired format is not matched, then the packet is

discarded. Only a packet with a correct  and format will be processed further.

PreSyncControl: the functionality of this module is to control, schedule and launch

the different operations that take place before all of the nodes are synchronized. When a

node is turned on, it will be assigned to a pre-defined initial TDMA schedule. By follow-

ing this initial schedule, a node will stay mainly in a receiving mode and broadcast an ini-

tial packet to all other nodes at a desired transmitting time slot. The node stays in such a

pre-synchronization stage until it receives an initial packet from its neighbor nodes. Then,

the node will change its status to the synchronization stage and reschedule its transmitting

and receiving time slot accordingly.

ControlUnit: as described in the previous chapter, a node will enter a communica-

tion stage when all of the nodes in the system are synchronized with one another. The

Control Unit module is used to control, schedule and launch the different operations that

are taking place when all of the nodes in the system are synchronized. At this communica-

tion stage, a node will follow its schedule to transmit (receive) packets to (from) its neigh-

bor node at a desired a TDMA time slot. The fault tolerance scheme is also implemented

M

M 20K( )⁄

ID

ID
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in this module. That is, a node will readjust its schedule accordingly based on the scheme,

developed in section 5.2.3, whenever its neighbor fails.

Core: This module implements the main DLCR algorithm, which has been intro-

duced in section 5.2. The DLCR algorithm is implemented in this module according to its

operation mode (transmitting or receiving) in a TDMA time frame. This module controls

and sets internal registers, and internal flags according to the input information from the

associated sensor, received packets, and the fields of packets that are to be transmitted. It

has interfaces with other modules and also indicates when a subject has crossed the

boundary region that is monitored by nearby nodes. This module can also be replaced with

modules that implement different algorithms.

Sense: the functionality of this module is to determine and set internal flags accord-

ing to whether incoming signals are due to an approaching subject. Assume that an off-

chip sensor is used in the experiment and connected to the sensor input pin of the chip.

The sensor should continuously sense and send signals via an analog-to-digital (ADC)

device setup. The digitized signal is first compared to a given signal threshold and then

given to the chip via the sensor input pin.

TransmitPacket: the functionality of this module involves obtaining packets to be

transmitted from the Core module and transmitting the bits of the packets in a bit-serial

manner. Similar to the ReceivePacket module, a 20KHz off-chip clock source is used in

our experiments, and the associated data rate is 20K bps. Thus, for transmitting a data

packet with  bits, the transmission time is also about  seconds.

ClockCounter: the functionality of this module is to count clock ticks to drive a

TDMA schedule that is used by the ControlUnit and PreSyncControl modules. An exter-

M M 20K( )⁄
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nal clock source, which generates the reference clock ticks, is connected to the input port

of this module. For example, for a 1 second TDMA time frame, an internal register will be

increased 20,000 times in this module if a 20KHz clock source is used.

Figure 6.7 demonstrates a 4-node DLCR system integration that consists of our

MCU-based and FPGA-based platforms. In the FPGA-based platform shown here, a Xil-

inx Virtex-4 FPGA [94] is used for executing the DLCR algorithm and the associated

TDMA protocol. A pair of LINX on-off keying (OOK)-based transmitter and receiver

devices [43] is used to handle real-time packet stream processing.

6.4. ASIC Design for DLCR Digital Subsystem

Follow the ASIC design flow shown in Figure 6.1, the designed DLCR system using

Verilog-HDL is first to be synthesized with the use of the Synopsys Design Compiler [92]

and the desired technology library for standard cells (e.g., see [84], [89]). The synthesized

Verilog code for the digital DLCR implementation is verified via a well-developed bench-

mark suite for post synthesis simulation. Then, we use Cadence SOC Encounter [85] to

Figure 6.7 DLCR system integration with MCU-based and FPGA-based platforms.
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layout the chip following a standard ASIC design flow as shown in Figure 6.8. The post

layout process, including design rule checking and verification, is carried out using

Cadence Custom IC Design Tools: Virtuoso [86].

Figure 6.9 shows the design and layout snapshot for the designed digital ASIC for

DLCR using the MOSIS AMI 0.5 micron process. Figure 6.10 shows the corresponding

snapshot for another version that we developed using the IBM 0.13 micron process. Fig-

ure 6.11 shows the fabricated chip for DLCR using the MOSIS AMI 0.5 micron process.

This MOSIS chip has a size of 2.4 mm2, uses about 30,000 transistors, and consumes 1.2

mW of power with a 5V supply voltage. The IBM chip shown in Figure 6.10 has a size of

Figure 6.8 ASIC design flow.
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1.0 mm2, also uses about 15,000 transistors, and consumes 10.7 μW of power with a

1.32V supply voltage.

Figure 6.9 The design and layout for the DLCR digital ASIC using the MOSIS AMI 0.5μm
process.

Figure 6.10 The design and layout for the DLCR digital ASIC using the IBM 0.13μm process.
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Figure 6.11  Fabricated chip using the MOSIS AMI 0.5μm process with a DIP package.
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Chapter 7. System Synthesis for Configurations of 

Application-specific Embedded Systems

Many embedded systems in the domains of digital signal processing and communi-

cation have cross-layer and complex design considerations, and effective design space

exploration strategies are desirable to improve the efficiency with which such systems can

be designed. Resource limited embedded platforms need to be configured efficiently so

that low power consumption, performance constraints, and other application-specific

requirements can be met. As the work that we present in this chapter shows, design alter-

natives for this class of problems can be evaluated and explored rapidly at high levels of

abstraction with careful development and calibration of system-level models. 

The problem of finding efficient configurations for an application-specific embed-

ded platform can be very difficult even for applications of moderate complexity due to the

large number of different possible resource combinations. These problems are typically

formalized as optimization problems, which may be resolved using evolutionary algo-

rithms that are relevant for design space exploration. In this chapter, we present two con-

figuration synthesis methods for finding efficient resource configurations for application-

specific embedded systems. We also propose a new synthesis framework as our on-going

and future work to design application-specific system-on-chips based on globally-asyn-

chronous locally-synchronous configurations. Summaries of this chapter are published in

[61] and [62].
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7.1. A Rapid Prototyping Methodology for Application-Specific Sensor 

Networks

Sensor network embedded systems depend on many inter-related system parame-

ters. The associated design space is vast, and effective optimization in this space is chal-

lenging. In this thesis, we introduce a system-level design methodology to find efficient

configurations for an application-specific sensor network system where optimization of

energy consumption is a primary implementation criterion. This methodology incorpo-

rates fine-grained, system-level energy models; analyzes critical parameters of candidate

off-the-shelf components; integrates the associated parameters into a comprehensive opti-

mization framework; and applies optimized configurations to the actual hardware imple-

mentation of the targeted sensor network system. The results demonstrate the accuracy

and applicability of our methodology and supporting tools for optimized configuration of

application-specific sensor networks.

7.1.1. System-level energy modeling

For finding effective application-specific sensor network configurations based on

energy consumption considerations, a system-level energy model is required for the

design methodology. System-level energy consumption is determined by processors and

communication interfaces, hardware configurations, and the dependencies imposed by the

application. This integrated energy model is used in an optimization framework [6] so that

alternative system configurations can be evaluated by running simulations for estimating-
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system-level energy consumption. The resulting approach to system-level modeling is one

important contribution of this thesis, and this contribution helps us to more comprehen-

sively explore the design space of a sensor network application.

We classify our system-level cross-layer energy models into the two levels of net-

work-level and node-level modeling. For the network-level modeling, a network topology

is defined based on a graph-based representation of the application, and then the critical

parameters are identified that can affect energy consumption throughout the system. Next,

constraints are formulated associated with maintaining the minimum acceptable function-

ality from the overall application. Based on methods presented in [55], a power model is

derived to represent the minimum received power strength at a given node for correct

communication of data across nodes. Here, we assume that nodes can receive the correct

data pattern as long as the received power strength is above a particular threshold.

Considering the application example of -nodes distributed line crossing recogni-

tion discussed in Chapter 5, the topology is specified by , where

, and . The WSN-related parameters

associated with this application are given by , , , , and , where

 are the transmitted/received power values associated with the edge  in the net-

work topology;  is the effective area of the antenna for the node ;  is the dis-

tance between the transmitter and receiver that is associated with the edge ; and  is the

carrier frequency. Based on these parameters, the power model described above can be

formulated as , where , and

 gives the receiver antenna gain and wavelength, respectively;  represents the

speed of light; and  gives the transmitter antenna gain. The goal in network-level mod-

N

G V E,( )=
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eling and optimization is to find the minimum  for each node so that the energy con-

sumption of the whole system-level application can be minimized while maintaining the

functionality of the application.

The node-level energy modeling is considered similar to the one discussed in Chap-

ter 5.4.1. With the use of a MSP430 [90] as a targeted microcontroller platform, for energy

modeling of the transmission mode, we model the active time for each device that is used

in this mode. For example, the active time for the CPU core, A/D converter, UART, timer,

and transceiver can be modeled, respectively, with the following equations:

,

,

,

, 

.

Using these models of active time, the energy consumption in transmission mode can be

modeled according to

, (7.1)

where,

,

,

,

,

.

PT e( )

fclk 2.14Vcc 0.296+( )MHz=

tcpu-active tx
Ncpu-active fclk⁄

tx
=

tADC-active tx
tsample 13ADCCLK( ) 5 10

6×⁄+=

tUART-active tx
tUART-startup M R⁄+=

tradio-active tx
tradio-startup M R⁄+=

Ets tx
Emcu Eradio Esensor+ +( )

tx
Ecpu-sleep Ecpu-active EADC-active

EUART-active Etimer-active Esensor-active Eradio-sleep Eradio-active

+ + +

+ + + +

= =

Ecpu-sleep Icpu-sleep Vcc ts tcpu-active–( )⋅ ⋅=

Ecpu-active CVcc
2

fclktcpu-active VccI0e
Vcc nVT( )⁄

( )tcpu-active+=

Eradio-sleep Iradio-sleep Vcc ts tradio-active–( )⋅ ⋅=

Eradio-active Iradio tx
Vcc Pout+( )tradio-active=

Esensor-active Isensor-active Vcc tADC-active⋅ ⋅=
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The equations above are formulations that we have derived to provide energy mod-

els for data acquisition, computation, and transmission for sensor, microcontroller, and

transceiver devices. We also need models for peripheral control in the microcontroller.

Here, for the internal devices in the microcontroller, we just use the average current con-

sumption values for calculations because it is difficult to observe the actual current varia-

tions of each internal device on a chip. Thus, we employ models of the following forms:

, 

,

.

For energy modeling in reception mode, where the sensor stays in a powered-down

state, for example, the energy consumption can be modeled by using a similar approach as

in transmission mode. The resulting models can be formulated as

, (7.2)

where,

,

,

, 

,

.

Also, the corresponding energy model for using the internal devices (UART and timer

devices) in the microcontroller in reception mode are represented in the same way as in

transmission mode.

EADC-active IADC Vcc tADC-active⋅ ⋅=

EUART-active IUART Vcc tUART-active⋅ ⋅=

Etimr-active Itimer Vcc ts⋅ ⋅=

Ets rx
Emcu Eradio+( )

rx
Ecpu-sleep Ecpu-active EUART-active

Etimer-active Eradio-active

+ + +

+

= =

tcpu-active rx
Ncpu-active fclk⁄

rx
=

tUART-active rx
tUART-startup M R⁄+=

Ecpu-sleep Icpu-sleep Vcc ts tcpu-active–( )⋅ ⋅=

Ecpu-active CVcc
2

fclktcpu-active VccI0e
Vcc nVT( )⁄

( )tcpu-active+=

Eradio-active Iradio rx
Vcc ts⋅ ⋅=
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For energy modeling of the idle mode, we need to consider that a typical sensor

node platform can be turned off so that there is no execution of operations for computation

nor communication. After such turning off, the microcontroller and transceiver remain in

power saving states until they are activated again. For this scenario, energy models can be

derived as follows:

. (7.3)

Note that a timer is required in our assumed implementation target for coordinating

TDMA operations. Thus, the energy consumption for that timer device is considered in the

energy model for each mode. Figure 7.1 summarizes the symbols that we use for the

energy models that are developed in this section.

7.1.2. Design space exploration using particle swarm optimization

Particle swarm optimization (PSO) [34] has been chosen as the optimization strat-

egy to find the most suitable configuration for a sensor network embedded system based

on the system-level energy modeling discussed in the previous section. The experiments

Ets idle
Emcu Eradio+( )

rx
Ecpu-sleep Etimer Eradio-sleep+ +

Icpu-sleep I+ timer Iradio-sleep+( ) Vcc t⋅ ⋅
s

= = =

Symbols Description Symbols Description 
Ncpu-active number of clock cycles executed by CPU fclk processor clock frequency 

tradio-startup 
startup time from power-on to valid 
transmit/receive ADCCLK sampling cycles for ADC device 

ttx/rx transmit/receive on time Pout transmission output power 
ts slot time C total switching capacitance 

tdevice-active 
active time for devices:  
ADC, UART, or timer M transmission message length 

tsample ADC sampling time R data rate 
tUART-startup UART startup time I0 processor leakage current 

Isleep 
average current consumption in sleep mode 
with respect to corresponding devices VT processor threshold voltage 

Idevice 
average current consumption for device: 
ADC, UART, or timer   

Figure 7.1 Table of notation for energy modeling.
121



have been carried out with a prototype WSN platform, illustrated in Figure 7.2,. The plat-

form is equipped with a Texas Instruments MSP430 microcontroller and an 916MHz

transceiver. For evaluating WSN-related optimized configurations, we implemented the

line-crossing application described in Chapter 5. We conducted experiments with mutable

parameters chosen from , , and  to compare energy consumption results

associated with simulation from the PSO-based optimization framework, and measure-

ment from the constructed prototype platform. In addition, in the experiments we

employed the settings in Figure 7.3 as immutable parameter values. The measured current

consumption result from one node on the prototype platform is shown in Figure 7.4(left).

Figure 7.2 WSN prototype platform.

Vcc ADCCLK Pout

immutable 
parameters values immutable 

parameters values immutable 
parameters values

Ncpu-active|tx 579 Icpu-sleep 200uA R 9600bps
Ncpu-active|rx 309 Isensor-sleep 200uA fclk 8MHz
tcpu-active|tx 0.072ms IADC 300uA C 100pF
tcpu-active|rx 0.039ms Itimer 300uA I0 2mA

tradio-startup|tx 3mA Iradio-sleep 200uA ts 125ms
tADC-active 53.6us IUART 300uA tradio-active 6.33ms

tradio-startup|rx 6ms N/A N/A N/A N/A 

Figure 7.3 Table of settings for immutable parameters and values.
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We used a 4GHz digital phosphor oscilloscope to measure the corresponding voltage vari-

ations on each platform for 10 time frames of execution, where each time frame takes 8

TDMA time slots with 125ms for each time slot. The actual energy consumption on the

prototype platform can be calculated according to: . The experimental

results of the optimized configurations for the whole 5-node line-crossing application

through our optimization framework are shown in Figure 7.4(right). We compared the

results from the simulation of the optimization framework and measurement from the cor-

responding implementations on our WSN testbed. For these comparisons, we chose 20

Figure 7.4 Plot of current consumption measured from the prototype platform.

E P t( ) td
t∫=
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particles with  and  when running the PSO optimization algo-

rithm for the experiment [6]. 

In the example of the 5-node line-crossing application, we chose the target optimum

value as 0.05(J) for total energy consumption during one simulation time frame. One set of

candidate results generated from our optimization framework for configuring the whole

application with chosen mutable parameters and a binding constraint of 0.0013 are listed

in Figure 7.5. From the results, we can verify that required transmission power increases

with distance, and we can quantify this fundamental dependence in terms of the technol-

ogy that we are using in the targeted platform.

7.2. Synthesis of DSP Architectures using Libraries of Coarse-Grain 

Configurations

Another method for exploring the design space of parallel elementary computing

resources is introduced. The method can be used to find a suitable set of computing

resources for processors applying instruction level parallelism (ILP) or pure hardware

designs. The computing resources are explored at the system level so that they can be

evaluated rapidly, and the extensive size of the design space handles such coarse level

modeling and evaluation. The method presents the targeted system as a union of multisets

c1 c2 2.0= = ω 0.95=

Figure 7.5 Table of candidate result for configuring the 5-node line-crossing application with
binding constraint .0.0013±
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of computing resources. This formulation provides a general framework for efficient,

multi-objective optimization in terms of relevant cost metrics, including processing

latency, area, and power consumption. We demonstrate this framework by developing a

multiobjective evolutionary algorithm based on it, and applying this algorithm to a rake

receiver application.

7.2.1. System-level modeling for resource configurations

The main objective here is to find suitable computing resource configurations, i.e.,

multisets of function units (FU), for a given application specification, where a targeted

platform is assumed to be used. The highest-level specification of a system is modeled as

a dataflow graph, , that consists of communicating edges in  between actors

(i.e. computation modules) in  that have fixed consumption and production rates of

tokens. The computation platform to which  is mapped is an abstract multiset of parallel

computing resources.

The resource configurations are defined with the aid of multisets. A multiset 

consists of a set  and a multiplicity function . The multiplicity given by 

represents how many instances of the element  are included in the multiset. The FUs of

an experimental architectures typically consists of adders, multipliers, shifters, etc. In

addition, there can be special FUs targeted to a limited application domain. If the set of all

the available FUs is denoted by , the resource configuration  can be defined as a

multiset , where  and  gives the multiplicity of each FU. An

architecture example that consists of multi-purpose FUs is transport triggered architecture

processors [18].

G V E,( )= E
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X m,( )

X m:X N→ m x( )

x

SFUs CFG
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We formalize our objectives for system synthesis and evaluation for clock cycles,

area, and power in the following context. The number of clock cycles of the actor pro-

cessed with the resource configuration  is denoted with  where  in

. In general, an actor can be invoked several times to match differing production and

consumption rates with its adjacent actors or due to the feedback loops. Therefore,

 must contain all the invocations of the actor. The number of invocations can

be obtained from a repetitions vector, which can be computed easily if the system is

designed with the aid of synchronous dataflow graphs [41]. 

In the targeted platform, all the actors are assigned to the same hardware resources

and the actors are executed sequentially. Thus, the clock cycles of data transfers between

actors, by passing the data via memory or registers, can be included in the cycle count

 of the actor who is the sender of the data. Since real-time applications are tar-

geted, it is assumed that  is independent of the input data. If such a depen-

dency exists, the maximum number of clock cycles, i.e., the worst case, must be

represented by . Since all the actors are executed sequentially, the total num-

ber of clock cycles taken by the system is the sum of the number of clock cycles used by

all the actors, i.e.,

. (7.4)

The area cost of a FU  is defined as  and the total area costs, , contrib-

uted by FUs are given by,

. (7.5)

CFG D v CFG,( ) v V∈
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D v CFG,( )

D v CFG,( )

D v CFG,( )

D v CFG,( )

Dtotal CFG( ) D v CFG,( )
v V∈
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∑=
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It is assumed that the costs are not affected heavily by clock frequency. Such an assump-

tion is justified, if the operating conditions are far enough from the limits of the applied

technology. In other words, there should be a sufficiently long slack on the critical path,

which is typically true for modest clock frequencies. In Eq. 7.5, there can be several FU

instances of the same type and all of them are included in the sum. In other words, each

FU is counted according to the multiplicity of FU in multiset .

The dynamic power consumption is considered here and defined as

, where  is the activity ratio,  is the capacitive load,  is the clock

frequency, and  denotes the supply voltage. The dynamic power consumption used in

FUs utilized by actor  is denoted with . Thus, the average dynamic power

consumption of all the actors is defined as 

, (7.6)

which is obtained with the aid of utilizations of each actor, i.e., the percentage of execu-

tion time of an actor of the total execution time of the system. Since real-time systems are

targeted, there is a given time frame, , in which the system must be executed. The

required system clock frequency is the number of clock cycles per time frame, i.e.,

.

For each actor  in , the associated actor specific configurations, ,

, are created, where  denotes total number of configurations

allowed for . Assume that a library is used at design time that contains the associated

 and  for each configuration of actor . The resource configu-
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ration, , for the system is defined as a multiset union of actor specific configura-

tions, where one configuration is selected for each actor. That is,

. (7.7)

For considering the design space exploration, each distinct resource configuration,

, of the whole system is one point in the design space, and it is possible that some

configurations are identical and they are located at the same point.

7.2.2. Design space exploration using multiobjective evolutionary algorithm

When an actor is executed, it is assumed that the utilization of available FUs opti-

mizes for the speed but not for other objectives such as power consumption. With this

assumption the number of clock cycles taken by an actor, , with resource configuration,

, is estimated with the fastest compatible resource configuration. Especially, the

configuration, , is compatible in respect to the actor , if . There-

fore, the number of clock cycles can be estimated as

. (7.8)

The power consumption is estimated according to the same  as in Eq. 7.8

and based on the FUs that are utilized by the actor . That is,

, (7.9)

where

(7.10)
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represents one of the configurations of the actor  which pre-estimated power consump-

tion is available in the library. The area cost for a resource configuration is estimated

directly based on Eq. 7.5.

The general quality of the system is determined by the three objectives namely the

power consumption, area costs, and number of clock cycles. Thus, the goal of the search is

to find resource configurations, , which minimize the multi-objective vector, i.e.,

. (7.11)

In the design space, a solution  dominates solution  if

. (7.12)

The size of design space is strongly related to the number of configurations for a

given system. That is, there are

(7.13)

alternative multiset union configurations. Therefore, evolutionary algorithms are preferred

to be applied to search for solutions in such a vast design space. In this study, the encoding

of the problem for evolutionary algorithm relies on the previously defined actor specific

configurations  and multiset union configurations, i.e. Eq. 7.10. For each actor, ,

there is a gene in the individual. The value of the gene represents the selected actor spe-

cific configuration. The size of the domain of the gene is limited by the number of respec-

tive actor specific configurations, , of the actor . Crossing over two parents
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reproduces two new offsprings. For each gene of the reproduced offspring, a random func-

tion selects the parent from which the gene is inherited. 

Pareto optimal sets can be searched with multiobjective evolutionary algorithms

where all the objective functions are taken into account, instead of selection with a scalar

valued fitness function [83]. In our implementation, the platform and programming lan-

guage independent interface for search algorithms (PISA) [11] is used. The selection pro-

cess is carried out with the strength Pareto evolutionary algorithm (SPEA) [83].

We choose a high-level computational load model of the rake receiver, which is

shown in Figure 7.6. In load modeling, the required FUs, number of clock cycles with dif-

ferent configurations, and FU utilizations to obtain power estimates are analyzed for each

actor, instead of targeting a functional simulation model. The rake receiver is applied in

3G telecommunications systems and on the edge between processor, accelerated proces-

sor, or application specific hardware based implementation alternatives. In this example,

the despreading actor includes four rake finger operation which multiply the input samples

Figure 7.6 Experimental rake receiver model.
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with a despreading code and integrate the result for the length given by a spreading factor

(SF) to obtain one symbol. The SF determines ratio between chip rate and symbol rate. All

the fingers access the same input samples, but with different offsets. The offsets are deter-

mined by a multipath search, which is not included in the model. The channel estimation

is based on pilot data, which is despread and filtered with a moving average filter, whose

output is fed to the maximum ratio combining (MRC). The MRC computes the weighted

sum of the results of rake fingers. The alignment of the multipaths accesses the memory

banks with different offsets.

The computational load of actors can be modeled with different multisets of FUs.

Especially, many of the actors can utilize parallelism, i.e., multiplying the number of ker-

nel FUs lowers the number of clock cycles. The range of clock cycles per designed actor

specific configurations are shown in Figure 7.7. In this study, in addition to arithmetic or

logic functionality, the FUs include minor control logic and internal registers. Naturally,

with very simple functions the control logic dominates costs. The area and power esti-

mates of FUs are shown in Figure 7.8. Here, the finger resource can be applied to compute

the inner product of code and input samples. The spreading code generation resource pro-

Figure 7.7 Performance ranges of the applied actor specific configuration with SF=16 and 8 data
channels.
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duces spreading code and is implemented as a simple shift register with feedback connec-

tions. 

The results of the multiobjective design exploration are presented in the form of

Pareto optimal points in Figure 7.9 In total 26 different kind of actor specific configura-

tions contribute to the union configuration of the receiver. Since there are three objectives,

the Pareto points are located in three dimensional space. The plots show some points

which cannot be interpreted as Pareto points if only two objectives, i.e., the axis of the fig-

ure are considered. However, they are Pareto points in reality, since all the three objectives

are considered. The Pareto points show, as it is expected, that the area costs increase when

the number of clock cycles decreases, i.e., the more parallelism is applied to decrease the

delay, the more resources are required. The negative relation of the area costs and dynamic

power consumption originates from the lower voltage with lower clock frequency. The

clock frequency is lower since higher parallelism allows execution with decreased number

of clock cycles.

Figure 7.8 Area costs and dynamic power consumption of the elementary computing resources.
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Figure 7.9 Pareto optimal points are projected to 2-D presentations. Each point corresponds to
a resource configuration.
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Chapter 8. Conclusions and Future Work

8.1. Conclusion

In this thesis, we have presented a novel algorithm, and associated design methodol-

ogy for distributing DSP applications across master-slave WSN systems in an energy-effi-

cient fashion. This methodology integrates high-level application modeling, and task- and

network-level energy and latency modeling to comprehensively optimize system perfor-

mance. We have discussed efficient dataflow-based modeling techniques for different

DSP applications, integrated topology and protocol requirements of WSNs into these

modeling techniques, formulated an important energy-driven partitioning problem, inte-

grated this problem with a quasi-static scheduling approach, and developed an efficient

heuristic algorithm for finding partitioning results that maximize the network lifetime. Our

developed workload redistribution scheme is adapts automatically to changes in network

size. Results on synthetic benchmarks and on practical applications demonstrate the utility

of our proposed methods. From the experimental results, our approach can be seen to run

efficiently and improve conventional partitioning solutions significantly, by least 50% of

the energy cost. As applications become more complicated, the proposed methodology

becomes even more useful.

We have demonstrated a distributed automatic speech recognition (DASR) system

implementation as a case study by integrating embedded processing for speech recogni-

tion with a wireless sensor network system. We have discussed several promising applica-

tions for which the proposed system can be further customized. In our system

implementation, we have adopted a parameterized-dataflow-based modeling approach for
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structuring a well-known algorithm for embedded speech recognition. This model-based

design facilitates latency and memory analysis, and helps to structure the embedded soft-

ware for efficient implementation. 

Through a detailed case study, we have demonstrated in detail our key design steps,

including the definition of the network topology, protocol design, implementation of the

targeted speech recognition algorithm, and distribution of computation and communica-

tion with careful consideration of energy usage. Measurement results on recognition accu-

racy and energy consumption demonstrate the functionality and efficiency of our DASR

system implementation.

We have also demonstrated in this thesis that threat detection, an important applica-

tion area for WSN technology, should be considered as a system-level problem. Single

elements of the system chain individually have small impact on overall performance, and

understanding the interactions among different elements is critical to meeting constraints

on power consumption, performance, and reliability. We have demonstrated a complete

system design methodology for a practical application of a distributed line-crossing recog-

nition (DLCR). This methodology includes algorithm streamlining, communication proto-

col configuration, hardware/software implementation, and lifetime modeling. Our

proposed distributed algorithm is useful in reducing the amount of data that must be com-

municated across nodes in the network. Furthermore, the communication protocol that we

employ carefully manages the duty cycle to achieve further improvements in energy effi-

ciency. Our designed protocol is fault tolerant so that node failures are prevented from

translating into failures in the overall system; the capability to add nodes dynamically into

our distributed system is being considered in our ongoing and future work. Through simu-
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lation-based experiments, we have employed various design techniques to improve the

system lifetime. From our experimental results, we have demonstrated the importance of

considering the network lifetime problem at the system level. We have also observed that

full system integration for sensor support systems plays an important role in influencing

the design for individual components (“elements”) that are to be used on sensor node plat-

forms.

This thesis has also demonstrated different sensor node platforms, including micro-

controller- FPGA-, and ASIC-based platforms, for the targeted DLCR system. Custom-

ized printed circuit board (PCB) designs of various system prototypes are demonstrated to

compactly support the developed sensor node embedded platform. The platform in turn

employs emerging, off-the-shelf, system-on-chip technology, and a custom-designed min-

iaturized antenna. The digital ASIC that we have designed and implemented in this work

demonstrates the functionality of the DLCR system, and significantly reduces the size and

power consumption compared to other commercial embedded platforms.

In this thesis, we have also explored system-level design methodologies to derive

optimized configurations for different applications. We have derived a number of fine-

grained, system-level energy models as efficient evaluation metrics for our application-

specific WSN system analysis and optimization. To demonstrate the efficacy of the mod-

els and optimization methods, we used configurations that were derived from our design

framework to map a practical WSN application into complete hardware/software imple-

mentations. From these implementations, we analyzed various parameters from the mod-

els that we employed and calculated the fidelity of the high level estimation methods used

in the optimization framework. Our results showed that, relative to their high level of
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abstraction and efficiency in exploring the design space, the integrated models and estima-

tion techniques result in a high accuracy of relating candidate solutions during optimiza-

tion to their equivalent realizations as actual WSN system implementations.

As a complementary form of platform optimization, we demonstrated a method for

system-level exploration of computing resources on targeted DSP architectures. The

method was based on presenting actor specific resource configurations as multisets of

functional units (FUs). A coarse level modeling was derived to help evaluate and explore

the associated design space rapidly. The derived formulations for this coarse-level model-

ing lead naturally to efficient evaluation and encoding in the context of multi-objective

evolutionary algorithms. Experiments on a dataflow-based rake receiver application and

design showed the applicability of our proposed methods to identifying strategic design

alternatives in the space of architectural configurations.

8.2. Future Work

With advances in integrated circuit technology, distributed embedded systems such

as sensor nodes will be equipped with increasing amounts of computational resources,

such as digital signal processing (DSP) subsystems. We believe that the work presented in

this thesis will be of increasing utility and impact as this trend develops further. The

energy-driven design methodology that we have developed introduces a systematic frame-

work that can be extended for automatic synthesis and code generation for implementing

embedded software on distributed embedded platforms.

The work that we have presented for design and implementation of streamlined dig-

ital ASICs is relevant for incorporation in complete distributed embedded systems such as
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wireless sensor networks. Our ongoing and future work aims for further miniaturization

and energy efficiency for the targeted line crossing recognition application by developing

a fully customized design, including a streamlined ASIC implementation of the mixed-

signal SoC.

Based on the experience gained from our work on system-level synthesis and design

space exploration, a novel design and optimization framework is proposed to find the most

suitable GALS configuration for realizing a DSP application. A central optimization goal

here is to suitable clustering (i.e., grouping into synchronous regions) results from a given

application graph, where the system power consumption, area cost, and processing perfor-

mance are to be efficiently traded off (e.q. [36]). We will continue our work on developing

our framework for GALS-based DSP system design and optimization. This framework

can be integrated with exiting tools or packages such as DIF that are based on well-devel-

oped dataflow modeling and graph theory (e.q., see [10], [71]). Furthermore, integration

of hardware synthesis and code generation steps are useful for incorporation to complete

the overall design flow, and make it more automated.
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