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The topic of this thesis is the mathematical analysis of physically motivated models

for a trapped dilute Bose gas with repulsive pairwise atomic interactions at zero temper-

ature. Our goal is to develop the spectral theory for excited many-body quantum states

of these systems by accounting for the scattering of atoms in pairs from the macroscopic

state (condensate). This general methodology, known as pair-excitation, was introduced

in the physics literature in the 1960s – the work of this thesis provides the first compre-

hensive mathematical treatment of many aspects of pair-excitation. This includes, e.g.,

the spectral theory for pair-transformed approximate Hamiltonians, a general existence

theory for the pair-excitation kernel, and the connection between the pair-excitation for-

malism to quasiparticle excitations in the Bose gas.

We formulate the method of pair-excitation for several historical models of the Bose

gas from the physics literature. In particular, we focus on the seminal works of Wu, Fetter,



Griffin, and Lee, Huang, and Yang. Each of these models introduce unique features

to the mathematical analysis, but the general strategy remains the same: transform the

approximate Hamiltonian using a suitably-defined pair-excitation operator. This operator

is not determined a priori, but is chosen as part of the problem in order to simplify the

expression of excited states of the transformed system.

The study begins with models for the Bose gas in the non-translation-invariant set-

ting, where the particles are spatially-confined in an external trapping potential. In this

setting, formulating the pair-excitation method entails solving a nonlinear integro-partial-

differential equation for the pair-excitation kernel. We provide a general existence theory

for this kernel via a variational approach. The kernel which we find allows us to connect

the pair-excitation method to the more widely-studied unitary transformation of quadratic

Hamiltonians via Bogoliubov rotation. The theory for the kernel also allows us to write a

simple formula for excited many-body states, which can be adapted to the various models

which we consider in this work.

We then study the problem for the pair-excited transformed approximate Hamilto-

nian for Bosons in a periodic box. In this setting, the description of the effective Hamil-

tonian in the momentum basis is particularly simple. However, the lack of particle con-

servation means that the pair-excitation transform is unbounded in operator norm, and

spectral methods developed in earlier chapters are enriched with new tools.
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Chapter 1

Introduction

The subject of this thesis is the analysis of time-independent systems which model

excitations of the weakly-interacting dilute Bose gas at zero temperature. We consider

several distinct models of the Bose gas in the chapters that follow, and connections be-

tween these models that can be discovered through the mathematical framework of pair

excitation. The physical phenomenon underlying our investigation is the Bose-Einstein

condensation (BEC) in which particles of integer-spin (Bosons) occupy a single quantum

state macroscopically. This single state is the condensate.

The general physical theme motivating this work is that pair-excitation provides a

minimal framework for representing excited states of the Bose gas — this formalism

describes a physical process whereby pairs of particles scatter from the condensate into

non-condensate single-particle states, thereby depleting the condensate. Including pair-

processes in the approximation of many-body dynamics of the Bose gas allows for the

modeling of effects beyond the well-studied mean-field theory for BEC, which seeks to

describe the many-body ground state for the interacting Bose gas by a single effective

quantum wavefunction, the macroscopic condensate.

The mathematical content of the thesis seeks to place the theory of pair-excitation

into a rigorous framework, and demonstrate the effective representation of many-body

states using this theory. The central component of the pair-excitation method involves the
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similarity transformation of an approximate Hamiltonian by a non-unitary ‘pair-excitation

operator,’ first suggested by Wu in his study of the non-translation-invariant gas [60]. This

is counter-intuitive from the physical perspective; quantum mechanical observables are

prescribed by Hermitian operators, and only the unitary transformation of a Hermitian

operator preserves the expectation of a physical observable. Additionally, the use of a

non-unitary pair-excitation operator in this formalism has perhaps made it less desirable

for mathematicians to work with compared to unitary transform methods. The benefit of

using the non-unitary pair-excitation operator in this work is that it allows us to derive

new, physically-transparent formulas for excited many-body states of the model systems

under consideration; these formulas offer a clear picture of the scattering processes in-

herent in the production of low-lying excitations. In the non-translation-invariant setting,

developing the theory of pair excitation entails proving the existence of the pair excitation

kernel, which satisfies a nonlinear integro-differential equation. This kernel then defines

the non-unitary pair excitation operator on the bosonic Fock space. We will see that this

kernel is intimately related to the unitary Bogoliubov-type transformation (or rotation) of

a quadratic Hamiltonian describing the Bose gas, which will be familiar to many physi-

cists. In this sense, we consider the pair-excitation kernel to be a minimal quantity in the

description of excitations.

While we will provide a rigorous formulation for pair excitation in several phys-

ical models, this work does not address the accuracy of the various approximations for

the Bose gas presented here (compared, e.g., to the ‘exact’ dynamics dictated by the

linear many-body Schrödinger equation for N particles). Nor does it treat the time evolu-

tion of many-body states. These topics are the subject of intense mathematical interest;
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for an introduction to the convergence of mean-field theory to exact dynamics, see the

work of Lieb, Seiringer [43, 57], Erdös, Schlein, and Yau [19], as well as the review ar-

ticle by Margetis, Machedon and Grillakis [29]. The intent of this thesis is to elaborate

the mathematical features and interconnections between several models for the weakly-

interacting Bose gas presented in the physics literature; and to show how these models

can be analyzed within a singular (and well-posed) mathematical framework involving

non-Hermitian operators and the pair-excitation kernel.

The model systems covered in these chapters describe low-lying excitations of di-

lute Bose gases, and the many-body states belonging to these systems generalize the ten-

sor product ground state provided by mean-field theory. A brief review of the mean-field

theory for BEC is given at the beginning of Chapter 3 (see Section 3.1.1). The systems

treated in the next chapters are represented in the physics literature by the works of Lee,

Huang, Yang [37, 38], Wu [60, 61], Fetter [20, 21], and Griffin [25]. While these models

are well-known among physicists, many of their mathematical details, as well as their

common features, have not been explored thoroughly until now.

We refer to the models studied in the following chapters by their approximate (Fock

space) Hamiltonians, denoted generically by H . These will be heuristic but physically

motivated approximations to the exact many-body Hamiltonian for repulsively-interacting

bosons, which governs the quantum dynamics via the linear Schrödinger equation for a

system of N particles, where N is finite but large (N ≫ 1). An example of the exact

3



Hamiltonian for N particles is given by

H =
N

∑
j=1

(
−∆ j +Vtrap(x j)

)
+

1
2

N

∑
j,k=1
j ̸=k

υ(x j − xk). (1.0.1)

Here, ∆ j denotes the Laplace operator in the coordinate x j ∈ R3, Vtrap(x j) is a trapping

potential, and υ denotes the two-particle interaction. The specific assumptions that we

make for the trapping and interaction potentials will be covered in the chapters that follow.

As stated, this thesis does not rigorously address the accuracy of the model Hamil-

tonians H compared to the exact dynamics, or the domain of validity in which their

approximations hold. Rather, our aim is to describe how pair-excitation can be given a

rigorous formulation for each model. This formalism utilizes the non-unitary pair excita-

tion operator on the Bosonic Fock space, denoted generally by the exponential exp(P),

where P is a suitable operator in Fock space that describes the depletion of the conden-

sate into pairs of non-condensate particles.

Each of the Chapters 3, 4, 5 begins by introducing a heuristic derivation of the

model Fock space Hamiltonian H studied in that chapter from exact many-body dynam-

ics prescribed, e.g., by exact Hamiltonian H. We then define, in each particular setting,

a non-unitary pair-excitation operator, exp(P), and transform the approximate Hamilto-

nian according to

H̃ = exp(P)H exp(−P).

A specific choice of the operator P in each case will allow us to develop the spectral the-

ory for the transformed approximate Hamiltonian H̃ . In each chapter, the transformation

exp(P)H exp(−P) will involve a free parameter, which choose so that the resulting

operator H̃ takes a particularly simple form – in particular, we choose this parameter so
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that H̃ contains no terms that create pairs of particles. This is analogous to H̃ being an

upper-triangular matrix, although H̃ is defined on an infinite-dimensional Hilbert space

(i.e., the Bosonic Fock space F). This particular choice poses constraints for the operator

P , which results in a nonlinear intrgro-partial-differential equation for the integral kernel

of P , i.e., an equation for the pair-excitation kernel kpair(x,y). The upper-triangular struc-

ture of the transformed approximate Hamiltonian allows for its spectrum to be determined

from its diagonal part (analogous to the result for finite-dimensional upper-triangular ma-

trices). We will also derive concise formulas for many-body eigenstates of H̃ in the

Bosonic Fock space. In the chapters where we consider a quadratic model for the Bose

gas, this offers an alternative viewpoint to the ‘quasiparticle’ description familiar to the

study of quadratic Hamiltonians.

The body of work presented in Chapters 2, 3, 4, and 5 considers rigorous mathe-

matical features of several model Hamiltonians (denoted by H here) which describe the

weakly-interacting trapped Bose gas. To our knowledge, this work is new.

We begin in Chapter 2 with a motivating example that offers the most concise de-

scription of our general methodology; the model considered in this chapter is the Bose gas

in a periodic box with a particle-conserving approximate Hamiltonian. In this setting, we

are able to utilize the momentum basis to factor the eigenvalue problem for excited states

over subspaces with fixed total momentum. We are also able to consider many-body ex-

cited states which have a fixed total number of particles. The pair-excitation operator in

this model is formulated as a bounded operator; the similarity transformation of the ap-

proximate Hamiltonian by the pair-excitation operator therefore preserves the spectrum.

This means that we are able to study the eigenvalue problem for the transformed Hamilto-
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nian, and infer results about the spectrum of original system. In particular, we choose the

pair-excitation operator so that the resulting many-body states of the transformed system

take a simple form – the transformation will be chosen so that all states of the trans-

formed system are finite linear combinations of momentum eigenstates. We subsequently

derive concise formulas for excited many-body states of the approximate Hamiltonian, by

transforming these finite-superposition states by the pair-excitation operator.

Chapter 2 serves as a general motivation for later chapters – we will seek results

for many-body excited states for a family of approximate Hamiltonians in Chapters 3,

4, and 5. We will see that the system described in Chapter 2 is the simplest model in

which to study pair-excitation, for several reasons. Chapters 3, 4, 5 describe the nontriv-

ial extension of these fundamental results to non-translation-invariant settings, where the

condensate and excited states may affect each other in complicated ways, and to approxi-

mate Hamiltonians which do not conserve the number of particles.

Chapters 3 and 4 study the weakly-interacting Bose gas in a generic trapping po-

tential Vtrap(x). Throughout the work, the assumptions on Vtrap(x) are kept minimal; the

emphasis is on developing a mathematically rigorous theory of pair-excitation in a non-

translation-invariant setting with minimal assumptions. In general, we will assume that

Vtrap(x) is defined so that the single-particle Schrödinger operator −∆+Vtrap(x) has a dis-

crete spectrum and a gap between its lowest and first excited state. See the introductions

to Chapters 3 and 4 for details.

Chapter 3 considers a model for the particle-conserving Bose gas in a generic trap-

ping potential, Vtrap(x), based on the model developed by Wu (1960) [60]. The trapping

potential confines the particles so that the system is no longer translation-invariant. It is
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therefore not possible to simplify the eigenvalue problem for the approximate Hamilto-

nian by representing it in the momentum basis. Similar to the model of Chapter 2, though,

the approximate Hamiltonian in Chapter 3 is particle-conserving. The pair-excitation

operator which we formulate is bounded on the Fock space for N particles, but non-

translation-invariant. A new quantity – the pair-excitation kernel – describes the spatial

variation of the pair-scattering process. We develop the spectral theory for the trans-

formed Hamiltonian H̃ of this system, based on our explicit construction of the pair

excitation kernel. This kernel solves a nonlinear operator Riccati equation, which results

from choosing the pair-excitation transform in a similar way as was done in Chapter 2, so

that the resulting transformed operator does not create pairs of particles. We then seek to

construct many-body eigenstates of H̃ as finite superpositions by determining a single-

particle basis which plays the role that the momentum basis did in Chapter 2. We discover

that this basis is intimately related to the pair-excitation kernel kpair(x,y), as well as a non-

orthogonal basis which describes the unitary rotation of a related quadratic many-body

Hamiltonian first used by Fetter (1970) [20]. The discovery of this connection is new

to our work, and closely parallels developments in the mathematical theory of J−self ad-

joint operators and operator Riccati equations [2,3,13,58]. The main mathematical results

in this chapter are an existence proof for the pair-excitation kernel, the discovery of the

single-particle (non-orthogonal) basis which describes the ‘phonon’ spectrum of H , the

connection between this basis and the unitary rotation of a quadratic Hamiltonian, and the

construction of many-body eigenstates of H using this new basis.

In Chapter 4, we demonstrate the utility of the pair-excitation method for a model

of the Bose gas which includes additional effects of particle correlations not present in the
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models of Chapters 2 or 3. We focus on the model of Griffin (1995) [25], which describes

a non-particle-conserving, non-translation-invariant system in a trapping potential Vtrap.

The additional correlations present in this model modify the equation for the condensate

in a nontrivial way – coupling the condensate to the basis of elementary excitations. We

exploit the results of Chapter 3 to recast this system into a coupled system for the con-

densate, along with a pair-excitation kernel. The kernel equation can be written in a way

which formally resembles the Riccati equation of Chapter 3, although it contains addi-

tional nonlinear terms. We construct a solution to this kernel equation by iterating from

the known solution to the Riccati equation produced in Chapter 3. An important element

of this iteration is the small parameter g > 0, which describes the strength of the inter-

action. In this sense, the nonlinear terms introduced in this model are treated as small

perturbations to the system of Chapter 3 when the particle interactions are weak.

In Chapter 5, we return to the physical setting of the periodic box to analyze the

celebrated model of Lee Huang and Yang. The approximate Hamiltonian of this model

factors over pairs of equal-and-opposite momenta, similar to the model of Chapter 2.

However, in distinction to Chapter 2, the Lee-Huang-Yang approximate Hamiltonian does

not conserve the number of particles. The pair-excitation operator that we introduce in

Chapter 5 is consequently an unbounded operator, defined on the Fock space F. Thus,

we extend the method of pair-excitation to study eigenstates of a quadratic approximate

Hamiltonian. Transforming the Lee-Huang-Yang Hamiltonian by an unbounded, non-

Hermitian operator means that we cannot immediately use the spectral theory for the

transformed Hamiltonian to derive the spectrum of the Lee-Huang-Yang Hamiltonian.

Indeed, we find that the (point) spectrum of the transformed Hamiltonian is the whole
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complex plane, C. The major result of Chapter 5 describes how we can identify a special

subset of eigenstates of the transformed Hamiltonian with ‘physical’ eigenstates of the

Lee-Huang-Yang Hamiltonian. We do this, in principle, without any prior knowledge

about the spectrum of the Lee-Huang-Yang Hamiltonian (which is derived in the seminal

paper [37]). The perspective of this chapter is to show that the analysis of the quadratic

Hamiltonian can be carried out via its non-unitary transformation (i.e., by ‘forgetting’ the

original Hermitian problem). We do this in order to demonstrate how the pair-excitation

method is capable of reproducing all the usual results of achievable by other methods.

We then derive new formulas for excited many-body eigenstates of the Lee-Huang-Yang

system in the momentum basis by making use of the pair excitation operator, as was done

in previous chapters. The many-body excited states of the transformed system are not

necessarily finite superpositions of momentum states; however, we find that eigenstates

which correspond to the Lee-Huang-Yang Hamiltonian are precisely the transformation

of finite superposition states.

We conclude the thesis with an overview in Chapter 6, where we discuss the con-

sequences of this work for understanding the phonon spectrum and quasiparticles in the

Bose gas. We then discuss possible extensions of the work to physically relevant settings.

We will describe the formalism of pair excitation independently in each of the chap-

ters, as it builds on the core methods of mean-field theory.
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Chapter 2

Common Mathematical themes and a Motivating Example

2.1 Periodic Box

We now describe a simplified model system which illustrates significant features

of the models in chapters to come, while avoiding many of their technical complica-

tions. This section will also be an opportunity to introduce notation that will be present

throughout the rest of the work, and familiarize the reader with the kinds of heuristic

approximation that we employ in Chapters 3, 4, and 5.

Consider N particles, where N is finite but large, in the box with size L, denoted BL,

which has volume |BL| := L3, with periodic boundary conditions and repulsive pairwise

particle interactions specified by the potential υ(x− y) := gδ (x− y), x,y ∈ R3. Here, as

in what follows, δ denotes the Dirac delta function, and the parameter g > 0 describes

the stregth of the repulsive interaction. On the Hilbert space L2
sym(R3N) of symmetric

N−particle wavefunctions, the quantum many-body Hamiltonian for this system reads :

HN =−
N

∑
j=1

∆ j +g
N

∑
i< j

δ (xi − x j), xi, x j ∈ R3. (2.1.1)

Here we choose units such that h̄ = 2m = 1, where h̄ is Planck’s constant, and m is the

atomic mass.

The Bosonic Fock space F is the natural domain for the approximation of HN . We

define F as the infinite direct sum of N−particle Fock subspaces, i.e.,
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F :=
∞⊕

n=0

Fn, for F0 := C, Fn := L2
sym(R3n).

Vectors on F will be represented in bra-ket notation, e.g.,

|u⟩ ∈ F =⇒ |u⟩= {un}, un ∈ Fn, n = 0,1,2 . . . ,

and the inner product on F is defined using the inherited inner-product from each of the

n−particle fibres; for |u⟩, |v⟩ ∈ F, their inner product is

⟨u,v⟩ :=
∞

∑
n=0

⟨un,vn⟩Fn.

Given a single-particle wavefunction f ∈ L2
sym(R3), we define the creation and annihila-

tion operators, {a( f ), a∗( f )} for the state f on the vector |u⟩ ∈ F component-wise by the

formulae: (
a( f )|u⟩

)n :=
√

n+1
∫

dx
{

f (x)un+1(x,x2, . . . ,xn)
}
,

(
a∗( f )|u⟩

)n :=
1√
n ∑

j≤n
f (x j)un−1(x1, . . . ,x j−1,x j+1, . . . ,xn) .

Thus, for n ∈ N fixed, a( f ) takes elements of Fn+1 to Fn when we consider both as

subspaces of the Fock space F. The operator a∗( f ) takes elements of Fn to Fn+1. It can

be verified that a∗( f ) is the Hermitian adjoint of a( f ) on F, and that for f ,g ∈ L2(R3),

the following canonical commutation relations hold:

[a( f ),a∗(g)] = ⟨ f ,g⟩L2, [a( f ),a(g)] = 0 = [a∗( f ),a∗(g)].

Given an orthonormal basis of single-particle states, {ek(x)} ⊂ L2(R3) (where k ranges

over some index set I), we define the basis of creation/annihilation operators

ak := a(ek), a∗k := a∗(ek). (2.1.2)
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It is immediate that the operator basis {ak, a∗k}k∈I satisfies the collection of canonical

relations

[ak, a∗k′] = δk,k′, [ak, ak′] = 0 = [a∗k , a∗k′],

where k,k ∈ I, and δk,k′ is Kronecker’s delta. The particular orthonormal basis that we

work with in this section consists of the momentum eigenfunctions on the domain BL:

ek(x) :=
eik·x√
|BL|

, where k :=
2πn

L
, n ∈ Z3. (2.1.3)

These are periodic functions (of spatial variable x ∈ BL) with period L and the index set I

is the dual lattice:

I= Z3
L := {k = 2πn/L

∣∣n ∈ Z3}.

We also define the momentum half-space, Z+
L , which will make the description of pair-

excited states simpler:

Z+
L := {k = 2πn/L

∣∣n ∈ Z3, n3 > 0}.

Finally, the field operators ax, a∗x are defined for x ∈R3 as operator-valued distribu-

tions:

ax := ∑
k∈I

ek(x)ak, a∗x := ∑
k∈I

ek(x)a∗k . (2.1.4)

These operators satisfy:

[ax, a∗y ] = δ (x− y), [ax, ay] = 0 = [a∗x , a∗y ].

The Hamiltonian HN can be lifted to the Bosonic Fock space via the field operators:

H =
∫

dx
{

a∗x(−∆x)ax
}
+

g
2

∫
dx
{

a∗xa∗xaxax
}
. (2.1.5)
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Inserting (2.1.4) into the expression (2.1.5), and expanding in the momentum basis yields

exact many-body Hamiltonian in the momentum-basis creation/annihilation operators:

H = ∑
k∈Z3

L

|k|2a∗kak +
g

2|BL| ∑
k1+k2=k3+k4

a∗k1
a∗k2

ak3ak4 . (2.1.6)

We consider in this section a particle-conserving approximation Happrox ≈H , and

the resulting construction of many-body excited states for Happrox. The approximation is

heuristic, which means that we do not, e.g., compute error in using the resulting eigen-

states in place of the eigenstates belonging to H . By particle-conserving, we mean that

both H as well as the resulting approximate Fock space Hamiltonian Happrox commute

with the number operator N : F→ F, defined by

N := a∗0a0 + ∑
k ̸=0

a∗kak.

As written, this definition singles-out the particle-number operator for the zero-momentum

condensate, e0(x) = 1/
√

|BL|. Since [H ,N ] = 0, we can restrict the problem to the

N−particle fiber of F, for N finite but large, so that

N |Ψ⟩=
(

a∗0a0 + ∑
k ̸=0

a∗kak

)
|Ψ⟩= N|Ψ⟩, for all |Ψ⟩ ∈ FN . (2.1.7)

The approximation is now described [45]. The fundamental assumption is the condition

for small fluctuation around the condensate occupation number. The assumption may be

considered as a restriction on the domain of the resulting approximate Hamiltonian – we

consider only states |Ψ⟩ ∈ FN such that, for fixed 0 < ξ < 1, the following inequality

holds: ∣∣∣〈Ψ,(Nξ −a∗0a0)Ψ
〉
F

∣∣∣≪ N, (2.1.8)

where ξ is (loosely) defined as the fraction of particles in the condensate.

13



We rewrite the interaction part of the Hamiltonian, separating the different powers

of condensate operators {a0,a∗0}:

g
2|BL| ∑

k1,k2,k3,k4∈Z3
L

k1+k2=k3+k4

a∗k1
a∗k2

ak3ak4 := H0 +H2 +H3 +H4. (2.1.9)

The operators H0,H2,H3,H4 refer to

H0 =
g

2|BL|
(a∗0)

2(a0)
2,

H2 =
g

2|BL| ∑
k ̸=0

(
(a∗0)

2aka−k +a∗ka∗−k(a0)
2 +4(a∗0a0)a∗kak

)
,

H3 =
g

|BL| ∑
k1,k2 ̸=0

k1+k2 ̸=0

(
a∗0a∗k1+k2

ak1ak2 +a∗k1
a∗k2

a0ak1+k2

)

H4 =
g

2|BL| ∑
k1,k2,k3,k4 ̸=0
k1+k2=k3+k4

a∗k1
a∗k2

ak3ak4 .

(2.1.10)

Particle conservation and the restriction of the problem to FN implies the relation

a∗0a0 = N − ∑
k ̸=0

a∗kak = Nξ +
[
N(1−ξ )− ∑

k ̸=0
a∗kak

]
, on FN , (2.1.11)

and the assumption of the approximation allows us to treat higher powers of
[
N(1 −

ξ )−∑k ̸=0 a∗kak
]

as negligible. Thus as an example, the term H0 is rewritten under this

approximation as

H0 =
g

2|BL|
(a∗0a0)

2 =
g

2|BL|
{

Nξ +
[
N(1−ξ )− ∑

k ̸=0
a∗kak

]}2

≈ g
2|BL|

{
N2

ξ
2 +2Nξ

[
N(1−ξ )− ∑

k ̸=0
a∗kak

]}
=

g
2|BL|

{
N2

ξ (2−ξ )−2Nξ ∑
k ̸=0

a∗kak

}
.

(2.1.12)
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In a similar fashion, dropping the higher powers of
[
N(1−ξ )−∑k ̸=0 a∗kak

]
, we write

H2 ≈
g

2|BL| ∑
k ̸=0

(a∗0)
2aka−k +a∗ka∗−ka2

0

+
2g
|BL|

{
N2(1−ξ )2 −N(1−2ξ ) ∑

k ̸=0
a∗kak

} (2.1.13)

as well as

H4 ≈
g

|BL|

{
−N2(1−ξ )2 +2N(1−ξ ) ∑

k ̸=0
a∗kak

}
. (2.1.14)

Assembling the approximations above, and including the diagonal part of H , results in

the particle-conserving approximation

H ≈ Happrox :=
gρN

2

[
(1−ξ )2 +1

]
+ ∑

k ̸=0

(
k2 +gρξ

)
a∗kak +

g
2|BL| ∑

k ̸=0

(
(a∗0)

2aka−k +a∗ka∗−ka2
0

)
.

(2.1.15)

The quantity ρ = N/|BL| is the total particle-density. When ξ → 1, i.e., when the con-

densation is complete, The approximation reads:

Happrox(ξ = 1) :=
gρN

2
+ ∑

k ̸=0

(
k2 +gρ

)
a∗kak +

g
2|BL| ∑

k ̸=0

(
(a∗0)

2aka−k +a∗ka∗−ka2
0

)
.

(2.1.16)

We will see that this approximate Hamiltonian is similar to the models of the follow-

ing chapters in several ways. In particular, Happrox represents a restriction of the model

in Chapter 3 to the spatial domain of the periodic box BL. Our use of the momentum

basis here, which reduces the off-diagonal terms of Happrox to couplings between pairs of

equal-and-opposite momenta, (k,−k), is special to the translation-invariant system. Com-

pared to the model in Chapter 4, this model and approximation scheme only includes the

effects of specific terms coming from the interaction – that is, the model of Chapter 4 re-

tains more terms from the interaction compared to this approximation. Finally, compared
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to the Lee-Huang-Yang model of Chapter 5, the model (2.1.16) is particle-conserving.

The pair-excitation transform which we now introduce will therefore be bounded on the

N−particle Fock space FN . This significantly simplifies the analysis of the spectrum for

the operator Happrox here (see the equation (2.1.18) in the next paragraph).

We now introduce the transformation of the approximate Hamiltonian,

exp(W )Happrox exp(−W ), in order to derive a formula for eigenstates of Happrox in the

Fock space FN . The operator W is defined via

W :=
1
N ∑

k∈Z+
L

−α(k)a∗ka∗−k(a0)
2, for 0 ≤ α(k)< 1 ∀k ∈ Z+

L . (2.1.17)

The general strategy for introducing the transformation by exp(W ) is to determine the

coefficients α(k) in such a way as to simplify the expression of the transformed operator.

On the N−particle fiber, FN , the operators W , and therefore exp(−W ), are bounded.

Thus, even through the operator W is non-Hermitian, the following equivalence of spectra

holds:

σ(Happrox) = σ
(

exp(W )Happrox exp(−W )
)
. (2.1.18)

The conjugations of the momentum basis operators with exp(W ) are given by:

exp(W )a0 exp(−W ) = a0,

exp(W )a∗k exp(−W ) = a∗k ,

exp(W )ak exp(−W ) = ak +
α(k)

N
a∗−ka2

0,

exp(W )a∗0 exp(−W ) = a∗0 −
2
N ∑

k∈Z+
L

α(k)
(
a∗ka∗−k

)
a0.

(2.1.19)

In particular, the transformed approximate Hamiltonian exp(W )Happrox exp(−W ) will

contain cubic and quartic terms in momentum state creation/annihilation operators; these
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terms must be dropped on the basis of the approximation scheme. The result of the

formulae (2.1.19), after dropping the terms just described, is:

exp(W )Happrox exp(−W )≈ gρN
2

+
g

2ρ
∑

k∈Z3
L

α(k)+
g

2|BL| ∑
k∈Z3

L

aka−k(a∗0)
2

+ ∑
k∈Z3

L

(
k2 +gρ +gρα(k)

)
(a∗kak)

+ ∑
k∈Z3

L

((
k2 +gρ

)
α(k)+

gρ

2
+

gρ

2
(
α(k)

)2
)

a∗ka∗−k
a2

0
N
.

(2.1.20)

The last line of this approximation, which contains the terms proportional to (a∗ka∗−k), will

vanish provided that the following equation holds for α(k),

α(k) =
1

gρ

{
− (k2 +gρ)± k

√
k2 +2gρ

}
, (2.1.21)

Choosing the solution which corresponds to the plus sign in this expression entails

exp(W )Happrox exp(−W )≈ g
2ρN

+
g

2ρ
∑

k∈Z3
L

α(k)

+ ∑
k∈Z3

L

(
k
√

k2 +2gρ

)(
a∗kak

)
+

g
2|BL| ∑

k∈Z3
L

aka−k(a∗0)
2.

(2.1.22)

We consider eigenstates |Ψ(k)⟩ ∈ FN which are linear combinations of tensor product

states containing only the momenta (k,−k), and which solve the equation

exp(W )Happrox exp(−W )|Ψ(k)⟩= E|Ψ(k)⟩. (2.1.23)

For this purpose, states |Ψ⟩ ∈ FN are most succinctly described as vectors :

|Ψ⟩=
(

Ψ0,Ψ1, . . . ,Ψn, . . . ,ΨN−1,ΨN

)T
; (2.1.24)

the component Ψn in this vector refers to the symmetric tensor product that contains N−n

particles in the condensate e0(x), and n particles in a state orthogonal to the condensate,
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denoted Ψ⊥
n ∈ φ⊥(R3n), viz.,

Ψn := Ψ
⊥
n ⊗s (e0)

⊗sN−n.

In |Ψ(k)⟩, we assume that the component Ψ⊥
n is a linear combination of momentum states

ek(x) and e−k(x) for every n. In this notation, the eigenvalue problem (2.1.23) translates

to an upper triangular matrix eigenvalue problem for the vectors (Ψ0, . . . ,ΨN)
T . This is

because the terms in the transformed Hamiltonian (2.1.22) that correspond to momentum

k ∈ Z+
L either: (a) transform a component Ψn to Ψ̃n with the same number of particles in

the condensate, or (b) transform Ψn to a Ψ̃n−2, with 2 additional particles in the conden-

sate.

The eigenvalues E of this upper-triangular matrix equation are equal to the diagonal

elements of the matrix, which are

E =
(
k
√

k2 +2gρ
)
n, n = 0,1, . . . ,N −1,N. (2.1.25)

These are energies of the diagonal operator k
√

k2 +2gρ
(
a∗kak +a∗−ka−k

)
on FN . The off-

diagonal terms of (2.1.22) couple states of the form Ψ⊥
n ⊗s (e0)

⊗sN−n to states Ψ⊥
n−2 ⊗s

(e0)
⊗sN−n+2 where Ψ⊥

n−2 is the result of annihilating one particle with momentum k and

one particle with momentum −k from Ψ⊥
n . Using the integer p as before to denote the

difference in the particle number between states with momentum k and those with mo-

mentum −k, we can write the (non-normalized) eigenstates as

|Ψp,N(k)⟩ :=
(N−p)/2

∑
s=0

ỹ(k)−s
(

N
s

)((p+ s
s

))−1/2((2N
2s

))−1/2( 1
2s!

)−1/2
|s+ p,s⟩FN ,

(2.1.26)

for

|s+ p,s⟩FN :=
(
(ek)

⊗ss+p ⊗s (e−k)
⊗ss ⊗s (e0)

⊗sN−2s−p
)
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and

ỹ(k) :=
g

|BL|k
√

k2 +2gρ
.

Note that for every state in |Ψp,N(k)⟩ there is a degenerate state |Ψ(−)
p,N(k)⟩ involving a

linear combination of the tensor products (ek)
⊗ss ⊗s (e−k)

⊗ss+p ⊗s (e0)
⊗sN−2s−p. There-

fore, the degeneracy of states with energy E is 2N+1, exactly the same as the degenerate

subspaces of HLHY. The expression exp(W )|Ψp.N(k)⟩ then gives the eigenstates of HWu.

2.2 Overview of mathematical themes

We conclude this introduction by discussing how the model introduced here will

be altered in the chapters that follow, and the more complicated analysis that the pair-

excitation method will entail.

In Chapter 3 we extend the approximation scheme for the exact Hamiltonian to the

non-translation-invariant setting, where the condensate is trapped in an external potential

Vtrap(x). This means that we will no longer represent the Hamiltonian using the momen-

tum basis operators {ak, a∗k}; instead we employ the position space field operators orthog-

onal to the condensate, {a⊥,x, a∗⊥,x}, and approximate the exact Fock space Hamiltonian

by, e.g., dropping terms which are cubic/quartic in these operators. The parameter α(k)

in the pair-excitation operator W of equation (2.1.17) will become a spatially-dendent

pair-exctation kernel, denoted by k(x,y). This kernel will be chosen by imposing a sim-

ilar constraint on the transformed approximate Hamiltonian, in order to cancel out terms

proportional to field operators a∗⊥,xa∗⊥,y. The quadratic equation (2.1.21) for α(k) will

translate to a nonlinear operator Riccati equation for the kernel k(x,y). Indeed, α(k)
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corresponds to the inverse Fourier transform of a kernel k(x,y), which is a translation-

invariant function of |x− y| in the periodic box.

In order to derive a formula for the spectrum and eigenstates of the approximate

Hamiltonian in the non-translation-invariant setting – analogous to the formula (2.1.25)

for elementary excitations, and formula (2.1.26) for the eigenstates – we must determine

some single-particle basis such that finite collections of tensor product states of these

these basis elements form invariant subspaces of the transformed Hamiltonian. This new

basis will be determined as part of a non-Hermitian eigenvalue problem for the single-

particle operator in the diagonal of the transformed Hamiltonian. We will see that this

basis has an intimate connection to the pair-excitation kernel k(x,y).

Finally, in Chapter 5, we return to the periodic box, to extend the method described

here to the Lee-Huang-Yang approximate Hamiltonian. This model for low-lying excita-

tions does not conserve the total number of particles. We will have to take exceptional care

to formulate the theory for many-body states on the Fock space F as a result. The spectral

theory for the unbounded, non-Hermitian transformed Hamiltonian will have several dif-

ferent cases, which correspond to the momentum subspaces that we consider eigenstates

to live in. One case (i.e., range of momenta) will correspond to a simple extension of the

results displayed here. We treat Chapter 5 as the first step in formulating a pair-excitation

method for general quadratic Hamiltonians.
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Disclaimer on Notation

We will be dealing with several different models in this work. So as to not introduce

an inordinate number of symbols, each chapter defines its own notation. This comes at the

risk of re-using certain symbols to refer to different quantities across different chapters

(for example, the Hamiltonian H will be different between two different chapters).
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Chapter 3

Pair-excitation in non-translation-invariant systems

3.1 Background

In this chapter, our goal is to describe the excited many-body eigenstates of an in-

teracting Bose system in an external trapping potential. We employ a simplified effective

model: a Hamiltonian, called Happ, that is quadratic in the Boson field operators for non-

condensate atoms and captures pair creation [60]. This Happ commutes with the particle

number operator; thus, the total number of particles is conserved in Fock space. We for-

mally construct Happ from the full many-body Hamiltonian with a regularized interaction

potential. By invoking the formalism of Wu, [60, 61] we apply a non-unitary transforma-

tion to Happ. For stationary states, we analyze the role of the pair excitation kernel, k,

a function of two spatial variables introduced by this transformation. This k expresses

the scattering of atoms from the condensate in pairs; and satisfies a nonlinear integro-

differential equation. We develop an existence theory for this equation by a variational

approach. Our treatment reveals a previously unnoticed connection of k to the one-particle

excitation wave functions, u j and v j, introduced independently by Fetter via Bogoliubov-

type rotations [20]. These functions obey a system of linear partial differential equations

(PDEs). Our analysis sheds light on the existence of the eigenfunctions u j and v j, and

eigenvalues E j, for this system. By the non-Hermitian Hamiltonian that results from the

transformed Happ, we derive a nonlocal PDE for phonon-like excitations in the trap; and
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express its solutions in terms of u j and v j. We firmly relate the eigenvalues of this nonlo-

cal PDE with E j; and recover the excitation spectrum obtained in Ref. [20]. Our approach

yields an explicit construction of the excited many-body eigenstates of Happ in the sector

of Fock space with a fixed number of particles.

Our tasks and results can be outlined as follows (see also Section 3.2):

• Starting from a many-body Hamiltonian with positive and smooth interaction and

trapping potentials, we formally apply an approximation scheme that leads to a

Hamiltonian, Happ, quadratic in the Boson field operator for noncondensate atoms.

Happ is a regularized version of the model in Ref. [61]. The total number of parti-

cles is conserved.

• For stationary states, we invoke the concept of pair excitation [60]. A key ingredient

is the pair excitation kernel, k, which is involved in a non-unitary transformation of

Happ. In operator form this k satisfies a Riccati equation.

• By constructing a functional of k, we prove the existence of solutions to the oper-

ator Riccati equation in an appropriate space. Our analysis, based on a variational

principle, differs from many previous treatments of the operator Riccati equation.

We indicate the possibility of multiple solutions for k, and distinguish the physically

relevant, unique solution via a restriction on the operator norm of k.

• We provide an explicit construction of the eigenstates of Happ in the N-particle

sector of Fock space. We show that the spectrum of Happ is positive and discrete.

• We show that the existence of solutions to the equation for k implies existence of
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solutions to the eigenvalue problem for the one-particle excitation wave functions

u j and v j with a regularized interaction in Ref. [20]. We employ the theory of J-

self-adjoint operators by Albeverio and coworkers [2–4, 13]. Hence, we connect

the apparently disparate approaches for low-lying (phonon-like) excitations by Fet-

ter [20] and Wu [60, 61].

• As a consequence of the non-unitarily transformed Happ, we formally derive a one-

particle PDE (“phonon PDE”) for single-particle excitations in the trapped Bose

gas. By restricting the operator norm of k, we show that the point spectrum of

the Schrödinger operator of the phonon PDE coincides with physically admissible

eigenvalues E j of the PDEs for (u j,v j), in agreement with Ref. [20].

A highlight of our work is the existence proof that we develop for the one-particle

excitation wave functions u j and v j corresponding to ‘quasiparticles’ in a trapped Bose

gas [20]. The pair excitation kernel k, introduced through the non-unitary transforma-

tion of Happ, provides a crucial ingredient of this proof. Our work reveals a nontrivial

connection between the non-Hermitian framework of Wu [60] to the Hermitian view of

Fetter [20] for low-lying excitations via the operator theory of Albeverio and cowork-

ers; [2–4,13] see Fig. 3.1. Another highlight of our analysis is the explicit construction of

excited many-body eigenstates in the N-particle sector of the Bosonic Fock space by use

of the kernel k.

Our main focus is on the analysis of low-dimensional PDEs that formally result

from a non-unitary transformation of the approximate many-body Hamiltonian Happ [60,

61]. This Hamiltonian is a starting point of our analysis, and can be derived heuristically
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Figure 3.1: Schematic for the connection of two main physical approaches (left and right

panels) to the problem of excitations in the Bose gas via abstract operator theory (central

panel).

from the full many-particle Hamiltonian, as we show by using a regularized interaction

potential. In our procedure, we fix the (conserved) total number of atoms at the value N

(N ≫ 1). A rigorous justification for Happ lies beyond our scope. In a similar vein, in this

work we restrict ourselves to a plausibility argument for the extraction of the equation

for k. On the other hand, the analysis of solutions is placed on mathematically firm

grounds. The thermodynamic limit (N → ∞) is not treated here. For this limit, see, e.g.,

Refs. [11, 42].

The non-unitarily transformed Hamiltonian considered here has space-time reflec-

tion symmetry. The systematic study of the pair-excitation kernel in the framework of

space-time-reflection-symmetric quantum theories [6] lies beyond our scope.

Our motivation for the non-Hermitian view is outlined in Section 3.1.2. Previous

related works are discussed in Section 3.1.3. The underlying mathematical formalism

is reviewed in Section 5.1.3. The chapter organization is sketched in Section 3.1.5. (The

reader who wishes to skip the remaining introduction and read result highlights is deferred

to Section 3.2.)
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3.1.1 A review of the mean field theory for BEC

Mathematical models for BEC aim to predict macroscopic quantities – such as the

transition temperature, density of particles occupying the condensate, ground-state en-

ergy, as well as the scattering of condensate particles to other states – from the micro-

scopic quantum dynamics of bosons. The underlying physical system is described by the

(non-relativistic) many-body Schrödinger equation for bosons, viz.,

HΨ = i∂tΨ, (i2 =−1), (3.1.1)

where H is the (self-adjoint) system Hamiltonian, t is time, and Ψ is the symmetric

many- (N-) body wavefunction. Notably, the solution Ψ to this equation lives in a high-

dimensional space,

Ψ(t,x1, ...,xN) : R×R3N → C,

by virtue of the large number of particles involved. The presence of particle-particle inter-

actions in the mathematical expression for H renders the problem of solving the equation

for Ψ intractable in realistic systems. Importantly though, extracting information about

many macroscopic quantities from the (microscopic) Schrödinger dynamics does not re-

quire solving equation (3.1.1) for all particles. It is possible to make predictions for the

macroscopic behavior of the system via solutions of simpler, effective low-dimensional

equations of motion.

This thesis takes a knowledge of the mean-field theory for BEC for granted as the

starting point of many of the approximations. In this vein, the mean-field approxima-

tion for BEC is capable of reproducing many observed quantities of interacting bosonic

systems with a drastic reduction in complexity [31, 43]. The core assumption for (time-
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independent) mean-field models is that the many-body ground state wavefunction takes

the following form:

Ψ(t,x1, ...,xN) = e−itEtot
N

∏
i=1

φ(xi), φ : R3 → C

where Etot is the total ground state energy of the system. Furthermore, the many-body

Hamiltonian H is approximated in a way consistent with the above assumption for Ψ.

The macroscopic or condensate (one-particle) wavefunction φ(x) involved in the above

tensor product for Ψ satisfies a (low-dimensional) nonlinear Schrödinger equation in R3

with cubic nonlinearity, known as the “Gross-Pitaevskii equation” [32, 53]. For a system

with an external trapping potential Vtrap(x) : R3 → R and hard-sphere, repulsive particle-

particle interactions, the Gross-Pitaevskii equation reads

−∆φ(x)+Vtrap(x)φ(x)+g|φ(x)|2φ(x) = Eφ(x), g > 0.

The constant E measures the energy per particle of the condensate and g is the strength

of the interactions. This mean field theory provides a ground state energy E per particle

that approaches the actual ground state energy per particle of the many-body system in

the limit N → ∞ [43]. For a system with a more general interaction potential υ (as in

(1.0.1)), the mean-field approximation yields a Hartree equation, viz.,

−∆φ(x)+Vtrap(x)φ(x)+g(υ ∗ |φ(x)|2)(x)φ(x) = Eφ(x), g > 0,

where υ ∗ |φ(x)|2 denotes the convolution integral of the potential υ(x) with the conden-

sate density |φ(x)|2.
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3.1.2 Why a non-Hermitian view?

The reader may raise the following question: What is the motivation for pursuing a

non-unitary transformation of a many-body Hamiltonian? After all, non-unitary transfor-

mations are often deemed as mathematically hard to deal with. Our motivation is twofold.

First, from a physics perspective, it can be argued that the formalism involving the

pair-excitation kernel is a natural extension of the systematic treatment by Lee, Huang and

Yang for the setting with translation invariance and periodic boundary conditions [37].

In their case, the eigenvectors of the many-body Hamiltonian can be approximately ex-

pressed in terms of the action of a non-unitary operator, e−K , on finite superpositions

of tensor products of one-particle momentum (ppp) states [37]. The exponent K is of the

form [37, 60]

K =
1
2 ∑

ppp̸=0
α(ppp)a∗pppa∗−ppp ,

where appp (a∗ppp) is the annihilation (creation) operator at one-particle momentum ppp, ppp ∈

(2π/L)Z3 and L is the linear size of the periodic box. The function α(ppp), where α :

(2π/L)Z3 → R+, yields the phonon spectrum. The operator a0 was replaced by
√

N

times the identity operator, which amounts to the Bogoliubov approximation [57].

Inspired by Wu’s extension to the non-translation invariant setting, [60, 61] for sta-

tionary states we consider a Hamiltonian that conserves the total number of atoms. We

also replace the exponent K by an integral W over R3 ×R3. This integral involves the

pair excitation kernel k, a symmetric function of two spatial variables, viz.,

W =−(2N)−1
∫∫

R6
dxdy a∗xa∗y k(x,y)a(φ)2.

Here, a∗x is the Boson field creation operator at position x, φ denotes the condensate wave

28



function, a(φ̄) is the Boson field annihilation operator for the single-particle state φ , and

φ is assumed to be orthogonal to k; see Section 5.1.3. We stress that the operator W

commutes with the particle number operator, and therefore is restricted to the N-particle

sector of Fock space. Thus, W is a well-defined and bounded operator in our formulation.

The kernel k must obey a nonlocal PDE [60,61]. We will prove the existence of stationary

solutions to this PDE and explore its implications. Note that a(φ) is not replaced by a

c-number in our approach. The existence of k paves the way to addressing physically

tangible properties of the Bose gas in a meaningful way. For example, in Section 3.7

we outline the explicit fashion by which one can describe particle-particle correlations by

invoking k.

We prove that the W -based formalism, in conjunction with the effective Hamilto-

nian Happ for pairs, yields the known excitation energy spectrum for the Bose gas, in

agreement with other works, e.g., Ref. [20, 42]. In particular, Fetter’s approach [20] em-

ploys a Bogoliubov-type rotation of Boson field operators in the space orthogonal to φ .

The underlying Hamiltonian does not commute with the particle number operator. Here,

we place emphasis on the role of the pair-excitation kernel k, in the context of a Hamil-

tonian (Happ) that conserves the total number of particles. By using k, we transform the

effective Hamiltonian non-unitarily and explicitly construct the excited many-body eigen-

states in the N-particle sector of Fock space. The use of a non-unitary transformation with

k here results in a diagonalization scheme that has upper triangular structure.

Another reason for pursuing a non-Hermitian view is that this spells out previ-

ously unnoticed connections of abstract operator theory to phonon-like excitations in the

trapped Bose gas. We identify the governing equation for k with an operator Riccati equa-
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tion. The latter has been studied extensively by Albeverio and coworkers; [2–4] see also

Refs. [13, 36, 58]. Our existence theory for k, based on a variational approach, differs

from existence proofs found in these works. Our formalism has a different flavor from

the variational approaches for operator matrices in Ref. [58]. We exploit the connection

of pair excitations to the operator Riccati equation to prove existence of solutions to the

PDE system for the quasiparticle-related excitation wave functions derived heuristically

in Ref. [20]. The Riccati equation for k is inherent to the non-Hermitian formalism [60].

We establish that the excitation spectrum by Fetter’s approach [20] comes from the eigen-

value problem for a J-self-adjoint operator intimately connected to k. We use a regularized

interaction potential in the place of the delta-function potential of Refs. [20, 60, 61]. Our

findings for the excitation spectrum are independent of the particle-conserving (or not)

character of the Hamiltonian. In contrast, the construction of the many-body eigenstates

relies on particle conservation.

3.1.3 On related past works

The quantum dynamics of the Bose gas has been the subject of numerous studies.

It is impossible to exhaustively list this bibliography. Here, we make an attempt to place

our work in the appropriate context of the existing literature. For a broad view on Boson

dynamics, the interested reader may consult, e.g., Refs. [15, 31, 40, 43, 55, 57, 62].

Mean field limits of Boson dynamics are usually captured by nonlinear Schrödinger-

type equations for the condensate wave function [32, 53, 60]. Such limits have been rig-

orously derived from kinetic hierarchies in distinct scaling regimes for the atomic inter-
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actions; see, e.g., Ref. [19]. Our focus in this chapter is different. We primarily address

the analysis of low-order PDEs that aim to provide corrections to the mean field dynam-

ics. We also describe connections of the PDE solutions to the excitation spectrum and

many-body eigenstates of an approximate Hamiltonian for pair creation.

Second-order corrections to the mean field time evolution have been studied through

a Bogoliubov-type transformation [29,30]. Although these works are inspired by Wu’s ap-

proach, [60,61] they are not strictly faithful to his formalism. In Refs. [29,30], the many-

body Hamiltonian is transformed unitarily whereas in Refs. [60, 61] the corresponding

transformation is non-unitary. Here, we take a firm step towards showing the importance

of the latter approach via a minimal model, applying a non-unitary transformation to an

effective approximate Hamiltonian in the stationary setting.

Wu’s formal treatment of the interacting Bose system in non-translation invariant

settings aims to transcend the mean field limit [60, 61]. This approach has motivated the

use of the pair-excitation kernel k as a means of improving error estimates for the time

evolution of Bosons. [31] It has been shown that a unitary, Bogoliubov-type transforma-

tion of the many-body Hamiltonian that involves k yields considerably improved Fock

space estimates [26–30]. A price to pay for this improvement is that k satisfies a non-

local evolution PDE coupled with the condensate wave function. Because of the use of

a unitary transformation in Refs. [26–30], their PDE for k is different from the one in

Refs. [60, 61].

There are many other papers that tackle the problems of quantum fluctuations around

the mean field limit and the excitation spectrum of the Bose gas in the mathematics lit-

erature [7, 8, 10, 12, 17, 18, 41, 42, 46–50, 56]. A review of the challenges for the periodic
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setting is given by Seiringer [57]. Central roles in many treatments of the excitation spec-

trum are played by the Bogoliubov approximation and the Bogoliubov transformation.

In particular, in Ref. [42] Lewin and coworkers tackle aspects of this problem by use of

a quadratic Hamiltonian with a trapping potential via Fock space techniques in the limit

N → ∞. These works adopt a Hermitian view, and thus differ from our work. Note that in

Ref. [18] the expectation of a quadratic many-body Hamiltonian is minimized over pure

Gaussian states. This procedure causes elimination of terms that do not preserve the num-

ber of particles and leaves solely quasiparticle excitations [18]. However, because of the

lack of the notion of a kernel in this formulation, the connection of the exponential struc-

ture of the many-body eigenstates to Fetter’s one-particle excitation wave functions u j and

v j, [20] which is pointed out here, is absent in Ref. [18]. To the best of our knowledge,

the PDE system for u j and v j has not been rigorously studied until now.

In physics, the excitation spectrum of the Bose gas in non-translation invariant set-

tings has been described by many authors; for reviews see, e.g., Refs [5, 15, 24, 25, 39,

51, 54]. We single out the work by Fetter [20–22] who formally addresses the excitation

problem through an intriguing PDE system. The existence of solutions to this system

has not been studied until now. The underlying many-body formalism relies on a uni-

tary, Bogoliubov-type transformation of Boson field operators for noncondensate parti-

cles. This leads to a formula for the excitation spectrum in terms of the eigenvalues E j

of the PDE system [20]. This formalism has been invoked in the modeling of phonon

scattering [16] and condensate fluctuations [25].

Our analysis brings forth an intimate mathematical connection of Fetter’s theory [20]

to Wu’s approach [60]. Regarding the existence theory for the operator Riccati equation
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obeyed by k, we develop a variational approach which significantly differs from the previ-

ously invoked fixed-point argument [4,13]. We show that this theory naturally implies the

existence of solutions to Fetter’s PDE system for a regularized interaction potential [20].

We also construct through k the eigenvectors of the approximate Hamiltonian Happ in the

N-particle sector of Fock space. The particle-conserving character of the model is key in

this construction.

3.1.4 Notation and terminology

• The symbol f denotes the complex conjugate of f , while A∗ stands for the Hermi-

tian adjoint of operator A. The symbol A indicates the operator which acts according

to A[ f ] = {A[ f ]} for all functions f in the domain of A.

• In the symbol
∫

the integration limits are omitted. The corresponding region is R3

(for
∫

dx) or R3 ×R3 (for
∫

dxdy).

• The (symmetric) inner product of complex-valued f ,g ∈ L2(R3) is defined by

⟨ f ,g⟩=
∫

dx
{

f (x)g(x)
}
.

The respective inner product of complex-valued f ,g ∈ L2
V (R3) is ⟨ f ,V g⟩ for posi-

tive external potential V (x). The L2-norm of f is denoted ∥ f∥2. For some operator

k, the (symmetric) inner product of f (x) and k(x,g) is denoted
〈

f ,k(·,g)
〉
.

• Function spaces on Rd (e.g., d = 3) are denoted by lowercase gothic letters, viz.,

h(Rd) := L2(Rd) , h1(Rd) := H1(Rd) , h1
V (Rd) := H1(Rd)∩L2

V (Rd) .
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We write h, h1, h1
V for these spaces if d = 3. As an exception to this notation, we

define φ⊥ :=
{

e ∈ h1
V

∣∣ e ⊥ φ
}

where φ ∈ h1 is the condensate wave function.

• For a given ordered set {e j(x)} j ⊂ h, we occasionally use the symbol ⟨A⟩ j for the

inner product ⟨e j,a(·,e j)⟩, taking A := a(x,y).

• The symbol (υ ∗g)(x) denotes the convolution integral
∫

dyυ(x− y)g(y).

• The space of bounded linear operators on h is denoted B(h), with norm ∥ · ∥op.

Also, the space of trace-class operators on h is denoted B1(h) with norm

∥A∥B1(h) = ∥A∥1 = tr|A| , ∀ A ∈B1(h) .

Similarly, the space of Hilbert-Schmidt operators on h is B2(h) with norm

∥A∥B2(h) = ∥A∥2 = (tr|A∗A|)1/2 , ∀ A ∈B2(h) .

The space of compact operators on h is B0(h). Note the inequalities

∥A∥op ≤ ∥A∥2 ≤ ∥A∥1 ,

and the inclusions B1(h)⊆B2(h)⊆B0(h)⊆B(h).

• We express operators on h by use of their integral kernels which we denote by

lowercase greek or roman letters. For example, we employ the expression δ (x,y),

in place of δ (x− y), of the Dirac mass for the identity operator. In this vein, an

effective one-particle Hamiltonian of interest is denoted by the singular kernel

h(x,y) :=
{
−∆+V (x)+N(υ ∗ |φ |2)(x)

}
δ (x,y)+Nφ(x)υ(x− y)φ(y)−µδ (x,y) ,
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where φ(x) is the condensate wave function, V (x) is the trapping potential, υ(x)

is the two-body interaction potential, and µ is a constant. Another example of

notation is k(x,y) for the pair-excitation operator. We use the superscript ‘T ’ for

a kernel to denote its transpose. The star (∗) as a superscript indicates the adjoint

(complex conjugate and transpose) kernel; e.g., k∗(x,y) = k(y,x). We write k ∈S

to mean that ‘the operator with integral kernel k’ belongs to the space S, e.g., for

S=B2(h).

• The composition of operators h and k is expressed by

(h◦ k)(x,y) :=
∫

dx′
{

h(x,x′)k(x′,y)
}
.

• If a bounded operator k ∈B(h) acts on f ∈ h, the result is the function

k(x , f ) :=
∫

dx′ {k(x,x′) f (x′)} , or k( f ,x′) :=
∫

dx{ f (x)k(x,x′)} .

The same notation is used for kernels corresponding to unbounded operators, with

the understanding that the domain of such an operator is defined appropriately.

• For f ,g ∈ h the tensor-product operator corresponding to integral kernel f (x)g(x′)

is sometimes expressed as f ⊗g. The symmetrized tensor product of f ,g is

f ⊗s g :=
1√
2

{
f ⊗g+g⊗ f

}
.

• For the condensate wave function φ ∈ h with L2-norm ∥φ∥2 = 1, the projection

operator δ̂ : h→ h is defined by

δ̂ (x,y) = δ (x,y)−φ(x)φ(y) .
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• The Bosonic Fock space F is a direct sum of n-particle symmetric L2-spaces, viz.,

F=
∞⊕

n=0

Fn ; F0 = C , Fn = L2
s (R3n) if n ≥ 1 .

Hence, vectors in F are described as sequences {un} of n-particle wave functions

where un ∈ L2
s (R3n), n ≥ 0. The inner product of |u⟩= {un}, |w⟩= {wn} ∈ F is

⟨u,w⟩F :=
∞

∑
n=0

⟨un,wn⟩L2(R3n) ,

which induces the norm ∥|u⟩∥ =
√

⟨u,u⟩F. We employ the braket notation for

Schrödinger state vectors in F to distinguish them from wave functions in L2
s (R3n).

We often write the inner product of |u⟩ with A |w⟩ (A : F 7→ F) as ⟨u|A |w⟩. The

vacuum state in F is |vac⟩ := {1,0,0, . . .}, where the unity is placed in the zeroth

slot. A symmetric N-particle wave function, ψN ∈ L2
s (R3N), has a natural embed-

ding into F given by |ψ⟩N = {0,0, . . . ,ψN(x),0, . . .}, where ψN(x) is in the N-th

slot. The set of such state vectors |ψ⟩N is the ‘N-th fiber’ (N-particle sector) of F,

denoted FN . We sometimes omit the subscript ‘N’ in |ψ⟩N , simply writing |ψ⟩.

• A Hamiltonian on L2
s (R3N) admits an extension to an operator on F. This extension

is carried out via the Bosonic field operator ax and its adjoint, a∗x , which are indexed

by the spatial coordinate x ∈ R3. To define these field operators, first consider the

annihilation and creation operators for a one-particle state f ∈ h, denoted by a( f )

and a∗( f ). These operators act on |u⟩= {un} ∈ F according to

(
a( f )|u⟩

)n :=
√

n+1
∫

dx f (x)un+1(x,x2, . . . ,xn) ,

(
a∗( f )|u⟩

)n :=
1√
n ∑

j≤n
f (x j)un−1(x1, . . . ,x j−1,x j+1, . . . ,xn) .
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We often use the symbols a f := a( f ) and a∗f := a∗( f ). Also, given an orthonormal

basis, {e j(x)} j ⊂ h, we will write a∗j in place of a∗(e j) and a j in place of a(e j).

• The Boson field operators a∗x , ax are now implicitly defined via the integrals

a∗f =
∫

dx
{

f (x)a∗x
}
, a f =

∫
dx
{

f (x)ax
}
.

By the orthonormal basis {e j(x)} j, the field operators are expressed by

a∗x = ∑
j

e j(x)a∗j , ax = ∑
j

e j(x)a j .

The canonical commutation relations [ax,a∗y ] = δ (x− y), [ax,ay] = 0 then follow.

• The Boson field operators orthogonal to the condensate φ ∈ h are defined by

a⊥,x =
∫

dy
{

δ̂ (x,y)ay

}
=
∫

dy
{

ayδ̂
T (y,x)

}
,

a∗⊥,x =
∫

dy
{

δ̂
T (x,y)a∗y

}
=
∫

dy
{

a∗y δ̂ (y,x)
}

.

We can decompose the Boson field operators according to the equations

ax = a⊥,x +φ(x)a
φ
, a∗x = a∗⊥,x +φ(x)a∗φ . (3.1.2)

It is worthwhile to notice the commutation relations

[
a⊥,x,a∗⊥,y

]
= δ̂ (x,y) ,

[
a∗⊥,x,a⊥,y

]
=−δ̂

T (x,y) ,
[
a

φ
,a∗⊥,x

]
=
[
a⊥,x,a∗φ

]
= 0 .

• Fock space operators such as the Hamiltonian H are primarily denoted by cal-

ligraphic letters. Some exceptions pertain to annihilation and creation operators

including ax, a∗x , a⊥,x, a∗⊥,x; and a
φ
,a∗

φ
as well as a j,a∗j associated with the basis

{e j(x)} j ⊂ h.

• Functionals on Banach spaces are often denoted also by calligraphic letters.
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3.1.5 Chapter organization

The remainder of the chapter is organized as follows. In Section 3.2 we summarize

our results. Section 3.3 focuses on the formal construction of the Hamiltonian Happ, and

the derivation of the operator Riccati equation for the pair-excitation kernel k. In Sec-

tion 3.4 we develop an existence theory for this Riccati equation. In Section 3.5 we de-

scribe the excitation spectrum and construct the associated eigenvectors of Happ. Key in

this description is our use of the N-particle sector of the Bosonic Fock space. Section 3.6

addresses the connection of our theory for low-lying excitations to Fetter’s approach [20]

and the properties of J-self-adjoint operators [4]. In Section 3.7 we conclude this chapter

and discuss some implications.

3.2 Hamiltonian model, main results and methodology

In this section, we define the many-body Hamiltonian, and summarize our results

and approach. The starting point is the many-body Hamiltonian in Fock space, viz.,

H =
∫

dxdy
{

a∗xε(x,y)ay +
1
2

a∗xa∗yυ(x− y)axay

}
, (3.2.1)

where ε(x,y) = {−∆x +V (x)}δ (x,y) is the kinetic part, υ(x) is the pairwise interaction

potential, and V (x) is the trapping potential. We assume that υ(x) is positive, symmetric,

integrable and bounded on R3. The trapping potential V (x) is positive and such that the

one-particle Schrödinger operator −∆+V has discrete spectrum.
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3.2.1 Reduced Hamiltonian and operator Riccati equation for k

Section 3.3 describes Wu’s approach [61] in a language closer to operator theory,

which serves our objectives. By heuristics, we reduce Hamiltonian (3.2.1) to the quadratic

form

Happ = NEH +h(a∗⊥,a⊥)+
1

2N
fφ (a∗⊥,a

∗
⊥)a

2
φ
+

1
2N

fφ (a⊥,a⊥)a∗φ
2 ,

where EH is the (mean field) Hartree energy per particle, h(a∗⊥,a⊥) and fφ (a⊥,a⊥) are

operators of the form
∫

dxdy{a∗⊥,xh(x,y)a⊥,y} and
∫

dxdy{a⊥,x fφ (x,y)a⊥,y} for suitable

kernels h(x,y) and fφ (x,y), and φ is the condensate wave function; see Section 3.3.1. Our

derivation of the reduced Hamiltonian Happ relies on (3.1.2) and the conservation of the

particle number. Our goal is to solve the eigenvalue problem Happ|ψ⟩= EN |ψ⟩.

Subsequently, we transform Happ non-unitarily according to H̃app := eW Happe−W

where the operator W is of the form −(2N)−1 ∫ dxdy {k(x,y)a∗⊥,xa∗⊥,y}a2
φ

which con-

serves the total number of particles; see Section 3.3.2. The Riccati equation for kernel k

is extracted via the requirement that the non-Hermitian operator H̃app does not contain

any terms with the product a∗⊥a∗⊥; see Section 3.3.3. If k(x,φ) = 0, the Riccati equation

for k reads

h◦ k+ k ◦hT + fφ + k ◦ fφ ◦ k = λ ⊗s φ ,

where the Lagrange multiplier λ is determined self-consistently.
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3.2.2 Existence theory for k

In Section 3.4, we introduce a functional of k and k by use of which we develop an

existence theory for k. This functional, E [k,k] : dom(E )→ R, reads

E [k,k] := tr
{(

δ − k ◦ k
)−1 ◦

(
k ◦h◦ k+

1
2

k ◦ fφ +
1
2

fφ ◦ k
)}

;

see Section 3.4.1 for the definition of dom(E ). Setting the functional derivative of E [k,k]

with respect to k equal to zero yields the Riccati equation for k.

We prove the existence of solutions to the Riccati equation for k by assuming that

h(e,e)−
∣∣ fφ (e,e)

∣∣≥ c∥e∥2
L2 ∀e ∈ φ

⊥ =
{

e ∈ h1
V
∣∣ e ⊥ φ

}
.

In particular, this condition is satisfied if φ is a minimizer of the Hartree energy, EH . The

aforementioned inequality is employed as a hypothesis in the main existence theorem,

Theorem 1 (Section 3.4.2). In fact, Theorem 1 states that the above inequality and the

property that fφ is Hilbert-Schmidt imply that the functional E restricted to dom(E )⊥ =

dom(E )∩{k ∈B2(h
1
V )
∣∣k(x,φ) = 0} attains a minimum for some k ∈ dom(E )⊥ which is

a weak solution to the operator Riccati equation. We emphasize that φ does not need to

be a minimizer of the Hartree energy. Our proof makes use of a basis of φ⊥, the theory of

complex (C -) symmetric operators and a variational principle based on functional E . In

Section 3.4.3, we discuss the possible non-uniqueness of solutions to the Riccati equation.

3.2.3 Spectrum and eigenvectors of reduced non-Hermitian Hamiltonian

In Section 3.5, we study the eigenvectors and spectrum of the non-unitarily trans-

formed Hamiltonian H̃app, under the assumptions of Theorem 1 for k. A highlight of our
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analysis is the explicit construction of these eigenvectors in FN by Fock space techniques.

We write H̃app = NEH +Hph where

Hph := hph
(
a∗⊥,a⊥

)
+

1
N
(a∗φ )

2 fφ

(
a⊥,a⊥

)
;

hph
(
a∗⊥,a⊥

)
:=
∫

dxdy {a∗⊥,x(h+ k ◦ fφ )(x,y)a⊥,y} .

Evidently, hph(a∗⊥,a⊥) forms the diagonal part of H̃app − NEH . We show that hph is

responsible for the discrete phonon-like excitation spectrum of the trapped Bose gas.

The main result is captured by Theorem 2, which asserts the following equality of

spectra:

σ

(
Hph

∣∣
FN

)
= σ

(
hph(a∗⊥,a⊥)

∣∣
FN

)
.

Furthermore, in this theorem we show that for every eigenvector of hph(a∗⊥,a⊥) with

eigenvalue E there is a unique eigenvector of Hph with the same eigenvalue, E.

Our analysis is based on the following steps. First, we provide a formalism for

the decomposition of FN into appropriate orthogonal subspaces (Section 3.5.1). Our

technique is similar in spirit to that in the construction by Lewin, Nam, Serfaty and

Solovej [42]. However, here we consider the eigenvectors of a Hamiltonian that conserves

the number of particles as opposed to the Bogoliubov Hamiltonian studied in Ref. [42].

Second, we invoke k explicitly and show that by the restriction ∥k∥op < 1, the spectrum

of the one-particle Schrödinger-type operator hph is positive and discrete, and the corre-

sponding eigenfunctions form a non-orthogonal Riesz basis of φ⊥ (Section 3.5.2). The

proof of the main theorem (Theorem 2) relies on the above steps to show that the eigen-

value problem for Hph can be reduced to a finite-dimensional system of equations that

has an upper triangular form (Section 3.5.3).
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3.2.4 Connection to Hermitian approach

In Section 3.6, we compare our approach to Fetter’s formalism [20] which makes

use of Bogoliubov rotations. We prove the existence of solutions to a PDE system for

one-particle excitation wave functions, which reduces to Fetter’s system [20] when the

pairwise interaction potential υ is replaced by gδ for some constant g> 0. To this end, we

assume that a solution to the operator Riccati equation exists. We discuss the connection

of the Riccati equation for k to the theory of J-self-adjoint matrix operators by Albeverio

and coworkers [2–4] .

Starting with the relevant Bogoliubov Hamiltonian, [20] we indicate that its diago-

nalization via “quasiparticle” operators (in Fetter’s terminology) leads to the PDE system

( j = 1, 2, . . .)  hT
⊥ − fφ⊥

fφ⊥ −h⊥

◦

u j(x)

v j(x)

= E j

u j(x)

v j(x)


for the one-particle wave functions u j and v j and respective eigenvalues E j (Section 3.6.1).

Here, q⊥ (q = h, fφ ) is the projection of operator q on space φ⊥. We show that the exis-

tence of solutions to the Riccati equation for k implies the solvability of the above system

for (u j,v j); see Section 3.6.2. We also prove that the completeness relations between

u j and v j, previously posed by Fetter, [20] directly follow from our approach. In Sec-

tion 3.6.3 we invoke ideas from J-self-adjoint operator theory to show that the restriction

∥k∥op < 1 yields a positive spectrum {E j}∞
j=1 for the symplectic matrix involved in the

system for (u j,v j).
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3.3 Construction of many-body Hamiltonian for pairs

In this section, we formally construct the (Hermitian) Hamiltonian Happ for pair

excitation which is quadratic in the Boson field operators for noncondensate atoms, and

transform it non-unitarily. A core ingredient of this approach is that the number of atoms

is strictly conserved. We follow the treatment of Wu [60,61] but replace his delta-function

potential for repulsive pairwise atomic interactions by a smooth potential.

Section 3.3.1 focuses on heuristic approximations in the Hermitian setting. Sec-

tion 3.3.2 concerns the non-unitary transformation of the approximate Hamiltonian Happ.

In Section 3.3.3, we derive a Riccati equation for the pair excitation kernel of the trans-

formation. Section 3.3.4 provides some discussion on the procedure.

3.3.1 Reduction of Hamiltonian in Hermitian setting

In this subsection, we formally reduce the many-body Hamiltonian to an approx-

imate Hermitian operator that is quadratic in the Boson field operators for nonconden-

sate atoms. The total number of particles is conserved. Our main result is described by

(6.2.3)–(3.3.1e) below.

We start with Hamiltonian (3.2.1). Let φ denote the (one-particle) condensate wave

function, which has L2-norm ∥φ∥2 = 1. Recall decomposition (3.1.2) for the Boson field

operators ax, a∗x . The particle number operator, N , on F can thus be decomposed as

N =
∫

dx {a∗xax}= a∗φ a
φ
+
∫

dx {a∗⊥,xa⊥,x}=: Nφ +N⊥ ,

where Nφ := a∗
φ

a
φ

is the number operator for condensate atoms; Nφ and N⊥ commute,

and H commutes with N , viz., [H ,N ] = H N −N H = 0. We use the N-th fiber,
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FN , of the Bosonic Fock space, considering state vectors |ψ⟩N that satisfy

N |ψ⟩N = N|ψ⟩N ; ∥|ψ⟩N∥= 1 .

Following Wu, [60] we first expand H is powers of a⊥,x, a∗⊥,x by applying decom-

position (3.1.2) for ax, a∗x . The Hamiltonian H reads

H =
∫

dxdy
{

φ(x)ε(x,y)φ(y)+
1
2
(Nφ −1)|φ(x)|2υ(x− y)|φ(y)|2

}
Nφ

+
∫

dxdy
{

a∗⊥,x

(
ε(x,y)φ(y)+(Nφ −1)φ(x)υ(x− y)|φ(y)|2

)
a

φ

}
+
∫

dxdy
{

a∗φ
(

φ(x)ε(x,y)+(Nφ −1)φ(y)υ(x− y)|φ(x)|2
)

a⊥,y

}
+
∫

dxdy
{

a∗⊥,x

(
ε(x,y)+Nφ (υ ∗ |φ |2)(x)δ (x,y)+Nφ φ(x)υ(x− y)φ(y)

)
a⊥,y

}
+

1
2

∫
dxdy

{
a∗⊥,xa∗⊥,yφ(x)υ(x− y)φ(y)a2

φ
+a∗φ

2
φ(x)υ(x− y)φ(y)a⊥,xa⊥,y

}
+
∫

dxdy
{

a∗⊥,xa∗⊥,yυ(x− y)φ(y)a⊥,xa
φ
+a∗φ a∗⊥,xφ(y)υ(x− y)a⊥,xa⊥,y

}
+

1
2

∫
dxdy

{
a∗⊥,xa∗⊥,yυ(x− y)a⊥,xa⊥,y

}
.

Recall that ε(x,y) = {−∆x +V (x)}δ (x,y).

The next step is to reduce H to a Hermitian operator quadratic in a⊥, a∗⊥. First,

we drop the terms that are cubic or quartic in a⊥, a∗⊥. Second, we make the substitution

Nφ = N −N⊥ and replace N by N (N 7→ N with N ≫ 1) because |ψ⟩ ∈ FN . We

then drop the term N 2
⊥ . We take N − 1 ≃ N and apply a Hartree-type equation for the

condensate wave function φ which we write as∫
dy
{

ε(x,y)φ(y)+Nφ(x)υ(x− y)|φ(y)|2
}
−µφ(x) = 0 .

This results in the elimination of terms linear in a⊥, a∗⊥ in the Hamiltonian H . The

multiplier µ enables us to impose the normalization constraint ∥φ∥2 = 1; thus,

µ =
∫

dxdy
{

φ(x)ε(x,y)φ(y)+N|φ(x)|2υ(x− y)|φ(y)|2
}

.
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The PDE for φ formally becomes the Gross-Pitaevskii equation [32, 53] if υ is replaced

by gδ for some constant g > 0.

Consequently, the original Hamiltonian H is reduced to the quadratic form

Happ = NEH +h(a∗⊥,a⊥)+
1

2N
fφ (a∗⊥,a

∗
⊥)a

2
φ
+

1
2N

fφ (a⊥,a⊥)a∗φ
2 (3.3.1a)

where, abusing notation slightly, we define the operators

h(a∗⊥,a⊥) :=
∫

dxdy
{

a∗⊥,xh(x,y)a⊥,y
}
, (3.3.1b)

fφ (a∗⊥,a
∗
⊥) :=

∫
dxdy

{
a∗⊥,x fφ (x,y)a∗⊥,y

}
, (3.3.1c)

along with the corresponding kernels

h(x,y) := ε(x,y)+N(υ ∗ |φ |2)(x)δ (x,y)+Nγ(x,y)−µδ (x,y) , (3.3.1d)

fφ (x,y) := Nφ(x)υ(x− y)φ(y) , γ(x,y) := φ(x)υ(x− y)φ(y) . (3.3.1e)

In the above, the Hartree energy functional, EH, is defined by

EH =
∫

dxdy
{

φ(x)ε(x,y)φ(y)+
N
2
|φ(x)|2υ(x− y)|φ(y)|2

}
.

Equation (6.2.3) is the desired reduced Hamiltonian. Note the key property

[Happ,N ] = 0 .

3.3.2 Non-unitary transformation of Hamiltonian Happ

In this subsection, we transform Happ non-unitarily by use of the pair-excitation

kernel, k. The main result is given by (3.3.3a) and (3.3.3b) below.

For this purpose, we invoke the following quadratic operator:

K :=−1
2

∫
dxdy

{
k(x,y)a∗⊥,xa∗⊥,y

}
, (3.3.2a)
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where k = kT . This K does not conserve the number of particles ([K ,N ] ̸= 0). In

addition, following Wu, [60] we introduce the operator

W :=− 1
2N

∫
dxdy {k(x,y)a∗⊥,xa∗⊥,y}(aφ

)2 =
1
N

K (a
φ
)2 . (3.3.2b)

The kernel k is not known at this stage, but must satisfy certain consistency conditions

(see Section 3.3.3). We refrain from specifying the function space of k now. A salient

point of this formalism is the identity [W ,N ] = 0. Consequently, the operator eW , which

is used to define the non-unitary transformation of Happ below, leaves FN invariant, i.e.,

eW : FN 7→ FN . (However, eW does not respect the Fock space norm.) Our goal here is to

describe the non-Hermitian operator eW Happe−W .

The main idea concerning the proposed non-unitary transformation of Happ can

be described as follows. Assume that |ψ⟩N = |ψ⟩ (|ψ⟩ ∈ FN) is an eigenvector of the

(Hermitian) Hamiltonian Happ with eigenvalue E, viz., Happ|ψ⟩= E|ψ⟩. Then, we have{
eW Happe−W

}(
eW |ψ⟩

)
= E

(
eW |ψ⟩

)
.

Hence, the non-Hermitian, non-unitarily transformed, operator eW Happe−W has eigen-

value E and eigenvector eW |ψ⟩. It turns out that it is more tractable to describe the trans-

formed eigenvector eW |ψ⟩ in FN than the original vector |ψ⟩ by exploiting spectral prop-

erties of eW Happe−W . A price that one must pay for this option is that the pair-excitation

kernel k must satisfy the operator Riccati equation. One of our major goals here is to mo-

tivate the equation obeyed by k through the computation of the non-Hermitian operator

eW Happe−W .

Next, we organize our calculation. First, we readily compute the conjugation

eW a⊥,xe−W = a⊥,x +
1
N

k̂T (a∗⊥,x)
(
a

φ

)2
,
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where (abusing notation) we define

k̂T (x,y) :=
∫

dz
{

k(x,z)δ̂ T (z,y)
}

,

k̂T (a∗⊥,x) :=
∫

dydz
{

a∗⊥,yk(y,z)δ̂ T (z,x)
}

.

In a similar vein, by virtue of (3.3.2a) we compute

eW a∗φ e−W = a∗φ +
2
N

K a
φ
.

In order to obtain a symmetric equation in the end, we symmetrize h(a∗⊥,a⊥) as

h(a∗⊥,a⊥) =
1
2
{

h(a∗⊥,a⊥)+hT (a⊥,a∗⊥)
}
+ c∞ ,

where c∞ is an (infinite) immaterial constant. This constant is harmless since it is added

and subtracted. In fact, we remove this c∞ after we perform the calculation.

We proceed to carry out the computation of eW Happe−W . To avoid overly cumber-

some expressions, we only display the manipulation of key terms of Happ, for illustration

purposes. We refrain from presenting the explicit computation of all terms.
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The main term that we need to compute reads

∫
dxdy

{
eW
(
(a∗φ )

2a⊥,xa⊥,y

)
e−W 1

N
fφ (x,y)

}
=

{
(a∗φ )

2 +
2
N

K (2Nφ −1)+
4

N2 K 2(a
φ
)2
}

×
∫

dxdy
(

a⊥,x +
1
N

k̂T (a∗⊥,x)(aφ
)2
)

1
N

fφ (x,y)
(

a⊥,y +
1
N

k̂(y,a∗⊥)(aφ
)2
)

=

{
(a∗φ )

2 +
2
N

K (2Nφ −1)+
4

N2 K 2(a
φ
)2
}

×
{

1
N

fφ (a⊥,a⊥)+
1

N2

(
(k̂T ◦ fφ )(a∗⊥,a⊥)+( fφ ◦ k̂)(a⊥,a∗⊥)

)
(a

φ
)2

+
1

N3 (k̂
T ◦ f ◦ k̂)(a∗⊥,a

∗
⊥)(aφ

)4
}

= (a∗φ )
2 1

N
fφ (a⊥,a⊥)+

1
N2

{
(k̂T ◦ fφ )(a∗⊥,a⊥)+( fφ ◦ k̂)(a⊥,a∗⊥)

}
Nφ (Nφ −1)

+
1

N3 (k̂
T ◦ fφ ◦ k̂)(a∗⊥,a

∗
⊥)(aφ

)2(Nφ −2)(Nφ −3)

+higher order terms in a⊥, a∗⊥ .

The above Fock space operator can be further simplified, without distortion of its com-

mutability with N , via the replacement Nφ = N −N⊥ 7→ N −N⊥. Subsequently, we

drop terms higher than quadratic in a⊥, a∗⊥; and treat N as large so that N − l ≃ N if l is

fixed. The other relevant computations are

eW h(a∗⊥,a⊥)e
−W = h(a∗⊥,a⊥)+

1
N

(
h◦ k̂

)
(a∗⊥,a

∗
⊥)(aφ

)2 ,

eW hT (a⊥,a∗⊥)e
−W = hT (a⊥,a∗⊥)+

1
N

(
k̂T ◦hT)(a∗⊥,a∗⊥)(aφ

)2 .

Accordingly, we obtain the non-Hermitian quadratic operator

H̃app := eW Happe−W = NEH +
(
h+ k̂T ◦ fφ

)
(a∗⊥,a⊥)+

(
hT + fφ ◦ k̂

)
(a⊥,a∗⊥)

+
1
N

Ric(a∗⊥,a
∗
⊥)(aφ

)2 +
1
N
(a∗φ )

2 fφ (a⊥,a⊥) . (3.3.3a)

In the formal limit υ → δ , as the interaction potential becomes a delta function, this H̃app
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becomes the reduced transformed Hamiltonian derived in Ref. [61]. The ‘Riccati kernel’

is

Ric(x,y) := h◦ δ̂ ◦ k+ k ◦ δ̂
T ◦hT + fφ + k ◦ δ̂

T ◦ fφ ◦ δ̂ ◦ k . (3.3.3b)

Recall that the kernel h(x,y) is defined by (3.3.1d) with (3.3.1e), viz.,

h(x,y) = {−∆x +V (x)}δ (x,y)+N(υ ∗ |φ |2)(x)δ (x,y)+Nφ(x)υ(x− y)φ(y)−µδ (x,y) .

The operator H̃app is the focus of our analysis. As we anticipated, we have the

identity [H̃app,N ] = 0, which enables us to seek eigenvectors of H̃app in FN .

3.3.3 Riccati equation for k

Next, we heuristically outline the rationale for the derivation of an equation for k,

in the spirit of Wu [60,61]. This equation is described by (3.3.4b) below. In Sections 3.4–

3.6, we study properties and implications of solutions to this equation.

By inspection of (3.3.3a), we see that H̃app −NEH consists of two types of terms:

(i) Terms that contain a∗⊥ and a⊥, and no a
φ

and a∗
φ

. The sum of these terms forms

the ‘diagonal part’ of H̃app, and can be described by use of a (nonlocal) one-particle

Schrödinger operator. In the periodic setting, [37] the use of this operator yields the

phonon spectrum. (ii) Terms that contain a∗⊥ and a
φ

, or a⊥ and a∗
φ

. In the periodic

setting, it can be argued that this second part does not affect the phonon spectrum provided

Ric(a∗⊥,a
∗
⊥) = 0. We require that

Ric = λ ⊗s φ ,

where ⊗s denotes the symmetrized tensor product. In view of (3.3.3b), we thus have an

equation for k. Here, λ (x) is arbitrary and can be chosen to satisfy a prescribed constraint
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involving the inner product k(x,φ). Notably, the operator W is invariant under changes

of this constraint. In other words, physical predictions are not affected by the choice of

k(x,φ). For example, we can impose k(x,φ) = 0 [60, 61]. This condition removes δ̂ , δ̂ T

from the related equations, which is natural since

∫
dxdy

{
Ric(x,y)a∗⊥,xa∗⊥,y

}
=
∫

dxdy
{(

δ̂ ◦Ric◦ δ̂
T)(x,y) a∗xa∗y

}
.

The expression for Ric(x,y) becomes

Ric(x,y) = h◦ k+ k ◦hT + fφ + k ◦ fφ ◦ k . (3.3.4a)

Consequently, the equation for k reads

h◦ k+ k ◦hT + fφ + k ◦ fφ ◦ k = λ ⊗s φ =
1√
2
(λ ⊗φ +φ ⊗λ ) , (3.3.4b)

where λ should be determined self-consistently. In fact, λ (x) obeys the equation

λ (x)=C1φ(x)+
√

2(h◦k+k◦hT + fφ +k◦ fφ ◦k)(x,φ)=C1φ(x)+
√

2(k◦hT + fφ )(x,φ)

with C1 =−⟨φ ,λ ⟩; see Section 3.4.2. We refer to (3.3.4b) as the ‘operator Riccati equa-

tion’ for k. In Section 3.5, we show that this equation leads to an excitation spectrum

identical to the one from Fetter’s formalism [20]. By virtue of (3.3.4b), the transformed

Hamiltonian (3.3.3a) becomes

H̃app = NEH +
(
h+ k̂T ◦ fφ

)
(a∗⊥,a⊥)+

(
hT + fφ ◦ k̂

)
(a⊥,a∗⊥)+

1
N
(a∗φ )

2 fφ (a⊥,a⊥) .

3.3.4 Further comments

We comment on aspects of our heuristic procedure. First, in hindsight, it is of

some interest to discuss how (3.3.4b) can be motivated more transparently. The main
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observation is that, in regard to Happ, we can consider the quadratic matrix form

∫
dxdy

(
a⊥,x , a∗⊥,x

) −hT (x,y) N−1(a∗
φ
)2 fφ (x,y)

−N−1 fφ (x,y)(aφ
)2 h(x,y)


−a∗⊥,y

a⊥,y

 .

In view of the commutability of a⊥, a∗⊥ with a
φ
, a∗

φ
we can perform the following conju-

gation of the above 2×2 matrix, assuming for simplicity that k(x,φ) = 0: δ 0

N−1k(a
φ
)2 δ

◦

 −hT N−1(a∗
φ
)2 fφ

−N−1 fφ (aφ
)2 h

◦

 δ 0

−N−1k(a
φ
)2 δ



=

−hT −N−2 fφ ◦ kNφ (Nφ −1) N−1(a∗
φ
)2 fφ

−N−1R̃ic(a
φ
)2 h+N−2k ◦ fφNφ (Nφ −1)


where

R̃ic = h◦ k+ k ◦hT + fφ +
1

N2 k ◦ fφ ◦ kNφ (Nφ −1) .

Replace Nφ with N in the last expression and take N −1 ≃ N; thus, R̃ic is reduced to Ric

(with the δ̂ and δ̂ T removed). Equation (3.3.4b) then results from the requirement that

the transformed 2×2 matrix is upper triangular. We will show that this property implies

that the excitation spectrum of Happ coincides with the one of the diagonal part of H̃app,

and is identical to the spectrum of Fetter’s approach [20]; see Sect. 3.5.

A second comment concerns the Hartree-type equation for φ , which becomes the

Gross-Pitaevskii equation if υ is replaced by gδ for some constant g > 0. We write the

relevant PDE as HHφ = µφ where

HH :=−∆x +V (x)+N
(
υ ∗ |φ |2

)
(x) (3.3.5)

is a one-particle Hartree operator. We will consider the interaction potential υ(x) to be
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positive, integrable and smooth. For a trapping potential V (x), where V (x)→ ∞ as |x| →

∞, the condensate wave function φ(x) is bounded and decays exponentially as |x| → ∞.

We are tempted to loosely comment on the assumptions underlying the uncontrolled

approximations for the many-body Hamiltonian in this section. We expect that the sim-

plifications leading to the reduced Hamiltonian H̃app make sense provided

⟨ψ|N l
⊥|ψ⟩

Nl ≪ 1 ∀|ψ⟩ ∈ FN ; l = 1, 2, 3, 4 .

3.4 Existence theory for pair excitation kernel: Variational approach

In this section, we address the existence of solutions to (3.3.4b). Our analysis is

partly inspired by works of Albeverio, Tretter and coworkers, [2–4, 13] who rigorously

connected the operator Riccati equation to the spectral theory of J-self-adjoint operators.

In our work, we view an existence proof for k as a necessary step towards ensuring the

self-consistency of the approximation and non-unitary transform for the Bosonic many-

body Hamiltonian. The existence proof for k paves the way to establishing the connection

of pair excitation to the phonon spectrum in a trap (Section 3.5).

Our theory invokes an appropriate functional, E [k,k], and two related lemmas (Sec-

tion 3.4.1). A highlight is Theorem 1 on the existence of k (Section 3.4.2). We stress

that our existence proof differs significantly from the approach of Refs. [2–4]. First, we

utilize a variational approach by seeking stationary points of the functional E [k,k] on a

Hilbert space, instead of applying the fixed-point argument of Ref. [4]. Note that this

fixed-point argument [4] makes use of operator estimates that are not expected to hold for

the operator Ric of (3.3.3b). The variational approach developed here is amenable to con-
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straints inherent to our problem; thus, the term λ ⊗s φ of (3.3.4b) emerges as a Lagrange

multiplier. Alternate approaches of variational character for block operator matrices (not

for the Riccati equation per se) are described in Ref. [58].

Second, our variational approach reveals that Riccati equation (3.3.4b) may in prin-

ciple not have a unique solution. Our existence proof indicates how one can construct an

infinite number of solutions for k. These correspond to saddle points of the underlying

functional, E . This lack of uniqueness can pose a challenge in the subsequent analysis

of the phonon spectrum (Section 3.5). As a remedy to this issue, we point out that a re-

striction on the norm of k, i.e., ∥k∥op < 1, warrants uniqueness (see also Ref. [2]). By this

restriction, the k that solves Riccati equation (3.3.4b) is a minimizer of E .

3.4.1 Functional E [k,k] and useful lemmas

Next, we define the relevant Hilbert space and the functional E [k,k] which yields (3.3.4b).

We also prove two lemmas needed for our existence theory.

Definition 1. Let h1
V (R3 ×R3) be the space of functions k(x,x′) such that

∫∫
dxdx′

{
|∇xk(x,x′)|2 + |∇x′k(x,x

′)|2 +
(
V (x)+V (x′)

)
|k(x,x′)|2

}
< ∞ .

The energy functional E [k,k] : dom(E )→ R is defined by

E [k,k] := tr
{(

δ − k ◦ k
)−1 ◦

(
k ◦h◦ k+

1
2

k ◦ fφ +
1
2

fφ ◦ k
)}

(3.4.1a)

where

dom(E ) :=
{

k ∈B2(h
1
V )
∣∣kT = k and ∥k∥op < 1

}
⊂B2(h

1
V ) . (3.4.1b)
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Remark 1. The space h1
V (R3 ×R3) is the same as the space B2

(
h1

V
)
. If k ∈ B2(h

1
V )

and ∥k∥2 < 1 then (δ − k ◦ k)−1 ∈ B2(h
1
V ). Thus, dom(E ) is nonempty. The inequality

∥k∥2 < 1 implies ∥k∥op < 1. Further remarks on ∥k∥op < 1 are deferred to Section 3.4.3.

The first lemma of interest can be stated as follows.

Lemma 1. The functional derivative of E [k,k] with respect to symmetric variations of k

in h1
V (R3 ×R3), denoted by δE /δk where δE /δk ∈B∗

2(h
1
V ) =B2(h

1
V ), is

δE [k,k]
δk

=
1
2
(δ − k ◦ k)−1 ◦

{
h◦ k+ k ◦hT + fφ + k ◦ fφ ◦ k

}
◦ (δ − k ◦ k)−1 .

Proof. Consider the arbitrary symmetric perturbation ℓ(x,x′). It suffices to show that

( d
ds

E [k+ sℓ,k]
)∣∣∣

s=0
=

1
2

∫
dxdx′

{
ℓ(x,x′)(δ − k ◦ k)−1 ◦

{
h◦ k+ k ◦hT + fφ + k ◦ fφ ◦ k

}
◦ (δ − k ◦ k)−1(x,x′)

}
.

First, by differentiating the formal identity δ = (δ − k ◦ k)−1 ◦ (δ − k ◦ k) we obtain

( d
ds

{
δ − (k+ sℓ)◦ k

}−1
)∣∣∣

s=0
=
(
δ − k ◦ k

)−1 ◦ ℓ◦ k ◦
(
δ − k ◦ k

)−1
.

Using, e.g., the Neumann series for (δ − k ◦ k)−1, we realize that

k ◦
(
δ − k ◦ k

)−1
=
(
δ − k ◦ k

)−1 ◦ k .

Hence, we also obtain the identity

( d
ds

{(
δ − (k+ sℓ)◦ k

)−1 ◦ (k+ sℓ)
})∣∣∣

s=0
=
(
δ − k ◦ k

)−1 ◦ ℓ◦
(
δ − k ◦ k

)−1
.

Now express E as the sum

E = tr
{
(δ − k ◦ k)−1 ◦ k ◦

(
h◦ k+ 1

2 fφ

)}
+ tr
{(

δ − k ◦ k
)−1 ◦ 1

2( fφ ◦ k)
}
=: E1 +E2 .
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The use of the cyclic property of the trace along with ℓT = ℓ and (k ◦ k)T = k ◦ k yield

( d
ds

E1[k+ sℓ,k]
)∣∣∣

s=0
= tr

{
(δ − k ◦ k)−1 ◦ ℓ◦ (δ − k ◦ k)−1 ◦ (h◦ k+ 1

2 fφ )
}

= tr
{
ℓ◦ (δ − k ◦ k)−1 ◦ (h◦ k+ 1

2 fφ )◦ (δ − k ◦ k)−1}
and ( d

ds
E2[k+ sℓ,k]

)∣∣∣
s=0

= tr
{1

2(δ − k ◦ k
)−1 ◦ ℓ◦ k ◦

(
δ − k ◦ k

)−1 ◦ ( fφ ◦ k)
}

= tr
{1

2ℓ◦ k ◦
(
δ − k ◦ k

)−1 ◦ ( fφ ◦ k)◦ (δ − k ◦ k
)−1}

= tr
{1

2ℓ◦
(
δ − k ◦ k

)−1 ◦ (k ◦ fφ ◦ k)◦ (δ − k ◦ k
)−1}

.

Now combine the above results to obtain the expression

( d
ds

E [k+ sℓ,k]
)∣∣∣

s=0
=

1
2

tr
{
ℓ◦
((

δ − k ◦ k
)−1 ◦Ric◦

(
δ − k ◦ k

)−1
)}

,

where Ric is defined by (3.3.4a). Note that Ric is manifestly symmetric if k is symmetric.

This observation completes the proof of Lemma 1.

Remark 2. The notion of the weak solution as the critical point of the functional E [k,k]

is relevant to our existence theorem (Theorem 1). Consider the space φ⊥ =
{

e ∈ h1
V

∣∣ e ⊥

φ
}

. We remind the reader that a bounded operator k ∈B(φ⊥,φ⊥) has a weak solution

to the Riccati equation

k ◦hT
⊥+h⊥ ◦ k+ k ◦ fφ ◦ k+ fφ = 0

provided

⟨k ◦hT
⊥p,r⟩+ ⟨kp,hT

⊥r⟩+ ⟨k ◦ fφ ◦ kp,r⟩= ⟨− fφ p,r⟩ ∀p, r ∈ dom{hT
⊥} ,

where h⊥ is the projection of operator h on space φ⊥.
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Before stating the second lemma, we add a remark on the condensate wave function,

φ .

Remark 3. By Section 3.3, recall that φ satisfies HHφ(x) = µφ(x) where the one-particle

Hartree operator HH is defined in (3.3.5). We now state a few assumptions, which pri-

marily concern the interaction potential υ(x) and the trapping potential V (x). First, let

us assume that υ(x) is positive, symmetric, integrable, and smooth. If the equation for φ

comes from minimizing the Hartree energy functional, EH , viz.,

EH(φ) :=
∫

dxdy
{

φ(x)ε(x,y)φ(y)+
N
2
|φ(x)|2υ(x− y)|φ(y)|2

}
,

with ∥φ∥2 = 1 then µ is the lowest eigenvalue of the linear operator that results from

fixing φ in HH. The existence theorem (Theorem 1) is stated and proved for a condensate

φ that is not necessarily a minimizer of EH . In fact, we replace the assumption of φ being

such a minimizer by a less restrictive hypothesis (see Lemma 2). We assume that the

potential V is such that −∆+V has discrete spectrum; for example, V (x) = c|x|2 (c > 0).

The spectrum of HH is also discrete since HH is a compact perturbation of −∆+V .

Lemma 2. If υ(x) has positive Fourier transform υ̂(ξ ), υ̂(ξ )≥ 0, and φ is a minimizer

of the functional EH(φ), then for some c > 0 the following inequality holds:

h(e,e)−
∣∣ fφ (e,e)

∣∣≥ c∥e∥2 ∀e ∈ φ
⊥ =

{
e ∈ h1

V
∣∣ e ⊥ φ

}
where h(·, ·) and fφ (·, ·) are defined from (3.3.1b)–(3.3.1e).

Proof. Define g(x) := φ(x)e(x). Parseval’s identity yields

∫∫
dxdy {e(x)φ(x)Nυ(x− y)φ(y)e(y)}=

∫
dξ {Nυ̂(ξ )|ĝ(ξ )|2} ,
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which dominates the integral

∫∫
dxdy {e(x) fφ (x,y)e(y)}=

∫
dξ{Nυ̂(ξ )

(
ĝ(ξ )

)2} .

Since φ is the minimizer of the Hartree functional, EH(φ), we can assert that φ is the

eigenfunction with the lowest eigenvalue of the operator HH and is therefore simple. If

e⊥ φ then
〈
e,HHe

〉
≥ c∥e∥L2 for some c> 0 because the spectrum of the Hartree operator

HH is discrete (see Remark 3).

Lemma 2 motivates the inequality involving h and fφ as a key assumption of The-

orem 1, which replaces the requirement that φ is a minimizer of EH(·).

3.4.2 Existence theorem and proof

The existence theorem can be stated as follows:

Theorem 1. Suppose that the kernels h(x,y) and fφ (x,y) satisfy the inequality

h(e,e)−
∣∣ fφ (e,e)

∣∣≥ c∥e∥2
L2 ∀e ∈ φ

⊥ =
{

e ∈ h1
V
∣∣ e ⊥ φ

}
, (3.4.2)

for some constant c > 0. Moreover, let us assume that fφ is Hilbert-Schmidt.

Consider the functional E [k,k], defined in (3.4.1a), with domain

dom(E )⊥ := dom(E )∩
{

k ∈B2(h
1
V )
∣∣ k(x,φ) = 0

}
which consists of the compact C -symmetric Hilbert-Schmidt operators k ∈ B2(h

1
V ) sat-

isfying k(x,φ) = 0. Then the functional E restricted to dom(E )⊥ attains a minimum for

some k ∈ dom(E )⊥ which is a weak solution of the operator Riccati equation (3.3.4b).

The function λ (x) entering this equation is a Lagrange multiplier and equals

λ (x) =
√

2
{(

k ◦ γ
)(

x,φ
)
+ fφ

(
x,φ
)
− 1

2 fφ (φ ,φ)φ(x)
}
. (3.4.3)
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At this stage, two remarks are in order.

Remark 4. We seek stationary points of E [k,k] under the constraint kT = k. We now

describe a generalization of the spectral theorem for compact operators with symmetric

kernels which is invoked in the proof of Theorem 1. Let C denote the operator of complex

conjugation on h where

C f (x) = f (x) ∀ f ∈ h .

An operator T on h is called complex-symmetric (“C -symmetric”) if it satisfies

C T = T ∗C ,

where T ∗ is the Hermitian conjugate of T (T ∗(x,y) = T (y,x)). Clearly, integral op-

erators whose kernels are symmetric in their arguments are C -symmetric. An important

property is that any compact complex-symmetric operator T such that T ∗ ◦T has sim-

ple spectrum admits the decomposition

T =
∞

∑
n=1

an(un ⊗C un) , (3.4.4)

where an ∈ C converge to zero as n → ∞ and {un}∞
n=1 is an orthonormal basis of h. This

property comes from the identity (C T )◦ (C T ) = T ∗ ◦T , which implies the commuta-

tion relation [C T ,T ∗ ◦T ] = 0. In particular, C T commutes with the spectral measure

(and any eigenprojector) of the positive operator T ∗ ◦T . Since the latter operator has

simple spectrum, it follows that these two operators have the same eigenspace. This fact

allows us to pass from the eigenvalue equation (T ∗ ◦T )(un,x) = cnun(x) to the eigen-

value equation C T (un,x) = anun(x); thus, |an|2 = cn. It can be directly shown that all

C -symmetric tensor products u⊗ v must have v(x) = C u(x). Hence, we can also pass
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from the spectral representation

T ∗ ◦T =
∞

∑
n=1

cn(un ⊗un)

to expression (3.4.4). This result amounts to a version of the spectral theorem for compact

C -symmetric operators; see, e.g., Ref. [23].

Remark 5. The reader should compare (3.4.3), regarding the Lagrange multiplier λ ,

with equation (3.24) in Ref. [61] which employs a delta-function interaction potential.

The respective formulas for λ (x) differ by a factor of
√

2 because of the choice of a

normalization factor for λ ⊗s φ .

We can now proceed to prove Theorem 1. Notably, we consider a condensate φ that

is not necessarily a minimizer of the Hartree energy, EH .

Proof. We split the proof of Theorem 1 into three main steps.

Step 1. We now express the functional E in terms of a suitable basis and describe

critical points, by taking into account the theory of C -symmetric operators. By Remark 4,

any k satisfying our assumptions admits the decomposition

k(x,x′) =
∞

∑
j=1

z je j(x)e j(x′) , e j ∈ φ
⊥ ,

where {e j(x)} j ⊂ h is an orthonormal basis and the coefficients {z j} ⊂ C are such that

z j → 0 as j → ∞. For the moment, we assume |z j| ̸= 1 for all j so that

(δ − k ◦ k)−1(x,x′) =
∞

∑
j=1

( 1
1−|z j|2

)
e j(x)e j(x′) .

The substitution of the two preceding expressions into (3.4.1a) for the energy furnishes

E
(
{e j},{zi}

)
=

∞

∑
j=1

1
1−|z j|2

{
h(e j,e j)|z j|2 +

1
2

(
fφ (e j,e j)z j + fφ (e j,e j)z j

)}
,
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where fφ (e j,e j) = fφ (e j,e j). The derivative of E
(
{e j},{z j}

)
with respect to z j reads

∂

∂ z j
E
(
{e j},{z j}

)
=

1
2

∞

∑
j=1

2h(e j,e j)z j + fφ (e j,e j)+ fφ (e j,e j)z2
j

(1−|z j|2)2 .

Setting ∂E /∂ z j = 0 gives two roots, viz.,

z±j =
−h(e j,e j)±

√
h2(e j,e j)−| fφ (e j,e j)|2

fφ (e j,e j)
. (3.4.5)

The assumption stated by (3.4.2) guarantees that |z±j | ≠ 1, provided e j is a member of the

function space φ⊥; in fact, |z+j | < 1 and |z−j | > 1. Regarding E ({e j},{z j}), notice that

the summand (for fixed j and e j = e) is described by the function

f (z;e) :=
2h(e,e)|z|2 + fφ (e,e)z+ fφ (e,e)z

1−|z|2

which takes real values with f (0;e) = 0, while

lim
|z|→1−

f (z;e) = +∞ .

Thus, the function f (z;e j) attains a minimum at z = z+j . On the other hand, we have

lim
|z|→∞

f (z;e) =−2h(e,e) ,

and f (z−j ;e j) = −h(e j,e j)−
√

h2(e j,e j)−| fφ (e j,e j)|2 which implies that f (z;e j) has a

maximum at z = z−j in view of

lim
|z|→1+

f (z;e) =−∞ .

By (3.4.5) the evaluation of E with the roots z±j yields

E
(
{(z±j },{e j}

)
=−1

2

∞

∑
j=1

{
h(e j,e j)∓

√
h2(e j,e j)−| fφ (e j,e j|2

}
.
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In light of the preceding discussion, we choose the root z+j where |z+j |< 1 and define

F (e) := h(e,e)−
√

h2(e,e)−| fφ (e,e)|2 ,

so that the value of the functional E reads

E
(
{z+j },{e j}

)
=−1

2

∞

∑
j=1

F (e j) .

Step 2. The minimization problem can be stated by the following expression:

min
{e j}∞

j=1

{
−1

2

∞

∑
j=1

F (e j)

}
=−1

2
max
{e j}∞

j=1

∞

∑
j=1

F (e j) ,

where {e j}∞
j=1 is an orthonormal frame, i.e.,

〈
e j,ek

〉
= δ j,k ;

〈
φ ,e j

〉
= 0 .

Next, we prove that the overall minimum is attained.

Recall the bilinear expansion

k(x,y) =
∞

∑
j=1

z+j e j(x)e j(y)

where the coefficients z+j are

z+j =
−h(e,e)+

√
h(e,e)2 −| fφ (e,e)|2

fφ (e,e)
=

− f
φ
(e,e)

h(e,e)+
√

h(e,e)2 −| fφ (e,e)|2
.

We will prove that ∑
∞
j=1 F (e j) is bounded above. The following inequality holds:

F (e)≤
| fφ (e,e)|2

h(e,e)
≤ 1

cgap
| fφ (e,e)|2
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where cgap denotes a positive constant. Subsequently, we have

∞

∑
j=1

| fφ (e j,e j)|2 =
∞

∑
j=1

∣∣∣∣〈e j(x),
∫

v(x− y)φ(x)φ(y)e j(y)dy
〉∣∣∣∣2

≤
∞

∑
j=1

∫
dx
∣∣∣∣∫ v(x− y)φ(x)φ(y)e j(y)dy

∣∣∣∣2
≤
∫

dxdy
{

v(x− y)2|φ(x)|2|φ(y)|2
}
≤ ∥v∥L3(Rd)∥φ∥2

L6(Rd) ,

which entails an upper bound for ∑
∞
j=1 F (e j). This result is crucial because it enables us

to seek a maximizing sequence {e(n)j } j of frames (n ∈ N); and show that such a sequence

converges strongly in the domain of definition of the functional E .

Indeed, consider the maximizing sequence of frames {e(n)j }∞
j=1, where n ∈ N, i.e.,

lim
n→∞

1
2

∞

∑
j=1

F (e(n)j ) = max
{e j}∞

j=1

1
2

∞

∑
j=1

F (e j) .

A (standard) diagonalization procedure then yields

e(n)j → e j weakly in h(R3)

where h= L2. If there exists some constant C j independent of n such that

h(e(n)j ,e(n)j )≤C j ∀n ∈ N ,

we conclude that

e(n)j → e j strongly in h(R3) .

Otherwise, we have z(n)j → 0 as n → ∞, and we can ignore this case.

We should add that if the convergence were weak in h1
V (R3) then we would have

h(e j,e j)< lim
n→∞

h(e(n)j ,e(n)j ) .
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Since F (e) is a decreasing function of h(e,e), we obtain a contradiction to the fact that

{e(n)j }∞
j=1 is a maximizing sequence. This proves the strong convergence in h1

V (R3).

In the above, we use the norm (see also Section 5.1.3 for definition of function

space h1
V )

∥ f∥2
h1

V (Rd)
=
∫
Rd

dx
{
|∇ f (x)|2 +V (x)| f (x)|2

}
.

It is thus necessary that the presence of the trapping potential V controls the L2(R3) norm

in such a way that h1
V (R3) is compactly embedded in L2(R3) (for d = 3).

Next, we check that the overall minimum is finite. Condition (3.4.2) implies that

h(e,e) is bounded below. This means that the the overall minimum is finite provided

∞

∑
j=1

F (e j)≤C
∞

∑
j=1

| fφ (e j,e j)|2 =
∞

∑
j=1

∣∣∣∣ ∫ dxdy
{

e j(x) fφ (x,y)e j(y)
}∣∣∣∣2

≤
∫

dx
∞

∑
j=1

∣∣∣∣ ∫ dy
{

fφ (x,y)e j(y)
}∣∣∣∣2 ≤ ∫ dxdy

{
| fφ (x,y)|2

}
< ∞ .

The last condition indeed holds. Note that z+j is recast to the expression

z+j =
fφ (e j,e j)

h(e j,e j)+
√

h2(e j,e j)−| fφ (e j,e j)|2
.

Accordingly, we see that

∞

∑
j=1

|z+j |
2 ≤C

∞

∑
j=1

| fφ (e j,e j)|2 ≤ ∥ fφ∥2
L2(R3×R3) .

Thus, k is Hilbert-Schmidt.

Step 3. So far, we showed that the minimum is attained in dom(E )⊥. We must now

take into account the constraint k(x,φ) = 0 via a Lagrange multiplier. We introduce the

Lagrange multiplier as an operator with symmetric kernel ℓ(x,y) where

ℓ(x,y) =
(
λ ⊗s φ

)
(x,y) :=

1√
2
{λ (x)φ(y)+λ (y)φ(x)} .
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In the above, φ is the condensate wave function and λ (x) is to be determined. Hence, the

modified energy functional to be minimized has the form

Ẽ [k,k] := E [k,k]− tr
{
ℓ◦ k+ k ◦ ℓ

}
.

In view of Lemma 1, setting equal to zero the functional derivative of Ẽ with respect to

k yields Riccati equation (3.3.4b). Given that h = HHδ +Nγ − µ and HHφ = µφ , we

compute λ by contracting the above equation for k with φ . Thus, we obtain (3.4.3).

Note on k as a weak solution: We conclude the proof by showing that k satisfies the

definition of a weak solution (Remark 2). The condition that E is minimized implies that

the first variation with respect to k vanishes, i.e.,

tr
[
k1 ◦ (δ − k ◦ k)−1 ◦

{
h⊥ ◦ k+ k ◦hT

⊥+ fφ + k ◦ fφ ◦ k
}
◦ (δ − k ◦ k)−1

]
= 0 ,

for all k1 ∈ dom(E ). Without loss of generality, we can make the substitution k1 7→

(δ − k ◦ k)−1 ◦ k1 ◦ (δ − k ◦ k)−1 so that the equation for vanishing first variation reads

tr
[
k1 ◦

{
h⊥ ◦ k+ k ◦hT

⊥+ fφ + k ◦ fφ ◦ k
}]

= tr
[
k1 ◦Ric

]
= 0 .

If k1 := p⊗s r for p, r ∈ dom(h⊥), the condition tr
[
k1 ◦Ric

]
= 0 translates to

tr
[

p⊗s r ◦Ric
]
= tr

[
(k ◦ p⊗s r)◦h⊥

]
+ tr
[
(p⊗s r)◦ k ◦h⊥

]
+ tr
[
(p⊗s r)◦

(
fφ + k ◦ fφ ◦ k

)]
=
√

2
(
⟨kp,h⊥r⟩+ ⟨p,(k ◦h⊥)r⟩+ ⟨p,

(
fφ + k ◦ fφ ◦ k

)
r⟩
)
.

Observe that this expression is defined for any p, r ∈ dom(h⊥), which is the space of test

functions for the weak formulation of the Riccati equation.
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3.4.3 On the non-uniqueness of the solution for k

Next, we discuss the important issue of the non-uniqueness of solutions for k by

our variational approach. The energy functional E [k,k] has infinitely many critical points

which correspond to choosing one of the two roots z±j , at every index j, in the proof of

Theorem 1. We can show that these different choices correspond to minimax points. To

this end, pick an arbitrary e1(x), normalized so that ∥e1∥h = 1, and let

X⊥(φ ,e1) :=
{

e(x)
∣∣ e ⊥ {φ ,e1}

}
.

Also, consider the subspace X(e1) := span(e1) = {z1e1(x) ∈ h | z1 ∈ C}. Accordingly,

we set up the min-max problem expressed by

max
e∈X(e1),|z1|>1

{
min

∥k|X⊥(φ ,e1)
∥op<1

E (k,k)

}
.

By repetition of the above argument (proof of Theorem 1), this min-max problem gener-

ates the (saddle type) critical point of the functional E (k,k). More generally, the maxi-

mum can be taken over any finite collection of {(e jk ,z jk)}k, producing a unique solution

for every distinct sequence.

Evidently, the only solution k that obeys ∥k∥op < 1 is the one given in the proof of

Theorem 1. Thus, we single out the choice {z j = z+j } with |z+j | < 1 for all j as the one

yielding the unique pair-excitation kernel for our model.

Remark 6. If z j is chosen in (3.4.5) such that z j = z+j for all j > 0 (i.e., ∥k∥op < 1) then

(h+ k ◦ fφ )(e j,e j) = h(e j,e j)+(ke j, fφ e j) = h(e j,e j)+(z+j ) fφ (e j,e j)

=
√

h2(e j,e j)−| fφ (e j,e j)|2 > 0 .

This property will be relevant for the spectrum of the reduced Hamiltonian (Section 3.5.2).

65



3.5 Spectrum and eigenvectors of reduced Hamiltonian

In this section, we describe the spectrum and eigenvectors of the reduced trans-

formed Hamiltonian H̃app in the N-th sector of Fock space, FN (see Section 3.3.3). For

this purpose, we decompose FN into suitable orthogonal subspaces. A similar technique

is used in Ref. [42] in connection to the Bogoliubov Hamiltonian which does not conserve

the particle number.

We start by writing the transformed, approximate non-Hermitian Hamiltonian as

H̃app = NEH +Hph , Hph := hph
(
a∗⊥,a⊥

)
+

1
N
(a∗φ )

2 fφ

(
a⊥,a⊥

)
(3.5.1a)

where fφ (a∗⊥,a
∗
⊥) (and thus fφ (a⊥,a⊥)) is defined by (3.3.1b) with (3.3.1d), and

hph := h+ k ◦ fφ . (3.5.1b)

The operator hph
(
a∗⊥,a⊥

)
forms the diagonal part of Hph and is non-Hermitian.

The main result of this section is expressed by the following theorem.

Theorem 2. Consider the operators Hph and hph(a∗⊥,a⊥) restricted on FN . Then

σ

(
Hph

∣∣
FN

)
= σ

(
hph(a∗⊥,a⊥)

∣∣
FN

)
.

Moreover, for each eigenvector |Ω⟩N ∈ FN of hph(a∗⊥,a⊥) with eigenvalue E there exists

a unique eigenvector |Ψ(Ω)⟩N ∈ FN of Hph such that

Hph|Ψ(Ω)⟩N = E|Ψ(Ω)⟩N .

Before we give a proof of Theorem 2, we need to provide a few useful results.

In Section 3.5.1, we develop a formalism for the decomposition of FN into orthogonal
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subspaces. A key ingredient of our approach is the use of Fock space techniques. In

Section 3.5.2, we show that the spectrum of hph is discrete. In Section 3.5.3, we use this

machinery (theory of Sections 3.5.1 and 3.5.2) to prove Theorem 2. In our proof, we

describe an explicit construction of the eigenvectors of Hph restricted on FN in terms of

eigenvectors of hph(a∗⊥,a⊥). This construction invokes the discrete spectrum of hph.

3.5.1 Decomposition of FN and two related lemmas

Next, we set the stage for the proof of Theorem 2. We use the symbol |ψ⟩n to

denote the vector of F with entry ψn(x1, . . . , xn) in the n-th slot and zero elsewhere. Let

us also introduce the projection PN : F 7→ FN .

The vector ψN(x1, . . . , xN) can be decomposed as a direct sum according to

ψN =
N

∑
n=0

ψN,n ⊗s
(
⊗N−n

φ
)
=:

N

∑
n=0

ψ
φ

N,n , ⊗p
φ :=

p

∏
j=1

φ(x j) ,

where the vectors ψN,n(x1, . . . ,xn) satisfy the orthogonality relations (n = 1,2 . . .N)

∫
dx
{

φ(x)ψN,n(x, x2, . . . ,xn)
}
= 0 .

We also define |ψφ

N,n⟩N :=
(
0, . . . , 0, ψ

φ

N,n, . . .
)
∈ FN . Hence, the vector

|ψ⊥⟩ :=
(
ψN,0, ψN,1, . . . , ψN,N , 0, . . .

)
describes fluctuations around the tensor product ⊗Nφ (pure condensate). This means that

we can decompose the space FN into the following direct sum of orthogonal subspaces:

FN =⊕N
n=0FN,n ; FN,n = spanψn⊥φ

(
0, . . . , 0, ψn ⊗s (⊗N−n

φ), 0 . . .
)
.
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To describe this decomposition, we consider the number operator Nφ = a∗
φ

aφ̄ for

the condensate. We have

Nφ

∣∣
FN,n

= (N −n)I
∣∣
FN,n

, 0 ≤ n ≤ N ,

where I is the identity operator on F. In other words, FN,n are the eigenspaces of Nφ

restricted to FN . To see how the decomposition works, we invoke the identity

PN =
N

∑
n=0

(−1)N−n

(N −n)!n!

N

∏
p=0

p ̸=N−n

(
Nφ − pI

)
PN ,

which can be understood as a resolution of the identity on FN . By introducing the projec-

tion operator (projection on Fn) via the polynomial

Pn(z) :=
(−1)n

n!

n

∏
j=1

(z− j) ,

we define

Pn,n := Pn(Nφ ) =
(−1)n

n!

n

∏
j=1

(
Nφ − jI

)
.

Thus, Pn,n is the projection Pn,n : Fn 7→ Fn,n.

At this stage, we can state the first lemma of this section as follows.

Lemma 3. The operator Pn,n = Pn(Nφ ) satisfies the factorization

N

∑
n=0

(−1)N

(N −n)!
a∗φ

N−nPn,naN−n
φ

=
N

∑
n=0

(−1)N−n

(N −n)!n!

N

∏
p=0

p ̸=N−n

(
Nφ − pI

)
which, restricted to FN , describes a resolution of FN into orthogonal subspaces.

Proof. First, we note the useful identities

a
φ

pNφ =
(
Nφ + pI

)
a

φ

p , a∗φ
pNφ =

(
Nφ − kI

)
a∗φ

p (p = 0, 1, . . .N) .
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Subsequently, for any polynomial P(z) we can assert that

P(Nφ )aφ

p = a
φ

pP
(
Nφ − pI

)
, P(Nφ )a∗φ

p = a∗φ
pP
(
Nφ + pI

)
.

Moreover, we have the following formulas:

an
φ

a∗φ
n =

n

∏
p=1

(
Nφ + pI

)
, a∗φ

nan
φ
=

n−1

∏
p=0

(
Nφ − pI

)
.

By using the above relations, we write

N

∑
n=0

(−1)N

(N −n)!
a∗φ

N−nPn(Nφ )aN−n
φ

=
N

∑
n=0

(−1)N

(N −n)!
a∗φ

N−na
φ

N−nPn
(
Nφ − (N −n)I

)
=

N

∑
n=0

(−1)N(−1)n

(N −n)!n!

N−n−1

∏
j=0

(
Nφ − jI

) n

∏
p=1

(
Nφ +(n− p−N)I

)
=

N

∑
n=0

(−1)N−n

(N −n)!n!

N

∏
j=0

j ̸=N−n

(
Nφ − jI

)
= PN .

We can show that Pn,n is a projection. Indeed, notice that Nφ Pn(Nφ )
∣∣
Fn

= 0, and if

|ψ⟩n ∈ Fn then Pn,n|ψ⟩n = |ψn,n⟩n. If we consider the decomposition

ψn =
n

∑
p=0

ψn,p ⊗s
(
⊗n−p

φ
)
=

n

∑
p=0

ψ
φ
n,p

then Pn,n applied to
∣∣ψ〉n produces a vector in Fn,n, where Fn,p is the decomposition of

Fn for p = 0,1 . . .n.

For later algebraic convenience, we give the following definition (cf. Ref. [42]).

Definition 2. Consider the operators Un, U ∗
n : FN 7→ FN given by

Un := Pn,n

aN−n
φ√

(N −n)!
, U ∗

n :=
a∗

φ

N−n√
(N −n)!

Pn,n ; n = 0, 1, . . . , N .

By Definition 2, the result of Lemma 3 implies that

PN =
N

∑
n=0

(−1)N

(N −n)!
a∗φ

N−nPn,nPn.na
φ

N−nPN = (−1)N
N

∑
n=0

a∗
φ

N−nPn,n√
(N −n)!

Pn,na
φ

N−n√
N −n)!

PN

= (−1)N
N

∑
n=0

U ∗
n Un

∣∣∣
FN

.
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The key relations following from this decomposition are

Un|ψ⟩N = |ψN,n⟩n , U ∗
n |ψN,n⟩n = |ψφ

N,n⟩N and
N

∑
n=0

|ψφ

N,n⟩N = |ψ⟩N .

Hence, we have Un : FN 7→ Fn,n and U ∗
n : Fn 7→ FN,n.

Lemma 4. The operators {Un}N
n=0 (see Definition 2) satisfy the relation

UmU ∗
n = δm,nPm,mPn,n .

Proof. First, we make the observation that

UmU ∗
n = Pm,m

a
φ

N−m√
(N −m)!

a∗
φ

N−n√
(N −n)!

Pn,n .

If m < n (thus, N −m > N −n), in view of the property a
φ
Pn,n

∣∣
Fn

= 0 we have

UmU ∗
n =

∏
N−m−1
j=n−m

(
Nφ + jI

)√
(N −m)!(N −n)!

Pm,ma
φ

n−mPn,n = 0 .

In this vein, if n < m then UmU ∗
n = 0. By NφPn,n = 0 we assert that if m = n then

UnU
∗

n = Pn,n
∏

N−n
j=1
(
Nφ + jI

)
(N −n)!

Pn,n = Pn,n .

3.5.2 On the spectrum of hph

Next, we discuss key properties of the diagonal part, hph(a∗⊥,a⊥), of the reduced

Hamiltonian. Interestingly, hph(x,y) is similar to a self-adjoint operator. As such, many

important spectral properties of self-adjoint operators carry over to hph.

Lemma 5. Assume that the pair-excitation kernel k solves the operator Riccati equa-

tion (3.3.4b) with ∥k∥op < 1.
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(i) Then the spectrum of hph : h1
V ∩φ⊥ 7→ h is real and discrete. The corresponding

eigenfunctions ω j(x), which satisfy hph(x,ω j) = E jω j(x) where E j > 0 are the eigenval-

ues (for j = 1, . . . ), form a non-orthogonal Riesz basis of φ⊥.

(ii) Also, suppose that the functions u j(x) solve the adjoint problem, i.e., h∗ph(x,u j)=

E ju j(x) on φ⊥ (for j = 1,2, . . . ). Then the following completeness relation holds:

∞

∑
j=1

ω j(x)u j(y) = δ̂ (x,y) . (3.5.2)

Proof. The following relation holds on φ⊥ by use of the Riccati equation (3.3.4b):

(h+ k ◦ fφ )◦ (δ̂ − k ◦ k) = (δ̂ − k ◦ k)◦ (h+ fφ ◦ k) . (3.5.3)

If ∥k∥op < 1 then (δ̂ − k ◦ k)−1 and (δ̂ − k ◦ k)1/2 exist and are bounded operators on φ⊥.

By (3.5.3), the operator κ := (δ̂ − k ◦ k)−1/2 ◦ (h+ k ◦ fφ )◦ (δ̂ − k ◦ k)1/2 is self-adjoint.

Recall that h has discrete spectrum; thus, h+ k ◦ fφ has discrete spectrum because k ◦ fφ

is compact. Moreover, the eigenvalues of h+ k ◦ fφ are positive (see Remark 6). By the

spectral theorem, the eigenvalues of κ are then positive and discrete, and the respective

eigenvectors form an orthonormal basis of φ⊥.

(i) Let the eigenvalues of κ be {E j}∞
j=1, with eigenvectors {η j}∞

j=1. Since the map-

ping (h+k◦ fφ ) 7→ (δ̂ −k◦k)−1/2(h+k◦ fφ )(δ̂ −k◦k)1/2 is a similarity transformation,

the operator hph also has real spectrum {E j}∞
j=1. From the relation

ω j(x) = (δ̂ − k ◦ k)1/2(x,η j) , (3.5.4a)

we conclude that {ω j(x)}∞
j=1 forms a Riesz basis as a bounded perturbation of an or-

thonormal basis of φ⊥.
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(ii) In a similar vein, the family {u j(x)}∞
j=1 defined by

u j(x) := (δ̂ − k ◦ k)−1/2(x,η j) (3.5.4b)

forms a Riesz basis for the adjoint problem on φ⊥.

The resolution of the identity by the eigenvectors η j of the operator κ reads

∞

∑
j=1

η j(x)η j(y) = δ̂ (x,y) .

This equation yields completeness relation (3.5.2), by use of (3.5.4).

3.5.3 Proof of Theorem 2

We are now in position to prove Theorem 2. Our argument for the construction of

eigenvectors of Hph relies on the fact the hph has discrete spectrum. Let |ψ⟩ := |ψ⟩N .

Proof. Step 1. We decompose Hph
∣∣ψ〉, where Hph is given in (3.5.1). We show that

N

∑
m=0

U ∗
m UmHph

N

∑
n=0

U ∗
n Un|ψ⟩=

N

∑
m,n=0

U ∗
m
{
UmHphU

∗
n
}(

Un
∣∣ψ⟩
)

=
N

∑
n=0

U ∗
n hph(a∗⊥,a⊥)Un|ψ⟩+

N−2

∑
n=0

bN,nU
∗

n fφ (a⊥,a⊥)Un+2|ψ⟩ . (3.5.5)

Here, bN,n is a numerical constant. Regarding the operators Un, see Definition 2.

In order to derive (3.5.5), we invoke Lemma 4. In this vein, we notice the relations

hph(a∗⊥,a⊥)|ψ⟩=
N

∑
n,m=0

U ∗
n Unhph(a∗⊥,a⊥)U

∗
m Um|ψ⟩=

N

∑
n=0

U ∗
n hph(a∗⊥,a⊥)Un|ψ⟩ ,
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a∗
φ

2

N
fφ (a⊥,a⊥)|ψ⟩=

N

∑
n,m=0

U ∗
n Un

a∗
φ

2

N
fφ (a⊥,a⊥)U ∗

m Um|ψ⟩

=
N

∑
n,m=0

U ∗
n Pn,n

a
φ

N−n√
(N −n)!

a∗
φ

2

N

a∗
φ

N−m√
(N −m)!

Pm,m fφ (a⊥,a⊥)Um|ψ⟩

=
N−2

∑
n=0

bN,nU
∗

n fφ (a⊥,a⊥)Un+2|ψ⟩ , bN,n =

√
(N −n)(N −n+1)

N
,

since only the terms with n = m−2 survive in the last double sum.

Step 2. Next, we describe the finite system that results from the above decompo-

sition. The first observation is that Un|ψ⟩ = |ψN,n⟩n where ψN,n(x1, . . . , xn) is a func-

tion orthogonal to the condensate. Let ψn := ψN,n, a function of n variables where

n = 0, 1, . . . , N. The operator hph acts on each of these functions ψn for n = 1, 2, . . . , N

by preserving the number of variables. On the other hand, the operator fφ (a⊥,a⊥) maps

ψn+2 to ψn. Denote the first action by hph ◦ψn and the second one by fφ : ψn+2.

We elaborate on these actions. For a symmetric function ψn(x1, . . . , xn), we have

hph ◦ψn = dn

n

∑
j=1

∫
dy
{

hph(x j,y)ψ(x1, . . . , x j−1, y, x j+1, . . . , xn)
}
.

Similarly, fφ acts on ψn+2(x1 . . .xn+2) as follows:

fφ : ψn+2 = bn

∫
dy1 dy2

{
fφ (y1,y2)ψn+2(y1, y2, x1, . . . , xn)

}
.

In the above, dn and bn are some (immaterial) numerical constants.

Hence, the eigenvalue equation Hph|ψ⟩= E|ψ⟩ reduces to a finite system, viz.,

hph ◦ψN,N = EψN,N , (3.5.6a)

hph ◦ψN,N−2 + fφ : ψN,N = EψN,N−2 , (3.5.6b)

hph ◦ψN,N−4 + fφ : ψN,N−2 = EψN,N−4 , . . . . (3.5.6c)
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This system has upper triangular form and manifests the effect of pair excitation, since

the number of non-condensate particles is reduced in pairs. The even and odd values of N

should be considered separately. These equations describe how to compute the fluctuation

vector |ψ⊥⟩=
(
ψN,0, ψN,1, . . . , ψN,N , 0, . . .

)
.

Notably, (3.5.6a) implies the equality of the spectra, σ
(
Hph

)
=σ

(
hph(a∗⊥,a⊥)

)
, on

FN . Indeed, if (3.5.6a) has only the trivial solution then all the subsequent equations have

trivial solutions. The upper triangular form suggests that we can construct the eigenvalues

explicitly. Note that the top equation has infinitely many possible solutions corresponding

to the spectrum of hph – but choosing one of them results in a finite system of equations.

We now give the relevant construction, which serves as a proof of existence for

system (3.5.6). For example, start with (see Lemma 5)

ΩN =
N

∏
p=1

ω jp(xp)

for given jp (p = 0, 1, . . . , N) so that ΩN is an eigenvector of hph(a∗⊥,a⊥), viz.,

hph ◦ΩN =

(
N

∑
p=0

E jp

)
ΩN .

The action of fφ on the state ΩN produces the collection of states

Ωl,m :=
N

∏
p=0

p ̸=l,m

ω jp(xp) ; l, m = 0, 1, . . . , N .

We can determine ΩN−2 := ∑l,m cl,mΩl,m which plays the role of ψN,N−2. By substituting

into (3.5.6b), we obtain the system cl,m
(
E jl +E jm

)
= b2 fφ (ω jl ,ω jm) which yields cl,m.

The next state, ΩN−4, is a linear combination of ω jk where four terms have been removed

from the original collection. The idea of computation is similar. One can proceed until all
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non-condensate particles are removed. This argument concludes our explicit construction

of the eigenvectors of Hph in terms of eigenvectors of hph.

It is of some interest to observe that the eigenvectors of Hph contain (in part) the

condensate wave function, in contrast to the eigenvectors of hph(a∗⊥,a⊥).

3.6 Connections to a Hermitian approach and J-self-adjoint system

In this section, we focus on how our existence theory for kernel k is connected to

another approach, namely, the direct diagonalization of a (Hermitian) Hamiltonian that

does not conserve the number of particles [20, 42]. This Hamiltonian results from the

Bogoliubov approximation and has the same spectrum as our non-Hermitian H̃app when

restricted to FN . Our analysis reveals a connection between (unitary) Bogoliubov-type

rotations of Hamiltonians that are quadratic in Boson field operators for noncondensate

atoms, the operator Riccati equation for k, and the theory of J-self-adjoint operators devel-

oped by Albeverio and coworkers [2–4] (see also Refs. [13, 58]). These works, however,

appear not to address the possible presence of infinitely many solutions to the Riccati

equation which is suggested by our existence theory. We also point out that our results

so far imply the existence of solutions to the eigenvalue problem for Boson excitations

(quasiparticles) formulated by Fetter, if his delta-function interaction potential is regular-

ized [20].
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3.6.1 On a reduced Hamiltonian via the Bogoliubov approximation

Recall our reduced Hamiltonian with a smooth interaction potential (Section 3.3.1),

viz.,

Happ = NEH +h(a∗⊥,a⊥)+
1

2N
fφ (a∗⊥,a

∗
⊥)a

2
φ
+

1
2N

fφ (a⊥,a⊥)a∗φ
2 .

Let us now apply the Bogoliubov approximation to this Happ by formally replacing the

operators a
φ
, a∗

φ
with

√
N. This results in the Hamiltonian HBog : F 7→ F where

HBog := NEH +h(a∗⊥,a⊥)+
1
2

fφ (a∗⊥,a
∗
⊥)+

1
2

fφ (a⊥,a⊥) , (3.6.1)

which does not commute with the number operator N .

Next, we discuss the diagonalization of HBog by using eigenstates of the operator

hph : h1
V ∩φ⊥→ h defined by (3.5.1b) (Section 3.5). We proceed in the spirit of Fetter, [20]

who diagonalizes HBog−NEH via (unitary) Bogoliubov-type rotations of the Boson field

operators in the space orthogonal to φ ; see equation (2.14) for a delta-function interaction

potential in Ref. [20]. In this vein, let us consider Fetter’s quasiparticle operators γ j,γ
∗
j

which are defined as follows [20] .

Definition 3. The operators γ j, γ∗j : F 7→ F ( j = 1, 2, . . . ) are defined by

γ j :=
∫

dx {u j(x)a⊥,x + v j(x)a∗⊥,x} , γ
∗
j :=

∫
dx {u j(x)a∗⊥,x + v j(x)a⊥,x} .

In the above, {u j(x)}∞
j=1 is a Riesz basis of φ⊥, and {v j(x)}∞

j=1 are chosen such that γ j

and γ∗j satisfy the canonical commutation relations.

One can verify that γ j,γ
∗
j satisfy the canonical commutation relations provided∫

dx {u j(x)v j′(x)− v j(x)u j′(x)}= 0 ,∫
dx {u j(x)u j′(x)− v j(x)v j′(x)}= δ j j′ .

(3.6.2)
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We proceed to show that the diagonalization of HBog in terms of γ j and γ∗j implies that

{u j(x),v j(x)}∞
j=1 must solve a linear system of PDEs. Following Fetter’s procedure, [20]

let us momentarily assume the following completeness relations:

∞

∑
j=1

{u j(x)u j(x′)− v j(x)v j(x′)}= δ̂ (x,x′) ,

∞

∑
j=1

{u j(x)v j(x′)− v j(x)u j(x′)}= 0, ∀x, x′ ∈ R3 .

(3.6.3)

In view of Definition 3, these relations allow us to decompose the operators a⊥,x and a∗⊥,x

as

a⊥,x =
∞

∑
j=1

{u j(x)γ j − v j(x)γ∗j } , a∗⊥,x =
∞

∑
j=1

{u j(x)γ∗j − v j(x)γ j} .

These two relations together with Definition 3 amount to a Bogoliubov-type (unitary)

transformation in the space orthogonal to the condensate φ . The substitution of these

expressions into (3.6.1) along with the requirement that the terms proportional to γ jγl and

γ∗j γ∗l vanish (for all j, l = 1, 2, . . .) yields the following eigenvalue problem involving a

symplectic matrix: hT
⊥ − fφ⊥

fφ⊥ −h⊥

◦

u j(x)

v j(x)

= E j

u j(x)

v j(x)

 ; j = 1, 2, . . . . (3.6.4)

In the above, h⊥ and fφ⊥ are the projections of operators h and fφ on space φ⊥. Equa-

tion (3.6.4) should be compared to equations (2.21a,b) in Ref. [20]. Note that the notation

for u j and E j here is the same as the one used for the eigenvectors and eigenvalues of h∗ph

in Section 3.5.2. In fact, the corresponding quantities turn out to be identical in the two

eigenvalue problems, as we discuss below.
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3.6.2 On the existence of solutions to eigenvalue problem for (u j, v j)

Let us recall the spectral theory for hph, particularly Lemma 5 (Section 3.5.2). We

should also add that this theory relies on the existence of solutions to the Riccati equation

for k, Theorem 1 (Section 3.4). To make a connection to system (3.6.4), consider the

solutions ω j and u j ( j = 1, 2, . . .) to the eigenvalue problem for hph and its adjoint. This

problem is expressed by the equations

hph(x,ω j) = (h+ k ◦ fφ )(x,ω j) = E jω j(x) ,

h∗ph(x,u j) = (hT + fφ ◦ k)(x,u j) = E ju j(x) ( j = 1, 2, . . .) .

Notice that if we define v j(x) := −k(x,u j) then the (adjoint) equation for u j(x) here im-

mediately takes the form of the first equation in system (3.6.4). We can show that this

definition for v j also gives the second equation in system (3.6.4) by employing the conju-

gate Riccati equation (for k). Indeed, notice that

−h⊥(x,v j) = (h⊥ ◦ k)(x,u j) = (−k ◦hT
⊥− fφ − k ◦ fφ ◦ k)(x,u j)

=−k ◦
[
E ju j(x)− fφ ◦ k(x,u j)

]
− fφ (x,u j)− (k ◦ fφ ◦ k)(x,u j)

=−E jv j(x)− fφ (x,u j) .

Hence, the existence of eigenvectors {ω j,u j}∞
j=1 and spectrum {E j}∞

j=1 in regard to hph

entails the existence of solutions to system (3.6.4).

Remark 7. (i) We showed an intimate connection of the eigenvalue problem for hph and

its adjoint, based on the Riccati equation for kernel k, to PDE system (3.6.4) coming from

Fetter’s Hermitian view. A direct comparison to the results in Ref. [20] is meaningful

if Fetter’s delta-function interaction is appropriately regularized. This connection is in
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fact a manifestation of a deeper theory which links the Riccati equation to J-self-adjoint

matrix operators [2–4]. We briefly discuss aspects of this theory in Section 3.6.3.

(ii) In Fetter’s work [20], an ansatz for the many-body ground state |ψ0⟩ of the

quadratic Hamiltonian HBog on F is

|ψ0⟩= ZeG {a∗
φ

N}|vac⟩ ; G :=
1
2

∫
dxdy b(x,y)a∗⊥,xa∗⊥,y .

However, a single governing equation for the associated kernel b(x,y) is not provided in

Ref. [20]. Instead, the condition γ j|ψ0⟩ = 0 is applied for all j = 1,2, . . . , which yields

the following system of integral relations:

∫
dy
{

b(x,y)u j(y)
}
=−v j(x) ( j = 1, 2, . . .) .

By comparison of this formalism to our approach, we realize that kernel b coincides

with k, and the above integral relations are already a consequence of our solution for

k. In fact, in Ref. [20] the above integral system is used to define the kernel b(x,y) =

k(x,y) when {u j(x),v j(x)} solve the matrix eigenvalue problem (3.6.4) under a delta-

function interaction. The kernel k is expressed as a bilinear form involving φ -orthogonal

projections of the wave functions v j; [20] see also Ref. [18]. Our existence proof for k

furnished in the context of Theorem 1 shows that the ground state |ψ0⟩ is self-consistent,

in the sense that the integral system stemming from |ψ0⟩ and (3.6.4) is well-posed if a

solution to the Riccati equation for k exists.

At this stage, we find it compelling to give the following corollary for system (3.6.4).

Corollary 1. For {u j(x),v j(x)}∞
j=1 that solve (3.6.4), completeness relations (4.3.2) and

orthogonality relations (3.6.2) hold.
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Proof. We resort to the spectral theory of operator hph on space φ⊥, particularly the proof

of Lemma 5 (Section 3.5.2). Recall the completeness relation for the basis {η j}∞
j=1 of

φ⊥, as well as the relation η j(x) = (δ̂ − k ◦ k)1/2(x,u j).

Hence, on φ⊥ we have

δ̂ (x,x′) = (δ̂ − k ◦ k)1/2

{
∞

∑
j=1

η j(x)η j(x′)

}
(δ̂ − k ◦ k)−1/2

= (δ̂ − k ◦ k)

{
∞

∑
j=1

u j(x)η j(x′)

}
(δ̂ − k ◦ k)−1/2 = (δ̂ − k ◦ k)

∞

∑
j=1

u j(x)u j(x′) .

Thus, we obtain
∞

∑
j=1

u j(x)u j(x′) =
δ̂ (x,x′)

δ̂ − k ◦ k
.

By use of the relation v j(x) =−k(x,u j), we can therefore assert that

∞

∑
j=1

v j(x)v j(x′) =
∞

∑
j=1

k(u j,x)k(x′,u j) =
k ◦ k

δ̂ − k ◦ k
.

The last two equations entail the first relation of (4.3.2).

Next, we invoke the equation just derived to write

∞

∑
j=1

u j(x)v j(x′) =−
∞

∑
j=1

u j(x)k(x′,u j) =−(δ̂ − k ◦ k)−1 ◦ k .

Alternatively, we have

∞

∑
j=1

v j(x)u j(x′) =−
∞

∑
j=1

k(x,u j)u j(x′) =−k ◦ (δ̂ − k ◦ k)−1 .

Thus, we obtain the second completeness relation of (4.3.2) by using the identity (δ̂ −k◦

k)−1 ◦ k = k ◦ (δ̂ − k ◦ k)−1.

Regarding orthogonality relations (3.6.2), the manipulation of system (3.6.4) yields

the following equations:

(E j −E j′)
∫

dx {u j(x)u j′(x)}=
∫

dx {−u j′(x) fφ (x,v j)+u j(x) fφ (x,v j′)} ,

(E j −E j′)
∫

dx {v j(x)v j′(x)}=
∫

dx {v j′(x) fφ (x,u j)− v j(x) fφ (x,u j′)} .
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By subtracting the second equation from the first one, we obtain the second orthogonality

relation of (3.6.2), if ∥u j∥2
2 −∥v j∥2

2 ̸= 0 and this normalization for u j and v j is chosen to

give unity. The first orthogonality relation of (3.6.2) follows by a similar procedure which

we omit here.

3.6.3 On the J-self-adjoint system

Next, we discuss the connection between Riccati equation (3.3.4b) and main ideas

from the theory of J-self-adjoint operators found in, e.g., Refs. [2–4]. A link between

these two theories is suggested by the eigenvalue problem (3.6.4), which involves the

symplectic matrix

M :=

 hT
⊥ − fφ⊥

fφ⊥ −h⊥

 ; dom(M) := h1
V ⊕h1

V . (3.6.5)

Note that the matrix

M̃ :=

hT − fφ

fφ −h


has the zero eigenvalue with eigenvector (φ ,φ).

Suppose that φ(x), h(x,y) and fφ (x,y) satisfy the assumptions of Theorem 1 (Sec-

tion 3.4.2). Let k be the unique solution to the Riccati equation with ∥k∥op < 1. Then the

operator matrix

W :=

δ̂ k

k δ̂

 : φ
⊥⊕φ

⊥ 7→ φ
⊥⊕φ

⊥
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is boundedly invertible, [4] with inverse

W−1 =

 (δ̂ − k ◦ k)−1 −k ◦ (δ̂ − k ◦ k)−1

−k ◦ (δ̂ − k ◦ k)−1 (δ̂ − k ◦ k)−1

 .

Now let us consider the diagonal matrix

D :=

hT
⊥+ k ◦ fφ⊥ 0

0 −h⊥− k ◦ fφ⊥

 .

The spectrum of D is σ(hph)∪ σ(−hph), which under the assumptions of Theorem 1

consists of two disjoint parts. Since k obeys the Riccati equation on φ⊥, we have

DW =

hT
⊥+ k ◦ fφ⊥ −k ◦h⊥− fφ⊥

k ◦hT
⊥+ fφ⊥ −h⊥− k ◦ fφ⊥

=WM ,

where M is defined by (3.6.5). Thus, the matrix M is similar to the diagonal matrix D.

We proceed to describe implications of this similarity relation. Eigenvectors of

the diagonal operator matrix D are of two types. One type is of the form
(
ω j(x),0

)
where ω j(x) is an eigenvector of hph, and another type is of the form

(
0,ω j(x)

)
(see

Section 3.5.2). This fact yields two types of eigenvectors for M after transformation by

W−1, viz.,

W−1

ω j(x)

0

=

 (δ̂ − k ◦ k)−1(x,ω j)

−k ◦ (δ̂ − k ◦ k)−1(x,ω j)

 ,

and

W−1

 0

ω j(x)

=

−k ◦ (δ̂ − k ◦ k)−1(x,ω j)

(δ̂ − k ◦ k)−1(x,ω j)

 .

For the second type of eigenvector, we make the identifications

u j(x) := (δ̂ − k ◦ k)−1(x,ω j) and v j(x) :=−k ◦ (δ̂ − k ◦ k)−1(x,ω j) =−k(x,u j) .
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The eigenvectors of the second type should be excluded since they yield a negative spec-

trum.

Remark 8. So far, we assumed that the Riccati equation for k is satisfied (and solutions

to this equation exist by Theorem 1). Conversely, if we assume that the integral system

v j =−k(x,u j) as well as PDE system (3.6.4) hold then k must obey the Riccati equation.

This claim can be proved by use of the methods that we already developed.

3.7 Conclusion and discussion

In concluding this chapter, we stress the intimate, and perhaps surprising, mathe-

matical connection between two apparently disparate approaches (those of Fetter [20] and

Wu [60]) for the problem of low-lying Boson excitations via the theory of J-self-adjoint

operators [4]. By exploiting this connection, we were able to prove existence of solutions

to the PDE system for the single-particle wave functions u j and v j pertaining to elemen-

tary excitations (quasiparticles) in Fetter’s far-reaching formalism [20]. In addition, we

explicitly constructed the eigenvectors of the approximate many-body Hamiltonian Happ

for pair excitations, given by (6.2.3), in the N-particle sector of Fock space. Some of our

results can be viewed as an application of the powerful theory of J-self-adjoint operators

to a physics-inspired problem.

Let us outline implications of our analysis. The similarity relation WMW−1 =

D, discussed in Section 3.6.3, shows that the spectrum of hph can change for different

solutions to the Riccati equation, but in a predictable way. In particular, since we have the

spectrum σ(M) = σ(D) = σ(hph)∪σ(−hph), the (double) spectrum σ(hph)∪σ(−hph) is
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unaffected by the choice of kernel k solving the Riccati equation. However, the spectrum

σ(hph) will change under different choices of solutions for k. In light of our analysis, the

only possible change induced by σ(hph(k)) 7→σ(hph(k′)) for two different solutions k and

k′ (k′ ̸= k) is such that a finite collection of eigenvalues {E j} ⊂ σ(hphon(k)) is mapped to

{−E j} ⊂ σ(hphon(k′)) while the rest of the eigenvalues remain unchanged.

The kernel k is directly related to the pair correlation function C2 : R3 ×R3 → C at

the ground state Ψ (at zero temperature), which for our purposes is defined by C2(x,y) :=

N−1⟨Ψ|a∗⊥,xa⊥,ya∗
φ

a
φ
|Ψ⟩. An asymptotic calculation of C2 for large N to the order of

approximation consistent with the reduced Hamiltonian H̃app yields [20, 60]

C2(x,y) =
k ◦ k

δ̂ − k ◦ k
.

This formula can be extracted from the analysis of Ref. [60] under the restriction ∥k∥op <

1 which ensures uniqueness of the solution to the operator Riccati equation for k. Hence,

the existence of a unique k directly implies a well-defined pair correlation function C2(x,y).

The investigation of the connection between k and C2 is the subject of future work.

We are tempted to also mention a few other open problems motivated by our work.

For example, given the existence of the kernel k with ∥k∥op < 1, it is of interest to con-

sider the effect of a non-unitary transformation analogous to eW by including contribu-

tions from higher-order (cubic and quartic terms) in the reduced many-body Hermitian

Hamiltonian. This consideration would plausibly require the introduction of additional

kernels, which must satisfy several consistency conditions. Furthermore, it is conceivable

that the non-Hermitian approach involving k can be extended to the setting of finite (posi-

tive) temperatures below the phase transition in the presence of a trapping potential. In the

84



spirit of the periodic case, [38] we could construct an effective approximate Hamiltonian

for pair excitation that involves a parameter expressing the average fraction of particles at

the condensate, and subsequently transform it non-unitarily. Alternatively, one may use

a Hermitian approach at finite temperatures akin to Fetter’s formalism, e.g., the approach

taken up in Ref. [25].
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Chapter 4

Non-translation-invariant systems: pairs coupled with mean field

4.1 Background

In the previous chapter, we connected the theory for pair-excitation kernel k(x,y) to

the diagonalization of a quadratic many-body Hamiltonian. In that chapter, the quadratic

Hamiltonian was derived by the method of Fetter [20], and resulted in a system for the

condensate φ(x) and excitation kernel k(x,y) (which we review here in equations (4.1.4)

and (4.1.14)). That model had the particular feature that the Hartree equation for φ was

decoupled from the Riccati equation for k, so that we could solve them independently by

different variational methods.

In the present chapter, we analyze a more complicated quadratic approximate Hamil-

tonian for the trapped Bose gas, which contains effective mean-field potentials arising

from the density of non-condensate particles. The model of Fetter tacitly ignored the

contribution of these terms in the approximation scheme for the exact many-body Hamil-

tonian.

The starting point of this chapter is the exact many-body Hamiltonian, H , for N

bosons with a repulsive, mean-field, pairwise interaction υN , in the trapping potential

Vtrap(x), given by the Fock space operator:

H =
∫

dx{a∗x
(
−∆+Vtrap(x)

)
ax}+

1
2

∫∫
dxdy

{
a∗xa∗y

1
N

υN(x− y)axay
}
, FN → FN .

(4.1.1)
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A feature of this system which was not present in the previous chapters is the mean-field

interaction, 1
N υN(x). Here, we require that υN(x) = N3β υ(Nβ x), where υ is a smooth,

positive, radially symmetric function, with
∫

dx{υ(x)} = g, for g > 0, and β ≤ 1/6. In

particular, 1
N υN(x− y) ≤ ∥υ∥L∞ , and ∥ 1

N (υN ∗ f )∥L2 ≤ g∥ f∥L2 , by Young’s inequality.

We assume that Vtrap(x) is positive, and that the operator (−∆x +Vtrap(x)) has a positive

spectrum with a gap between it’s lowest and first excited states. It is useful to take the

concrete example Vtrap(x) = |x|2 for x ∈ R3 as the prototypical trapping potential.

As in previous chapters, the goal is to write an approximation to H (denoted gener-

ically by Happrox) which describes important features of the many-body system for states

close to the ground state. The previous chapter emphasized the utility of an approximation

Happrox which is quadratic in field operators orthogonal to the condensate; since quadratic

Hamiltonians can be diagonalized by unitary rotation, finding a quadratic system which

approximates (5.2.5) is of great value. Here we describe a systematic approximation

scheme motivated by Griffin [25], which generalizes the quadratic approximation of the

previous chapter, represented by the work of Fetter [20]. Compared to the previous chap-

ter, the scheme here includes additional quadratic terms coming from non-condensate

densities. The new terms alter the analysis in a qualitative way; giving rise to a nonlinear

system for elementary excitations in place of the corresponding linear system of Chapter

3.

We first translate the approximation of Fetter (1970) [20] to this new context. The

operator H − µN , (where N =
∫

dx{a∗xax}, and µ > 0 is the chemical potential), is
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rewritten using the Bogoliubov approximation:

ax ≈ Nφ(x)φ(x)+bx

a∗x ≈ Nφ(x)φ(x)+b∗x ,

(4.1.2)

where, as before, the operators bx, b∗x are understood to satisfy the canonical commutation

relations on the space orthogonal to the condensate. In particular,

[bx, b∗y ] = δ (x− y)−φ(x)φ(y).

The macroscopic condensate wavefunction φ(x), with ∥φ∥= 1, is determined self-consistently

as part of the scheme. Making the above substitutions in H , and ignoring cubic and quar-

tic terms in the operators bx, b∗x , the reduced Hamiltonian is given by:

HFetter = const+
∫

dx
{

AFetter(x)bx +AFetter(x)b∗x
}

+
∫

dxdy
{
(bx,b∗x)

−hT
Fet(x,y) fφ (x,y)

− fφ (x,y) hFet(x,y)


−b∗y

by

}. (4.1.3)

Here, AFetter(x), hFet(x,y), and fφ (x,y) are defined by:

AFetter(x) := (−∆x +Vtrap(x)−µ)φ(x)+
∫

dy{υN(x− y)|φ(y)|2}φ(x),

hFet(x,y) := (−∆x +Vtrap(x)−µ)δ (x− y)+φ(y)υN(x− y)φ(x)+(υN ∗ |φ |2)(x)δ (x− y),

fφ (x,y) := φ(y)υN(x− y)φ(x).

The equation for the mean-field condensate φ(x) of Fetter results by enforcing the condi-

tion AFetter(x) = 0, i.e.,

(−∆x +Vtrap(x))φ(x)+(υN ∗ |φ |2)(x)φ(x) = µφ(x). (4.1.4)

With φ(x) specified by equation (4.1.4), the operator matrix in HFetter (equation (4.1.3)) is

then well-defined. The method outlined by Fetter [20, 21] for diagonalizing the operator

88



HFetter is equivalent to solving the eigenvalue problem for this matrix, for the basis of

single-particle states {U j(x), Pj(x)}∞
j=1, i.e.,

∫
dy
{hFet(x,y) − fφ (x,y)

fφ (x,y) −hT
Fet(x,y)


U j(y)

Pj(y)

}= E j

U j(x)

Pj(x)

 , ∥U j∥2 −∥Pj∥2 = 1.

(4.1.5)

This system is the result of defining the quasiparticle operators α j, α∗
j by the formula

bx = ∑
j
{U j(x)α j −Pj(x)α∗

j }

b∗x = ∑
j
{U j(x)α∗

j −Pj(x)α j}.
(4.1.6)

The operators α j, α∗
j in (4.3.1) are taken to satisfy the canonical commutation relations

[α j, α
∗
k ] = δ jk, [α j,αk] = [α∗

j ,α
∗
k ] = 0,

which gives the normalization condition for {U j(x), Pj(x)}∞
j=1 in (4.1.5). The spectrum

{E j}∞
j=1 describes the elementary excitations of HFetter.

Griffin (1996) [25] extended the analysis of (4.1.3) by including higher order terms

within a quadratic scheme, introducing the two-particle correlation functions for non-

condensate particles, denoted npair(x,y), mpair(x,y), ρpair(x) := npair(x,x). The setup is

similar to the derivation of HFetter; the Bogoliubov approximation (4.1.2) is made in the

exact Hamiltonian H . Now, instead of ignoring cubic and quartic terms in {bx, b∗x}, the

following replacements are made:

b∗xb∗ybxby ≈ 2npair(x,y)b∗ybx +2ρ
pair(x)b∗yby +mpair(x,y)bxby +mpair(x,y)b∗xb∗y ,

b∗xbxby ≈ ρ
pair(x)by +npair(x,y)bx +mpair(x,y)b∗x .

(4.1.7)
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The reduced Hamiltonian is a generalization of (4.1.3), which reads:

HGrif = const+
∫

dx
{

AGrif(x)bx +AGrif(x)b∗x
}

+
∫

dxdy
{
(bx,b∗x)

 −hT (x,y) (υNm)(x,y)

−(υNm)(x,y) h(x,y)


−b∗y

by

}, (4.1.8)

where the operators in this expresssion are defined by

AGrif(x) :=
(
−∆x +Vtrap(x)+

1
N
(υN ∗ρ)(x)−µ

)
φ(x)+

+
1
N

∫
dy{υN(x− y)n(x,y)φ(y)}+

∫
dy{υN(x− y)m(x,y)φ(y)},

n(x,y) := φ(x)φ(y)+
1
N

npair(x,y),

m(x,y) := φ(x)φ(y)+
1
N

mpair(x,y),

ρ(x) := n(x,x), ρ
pair(x) := npair(x,x),

h(x,y) := {−∆x +Vtrap(x)+(υN ∗ρ
pair)(x)−µ}δ (x− y)+υN(x− y)n(x,y).

(4.1.9)

The apparent problem with this formulation is that it is unclear how to determine the

functions npair(x,y), mpair(x,y), φ(x) consistently, which would require enforcing more

equations than just AGrif(x)= 0. Griffin, making an implicit assumption on the structure of

eigenstates of HGrif, diagonalizes HGrif using a basis of states {u j(x), p j(x)}∞
j=1 (which

play the same role as {U j(x), Pj(x)}∞
j=1 in (4.1.5)), thereby providing a “closure” to the

system that determines all correlation functions. The system for condensate φ(x), and the

basis {u j(x), p j(x)} reads:

µφ(x) = (−∆x +Vtrap(x))φ(x)+(υN ∗ |φ |2)(x)φ(x)+ 1
N
(υN ∗ρ

pair)(x)φ(x)

+
1
N

∫
dy{υN(x− y)npair(x,y)φ(y)}+ 1

N

∫
dy{υN(x− y)mpair(x,y)φ(y)},

(4.1.10)
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and

∫
dy
{ −hT (x,y) (υNm)(x,y)

−(υNm)(x,y) h(x,y)


u j(y)

p j(y)

}=E j

u j(x)

p j(x)

 , ∥u j∥2−∥p j∥2 = 1.

(4.1.11)

The normalization condition for the basis in (4.1.11) ensures that the spectrum {E j} that

we find is positive. An implicit assumption on the structure of eigenstates allows for the

correlation functions to be given by the formulas (see Remark 9):

mpair(x,y) =−∑
j

u j(x)p j(y)

npair(x,y) = ∑
j

p j(x)p j(y).

(4.1.12)

4.1.1 Synopsis of the theory of J−self-adjoint operators

In Chapter 3, it was also shown that there is a connection between the unitary

rotation of quadratic bosonic Hamiltonians, and the non-Hermitian formalism of pair-

excitation. These methods are represented in the physics literature by the works of Lee,

Huang, Yang [37, 38], Fetter [20, 21], and Wu [60, 61], respectively.

More precisely, the theory of J-self-adjoint operators, motivated by the work of

Albeverio, Tretter, et. al [2, 3, 13, 58] can be applied to any quadratic Hamiltonian.

In the context of equation (4.1.4) for the condensate and the linear system (4.1.13) for

{U j(x), Pj(x)}∞
j=1, a solution to any one of the following systems can be used to construct

a solution to the other two:
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(i) The Bogoliubov de-Gennes system for the basis {U j(x), Pj(x)}∞
j=1:

∫ {hFet(x,y) − fφ (x,y)

fφ (x,y) −hT
Fet(x,y)


U j(y)

Pj(y)


}

dy = E j

U j(x)

Pj(x)

 , ∥U j∥2 −∥Pj∥2 = 1.

(4.1.13)

(ii) The nonlinear Riccati equation for kernel k(x,y):

hFet ◦ k+ k ◦hT
Fet + fφ + k ◦ fφ ◦ k = 0, k : (φ)⊥ → (φ)⊥, ∥k∥op < 1. (4.1.14)

This approach is used, e.g., in [60] to describe a spatially-dependent process whereby

pairs of particles escape the condensate.

(iii) The ‘phonon’ equation for a (non-orthogonal) basis of single-particle excita-

tions ω j(x):

hph(x,ω j) := (hFet + k ◦ fφ )(x,ω j) = E jω j(x). (4.1.15)

In particular, the operator matrix in (4.1.13) is diagonalized by a boundedly-invertible

matrix which depends on the kernel k, via:hT
Fet + k ◦ fφ 0

0 −hFet − k ◦ fφ

 =W ◦

hFet − fφ

fφ −hT
Fet

◦W−1, (4.1.16)

for

W :=

δ̂ k

k δ̂

 ,

and

W−1 =

 (δ̂ − k ◦ k)−1 −k(δ̂ − k ◦ k)−1

−k(δ̂ − k ◦ k)−1 (δ̂ − k ◦ k)−1

 .

The diagonalized matrix in (4.1.16) features the phonon operator of (4.1.15).
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We extend the equivalence of systems (4.1.13) and (4.1.14) to the nonlinear system

of equations (4.1.10), (4.1.11), (4.1.12). This allows us to consider the equation (for

operators h, m defined in equation (4.1.9))

h◦ k+ k ◦hT +(υNm)+ k ◦ (υNm)◦ k = 0, k : (φ)⊥ → (φ)⊥, (4.1.17)

in lieu of the coupled nonlinear system (4.1.11). In this reformulation, we have the for-

mulas

−∑
j

u j(x)p j(y) =
(

k ◦ (δ − k ◦ k)−1
)
(x,y),

∑
j

p j(x)p j(y) =
(
(k ◦ k)◦ (δ − k ◦ k)−1

)
(x,y).

(4.1.18)

This allows us to rewrite the densities npair(x,y), mpair(x,y), in terms of the operator

k(x,y). The equation for φ(x) is therefore coupled to the equation for k(x,y), via these

densities. This approach has the benefit of solving a single equation for k(x,y), instead of

the infinite, nonlinear, coupled system for {u j(x), p j(x)}∞
j=1.

In this chapter, we solve the nonlinear system (4.1.10), (4.1.17), (4.1.18) using

techniques developed for solving the linear system (4.1.13). Our construction is per-

turbative—we introduce the small parameter g > 0 which describes the strength of the

interaction (i.e., υN(x) := gN3β υ(Nβ x) where υ(x)≥ 0 is a symmetric, smooth function,

such that υN(x− y) → gδ (x− y) as N → ∞), and show that solutions to the nonlinear

system exist which are close to the unperturbed solutions of (4.1.13) and (4.1.14).

The translation of the system (4.1.10), (4.1.11), (4.1.12), to a coupled system for

φ(x) and k(x,y) also helps us to understand the spectrum E j in the context of the nonlinear

system (4.1.11). Our main result is:
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Theorem 3. Suppose the single-particle operator
(
−∆+Vtrap(x)

)
contains a gap be-

tween its ground state and first excited state. Then for g > 0 small enough and 0 ≤ β ≤

1/6, there exist φ ∈ h1
V , with ∥φ∥L2 = 1, and k ∈B2(φ⊥,φ⊥), with ∥k∥op < 1 which solve

the coupled system consisting of the equation for φ :

(−∆x +Vtrap(x))φ(x)+(υN ∗ |φ |2)(x)φ(x)+ 1
N
(υN ∗ρ

pair)(x)φ(x)

+
1
N

∫
dy{υN(x− y)npair(x,y)φ(y)}+ 1

N

∫
dy{υN(x− y)mpair(x,y)φ(y)}= µφ(x),

the nonlinear equation for k(x,y):

h◦ k+ k ◦hT +(υNm)+ k ◦ (υNm)◦ k = 0, k : (φ)⊥ → (φ)⊥,

for particle densities npair(x,y) and mpair(x,y) given by:

npair(x,y) :=
(
(δ − k ◦ k)−1 ◦ (k ◦ k)

)
(x,y), mpair(x,y) :=

(
(δ − k ◦ k)−1 ◦ k

)
(x,y),

and ρpair(x) := npair(x,x).

4.2 Many-body system and approximation scheme

We derive the coupled system for the condensate wavefunction and pair-excitation

kernel via the heuristic approximation scheme of Griffin [25]. The starting point is the

operator H − µN , where H is the many-body Fock space Hamiltonian (5.2.5). We

write this using the definition

ε(x,y) :=
(
−∆+Vtrap(x)−µ

)
δ (x− y),

so that,

H −µN =
∫∫

dxdy
{

a∗xε(x,y)ay +
1
2

a∗xa∗y
1
N

υN(x− y)axay
}
. (4.2.1)
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The function Vtrap(x) > 0 represents the effect of a generic trapping potential. It

suffices for our purposes to consider, for example, Vtrap(x) = |x|2, or any trapping po-

tential that makes the Schrödinger operator (−∆−Vtrap(x)) positive, with a gap between

its lowest and first excited state. The constant µ > 0 represents the chemical potential

of the system, and is included because the total particle number is not conserved in the

resulting quadratic approximate Hamiltonian. We understand µ as a Lagrange multiplier

which fixes the average number of particles N > 0 in the system; its value must be de-

termined as part of the approximation. The two-particle interaction potential is given by

υN(x) := gN3β υ(Nβ x) where υ(x) is a positive, symmetric, and
∫

dx{υ(x)} = 1. The

constant g > 0 is a small parameter, such that υN(x− y)→ gδ (x− y) as N → ∞. In what

follows, we will assume β ≤ 1/6, so that, in particular, 1
N υN(x)≤ g∥υ∥L∞ for all x ∈ R3.

To avoid unnecessary complications, we also assume that the Fourier transform of υ is

positive, i.e., υ̂ ≥ 0, although this is not strictly necessary in order for the argument to

hold.

The operators ax, a∗x denote the bosonic field operators on F(h) which satisfy the

usual commutation relations,

[ax, a∗y ] = δ (x− y), [ax,ay] = [a∗x ,a
∗
y ] = 0.

The scheme consists in replacing H − µN by the ‘approximation’ K ′, which is

described by the expression

K ′ = K0 + K̃1 + K̃2.

The three operators K0, K̃1, K̃2 contain, respectively, constant, linear, and quadratic terms

in the bosonic field operators for the noncondensate (see (4.2.2)). The goal of this descrip-
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tion is to derive effective equations for two quantities: (i) the macroscopic condensate

wavefunction Φ ∈ L2(R3) (this results from enforcing the condition K̃1 ≡ 0), and (ii) a

quantity that describes low-lying excitations of the Bose gas that can be attributed to parti-

cles outside the condensate. We will show that there are two equivalent descriptions of this

second quantity. The first comes from diagonalizing the operator K̃2 via a unitary transfor-

mation of field operators, and yields the basis of single-particle states {u j(x), p j(x)}∞
j=1.

The second description utilizes the pair-excitation kernel k(x,y), which solves a nonlin-

ear Riccati-type equation (equation (4.4.9)), and describes a spatially-dependent process

whereby pairs of particles scatter from the condensate.

The macroscopic wavefunction is normalized according to

∥Φ∥2 = N,

where N > 0 is the total number of particles of the system with Hamiltonian H , or

the average number of particles of the system with Hamiltonian K ′. More generally,

the normalization can be taken to be Nξ where the parameter 0 < ξ < 1 represents the

condensate fraction, although we do not pursue this currently. Furthermore, we employ

the Bogoliubov approximation, writing the field operators as

ax ≈ Φ(x)+bx , a∗x ≈ Φ(x)+b∗x . (4.2.2)

Here the operators b∗x , bx are taken to satisfy canonical commutation relations on the space

orthogonal to the condensate, (Φ)⊥. That is,

[bx,b∗y ] = δ (x− y)− 1
N

Φ(x)Φ(y) := δ̂ (x− y).

We will not justify the approximation (4.2.2) in the current work. Our aim is rather to
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explore consequences of the model that results from this heuristic approximation. For

relevant mathematical work on the validity of the Bogoliubov approximation for interact-

ing Bosonic Hamiltonians, see [57].

Using the Bogoliubov approximation (4.2.2) in Hamiltonian (4.2.1) yields an oper-

ator KBog : F(Φ⊥)→ F(Φ⊥) which is quartic in field operators bx,b∗x :

KBog :=
∫∫

dxdy
{(

Φ(x)+b∗x
)
ε(x,y)

(
Φ(y)+by

)}
+

1
2

∫∫
dxdy

{(
Φ(x)+b∗x

)(
Φ(y)+b∗y

) 1
N

υN(x− y)
(
Φ(x)+bx

)(
Φ(y)+by

)}
:= K0 +K1 +K2 +K3 +K4,

(4.2.3)

The operators Ki for i = 0,1,2,3 contain all terms with i factors of the field operators

b∗, b. More precisely,

K0 =
∫∫

dxdy
{

Φ(x)ε(x,y)Φ(y)+
1

2N
|Φ(x)|2υN(x− y)|Φ(y)|2

}
,

K1 =
∫∫

dxdy b∗x
{

ε(x,y)Φ(y)+ |Φ(y)|2 1
N

υN(x− y)Φ(x)
}
+h.c.,

K3 =
∫∫

dxdy b∗x
{

Φ(y)
1
N

υN(x− y)
}

bxby +h.c.,

K4 =
1
2

∫∫
dxdy b∗xb∗y

{ 1
N

υN(x− y)
}

bxby .

(4.2.4)

We write K2 = Kdiag +K′
2, where

Kdiag =
∫∫

dxdy b∗x
{

ε(x,y)+Φ(y)
1
N

υN(x− y)Φ(x)
}

by

+
∫∫

dxdy b∗x
{
|Φ(y)|2 1

N
υN(x− y)

}
bx

(4.2.5)

and

K′
2 =

1
2

∫∫
dxdy b∗xb∗y

{
Φ(x)

1
N

υN(x− y)Φ(y)
}
+h.c. (4.2.6)

Next, the Hamiltonian KBog is replaced by K ′, by replacing the operators K3 and

K4 with combinations of quadratic operators. This is done by replacing products of field
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operators, (b∗xby), (bxby), or (b∗xb∗y), by the averages ⟨b∗xby⟩, ⟨bxby⟩, or ⟨b∗xb∗y⟩. Note:

We will remark on the meaning of these averages shortly, and link them to a quasifree

hypothesis. Thus, we make the replacements:

b∗xb∗ybxby ≈ 2⟨b∗xby⟩b∗ybx +2⟨b∗xbx⟩b∗yby + ⟨b∗xb∗y⟩bxby + ⟨bxby⟩b∗xb∗y ,

b∗xbxby ≈ ⟨b∗xbx⟩by + ⟨b∗xby⟩bx + ⟨bxby⟩b∗x .
(4.2.7)

Defining the quantities

ρ
pair(x) := ⟨b∗xbx⟩, npair(x,y) := ⟨b∗xby⟩, mpair(x,y) := ⟨bxby⟩, (4.2.8)

we arrive at the approximate Hamiltonian,

K ′ = K0 + K̃1 + K̃2,

where

K̃1 = K1 +
∫∫

dxdy {Φ(y)
1
N

υN(x− y)}
(

ρ
pair(x)by +npair(x,y)bx +mpair(x,y)b∗x

)
+
∫∫

dxdy{Φ(y)
1
N

υN(x− y)}
(

ρ
pair(x)b∗y +npair(x,y)b∗x +mpair(x,y)bx

)
= K1 +

1
N

∫∫
dxdy b∗xυN(x− y){Φ(y)mpair(x,y)+Φ(x)ρpair(y)+Φ(y)npair(x,y)}+h.c.

and K̃2 = K̃diag + K̃′
2, with

K̃diag = Kdiag +
1
N

∫∫
dxdy b∗x{npair(x,y)υN(x− y)}by +

1
N

∫∫
dxdy b∗y{υN(x− y)ρpair(x)}by,

K̃′
2 =

1
2

∫∫
dxdy b∗xb∗y

1
N

υN(x− y)
{

Φ(x)Φ(y)+mpair(x,y)
}
+h.c.

For the remainder of this work, we work with the normalized condensate wavefunction,

φ(x) :=
1√
N

Φ(x), ∥φ∥2 = 1.

The equation for φ emerges by imposing the constraint K̃1 = 0, which yields:

µφ(x) =
(
−∆+Vtrap(x)+(υN ∗ |φ |2)(x)

)
φ(x)+

1
N
(υN ∗ρ

pair)(x)φ(x)

+
1
N

∫
dy
{

npair(x,y)υN(x− y)φ(y)+mpair(x,y)υN(x− y)φ(y)
}
.

(4.2.9)
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Define the operators

h(x,y) := ε(x,y)+φ(y)υN(x− y)φ(x)+(υN ∗ |φ |2)(y)δ (x− y)

+
1
N

υN(x− y)npair(x,y)+(
1
N

υN ∗ρ
pair)(x)δ (x− y),

Θ(x,y) := υN(x− y)
{

φ(x)φ(y)+
1
N

mpair(x,y)
}
.

(4.2.10)

Then, Hamiltonian K ′ reads K ′ = K0 + K̃2, for

K̃2 =
∫∫

dxdy b∗x
{

h(x,y)
}

by +
1
2

∫∫
dxdy bx

{
Θ(x,y)

}
by +

1
2

∫∫
dxdy b∗x

{
Θ(x,y)

}
b∗y .

4.3 Diagonalization of K̃2 and the coupled system for φ ,k :

Assume that φ satisfies equation (4.2.9). We now diagonalize the Hamiltonian K ′

via a unitary rotation of the field operators bx, b∗x . This introduces the basis of single-

particle states {u j(x), p j(x)}∞
j=1, which satisfy a block operator matrix problem (4.3.4)

involving the densities npair(x,y), ρpair(x), mpair(x,y).

The most concise way to represent this unitary rotation is via the formula:

bx = ∑
j
{u j(x)α j − p j(x)α∗

j }

b∗x = ∑
j
{u j(x)α∗

j − p j(x)α j}.
(4.3.1)

The operators α j, α∗
j in (4.3.1) are taken to satisfy the canonical commutation relations

[α j, α
∗
k ] = δ jk, [α j,αk] = [α∗

j ,α
∗
k ] = 0,

and the canonical relations on the operators bx,b∗x imply the following relations for the

basis {u j(x), p j(x)}:
∞

∑
j=1

{u j(x)u j(x′)− p j(x)p j(x′)}= δ̂ (x,x′) ,

∞

∑
j=1

{u j(x)p j(x′)− p j(x)u j(x′)}= 0, ∀x, x′ ∈ R3 .

(4.3.2)
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By an elementary calculation, identical to the one carried out in Chapter 3, it is

found that K̃2 becomes diagonal in the {α j, α∗
j } operators, i.e.,

K̃2 = ∑
j

E jα
∗
j α j, (4.3.3)

provided the following block operator matrix eigenvalue equation holds for all j:

∫
dy
{h(x,y) −Θ(x,y)

Θ(x,y) −hT (x,y)


u j(y)

p j(y)

}= E j

u j(x)

p j(x)

 . (4.3.4)

At this point, the operator matrix in (4.3.4) contains contributions from the unknown

operators ρpair(x), npair(x,y), mpair(x,y). A solution to the system will therefore require

us to interpret these quantities.

The contribution of this chapter is to solve the system (4.3.4) in the case where

the parameter g is very small. In particular, we must characterize the spectrum {E j}

and determine the single-particle wavefunctions {u j(x), p j(x)}∞
j=1. The operators h(x,y)

and Θ(x,y) contain contributions from densities ρpair(x), npair(x,y) and mpair(x,y), which

have been left undetermined up to this point; these quantities must be determined self-

consistently as part of the solution. This complication was not present in our analysis

of system (4.1.13) & (4.1.14), which is a special case of equation (4.3.4) that results

from setting ρpair(x), npair(x,y), mpair(x,y) equal to zero. Our solution takes the opera-

tors h(x,y), Θ(x,y) to depend on the solutions {u j(x), p j(x)}∞
j=1, thus equation (4.3.4) is

actually nonlinear.

We take the densities npair, mpair to be given by the formulas:

npair(x,y) = ∑
j

p j(x)p j(y),

mpair(x,y) =−∑
j

u j(x)p j(y).

(4.3.5)
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The reason for this is given in the next remark (which is part of the argument of Griffin

[25]):

Remark 9. We now derive the formulas for the densities ρpair(x), npair(x,y), mpair(x,y)

under several assumptions on the operators α j,α
∗
j . This follows the derivation of Griffin.

Using equation (4.3.1),

⟨b∗xby⟩= ∑
jk
{u j(x)uk(y)+ p j(x)pk(y)}⟨α∗

j αk⟩+∑
j

p j(x)p j(y)

−∑
jk

p j(x)uk(y)⟨α jαk⟩+u j(x) pk(y)⟨α∗
j α

∗
k ⟩

(4.3.6)

and

⟨bxby⟩= ∑
jk
{−p j(x)uk(y)− p j(y)uk(x)}⟨α∗

j αk⟩−∑
j

u j(x)p j(y)

+∑
jk

u j(x)uk(y)⟨α jαk⟩+ p j(x) pk(y)⟨α∗
j α

∗
k ⟩.

(4.3.7)

We have not yet interpreted the meaning of the averages ⟨b∗xby⟩, ⟨bxby⟩, or ⟨α∗
j αk⟩,⟨α jαk⟩.

Apparently, Griffin makes the assumption:

∑
jk
{p j(x)uk(y)⟨α jαk⟩+u j(x) pk(y)⟨α∗

j α
∗
k ⟩}= 0, (4.3.8)

as well as

∑
jk
{u j(x)uk(y)⟨α jαk⟩+ p j(x) pk(y)⟨α∗

j α
∗
k ⟩}= 0. (4.3.9)

(Note: the approximation also works in the same way by making the more strict as-

sumption ⟨α jαk⟩ = 0.) In addition, Griffin takes the averages ⟨α∗
j αk⟩ to follow the Bose

distribution, i.e.,

⟨α∗
j αk⟩= N0(E j)δ jk , N0(E j) :=

( 1
eβ (T )E j −1

)
, β (T ) := 1/kBT, T ≥ 0. (4.3.10)
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Equations (4.3.8), (4.3.9), and (4.3.10) then imply

⟨b∗xby⟩= ∑
j
{u j(x)u j(y)+ p j(x)p j(y)}N0(E j)+ p j(x)p j(y), (4.3.11)

and

⟨bxby⟩= ∑
j
−2N0(E j)p j(x)uk(y)−u j(x)p j(y). (4.3.12)

Taking N0(E j) = 0 for all j, which corresponds to the limit T → 0, or β → ∞, then gives

the formulas (4.3.5).

The coupled system therefore consists of the formulas:

npair(x,y) = ∑
j

p j(x)p j(y),

mpair(x,y) =−∑
j

u j(x)p j(y),

(4.3.13)

the equation for φ(x):

µφ(x) =
(
−∆+Vtrap(x)+(υN ∗ |φ |2)(x)

)
φ(x)+

1
N
(υN ∗ρ

pair)(x)φ(x)

+
1
N

∫
dy
{

npair(x,y)υN(x− y)φ(y)+mpair(x,y)υN(x− y)φ(y)
}
,

(4.3.14)

and the matrix system for {u j(x), p j(x)}∞
j=1:

∫
dy
{h(x,y) −Θ(x,y)

Θ(x,y) −hT (x,y)


u j(y)

p j(y)

}= E j

u j(x)

p j(x)

 , ∥u j∥2 −∥p j∥2 = 1.

(4.3.15)

Remark 10. Since the system of equation (4.3.15) is formally identical to the matrix

system of Fetter [20] covered in the previous chapter, the spectrum

σp

(h(x,y) −Θ(x,y)

Θ(x,y) −hT (x,y)

),
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will have two ‘sheets,’ one of which is bounded below, the other bounded above. The

normalization condition in (4.3.15) specifies the sheet which is bounded below. For details

of this choice, we refer to the previous chapter.

4.4 Variational formalism for the nonlinear system

The operator matrix in (4.3.15) has an associated Riccati equation for operator k :

(φ)⊥ → (φ)⊥, which reads as

h◦ k+ k ◦hT +Θ+ k ◦Θ◦ k = 0, k : (φ)⊥ → (φ)⊥. (4.4.1)

This is a nonlinear integro-differential equation, which we solve for Hilbert-Schmidt ker-

nel k(x,y)∈B2(h
1
V ). The link between block operator matrices and operator Riccati equa-

tions has an extensive mathematical background which was discussed in depth in Chapter

3 (see also the works of Tretter, Albeverio, et. al. [2,3,13,58]). We state the relevant facts

as they apply to the matrix system (4.3.15) in the following theorem:

Theorem 4. (a) Suppose k ∈ B2(h
1
V ) is a symmetric solution to equation (4.5.6) with

∥k∥op < 1. Then there exists basis {u j(x), p j(x)}∞
j=1 solving (4.3.15) with normalization

∥u j∥2 −∥p j∥2 = 1. The spectrum {E j} in this case is positive and the following integral

relation holds:

k(x,u j) = p j(x). (4.4.2)

(b) Suppose {u j(x), p j(x)}∞
j=1 solves (4.3.15), where {u j} is a basis of φ⊥, and that the

integral relation (4.4.2) holds for some k with ∥k∥op < 1 and all j. Then k solves the

Riccati equation (4.5.6).
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The proof of this theorem is an adaptation of the spectral theory of J-self-adjoint

operator matrices [58]; our proof is the same here as it was in the case ρpair,npair,mpair = 0,

which was handled in Chapter 3. We include the proof here, adapted to the current system,

for the reader’s convenience.

Proof. The matrix in equation (4.3.15) is diagonalized by an operator matrix constructed

using k which solves (4.5.6). In particular, define the operator matrices

W :=

δ̂ k

k δ̂

 , W−1 =

 (δ̂ − k ◦ k)−1 −k(δ̂ − k ◦ k)−1

−k(δ̂ − k ◦ k)−1 (δ̂ − k ◦ k)−1


and

D :=

hT + k ◦Θ 0

0 −h− k ◦Θ

 .

A direct calculation, which uses the fact that k satisfies the Riccati equation, shows that

the following holds:hT + k ◦Θ 0

0 −h− k ◦Θ

 =W ◦

h −Θ

Θ −hT

◦W−1.

In order for both W and W−1 to be bounded, we require that (δ − k ◦ k)−1 be a bounded

operator, which is true if ∥k∥op < 1. The operator hT + k ◦Θ, while not self-adjoint, is

similar to the self-adjoint operator (a consequence of the equation (4.4.1) for k):

(δ − k ◦ k)−1/2 ◦ (hT + k ◦Θ)◦ (δ − k ◦ k)1/2. (4.4.3)

The spectrum σ
(
hT +k ◦Θ

)
is therefore real, discrete, and bounded below (as a compact

perturbation of −∆+Vtrap(x)− µ), and the system of eigenvectors of (4.4.3), denoted
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{η j(x)}, is orthogonal and complete in the space (φ)⊥. Given the solutions η j(x), we can

construct u j(x), p j(x) which solve the matrix system via

u j(x) = (δ − k ◦ k)−1/2(x,η j), p j(x) = k(x,u j).

The spectrum of D consists of two discrete and semi-bounded parts: σ(hT + k ◦Θ) is

bounded below (since σ(hT ) is bounded below), and −σ(hT + k ◦Θ) is bounded above.

The normalization condition for {u j, p j}, which comes from the fact that these functions

represent Bogoliubov rotations, implies that the Bogoliubov spectrum of the quadratic

Hamiltonian K0 + K̃2 consists of one part only, namely σ(hT + k ◦Θ).

Corollary 2. Assume that {u j, p j} satisfy equation (4.3.15), and that k solves the Ricatti

equation. Then the following formulas hold for the density operators:

mpair(x,y) =−∑
j

u j(x)p j(y) =
(

k ◦ (δ − k ◦ k)−1
)
(x,y)

npair(x,y) = ∑
k

p j(x)p j(y) =
(
(k ◦ k)◦ (δ − k ◦ k)−1

)
(x,y).

(4.4.4)

Corollary 2 shows that the nonlinear terms of the Riccati equation (4.4.1) can be

rewritten exclusively in terms of the kernel k. In particular, the operators h(x,y),Θ(x,y)

are written using this kernel (recall ε(x,y) = (−∆x +Vtrap(x)−µ)δ (x− y)):

h[φ ,k](x,y) = ε(x,y)+φ(y)υN(x− y)φ(x)+(υN ∗ |φ |2)(y)δ (x− y)

+
1
N

υN(x− y)
{ k ◦ k

δ − k ◦ k

}
(x,y)+

1
N

∫
dx′υN(x− x′)

{ k ◦ k
δ − k ◦ k

}
(x′,x′)δ (x− y).

(4.4.5)

Note: The fraction notation k ◦ k/(δ − k ◦ k) is justified here because of the commutation

k ◦ k ◦ (δ − k ◦ k)−1 = (δ − k ◦ k)−1 ◦ k ◦ k,
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and

Θ[φ ,k](x,y) = υN(x− y)
{

φ(x)φ(y)+
1
N

(
k ◦ (δ − k ◦ k)−1)(x,y)}. (4.4.6)

By Theorem 4, solving the system consisting of equation (4.3.14) for φ , and equation

(4.4.1) for k is equivalent to the system (4.3.5), (4.3.14), (4.3.15).

Remark 11. The system for φ and k can be rewritten in an illustrative way. Let h0 :=

h+µ , i.e.,

h0[φ ,k](x,y) = ε0(x,y)+φ(y)υN(x− y)φ(x)+(υN ∗ |φ |2)(y)δ (x− y)

+
1
N

υN(x− y)
{ k ◦ k

δ − k ◦ k

}
(x,y)+

1
N

∫
dx′υN(x− x′)

{ k ◦ k
δ − k ◦ k

}
(x′,x′)δ (x− y).

(4.4.7)

and define the operator θ by the formula:

θ := υN(x− y)
{

φ(x)φ(y)− 1
N

(
k ◦ (δ − k ◦ k)−1)(x,y)}. (4.4.8)

(Note the difference between Θ and θ .) Then the system for φ , k is:

 h0(x,y) −θ(x,y)

−θ(x,y) hT
0 (x,y)

◦

φ(y)

φ(y)

 = µ

φ(y)

φ(y)

 ,

h◦ k+ k ◦hT +Θ+ k ◦Θ◦ k = 0.

(4.4.9)

In the spirit of the previous chapter, we adopt a variational approach to find solutions

to the system (4.4.9). The functions φ and k are sought as minimizers of the total energy,

Etot[φ ,k].
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Definition 4. For the operator ε0 := (−∆+Vtrap(x)), the Hartree energy functional, de-

noted EH, is defined for all φ ∈ h1
V , by

EH[φ ] :=
∫∫

dxdy
{

φ(x)ε0(x,y)φ(y)+
1
2
|φ(x)|2υN(x− y)|φ(y)|2

}
. (4.4.10)

Given the operators h, Θ : h1
V → h1

V (which have a dependence on k, φ via equations

(4.4.6), (4.4.7)), the functional E [k;h,Θ] is defined on the set of kernels

{
k ∈B2(h

1
V ), ∥k∥op < 1

}
,

by the trace

E [k; h0,Θ] := tr
{
(δ − k ◦ k)−1 ◦

(
k ◦h0 ◦ k+

1
2

k ◦Θ+
1
2

Θ◦ k
)}

. (4.4.11)

The total energy, Etot is defined for all φ ∈ h1
V and

{
k ∈B2(h

1
V ), ∥k∥op < 1

}
by the sum

Etot[φ ,k;N] :=
{

EH[φ ]+
1
N

E
[
k; h0,Θ

]}
, (4.4.12)

dom(Etot) = {φ ∈ h1
V , k ∈B2(h

1
V ), ∥k∥op < 1}.

Lemma 6. Let h[φ ,k],Θ[φ ,k] be given by (4.4.5), (4.4.6), and let the total energy Etot be

given by formula (4.4.12) with h0 = h0[φ ,k], Θ = Θ[φ ,k], i.e.,

Etot[φ ,k;N] :=
{

EH[φ ]+
1
N

E
[
k; h0[φ ,k],Θ[φ ,k]

]}
.

(i): For fixed k, k, critical points of the total energy with respect to constrained

variations φ ∈ L2(R3), ∥φ∥2 = 1, i.e., points satisfying δEtot/δφ = µφ , where µ is the

Lagrange multiplier enforcing the constraint, are solutions to the nonlinear Hartree-type

equation (4.4.9).
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(ii): For fixed φ , φ and µ satisfying (4.4.9), critical points of the total energy

EH[φ ]+
1
N

E
[
k; h0 −µ,Θ

]
with respect to symmetric variations of k ∈B2(hV ), i.e., points satisfying δEtot/δk = 0,

are solutions to the nonlinear Riccati equation (4.4.9).

Proof. For assertion (i), It suffices to show that the functional derivative

δ

δφ
E
[
k;h[φ ,k],Θ[φ ,k]

]
,

yields the terms proportional to k in the equation for φ in system (4.4.9). The relevant

terms of E are the trace

∫∫
dxdy

{(
φ(y)υN(x− y)φ(x)+(υN ∗ |φ |2)(y)δ (x− y)

)( k ◦ k
δ − k ◦ k

)
(x,y)

}
, (4.4.13)

as well as the trace

tr
{
(δ − k ◦ k)−1 ◦

(1
2
G ◦ k+

1
2

k ◦G
)}

, (4.4.14)

where G := υN(x− y)φ(x)φ(y). Replacing φ by φ + δφ in the (4.4.13), and collecting

terms proportional to δφ yields

∫∫
dxdy

{(
(δφ)(y)υN(x− y)φ(x)+(υN ∗ (δφ)φ)(y)δ (x− y)

)( k ◦ k
δ − k ◦ k

)
(x,y)

}
=
∫

dyδφ(y)
{∫

dxυN(x− y)npair(x,y)φ(x)
}
+
∫

dyδφ(y)
{

φ(y)(υN ∗ρ
pair)(y)

}
.

(4.4.15)

Replacing φ by φ +δφ in (4.4.14), and collecting relevant terms yields

∫∫
dxdy

( k
δ − k ◦ k

)
(x,y)υN(x,y)

{
δφ(x)φ(y)

}
=
∫

dyδφ(y)
{∫

dxm(x,y)υN(x,y)φ(x)
}
.(4.4.16)
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adding the terms (4.4.15) and (4.4.16) to NδEH[φ ]/δφ gives exactly equation (4.4.9) for

φ .

(ii) We show that the variation with respect to k is

δE /δk =
1
2
(δ − k ◦ k)−1 ◦

{
h◦ k+ k ◦hT +Θ+ k ◦Θ◦ k

}
◦ (δ − k ◦ k)−1.

For a Hilbert-Schmidt operator O with the integral kernel O(x,y), define the shorthand

(υ ·O), which is the Hilbert-Schmidt operator with the integral kernel

(
υ ·O

)
(x,y) :=

1
N

υN(x− y)O(x,y).

Additionally, define h1[φ ], Θ1[φ ]:

h1[k] :=
1
N

υN(x− y)
{ k ◦ k

δ − k ◦ k

}
(x,y)+

1
N

∫
dx′υN(x− x′)

{ k ◦ k
δ − k ◦ k

}
(x′,x′)δ (x− y),

Θ1[k] :=
1
N

υN(x− y)
(
k ◦ (δ − k ◦ k)−1)(x,y),

so that we can write the decomposition h[φ ,k] := h0[φ ] + h1[k] and Θ[φ ,k] := Θ0[φ ] +

Θ1[k]. We have that

δE

δk
=

1
2
(δ − k ◦ k)−1 ◦

{
h0[φ ]◦ k+ k ◦hT

0 [φ ]+Θ0[φ ]+ k ◦Θ0[φ ]◦ k
}
◦ (δ − k ◦ k)−1

+
δ

δk
tr
{
(δ − k ◦ k)−1

(
k ◦h1[k]◦ k+

1
2

k ◦Θ1[k]+
1
2

Θ1[k]◦ k
)}

(4.4.17)

where

δ

δk
tr
{
(δ − k◦k)−1

(
k ◦h1[k]◦ k

)}
= 2(δ − k ◦ k)−1 ◦

[
υ ·
( k ◦ k

δ − k ◦ k

)]
◦ (δ − k ◦ k)−1

+2(δ − k ◦ k)−1 ◦
[ 1

N

(
υN ∗ k ◦ k

δ − k ◦ k

)
(x)δ (x− y)

]
◦ k ◦ (δ − k ◦ k)−1

(4.4.18)
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and

δ

δk
tr
{
(δ − k ◦ k)−1

(
k ◦Θ1[k]

)}
=

δ

δk
tr
{
(δ − k ◦ k)−1

(
Θ1[k]◦ k

)}
= (δ − k ◦ k)−1 ◦

[
υ · (δ − k ◦ k)−1 ◦ k

]
◦ (δ − k ◦ k)−1

+(δ − k ◦ k)−1 ◦ k ◦
[
υ · (δ − k ◦ k)−1 ◦ k

]
◦ k ◦ (δ − k ◦ k)−1.

(4.4.19)

Substituting (4.4.18), (4.4.19) back into (4.4.17) yields

δE /δk =
1
2
(δ − k ◦ k)−1 ◦

{
h◦ k+ k ◦hT +Θ+ k ◦Θ◦ k

}
◦ (δ − k ◦ k)−1,

which shows that saddle points of E must satisfy (4.4.9).

Integrating the equation for φ(x) against φ(x) gives the formula for µ:

µ =
∫∫

dxdy{φ(x)ε0(x,y)φ(y)+ |φ(x)|2υN(x− y)|φ(y)|2

+
1
N
(υN ∗ρ

pair[k])(y)δ (x− y)|φ(x)|2 + 1
N

npair[k](x,y)υN(x− y)φ(x)φ(y)

+
1
N

mpair[k](x,y)υN(x− y)φ(x) φ(y)}.

(4.4.20)

4.5 Solving the nonlinear system

Griffin [25] suggests solving the nonlinear matrix system (4.3.4) by iteration, begin-

ning with solutions to the non-interacting system (i.e., g = 0). Here, we adopt an iterative

approach to construct solutions, but with several differences. First, we have reformulated

the system for the condensate φ and the basis {u j, p j} into the a system for φ and the new

quantity, k. Second, the starting point of the iterative method is not the non-interacting

system (g = 0), but the system for {φFet, kFet} which we solved in Chapter 3. This cor-

responds to setting the densities npair, mpair to zero, but retaining the densities associated
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with the condensate — ncond(x,y) = φ(x)φ(y), and ρcond(x) = |φ(x)|2. The main result

is stated in Theorem 5.

Theorem 5. Suppose the single-particle operator
(
−∆+Vtrap(x)

)
contains a gap be-

tween its ground state and first excited state, and the interaction υN = N3β υN(Nx) for

β ≤ 1/6 where υ(x) is smooth and bounded (we also assume that υ̂ ≥ 0). Then for

g > 0 small enough, there exist φ ∈ h1
V (φ⊥), with ∥φ∥L2 = 1, and k ∈B2

(
h1

V (φ⊥)
)
, with

∥k∥op < 1 which solve the coupled system:

∫
dy
{ h0(x,y) −θ(x,y)

−θ(x,y) hT
0 (x,y)


φ(y)

φ(y)

}= µ

φ(x)

φ(x)

 , µ > 0, (4.5.1)

for operators h, θ given by (4.4.7), (4.4.8), and

h◦ k+ k ◦hT +Θ+ k ◦Θ◦ k = 0, k : φ⊥ → φ⊥, (4.5.2)

for h, Θ given by (4.4.5), (4.4.6).

Remark 12. For simplicity, we have written the equation for k as it holds on the space

φ⊥. This allows us to avoid including the Lagrange multiplier term λ ⊗s φ in the equation

(4.5.2) for k, as we did in Chapter 3.

The iteration provides solutions {φn,kn}∞
n=0 to a sequence of simpler minimization

problems. We show that this sequence converges strongly (in h and B(h)) to weak so-

lutions φ , k of the nonlinear system. To this end, define the following shorthand for the

operators h,Θ in this sequence:

h[φn,kn] := h[n],
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as well as

Θ[φn,kn] := Θ[n].

The function φ0(x) is a constrained minimizer of the Hartree equation (i.e., EH [φ ]),

and the formula for the Lagrange multiplier of this equation, µ0, is the same as the chemi-

cal potential as determined by Fetter’s scheme. The kernel k1 is computed by minimizing

E
[
φ0,k

]
on the space of Hilbert-Schmidt operators orthogonal to φ0, B(φ⊥), so that solu-

tions φ0(x), k1(x,y) are the solutions to the simpler system found in the previous chapter.

The general iteration step uses kn,φn to find minimizer kn+1 of E
[
k;h[n],Θ[n]

]
, φn+1 as a

minimizer of the total functional Etot, and µn+1 which depends on both φn+1, kn+1. The

steps of the iteration scheme are summarized below:

• Zeroth iterate: Set k0 = 0, and solve the constrained minimization problem

min
∥φ∥=1

EH[φ ], for φ0 ∈ h.

This entails that φ0 satisfies δEH/δφ = µ0φ , which gives the Hartree equation

ε0φ0(x)+(υN ∗ |φ0|2)(x)φ0(x) = µ0φ0(x).

The constant µ0 is given by

µ0 =
∫∫

dxdy{φ0(x)ε0(x,y)φ0(y)+ |φ0(x)|2υN(x− y)|φ0(y)|2}.

• (n+1)-th iterate: By the previous step, we have {φn, kn, µn}, The operators h[n], Θ[n]
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are then defined by the formulas

h[n] :=
(
ε0(x,y)−µn

)
+φn(y)υN(x− y)φn(x)+(υN ∗ |φn|2)(y)δ (x− y)

+
1
N

υN(x− y)
{ kn ◦ kn

δ − kn ◦ kn

}
(x,y)+

1
N

∫
dx′υN(x− x′)

{ kn ◦ kn

δ − kn ◦ kn

}
(x′,x′)δ (x− y)

Θ[n] := υN(x,y)
{

φn(x)φn(y)+
1
N

(
kn

δ − kn ◦ kn

)}
.

(4.5.3)

We solve the variational problem for k = kn+1:

min
∥k∥op<1

{
EH[φn]+

1
N

E
[
k; h[n], Θ[n]

]
, k ∈B2(h

1
V )
}
, (4.5.4)

and next the variational problem for φ = φn+1:

min
∥φ∥=1

{
EH[φ ]+

1
N

E
[
kn+1; h[φ ,kn+1], Θ[φ ,kn+1]

]
, φ ∈ h1

V

}
. (4.5.5)

The minimization (4.5.4) implies that kn+1 solves the Riccati equation

h[n]kn+1 + kn+1h[n]T +Θ[n]+ k ◦Θ[n]◦ k = 0, (4.5.6)

for the operators

npair[n+1] := (δ − kn+1 ◦ kn+1)
−1 ◦ (kn+1 ◦ kn+1),

mpair[n+1] := (δ − kn+1 ◦ kn+1)
−1 ◦ kn+1.

The minimization (4.5.5) yields the function φn+1 which satisfies

µn+1φn+1(x) =
(
ε0 +

1
N
(υN ∗ρ

pair[n+1])(x)
)
φn+1(x)

+
1
N

∫
dy{npair[n+1](x,y)φn+1(y)}+

1
N

∫
dy{m[n+1](x,y)φn+1(y)},

(4.5.7)
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where the constant µn+1 is given by

µn+1 =
∫

dxdyφn+1(x)
(

ε0(x,y)+(υN ∗ |φn+1|2)δ (x− y)
)

φn+1(y)

+
1
N

∫∫
dxdy{φn+1(x)

(
npair[n+1](x,y)+(υN ∗ρ

pair[n+1])(x)δ (x− y)
)

φn+1(y)}

+
1
N

∫∫
dxdy{φn+1(x)mpair[n+1](x,y)φn+1(y)}.

(4.5.8)

Remark 13. (Solutions to the Riccati equation for kn). Suppose the functions φn, kn

which solve (4.5.5), (4.5.4) are given, in addition to the operators h[n], Θ[n]. We review

some conclusions about minimizers of the energy functional E
[
k; h[n],Θ[n]

]
by which we

generate the function kn+1 (for a complete treatment of this, see Chapter 3). Namely, if

the following operator estimate holds for all e ∈ (φn)⊥:

{
h[n](e,e)−

∣∣Θ[n](e,e)
∣∣}≥ c∥e∥2, c > 0, e ∈ (φn)⊥, (4.5.9)

then a Hilbert-Schmidt minimizer of E , denoted kn+1 ∈B2(h
1
V ), with ∥kn+1∥op < 1, ex-

ists. The proof of this statement consists in constructing an orthonormal basis {e j(n+

1)}∞
j=1 ⊂ h1

V of (φn)⊥, and a sequence {z j(n+1)}∞
j=1 ⊂ ℓ2, such that

kn+1(x,y) = ∑
j

z j(n+1){e j(x)e j(y)}. (4.5.10)

(We will refer to the basis as {e j}∞
j=1 since its dependence on n+ 1 is clear from the

context and does not play a role in the current argument). Plugging this expansion into

the trace formula which defines E , and setting ∂E /∂ z j = 0, yields two possible choices of

coefficient, z(±)
j for every j, where |z+j |< 1 and |z−j |> 1. The formula for z+j is of interest

since this is the solution which guarantees ∥k∥op < 1:

z+j (n+1) =
Θ[n](e j,e j)

h[n](e j,e j)+
√

h[n](e j,e j)2 −|Θ[n](e j,e j)|2
. (4.5.11)
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This allows us to write the energy E
[
kn+1;h[n],Θ[n]

]
as

E
[
kn+1;h[n],Θ[n]

]
= E

(
{z+j },{e j}

)
=−1

2

∞

∑
j=1

{
h(e j,e j)−

√
h2(e j,e j)−|Θ(e j,e j)|2

}
:=−1

2 ∑
j

F (e j).

(4.5.12)

The existence proof for kn+1 proceeds by maximizing ∑ j F (e j) over all orthogonal frames

{e j}. The expression for F given above implies that h(e,e) is bounded for any maximiz-

ing sequence in (span{ei} j
i=1)⊥, which allows us to extract a strongly convergent sub-

sequence in L2(R3) to produce e j(x). Having constructed the orthonormal basis and

coefficients, the proof of existence for kn+1 is then complete.

Remark 14. (Solutions to the nonlinear Schrödinger-type equation for φn+1) The exis-

tence of constrained minimizer φn+1 of

min
∥φ∥=1

{
EH[φ ]+

1
N

E
[
kn+1; h[φ ,kn+1], Θ[φ ,kn+1]

]
, φ ∈ h1

V

}
, (4.5.13)

will follow the usual proof for finding a minimizer of the Hartree functional EH[φ ], noting

that the additional terms introduced by the functional E are bounded when kn+1 is fixed

with ∥kn+1∥op < 1.

We now utilize the results of these remarks to prove Theorem 5. This is done by

constructing the sequence of solutions {φn, kn} to the simpler minimization problems

(4.5.5), (4.5.4), and proving that these solutions converge to a solution of the nonlinear

system (4.4.9). Several preliminary results are required for this, and are presented in

the following order: Lemma 7 is a general result on the stability of spectral gaps for

relatively-bounded perturbations of self-adjoint operators. It is an extension of the work
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of Kato [35], which we quote from Tretter, Cuenin [14]; the proof of this lemma is not

provided here, a concise version of it can be found in [14]. Lemma 8 and its corollary

prove that ρpair[n] defines (υN ∗ ρpair[n]) as a bounded operator on L2 for all n. The

discussion which follows Lemma 8 provides the existence of the sequence of functions

{φn, kn}∞
n=0 which solve (4.5.5), (4.5.4). This requires showing that it is possible go

from one step of the iteration to the next, which means we must show that the sequence

Θ[n] remains uniformly bounded in Hilbert-Schmidt and operator norm, and that the gap

condition (4.5.9) holds uniformly for all steps. These estimates allow us to take strong

limits of the operators Θ[n], npair[n] as n → ∞ in (4.5.5), (4.5.4) to construct solutions to

the coupled system in Theorem 5.

The next lemma is given without proof (see [14]).

Lemma 7. Let T be a self-adjoint operator in a Hilbert space h and let A be bounded,

i.e., ∥Ax∥ ≤ a∥x∥ for all x ∈ h with a ≥ 0. Then if T has a spectral gap (αT ,βT )⊂R, i.e.,

σ(T )∩ (αT ,βT ) = /0 with αT ,βT ∈ σ(T ), and if

2a < βT −αT ,

then T +A has a stable spectral free strip (αT+A,βT+A)+ iR⊂ C, i.e.,

σ(T + sA)∩{z ∈ C : αT+A < Re(z)< βT+A}= /0, s ∈ [0,1],

with

αT+A := αT +a, βT+A := βT −a.

Lemma 8. Suppose that kn ∈B2(h
1
V ) solves (4.5.4) with ∥kn∥op < 1, where the operators

h[n− 1] and Θ[n− 1] are given by formula (4.5.20). Also, suppose that the operator
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Θ[n−1] is Hilbert-Schmidt. Then the density

ρ
pair[n](x) =

( kn ◦ kn

δ − kn ◦ kn

)
(x,x),

satisfies ρpair[n](x) ∈ L3(R3)∩L1(R3). In particular,

∥ρ
pair[n]∥L3 ≤C

∥∥∥ kn

δ − kn ◦ kn

∥∥∥
HS

·
(∥∥∥Θ[n−1]

∥∥∥
HS

+µ[n−1]
)
, (4.5.14)

where C is some constant independent of n.

Proof. Define the operator kernel:

ψ(x,y) :=
( kn

(δ − kn ◦ kn)1/2

)
(x,y),

so that ρpair[n](x) = (ψ ◦ψ)(x,x). Then using Hölder’s inequality,

|∇ρ
pair[n](x)|(3/2) =

∣∣∣∇x

∫
dz{ψ(x,z)ψ(z,x)}

∣∣∣3/2

≤
(∫

dz|∇xψ(x,z)|2
)3/4(∫

dz|ψ(x,z)|2
)3/4

=
(∫

dz|∇xψ(x,z)|2
)3/4(

ρ
pair[n](x)

)3/4
.

(4.5.15)

Using Holder’s inequality again, (p = 4/3, q = 4) gives:

∫
dx|∇ρ

pair[n](x)|3/2 ≤
∫

dx
(∫

dz|∇ψ(x,z)|2
)3/4(

ρ
pair[n](x)

)3/4

≤
(∫∫

dxdz
∣∣∇xψ(x,z)

∣∣2)3/4(∫
dx
(
ρ

pair[n](x)
)3
)1/4

,

(4.5.16)

The Sobolev embedding W 1,3/2(R3)⊆ L3(R3) gives (up to a constant)

(∫
dxρ

pair[n](x)3
)1/3

≤ ∥∇ρ
pair[n]∥L3/2 .

Combining this with the previous equation, we have

(∫
dxρ

pair[n](x)3
)1/3

≤
(∫∫

dxdz
∣∣∇xψ(x,z)

∣∣2).
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Now, we know that

E (kn) = tr
{(

δ − kn ◦ kn)
−1 ◦

(
kn ◦h[n−1]◦ kn +

1
2

kn ◦Θ[n−1]+
1
2

Θ[n−1]◦ kn

)}
≤ 0.

So it follows that(∫∫
dxdz

∣∣∇xψ(x,z)
∣∣2)≤ tr

[
ψ ◦h[n−1]◦ψ

]
+µ[n−1] tr

[
ψ ◦ψ

]
≤
∣∣∣tr{(δ − kn ◦ kn)

−1 ◦
(1

2
kn ◦Θ[n−1]+

1
2

Θ[n−1]◦ kn

)}∣∣∣
+µ[n−1] tr

[
ψ ◦ψ

]
≤
∥∥∥( kn

δ − kn ◦ kn

)∥∥∥
HS

·
∥∥∥Θ[n−1]

∥∥∥
HS

+µ[n−1]
∥∥∥( kn

δ − kn ◦ kn

)∥∥∥
HS

.

(4.5.17)

This completes the proof.

Corollary 3. Under the assumptions of Lemma 8, ρpair[n](x) ∈ L2 with

∥ρ
pair[n]∥L2 ≤

∥∥∥ kn

δ − kn ◦ kn

∥∥∥
HS

·
(∥∥∥Θ[n−1]

∥∥∥
HS

+µ[n−1]
)3/4

. (4.5.18)

Proof. Interpolation gives

∥ρ
pair[n]∥L2 ≤ ∥ρ

pair[n]∥3/4
L3 ∥ρ

pair[n]∥1/4
L1 ,

and

∥ρ
pair[n]∥L1 = tr

( kn ◦ kn

δ − kn ◦ kn

)
≤ ∥kn∥op

∥∥∥ kn

δ − kn ◦ kn

∥∥∥
HS

,

which proves the statement.

4.5.1 Completing the iteration

The iteration depends on verifying the gap condition at every step, i.e., showing that

there exists c > 0 independent of n such that

h[n](e,e)−|Θ[n](e,e)| ≥ c∥e∥, e ∈ (φn)⊥, n = 0,1,2, . . . . (4.5.19)
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We start with φ0(x), which is a solution to the Hartree equation:

ε0φ0(x)+(υN ∗ |φ0|2)(x)φ0(x) = µ0φ0(x).

The constant µ0 is given by

µ0 =
∫∫

dxdy{φ0(x)ε0(x,y)φ0(y)+ |φ0(x)|2υN(x− y)|φ0(y)|2},

and the operators h[0], Θ[0] are defined by

h[0] := ε0(x,y)+φ0(y)υN(x− y)φ0(x)+(υN ∗ |φ0|2)(y)δ (x− y)−µ0,

Θ[0] := υN(x,y)
{

φ0(x)φ0(y)
}
.

(4.5.20)

In particular, the operator Θ[0] is Hilbert-Schmidt, with norm

∥Θ[0]∥HS ≤ gN3β∥υ∥L∞∥φ0∥2
L2,

(we do not require Θ[0] to be small in this scheme, only that it is bounded; see equation

(4.5.40)). We also have – using the assumption υ̂ ≥ 0 for the Fourier transform of υ :

h[0](e,e)−|Θ[0](e,e)| ≥ ε0(e,e)+
∫∫

dxdy{υN(x− y)|φ0(x)|2|e(y)|2}−µ0∥e∥2.

The gap condition for h[0], Θ[0] follows from this inequality, because φ0(x), as the min-

imizer of EHartree(φ), is also the ground state of the linear Hartree operator, HHartree, de-

fined by

HHartree := ε0(x,y)+(υN ∗ |φ0|2)(x)δ (x− y).

HHartree has a discrete spectrum, with a gap between its lowest and first eigenvalues, since

it is a compact perturbation of ε0(x,y). More specifically, using Young’s convolution

inequality, and the compact Sobolev embedding L4(R3)⊂ h1
V ,

∥(υN ∗ |φ0|2)∥L2 ≤ ∥υN∥L1∥ |φ0|2 ∥L2 = ∥υN∥L1∥φ0∥L4 ≤ ∥υN∥L1∥φ0∥h1
V
, (4.5.21)
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i.e.,

∥(υN ∗ |φ0|2)∥L2 ≤ ∥υN∥L1 ·EHartree(φ0)≤ g ·EHartree(φ0). (4.5.22)

This means that the perturbation to ε0 can be made arbitrarily small in L2 by making g

small.

For the induction step, assume that there exists c > 0 and C > 0 such that for s =

0,1,2, . . . ,n, 

∥∥Θ[s]
∥∥

HS ≤CN3β ,

µ[s]≤C, for s = 0,1,2, . . . ,n,

h[s](e,e)−|Θ[s](e,e)| ≥ c∥e∥2, e ∈ (φs)⊥,

(4.5.23)

From these assumptions, we prove that

∥Θ[n+1]∥HS <CN3β ,

µ[n+1]<C,

h[n+1](e,e)−
∣∣Θ[n+1](e,e)

∣∣≥ c∥e∥2, e ∈ (φn+1)⊥.

(4.5.24)

The equation for kn+1 on the space h(φ⊥) is

h[n]◦ kn+1 + kn+1 ◦h[n]T +Θ[n]+ kn+1 ◦Θ[n]◦ kn+1 = 0, (4.5.25)

and the equation for φn+1 is

µn+1φn+1(x) = ε0(φn+1,x)+(υN ∗ |φn+1|2)(x)φn+1(x)+
1
N
(υN ∗ρ

pair[n+1])(x)φn+1(x)

+
1
N
(υNnpair[n+1])(φn+1,x)+

1
N
(υNmpair[n+1])(φn+1,x),

(4.5.26)
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with the operators

h[n] := ε0(x,y)+φn(y)υN(x− y)φn(x)+(υN ∗ |φn|2)(y)δ (x− y)−µn

+
1
N

(
υNnpair[n]

)
(x,y)+

1
N

(
υN ∗ρ

pair[n]
)
(x)δ (x− y),

Θ[n] := υN(x− y)
{

φn(x)φn(y)+
1
N

mpair[n](x,y)
}
.

(4.5.27)

First we show that ∥Θ[n+1]∥HS <CN3β . The induction assumption allows us to construct

kn+1 as a minimizer of E
[
φn,k;h[n],Θ[n]

]
. The formula for mpair[n+1] is:

mpair[n+1](x,y) = ∑
j

( z j

1−|z j|2
)

e j(x)e j(y). (4.5.28)

Here {e j(n+1)}∞
j=1 is an orthonormal basis of (φn)⊥, which is determined as part of the

construction of kn+1. The formula for the coefficient z j(n+1) gives

∣∣∣ z j(n+1)
1−|z j(n+1)|2

∣∣∣2 = 1
4

( |Θ[n](e j,e j)|2

h[n]2(e j,e j)−|Θ[n](e j,e j)|2
)
≤ 1

4c2 |Θ[n](e j,e j)|2, (4.5.29)

where the inequality follows since we assume the gap condition for the operators h[n], Θ[n].

Thus,

∥mpair[n+1]∥HS ≤ 1
2c

∥Θ[n]∥HS ≤ C
2c

N3β .

From this, recalling that υN(x) = gN3β υ(Nβ x) for β ≤ 1/6, we have

∥ 1
N
(υNmpair)[n+1]∥HS ≤ g

1
2c

N3β

N
∥υ∥L∞∥Θ[n]∥HS ≤ gC2

2c
∥υ∥L∞

(N6β

N

)
,

∥ 1
N
(υNnpair)[n+1]∥HS ≤ ∥ 1

N
(υNmpair)[n+1]∥HS ≤ gC2

2c
∥υ∥L∞

(N6β

N

)
,

(4.5.30)

and, using Corollary (3) with Young’s convolution inequality:

∥ 1
N
(υN ∗ρ

pair[n+1])∥L2 ≤
g
N
∥ρ

pair[n+1]∥L2

≤ gC
2c

N3β

N
·
(∥∥∥Θ[n−1]

∥∥∥
HS

+µ[n−1]
)3/4

≤ gC2

c

(N6β

N

)
.

(4.5.31)

121



It is now clear that for β ≤ 1/6 the constant g > 0 can be chosen at the start so that

∥Θ[n+1]∥2
HS <CN3β ,

because,

∥Θ[n+1]∥HS ≤ gN3β∥υ∥L∞∥φn+1∥2
L2 +

1
N
∥(υNmpair[n+1])∥HS

≤ g∥υ∥L∞

{
N3β +

C2

2c

}
.

(4.5.32)

We remind the reader that the inductive argument only requires Θ[n+ 1] to be bounded

(not small), and that the particle number N is large but fixed throughout the entire chapter.

We use this to show that µ[n+1]<C, where

µn+1 = ε0(φn+1,φn+1)+
1
N
(υNnpair[n+1])(φn+1,φn+1)+(υNmpair[n+1])(φn+1,φn+1)

+
∫∫

dxdy|φn+1(x)|2υN(x− y)|φn+1(y)|2 +
1
N

∫∫
dxdy|φn+1(x)|2υN(x− y)ρpair[n+1](y),

(4.5.33)

Indeed, φn+1 minimizes the functional

Ẽ (φ) := ε0(φ ,φ)+
1
N
(υNnpair[n+1])(φ ,φ)+

1
2
(υNmpair[n+1])(φ ,φ)

+
1
2

∫∫
dxdy|φ(x)|2υN(x− y)|φ(y)|2 + 1

N

∫∫
dxdy|φ(x)|2υN(x− y)ρpair[n+1](y)

(4.5.34)

(the functional Ẽ consists of only the terms of Etot[φ ,k] with a dependence on φ ), and

Ẽ (φn+1) = µn+1 −
1
2

∫∫
dxdy|φn+1(x)|2υN(x− y)|φn+1(y)|2

− 1
2N

(υNmpair[n+1])(φn+1,φn+1).

(4.5.35)
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Since φn+1 is the minimizer of Ẽ , we have

Ẽ (φn+1)≤ Ẽ (φ0)

= µ0 −
1
2

∫∫
dxdy|φ0(x)|2υN(x− y)|φ0(y)|2 +

1
N

∫∫
dxdy|φ0(x)|2υN(x− y)ρpair[n+1](y)

+
1
N
(υNnpair[n+1])(φ0,φ0)+

1
2

1
N
(υNmpair[n+1])(φ0,φ0).

(4.5.36)

Combining (4.5.35) and (4.5.36) gives,

µn+1 ≤ µ0 −
1
2

∫∫
dxdy|φ0(x)|2υN(x− y)|φ0(y)|2

+
1
2

∫∫
dxdy|φn+1(x)|2υN(x− y)|φn+1(y)|2

+
1
2

1
N
(υNmpair[n+1])(φ0,φ0)+

1
2

1
N
(υNmpair[n+1])(φn+1,φn+1)

+
1
N
(υNnpair[n+1])(φ0,φ0)+

1
N

∫∫
dxdy|φ0(x)|2υN(x− y)ρpair[n+1](y).

(4.5.37)

Using (4.5.30) and (4.5.31), we conclude that

µn+1 ≤ µ0 +
1
2
EHartree(φ0) · ∥(υN ∗ |φ0|2)∥L2 +

1
2
Ẽ (φn+1) · ∥(υN ∗ |φn+1|2)∥L2

+
2gC

c
∥υ∥L∞ +

1
N

∫∫
dxdy|φ0(x)|2υN(x− y)ρpair[n+1](y)

≤ µ0 +
g
2
(
EHartree(φ0)

)2
+

g
2
(
Ẽ (φn+1)

)2
+

2gC
c

∥υ∥L∞ +
gC2

Nc
ẼHartree(φ0).

(4.5.38)

where we use (Sobolev and Young)∫∫
dxdy|φ0(x)|2υN(x− y)|φ0(y)|2 ≤ EHartree(φ0) · ∥(υN ∗ |φ0|2)∥L2∫∫

dxdy|φn+1(x)|2υN(x− y)|φn+1(y)|2 ≤ Ẽ (φn+1) · ∥(υN ∗ |φn+1|2)∥L2,

(4.5.39)

and the following L2 bound (Young’s inequality and the Sobolev embedding, see equation

(4.5.21))

∥(υN ∗ |φn+1|2)∥L2 ≤ ∥υN∥L1 · ∥φn+1∥h1
V
≤ g · Ẽ (φn+1),
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and the last line of (4.5.38) follows from

1
N

∫∫
dxdy|φ0(x)|2υN(x− y)ρpair[n+1])(y)≤ g

N
·EHartree(φ0)∥ρ

pair[n+1]∥L2.

This shows that µn+1 modifies µ0 by a correction of order O(g). We can also say that

µn+1 modifies the ground state of ε0 by a correction with order O(g), using (4.5.22))

Finally, to show estimate (4.5.19), observe that for any e(x) ∈ (φn)⊥,

h[n+1](e,e)−|Θ[n+1](e,e)| ≥ h′[n+1](e,e)−µn+1 −
1
N
|(υNmpair[n+1])(e,e)|,

(4.5.40)

for the operator h′[n+1] defined by

h′[n+1] := ε0 +(υN ∗ |φn+1|2)(x)δ (x− y)+
1
N
(υNnpair[n+1])(x,y)

+
1
N
(υN ∗ρ

pair[n+1])(x)δ (x− y).

(4.5.41)

Also observe that φn+1 satisfies the self-adjoint operator matrix equation h′[n+1] 1
N (υNmpair[n+1])

1
N (υNmpair[n+1]) h′[n+1]

◦

φn+1

φn+1

= µn+1

φn+1

φn+1

 . (4.5.42)

The rest of the argument follows by showing that: (i) φn+1 which minimizes Ẽ (φ) is the

ground state of the operator in (4.5.42); and (ii) the higher eigenstates of (4.5.42), which

take the form (e, e)T , for e(x) ∈ (φn+1)⊥, and satisfy h′[n+1] 1
N (υNmpair[n+1])

1
N (υNmpair[n+1]) h′[n+1]

◦

e

e

= λ (e)

e

e

 , λ (e)≥ µn+1,

(4.5.43)

are separated from µn+1, which has no degeneracy, i.e.,

λ (e)−µn+1 ≥ δ , e ∈ (φn+1)⊥, for δ > 0.
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The λ (e) are given by

λ (e) = h′[n+1](e,e)+
1
N
(υN mpair[n+1])(e,e). (4.5.44)

Both of these arguments follow from the fact that the matrix in equations (4.5.42), (4.5.43)

is a perturbation of the diagonal matrix diag(ε0, ε0). Specifically, h′[n+1] 1
N (υN mpair[n+1])

1
N (υN mpair[n+1]) h′[n+1]

=

ε0 0

0 ε0

+M′[n+1] (4.5.45)

for the matrix M′[n+1] = M1[n+1]+M2[n+1] with

M1[n+1] := diag
(
(υN ∗ |φn+1|2)+

1
N
(υNnpair)+

1
N
(υN ∗ρ

pair)
)
,

and

M2[n+1] :=

 0 1
N (υN mpair)

1
N (υN mpair) 0

 .

The perturbation M′[n+1] is bounded in operator norm by

∥M′[n+1]∥op ≤ g · Ẽ (φn+1)+g∥υ∥L∞C, for C < ∞. (4.5.46)

The first term of this operator bound comes from Young’s inequality (i.e., equation (4.5.38)).

The second term in (4.5.46) meanwhile comes from (4.5.30). The important feature is

that the operator bound for M[n+1] can be made as small as desired by choosing g small

enough.

At this point, we invoke the perturbation lemma, Lemma 7, in order to claim that

the spectrum

σ

 h′[n+1] 1
N (υN ·mpair[n+1])

1
N (υN ·mpair[n+1]) h′[n+1]

 (4.5.47)
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is a perturbation of the spectrum σ(ε0). In particular, for g small enough we can guarantee

that µn+1 is the smallest element of this set, since it is the only element which is in a

neighborhood of size gC of the ground state of ε0 (where C is some constant).

It follows that

λ (e)−µn+1 ≥ δ −2∥M′[n+1]∥op,

for all e ∈ (φn+1)⊥, where δ is the size of the gap for the operator ε0. Since ∥M′[n+1]∥op

can be made arbitrarily small by making g small enough, we can choose the constants g, c

to be small enough so that λ (e)−µn+1 > c. This completes the proof of existence for the

sequence {φn, kn}. 2

Theorem 6. Suppose the single-particle operator
(
−∆+Vtrap(x)

)
contains a gap be-

tween its ground state and first excited state. Then for g < 1 small enough, and the

interaction υN = N3β υN(Nx) for β ≤ 1/6 where υ(x) is smooth and bounded (we also

assume that υ̂ ≥ 0), there exists φ ∈ h1
V , with ∥φ∥L2 = 1, and k ∈B2(h

1
V (φ⊥),h

1
V (φ⊥)),

with ∥k∥op < 1 which solve the coupled system

npair = (δ − k ◦ k)−1 ◦ (k ◦ k), (4.5.48)

mpair = (δ − k ◦ k)−1 ◦ k, (4.5.49)

h◦ k+ k ◦hT +Θ+ k ◦Θ◦ k = 0, k ∈B(h1
V ), ∥k∥op < 1, (4.5.50)

and

∫
dy
{ h0(x,y) −θ(x,y)

−θ(x,y) hT
0 (x,y)


φ(y)

φ(y)

}= µ

φ(x)

φ(x)

 , µ > 0, ∥φ∥= 1. (4.5.51)
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Proof. Since the gap condition holds for every step of the iteration, the sequence {φn,kn}

determined by the minimization problems (4.5.5) and (4.5.4) exists, with ∥φn∥ = 1 and

∥kn∥HS < C, ∥(δ − kn ◦ kn)
−1∥op < C for all n and some C. The sequence {µn} is also

uniformly bounded as a result of the previous theorem. Since we also have

tr
{

kn ◦ ε0 ◦ kn

}
≤
∣∣∣tr{(δ − kn ◦ kn)

−1 ◦ (kn ◦ ε0 ◦ kn)
}∣∣∣

≤ 1
2

∣∣∣tr{(δ − kn ◦ kn)
−1 ◦{kn ◦Θ[n−1]+Θ[n−1]◦ kn}

}∣∣∣
+µntr

{
(δ − kn ◦ kn)

−1 ◦ (kn ◦ kn)
}∣∣∣,

(4.5.52)

the sequence {kn} is uniformly bounded in B2(h
1
V ,h

1
V ). Because {φn} and {kn} are

uniformly bounded in h1
V , B2(h

1
V ), we can find some subsequence (again denoted {φn}

and {kn}) which converges weakly in h1
V , (B2(h

1
V ) respectively). Since h1

V is compactly

embedded in L2
V ∩L4

V , we conclude that φn converges strongly in L2
V ∩L4

V to some φ , and

kn converges strongly in B2(L2
V ) to some k.

The following strong limits in B2(h) therefore hold:

υN(x− y)φn(x)φn(y)→ υN(x− y)φ(x)φ(y),

υN(x− y)
{ kn

δ − kn ◦ kn

}
→ υN(x− y)

{ k
δ − k ◦ k

}
,

υN(x− y)
{ kn ◦ kn

δ − kn ◦ kn

}
→ υN(x− y)

{ k ◦ k
δ − k ◦ k

}
.

(4.5.53)

We also have the strong limits in L2(R3):

(υN ∗ |φn|2)(y)δ (x− y)→ (υN ∗ |φ |2)(y)δ (x− y),∫
dx′υN(x− x′)

{ kn ◦ kn

δ − kn ◦ kn

}
(x′,x′)δ (x− y)→

∫
dx′υN(x− x′)

{ k ◦ k
δ − k ◦ k

}
(x′,x′)δ (x− y).

(4.5.54)

The first, (υN ∗|φn|2)(y)δ (x−y)→ (υN ∗|φ |2)(y)δ (x−y), follows by noticing (via Young’s
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convolution inequality),

∥(υN ∗ |φn|2)∥L2 ≤ ∥υN∥L1 · ∥|φn|2∥L2 = ∥υN∥L1 · ∥φn∥L4 ,

and so (υN ∗ |φn|2)(x)→ (υN ∗ |φ |2)(x) strongly in L2, since φn → φ strongly in L4(R3).

The second of these inequalities follows by the fact that ρpair[n](x) ∈ L2(R3) for all n.

Taking n → ∞ in the equations satisfied by φn,kn therefore gives equations (4.5.48)

for φ ,k. Finally, we must check that k ⊥ φ . Since kn(φn,x) = 0 by construction, we have

∥k(φ ,x)∥L2 ≤ ∥k∥HS · ∥φ −φn∥L2 +∥k− kn∥HS · ∥φn∥L2 .

By picking n sufficiently large, we can bound ∥k(φ ,x)∥ by an arbitrarily small quantity.

This completes the proof.
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Chapter 5

Lee-Huang-Yang model for the periodic Bose gas

5.1 Introduction

We have seen in the previous chapters that the concept of a macroscopic quantum

state plays a key role in deriving effective models for the Bose gas. In particular, the

interacting many-body Hamiltonian can be expanded around the macroscopic, mean field

state. Heuristically, the macroscopic occupation of a single state makes it reasonable

to retain only quadratic terms in non-condensate field operators in an approximation to

the exact many-body Hamiltonian. This general strategy of approximation is appealing

mathematically, since (as demonstrated in previous chapters) the spectrum of this family

of Hamiltonians can be described exactly. In addition, when the gas is confined in a

trapping potential, we have shown that pair-excitation can be given a precise mathematical

foundation.

The subject of the current chapter is the Bose gas trapped in the box of size L, with

periodic boundary conditions.

We formulate the non-Hermitian transform for a quadratic approximate Hamilto-

nian based on the famous model of Lee, Huang and Yang [37, 38]. This model describes

low-lying excitations of the hard-sphere Bose gas in a periodic box with volume L3, where

the condensate is given by the zero-momentum constant function φ(x) = 1/
√

L3. The

second-quantized approximate Hamiltonian in the momentum basis, parameterized by k
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in the momentum dual lattice

k ∈ Z3
L := {k = 2πn/L

∣∣n ∈ Z3},

is described by:

HLHY = 4πaρN + ∑
k∈Z3

L,k ̸=0

{
k2 +8πaρ

}
a∗kak +4πaρ ∑

k∈Z3
L,k ̸=0

{
a∗ka∗−k +aka−k

}
.

(5.1.1)

To make a connection to the previous chapters, the scattering length a > 0 is related to

the constant g by the relation 8πa = g. The Hamiltonian HLHY acts on the Fock space

orthogonal to the condensate {k ̸= 0}. In this setting we introduce the Fock space operator

P :=
1
2 ∑

k ̸=0
α(k)a∗ka∗−k ,

where the real function α(k) defined on the lattice is the Fourier transform of a translation-

invariant kernel k(x,y).

We remark that neither the Hamiltonian HLHY nor the operator P commute with

the total number operator, given in the momentum basis by (see Section 5.1.3)

N = ∑
k∈Z3

L

a∗kak.

We correspondingly refer to HLHY and P as being non-particle-conserving. More gen-

erally, the Fock space operator O is non-particle-conserving if [O,N ] ̸= 0. The domains

of non-particle-conserving operators must be taken to be the Fock space F, (in contrast to

the Fock space with fixed particle number FN from previous chapters). The transformed

Hamiltonian exp(P)HLHY exp(−P) is now both non-Hermitian and unbounded in the

operator norm on F; in Section 5.4.1, it is shown that the point spectrum σp
(
HLHY

)
is
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not equal to the point spectrum σp
(

exp(P)HLHY exp(−P)
)
. Compare this to the more

familiar case of a similarity transformation by a bounded (or finite-dimensional) operator,

which must preserve the point spectrum of the original operator.

A remark is in order. Namely, the exact many-body Hamiltonian H given in Sec-

tion 5.2, equation (5.2.5), from which HLHY is derived, is manifestly particle-conserving

(in the sense that [H ,N ] = 0), and so its associated eigenvalue problem may be consid-

ered on the Fock space of fixed particle number, FN for N finite but large. By contrast,

the effective Hamiltonian of Lee Huang and Yang, HLHY, does not conserve the total

number of particles. We will discuss the implications of this for the model of low-lying

excitations after summarizing the steps of the approximation arriving at HLHY.

In the results that follow, we show how the spectrum of HLHY can be identified

as a subset of the spectrum of the transformed operator exp(P)HLHY exp(−P), (i.e.,

without prior knowledge of σ(HLHY)). This is a complication introduced by using a

non-Hermitian transformation to analyze the Lee-Huang-Yang system. The benefit to

this method lies in the fact that the many-body Fock space eigenstates of HLHY have a

particularly simple expression by utilizing the operator exp(P). Wu [60] observed that

the ground state for HLHY can be written using the operator P defined above, via

|Ψ0⟩= exp(−P)
(a∗0)

N
√

N!
|vac⟩, N > 0, (5.1.2)

where a∗0 is the creation operator for the zero-momentum condensate, and |vac⟩ denotes

the Fock space vacuum state (see Section 5.1.3 for details). We extend this result to show

that all excited states of HLHY take the form

|ΨE (⃗n)⟩ := exp(−P)|Ψn⃗⟩, (5.1.3)
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where |Ψn⃗⟩ is a finite superposition of momentum tensor product states (see equation (1)).

This is a unique feature of our approach — the pair-excitation hypothesis yields a simple

formula for excited many-body states in a physically transparent basis.

5.1.1 Comparison with other works

It is necessary to remark on the more common method of ‘Bogoliubov rotations’ for

quadratic Hamiltonians, by which the spectrum and excited states of Hamiltonian HLHY

can be derived [9, 33, 43]. To this end, if the collection {ak, a∗k}k∈Z3
L

denotes the mo-

mentum state creation/annihilation operator basis (see Section 5.1.3), then the operators

defined by

bk := cosh(α(k))ak + sinh(α(k))a∗−k, for 0 ≤ α(k)< 1

satisfy the canonical commutation relations for bosonic operators, and a particular choice

of α(k) makes HLHY diagonal in this new operator basis {b∗k ,bk}k∈Z3
L
. I.e.,

HLHY = ∑
k∈Z3

L

ε(k)b∗kbk . (5.1.4)

Here, {ε(k)}k∈Z3
L
= σ(HLHY). For fixed N, L, the ε(k) are discrete, positive, with a

gap between the ground state energy and first excited state. This transformation can

alternatively be expressed as

bk = exp(X )ak exp(−X ),

where X is the skew-Hermitian operator

X := ∑
k∈Z+

L

α(k)(a∗ka∗−k −aka−k). (5.1.5)
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Excited many-body states of HLHY are given by tensor products of the b operators, viz.

|Ψ{nk}⟩ := ∏
k∈Z+

L

(b∗k)
nk |Ψ0⟩, nk ∈ N ∀k, ∑

k∈Z+
L

nk < ∞. (5.1.6)

The ground state in particular exhibits form

|Ψ0⟩= exp(X )|0⟩= exp(−P)|0⟩,

where |0⟩ is a state such that both |0⟩ and the vacuum state |vac⟩ project onto the same

state in the space orthogonal to the condensate. The choice |0⟩=(a∗0)
N/

√
N! gives exactly

the formula derived by Wu, equation (5.1.2) above. The fact that HLHY is diagonal in the

operators {bk,b∗k} leads one to attribute physical significance to them as quasiparticles.

As far as the computation of observables goes, one may use the operator basis {bk,b∗k}

just as easily as the momentum operators {ak,a∗k}.

The quasiparticle approach is equivalent to the method of pair excitation described

in this chapter in the sense that it provides formulas for computing all observables of the

system. The reason for developing the alternative method of pair-excitation here (besides

the new mathematical structures and analysis involved) is that it emphasizes the pair-

hypothesis in the structure of many-body states; the non-Hermitian operator involved

describes a physical process between the condensate and excited states in momentum

space, which stands in contrast to quasiparticle excitations. Equation (5.1.3) holds for all

many-body excited states, and emphasizes the role of pairs in the physics of excitations.

We discovered in previous chapters that this allowed for an elegant development of the

theory for a family of Hamiltonians. The major analogy is with Wu’s Hamiltonian in

Chapter 3. The eigenstates for that operator were written precisely using pair-excitation.
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The case here is harder, and can be seen as the simplest extension of this method to

quadratic Hamiltonians.

In pursuing a rigorous analysis of the Lee-Huang-Yang model, we do not address

the validity of quadratic models for BEC in this work. See [57] for a detailed discus-

sion of these matters in the periodic setting. As such, we rely on the ubiquity of these

approximations in many areas of physics for our motivation.

We choose the particular model of Lee, Huang and Yang as the subject of the current

work because in our opinion it captures the essential physics of pair excitation in quadratic

systems in the most concise fashion. In this vein, the Lee-Huang-Yang Hamiltonian de-

scribes low-energy two-particle collisions via a delta-function interaction potential and

a scattering length, a > 0. We note that this introduces a familiar infinite constant term

in the Hamiltonian, which will be ignored. Our argument for recovering the spectrum

σp
(
HLHY

)
from σp

(
exp(P)HLHY exp(−P)

)
relies on the momentum basis in a non-

trivial way — it is unclear how to extend the construction of this chapter, e.g., to the study

of HFetter in Chapter 3. Our construction, however, still holds for a variety of quadratic

Hamiltonians; for example, Bogoliubov adopted the following quadratic Hamiltonian for

bosons in the periodic box with a two-body interaction potential v(x) [9, 43]

HBog := ∑
k
(k2 +

N
2V

v̂(k))a∗kak +
N
2V ∑

k
v̂(k)(a∗ka∗−k +aka−k), (5.1.7)

where v̂(k) denotes the Fourier transform of the interaction potential v(x).
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5.1.2 Outline of Chapter

In Section 5.2, we introduce the many-body Hamiltonian and describe the heuristic

approximation scheme by which the Lee-Huang-Yang Hamiltonian, HLHY, is derived.

In Section 5.3 we introduce the pair excitation transformation, exp(P), and pro-

vide an exact formula for excited states of the non-unitary transformed Hamiltonian via

expansion in the momentum basis.

In Sections (5.4.1) and (5.5) we discuss the spectral theory for the transformed

operator

exp(P)HLHY exp(−P),

whose spectrum is not identical to the spectrum of HLHY. This fact necessitates that we

take care in identifying the mappings of HLHY eigenstates among the eigenstates of the

transformed operator; they are exactly those eigenstates of the transformed system which

are finite superpositions of momentum states.

5.1.3 Preliminaries

Our domain will be the periodic box in 3 dimensions with length L, which we

denote BL = [0,L]3, and its volume |BL| = L3. Unless otherwise noted, all integrals are

assumed to be over BL.

Function spaces on R3 or BL are denoted by lowercase gothic letters, viz.,

h(R3) := L2(R3) .

An exception is the definition φ⊥ :=
{

e ∈ h
∣∣ e ⊥ φ

}
where φ ∈ h is the condensate wave
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function. When considering function spaces for many-particle systems, we will take

h(R3N) := L2
sym(R3N),

where the subscript refers to the fact that the functions in this space are symmetric under

permutations of the N coordinates, x1,x2, . . . ,xN ∈ R3. Operators on h are given by greek

or roman letters. For example, δ (x,y) will denote the Dirac mass of the identity operator

and ∆ is the Laplace operator. The many-body Hamiltonian on the configuration space

h(R3N) is denoted HN which we define in Section 5.2.

For f ,g ∈ h the tensor-product corresponding to f (x)g(y) is expressed by f ⊗ g.

The symmetrized tensor product of f ,g is

f ⊗s g :=
1√
2

{
f ⊗g+g⊗ f

}
.

The bosonic Fock space

We define the Bosonic Fock space, F, as a direct sum of n-particle Hilbert spaces,

via

F :=
∞⊕

n=0

Fn ; F0 := C , Fn := h(R3n) if n ≥ 1 .

Vectors in F are described as sequences of n-particle wave functions, or using ket notation,

as in |u⟩ = {un} where un ∈ h(R3n), for n ≥ 0. The inner product of |u⟩ = {un}, |w⟩ =

{wn} ∈ F is

⟨u,w⟩F :=
∞

∑
n=0

⟨un,wn⟩L2(R3n) ,

This induces the norm ∥|u⟩∥F =
√

⟨u,u⟩F. As we already aluded to, we employ the bra-

ket notation for Schrödinger state vectors in F to distinguish them from wave functions in

h(R3n).
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Operators on F will be denoted by calligraphic letter, an example being the Hamilto-

nian H :F→F. This, of course, excludes the annihilation and creation operators, includ-

ing the field operators ax, a∗x , as well as the operators a
φ
,a∗

φ
and ak,a∗k associated with the

basis {ek(x)} discussed shortly. The vacuum state in F is |vac⟩ := {1,0,0, . . .}, where the

unity is placed in the zeroth slot. A symmetric N-particle wave function, ψN ∈ h(R3N),

has a natural embedding into F given by |ψ⟩N = {0,0, . . . ,ψN(x),0, . . .}, where ψN(x)

is in the N-th slot. The set of all vectors |ψ⟩N for N fixed is a linear subspace of F, de-

noted FN , and is called the ‘N-th fiber’ (N-particle sector) of F. We sometimes omit the

subscript ‘N’ when referring to a |ψ⟩N ∈ FN when the context makes it clear .

A Hamiltonian on h(R3N) admits an extension to an operator on F. This extension

is carried out via the Bosonic field operator ax and its adjoint, a∗x , for spatial coordinate x∈

R3. To define these field operators, first consider the annihilation and creation operators

for a one-particle state f ∈ h, denoted by a( f ) and a∗( f ). These operators act on |u⟩ =

{un} ∈ F according to

(
a( f )|u⟩

)n :=
√

n+1
∫

dx f (x)un+1(x,x2, . . . ,xn) ,

(
a∗( f )|u⟩

)n :=
1√
n ∑

j≤n
f (x j)un−1(x1, . . . ,x j−1,x j+1, . . . ,xn) .

We often use the symbols a f := a( f ) and a∗f := a∗( f ). Also, given an orthonormal basis,

{e j(x)} j ⊂ h, we will write a∗j in place of a∗(e j) and a j in place of a(e j).

The Boson field operators a∗x , ax are now defined using an orthonormal basis via

a∗x = ∑
j

e j(x)a∗j , ax = ∑
j

e j(x)a j .

The canonical commutation relations [ax,a∗y ] = δ (x− y), [ax,ay] = 0 then follow.
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An orthonormal basis that we use extensively in this work consists of the momen-

tum eigenfunctions on BL:

ek(x) :=
eik·x√
|BL|

, where k :=
2πn

L
, n ∈ Z3. (5.1.8)

Thus we consider periodic functions (of spatial variable x ∈ BL) with period L and denote

the dual lattice

Z3
L := {k = 2πn/L

∣∣n ∈ Z3}.

We also define the momentum half-space, Z+
L , which will make the description of pair-

excited states simpler:

Z+
L := {k = 2πn/L

∣∣n ∈ Z3, n3 > 0}.

By virtue of the commutation relations on {ax,a∗x}, the creation and annihilation operators

for the states {ek(x)}k∈Z3
L
, denoted a(ek) := ak and a∗(ek) := a∗k satisfy

[ak1,a
∗
k2
] = δ (k1,k2), [ak1,ak2 ] = 0 = [a∗k1

,a∗k2
], k1,k2 ∈ Z3

L.

Vectors |Ψ⟩ ∈ F can also be expressed in terms of the occupation number basis for

{ek(x)}. The orthonormal elements of this Fock space basis consist of tensor product

states for every collection of integers {nk ∈ N}k∈Z3
L

with ∑k∈Z3
L

nk < ∞, given by

|nk1,nk2, . . .⟩ := ∏
k∈Z3

L

(
a(ek)

∗)nk

√
nk!

|vac⟩.

The states |nk1,nk2, . . . ,nkn⟩ will also be used to denote the basis of tensor products for a

fixed finite collection of momenta, (k1, . . . ,kn).

Finally, the symbol “≈” will be used in two senses. The first sense refers the

the heuristic approximation of Fock space operators, as in HLHY ≈ H . The second
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sense is the relation of asymptotic equivalence of functions. A function f (z) is said to

be asymptotically equivalent to g(z) as |z| → ∞, i.e., f (z) ≈ g(z) as |z| → ∞, provided

lim|z|→∞

f (z)
g(z) = 1. We will be careful to clarify in which sense we are using this symbol

when it occurs in the text.

On the operator exponential: We will make extensive use of the operator exp(P) :

F→ F, where

P := ∑
k∈Z+

L

α(k)a∗ka∗−k, for 0 ≤ α(k)< 1 ∀k ∈ Z+
L .

The operator P is unbounded on F. While it does not have any eigenvalues, its spectrum

σ(P) (that is, the union of point, continuous and residual spectra) consists of the entire

complex plane. A precise definition of dom(exp(P)) is not strictly necessary for our

purposes; it will suffice to consider this operator as a formal series in powers of P as

long as we are acting on states which remain finite-norm under the action of this formal

operator series. Fixing k ∈ Z+
L , and defining

|0⟩ :=
1√
N!

(a∗0)
N |vac⟩, N < ∞,

a state vector of the form:

|Ψ(k)⟩=
∞

∑
n=0

cn|n,n⟩, |n,n⟩ :=
(a∗ka∗−k)

n

n!
|0⟩,

∞

∑
n=0

|cn|2 = 1

will belong to dom
(

exp(P)
)

provided that the sequence

{
c̃s :=

s

∑
n=0

cn(−α(k))s−n
(

s
s−n

)}∞

s=0
(5.1.9)

is square-summable. We note that the use of exponentials involving creation operators

such as exp(P) is quite common the study of generalized coherent states [52].

The following lemma will be crucial [59].
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Lemma 9. Any two operators A ,B in the Fock space satisfy the identity

eA Be−A = ead(A )B =
∞

∑
n=0

ad(A )n(B)

n!
,

where ad0(A )(B) = B and

ad(A )n(B) = [A ,ad(A )n−1(B)], n ≥ 1.

5.2 Many-body Hamiltonian and approximation scheme

We now summarize the bosonic many-body Hamiltonian and discuss the quadratic

approximation of Lee, Huang, and Yang. This is included as motivation for the analysis

that follows; we do not rigorously justify the derivation of this section.

Consider N bosons inside the box BL, with periodic boundary conditions and repul-

sive pairwise particle interaction υ . On the Hilbert space h(R3N) of symmetric N−particle

wavefunctions, the Hamiltonian for this system reads

HN =
N

∑
j=1

−∆ j +
N

∑
i< j

υ(xi,x j), x j ∈ R3. (5.2.1)

Here we choose units such that h̄ = 2m = 1, where h̄ is Planck’s constant, and m is the

atomic mass. The interaction potential υ should be understood to be positive, symmetric,

and compactly supported.

This Hamiltonian can be lifted to the bosonic Fock space via the field operators

{ax,a∗x}:

H =
∫

dx
{

a∗x(−∆x)ax
}
+

1
2

∫∫
dxdy

{
υ(x,y)a∗xa∗yaxay

}
. (5.2.2)

In the spirit of Lee, Huang and Yang, we take the interaction υ to be the Fermi

pseudopotential, which is an effective operator that reproduces the low-energy limit of
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the far field of the exact wavefunction [34]. If f is any two-body wavefunction, we

therefore take

υ(xi,x j) f (xi,x j)≈ gδ (xi − x j)
∂

∂xi j

[
xi j f (xi,x j)

]
, (i ̸= j), (5.2.3)

where xi j := |xi − x j|, and g := 8πa where a is the scattering length. We further simplify

this interaction by omitting (∂/∂xi j)xi j from (5.2.3), viz.,

υ(xi,x j) 7→ gδ (xi − x j). (5.2.4)

The substitution (5.2.4) will be exact for solutions to the many-body wavefunction with

sufficient regularity [34]. Inserting (5.2.4) into (5.2.2), and expanding in the momentum

basis yields

H ≈ ∑
k∈Z3

L

|k|2a∗kak +
4πa
|BL| ∑

k1+k2=k3+k4

a∗k1
a∗k2

ak3ak4. (5.2.5)

The symbol “≈” denotes the fact that we have approximated the two-body interaction

potential with a delta function.

As remarked on in the introduction to this chapter, H as written in (5.2.5) is mani-

festly particle conserving (in the sense that [H ,N ] = 0), and so its associated eigenvalue

problem may be considered on the Fock space of fixed particle number, FN for N finite

but large. By contrast, the effective Hamiltonian of Lee Huang and Yang (which we de-

note by HLHY and define shortly), will not conserve the total number of particles. We

discuss this after summarizing the remaining steps in the approximation of HLHY. We

proceed by decomposing the interaction part of H into terms containing like-powers of

the condensate operators, a0 and a∗0 ; the second, third, and fourth lines of the expression
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below contain quadratic, linear, and zeroth-order terms in these operators respectively:

H = ∑
k∈Z3

L,k ̸=0

k2a∗kak +
4πa
|BL|

(a∗0)
2a2

0

+
4πa
|BL| ∑

k∈Z3
L,k ̸=0

(
(a∗0)

2aka−k +a∗ka∗−k(a0)
2 +4(a∗0a0)a∗kak

)

+
8πa
|BL| ∑

k3=k1+k2
k1,k2,k3 ̸=0

(
(a∗k1

a∗k2
ak3)a0 +(ak1ak2a∗k3

)a∗0
)

+
4πa
|BL| ∑

k1+k2=k3+k4
k1,k2,k3,k4 ̸=0

a∗k1
a∗k2

ak3ak4.

(5.2.6)

The approximation of Lee Huang and Yang is consistent with the following steps

(we use these steps for explanatory purposes): (i) replace the condensate occupation num-

ber operator by

(a∗0a0) 7→ N − ∑
k ̸=0

a∗kak, for N < ∞,

and (ii) consider the action of Hamiltonian H on states Ψ satisfying
⟨Ψ|∑k ̸=0

1
N a∗kak|Ψ⟩ ≪ 1,

H Ψ = EΨ, ⟨Ψ|N |Ψ⟩= N.

(5.2.7)

In particular, for ˜N := ∑k ̸=0 a∗kak, we make the operator approximation

(N − ˜N )2 − (N − ˜N ) = N 2 −N −2N ˜N + ˜N 2 + ˜N ≈ N 2 −N −2N ˜N ,

where we have dropped the terms ˜N 2 + ˜N because ⟨Ψ| ˜N |Ψ⟩ ≪ N for all states of

interest according to the assumption (5.2.7).
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The first line in (5.2.6) is therefore approximated by

4πa
|BL|

(a∗0)
2a2

0 =
4πa
|BL|

{
(a∗0a0)

2 − (a∗0a0)
}

≈ 4πa
|BL|

{
(N − ∑

k ̸=0
a∗kak)

2 − (N − ∑
k ̸=0

a∗kak)
}

≈ 4πa
|BL|

{
N(N −1)−2N ∑

k ̸=0
a∗kak

}
≈ 4πaρN −8πaρ

{
∑
k ̸=0

a∗kak

}
.

(5.2.8)

The second line of (5.2.6) consists of three quadratic terms in condensate operators,

proportional to (a0)
2, (a∗0)

2 and (a∗0a0) respectively. The (a∗0a0) term will contribute to

the diagonal part of HLHY, via

16πa
|BL| ∑

k ̸=0
(a∗0a0)a∗kak ≈ 16πaρ ∑

k ̸=0
a∗kak −

16πa
|BL|

(
∑
k ̸=0

a∗kak
)2

≈ 16πaρ ∑
k ̸=0

a∗kak.

(5.2.9)

If cubic and quartic terms in the {a(∗)k } operators where k ̸= 0 are now neglected

(we will provide a consistent explanation for this in the next paragraph), approximations

(5.2.8) and (5.2.9) yield the reduced Hamiltonian

H ≈ 4πaρN + ∑
k∈Z3

L,k ̸=0

{
k2 +8πaρ

}
a∗kak +

4πa
|BL| ∑

k∈Z3
L,k ̸=0

{
(a∗0)

2aka−k +a∗ka∗−k(a0)
2}.

(5.2.10)

This intermediate approximation to HLHY is of independent interest, since it is particle-

conserving.

It is now apparent that the only way for off-diagonal terms of (5.2.10) to (formally)

contribute, requires that (a0)
2 and (a∗0)

2 be replaced (or be replaceable) by N. This also
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justifies the dropping of cubic-and-quartic terms in the {a(∗)k } operators between (5.2.6)

and (5.2.10), since replacing a0, a∗0 by
√

N and making the above assumptions (5.2.7)

will result in these terms formally vanishing. We note that this amounts to a version

of the famous Bogoliubov approximation [9], although such terminology was not used

explicitly by Lee, Huang and Yang. With this final replacement, we arrive at the Lee-

Huang-Yang Hamiltonian

HLHY := 4πaρN + ∑
k∈Z3

L,k ̸=0

{
k2 +8πaρ

}
a∗kak +4πaρ ∑

k∈Z3
L,k ̸=0

{
a∗ka∗−k +aka−k

}
.

(5.2.11)

From this expression, we see that HLHY is a sum of terms which involve only the mo-

menta (k,−k). We therefore utilize the momentum half space:

Z+
L := {k = 2πn/L

∣∣n ∈ Z3, n3 > 0},

in order to write HLHY as a sum of operators which commute with
(
a∗kak +a∗−ka−k

)
, for

k ∈ Z+
L , i.e.,

HLHY = 4πaρN + ∑
k∈Z+

L

2
(
k2 +8πaρ

){1
2
(
a∗kak +a∗−ka−k

)
+ y(k)

(
a∗ka∗−k +aka−k

)}
.

(5.2.12)

where, consistent with [37], we define the constant

y(k) :=
4πaρ

k2 +8πaρ
, k ∈ Z+

L .

The point spectrum of HLHY will be called the Bogoliubov spectrum, and is given

by ∑k∈Z+
L
(nk +n−k)εk where the set of occupation numbers {nk}k∈ZL satisfies

∑
k∈Z+

L

(nk +n−k)< ∞,
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and the single particle energies are given by

εk := k
√

k2 +16πaρ. (5.2.13)

In the analysis of the next section, it will be easier to state results for the generic

operator that appears inside the brackets in (5.2.12), where y(k) may take on the range of

values (0,1/2) as k varies over Z+
L . We therefore conclude this section by defining the

quadratic Hamiltonian for two orthogonal momentum states (a,b), denoted Hab(y). The

notation for this ‘core’ operator is inspired by Wu [61].

Definition 5. Let the operators {a, a∗,b, b∗} satisfy the canonical commutation relations

[a,a∗] = [b,b∗] = 1,

[a,a] = [b,b] = [a∗,a∗] = [b∗,b∗] = 0

[a,b] = [a∗,b∗] = [a∗,b] = [a,b∗] = 0,

(5.2.14)

and act on the Fock space Fab which is the linear span of all formal tensor products of

the operators a∗,b∗, i.e.,

Fab := span{|na,nb⟩, for na,nb ∈ N}, |na,nb⟩ :=
(a∗)na(b∗)nb
√

na!nb!
|vac⟩. (5.2.15)

Define the Hamiltonian Hab(y) on Fab, where 0 < y < 1/2, by

Hab(y) :=
1
2
(
a∗a+b∗b

)
+ y
(
a∗b∗+ab

)
. (5.2.16)

We then define the Bogoliubov spectrum for Hab by the formula

(na +nb)
√

1−4y2, for na +nb < ∞. (5.2.17)
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5.2.1 Comment on particle conservation versus non-conservation

There is an apparent contradiction in the approximation scheme above, since step

(i) is a statement of particle-conservation, while we ultimately arrive at HLHY which does

not conserve the number of particles. We must therefore be more precise, and specify that

the steps (i) and (ii) do not refer to the restriction of the problem to the N-particle sector

of Fock space, FN , but rather impose a constraint on the average number of particles

for the many-body states of HLHY. This means that we solve the eigenvalue problem

HLHY|Ψ⟩= E|Ψ⟩ for eigenstates |Ψ⟩ ∈ F which satisfy the condition

⟨Ψ|a∗0a0 +∑
k

a∗kak|Ψ⟩= N. (5.2.18)

We will have to verify that the eigenstates Ψ which we construct are self-consistent with

this assumption.

5.3 Formal construction of many-body excited states

We now construct a family of formal solutions to the eigenvalue problem for Hamil-

tonian HLHY. This construction makes use of the non-unitary transformation by exp(−P) :

F→ F, which creates pairs of particles with opposite-momenta, and maps any Ψ ∈ Fn to

the state exp(−P)Ψ which has a nonzero component in every (n+ s)−particle fiber,

Fn+s, of F, s = 0,1,2, . . . . In defining the operator P , we are inspired by the operator de-

scribed by Wu (Chapter 3) [60,61]. The operator P depends on a free parameter, denoted

0 < α(k)< 1, for every k ∈ Z+
L , and is defined by
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P := ∑
k∈Z+

L

α(k)a∗ka∗−k. (5.3.1)

We will choose α(k) in the manner of Wu in order to eliminate all terms propor-

tional to (a∗ka∗−k) in the transformed operator exp(P)(HLHY)exp(−P). The result-

ing non-Hermitian eigenvalue problem can be solved exactly by considering solutions

|ΨLHY(k)⟩, for k ∈ Z+
L , which are linear combinations of tensor product states containing

only the momenta k and −k:

(
exp(P)HLHY exp(−P)

)
|ΨLHY(k)⟩= E|ΨLHY(k)⟩. (5.3.2)

Important Note: The non-Hermitian eigenvalue problem, equation (5.3.2), will not in

general yield E that lie in the point spectrum σp(HLHY). In fact we will see that the

transformed problem can have either a discrete or a continuous point spectrum depending

on whether the quantity

ỹ(k) :=
y(k)√

1−4y(k)2
, for y(k) =

4πaρ

k2 +8πaρ
,

satisfies ỹ(k) < 1 or ỹ(k) ≥ 1. We note that for y(k) ∈ (0,1/2), the quantity ỹ(k) takes

on values in the range (0,∞). This splitting of the problem into the two cases ỹ(k) < 1

and ỹ(k) ≥ 1 is a mathematical artifact of using a method which transforms a Hermi-

tian Hamiltonian by an unbounded, non-Hermitian operator. This may suggest that the

spectrum for the problem (5.3.2) has no significance for the original physics problem —

the following analysis shows otherwise. In the next section, we will provide a charac-

terization of the eigenstates of the transformed Hamiltonian. We will see that the case

ỹ(k)< 1 corresponds to a regular perturbation of the eigenvalue problem for the diagonal
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Hamiltonian Hdiag := 1
2(a

∗
kak+a∗−ka−k). The case ỹ(k)≥ 1 can be solved exactly, and we

will see that it cannot be associated with a regular perturbation of the problem for Hdiag.

While information about the Hamiltonian Hab can be discerned by different means (e.g.,

Bogoliubov rotation), our goal is to show how analyzing the Hamiltonian via pair excita-

tion can give all the same information as these other methods, without prior knowledge

of them.

5.3.1 The non-Hermitian transform

For P given by (5.3.1), a straightforward calculation using Lemma 9 yields the

conjugations

exp(P)ak exp(−P) = ak −α(k)a∗−k, exp(P)a∗k exp(−P) = a∗k , ∀k ∈ Z3
L. (5.3.3)

We define α(−k) = α(k) for k ∈ Z+
L . This yields the transformed Hamiltonian

exp(P)HLHY exp(−P) = 4πaρN +4πaρ ∑
k∈Z3

L

α(k)

+ ∑
k∈Z3

L

(
k2 +8πaρ −8πaρα(k)

)
(a∗kak)+4πaρ ∑

k∈Z3
L

(aka−k)

+ ∑
k∈Z3

L

(
4πaρ(α(k))2 − (k2 +8πaρ)α(k)+4πaρ

)
(a∗ka∗−k).

(5.3.4)

We note that at this point that the term ∑k∈Z3
L

α(k) introduces an infinite constant (see

equation (5.3.5)) to the energy spectrum of the transformed Hamiltonian; this can be at-

tributed to approximating the smooth interaction potential by a delta function and can be

removed in a systematic way. For brevity, and since it does not affect the construction

that follows in a meaningful way, we will retain this term in the following analysis, and

refer to [34] for details regarding its proper analytical remedy. In distinction to the unitary
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transformation of HLHY exemplified by equation (5.1.5), the exponential transformation

by P has a free parameter α(k) for every k ∈ Z+
L which is not constrained by a require-

ment of unitarity. We exploit this freedom in order to make the expansion of eigenvectors

in the momentum basis particularly simple. The resulting problem (5.3.2) on Fock space

will correspond to an (infinite) upper triangular matrix system.

In this vein, we choose α(k) = αc(k) so that the last line of (5.3.4) vanishes, which

implies

αc(k) =
1

8πaρ

(
(k2 +8πaρ)± k

√
k2 +16πaρ

)
, k ∈ Z+

L . (5.3.5)

The choice of αc(k) corresponding to the minus sign in (5.3.5) yields a positive spectrum

for (5.3.2). The two possible solutions for αc(k) in the expansion of P has an analog in

the non-periodic setting, where the quadratic equation for αc(k) generalizes to an operator

Riccati equation for a pair excitation kernel k(x,y). In Chapter 3, we provide a detailed

description of this correspondence. With this choice, the transformed Hamiltonian reads

exp(P)HLHY exp(−P) = 4πaρN +4πaρ ∑
k∈Z3

L

αc(k)

+ ∑
k∈Z+

L

2
(
k
√

k2 +16πaρ
){1

2
(a∗kak +a∗−ka−k)+

( 4πaρ

k
√

k2 +16πaρ

)
aka−k

}
.

(5.3.6)

For a single term of this sum corresponding to fixed k ∈ Z+
L , the operator inside

curly brackets is a transformation of the formal Hamiltonian Hab(y) : Fab → Fab if for

each k ∈Z+
L we identify annihilation operator ak with operator a and annihilation operator

a−k with operator b. This is summarized in the following definition:
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Definition 6. Define the family of rescaled transformed Hamiltonians, parameterized by

α ∈ [0,1/2y), by:

H
(α)

ab :=
1

1−2αy

(
exp(αa∗b∗)Hab exp(−αa∗b∗)+αy

)
=

1
2
(
a∗a+b∗b

)
+ y1(α)ab+ y2(α)a∗b∗,

(5.3.7)

where y1(α), y2(α) are given by

y1(α) :=
y

1−2αy
, and y2(α) :=

y−α +α2y
1−2αy

.

The value

α = αc :=
1−
√

1−4y2

2y
,

then induces the transformation:

H
(αc)

ab =
1
2

(
a∗a+b∗b

)
+ ỹab, (5.3.8)

for

ỹ :=
( y√

1−4y2

)
.

If y = y(k) = 4πaρ

k2+8πaρ
, the operator (5.5.2) acts on Fab in precisely the same way as the

operator inside curly brackets in equation (5.3.6) acts on the Fock subspace formed by

tensor product states with momentum (k,−k).

5.3.2 Constructing eigenstates

The formal eigenstates of H
(αc)

ab are now described, where α = αc, the critical

parameter which cancels terms proportional to a∗b∗ in the transformed Hamiltonian. The

choice of the critical parameter allows us to derive a particularly simple formula for the
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eigenstates. First we explain the setup. By formal, we mean that the formula given in

this section (equation (5.3.13)) does not specify whether the states have finite norm in the

space Fab. We nonetheless write the general formula for all eigenstates before discussing

the issue of normalizability. This is an abuse of notation, but neatly encompasses all

of the cases involved in the spectral analysis of the family of operators H
(αc)

ab (y) for

0 ≤ y ≤ 1/2.

The structure of the Hamiltonian H
(αc)

ab for the critical value αc is important for

this construction. Since this Hamiltonian contains no term proportional to the operator

a∗b∗, the effect of H
(αc)

ab on any Ψn ∈ Fn for 1 ≤ n < ∞ is to create a linear combination:

H
(αc)

ab Ψn = Ψ̃n + Ψ̃n−2,

where Ψ̃n ∈ Fn and Ψ̃n−2 ∈ Fn−2. This is analogous to the action of an upper-triangular

matrix in finite dimensions, which preserves subspaces of the underlying linear space

X spanned by unit vectors {e1, e2, . . . ,en}, for n ≤ dim(X). This observation motivates

finding a solution to the eigenvalue problem

H
(αc)

ab |ΨE⟩= E|ΨE⟩,

via a difference scheme for the coefficients of |ΨE⟩ when expanded in the momentum

basis. For the critical value αc, the iteration will be a backward scheme, which can be

solved exactly to give a formula for the coefficients.

The specifics of this scheme are given in Appendix A.1; we write the conclusion for

general α ∈ [0,αc] for convenience in equation (5.3.10). We work in the occupation num-

ber basis of Fab; this basis is represented by states |ma,mb⟩ ∈ Fab, for ma,mb ∈ N, which
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are simultaneous eigenvectors of the operators a∗a and b∗b, satisfying the equations

(a∗a)|ma,mb⟩= ma|ma,mb⟩, (b∗b)|ma,mb⟩= mb|ma,mb⟩. (5.3.9)

In the Appendix, we explain how eigenstates |ΨE⟩ satisfying H
(α)

ab |ΨE⟩= E|ΨE⟩ (where

α ∈ [0,αc]), with E ∈ C can be reduced to expansions in the occupation number basis

which take one of the the two forms:

|ΨE⟩=
∞

∑
s=0

cs|p+ s,s⟩, or |ΨE⟩=
∞

∑
s=0

cs|s, p+ s⟩ for p ∈ N.

From either of these expressions, we arrive at the difference scheme for the coefficients

{cs}∞
s=0 in the expansion of |ΨE⟩:

( p
2
+ s
)

cs + y1(α)cs+1
√

(p+ s+1)(s+1)+ y2(α)cs−1
√
(p+ s)s = Ecs. (5.3.10)

Solving this scheme for α = αc (see Appendix) shows that the states are uniquely

described by two parameters p ∈ N and Θ ∈ C; we call the corresponding state |Ψp,Θ⟩ ∈

Fab. The index p describes the fact that |Ψp,Θ⟩ is an element of the linear subspace of

states |Ψ⟩ ∈ Fab such that (a∗a− b∗b)|Ψ⟩ = p|Ψ⟩ holds, i.e., |Ψp,Θ⟩ corresponds to a

state with fixed total momentum if we assosciate the operator a with ak and the operator b

with a−k for some k ∈ Z+
L . In the occupation number basis, |Ψp,Θ⟩ belongs to the closed

linear span

|Ψp,Θ⟩ ∈ span
{
|p+ s,s⟩,s ∈ N

}
.

For every p ∈ N, it is also possible to consider solutions which satisfy (b∗b−a∗a)|Ψ⟩=

p|Ψ⟩, and construct eigenstates in the span of vectors |s,s+ p⟩. Thus every state |Ψp,Θ⟩

will be associated with a degenerate state denoted |Ψ(−)
p,Θ⟩. Indeed, the only difference
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between |Ψp,Θ⟩ and |Ψ(−)
p,Θ⟩ will be whether the expansion is formed from states |s+ p,s⟩

versus |s, p+s⟩. We therefore write formulas explicitly for the first kind of eigenstate, im-

plying that equivalent formulas can be derived for |Ψ(−)
p,Θ⟩ by the appropriate substitution.

The state |Ψp,Θ⟩ satisfies the formal eigenvalue problem

H
(αc)

ab |Ψp,Θ⟩=
( p

2
+Θ

)
|Ψp,Θ⟩. (5.3.11)

The complex value Θ enters into the expansion for the state |Ψp,Θ⟩ via the general-

ized binomial coefficients
(

Θ

s

)
for s = 0,1,2, . . . . We now give the precise formula for the

(unnormalized) states |Ψp,Θ⟩ which result from solving the iteration scheme (5.3.10) for

the critial parameter α = αc (see the Appendix for a complete derivation):

Proposition 1. Let p ∈ N and Θ ∈ C, and define ỹ by

ỹ :=
y√

1−4y2
, for 0 < y < 1/2.

In the occupation number basis for the a,b operators, define the formal expansion

|Ψp,Θ⟩ :=
∞

∑
s=0

(ỹ)−s
(

Θ

s

)((
p+ s

s

))−1/2

|p+ s,s⟩. (5.3.12)

(If Θ ∈C\N, the binomial coefficient in formula (5.3.12) is understood in the generalized

sense; see, for example [1]). The state |Ψp,Θ⟩ satisfies the eigenvalue problem (5.3.11)

with energy E = p
2 +Θ. A second collection of states, denoted |Ψ(−)

p,Θ⟩, are constructed in

an identical way, replacing |p+ s,s⟩ by |s, p+ s⟩ in (5.3.12).

A special case occurs when Θ = N ∈ N. The resulting states are then finite linear

combinations, and formula (5.3.12) is replaced by

|Ψp,N⟩ :=
N

∑
s=0

(ỹ)−s
(

N
s

)((
p+ s

s

))−1/2

|p+ s,s⟩. (5.3.13)
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5.3.3 Remarks

The derivation of formula (5.3.12) is elaborated in the appendix, and follows from a

direct expansion in the occupation number basis. A remark on notation is in order: since

we will carry out the analysis for the model Hamiltonian in Fab, we will use N from now

on to refer to the integer quantum number for the states |Ψp,n⟩, at risk of confusing it

with the total number of particles for the Hamiltonian HLHY written in the momentum

operators. Some key points are now emphasized:

1. All eigenstates of H
(αc)

ab (as well as Hab) must be superpositions of states with

fixed momentum p, either given by |p+ s,s⟩, or |s, p+ s⟩ for s ∈N. This is because

the operator (Casimir’s operator [52])

C :=
1
4
− 1

4
(a∗a−b∗b)2 (5.3.14)

commutes with a∗b∗, ab, and 1
2(a

∗a+ b∗b+ 1). Casimir’s operator is constant on

each of the subspaces span{|p+ s,s⟩| s ∈ N} ⊂ Fab for p ∈ N.

2. Definition 1 suggests that every complex number E ∈C is an eigenvalue of H
(αc)

ab .

This is sometimes, but not always, the case — the subject of the following sections

will be to describe constraints on the states |Ψp,Θ⟩ (i.e., constraints on p,Θ) for all

values of y ∈ [0,∞) so that the spectrum { p
2 +Θ} corresponds (under scaling) to

the spectrum of the operator Hab for certain ‘allowed’ values of p,Θ under these

constraints.

3. In particular, for ỹ< 1, the only normalizable states |Ψp,Θ⟩ will be |Ψp,N⟩ for N ∈N,

while for 1 ≤ ỹ, the states |Ψp,Θ⟩ are normalizable for all Θ ∈ C. Thus, additional
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constraints on the states |Ψp,Θ⟩ will be necessary when ỹ ≥ 1, in order to connect

them to the eigenvalue problem for Hab.

4. When Θ = N ∈ N, the energy of state |Ψp,N⟩ is E = N + p
2 . The states |Ψp,N⟩ have

the same energies as the tensor product eigenstates of the Hamiltonian 1
2(a

∗a+b∗b),

which is the limit of the operator H
(αc)

ab as y → 0.

The remainder of this work is devoted to analyzing the spectrum of H
(αc)

ab (and

more generally H
(α)

ab for α ∈ [0,αc]) in the two regimes ỹ < 1 and 1 ≤ ỹ. We undertake

this in order to answer the physically pertinent questions: (i) which of the states |Ψp,Θ⟩

defined in Proposition 1 determine eigenstates |ΨE⟩ of Hab by means of the transform

|ΨE⟩= exp(−αca∗b∗)|Ψp,Θ⟩ ? (5.3.15)

Of course, since we can already determine the spectrum σp(Hab) by direct means, this

question may seem trivial. The perspective we take in developing the method here is that

we may start from the transformed Hamiltonian H
(αc)

ab , and derive all relevant quantities

for Hab, ‘forgetting’ the direct methods which exist for the Hermitian problem.

(ii) If the point spectrum of H
(αc)

ab is the entire complex plane (which we see shortly

to be the case for α = αc and ỹ ≥ 1 in Proposition 2) is there an easy way to distinguish

among |Ψp,Θ⟩ those states which correspond to members of the spectrum of Hab? (iii)

Finally, can all of the eigenstates of Hab be identified with unique eigenstates of Hab?

As stated, we handle the cases ỹ < 1 and ỹ ≥ 1 separately. The three questions

(i) – (iii) are answered definitively for ỹ < 1 in the next theorem, and provide a glimpse

of the difficulties we will have to address in the case ỹ ≥ 1. When ỹ < 1, the result

of Proposition 2 says that only the states {Ψp,N}p,N∈N will be normalizable in Fab and
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in this sense the eigenvalue problem for H
(αc)

ab is a regular perturbation of the problem

for 1
2(a

∗a+ b∗b). Sections (5.4.1) and (5.5) are devoted to the case ỹ ≥ 1. We make the

disclaimer that while this condition on ỹ changes the analysis for the transformed operator,

the spectral problem for Hab remains the same. In this sense, the fact that the different

cases ỹ < 1 and ỹ ≥ 1 must be handled differently is solely a mathematical artifact of

using the non-Hermitian pair-excitation transform.

5.3.4 Discrete spectrum in the Case 0 < ỹ < 1:

When ỹ < 1, the eigenstates of H
(αc)

ab will be |Ψp,N⟩ of formula (1), where N ∈ N.

Energies of these states are equal to the energies of tensor products |p+N,N⟩ as eigen-

states of the operator 1
2(a

∗a+ b∗b). The condition 0 < ỹ < 1 in H
(αc)

ab translates to the

condition |k|2 > 4πaρ(
√

5−2)> 0 in the k−momentum component of HLHY. Thus, this

case represents an infinite collection of momenta in the Lee-Huang-Yang Hamiltonian.

Proposition 2. Suppose 0 < ỹ < 1. Then the point spectrum of H
(αc)

ab is

σp
(
H

(αc)
ab

)
=
{ p

2
+N, for p,N ∈ N

}
. (5.3.16)

The eigenstates are given by |Ψp,N⟩, |Ψ(−)
p,N⟩ of Definition (1), for N ∈ N, and exhibit the

same degeneracy as the momentum states
{
|N,N+ p⟩ or |N+ p,N⟩

}
as eigenstates of the

operator 1
2(a

∗a+b∗b) for p,N ∈ N.

Proof. It is clear that the states |Ψp,N⟩ with N ∈N have finite norm in Fab as finite super-

positions in the particle number basis.
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Now suppose Θ ∈ C\N, so the coefficients

cs := (ỹ)−s
(

Θ

s

)√(
p+ s

s

)−1

,

are nonzero for all s ≥ 0. We proceed to show that
{

cs
}∞

s=0 cannot be square summable.

Indeed, using the Gamma function [44] to describe the generalized binomial coef-

ficient, we have

|cs|2 = ỹ−2s Γ(1+ p)
Γ(−Θ)2 · Γ(s−Θ)2

Γ(s+ p+1)Γ(s+1)
|c0|2.

Let us write Stirling’s approximation as follows [44]

log(Γ(z))≈
(
z− 1

2
)

log(z)− z+
1
2

log(2π), as |z| → ∞, Re(z)> 0. (5.3.17)

Here, the symbol “≈” denotes asymptotic equivalence. Thus

log
(
Γ(s−Θ)

)
≈ s log(s)− (Θ+1/2) log(s)− s+C, as s → ∞, (5.3.18)

where C is a constant whose specific value does not matter. Similarly

log(Γ(s+ p+1))≈ s log(s)+(p+1/2) log(s)− s, as s → ∞. (5.3.19)

Putting the two lines above together gives

Γ(s−Θ)

Γ(s+ p+1)Γ(s+1)
≈ e2logse−2(Θ+1/2) log(s)e−2s

es logse(p+1/2) logse−ses lnse1/2logse−s
=

1
s2Θ+2+p , as s → ∞.

(5.3.20)

Therefore

|cp+s,s|2 ≈ K
ỹ−2s

s2Θ+2+p |cp,0|2, for K =
Γ(1+ p)
Γ(−Θ)2 as s → ∞. (5.3.21)

If |ỹ|< 1, then it follows that ∑
∞
s=0 |cs|2 cannot be finite if Θ ∈ C\N. This concludes the

proof.
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When ỹ≥ 1, the estimates in the above proof show that the states |Ψp,Θ⟩ are normal-

izable for all values Θ ∈ C. Answering the questions (i) – (iii) of Section 5.3.3 becomes

more difficult in this case. This is the subject of the next section.

5.3.5 A Geometric Picture of Degeneracies

We conclude this section with a geometric description of the degenerate eigenspaces

of H
(αc)

ab in Fab when ỹ < 1. The Fock space Fab is the orthogonal direct sum of the

following subspaces:

Fab =
∞⊕

p=−∞

F(p), F(+p) := span{|p+ s,s⟩ : s ∈ N}, F(−p) := span{|s, p+ s⟩ : s ∈ N}.

On the two-dimensional lattice describing occupation numbers (na,nb) of the states |na,nb⟩,

the subspace F(±p) describes an infinite line segment terminating at a point (0, p) (for ‘+’

sign) or (p,0) (for ‘−’ sign). The states |Ψp,N⟩ are elements of F(+p), while the states

|Ψ(−)
p,N⟩ are elements of F(−p).

It was established that the state |Ψp,N⟩ has energy E = p
2 +N, identical to the energy

of the tensor product |p+N,N⟩ as an eigenstate of 1
2(a

∗a+ b∗b), and that within the

subspace F(p) it is the unique state with this energy. Accordingly, on N×N, the line

segment {(p,N)
∣∣ p

2 +N = E} connecting endpoints (p+N,N) and (N, p+N) intersects

all ordered pairs corresponding to degenerate states |Ψp,N⟩ with energy E (see Figure

5.1).

Finally, consider the limit ỹ → 0 in the state |Ψp,N⟩ with energy E = p
2 +N given

by equation (5.3.13) (the limit ỹ → 0 amounts to |k| → ∞ in the momentum space, where

the model HLHY is no longer expected to hold). In this limit, the state can no longer be

158



normalized; although the finite sum corresponding to the state reduces to a single term

|Ψp,N⟩ → |N + s,s⟩, as ỹ → 0.

This is expected by the fact that H
(αc)

ab approaches 1
2(a

∗a+b∗b) in this limit.

5.4 Bogoliubov spectrum for ỹ ≥ 1

In the previous section, we showed that when ỹ < 1 and α = αc, the eigenstates

of H
(αc)

ab are given by |Ψp,N⟩ for N ∈ N. In this section, we address the spectral theory

for the non-Hermitian transformed Hamiltonian H
(α)

ab in the case where ỹ ≥ 1 and α ∈

[0,αc]. We saw, in the proof of Proposition 2, that when ỹ ≥ 1 and α = αc, the states

{|Ψp,Θ⟩} are normalizable in the Fock space Fab for all p ∈ Z and all Θ ∈ C. Thus,

we wish to answer which states in σ
(
H

(α)
ab

)
map to eigenstates of σ

(
Hab

)
by taking

the transform |Ψp,Θ⟩ 7→ exp(−αa∗b∗)|Ψp,Θ⟩ — without using our prior knowledge of

σ(Hab). Momentarily returning to the momentum space, the pair-excitation formalism

means that we analyze the non-Hermitian eigenvalue problem for state |Ψ(k)⟩:

(
exp(P)HLHY exp(−P)

)
|Ψ(k)⟩= E|Ψ(k)⟩,

in order to discover information about the the Hermitian eigenvalue problem for state

|Ψ̃(k)⟩:

HLHY|Ψ̃(k)⟩= E|Ψ̃(k)⟩.

Since HLHY contains contributions from all k ∈ Z3
L, recalling the formula

ỹ(k) :=
y(k)√

1−4y(k)2
, for y(k) =

4πaρ

k2 +8πaρ
,
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we see that ỹ(k) can take on all values in (0,∞) for k ∈ Z3
L. The method that we develop

will have a direct consequence for identifying eigenstates in the spectrum

σ
(

exp(P)HLHY exp(−P)
)

with ‘physical’ states in σ(HLHY).

This difference in the spectra is a consequence of using an unbounded, non-unitary

operator to transform HLHY. We emphasize that the problem which we address here

may seem artificial since we already know the spectrum of HLHY by other means (for

example, by Bogoliubov rotation). The emphasis in the analysis that follows is that we can

discern all the information for states of HLHY by starting from the transformed quadratic

Hamiltonian.

The method that we introduce for identifying the Bogoliubov spectrum as a subset

of σ
(
H

(α)
ab

)
will be provided by analysis of the formal generating function G(z; |ΨE⟩) for

eigenstate |ΨE⟩ of H
(α)

ab . The generating function G(z; |ΨE⟩) can be seen as a transfor-

mation which takes the sequence of coefficients for the expansion of |ΨE⟩ in the occupa-

tion number basis to a formal Taylor series. In the opposite direction, given the generating

function G(z; |ΨE⟩) for state |ΨE⟩, we can determine the coefficients for |ΨE⟩ in the oc-

cupation number basis from the terms in the Taylor expansion of G(z; |ΨE⟩). The most

important fact about generating functions, which we will exploit, is that the analyticity in

the unit disk of the generating function G(z; |ΨE⟩) is connected to the normalizability of

|ΨE⟩ in the Fock space Fab.

We proceed by considering the operator family H
(α)

ab for 0 < α ≤ αc. When α =

αc, the (formal) statement:
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Hab
(
e−αca∗b∗ |Ψp,Θ⟩

)
=
(
(1+2αcy)(

p
2
+Θ)+αcy

)
(e−αca∗b∗|Ψp,Θ⟩), p ∈ N, Θ ∈ C,

implies that states in the set {e−αca∗b∗ |Ψp,Θ⟩}p,Θ are also eigenstates of Hab, provided

that |Ψp,Θ⟩ ∈ dom
(
e−αca∗b∗). More specifically, given ỹ ≥ 1 we will show that the only

states |Ψp,Θ⟩ ∈ dom
(
e−αca∗b∗) occur for Θ ∈ N, and that the collection {|Ψp,N⟩}p,N∈N

constitutes a basis of Fab. We conduct the first of these two tasks in the present section.

5.4.1 Method of generating functions

Inspired by Lee, Huang, and Yang [37], we define the generating function G(z; |ΨE⟩) :

C→C for eigenstate |ΨE⟩ of H
(α)

ab , where 0 < α ≤ αc, and demonstrate how the singu-

larities of G(z; |ΨE⟩) in the complex plane furnish a criterion for constructing eigenstates

of the Hamiltonian Hab = H
(α=0)

ab . More specifically, in Proposition 5, we show that the

action of the exponential map

|ΨE⟩ 7→ e−αa∗b∗|ΨE⟩

induces the following transformation of the generating function:

G(z; |ΨE⟩) 7→ G(z; e−αa∗b∗ |ΨE⟩) =
( 1

1+αz

)
G
( z

1+αz
; |ΨE⟩

)
.

We exploit this fact when ỹ ≥ 1; the function

1
1+αz

G(
z

1+αz
; |ΨE⟩)

cannot have a singularity in the unit disk if |ΨE⟩ ∈ dom(e−αa∗b∗), which will only be

possible for discrete energies E corresponding to the Bogoliubov spectrum.
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When 0 ≤ α ≤ αc(y), both of the constants y1(α) and y2(α) in the transformed

Hamiltonian H
(α)

ab will be nonzero, and are given by

y1(α) :=
y

1−2αy
, and y2(α) :=

y−α +α2y
1−2αy

.

We consider the range of values 0 ≤ y1(α) < ∞, so that eigenstates of H
(α)

ab are no

longer finite superpositions in the occupation number basis. The operator (a∗a−b∗b) still

commutes with H
(α)

ab , so we know that eigenstates of H
(α)

ab will remain superpositions

of the states |s+ p,s⟩ or |s,s+ p⟩ for fixed p ∈ N.

Definition 7. Let |Ψ⟩ ∈ Fab have expansion in the occupation number basis given by

|Ψ⟩=
∞

∑
s=0

cs|p+ s,s⟩, for {cs}∞
s=0 ∈ ℓ2(C),

where ℓ2(C) denotes the space of square-summable complex sequences, and define the

rescaled coefficients

Cs :=

√
s!

(p+ s)!
cs, (5.4.1)

(this will make the algebra with generating functions easier.) Alternatively |Ψ⟩ can have

an exapnsion in the states |s,s+ p⟩.

The generating function which corresponds to state |Ψ⟩ is a formal power series in

complex variable z defined by

G(z; |Ψ⟩) :=
∞

∑
s=0

Cszs.

It is clear that for fixed p ∈N, the sequence {Cs}∞
s=0 is square summable if and only

if {cs}∞
s=0 is as well. Since,

|∑
s

Cszs|2 ≤ ∑
s
|Cs|2 ∑

s
|z|2s,
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the condition that ∥|Ψ⟩∥Fab = 1 means that G(z; |Ψ⟩) will be analytic in the unit disk,

{z ∈ C : |z|< 1}.

The following proposition follows by standard arguments of analytic continuation

in the complex plane. The proof is omitted.

Proposition 3. Let |ΨE⟩ ∈ Fab be an eigenstate of H
(α)

ab for 0 < α ≤ αc ≤ 1, with energy

E ∈ C, e.g.,

H
(α)

ab |ΨE⟩= E|ΨE⟩,

and let G(z; |ΨE⟩) be the generating function for |ΨE⟩ according to definition (7). Then

1. G(z; |ΨE⟩) satisfies the first-order ordinary differential equation (coming from the

difference scheme (5.3.10)):

z
{

y2(α)z2 + z+ y1(α)
}(

G(z; |ΨE⟩)
)′

+
{

y2(α)z2 +
( p

2
−E

)
z+ y1(α)p

}
G(z; |ΨE⟩) =C0y1(α)p,

(5.4.2)

where C0 is the zeroth rescaled coefficient in the definition of G(z; |ΨE⟩).

2. The general solution to (5.4.2) is given by

G(z; |ΨE⟩) = Ghom(z; |ΨE⟩)+ I(z; |ΨE⟩), (5.4.3)

where the solution to the homogeneous equation reads

Ghom(z; |ΨE⟩) = Kz−p(z− z+(α))B(z− z−(α))(p−1−B), (5.4.4)

for K,B ∈ C, and the constants z±(α) are the nonzero roots of the polynomial

Q(z) := z
(
y2(α)z2 + z+ y1(α)

)
.
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In particular, we obtain

z±(α) :=
−1±

√
1−4y1(α)y2(α)

2y2(α)
, assuming y2(α) ̸= 0. (5.4.5)

The term I(z; |ΨE⟩) is the particular solution to (5.4.2), and is given by

I(z; |ΨE⟩) :=

C0y1(α)p
y2(α)

(z− z+)B(z− z−)(p−1−B)
∫ z

0
up−1(u− z+)−(1+B)(u− z−)B−pdu.

(5.4.6)

The integral in this expression has an integration path lying within a simply-connected

region of analyticity so that it is uniquely specified by the endpoints.

3. The constant K is arbitrary, while the constant B is related to the energy E ∈ C via

B =
(p/2−E −1)z+(α)+ y1(α)(p−1)

z+(α)+2y1(α)
. (5.4.7)

4. For p> 0 (which represents the eigen-subspace of (a∗a−b∗b) that we construct the

solution |ΨE⟩ in), Ghom(z; |ΨE⟩) has a pole of order p at z = 0, but I(z; |ΨE⟩) does

not. It follows that we must set K = 0, so that G(z; |ΨE⟩) = I(z; |ΨE⟩). The function

I(z; |ΨE⟩) manifests a possible singularity at z = z+ depending on the value of B.

It is well-known that singularities of solutions to (5.4.2) can occur only at roots of

the leading polynomial Q(z) := z
(
y2(α)z2+z+y1(α)

)
, which are given by z= {0,z±(α)}

for

z±(α) :=
−1±

√
1−4y1(α)y2(α)

2y2(α)
, assuming y2(α) ̸= 0. (5.4.8)

Let us now state a few properties of z±(α) of (5.4.8). Recall that αc =
1−
√

1−4y2

2y :

• For any α ∈ [0,αc], we have 1−2αy > 0.
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• For any α ∈ [0,αc], the polynomial P(α) = y−α +α2y is strictly positive. Hence,

both y1(α), y2(α) given in Definition 6 are strictly positive for α ∈ [0,αc].

• The discriminant, 1− 4y1(α)y2(α) of equation (5.4.8) is strictly positive for any

α ∈ [0,αc]. Hence, z±(α) are real for α in the prescribed range.

• z+(α)z−(α) = 1 with |z+(0)|< 1. Hence, |z−(0)|> 1. In addition, |z−(α)|> 1 for

any α ∈
(
0,αc

)
, with z−(α)→−∞ as α ↑ αc.

• By contrast, z+(α) may or may not be inside the unit circle. Indeed, the condition

|z+(α)|< 1 implies y1(α)+ y2(α)< 1, which is true for all α ∈ [0,αc] only if

ỹ =
y√

1−4y2
< 1.

Otherwise there exists some αmax < αc such that |z+(α)| < 1 for α < αmax and

|z+(α)| ≥ 1 for αmax < α < αc. We handle these two cases separately.

5.4.2 The Bogoliubov spectrum for |z+(α)|< 1:

Summarizing the problem so far: When ỹ ≥ 1 and α = αc, we wish to identify a

subset of states |Ψp,Θ⟩ that correspond to the physical states of Hab (after transforming by

the exponential operator). More generally, for ỹ ≥ 1, and α ∈ [0,αc], we wish to identify

some set of eigenstates |ΨE⟩ of H
(α)

ab with eigenstates of Hab. We have introduced the

formal generating function G(z; |ΨE⟩) for the eigenstate |ΨE⟩ of the transformed opera-

tor H
(α)

ab for this matter. This function satisfies an ordinary differential equation in the

complex variable z (equation (5.4.2)), which is a consequence of the difference scheme
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(5.3.10) for the coefficients of |ΨE⟩ in the occupation number basis. The function G has

singular points z±(α), which determine possible singularities in the unit disk.

We continue the argument as follows: since G(z; |ΨE⟩) must be analytic in the unit

disk if |ΨE⟩ is to be normalizable, we must restrict the real parameter B in the solution for

G(z; |ΨE⟩), which translates to restricting the possible values of the energy E (equation

(5.4.7)).

Consider first the case |z+(α)| < 1. We remind the reader that for H
(α)

ab |ΨE⟩ =

E|ΨE⟩, and for ỹ ≥ 1, it is possible that z+(α) lies inside or outside the unit disk de-

pending on whether α < αmax or αmax < α < αc. As an example, when α ≤ αc and

p = 0,

G(z; |ΨE⟩) = K
(
z− z+(α)

)B(z− z−(α)
)−1−B

.

Since z+(α) lies inside the unit disk by assumption, G(z; |ΨE⟩) is analytic in this region

if and only if B ∈ N. It follows that the allowed energies E must be discrete. This is

extended to p ̸= 0 in the following proposition.

Proposition 4. For α such that |z+(α)|< 1 (which implies |z−(α)|> 1), and p > 0, the

function G(z; |ΨE⟩) defined by

G(z; |ΨE⟩) =
C0y1(α)p

y2(α)
(z− z+)B(z− z−)p−1−B

∫ z

0
up−1(u− z+)−(1+B)(u− z−)(p−B)du

(5.4.9)

is analytic if and only if B ∈ N and B ≥ p. This implies that the energies E ∈ σp(H
(α)

ab )

must be discrete. In this case we have

(1−2αy)σp(H
(α)

ab )−αy = σp(Hab).
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Proof. The proof consists of two parts. First, it must be shown that there is a singularity

of G(z; |ΨE⟩) inside the unit disk which is removable under the condition B ∈ N, B ≥ p.

This pertains to the analyticity of G in C and is a standard argument, but technical. It is

delegated to the Appendix.

For the second part, we show that (1−2αy)E −αy must take values in the Bogoli-

ubov spectrum (5.2.17) for B = m ∈ N. Suppose first that p = 0. Then equation (5.4.7)

reads

(E +1)z+(α)+ y1(α)

z+(α)+2y1(α)
=−m. (5.4.10)

Using equation (5.4.8) for z+(α) and manipulating yields

E =
√

1−4y1(α)y2(α)(m+1)− 2y1(α)y2(α)

1−
√

1−4y1(α)y2(α)
. (5.4.11)

Recall the values of y1(α) = y
1−2αy and y2(α) = y−α+α2y

1−2αy . Thus

(1−2αy)E −αy = (m+1)
√

1−4y2 −αy− 2y(y−α +α2y)

1−2αy−
√

1−4y2
. (5.4.12)

Interestingly, we can show that the quantity

Q := αy+
2y(y−α +α2y)

1−2αy−
√

1−4y2
(5.4.13)

is independent of α , which follows by factorizing the numerator. In fact, Q = 1
2

(
1+√

1−4y2
)
. Hence, if |ΨE⟩ is the eigenstate of H

(α)
ab with energy E and generating

function G(z; |ΨE⟩), then e−αa∗b∗|ΨE⟩ is an eigenstate of Hamiltonian H
(0)

ab with energy

(1−2αy)E −αy =
1
2

√
1−4y2(2m+1)− 1

2
. (5.4.14)

This is exactly the result of Bogoliubov. The case p ̸= 0 is similar, so we skip many

details. We now solve for E the equation

(p/2−E −1)z+(α)+ y1(α)(p−1)
z+(α)+2y1(α)

= m, (5.4.15)
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which comes from relation (5.4.7), and will give a formula for the energies of the eigen-

states |ΨE⟩ of H
(α)

ab . We get

(1−2αy)E −αy =
√

1−4y2(m− p
2
)+

1
2

√
1−4y2 − 1

2
, (5.4.16)

The interpretation of this is that the energies E for H
(α)

ab must give the Bogoliubov spec-

trum in this case.

5.4.3 Bogoliubov spectrum for |z+(α)| ≥ 1:

We now consider the range of parameters α ∈ [αmax,αc], and ỹ ≥ 1. Let us review

how this comes about, and why it must be treated separately from the case of the previous

subsection. For clarity of the argument, consider the case ỹ ≥ 1 and α = αc first. Here,

the eigenvalue problem

H
(αc)

ab |Ψp,Θ⟩= E|Ψp,Θ⟩,

is solved by the difference scheme for |Ψp,Θ⟩ and has the exact formula (5.3.12), with

E = p/2+Θ. Formula (5.3.12) shows that |Ψp,Θ⟩ is normalizable in Fab for all p ∈ N

and Θ ∈ C; This poses a problem for if we want to use the transformed system H
(αc)

ab

to answer questions about the system Hab. We also face the additional complication

that the generating function G(z; |Ψp,Θ⟩) has no singularity inside the unit disk (in the

previous subsection we showed that for ỹ ≥ 1 there remains an interval 0 ≤ α < αmax,

for αmax < αc, such that the singularity at z+(α) is inside the unit disk, which we used to

restrict the energy E of state |ΨE⟩ for H
(α)

ab ). We therefore require a new method to deal

with this possibility.
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Translating this problem to the more general case of the eigenvalue equation

H
(α)

ab |ΨE⟩= E|ΨE⟩, αmax < α ≤ αc,

we find similarly, that the function G(z; |ΨE⟩) which solves the differential equation

(5.4.2) is analytic in the unit disk for all values B ∈R (see Proposition 3 for the discussion

of this parameter).

It is therefore impossible to pose a constraint on B and the energy E directly, as we

did before. We will instead show that |ΨE⟩ ̸∈ dom(e−αa∗b∗) for these states, which means

that they cannot be transformed, via the exponential operator, into states which solve an

eigenvalue problem for Hab. We show this by analyzing the generating function for the

state exp(−αa∗b∗)|ΨE⟩ — it contains singularities in the unit disk when B ̸∈ N.

We introduce a new notation that will aid in the proof that |ΨE⟩ ̸∈ dom(e−αa∗b∗) for

certain values of B. Given a sequence {as}∞
s=0, its ordinary generating function, denoted

ogf{as}(z) is a formal power series defined by

ogf{as}(z) :=
∞

∑
s=0

aszs.

Thus, G(z; |ΨE⟩) = ogf{Cs} where {Cs}∞
s=0 are the rescaled coefficients for the expansion

of |ΨE⟩ in the occupation number basis (Definition 7).

The exponential generating function for the same sequence is defined as

egf{as}(z) :=
∞

∑
s=0

as
zs

s!
.

The following facts hold for exponential generating functions:

Lemma 10. (i) The product of exponential generating functions is itself the exponential
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function given by

egf{cm}(z) · egf{dm}(z) = egf

{
m

∑
s=0

cmdm−s

(
m
s

)}
(z).

(ii) We can convert between ordinary and exponential generating functions by means of

the Borel transform, which is defined for an analytic function f (z) by

L ′[ f ](z) :=
∫

∞

0
f (zt)e−tdt.

The relevant fact for generating functions is

L ′[egf{dm}
]
(z) = ogf{dm}(z).

Proof of these properties are direct and follow by manipulation of Taylor series.

For the second part of Lemma 10, note that for f (z) = ∑
∞
m=0 fmzm, the action of L ′ on f

results in the formal multiplication of coefficient fm by m!.

It is important to note that the generating function

G
(
z; e−αa∗b∗|ΨE⟩

)
,

will in principle have a region of analyticity that is different from the region of analyticity

of G(z; |ΨE⟩). The next proposition describes this phenomenon precisely.

Proposition 5. Let 0 < α ≤ αc ≤ 1 and |ΨE⟩ ∈ Fab be a solution to the eigenvalue prob-

lem

H
(α)

ab |ΨE⟩= E|ΨE⟩.

Additionally, suppose that |ΨE⟩ ∈ dom(e−αa∗b∗). If G(z; |ΨE⟩) is the generating function

associated with |ΨE⟩ (as per Definition 7), then

G
(

z; e−αa∗b∗ |ΨE⟩
)
=

1
1+αz

G
( z

1+αz
; |ΨE⟩

)
.
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Proof. We return to the generating function G(z; |ΨE⟩) = ogf{Cs}. Consider first the case

p = 0, so that |ΨE⟩ lies in span{|s,s⟩}∞
s=0, and the rescaled coefficients of Definition 7 are

the coefficients of |ΨE⟩ in the occupation number basis, Cs = cs. Then by the assumption

that |ΨE⟩ ∈ dom(e−αa∗b∗), we compute

e−αa∗b∗|ΨE⟩=
∞

∑
m=0

(
m

∑
s=0

csα
m−s
(

m
s

))
|m,m⟩,

and so

G
(
z; e−αa∗b∗|ΨE⟩

)
= ogf

{
m

∑
s=0

cs(−α)m−s
(

m
s

)}
(z).(5.4.17)

The first part of Lemma 10 shows that

egf

{
m

∑
s=0

cs(−α)m−s
(

m
s

)}
(z) = egf{cm}(z) · egf{(−α)m}(z) = egf{cm}(z) · e−αz.

while the second part of Lemma 10 shows,

G
(
z; e−αa∗b∗ |ΨE⟩

)
= ogf

{
m

∑
s=0

cs(−α)m−s
(

m
s

)}
= L ′[e−αzegf{cm}](z)

=
∫

∞

t=0
egf{cm}(tz)e−t(αz+1)dt

=
1

1+αz

∫
∞

η=0
egf{cm}

(
zη

αz+1

)
e−ηdη (for η := t(αz+1))

=
1

1+αz
L ′[egf{cm}]

(
z

1+αz

)
=

1
1+αz

ogf{cm}
(

z
1+αz

)
=

1
1+αz

G
( z

1+αz
; |ΨE⟩

)
.

This shows the proof for p = 0. When p ̸= 0, the transformed state vector reads

e−αa∗b∗|ΨE⟩=
∞

∑
m=0

((p+m)!
m!

)1/2 m

∑
s=0

cs(−α)m−s
(

m
s

)
|m+ p,m⟩. (5.4.18)
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It is straightforward to verify that the above computations hold using the rescaled coeffi-

cients {Cm}∞
m=0 and the generating functions

G(z; |ΨE⟩) =
∞

∑
m=0

Cmzm and

G
(
z; e−αa∗b∗|ΨE⟩

)
=

∞

∑
m=0

(
m

∑
s=0

Cs(−α)m−s
(

m
s

))
zm.

(5.4.19)

This concludes the proof.

Finally, we use the result of Proposition 5 to show that, in the case |z+(α)|> 1 (i.e.,

ỹ≥ 1 and αmax ≤α ≤αc), we must restrict the parameter B in the formula for G(z; |ΨE⟩),

viz.,

G(z; |ΨE⟩) =
C0y1(α)p

y2(α)
(z− z+)B(z− z−)p−1−B

∫ z

0
up−1(u− z+)−(1+B)(u− z−)(p−B)du.

This restriction will result from the requirement that

|ΨE⟩ ∈ dom
(
e−αa∗b∗).

Indeed, if the state e−αa∗b∗|ΨE⟩ exists as a vector in Fab, it must have generating function

G
(
z; e−αa∗b∗ |ΨE⟩

)
=

1
1+αz

G
(

z
1+αz

; |ΨE⟩
)
.

The singularity of G(z; |ΨE⟩) at z = z+(α) is therefore transformed to a singularity of

G
(
z; e−αa∗b∗|ΨE⟩

)
at

z
1+αz

= z+(α),

i.e.,

z =
z+(α)(

1−αz+(α)
) .

Therefore, if
∣∣∣ z+(α)

1−αz+(α)

∣∣∣< 1 it will be necessary that B ∈N using the reasoning of Propo-

sition 4.
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Since z+(α) < 0 and α > 0 this is the same as showing that 1
|z+(α)| +α > 1 or

|z+(α)|< 1
1−α

. Indeed, recall

z+(α) =
1
2
(−1+2αy+

√
1−4y2)

(y−α +α2y)
, (5.4.20)

and

y−α +α
2y = y

(
α − 1−

√
1−4y2

2y

)(
α − 1+

√
1−4y2

2y

)
,

so that

z+(α) =

(
α − 1+

√
1−4y2

2y

)−1

. (5.4.21)

For 0 ≤ y ≤ 1
2 we have 1+

√
1−4y2

2y ≥ 1, hence

|z+(α)|=

((
1+
√

1−4y2

2y

)
−α

)−1

≤ 1
1−α

. (5.4.22)

The zero z+(α) therefore lies inside the unit disk.

Note the relation for the E of the eigenvalue problem

H
(α)

ab |ΨE⟩= E|ΨE⟩, αmax ≤ α ≤ αC, ỹ ≥ 1,

in terms of the exponent B:

E +1− p
2
= B+

y1(α)

z+(α)
(2B+ p−1). (5.4.23)

Using the expression for z+(α) just derived and y1(α) = y
1−2αy , we get

y1(α)

z+(α)
=

1
2
(
−1+

√
1−4y2

)
, (5.4.24)

and so

E =−1
2
+
√

1+4y2
(

B+
p−1

2

)
. (5.4.25)
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In the case that α = αc, we have y1(αc) = 0 and so using expression (5.4.23)

E = B−1+
p
2
.

Thus the spectrum of H
(αc)

ab (after restricting the spectrum via analyticity arguments for

G(z; |ΨE⟩)) is the same as the spectrum of 1
2(a

∗a+b∗b). Otherwise, the energy is given

by expression (5.4.25).

Note that the singularity due to z−(α) remains outside the disk under the transfor-

mation |ΨE⟩ 7→ e−αa∗b∗|ΨE⟩. Indeed,

z−(α) =

(
α − 1−

√
1−4y2

2y

)−1

, (5.4.26)

and α ≤ 1−
√

1−4y2

2y , so 1
|z−(α)| = |α − 1−

√
1−4y2

2y |< 1−α . This shows that the singularity

due to z−(α) does not affect the analyticity of G
(
z; e−αa∗b∗|ΨE⟩

)
inside the unit disk.

5.5 Completeness of the states {e(−αca∗b∗)|Ψp,N⟩}p,N∈N

We recall the analysis so far. We wish to study the non-Hermitian transformed

model Hamiltonian H
(α)

ab on the Fock space Fab, given by:

H
(α)

ab =
1
2
(
a∗a+b∗b

)
+ y1(α)ab+ y2(α)a∗b∗,

where

y1(α) :=
y

1−2αy
, and y2(α) :=

y−α +α2y
1−2αy

.

This operator is studied in place of the Hermitian Hamiltonian given by

Hab(y) := H
(α=0)

ab =
1
2
(
a∗a+b∗b

)
+ y
(
a∗b∗+ab

)
, for 0 ≤ y < 1/2. (5.5.1)
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We distinguished a particular case in the continuous parameter family, namely,

α = αc :=
1−
√

1−4y2

2y
,

since the model Hamiltonian for this value has an ‘upper triangular’ form:

H
(αc)

ab =
1
2

(
a∗a+b∗b

)
+ ỹab, for ỹ :=

( y√
1−4y2

)
. (5.5.2)

The eigenvalue problem for H
(αc)

ab reads:

H
(αc)

ab |Ψp,Θ⟩= (p/2+Θ)|Ψp,Θ⟩, p ∈ N, Θ ∈ C,

where the states {|Ψp,Θ⟩} are given by the expression (5.3.12). Let us discuss the existing

results for this critical parameter α = αc. We have shown how for all 0 < ỹ < ∞, the

point spectrum σ
(
H

(αc)
ab

)
must either be discrete, or else, if σ

(
H

(αc)
ab

)
= C, then we

can restrict our attention to a discrete subset of σ
(
H

(αc)
ab

)
, which corresponds to those

eigenstates that map to eigenstates of Hab under the inverse transform exp(−αa∗b∗) (we

actually demonstrated this for all 0 < α ≤ αc when ỹ ≥ 1). This was accomplished using

several different methods in the previous sections. In Section 5.3, the case ỹ < 1, and

α = αc was handled, where it was shown by direct estimates on the coefficients of |Ψp,Θ⟩

that the eigenstates of H
(αc)

ab consist only of the states with p ∈ N and Θ ∈ N.

In Section 5.4.3, we discussed the case ỹ ≥ 1. In order to determine which |Ψp,Θ⟩ ∈

dom
(

exp(−αca∗b∗)
)
, we turned to studying the location of singularities of the generating

function

G
(
z; exp(−αca∗b∗)|Ψp,Θ⟩

)
.

It was found that this generating function is related to the generating function G(z; |Ψp,Θ⟩)

by a simple transform. In particular, G(z; |Ψp,Θ⟩) has two singular points that will re-
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strict the spectrum if one of these points lies inside the disk. We also discovered that if

G(z; |Ψp,Θ⟩) has no singular point inside the unit disk, then for the function

G
(
z; exp(−αca∗b∗)|Ψp,Θ⟩

)
, this point will lie inside the disk.

We now prove the completeness of eigenstates {e(−αc)a∗b∗|Ψp,N⟩}p,N∈N in the Fock

space Fab for critical parameter αc. The completeness of these states is not obvious, for

several reasons. First, the operator e(−αc)a∗b∗ is unbounded, so the relation

H
(αc)

ab =
1

1−2(αc)y

(
eαca∗b∗Habe(−αc)a∗b∗ +αcy

)
does not imply that the spectra of the two operators are the same. It is likewise not clear

that our formula for eigenstates recovers the same degeneracy of eigenstates for Hab

given in terms of tensor products of quasiparticle operators (equation (5.1.6)). Finally, in

Proposition 5 of Section 5.4.3 we have determined that infinitely many eigenstates |Ψp,Θ⟩

corresponding to p
2 +Θ ∈ σ(H αc

ab ) cannot be in the domain of e−αca∗b∗ when ỹ ≥ 1.

This chapter takes the approach of analyzing the spectral problem for H
(αc)

ab with-

out any necessary prior knowledge about the spectrum of Hab. The completeness result

of this section implies that eigenstates of Hab are exactly the non-Hermitian transforms of

states |Ψp,Θ⟩ with Θ ∈N. The following density argument also gives an alternative proof

to the claim that the degeneracy of the E = p
2 +N eigenspace matches the degeneracy of

the momentum eigenstates |p+N,N⟩, or |N, p+N⟩, represented by the Figure 5.1.

In order to show the completeness of the states

{e−αca∗b∗|Ψ(±)
p,N⟩}p,N∈N ∈ Fab,

it suffices to consider the completeness of states

{e−αca∗b∗|Ψp,N⟩}∞
N=0 ∈ span{|s+ p,s⟩,s ∈ N} for fixed p.

176



We make use of the well-known fact that a collection of elements |ψ j⟩ j∈N in a separable

Hilbert space is complete if the only element | f ⟩ that satisfies

⟨ f |ψ j⟩= 0, ∀ j ∈ N

is the zero element, | f ⟩ ≡ 0.

We therefore fix p ≥ 0 without loss of generality. For N ≥ 0, a straightforward

calculation gives:

e(−αca∗b∗)|Ψp,N⟩=
∞

∑
m=0

(−αc)
mS(m,N)|p+m,m⟩. (5.5.3)

for

S(m,N) :=
min{m,N}

∑
s=0

(−αcỹ)−s
(

N
s

)((p+ s
s

))−1/2((p+m
p+ s

)(
m
s

))1/2
.

If | f ⟩ is an arbitrary vector in Fab with expansion | f ⟩ := ∑m dm|p+m,m⟩ and coefficients

{dm}∞
m=0 ∈ ℓ2, the inner product of | f ⟩ with the state (5.5.3) reads:

⟨ f |e−αca∗b∗
Ψp,N⟩= ∑

m
dm(−αc)

mS(m,N). (5.5.4)

We will also use relations among Hypergeometric functions [44] F(a,b,c;z) as a

central tool in the proof, which are defined (using the Pochhammer symbols) by the power

series

F(a,b,c;z)≡
∞

∑
m=0

zm

m!
(a)m(b)m

(c)m
, a,b,c ∈ R, c ̸= 0, |z|< 1.

We alert the reader that the conventional notation for the Hypergeometric function

F uses parameters a, bc, which should not be confused with the annihilation operators

on the Fock space Fab. We risk this confusion in order to retain the standard notation for

F . We also remark that for the parameters considered in the proof, the Hypergeometric
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function F will reduce to a polynomial. The properties of F which we use are listed in

the lemma below. They are proved in the Appendix A.3.

Lemma 11. (Properties for Hypergeometric functions) Let m,N, p ∈ N. Then

(i) F at index −m is related to F at index −m+1 via:

(mz)F
(
−m+1,−N, p+1;z

)
=−(p+1+2N)F

(
−m,−N, p+1;z

)
+(p+1+N)F

(
−m,−N −1, p+1;z

)
+NF

(
−m,−N +1, p+1;z

)
(5.5.5)

with the exceptional case N = 0:

(mz)F
(
−m+1,0, p+1,z

)
=−(p+1)F

(
−m,0, p+1,z

)
+(p+1)F

(
−m,−1, p+1,z

)
.

(5.5.6)

(ii) For a < 0,z ∈ C

d
dz

zaF
(
a,b,c,

1
z

)
= aza−1F(a+1,b,c,

1
z
). (5.5.7)

Note: We will use the conventional shorthand for the contiguous hypergeometric

functions when the parameters a,b,c are clear from the context,

F = F(a,b,c;z), F(a±) = F(a±1,b,c;z), (5.5.8)

with similar definitions holding for F(b±), F(c±).

Proposition 6. (Completeness of eigenstates |Ψp,N⟩ for critical parameter) Let α = αc =

1−
√

1−4y2

2y . Then the collection

{e−αca∗b∗|Ψ(±)
p,N⟩}p∈Z,N∈N

is complete in the Bosonic Fock space Fab.
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Proof. It suffices to prove the statement for fixed p. Let | f ⟩ be a vector in Fab which

satisfies

⟨ f |e(−αca∗b∗)
Ψp,N⟩= 0 ∀N.

We write this inner product in the form of the expansion (5.5.4) above. Using equation

(5.5.4) to write the inner product ⟨ f |e−αca∗b∗Ψp,N⟩, the claim is that the infinite linear

system for {dm}∞
m=0 ∈ ℓ2 which corresponds to the problem ⟨ f |e(−αca∗b∗)Ψp,N⟩= 0 ∀N

has only the trivial solution {dm = 0}∞
m=0 ∈ ℓ2.

Summarizing the steps of the proof: The family of functions defined by

fN(z) := ⟨ f |eza∗b∗
Ψp,N⟩

are shown to be analytic for z in the unit disk. The main assumption, namely,

⟨ f |e(−αc)a∗b∗
Ψp,N⟩= 0 for all N,

translates to the collection of point evaluatons fN(−αc) = 0 ∀N. Next, the derivatives

dn

dzn fN(z) are written as linear combinations of fN+ j(z) for 0≤ j ≤N+n. Therefore the re-

striction fN(−αc)= 0 for all N translates to the restriction of all derivatives, dn

dzn fN(−αc)=

0 for n,N ≥ 0. Finally, since fN(z) is analytic in the unit disk and |αc| < 1 we conclude

that fN(z)≡ 0 for all N, which gives the proof.

Assume first ỹ = 1 (this condition will be removed later). Define the family of

functions fN : C→ C,N ∈ N by making the substitution −α 7→ z in (5.5.4), i.e.,

fN(z) :=
∞

∑
m=0

dmzm

[
min{m,N}

∑
s=0

z−s
(

N
s

)((
p+ s

s

))−1/2√(
p+m
p+ s

)(
m
s

)]

=
∞

∑
m=0

dmzm
((p+m

m

))1/2
[

min{m,N}

∑
s=0

z−s
(

N
s

)(
m
s

)(
p+ s

s

)−1
]

=
∞

∑
m=0

dmzm
((p+m

m

))1/2
F
(
−m,−N, p+1;

1
z

)
.

(5.5.9)
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Here F(a,b,c;z) is the Hypergeometric function, and equation (5.5.9) is a conse-

quence of the factorization

(
p+m
p+ s

)
=

(
m
s

)(
p+ s

s

)−1(p+m
m

)
.

Note that f0(z)≡ ∑
∞
m=0 cm

√(p+m
m

)
zm is consistent with this definition since F(·,0, ·,z) =

1. It is easy to verify that the series defining fN(z) is convergent (and therefore fN is

analytic) for |z|< 1.

Now assume that ⟨ f |e−αca∗b∗Ψp,N⟩= 0 ∀N, which translates to the point evalua-

tion

fN
(
−αc

)
= 0 ∀N ≥ 0. (5.5.10)

The remainder of the proof describes how this condition implies fN(z) ≡ 0 ∀N and

hence dm ≡ 0 for all m

Using formulas of Lemma 11 we now show that dn

dzn fN(z) is a finite linear combi-

nation of f0(z), f1(z), . . . , fN+n(z) for every n. Since we have fn(−αc) = 0 for all n, i.e.,

equation (5.5.10), this shows that dn

dzn fN(−αc) = 0 for all n.

180



Indeed,

d
dz

f (p)
N (z) =

∞

∑
m=0

√(
p+m

m

)
dm

d
dz

[
zmF

(
−m,−N, p+1,

1
z

)]
=

∞

∑
m=0

√(
p+m

m

)
dm

[
mzm−1F

(
−m+1,−N, p+1,

1
z

)]
=

∞

∑
m=0

√(
p+m

m

)
dmzm

[
m

1
z

F
(
−m+1,−N, p+1,

1
z

)]
=

∞

∑
m=0

√(
p+m

m

)
dmzm

[
− (p+1+2N)F +(p+1+N)F(−N −1)+NF(−N +1)

]
=−(p+1+2N) f (p)

N (z)+(p+1+N) f (p)
N+1(z)+N f (p)

N−1(z).

(5.5.11)

Iterating this same procedure, it is clear that we can write a corresponding formula for any

number of derivatives of fN . This formula is written as a vector equation for convenience:

dn

dzn f (p)
N (z) = L

(
f (p)
0 (z), . . . , f (p)

N (z), f (p)
N+1(z), . . . , f (p)

N+n(z)
)T

,

where L is a 1× (N + n+ 1) dimensional vector. The precise entries of L are irrelevant

to us, except for the fact that they generally involve the constants p,N but not αc. We

should remark on the derivative of f (p)
0 (z). In this case, equation (5.5.6) is used and

Formula (ii) becomes trivial, so dn

dzn f (p)
0 (z) will be a linear combination of the functions

f (p)
0 , f (p)

1 , . . . , f (p)
n .

Collecting like powers of z in fN(z) gives

fN(z) =
∞

∑
q=0

[
q+N

∑
m=q

dm

(
N

m−q

)(
m
q

)]
zq, for q = m− s, (5.5.12)

so indeed, fN ≡ 0 implies that dm = 0 for all m = 0,1,2, . . . .

Finally, the restriction ỹ = 1 is now removed via a change of variables. We show

this for p = 0 for clarity – the other cases follow analogously. The function fN(z) is now
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defined by

fN(z) :=
∞

∑
m=0

dmzmF
(
−m,−N,1,

1
ỹz

)
, ỹ ̸= 0. (5.5.13)

We now have

d
dz

fN(z) = ỹ
∞

∑
m=0

dmzm
[
m

1
ỹz

F
(
−m+1,−N,1,

1
ỹz

)]
, (5.5.14)

and the derivative formula in Lemma 11 again applies to give

d
dz

fN(z) = ỹ
[
− (1+2N) fN(z)+(p+1) fN+1(z)+N fN−1(z)

]
, (5.5.15)

Following the above reasoning we conclude that dm = 0 for m = 0,1,2, . . . and the proof

is complete.
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Figure 5.1: Schematic of the dependence of quantum states |Ψp,Θ⟩ on the occupation

numbers na, nb. The lattice points represent the occupation-number eigenstates |na, nb⟩,

and the dotted lines (labeled E = 4.5 and E = 5) represent hypersurfaces on which

1
2(na + nb) = 4.5, 5 respectively; the lattice points lying on these hypersurfaces thus

represent the degenerate eigenstates of the operator 1
2(a

∗a+ b∗b). The two solid lines

(beginning at the points (0,1) and (2,0)) contain the lattice points which appear in the

formula for two example states |Ψp,Θ⟩ elaborated in Proposition 1. The line starting at

(0,1) represents a state |Ψ−1,Θ⟩, where 2Θ ̸∈ N – this state is an infinite sum, which is

represented by the fact that the arrow extends indefinitely. The line starting at the point

(2,0) represents the state |Ψ2,4⟩ – this state is a linear combination of the basis states

{|2,0⟩, |3,1⟩, |4,2⟩, |5,3⟩, |6,4⟩}.
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Chapter 6

Overview and Extensions

In this thesis, we have rigorously developed the method of pair-excitation as it re-

lates to several models for excitations of the interacting Bose gas at zero temperature.

These models vary significantly in their mathematical details; we have expanded the for-

mulation of pair-excitation to account for non-translation-invariant systems as well as

systems which do not conserve the number of particles. We construct many-body excited

states in each of these settings.

6.1 Overview

We now discuss some of the themes, with broad scientific appeal, that this work

touches upon.

The phonon spectrum spectrum

A major element of this work pertains to the construction of many-body excited

states which correspond to the phonon spectrum of the Bose gas in a physically transpar-

ent form involving spatial coordinates. We have found that the pair-excitation formalism

can offer a concise description of many-body states in spatial coordinates in both the

periodic and non-translation-invariant systems. In the periodic box, we discovered that

states belonging to the phonon spectrum (of the Lee-Huang-Yang model, for example)
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are finite linear combinations of momentum tensor product states after transforming the

system by the pair-excitation operator. The states of the transformed system correspond

in a direct way to the eigenstates of an upper-triangular finite-dimensional matrix. In the

non-translation-invariant setting, we must replace the description in terms of the single-

particle momentum states by utilizing a new basis of single-particle states; we found

that this basis consists of eigenstates of the single-particle (non-Hermitian) ‘phonon’ op-

erator hph of Chapter 3. The procedure for constructing many-body excitations of the

transformed approximate Hamiltonian using this new basis also corresponds to solving

an upper-triangular eigenvalue problem in finite dimensions. Moreover, energies corre-

sponding to these excitations are sums of energies of the phonon operator. This leads

us to consider the pair-excitation method as a direct method for determining the phonon

spectrum of the Bose gas in general systems, in the sense that low-lying energies of the

many-body system appear as sums of energies from the spectrum of the effective single-

particle operator hph.

The notion of quasiparticle

Also in relation to the spectrum of elementary excitations, we believe that our anal-

ysis sheds light on the notion of the “quasiparticle” introduced for the Bose gas in [20],

and which is related to the notion of the phonon [37]. Fetter heuristically introduces the

quasiparticle operators γ j, γ∗j which satisfy canonical commutation relations and appear

in the diagonal form of a quadratic (Hermitian) Hamiltonian which does not conserve the

number of particles. In Chapter 3, we showed that the non-orthogonal basis {u j(x), v j(x)}
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appearing in the definition of the quasiparticle operators is directly related to the pair-

excitation kernel k(x,y). In particular, u j(x) can be defined by applying the bounded op-

erator (δ −k◦k)−1/2 to eigenfunction η j(x) of the single-particle, self-adjoint operator κ

(see Chapter 3, Lemma 5 proof). The function v j(x) is then defined via v j(x) =−k(x,u j).

In light of this, we suggest an alternative notion for quasiparticle – as an excitation of a

quadratic Hamiltonian which corresponds to the spectrum of an effective single-particle

operator (e.g., hph in our notation). Such an excitation is related to both a non-orthogonal

basis in the position space, (e.g., {u j(x), v j(x)}) and also an orthogonal basis (e.g., {η j})

via the pair excitation kernel k. We can construct many-body excited states as finite su-

perpositions in tensor products involving the eigenstates of the operator hph.

Connection of pair-excitation to Bogoliubov rotations

Another insight which is new to this thesis is the connection between the unitary Bo-

goliubov rotation of quadratic Hamiltonians, which gives the matrix system (3.6.4) for the

single-particle basis {u j(x), v j(x)} of Chapter 3, and the non-Hermitian pair-excitation

transform, which gives the Riccati equation for the kernel k of equation (3.3.4b). This con-

nection reflects fundamental results from the theory of J−self-adjoint operators [2–4,13],

and is represented schematically in the Figure 3.1 of Chapter 3. The translation of these

results in operator theory to the setting of the Bose gas is new to our work. It is of inter-

est to note that, historically, the two sides of this connection appear independently in the

works of Wu [60], who formulated the theory of the pair-excitation kernel, and Fetter [20],

who developed the theory for the Bogoliubov rotation of a non-translation-invariant Bose
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gas. In terms of the fundamental physics, connecting these two distinct methods allows

us to claim that processes of pair-excitation are fundamental to the energetics of quadratic

systems. Pair-excitation and Bogoliubov rotation represent two equivalent representations

of the same physics.

6.2 Extensions

We conclude by suggesting a few extensions of the framework and results intro-

duced in this thesis. These extensions pertain to the study of the Bose gas in more general,

and physically relevant settings.

Time-evolution problems for pair-excited states

The problems considered in this thesis pertain to the stationary theory of the Bose

gas, but much work has been done on the evolution of pair-excited states [26, 27]. Wu

originally introduced the kernel k in a time-dependent setting [60]. The results here serve

as an important first step in understanding the time evolution problem for the approximate

systems of the previous chapters. The stationary solutions for k given in this work can be

used to generate solutions to Wu’s equation for the excitation kernel with the simple time

dependence:

k(x,y, t) := e−iµtk(x,y).

The time-dependent pair-excitation kernel means that the resulting pair-excitation oper-

ator will be time-dependent. An important question is whether the time-dependence of

many-body excited states can be described solely in terms of a time dependent kernel.
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That is, can many-body states be described by a time-dependent pair-excitation operator

acting on a simple stationary state?

Pair excitation at small positive temperatures

The system of Chapter 4 included the mean-field effect of pair-correlations involv-

ing field operators for the non-condensate. In [25], Griffin wrote these correlations to

include general nonzero-temperature effects, via the expressions :

ρ1(x) = ∑
j

{
|u j(x)|2 + |p j(x)|2

}
(eβ (ε j−µ)−1)−1 + |p j(x)|2

ρ2(x) = ∑
j

u j(x)p j(x)[2(eβ (ε j−µ)−1)−1 +1].

(6.2.1)

Here, {u j(x), p j(x)} solve the nonlinear matrix system of Chapter 4, with energies ε j.

These formulas contain the average occupation number for particles with energies ε j sat-

isfying Bose statistics,

⟨nε j⟩=
1

eβ (ε j−µ)−1
.

The equations of Chapter 4 therefore have an extension to finite temperatures within Grif-

fin’s scheme. As it relates to this thesis, the question is whether a solution {φT>0, kT>0}

can be found to this new system as a perturbation of the system found in Chapter 4. Ad-

ditionally, it is of interest to derive these equations self-consistently from a variational

approach using quantum statistical ensembles.

Generalizations on quadratic Hamiltonians

Finally, we consider an extension of the work presented here in the domain of the

periodic box. Instead of reducing the system using the Fermi pseudopotential (which al-
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lowed us to factor the model Hamiltonian over momentum subspaces), we can consider

keeping the generic interaction potential υ(x,y) in the approximation of Chapter 5, sim-

plifying the system by means of a compact cut-off for υ̂ in momentum space. Carrying

out the steps of the approximation scheme, we will end up studying a quadratic Hamilto-

nian of the form

Happ1 := ∑
k
(k2 +

N
2V

υ̂(k))a∗kak +
N
2V ∑

k∈Z+
L , p∈I(k)

υ̂(k, p)(a∗ka∗p +akap). (6.2.2)

Here, I(k) is a finite set in −Z+
L that contains −k for every k ∈Z+

L . The more complicated

coupling means that we cannot use the model Fock space Fab of Chapter 5 to describe

eigenstates of Happ1. We nonetheless hypothesize that the essential results of this thesis

(regarding the structure (5.1.3) of eigenstates for HLHY) hold, by introducing a non-

unitary pair-excitation operator of the form

exp(Q), for Q := ∑
k∈Z+

L , p∈I(k)

{−α(k, p)a∗ka∗p}, 0 < α(k, p)< 1.

In Chapter 3, we described the eigenstates of a particle conserving Hamiltonian on

FN , containing the trapping potential Vtrap(x). The approximate Hamiltonian reads:

Happ2 := NEH +h(a∗⊥,a⊥)+
(a

φ
)2

2N
fφ (a∗⊥,a

∗
⊥)+

(a∗
φ
)2

2N
fφ (a⊥,a⊥) (6.2.3)

where, e.g., h(a∗⊥,a⊥) =
∫∫

dxdy{h(x,y)a∗⊥,xa⊥,y}, and the corresponding kernels are

h(x,y) :=
{
−∆+V (x)+N(v∗ |φ |2)(x)

}
δ (x,y)+Nφ(x)υ(x,y)φ(y)−µ ,

for µ > 0, and

fφ (x,y) := Nφ(x)υ(x,y)φ(y).

We showed that there is a non-orthogonal basis {u j(x)} j∈N that plays the role of the

momentum states {ek(x)}k∈ZL in the construction of eigenstates of Happ2. It remains an
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open question as to whether these states can be utilized, in the spirit of Chapter 5, to write

many body excitations of the quadratic approximation Happ2:

Happ2 ≈ NEH +h(a∗⊥,a⊥)+
1
2

fφ (a∗⊥,a
∗
⊥)+

1
2

fφ (a⊥,a⊥). (6.2.4)
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Appendix A

This Appendix contains complete proofs for several of the propositions of Chapter

5. First, we give the details of the difference scheme, which we solve in order to derive

the formula for many-body excited states. We then complete the proof of Proposition 4 in

Chapter 5, which describes the analyticity properties of the generating function for a state

|ΨE⟩. Finally, we prove several properties of the Hypergeometric functions which we use

in Theorem 6 of Chapter 5. These properties can be found in any standard treatment of

Hypergeometric functions, e.g., Ref. [44]. We include their proofs here for completeness.

A.1 Derivation of many-body eigensates |Ψp,Θ⟩

Let E ∈C denote the eigenvalue of H
(αc)

ab associated with eigenvector |ΨE⟩ ∈ Fab.

Expanding |ΨE⟩ in the occupation number basis, i.e.,

|ΨE⟩= ∑
{ma,mb∈N}

cmamb|ma,mb⟩, (A.1.1)

yields the following relation between coefficients

1
2
(ma +mb)cma,mb + ỹ

√
(ma +1)(mb +1)cma+1,mb+1 = Ecma,mb. (A.1.2)

Next define Ema,mb := 1
2(ma +mb), which is the energy of the state |ma,mb⟩ as an eigen-

vector of the operator 1
2(a

∗a+b∗b), so that

cma+1,mb+1 =

(
E −Ema,mb

)
ỹ
√
(ma +1)(mb +1)

cma,mb. (A.1.3)
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Repeating this relation s times results in the formula

cma+s,mb+s = ỹ−s (E −Ema+s−1,mb+s−1) · · · · · (E −Ema,mb)√
(ma + s) · · · · · (ma +1)(mb + s) · · · · · (mb +1)

cma,mb. (A.1.4)

We now fix m⃗ := (ma,mb), and define the energy difference Θ := E − Em⃗ as well as

the shorthand m⃗ + s := (ma + s,mb + s). Equation (A.1.4) can be rewritten using the

generalized binomial coefficient
(

Θ

s

)
:= Γ(Θ+1)

Γ(s+1)Γ(Θ−s+1) via

cm⃗+s = ỹ−s (Θ− s+1) · · · · · (Θ−1)Θ√
(ma +1) · · · · · (ma + s)(mb +1) · · · · · (mb + s)

cm⃗

= ỹ−s
(

Θ

s

)
s!√

(ma +1) · · · · · (ma + s)(mb +1) · · · · · (mb + s)
cm⃗

= ỹ−s
(

Θ

s

)√(
ma + s

s

)(
mb + s

s

)−1

cm⃗.

(A.1.5)

With the quantities Θ, m⃗ fixed, the single coefficient cm⃗ uniquely determines all other

coefficients cm⃗±s. Imposing the normalization condition

∞

∑
s=−min(ma,mb)

|cma+s,mb+s|2 = 1, (A.1.6)

then determines cm⃗ uniquely. Without loss of generality, we take m⃗ = 0.

Difference scheme for eigenstates of H
(α)

ab

An iteration scheme can be written in the occupation number basis for eigenstates

of H
(α)

ab when 0 ≤ α ≤ αc. We again assume that the state |ΨE⟩ with energy E ∈ C has

the expansion (A.1.1). It suffices to fix p ∈ N and consider only linear combinations of

states |ma,mb⟩ = |p+ s,s⟩ for s = 0,1,2, . . . , so that we can write cs := cp+s,s and the
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eigenvalue equation reads:

1
2

∞

∑
s=0

cs(p+2s)|p+ s,s⟩+ y1(α)
∞

∑
s=0

cs
√

(p+ s)s|p+ s−1,s−1⟩

+ y2(α)
∞

∑
s=0

cs
√

(p+ s+1)(s+1)|p+ s+1,s+1⟩

= E
∞

∑
s=0

cs|p+ s,s⟩.

For E ∈ C we arrive at the difference scheme

( p
2
+ s
)

cs + y1(α)cs+1
√

(p+ s+1)(s+1)+ y2(α)cs−1
√

(p+ s)s = Ecs. (A.1.7)

A.2 Properties of the generating function G(z; |ΨE⟩)

Here we complete the proof of analyticity in Proposition 4, which is restated below.

Proposition 7. For α such that |z+(α)| < 1, and p > 0, the function G(z; |ΨE⟩) defined

by

G(z; |ΨE⟩) =
C0y1(α)p

y2(α)
(z− z+)B(z− z−)p−1−B

∫ z

0
up−1(u− z+)−(1+B)(u− z−)(p−B)du

(A.2.1)

is analytic if and only if B ∈ N.

Proof. It is shown that there is a singularity of G(z; |ΨE⟩) inside the unit disk which is

removable under the condition B ∈ N. Let us start with Re(B) < 0. The results can be

analytically continued to Re(B)> 0 by standard techniques (e.g., integration by parts).

We want to know how G(z) behaves as z →+. For this we write the integral of
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(A.2.1) as

∫ z

0
up−1(u− z+)−(1+B)(u− z−)(p−B)du =

∫ z+

0
up−1(u− z+)−(1+B)(u− z−)(p−B)du

+
∫ z

z+
up−1(u− z+)−(1+B)(u− z−)(p−B)du.

(A.2.2)

The first of these integrals can be written

∫ z+

0
up−1(u− z+)−(1+B)(u− z−)(p−B)du

= (−1)−1−Bzp−1−B
+ (−z−)B−p

∫ 1

0
t p−1(−t +1)−(1+B)(1− z+

z−
t)B−pdt.

(A.2.3)

This is compared to the integral of the Hypergeometric function,

F(a,b,c;z) =
Γ(c)

Γ(b)Γ(c−b)

∫ 1

0
tb−1(1− t)c−b−1(1− tz)−adt, Re(c)> Re(b)> 0.

The second integral in (A.2.2) is written, taking z = z++ ε for |ε| ≪ 1, and making the

change of variables u = v+ z+:

∫ z

z+
up−1(u− z+)−(1+B)(u− z−)(p−B)du =

∫
ε

0
(v+ z+)p−1v−(1+B)(v− z+− z−)(p−B)du.

(A.2.4)

Expanding in powers of v = u− z+ by a typical argument shows that this integral takes

the form

∫
ε

0
(v+ z+)p−1v−(1+B)(v− z+− z−)(p−B)du =

∫
ε

0
v−(1+B)

( ∞

∑
m=0

dmvm
)

dv, (A.2.5)

where the expansion in the powers vm is analytic. The integral in the above equation is

carried out to give

∫
ε

0
(v+ z+)p−1v−(1+B)(v− z+− z−)(p−B)du = ε

−B
∞

∑
m=0

( dm

m−B

)
ε

m. (A.2.6)
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When Re(B)< 0 (which we assume at the current point in the argument), it follows that

the expression (A.2.6) is analytic in ε if and only if −B ∈ N; otherwise the function in

(A.2.6) exhibits a singularity as ε → 0. This proof can be extended to B ≥ 0 by standard

techniques. For example, we can use integration by parts to increase B by integer values

in the integral of (A.2.6).

A.3 Properties of the hypergeometric functions

Here we provide direct proofs of the properties for Hypergeometric functions used

in the proof of Theorem 6.

Property (i) For p = 0,1,2, . . . ,

mzF(−m+1) =−(p+1+2N)F +(p+1+N)F(−N −1)+NF(−N +1).

Proof. Using the definition of the hypergeometric function, the left-hand-side of the

above relation reads

mz
∞

∑
s=0

zs

s!
(−m+1)s(−N)s

(p+1)s
=

∞

∑
s=0

zs+1

(s+1)!
(−m)s+1(−N)s+1

(p+1)s+1

{
m(−m+1)s

(−m)s+1
· (−N)s

(−N)s+1
· (p+1)s+1

(p+1)s

}
=

∞

∑
s=0

zs+1

(s+1)!
(−m)s+1(−N)s+1

(p+1)s+1

{
−(s+1)(p+ s+1)

(−N + s)

}
.

The right-hand-side of (i) meanwhile reads

∞

∑
s=0

zs

s!
(−m)s(−N)s

(p+1)s

{
−(p+1+2N)+(p+1+N)

(−N −1)
(−N + s−1)

+N
(−N + s)

−N

}
.

It must be shown that the (s+1)th term of the RHS agrees with the sth term of the LHS,
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and that the s = 0 term on the RHS vanishes. Indeed

(−m)0(−N)0

(p+1)0
{−(p+1+2N)+(p+1+N)+N}= 0. (A.3.1)

This shows the second statement, while the coefficient of zs+1

(s+1)!
(−m)s+1(−N)s+1

(p+1)s+1
on the RHS

is

− (p+1+2N)+(p+1+N)
−N −1
−N + s

+N
(−N + s+1)

−N

=
−(p+N + s+2)(−N + s)− (p+1+N)(N +1)

(−N + s)

=
−(s+1)(p+ s+1)

(−N + s)

The case N = 0 follows by comparing the LHS

mz
∞

∑
s=0

(−m+1)s(0)s

(p+1)s

zs

s!
= mz (A.3.2)

to the RHS

−(p+1) ·1+(p+1)∑
s

(−m)s(−1)s

(p+1)s

zs

s!
=−(p+1)+(p+1)

{
1+

(−m)(−1)
(p+ s)

z
}
= mz

Property (ii): For a < 0,

d
dz

zaF
(

a,b,c,
1
z

)
= aza−1F

(
a+1,b,c,

1
z

)
. (A.3.3)

Proof. The LHS reads

za−1
∞

∑
s=0

(a)s(b)s

(c)s

z−s

s!
{a− s} (A.3.4)

while the RHS reads

azm−s
∞

∑
s=0

(a+ s)s(b)s

(c)s

z−s

s!
. (A.3.5)
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Proving the formula then follows from the relation (a− s)(a)s = a(a+ 1)s. The excep-

tional case b = 0 is handled by

d
dz

{
zmF(−a,0,c,

1
z
)

}
=

d
dz

zm. (A.3.6)
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[10] C. Brennecke, P. T. Nam, M. Napiórkowski, and B. Schlein. Fluctuations of N-
particle quantum dynamics around the nonlinear Schrödinger equation. Ann. Inst.
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