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Spinal cord injury (SCI) is a physical trauma that can result in paralysis and 

even death; to date no treatment exists that can successfully promote functional or 

adaptive recovery. Although humans are unable to regenerate after complete SCI, 

there are animal models that have been studied for their ability to regrow and 

reconnect their nerve fibers.  

From the group of animals that are capable of spinal cord regeneration, in the 

best studied is the lamprey (Petromyzon Marinus) it has been noted that recovery can 

be maladaptive.  When left to recover at warm temperature (23 ⁰C) most lampreys 

had adaptive behavior, but at cold temperature (10 ⁰C) most lampreys showed 

maladaptive behavior. In this dissertation we studied the physical factors that 

influence adaptive and maladaptive recovery in lampreys.  



  

In the first part, we analyzed axonal regeneration and blood clot formation at 

early time points after injury (1-2 weeks). We found that lampreys in cold 

temperature have a blood clot that could be blocking spinal cord regeneration.  

In the second part of this work, we analyzed the biomechanical and structural 

differences between lampreys in warm and cold temperature. We used in vivo X-ray 

imaging and tensile loading testing of the spinal cord and notochord structures, before 

and after injury. We found that lampreys at warm temperature are more favorable to 

create a permissive mechanical and structural environment for regeneration.  

Lastly, we used those lessons learned previously to enhance regeneration of 

maladaptive animals. We removed the blood clot at the injury site and created a time 

frequency analysis to measure the recovery of coordination. We found that lampreys 

in cold temperature with clot removal had a more adaptive recovery after injury than 

those without removal.  

In summary, by using the lamprey we were able to compare the differences 

between regeneration in warm and cold temperature and found the physical factors 

that influence maladaptive recovery. Removing one of these factors, in this case the 

blood clot, successfully enhanced the recovery of coordination. These results have the 

potential to be translated to higher animals and aid in the creation of successful 

treatments for SCI.  
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Preface 

  

Injuries to the spinal cord are some of the most devastating traumas to the 

human body. The spinal cord controls motor and sensory functions in the body and it 

is the main connection between the peripheral nervous system and the brain, complete 

transection of the spinal cord can cause paralysis and even death.   

Although the ideal model to study would be humans, injuries to the spinal 

cord are extremely complex and involve a great number of tissues. Furthermore, the 

scarring process leaves an almost unrecognizable blockage at the injury site, from 

which there are many cellular and molecular factors virtually impossible to study 

independently.  

These facts have made researchers look for animal models with more 

controlled variables. It was observed that some animals had the innate capability to 

regenerate the spinal cord and in this group we can find animals such as zebrafish, 

goldfish, newt and lamprey.  

Danish physiologist August Krogh stated that for such a large number of 

problems there will be some animal of choice, or a few such animals, on which it can 

be most conveniently studied. In our case we decided to use the lamprey because we 

discovered that its recovery of locomotion wasn’t perfect, but more importantly, that 

we could control the degree of recovery. When placed in warm temperature (23 ⁰C) 

recovery was mostly adaptive and in cold temperature (10 ⁰C) was mostly 

maladaptive. This gave us the opportunity to analyze what are the physical factors 
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that tip the balance on lampreys and makes them either adaptive or maladaptive. We 

had the idea that if we could understand their differences, we could study how to tip 

the balance ourselves by engineering a treatment. Furthermore, understanding how 

lampreys become maladaptive could give us some clues on how to avoid this 

outcome in other animal models.  

Therefore, this thesis was created with the purpose of understanding the 

differences between adaptive and maladaptive regeneration. In the second chapter we 

introduce the structural properties of adaptive and maladaptive regeneration, where 

we discovered that a blood clot blocks regeneration in cold, but not in warm 

temperature. In the third chapter we explored the mechanical and structural properties 

of the spinal cord and the notochord. We found that only animals in warm 

temperature have similar mechanical properties to that of control, indicating that at 

this temperature the tissue forms a permissive environment for regeneration. Lastly, 

we used the lamprey as a way to test head to tail coordination after removing the 

blood clot in cold temperature. We found that removing the blood clot increased the 

coordination between head and tail when compared to animals without removal. The 

lamprey has been a great, simple model in which we were able to study and change 

the properties that tip the balance between adaptive and maladaptive recovery.  

All of the work presented henceforth contains the result of research 

undertaken at the Cell Biophysics Laboratory, University of Maryland. All projects 

and associated methods were approved by the Institutional Animal Care and Use 

Committee at the University of Maryland (Protocol R-10-97). 
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Chapter 1: Spinal cord injury, animal models and lamprey 

spinal cord regeneration  

 

1.1 Human Spinal Cord Injuries 

 

The nervous system of humans and most vertebrates is composed of a central 

nervous system (CNS) formed by the brain and the spinal cord which control most of 

our movements and organs. Extending from the spinal cord is the peripheral nervous 

system (PNS) which forms the necessary connections for the communication between 

the CNS and the rest of the body.  

 

The central nervous system is protected by a vertebrate column (spinal cord) 

and cranium (brain); below these bony structures, the CNS is protected by a set of 

membranes (the meninges). These structures are formed by a complex set of cellular 

components, named glia; which include astrocytes, oligondreocytes, ependymal cells 

and microglia. In order to support nutrition, an even more complex set of blood vessels 

run parallel and into the spinal cord in small branches. In contrast, the PNS doesn’t 

have a protective membrane or bone layer, leaving it open to reach muscles and organs 

[1]. Through evolution, our body has developed the ability to heal and regenerate in 

response to injuries and diseases. For example, inflammation, tissue formation and 

remodeling [2] lead to a rapid regeneration after most cutaneous injuries. However, it 
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is the fascinating complexity of the CNS that also contributes to its poor regenerative 

capabilities.  

 

According to the National Spinal Cord Injury Statistical Center (NSCISC) there 

are 250,000 Americans with spinal cord injury. Most of these injuries occur in young 

males between the ages of 16 and 30, meaning that they have most of their life ahead. 

The cost of managing the care of spinal cord injury patients approaches $4 billion 

dollars a year.  

 

These injuries are caused by everyday life actions, such as driving motor 

vehicles (48%), falls (21%) and sports (14%). They can be categorized into complete 

and incomplete. Complete injuries result in total loss of sensation and function below 

the injury level and incomplete result in partial loss of function. Furthermore, patients 

with complete lesions above C-3 vertebrae die before receiving medical treatment and 

those who survive depend on mechanical respirators to breathe. The classification of 

each injury, its symptoms and outcomes are determined by the American Spinal Injury 

Association (ASIA) [3]. The need for such an extended classification is correlated to 

the complexity of SCI which is one of the most unforgiving traumas to the human body. 

In order to establish the rationale for our research and to set up the structure of our 

aims, we will explore the temporal and structural stages of SCI. 
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1.1.1 Causes and consequences of spinal cord injuries 

Catastrophic falls, such as horse-riding accidents; violent encounters (knife, 

bullets), car accidents and/or sports injuries cause bones forming the vertebrae to be 

broken or dislocated causing a traumatic injury to the spinal cord (Figure 1-1). Most 

injuries to the spinal cord are compressive, causing the axons to be crushed by the 

vertebrae (Figure 1-1b), while others completely sever it (Figure 1a). Since the spinal 

cord is the main pathway for information, depending on the level of injury, SCI patients 

can be quadriplegic (paralysis of most of the body) or paraplegic (paralysis of the lower 

trunk and legs).  

 
 

 

Figure 1-1. Magnetic resonance imaging of spinal cord injuries in human patients. a) 

Cervical dislocation with complete transection of the cord. b) Compression of spinal 

cord due to disc hernia, image modified from [4].  

  

1.1.2 Post-injury episodes 

The damage to the spinal cord after a traumatic blow, bruises or tears spinal 

cord tissue, breaking apart axons and bodies inflicting a catastrophic neuronal damage. 
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This just indicates the beginning of the damage; this physical trauma sets off a cascade 

of events that continue for days and will influence the patient’s outcome and future 

treatments.  

 

Homeostasis and blood pressure. Within minutes, spinal cord swelling cuts \off 

blood flow, which cuts oxygen and blood pressure to the point the body can’t self-

regulate (hypothermia [5]) and interferes with neuronal activity, causing a spinal shock 

which can last from hours to days [6]. During spinal shock, even undamaged portions 

of the spinal cord are temporally  disabled, making it more difficult for the doctor to 

establish a diagnosis of the trauma and the hypothermia events will last during the 

normal life of the patient [5]. 

 

Neurotransmitters. After the injury, an excessive release 

of neurotransmitters causes additional damage by overexciting cells, causing spasms 

[7] with can lead to secondary injuries and even death. However, neurotransmitters are 

necessary for successful recovery and future treatments include the integration of 

neurotransmitters into biodegradable scaffolds [8]. 

 

Apoptosis. Death of cells is not limited to the initial trauma, as programmed cell 

death (apoptosis) can occur weeks after the injury [9]. SCI leads to increased expression 

of tumor necrosis factor and its receptor due to inflammation which affects cell death; 

however, there are conflicting results as to the role of cell death after SCI [10].  
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Immune response. After SCI, the blood brain barrier no longer controls the 

passage of cells and large molecules, leaving a free pathway for immune cells to the 

injured tissue, triggering an inflammatory response. This inflammation is characterized 

by the influx of immune cells, including neutrophils, T-cells, macrophages, 

and monocytes [11]. The beneficial effect of this response includes fighting infections, 

controlling immune response and cleaning up debris. Detrimental consequences 

involve the expression of inflammatory cytokines by microglial cells [12] and stimulate 

astrocytes which ultimately participate in the formation of scar tissue [11]. Cellular and 

molecular components of scar tissue are one of the most studied subjects in SCI [13], 

with conflicting results on the beneficial [14] and negative effects [15]. 

 

1.1.3 Consequences and secondary damage 

The destruction of axons and inflammation response sets the beginning of the 

devastation of SCI, which continue for weeks and years after the injury. Secondary 

damage can exacerbate the injured area and also the extent of disability. In fact, most 

SCI are detected or treated weeks after the initial trauma, when the inflammation 

process and scar formation is already advanced [14]. At this point, glial cells have 

invaded the injury site forming a scar, which creates a barrier for axonal outgrowth 

[15]; even if few axons remain, in most cases there is not enough to send any 

meaningful information to the brain. Researchers are especially interested in studying 

the mechanisms of this wave of secondary damage because finding ways to stop it 

could save axons and reduce disabilities. This could make a big difference in the 

potential for recovery. 
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1.1.4 Treatment options and future therapies  

SCI is commonly related to paralysis; however medical complications after SCI 

[16] include chronic pain, respiratory and heart problems, spasms [7], blood clots, low 

blood pressure and hypothermia [5]. These problems represent not only the lack of 

connectivity from injured axons, but also the involvement of the many other cellular 

mechanisms along the spinal cord, which play an important role in successful recovery.  

 

The most used treatment options for SCI are limited to control of secondary 

symptoms: relief of compression on the spinal column [17], temperature treatments [5] 

and prevention of secondary injuries [18] with anti-inflammatory drugs [19] such as 

methylprednisolone [20]. Other treatments such as antibody blocking of inhibitor 

molecules [21, 22] offer a new hope for SCI patients; however there is still much to 

know about their primary and secondary effects. Enzyme treatments against inhibitory 

molecules (chondroitin sulfate proteoglycans (CSPG)), such as chondroitinase ABC 

[23] have been show to promote axonal outgrowth for the peripheral nervous system 

and are a promising treatment for the CNS. 

 

The increasing knowledge on each of the cellular mechanisms that affect the 

spinal cord gives scientist better options to treat SCI. Medical treatments such as 

decompression, neural prostheses [24] and scaffolds [25] involve an invasive surgery 

weeks after SCI, in which the scar tissue might be partially or completely removed. 

Unwillingly, the treatment represents a secondary injury to the already damaged tissue; 



 

 

7 
 

as for the collateral effects of this procedure, nothing is understood. In fact, it has been 

shown that peripheral neurons are 100 times more likely to regenerate into peripheral 

grafts if they have previously been through a “conditioning” injury [26]. This ability 

has been related to the up-regulation of regeneration-associated genes [27] and 

improvement of sprouting [28]. The closest surgical scenario of is the treatment to 

relieve back surgery pain (laminotomy), which removes tissue, formed by back surgery 

or herniated disks [17]. This procedure includes the risk of neuronal damage and 

increased formation of scar tissue.  

 

1.1.5 Current clues to the unsuccessful regeneration of the CNS (Glial Scar) 

Why are humans unable to recover from SCI? Spinal cord regeneration is not a 

problem specific to the neurons; extensive research on CNS injury has provided clues 

of factors that are involved during injury [13-15]. The most critical of all is the 

formation of a glial scar, which in humans is seen as a “barrier” for regeneration. 

Reactive gliosis (scar formation), is a process that repairs the wound, but it forms a 

tissue that is not permissive for axonal regeneration as compared to normal tissue from 

the spinal cord which promotes axonal outgrowth [29]. The inhibitory property of scar 

tissue can come from its physical properties such as stiffness to the expression of 

attractant and repellant molecules. The most important of them are myelin-associated 

proteins (e.g. netrins) and proteoglycans (CSPGs) which are present in the scar.   

 

The extracellular matrix (ECM) of spinal cord and brain tissue during 

development has some of the common ECM proteins (fibronectin, laminin, and 
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collagen); however at later stages these molecules are scarce and restricted to the 

outside parts of the cord (blood vessels and meninges) [30, 31]. Thus, it is believed that 

the components of the CNS matrix are molecules such as proteoglycans and other 

proteins expressed by oligodreocytes (called myelin-associated) [32].  

 

Chondroitin sulfate proteoglycans are one of the major classes of proteoglycan 

present in the CNS expressed mostly after the formation of the scar by reactive 

astrocytes [33]. They consist of a protein core to which many glycosamingylcan (GAG) 

chains are covalently attached. These chains give CSPGs most of their properties [33] 

and are useful for treatment [23] and general localization with antibodies. CSPGs were 

believed to be inhibitory molecules of axonal growth, found in regions where growth 

cones are absent. However their function has shown to be much more complex and the 

concept of CSPG “inhibition” has been changed to “guidance”. For example, depletion 

of CSPGs in cultured retina results in lack of directionality from extending axons [34].  

 

In summary, lecticans, aggrecan [35, 36], versican [37] neurocan [38] and 

bervican [39] CSPGs have been linked to inhibitory functions due to the GAG chains, 

whereas NG2 is inhibitory. Phosphacan has been shown to promote growth in cortical 

neurons but not in thalamic neurons and DSD-1-PG promotes growth of mesencephalic 

and hippocampal neurons [40]. All these studies show the dual role of CSPGs and how 

it might depend on their localization. 
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Similar to the molecules expressed by reactive astrocytes, myelin-associated 

proteins are molecules expressed by oligodendrocytes that are related to the inhibition 

of axonal regeneration. Inhibitor molecules Nogo [41], myelin-associated glycoprotein 

(MAG) [42] and oligondreocyte myelin glycoprotein (OMgp) [43] have been found to 

be associated with inhibition, and recent data has associated these proteins with a 

common receptor (Nogo receptor, Ngr). Several treatments have evolved from these 

discoveries; however, immunizing against myelin proteins might have degenerative 

properties overall. Netrin-1 is another myelin-associated protein that can either attract 

or repel axons depending on the combination of receptors expressed in neurons (UNC5 

and DCC receptors) [44]. More importantly, these receptors have been found in the 

lamprey [45], and thus will be the objective of our first studies on myelin-associated 

proteins. 
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1.2 Animal Models for SCI 

 

In mammalian models, great technical effort must be expended to achieve none 

or a relatively small amount of regeneration and to gain both regrowth and functional 

improvement. “Lower” vertebrates on the other hand, are known to show axon 

outgrowth after injury [46]. This axonal outgrowth is usually stated as regeneration; 

however, we must be careful with this statement. Reading through several reports, we 

have found that not surprisingly, these assumptions are commonly incorrect and/or 

exaggerated; therefore, it is important to differentiate between axonal outgrowth and 

regeneration. Functional regeneration is achieved when all elements of the spinal cord 

act to recover normal behavior; this includes not only neurons but also glial cells and 

CNS molecules involved. In the following paragraphs, we will analyze the rationale for 

our animal model, first looking at the goldfish and zebrafish models. 

 

Some lower vertebrates used to study CNS regeneration include the goldfish 

[47-49], zebrafish [50-52], eel [53, 54] and newt [55, 56]. The goldfish (Carrasius 

auratus) is one of the most studied animals for neural regeneration. Variability has been 

found on the growth of fibers; sometimes only 50% of the fibers can regenerate after 

axotomy and only 60% of the propiospinal neurons are involved in recovery [57]. 

Furthermore, the degree of functional recovery is limited and often leads to incorrect 

pathways [58]. The next best model is the zebrafish, an animal model with a lot of 

genetic tools, ideal for studying vertebrae development [59]. The suitability for 

molecular studies has caught significant attention for the use of zebrafish to study CNS 
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regeneration [60]. Goldfish and zebra fish have a big disadvantage: their locomotor 

system has not been fully described, which makes it difficult to establish when adaptive 

recovery has been achieved. In this thesis we are interested not only in the regrowth of 

the spinal cord, but in the different behavioral outcomes after injury. 

 

Regeneration is imperfect, it is incomplete. In other words, using an animal 

model for regeneration does not mean that the spinal cord will regenerate exactly as it 

was before injury. In the goldfish, only 30% of fibers regenerated and were functional 

[57]. However, many of these regenerated axons changed their original target in the 

CNS to the peripheral nervous system (PNS), which left many goldfish unable to 

recover normal behavior [58]. The eel [53] and the lamprey [61] have been shown to 

regenerate only a few fibers as well, around 20%. In the zebrafish, 32-51% of the 

neurons with descending axons were able to regenerate and only 2-4% neurons with 

ascending axons regrow [62]. Newts did not regenerate sensory axons and only few 

fibers from the spinal cord regenerated [56]. In the weakly electric teleost fish, only 

20% of regenerated cells are neurons, the rest were found to be glial cells [63].   

 

Recovery is imperfect, it is not typically adaptive but it can be maladaptive. In 

other words, animal models that are used for spinal cord regeneration do not always 

recover normal behavior after injury. Behavioral studies on the newt indicate that only 

14% of 6-week and 67% of 9-week regenerated newts recovered adaptive behavior 

[56]. Other studies in regenerated salamanders showed that their locomotor patterns 

suffer transient and long term alterations after injury, more during swimming than 
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during walking [64]. Weakly electric fish that regenerated in 30 ⁰C vs 22 ⁰C showed 

different functionality. Those that regenerated in 30 ⁰C were able to create an electric 

discharge more than double the rate than those at 22 ⁰C [65]. Low levels of L1.1 protein 

impair locomotor behavior, reduce the rate of regeneration and the formation of 

synapses in the zebrafish [66]. Incomplete and maladaptive spinal cord regeneration 

are two obstacles that researchers must understand and master in animal models before 

achieving regeneration in humans. Although it is clear that these two obstacles are 

present in different animal models, it is often unheard of or undiscussed to talk about 

them. In this thesis, instead of a disadvantage, we will use the fact that lampreys have 

adaptive and maladaptive regeneration to our advantage by creating a set of 

comparative studies to better understand the factors that can change the outcome after 

spinal cord injury.  

 

1.3 Lamprey and the recovery of locomotion 

1.3.1 Lamprey anatomy and physiology 

Lampreys (Petromyzon marinus) also known as petromyzontids are one of the 

few extant vertebrates that originated over 500 million years ago (Figure 1-2 b). 

Although they don’t have a bony skeleton, they are true vertebrates placed in a basal 

position on the evolutionary tree (Figure 1-2 a), thus they are mostly generalized as 

basal or lower vertebrates. They are eel-shaped vertebrates (Figure 1-3) that live in the 

sea but migrate to rivers to spawn and lay eggs [67]. Lampreys attach themselves to 

other fish by means of a set of horny teeth that surround the mouth (Figure 1-3).  
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They have a notochord (Figure 1-4) with an overlying spinal cord flanked with 

a pair of arcualia on each side. The spinal cord runs longitudinally across the animal 

and the dorsal and ventral roots are segmented along the length of the animal [67]. At 

the anterior end of the spinal cord lies the brain, which is elongated in shape (Figure 1-

3). The brain has the main structures of primitive brains, a cerebrum, cerebellum, optic 

lobes, rhombencephalon and pineal organs that are photosensory (Figure 1-3) [67].  

 

Lampreys have been used as animal models for the study of motor control [68-

70] and due to their ancestry, as animal models for the study of evolution [71]. It was 

until recently that the regenerative capabilities of the lamprey have been explored. 

More importantly, it was until recent experiments involving nerve recordings during 

fictive swimming; that the functionality of lampreys was measured and it was 

discovered that their recovery was not always adaptive [72]. Thus, leaving us to 

question what factors could be different in those animals that didn’t recover adaptive 

behavior.  
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Figure 1-2. Phylogenetic tree of lampreys. a) Tree for the major lineages of vertebrae 

based on morphological and paleontological evidence, image modified from [73]. b)  

Timing of major events within the vertebrae lineage. CZ, Cenozoic; MYA, million 

years ago, image modified from [71].  
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Figure 1-3. Characteristics of the lamprey. a) Adult lamprey feed by attaching 

themselves to fish extracting their blood, b) Lampreys are jawless vertebrates with a 

set of filters in their mouth for feeding (B2). They have a brain and spinal cord (B1) 

that sits on top of a notochord (B3), the notochord is surrounded by muscle (B5). Their 

breathing is through a set of gills located at the head (B4). c) Cross section of the 

lamprey stained with toluidine blue, scale bar is 250 µm. (C1) Spinal cord, (C2) 

notochord that serves as the axial support with the surrounding muscle (C3). d) The 

lamprey brain consists of a set of olfactory bulbs and optical nerves and a cerebellum 

at the upper part (D1), then there is the medulla oblongata and the spinal nerves (D2) 

which connect to the spinal cord (D3). Image modified from [67].  
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Figure 1-4. Hydraulic skeleton vs. Bony skeleton. a) Lamprey have a hydraulic skeleton 

that consists of a notochord (A1) which consists of a set of vacuolated notochord cells 

enclosed by a collagen sheath, in top of the notochord sits the spinal cord (A2) which 

extends a set of dorsal and ventral roots per segment (A3). b) Humans have a bony 

skeleton which consists of a set of calcified vertebrae (B3), intervertebral discs (B4) 

and facet joints (B1). In the case of humans, the spinal cord (B2) can be found protected 

in between these structures, unlike the lamprey in which the spinal cord just lays on top 

the notochord. Image modified from [67].  
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1.3.2 Spinal cord regeneration  

What makes the lamprey a good model? Lamprey is a model for spinal cord 

regeneration; it has been subject of many locomotion, electrophysiological and 

histological studies [74-83]. Their spinal cord is governed by the central pattern 

generator (CPG), a feature common to most vertebrates, including humans. This feature 

has gained the interest of many researchers to treat spinal cord injuries in which the 

connection between brain and spinal cord has been broken. By installing a controlling 

circuit in the spinal cord, with a similar pattern to that of the lamprey, the CPG of 

humans can react and thus recover locomotion [24]. There are many characteristics of 

lamprey regeneration that can be relevant to human spinal cord injury; we have 

summarized some in Table 1-1.  

 

The same overstatement that regeneration is always perfect, might be occurring 

in the lamprey model as well. It was in fact not until recently that adaptive and 

maladaptive conditions were differentiated [72]. Locomotion studies have shown that 

lampreys recovering at cold native temperatures (10°C) tended to have a maladaptive 

behavior and levels of 5-HT were always below control uninjured animals (Figure 1-5 

and 1-6). When the lamprey was left to recover at room temperature (23°C), the 

recovery was typically adaptive, locomotion and 5-HT levels were fully recovered as 

in control animals (Table 1-2) [84]. Perhaps, the properties of the injury site in the cold 

lampreys are more human-like and thus inhibit regeneration. However the differences 

between these two conditions haven’t been explored and are part of the objective of 

this work.  
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Property Humans Lamprey 
Regeneration time Changes in myelin 10 days 

after injury and axonal 
swelling 4 weeks after [85] 

Die back for 2 
weeks [76] and 
functional 
regeneration after 25 
weeks [77] 

Degeneration process Wallerian Degeneration [85] Degeneration [86] 
Neurofilaments Yes Yes [87] 
Glial Cells Reactive astrocytes, 

Oligondreocytes, Blood 
Cells, Microglia 

Astrocytes (not 
known if reactive), 
Oligondreocytes, 
Blood Cells, 
Microglia [86] 

Receptors Receptors (UNC5, DCC) 
found in rat for human 
netrin [88] 

Netrin receptors 
(UNC5, DCC) [45] 

Myelin Yes No [89] 
Neurotransmitters Serotonin, GABA, 

dopamine 
Serotonin, GABA, 
dopamine [90-92] 

Control-Information CPG and brain CPG and brain  
Pathway of regeneration There is no regeneration in 

the CNS 
Regenerate to make 
functional synaptic 
connections [93] 

Guidance mechanisms Glial scar proteins (e.g. 
CSPGs) [33] 

Unknown, but they 
show directional 
sensitivy which 
suggests the 
prescence of 
guidance molecules 
[94] 

 
Table 1-1. Similarities between human and lamprey spinal cord injury.   
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 Condition Lesion Degradation  Recovery 
Serotonin 
Levels 

First 
Injury 

Adaptive 
(25°C) Midbody 5 wks 10-25 wks 

5-HT 
sprouting 
surpases 
control 
levels 

 
Maladaptive 
(10°C) Midbody 10 wks 25 wks 

5-HT never 
reaches 
control 
levels 

 
Table 1-2. Lamprey spinal cord regeneration at different temperature, data from [56].  
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Figure 1-5. Electromyography of animals after spinal cord injury. Whole animal 

swimming in adaptive and maladaptive animals. a) Adaptive, b-d) Maladaptive. 

Recordings were done at the rostral and caudal parts after recovery from a spinal cord 

injury to the mid-body. Image modified from [56].   
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Figure 1-6. Serotonergic process and expression in the lamprey spinal cord. (Up) Figure 

of serotonergic processes in the intact lamprey spinal cord (transversal and whole 

mount sections, modified from [95]), CC=Central canal, DR=Dorsal roots, GC=Gray 

columns, MF= Giant Muller fibers. (Down) Expression of 5-HT on transversal sections 

of the spinal cord from animals recovered at cold temperature (maladaptive) for control, 

first and second injury. R=Rostral and C=Caudal (data from Dr. Cohen, unpublished). 

 

1.4 Mechanical properties and structure of tissues involved in growth and 

regeneration 

1.4.1 Mechanical properties and axonal outgrowth  

An integral element on SCI research is the study of spinal cord mechanical 

properties [96]. The relationship between SCI, regeneration and biomechanics can be 
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convened in four concepts: i) the spinal cord fibers have a pre-stress state, ii) strain of 

nerve fibers can impact physiological function [97, 98], iii) mechanical response might 

depend on the fibers, matrix and meninges [99-101], iv) axon regeneration may be 

enhanced with the appropriate mechanical tension [102] and environment [103, 104].  

 

The importance of tensile loading on nervous tissue starts during development, 

where neurons and axons undergo changes in tension during growth and network 

formation [105, 106]. Therefore, it is no surprise that fiber strain has such an important 

role in the study of spinal cord function [107], injury [16, 108, 109], and repair [96]. 

Human studies are limited to computer simulations [110-112] and experimental 

techniques are limited to cadavers, with variation of the modulus (0.5-1.5 MPa) [101, 

113, 114]. Other animal models have been used, such as bovine (0.94-1.66 MPa). 

 

1.4.2 Notochord: Scaffold and axial support 

More than 500 million years ago, prehistoric animals initiated the first stage in 

evolution of an endoskeletal backbone with the formation of a notochord [67, 115]; a 

fluid filled collagen rod [116] that served as a hydraulic skeleton [117]. Today, all 

chordates [118] such as birds, reptiles, fishes, amphibians and mammals, including 

humans, share this evolutionary stepping stone at some point in their life cycle [119-

121]. For some of these species, the notochord develops during the embryonic phase 

and becomes part of the vertebral column, a segmented, calcified backbone [120, 122-

126].  
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Recent studies that have shed light on the origins of vertebrate elements [127-

129] and the development of the axial skeleton [130, 131], demonstrate that our 

knowledge of the first stages of evolution [121] is far from complete. The notochord is 

a key structure to understand the evolution and development of the backbone (Figure 

1-7), as evidence suggests it has an important role in the successful development of the 

vertebral column [121, 125], forming part of the nucleus pulposus [132] of 

intervertebral discs and is involved in the production of proteoglycans.  

 

Early research on amphioxus notochords pointed to it being a specialized 

hydraulic skeleton with a muscular segmented nature [133]. However, similar 

specializations were not found in other extant chordates, such as the hagfish, in which 

notochord was shown to be a continuous structure [126]. In the zebrafish, the 

development of the spine starts with the mineralization of the notochord via calcified 

ring-shaped structures [134, 135]. This segmentation process of the notochord is only 

known to occur during the development of vertebrae and thus, it is not expected for 

basal vertebrates such as lampreys. In fact, it is generally accepted that the notochord 

is a continuous sheet of collagen fibers with no segmentation 

 

The notochord has at least two known important roles [136]: 1) It serves as a 

scaffold for surrounding tissues by releasing chemical triggers during development that 

signal surrounding tissues such as blood vessels [137, 138] and cell types forming 

somites [139]. 2) It also serves a mechanical role by as the axial support during 

locomotion [136, 140-142]. Apart from the developmental stage, another process 
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which requires the use of a scaffold and a mechanical support is regeneration after 

spinal cord injury. We expect that the use of larvae lampreys will yield more clues on 

the role of the notochord in the process of regeneration, and help us understand the 

mechanical roles of a segmented sheath.  
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Figure 1-7. Development and evolution of the notochord. Basal vertebrates have a 

notochord that functions as their hydraulic skeleton and axial support. Higher 

vertebrates have a bony skeleton made of calcified vertebrae and intervertebral discs. 

Inside the intervertebral disc, in the nucleus pulposus we can find the remnants of the 

notochord that develops during embryonic stage.   
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Chapter 2: Axonal regeneration and clot dynamics of 

adaptive and maladaptive regeneration 

 

2.1 Experimental Methods and Rationale  

2.1.1 Rationale 

Spinal cord injury (SCI) is a physical trauma that can result in paralysis and 

even death, with no treatment for humans to promote recovery. Lampreys can typically 

recover head-to-tail motor coordination after SCI; but only in warm temperature (23 

⁰C), in cold temperature (10 ⁰C) their coordination is most often abnormal or 

maladaptive. We used a comparative histology analysis in warm and cold 

environments, to examine the internal structure of larvae lampreys at 1 and 2 weeks 

during the regeneration process.  

 

One week after SCI, blood clotted at the injury site in cold animals but not in 

warm. In warm animals, the dorsal and ventral nerve cut-ends had begun to regenerate. 

Two weeks after SCI, the cut-ends of warm animals have regenerated but only the 

dorsal and ventral ends, leaving a lagoon like opening on the center of the cord. In cold 

temperature, the blood clot persisted at the injury site and the cut-ends showed almost 

no sign of regeneration. These results showed that in larvae lampreys, warm 

temperature enhanced the ability to clear the injury site and regenerate the spinal cord, 

which was correlated to the more adaptive recovery at this temperature. These results 
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help us understand the factors that lead to a more adaptive recovery and contribute to 

the engineering of future therapeutic approaches for spinal cord regeneration. 

2.1.2 Animal surgery and recovery 

Larvae lamprey (Petromyzon Marinus) were anesthetized with 100 mg/ml MS-

222 (Tricaine MS-222, Argent Labs, Redmond, WA). The animal was placed dorsal 

side up and the musculature opened with a longitudinal incision at mid-body using a 

surgical blade. The spinal cord was exposed using a pair of tweezers and completely 

transected using a surgical blade, carefully avoiding damage to any adjacent tissue. The 

muscle was sutured using a 6-0 suture (EP8889H, Ethicon, New Brunswick, NJ). 

During the effect of anesthesia the animals were kept under watch in ice water. After 

the anesthetic effect was gone, the animals were translated to aquariums in temperature 

controlled rooms set at two conditions: i) 20 animals were placed at 10-12° C and ii) 

20 animals were placed at 20-22° C.  

 

From each of these groups, half of the animals were sacrificed at 1 week and 

the other half at 2 weeks. The tissue fixed in 4% paraformaldehyde (Paraformaldehyde, 

Sigma-Aldrich, St. Louis, MO), for a total of 10 animals for each temperature and time 

point. The temperature and health of the animals were check daily, and they were fed 

brewer’s yeast weekly. Animal maintenance and surgical procedures were approved by 

the University of Maryland’s Institutional Animal Care and Use Committee, IACUC. 
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2.1.3 Histology, immunohistochemistry and in vivo imaging  

At their respective time points (1 or 2 weeks) animals were sacrificed and 

placed into 4 % paraformaldehyde for 48 hours. For histology, a section of 3 cm from 

mid-body was cut and placed in a tissue processor (Leica TP1020) for 12 hours. The 

sample was embedded in paraffin (Leica EG1160), sagittal sections of 20-30 μm were 

obtained in a microtome (Microm HM 355 S) and 3 continuous tissue cuts were placed 

in a glass slide. The slide was left to dry overnight, then deparaffinized using 

HistoClear (National Diagnostics, Atlanta, GA) and stained using toluidine blue 

(Sigma-Aldrich, St. Louis, MO).   

 

For immunostaining, a section of 3 cm from mid-body was cut and placed into 

mounting medium at -80 ⁰C for 10 minutes. Frozen molds were placed into a cryotome 

at -20 ⁰C, sagittal sections of 20-30 μm were obtained and 3 continuous tissue cuts 

were placed into slides. The slides were stained for neurofilaments (SMI-31 

monoclonal antibody, Covance, Princeton, NJ) and nuclei (Hoechst, Sigma-Aldrich, 

St. Louis, MO). Microscopy images were obtained for each series of slices and 

analyzed using ImageJ (U. S. National Institutes of Health, Bethesda, MD). For 

analysis, we divided the spinal cord into 3 areas: upper, middle and lower and the 

surrounding meninges into dorsal and ventral. We measured the distance between the 

cut-ends for each area and calculated the average and standard deviation. The same 

images were analyzed by an independent source to ensure reproducibility of the 

measurements.  
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2.2 Adaptive vs. maladaptive regeneration  

2.2.1 Control Animals: Histology and Immunostaining 

In order to better understand adaptive vs. maladaptive regeneration, we 

characterized the uninjured animal first. We sectioned uninjured animals at sagittal and 

cross sectional planes and stained the tissue using histology or immunostaining. We 

stained paraffin sections using toluidine blue (TB), which revealed the spinal cord, 

meninges and other physical structures such as the notochord (Figure 2-1 a, c and g). 

When polarized, TB stained tissue highlighted particular structures, such as the 

collagen in the notochord and the borders of the spinal cord and the meninges (Figure 

2-1 b, d). We used the spinal cord and meninges as our main points of reference for the 

comparison between animals regenerating in warm and cold temperatures.  

 

Immunostaining was used to reveal more specific structures, such as the 

neurofilaments in the spinal cord (Figure 2-1 f) and cell nuclei (Figure 2-1 e). Once the 

structures in sagittal and cross sectional planes of control lampreys were characterized, 

we performed a comparative study of animals regenerating in warm and cold 

temperatures for 1 and 2 weeks.  
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Figure 2-1. Cross sectional and mid-sagittal sections of the uninjured larvae lamprey. 

a) Cross section of the spinal cord and meninges at mid-body, stained using toluidine 

blue, scale bar is 100 µm b) Same cross section using polarized microscopy, 

highlighting the collagen in the notochord and the borders around the spinal cord. C-f) 

Control sagittal, from Left to Right. Toluidine Blue Histology (Meninges, Spinal Cord 

and Notochord), Polarized Microscopy, Nuclei (Hoechst Strain, Blue), Neurofilaments 

(SMI-31, Green) scale bar is 50 µm. g) Diagram of the structures that will be analyzed: 

spinal cord (blue) and surrounding meninges (purple). 
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2.2.2 Adaptive vs. Maladaptive: 1 week after SCI 

After complete transection of the spinal cord at mid-body, we left the animals 

regenerate for 1 week and then sectioned the tissue at the sagittal plane. We observed 

the separation of the nerve cut-ends and the meninges (Figure 2-2 b), followed by the 

presence of blood cells at the injury site (Figure 2-2 d). These cells appeared to 

concentrate at the empty space in the injury site but also close to the spinal cord (Figure 

2-2 b, c), potentially blocking the regeneration of the cut-ends.  

 

Comparison of animals in cold and warm temperature revealed two clear 

differences: the amount of blood at the injury site and the distance between the cut-

ends. In Figure 2-3 a-b, we can observe 2 different animals that were characteristic of 

regeneration in warm temperature. In one of them the spinal cord was not regenerated 

but there was significantly less blood at the injury site, compared to cold animals 

(Figure 2-3 a). Thus, potentially leaving a free physical pathway for axons to 

regenerate. For the other warm animal (Figure 2-3 b) there was already regeneration 

between the ventral ends of the spinal cord, which showed the enhanced growth rate in 

warm temperature compared to cold.  

 

The injury site of cold animals at 1 week was characterized by an increased 

number of blood cells at the injury site that could be a physical barrier for axonal 

regeneration (Figure 2-3 c-d). Furthermore, the gap between the cut-ends of the spinal 

cord and the meninges (Figure 2-4 b) was larger than that of warm animals (Figure 2-

4 a). Overall, at 1 week after injury, the lower part of the spinal cord in warm 
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temperature was able to regenerate (Figure 2-4 a), while in cold temperature 

regeneration seemed to be blocked by a large number of blood cells (Figure 2-4 b).  

 
Figure 2-2. The injury site after spinal cord injury. a) Diagram of the tissue after spinal 

cord injury, including the meninges (purple) and spinal cord (blue). The arrows indicate 

the distance between the cut ends at the different sections: upper, middle and lower. 

The green arrow indicates what we defined as vertical length. b) Sagittal section of the 

injury site stained with toluidine blue, c) Immunostaining section of the nerve cut-end, 

stained with SMI-31 (green) for neurofilaments and Hoechst (blue) for cell nuclei of 
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blood cells present at the cut-ends. d) Magnified section of the blood cells that form the 

clot at the injury site, stained with toluidine blue.  

 

Figure 2-3. Sagittal sections after 1 week of regeneration. a-b) Sagittal sections of two 

different animals 1 week after SCI regenerating in warm temperature. c-d) Sagittal 

sections of two different animals regenerating in cold temperature. Sagittal sections of 

10 animals were obtained but not all of them contained the upper, middle and lower 

areas. Scale bar is 100 µm for sagittal sections and 50 µm for the cross sections. 
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Figure 2-4. Distance between the cut ends at 1 week. a) Distance between the cut-ends 

of meninges and spinal cord from animals in warm temperature, bar plots indicate the 

average and white circles indicate the value of each animal. b) Distance between the 

cut-ends of animals regenerating in cold temperature. Error bars indicate the standard 

deviation, sagittal sections of 10 animals were obtained but not all of them contained 

the ventral meninges. Only 4 animals had ventral meninges in warm temperature and 

only 3 had them in cold temperature.   
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2.2.3 Adaptive vs. Maladaptive: 2 weeks after SCI 

After 2 weeks of regeneration, the differences between warm and cold 

environments were remarkable. Warm animals have regenerated the spinal cord (Figure 

2-3), but only the outer upper and lower sections (Figure 2-5 a-c). Most animals 

regenerated the lower section (Figure 2-5 a, c), while others have regenerated both 

sections, leaving a lagoon-like opening on the middle of the spinal cord (Figure 2-5 b). 

Cross sectional staining confirmed that the regenerated tissue had neurofilaments 

(Figure 2-5 d, e) and most of the regeneration was located on the outer sections.  

 

Animals left to regenerate in cold temperature showed little or no regeneration 

at 2 weeks (Figure 2-6). Figure 2-6 a-c demonstrates 3 different animals in cold 

temperature, for all of them the blood clot was still present at the injury site. This 

provided further evidence that the blood clot could be a reason regeneration in cold 

temperature is maladaptive. Cross sections at the nerve cut-ends revealed the presence 

of neurofilaments (Figure 2-6 d), but the spinal cord seemed to have lost its clear 

elliptical shape (Figure 2-1 a). Immunostaining at the injury site revealed the presence 

of only cell nuclei, most likely from blood cells that formed the clot (Figure 2-6 e).  

 

We measured the gap between the meninges above and below the spinal cord 

(Figure 2-2 a). Surprisingly, regeneration of the meninges in warm temperature was no 

better than that in the cold (Figure 2-7 a, b). When compared over time, the meninges 

didn’t regenerated significantly and in some animals the gap increased. This effect was 
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more obvious in the ventral meninges at cold temperature, where the average gap was 

significantly larger at 2 weeks compared to 1 week.  

 

Then, we measured the gap between the upper, middle and lower ends of the 

spinal cord (Figure 2-2 a). For warm animals, the upper and lower ends of the spinal 

cord regenerated but not the middle of the cord. In fact, the middle cord did not change 

over time. For the upper ends, 4 animals out of 10 regenerated and for the lower ends 

9 animals out of 10 regenerated (Figure 2-7 a). Cold animals didn’t show any 

regeneration or difference between the upper, middle and lower ends (Figure 2-7 b).  

 

In addition to horizontal changes, we noticed that the vertical length of the 

spinal cord increased close to the injury site (Figure 2-8 a). We used polarized 

microscopy (Figure 2-8 b) to measure the vertical length of the cord 3 mm after and 3 

mm before injury, being “after” the caudal part and “before” the rostral part of the 

animal. At 1 week, in warm temperature the vertical length of the cord larger at the 

injury site, and it decreased until reaching a normal length 1 mm away from the injury 

(Figure 2-8 c). In cold temperatures, the vertical length didn’t show any changes 

(Figure 2-8 c). At 2 weeks, the vertical length of the cord in cold animals increased 

(Figure 2-8 d) but the cut-ends showed no signs of horizontal regeneration. In 

comparison, the regenerated area of warm animals had a vertical length larger than 

regions far from the injury (Figure 2-8 d). Interestingly, at 2 weeks the vertical length 

of the cord at the injury site was the same in warm and cold temperature.  
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Figure 2-5. Sagittal and cross sectional images of warm regeneration at 2 weeks. a-c) 

Sagittal sections of 3 different animals, a) Animal that has regenerated only in the 

bottom, but the upper part has significantly grown, b) Animal that has regenerated both 

upper and bottom parts of the spinal cord, c) Animal that has only regenerated the 

bottom and the upper part has not grown. d-e) Cross sectional views of the regenerated 

spinal cord stained with SMI-31 (green) for neurofilaments, showing that only the outer 

parts of the spinal cord express neurofilaments. Scale bar is 100 µm for sagittal sections 

and 50 µm for the cross sections. 
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Figure 2-6. Sagittal and cross sectional images of regeneration in cold temperature. a-

c) Sagittal sections of 3 different animals that show the clot at the injury site and the 

lack of spinal cord regeneration. d-e) Cross sectional images stained with SMI-31 

(green) and Hoechst (blue) to show cell nuclei. d) Cross section at the nerve end that 

shows the end of the spinal cord, e) Cross section at the injury site that shows the lack 

of SMI-31 expression and the content of only cell nuclei. Scale bar is 100 µm for 

sagittal sections and 50 µm for the cross sections.  
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Figure 2-7. Distance between the cut-ends after 2 weeks of SCI. a) Distance between 

the cut-ends of animals regenerating in warm temperatures, note that some of the 

animals have regenerated the bottom of the spinal cord and some the upper part, but 

not the middle. b) Distance between the cut-ends of animals regenerating in cold 

temperature. Note that the upper, middle and bottom sections of the spinal cord have 

not regenerated and have the same average gap at the injury site. N=10. Only 6 animals 

had ventral meninges in warm temperature and 3 animals in cold temperature.  
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Figure 2-8. Changes in the vertical length after SCI. a) Sagittal section stained with 

Toluidine blue, showing the nerve-cut and how it changes close and far away from the 

injury site, b) Same section using polarized microscopy showing the borders of the 

spinal cord and the place where the measurements of the vertical length were taken. c) 

Vertical length for warm (red) and cold (blue) regeneration at 1 week, note the warm 

regeneration has an increase vertical length close to the injury site (circles indicate the 

average location of the meninges) d) Vertical length for warm and cold regeneration at 

2 weeks, warm animals who have already regenerated maintain an increased vertical 

length throughout the regenerated site. At this time point, cold animals have actually 

increased their vertical length to levels similar to that of warm, the only difference was 

the lack of reconnection. N=10, scale bar is 100 µm for all figures.  
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2.3 Summary and Conclusions  

2.3.1 Summary 

In this work we compared the structural differences after SCI for animals 

regenerating in warm (adaptive) and cold (maladaptive) temperature (Figure 2-9). 

Through this comparison, we were able to better understand factors that could influence 

the functionality of regeneration. The first remarkable difference was the amount of 

axonal regeneration in warm temperature at 2 weeks, while cold animals have not even 

started regenerating (Figure 2-9 b, c). Regeneration was enhanced, but unable to 

recover the full structure of the uninjured spinal cord, as only the outer areas 

regenerated. However, a fully regenerated spinal cord might not be needed to recover 

behavior since it has been shown that lampreys only need few and small synapses to 

recover motor coordination [61]. Our results seem to indicate that the middle of the 

spinal cord, which contains mainly cell nuclei (Figure 2-1 f) and giant axons doesn’t 

regenerate within 2 weeks. This is an important result, as it shows evidence that the 

spinal cord regenerates mainly the propiospinal neurons and not cell nuclei or giant 

fibers. Our results coincide with those from other researchers who have labeled the 

ascending and descending regenerating spinal projection neurons [143] and neurites 

emanating from injured axons, distal and proximal to the scar [76]. They have found 

that the regenerating neurons project their axons up to 5 mm in both ascending and 

descending directions across the injury site, but not the cell bodies.  
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2.3.2 Meninges 

Although it has been stated that meninges are necessary for spinal cord 

regeneration on animals, such as the newt [56], we didn’t observe this phenomenon in 

the lamprey at least up to 2 weeks after injury. However, we observed that the meninges 

in cold temperature had a wider gap than in warm. They seemed to have degenerated 

from 1 week to 2 weeks. Degeneration of meninges in cold temperature could cause 

maladaptive behavior, since their function is to protect the spinal cord [144-146]. 

Meninges might also harbor niches for precursor cells that help regeneration, which 

could make their presence close or at the injury site important for adaptive regeneration 

[146, 147]. The lack of meninges surrounding the spinal cord at the injury site could 

also be one of the causes for the vertical length to increase (see circles in Figure 2-8).  

 

2.3.3 Adaptive vs. Maladaptive: Blood cells and temperature 

Another key difference between adaptive and maladaptive animals was the 

amount of blood cells at the injury site. Therapeutic approaches to control the immune 

response are among the most important for spinal cord injuries [148], and our research 

provides even more evidence of their key role. We showed that when clotted, these 

cells could be a barrier for axonal regeneration and contribute to the maladaptive 

recovery in cold temperature (Figure 2-9 b). Warm animals showed an accelerated 

recovery, the injury site was free of a clot and the cord regenerated (Figure 2-9 c). It 

remains to be understood the dynamic behavior of the injury, and the real-time 

mechanism through which immune cells move away from the injury site in warm 

temperature.  
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The effects of temperature on spinal cord injuries have been observed for a 

variety of animals. In turtles, warm environments (27-30 ⁰C) increased cell 

proliferation in the CNS compared to colder environments (5-14 ⁰C) [149]. Similarly, 

on the weakly electric fish, spinal cord regeneration at high temperatures (30 ⁰C 

compared to 20 ⁰C) was twice faster than normal [65]. A different approach has been 

used in animals that don’t regenerate, such as rats [150-153] and humans [5, 154, 155], 

where hypothermia treatments (from 37 ⁰C to 32 ⁰C) have been explored because they 

might attenuate the inflammatory response after SCI and reduce secondary damage, 

but these effects still remain controversial [155, 156].  

 

Lampreys and humans control their temperature differently, and their normal 

temperature lies in a different range (10 ⁰C and 37 ⁰C) thus, the ranges at which 

temperature can be varied and the effects on the organism will vary greatly. However, 

the basic principles of cell proliferation at increased temperatures and the attenuation 

of the immune response at low temperature seem to be similar. Lampreys regenerating 

in cold temperatures have what appears to be a “slow-down” immune response leaving 

the blood clotted at the injury site, and in the long term this might lead to a maladaptive 

behavior. In human spinal surgeries, lengthy exposure to hypothermic conditions has 

been associated with complications such as infection [156]. On the other hand, warm 

temperatures could enhance the proliferation of human cells, as it has been observed 

with bone marrow derived stromal cells [157], however fever and hyperthermia are a 

great problem for patients with spinal cord injuries [158-160]. 
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In fact, thermoregulatory dysfunction is a highly common problem after SCI 

[160, 161]. Thus, making a controlled study of temperature changes in humans after 

SCI a highly complex problem. The results showed here demonstrate that the lamprey 

could be an efficient model to study changes in temperature as well as differences in 

the immune response and axonal regeneration. It provides a very clear model for 

maladaptive and adaptive behavior and could be a successful animal model to study 

therapeutic approaches. For example, researchers could study the effects of surgical 

approaches or drugs, such as chondroitinase ABC and how they can improve or worsen 

maladaptive regeneration.  
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Figure 2-9. Diagram of cold and warm regeneration. After complete spinal cord injury, 

both the meninges and spinal cord separate and the animal loses functionality. When 

the animal regenerates in cold temperature (Left), a clot formed that seemed to block 

regeneration. Surprisingly, the same animal model in warm temperature didn’t have a 

clot and the upper and middle areas of the spinal cord regenerated, but not the middle 

part of the cord or the surrounding meninges, in the time we gave them to regenerate 

(2 weeks).   
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Chapter 3: Imaging, structure and biomechanics of adaptive 

and maladaptive regeneration 

 

3.1 Experimental Methods and Rationale  

3.1.1 Rationale  

During spinal cord injury, nerves suffer a strain beyond their physiological 

limits which damages and disrupts their structure. Research has been done to measure 

the modulus of the spinal cord and surrounding tissue; however the relationship 

between strain and spinal cord fibers is still unclear.  

 

In our studies we employed larval lampreys, a jawless vertebrate that has been 

used for genetics [162, 163], animal locomotion [164-167] and spinal cord regeneration 

[61, 78, 168, 169]. Sequencing their genome has provided insights into the principles 

and evolution of vertebrate biology [162]. Lampreys have also been shown to recover 

locomotion after complete spinal transection [78], which makes them an important 

model for spinal cord injury and regeneration [80]. However, the mechanisms to 

achieve complete and adaptive regeneration remain elusive. The notochord, the axial 

support of the organism, can reasonably be expected to play a role in normal animal 

locomotion and recovery after injury. However, the role of the notochord has remained 

unexplored. With the use of in vivo imaging we are now able to fill this void. We show 

here, detailed information regarding the structure and properties of the notochord. 
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3.1.2 In vitro and In vivo Tensile loading testing  

Uniaxial loading experiments were carried out using a custom-made set up 

(Figure 3-1 a) that consists of a set of micromanipulators (Model M-460A-xyz and SM-

13, Newport, Montana, USA) that controlled the overall tissue displacement and a force 

transducer (Force Range 0 to 10.0 mN, Sensitivity 1.0 mN, Resolution 200.0 nN, 

Linearity ±0.2% of full scale over 50% of full scale, ±1.0% of full scale over full scale, 

Maximum Overload Force 100.0 mN, Model 405A, Aurora Scientific, Ontario, 

Canada) . Freshly isolated spinal cords (3-5 cm long) were placed in a chamber filled 

with Lamprey saline solution (58.44 g/mol NaCl, 74.55 g/mol KCl, 110.98 g/mol 

CaCl2, 203.3 g/mol MgCl26H20, 238.3 g/mol HEPES, 180.2 g/mol Glucose, Sigma 

Aldrich, Missouri, USA), to avoid dehydration, and gripped using surgical grade fibers 

to both wires connected to the micromanipulator and force transducer respectively 

(Figure 3-1 b).  

 

The gripping method was modified from [170], a double overhand suture loop 

was used to secure the tissue without slippage; while fibers were compressed at the 

knot, the absence of breaks or slippage allowed consistent behavior from trial to trial. 

Readings were taken in the steady state; ~ 10 min after the spinal cord was stretched 

approximately 0.5 to 2 mm at a time using the manipulator. Each force value (F) was 

then divided by the area of the spinal cord (A) to obtain the stress (ߪ ൌ ி

஺
). For the 

stress-strain calculations, the spinal cord was assumed a cylinder. The diameter was 

measured using a dissection microscope, every strain value the diameter was measured 

to obtain the area for each point. The strain was obtained by dividing the change in 
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spinal cord length (L-Lo) over the original length (Lo), (ߝ ൌ
௅ି௅బ
௅బ
	). The results of 10 

spinal cords without meninges, 5 samples for each section (Head, Middle and Tail) and 

5 cords with meninges were plotted as a stress vs. strain curve. Statistical analysis was 

performed using Student’s t-test and factorial analysis of variance (ANOVA) with a p 

< 0.05.   

 

In vivo experiments were made by first anaesthetizing the animal with MS222 

(100 mg/l). The spinal cord was exposed and the musculature pinned open, but not 

removed. Two polyester glint marks were placed at the start and end of the cord and 

the distance between them measured. Then, both points were cut with a scalpel and the 

shortened cord was measured, this experiment was repeated for 5 different animals and 

the physiological uniaxial strain obtained.  

 

Similarly, in order to understand the physiological threshold levels, we repeated 

this experiment by placing the animal into the most common swimming position. The 

swimming position was defined when the body had two areas of maximum curvature, 

each localized at approximately 25% and 75% of its own length. The animal was 

anesthetized, the musculature pinned open and marks are placed in the spinal cord. We 

placed two marks separated approximately 1 cm in the Head section (below the gills), 

two marks at the Middle section (3 cm below the Head section) and two marks at the 

Tail section (3 cm after the dorsal fin).  
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First the animal was placed straight and the length between each marker was 

measured. Then the animal (while anesthetized) is moved into the swimming position 

and the longitudinal length between each marker was measured and the local uniaxial 

strain is calculated. Even when anesthetized, the animal will adopt the swimming 

position almost automatically, thus the amount of force needed to bend the animal is 

minimal. Statistical analysis was performed using Student’s t-test and factorial analysis 

of variance (ANOVA) with a p < 0.05.  

 



 

 

50 
 

   

Figure 3-1. Tensile loading apparatus. a) Design of the custom made tensile loading 

apparatus which consists of a set of micromanipulators to control x,y and z directions 

and a force transducer to measure the force response, b) Custom made apparatus and a 

magnification of the gripping method of the spinal cord during uniaxial longitudinal 

strains 
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3.1.3 Mathematical modeling 

In order to understand the effect of longitudinal fibers on the uniaxial strain, we 

decided to use a theoretical approach. Consider a composite tissue formed by 

unidirectional fibers (Af) embedded in a matrix (Amtx) (Figure 3-2) with total cross-

sectional area (ܣ௧௢௧௔௟ ൌ ௠௧௫ܣ ൅  ௙). The tissue is subjected to a uniaxial load in theܣ

longitudinal direction (ߪ ൌ ி

஺೟೚೟ೌ೗
 ); assuming that both the matrix and the fibers have a 

linear behavior in the low strain and high strain regions (ߪ ൌ  .( ߝܧ

 

When strains are too low the stress response is small thus we can assume that 

all the fibers have slack (having very low stress) and their contribution to the total stress 

can be ignored. Therefore the load on the total material is mostly due to the matrix 

stress, which can be expressed by: 

 

σ ൌ 	൞
ሺ1ሻ																ߝ௠௧௫ܧ௠௧௫ுܣ

ሺ2ሻ																ߝ௠௧௫ܧ௠௧௫ெܣ

ሺ3ሻ																	ߝ௠௧௫ܧ௠௧௫்ܣ

ߝ                             ൏ 0.2 

 

where ܣ௠௧௫ு ൌ
஺೘೟ೣಹ

஺೟೚೟ೌ೗ಹ
 is the area fraction of the matrix (area of matrix divided 

by the total area of the spinal cord), the H, M and T indicates the corresponding section 

(Head, Middle or Tail). Assuming that the matrix is the same throughout the body, the 

modulus Emtx is the same for all sections.  
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At higher strains when the fibers are straightened, their contribution to the total 

stress becomes significant and using the equistrain rule of mixtures [171, 172] we can 

express the load applied to the tissue as:  

 

σ ൌ 	൞

ሺܣ௙ுܧ௙ ൅ ሺ4ሻ																ߝ௠௧௫ሻܧ௠௧௫ுܣ

ሺܣ௙ெܧ௙ ൅ ሺ5ሻ																ߝ௠௧௫ሻܧ௠௧௫ெܣ

ሺܣ௙்ܧ௙ ൅ ሺ6ሻ																	ߝ௠௧௫ሻܧ௠௧௫்ܣ

ߝ               ൐ 0.2 

 

where ܣ௙ு ൌ
஺೑ಹ

஺೟೚೟ೌ೗ಹ
 is the area fraction of the fibers (area of fibers divided by 

the total area of the spinal cord), the H, M and T indicates which section the area 

corresponds (Head, Middle or Tail). If we assume that all the fibers have the same 

tensile modulus then Ef is the same for all equations.  
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Figure 3-2. Schematic representation of the spinal cord elements considered in the 

composite-material model. This figure shows a simplified model of the spinal cord for 

theoretical analysis that considers the basic elements that are significant during tensile 

loading: the matrix and fibers parallel to the tensile load.  
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3.1.4 Histology and Immunostaining 

To better understand the uniaxial strain response of different sections in the 

spinal cord, we used histology to measure the number of large fibers at the Head, 

Middle and Tail sections. Spinal cords were fixated using Mirky’s Fixative solution 

(National Diagnostics, Georgia, USA), following dehydration in ethanol series; Head, 

Middle and Tail sections were embedded in paraffin and a series of 5 (20 µm thick) 

slices obtained and stained with toluidine blue (Sigma Aldrich, Missouri, USA). 

Microscopy images were obtained for each series of slices and large fibers [173] were 

identified and the number measured using ImageJ (U. S. National Institutes of Health, 

Maryland, USA). 

 

Fresh spinal cords, with and without meninges were stained using fluorescent 

wheat germ agglutinin (WGA, Molecular Probes, Oregon, USA). After isolation from 

the body and removal or not of the meninges, spinal cords were incubated for 5 min at 

4°C in 10 µg/ml concentration of WGA. The spinal cord was washed twice in HBSS 

solution and incubated for 5 min at 37°C in HBSS.   

 

3.1.5 In vivo X-ray phase-contrast imaging (XPC) and polarized microscopy 

X-ray imaging at a synchrotron source offers new possibilities for biological 

research with the ability to image soft tissue in vivo [174] avoiding the complications 

associated with contrast agents [175], as well as the anatomical and mechanical 

disruptions associated with dissection of the intact animal. Through the internal 

visualization of tissue physiological dynamics, researchers have discovered the 
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respiratory movements of the trachea of insects [176]. XPC with its impressive 

temporal and spatial resolution also allows for the visualization of biological tissue 

[174], cancer lesions [177], animal physiology [178] and anatomical details of air-

containing organs [179, 180].  

 

Larval lampreys were anesthetized using tricane (MS-222, 100 mg/ml) for 30 

minutes before each imaging session. They were placed in a polyethylene container 

filled with water, which tightly surrounded the body of the animal. The chamber was 

clamped and suspended in the pathway of the partially coherent synchrotron x-ray 

beam and phase contrast imaging was observed using 20 keV photons (Figure 3-3 a). 

Experiments were carried out at XOR-32ID at the Advanced Photon Source, Argonne 

National Laboratory with all the protocols approved by the animal care (Protocol R-

10-39, IACUC, University of Maryland). 

 

Polarized microscopy was used in combination with histology mainly to reveal 

the collagen fibers of the notochord. The sample was placed between two polarizing 

filters (polarizer and analyzer) and rotated to find the angle of maximum polarization 

(Figure 3-4). The image is produced from the interaction of plane-polarized light with 

a birefrigent tissue sample. After exiting the sample, the light components are out of 

phase and are recombined when they pass through the analyzer. This technique allowed 

us to obtain a high contrast image of the collagen fibers in the notochord tissue.  
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Figure 3-3. Set-up for X-ray phase contrast imaging. a) Schematic for x-ray phase 

contrast imaging, b) Sample holder, c) X-ray imaging station.  
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Figure 3-4. Polarized microscopy configuration.  
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3.2 Biomechanics of the spinal cord before and after injury  

3.2.1 Tensile loading and modeling of an uninjured spinal cord 

Using our custom tensile loading apparatus, we measured the strain-stress 

response of isolated spinal cords and different sections (Head, Middle and Tail). We 

found that the lamprey spinal cord behaves like a soft tissue material [181] (Figure 3-5 

d) with a stress-strain curve characterized by two regions. The low strain region, ~ 0-

18% strain has a modulus of ~0.015 MPa (Table 3-1). As the strain increases, the curve 

changes slope, reaching a higher strain region with a 0.5 MPa modulus (Table 3-1). 

The intersection between the low and high modulus, called the critical strain, was found 

to be an average 18% strain (Table 3-1).  

 

After the cord was isolated from the body, we observed a contraction in length, 

which indicated the existence of a pre-stressed state. Using markers on the spinal cord, 

we found that the cord retracts an average of 10% of its original length. We considered 

this value as the physiological uniaxial strain at rest. Next, we analyzed the local 

uniaxial strains at the Head, Middle and Tail during swimming. We found local uniaxial 

strains at the Middle and Tail sections and almost no local strain in the Head section 

(Figure 3-5 c). If we add the total local uniaxial strain during swimming to the strain at 

rest, we find a maximum local uniaxial strain level of 15%. Therefore, we established 

the in vivo uniaxial strain levels between 10-15% as indicated in Figure 3-5 d.  

 

Similar as for whole cord measurements, we divided the spinal cord into 3 

sections (Head, Middle and Tail) in order to test the homogeneity of the mechanical 
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properties along the spinal cord. We measured the stress response to uniaxial tensile 

longitudinal strain and calculated the modulus for the low and high strain regions. We 

found that the low strain region is statistically equal for all, but the high strain region 

is different for the Tail compared to Head or Middle section (Table 3-1). The critical 

strain was found to be within 16-18 % strain (Table 3-1). 

 

The stress values for the low strain region (0-18%) are statistically equal in all 

sections (Figure 3-6 a); however, at higher strains the stress response shows a 

decreasing trend from Head to Tail (Figure 3-6 a). These results indicate a difference 

in the material properties of spinal cord sections, which could come from differences 

in the number of fibers, matrix composition or meninges. Therefore, we decided to 

explore the effect of the meninges and the number of fibers.  

 

We found that the response of cords with and without meninges was not 

different (Figure 3-6 b). To check we effectively removed the meninges, we used 

fluorescence staining (wheat germ agglutinin, Figure 3-6 c) on cords with and without 

the meninges. We can observe (Figure 3-6 b) that the meninges are successfully 

removed.  

 

Using histology, we analyzed the total area of the spinal cord (Figure 3-7 a-b), 

and the number of large fibers between Head, Middle and Tail sections (Figure 3-7 c). 

The large fibers were measured using toluidine blue stained cross sections, we 

considered large fibers to be those with a radius larger than 20 µm. We found that the 
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total area decreases ~35% from Head to Tail, as can be observed in (Figure 3-7 b). 

Similarly, the number of large fibers decreases ~25% (Figure 3-7 c). These results 

indicate that the number of fibers can potentially affect the tensile response to high 

strains. To explore this effect, we adapted a mathematical model that correlates the 

modulus with spinal cord composition.  

 

From the strain-stress data (Table 3-1) we know the value of the slopes at both, 

high and low strains, and from the histology data (Figure 3-7) we know the total cross-

sectional area of the Head, Middle and Tail sections (Atotal). Therefore, we can solve 

the system of equations 1-6 to obtain Ef and Emtx. Using this model, the modulus of 

the large fibers is 2.4 MPa (Ef) and the matrix is 0.017 MPa (Emtx).  

 

This mathematical model predicts a ~15% decrease in the area fraction of fibers 

from Head to Tail (Figure 3-8), which agrees with histological measurements that show 

a 12% decrease in the area occupied by the large fibers (Figure 3-8). Using the low and 

high modulus of different sections, we were able to approximate the fiber and matrix 

modulus, as well as changes in the concentration of fibers. Therefore, establishing a 

relationship between uniaxial strain and spinal cord composition that can be used in 

future studies with regenerated spinal cords.  
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 Low-strain linear 

region (MPa) 

High-strain linear 

region (MPa) 

Critical 

strain (%) 

Whole cord 0.01578 ± 0.004 0.5 ± 0.1 18±5 

Head 0.0165 ± 0.004  0.57 ± 0.3 16.6 ± 1.2 

Middle 0.0185 ± 0.003 0.45 ± 0.2 17.5 ± 1.2 

Tail 0.0176 ± 0.004 0.2 ± 0.1 18 ± 0.9 

 

Table 3-1.  Moduli for the whole spinal cord and different sections. The table shows 

the calculated modulus for the low-strain and high-strain linear regions using the stress-

strain curves. Critical strain was calculated for the Whole cord, Head, Middle and Tail 

sections (critical strain is defined as the point where the stress-strain curve changes 

slope). Values are averages from 10 samples and error is the standard deviation.  
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Figure 3-5. Mechanical properties of spinal cord. a) Black profile of a lamprey 

micrograph during normal swimming, b) Black profile of a lamprey micrograph at rest, 

c) Physiological measurements of uniaxial strain in the swimming position in the Head, 

Middle and Tail, d) Stress vs. strain data for spinal cord measurements (each symbol 

corresponds to a different spinal cord, N=10); the region indicated by a bracket (0.1 – 

0.15 strain) corresponds to the physiological strain region. Statistical analysis was 

performed using Student’s t-test and factorial analysis of variance (ANOVA) with a p 

< 0.05  
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Figure 3-6. Stress-strain values of spinal cord with and without meninges and the 

different sections (Head, Middle and Tail). a) Average stress at different strain values 

for whole cord, Head, Middle and Tail sections, bars show standard deviation (N=5), 

b) Stress values at different strains for whole cords with and without meninges (N-5), 

c) Fluorescence staining of the spinal cord with (right) and without (left) meninges; 

showing that we were able to successfully remove the meninges. Asterisk in a) 

indicates statistical difference on the head sections vs middle and tail, statistical 

analysis was performed using Student’s t-test and factorial analysis of variance 

(ANOVA) with a p < 0.05. Scale bar is 25 µm in all figures.  
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Figure 3-7. Histology of Head, Middle and Tail sections. a) Histological sections 

stained with toluidine blue, showing the differences from Head, Middle and Tail cross 

sections, arrows point at the large fibers (GF) and spinal cord (SC), b) Average areas 

of the spinal cord from Head, Middle and Tail, c) Average number of large fibers from 

Head, Middle and Tail. The large fibers were measured using toluidine blue stained 

cross sections, we considered large fibers to be those with a radius larger than 20 µm.  



 

 

65 
 

 

 

 

Figure 3-8. Percentage area occupied by the large fibers in the Head, Middle and Tail. 

Comparison of the values calculated by histological sections using toluidine blue 

(Experimental) and the values calculated using the composite material model 

(Theoretical), showing a similar trend from Head to Tail  
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3.2.2 Tensile loading of regenerated spinal cords  

We measured the tensile loading response of regenerated spinal cords after 5 

weeks. Unfortunately the spinal cords of maladaptive animals were fragile and we were 

unable to record any significant stress response during tensile loading. We were able 

to measure the spinal cords of animals regenerating in warm temperature (Figure 3-9). 

The regenerated spinal cords responded similar to control during physiological 

conditions (< 15 %), as the strain increased the stress response of regenerated cords 

was lower than that of uninjured cords (Figure 3-9 a). Then, we calculated the average 

number of fibers in the regenerated spinal cord and compared it to that of control. We 

found that the number of fibers responsible for tensile loading in regenerated cords is 

20% less than the number of fibers in uninjured cords (Figure 3-9 b-c). These results 

further confirm our histological observations in which we concluded that regenerated 

spinal cords have fewer fibers compared to uninjured spinal cords.  

 

3.2.3 Discussion 

We found that the spinal cord has a pre-strain at physiological conditions, which 

is a very simple yet important finding. It indicates that after injury, the spinal cord will 

tend to recoil itself due to the already existent stress, which is an important mechanical 

effect to consider. If nerve function depends on strain [97, 98] then our results indicate 

that normal function is maintained for uniaxial strains between 10-15 %. In our search 

for the elements that affect longitudinal strain, we found no dependence on the 

meninges; in fact it can be seen (Figure 3-6) that they cross the spinal cord 

perpendicular to the direction of the applied force and the fibers. Thus, they are not 
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involved in uniaxial longitudinal strains but might be involved in lateral movements 

during compression or expansion.  

 

Then, we explored the large fibers in the lamprey, which are parallel to the 

direction of the force and follow a distinctive, straight course throughout the spinal 

cord, with a size that makes them easily identifiable through histology [173]. Similar 

to the modulus at high strains, the number of fibers reduces from Head to Tail. This is 

due to the fact that they can narrow, loop, branch or shift position along the body [182]. 

As a result, the focus is placed on the fibers as the load bearing elements for high 

uniaxial longitudinal strains. 

 

To simplify our study, we considered the spinal cord as a material made of two 

components, large fibers [173] and matrix [183] (Figure 3-2). In order to understand 

these elements under uniaxial longitudinal strains, we used a theoretical approach based 

on composite materials, via this model and our experimental data. We calculated the 

modulus of the matrix and fibers, as well as the approximate fraction of large fibers per 

section (Head, Middle and Tail).   

 

According to the model, the modulus of the fibers is in the order of MPa, similar 

to the moduli found in humans, bovines and other animal  spinal cords [114]. Also, the 

fiber modulus is much larger than the matrix modulus, a characteristic shown to be 

necessary for fiber support and reinforcement in composite materials [172]. We were 
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able to calculate the modulus of large fibers and matrix, which cannot be measured 

with conventional experimental methods. 

 

Furthermore, using the uniaxial stress-strain curve, we calculated the 

percentage of fibers in each section (Head, Middle and Tail) with great accuracy 

compared to the results obtained with histology (Figure 3-7). This ability will be later 

used, to analyze regenerated spinal cords and calculate their respective modulus and 

percentage of fibers in the regenerated section. 

 

The main limitation and advantage of the lamprey and the mathematical model 

is their simplicity compared to human spinal cords. Human spinal cord fiber tracts 

change directions as they descend from the cervical to sacral curve, which could affect 

the response to uniaxial tensile loading. Furthermore, the spinal cord contains more 

elements within the spinal cord such as veins and arteries and a more complex set of 

meninges [184]. Thus, human spinal cords will require the model and tensile analysis 

to be more complex. However, the principal concepts still apply, such as the pre-strain 

condition and the different uniaxial strain response due to the number of fibers.  
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Figure 3-9. Mechanical properties of the regenerated spinal cord. a) Tensile loading 

measurements of regenerated spinal cords. Dotted line shows the average response of 

an uninjured spinal cord and colored symbols represent different regenerated spinal 

cords in warm temperature. b) Average number of fibers in a regenerated vs. uninjured 

spinal cord, calculated using the composite-material model. c) Schematic of results.  



 

 

70 
 

3.3 Biomechanics and imaging of the notochord before and after injury 

3.3.1 Biomechanics of the notochord before and after injury 

We measured the response of the notochord to uniaxial tensile loading by using 

the same set-up as the one used for the spinal cord. We measured the tensile response 

of uninjured notochords and notochords from animals regenerating in warm and cold 

temperatures for 5 and 10 weeks. Control notochords had a tensile modulus at low 

strains (< 20%) approximately five times larger than that of the spinal cord (60 kPa) 

(Figure 3-10 a). At higher strains the modulus was only 3 times larger than that of 

control spinal cords (150 kPa) (Figure 3-10 b).  

 

At low strains the modulus of the notochord remained the same before and after 

injury (Figure 3-10 a). In warm temperature and cold temperature the tensile modulus 

was the same after 5 and 10 weeks of regeneration. At higher strains, the tensile 

modulus of animals in cold temperature at 5 weeks was the only one that differ from 

the rest (warm and control).  

 

In cold temperatures, the notochord had a higher tensile modulus after 5 weeks 

(200 kPa vs. 150 kPa, Figure 3-10 b), but after 10 weeks of regeneration the tensile 

modulus was the same as that of warm and uninjured animals. In order to find what 

structural changes are occurring on the notochord after injury we decided to use X-ray 

phase contrast imaging on live animals.  
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3.3.2 XPC imaging of the notochord before and after injury 

Using X-ray imaging on live animals without any contrast agent; due to their 

mineralized nature we could clearly observe the oolites concentrated in the head of the 

animal (Figure 3-11 c). Then, we moved to the notochord (Figure 3-11 d-e), using XPC 

we observed clear vertical seams that run around the width of the notochord (Figure 3-

11 d). These segment seams are clearly a feature of the notochord (Figure 3-11 e) and 

appear to exist along the entire length of the animal. We analyzed the distance between 

segment seams in 4 live animals using XPC (Figure 3-12 a). The variation between 

segment lengths was around 20% but the overall length of the average segment was 

statistically similar between animals. These results were confirmed in isolated 

notochords, and suggest that no segment is identical to the next one.   

 

Then, we imaged the effects of a spinal cord injury on the notochord. We 

carefully injured the spinal cord of animals and placed them back into the XPC 

approximately 5 minutes after injury. This amount of time was the minimum possible 

between transecting the spinal cord and placing the animal back into the beam. Once 

the animal was placed back, we observed striking and unexpected structural changes 

on the notochord (Figure 3-13). Although the injury was at the spinal cord, the 

notochord seemed to have changed its structure (Figure 3-13, right). The segment 

seams appeared to have reduced the distance between them, the upper border of the 

notochord seemed to be damaged and the lower border was bent towards the dorsal 

plane. These almost immediate changes indicated that the structure of the notochord 

was being affected by the spinal cord injury itself.  
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Next, we analyzed the changes in the structure of regenerated notochords in 

warm and cold temperature 5 weeks after injury (Figure 3-14). We found that the 

structure of animals in warm temperature resembled that of uninjured animals with 

straight upper and lower collagen borders. On the contrary, the notochord of animals 

in cold temperature was different. The upper border of the notochord was bent with a 

morphology that appeared to be a set of waves, the lower border was normal in most 

cases. Thus, we can conclude that the structure and mechanical properties of animals 

regenerating in maladaptive conditions (cold temperature) failed to recover the normal 

structure of uninjured animals. Animals regenerating in warm temperatures seemed to 

have a more permissive environment, since the notochord has recovered similar 

structural and mechanical properties of uninjured animals.  
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Figure 3-10. Mechanical properties of the notochord. a) Tensile modulus of uninjured 

and regenerated notochords after 5 and 10 weeks at low strains (<20%). b) Tensile 

modulus of uninjured and regenerated notochords after 5 and 10 weeks at high strains 

(<20%). Statistical analysis was performed using Student’s t-test and factorial analysis 

of variance (ANOVA) with a p < 0.05. 
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Figure 3-11. Live X-ray phase contrast imaging. a) Lamprey anatomy: Yellow-spinal 

cord, Blue-Notochord and Green-Oolites, b) X-ray absorption imaging of the Oolites, 

c) XPC imaging of the notochord with its boundary and d) Close-up on the segment 

seams found within the boundary layers. Scale bar in b) and c) is 0.5 mm and d) 0.1 

mm. 
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Figure 3-12. Distance between segment seams. Measurements were taken for 4 animals 

of the Petromyzon marinus species using live XPC, each color represents a different 

animal. 

 

 

Figure 3-13. XPC immediately after SCI. Left, XPC of the notochord before injury. 

Right, XPC of the same notochord immediately after injury. A thread was placed at the 

injury site so that we could identify the exact location of the injury in the X-ray image, 

see arrow pointing at thread in right image.  



 

 

76 
 

 

Figure 3-14. XPC of the notochord after regeneration. Right, XPC images of the 

notochord before injury, immediately after injury and 5 weeks after regeneration in 

cold and warm temperature. Left, schematic of the notochord according to XPC images. 

Scale bar is 1 mm in all figures. 
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3.3.3 Polarized imaging of the notochord  

To confirm these results, we examined the lamprey notochord sheath under a 

light microscope.  The isolated notochord appears to be clear and continuous (Figure 

3-15 a), but when force is applied, the notochord sheath can be pulled apart into a set 

of rings of collagen (Figure 3-15 d). These collagen rings confirm the existence of a 

segmented rather than a continuous sheath structure.  

 

Polarized microscopy, combined with histology, revealed more features of the 

collagen sheath (Figure 3-15 a).  When stained with toluidine blue (Figure 3-15 c, d) 

we observed the fibers that compose the sheath. The fibers are aligned almost 

perpendicular to the long axis of the animal. Van Gieson’s stain for elastic fibers 

revealed the segment seams along the notochord (Figure 3-15 e, f).  

 

These seams are periodic along the length of the body and are vertical to the 

collagen fibers (Figure 3-15 e). Higher magnification shows that the seams are created 

by the absence of collagen (Figure 3-15 f). It is unknown what tissue is connected to 

the seams inside the body, information that may provide evidence regarding what 

additional role the segments play in the mechanics of the intact animal. 
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Figure 3-15. In vitro polarized microscopy. Further evidence of segmentation using 

histology and polarized microscopy from an isolated intact notochord. a) Bright field 

microscopy of the notochord, showing no segments. b, d, f and g) Notochord stained 

with toluidine blue, showing fiber orientation. c) and e) Notochord stained with Van 

Gieson’s stain, showing the segmentation of the notochord g) Collagen ring 

mechanically removed from the notochord f). Scale bar is 0.5 mm in all figures. 
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3.3.4 Discussion  

The reasons to have a segmented sheath remain to be studied; but it is safe to 

assume that it is linked to other anatomical units that are similarly segmented. In the 

lamprey, these units include the dorsal nerves, muscles and neural arches [185], all of 

which are involved in locomotion. In fact, it’s well known that the notochord plays an 

important mechanical role during animal locomotion [136, 140-142]. The notochord 

sheath is strong but flexible, providing mechanical support that can resist high 

hydrostatic pressures, while allowing the animal to bend easily in different directions. 

The lamprey segmented notochord sheath (Figure 3-16) might be able to distribute the 

exerted forces individually in each segment, localizing the strains while maintaining a 

stable structure overall. If this is true, then having a segmented sheath is more efficient 

for lampreys than a continuous one.  

 

Indeed, segmentation is an inherited property in many biological organisms. It 

allows for individual segments to specialize in response to a variety of needs, without 

having the need to create or replace a whole structure. It is an important evolutionary 

trait believed to have originated from a common ancestor of both arthropods and 

chordates [186]. Lampreys are extant early vertebrates and the fact that their notochord 

has marks of segmentation, might indicate that a segmented axial support was present 

in chordates before the existence of a cartilaginous or a bony skeleton. Segmentation 

in the notochord might not be unique. It may occur in other animals during the 

development of their vertebral column, and might exist even in animals that do not 

develop a cartilaginous or bony skeleton, but this remains to be demonstrated.  
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Figure 3-16 Schematic of the notochord with segments. Before our XPC experiments, 

the notochord was believed to be a straight continuous sheath of collagen (up) but we 

have demonstrated that the notochord is in fact segmented along the collagen sheath 

with an average distance of 0.5 mm (down).  
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3.4 Summary and conclusions  

3.4.1 Importance of physiological strain and the mechanical properties 

We measured the mechanical properties of the lamprey spinal cord and sections 

(Head, Middle and Tail) using a custom made tensile loading apparatus. We found that 

the modulus of the spinal cord at low strains is in the order of 0.015 MPa and at high 

strains of 0.5 MPa. We found that the spinal cord physiological strains are within the 

linear region (10-15%), similar to rabbit peripheral nerves [187]. There was no 

difference on the mechanical properties of the cord after removal of the meninges.  

 

At high strains (> 18%), stress values in the Head and Middle sections are 

greater than stress values at the Tail section. We used a theoretical model based on 

composite materials to calculate the mechanical properties as a function of fibers and 

matrix ratio, that helped us understand the differences at high strains. We found that a 

decrease in the area fraction of fibers in the Tail causes the lower stress response. Using 

this model, we obtained an individual 2.4 MPa modulus for the fibers and a 0.017 MPa 

modulus for the matrix.  

 

Understanding the stress response of the spinal cord holds a great potential in 

tissue engineering, for example in the creation of scaffolds with a similar modulus to 

promote regeneration. It is also important to understand spinal cord strain as it can 

influence function and nerve pathology [97, 98]. As a result, strain could impact 

functionality after regeneration. We have shown that, remarkably, changes in stiffness 

and morphology are correlated, with behavioral outcome: these changes occur only in 
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those animals that are most likely to have maladaptive behavior. There may or may not 

be a cellular and molecular response to these mechanical changes that triggers a 

different behavior in the animal. These cellular, molecular and mechanical changes are 

likely to hold the key to better understand not only spinal cord regeneration but the 

function of the spinal cord and the surrounding tissue.  

 

3.4.2 Evidence of a segmented notochord, evolutionary and mechanical 

implications 

The phylum of chordates and their subphylum of vertebrates are characterized 

by the presence of a notochord at some point during their life. During development, the 

notochord functions as a scaffold believed to pattern surrounding tissues, such as the 

spinal cord. It is also a hydraulic skeleton involved in locomotion that serves as the 

axial support. In vertebrates with backbone, such as humans, the notochord develops 

at the embryonic stage; remnants can be found in the intervertebral discs.  

 

Lampreys are one of the few extant basal vertebrates that keep their notochord 

throughout their life. In research, lampreys are used to study neuronal circuits, animal 

locomotion and spinal cord regeneration. The notochord could play a role as a scaffold 

and axial support, and could prove important in studies of behavior and regeneration. 

However, classical histological techniques are limited to in vitro studies that can miss 

important physiological information. A better understanding of the structural and 

functional role of the notochord is more likely through the use of in vivo techniques.  
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In summary, evidence of a segmented notochord sheath was discovered in the 

living larval lamprey with XPC (Figure 3-16), and was confirmed with polarized 

microscopy and by mechanically removing collagen rings. The use of different 

methods supports our hypothesis that the notochord sheath of lampreys (Petromyzon 

marinus) is in fact, segmented along the body  
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Chapter 4: Enhancing spinal cord regeneration by clot 

removal: From maladaptive to adaptive recovery.  

 

4.1 Experimental Methods and Rationale 

4.1.1 Rationale 

Spinal cord injury (SCI) is a physical trauma that can result in paralysis and 

even death. In humans, there exists no treatment to promote regeneration and even 

animals that are used for regeneration studies do not always recover functionally. 

Lampreys can recover head-to-tail motor coordination only in warm temperatures 

(23⁰C), in cold/native temperatures (10⁰C) their coordination is maladaptive. In our 

effort to understand maladaptive regeneration, we found evidence that, similarly to 

humans, lampreys in cold temperatures (but not in warm) form a clot at the injury site 

that might block/inhibit their regenerative capabilities.  

 

We explored the hypothesis that removing the blood clot from animals in cold 

temperature will enhance regeneration and improve recovery. We created two groups 

of lampreys with spinal cord injuries at 10⁰C. One group had the blood clot removed 

at 1 week using Gel foam®, while the other group was left without clot removal. Both 

groups were allowed to regenerate for a total of 3 weeks, after which swimming 

coordination was recorded. Those animals with the blood clot removed showed an 

improved coordination on their movements, while those without removal remained 
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maladaptive. These results supports the hypothesis that removing the physical blockade 

in spinal cord regeneration can enhance recovery.  

 

4.1.2 Blood clot removal surgery 

Larvae lampreys (Petromyzon Marinus) were anesthetized with 100 mg/ml 

MS-222 (Tricaine MS-222, Argent Labs, Redmond, WA). The animal was placed 

dorsal side up and the musculature opened with an incision at mid-body using a surgical 

blade. The spinal cord was exposed using a pair of tweezers and completely transected 

using a surgical blade, carefully avoiding any other tissue. Animals were divided into 

3 groups and placed in temperature controlled rooms (Table 4-1). The animals were 

fed yeast once a week and their temperature and general health were checked daily. 

Animal maintenance and surgical procedures were approved by the University of 

Maryland’s Institutional Animal Care and Use Committee, IACUC.  

 

An hour after the spinal transection, 100 µL of a solution (1 x 108 beads/mL) of 

1 µm polystyrene read fluorescence beads (Life Technologies, Gaithersburg, MD) were 

then injected in the blood clot using a 32G syringe with a 0.1 mm internal diameter 

(Sigma-Aldrich, St. Louis, MO). The lamprey then was returned to the ice bath for 

about 15 min before being returned to the aquarium (Table 4-1). Fluorescence images 

of the injury site were taken from live animals every 48 hours using a SteREO 

Discovery V20 Zeiss microscope with motorized 20x zoom.  
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For removal experiments, we injured 10 animals at mid-body and placed them 

in cold temperature (10 ⁰C) for 1 week. Then, animals were taken from the aquarium, 

anesthetized and placed in an ice bath for 20 minutes. Using a surgical blade, we 

carefully opened the top of the injury site and removed the blood clot with a piece of 

GelFoam® dressing (Pfeizer Inc., New York, NY) without touching the spinal cord. 

Animals were left to regenerate for an additional 2 weeks and then their coordination 

was measured.  

 

 

 

Condition Coordination 

Analysis 

Fluorescence and 

Optical Imaging 

Time points 

Warm temperature 10 5 0-3 weeks 

Cold temperature 

without removal 

10 5 0-3 weeks 

Cold temperature 

with blood removal 

10 5 1-3 weeks 

 

Table 4-1. Animal groups.  
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4.1.3 Time frequency analysis of head-to-tail coordination 

In order to analyze the recovery after injury, we measured the animal’s head-

to-tail coordination. Uninjured Lampreys oscillate their body (head, mid-body and tail) 

in a coordinated fashion (each traveling wave oscillates at the same frequency). We 

designed an experiment where the reference system was static by holding the tip of the 

animal’s tail with a surgical thread. First, we anesthetized the animal, then using a 7-0 

surgical suture with an elastic thread (Ethicon, Somerville, NJ) we pierced through the 

tail (0.5 cm before the end of the animal). The animal was left to recover and hanged 

vertically in a modified aquarium tank. 

 

The tank was specially designed to allow only 2-directional movement of 

lampreys. Once the animal was awake, we recorded the motion using a digital video 

camera. We transferred the video to ImageJ (NIH, Bethesda, MD) and obtained the 

coordinates of the head, middle and tail sections as a function of time for at least 20 

cycles of oscillatory movement. Then, we used Igor (Wavemetrics, Lake Oswego, OR) 

to do a fast Fourier transform and calculated the characteristic frequency for each 

section. Because the injuries were done at mid-body, we focused on the coordination 

between head and tail movements and calculated the difference between their 

characteristic frequencies. The closer the difference is to zero the better the recovery, 

and vice versa. Lastly, we performed a spectrum analysis using Igor in order to 

demonstrate the different frequency spectrograms between the head and tail of animals 

in cold temperature with and without clot removal.  
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4.2 Regeneration after blood clot removal  

4.2.1 Blood clot dynamics 

Once the fluorescence beads were injected into the blood clot of the transected 

lamprey (Figure 4-1 a), the animals were anesthetized and placed dorsal side up on the 

microscope. We obtained a bright field and a fluorescence image for each animal at the 

injury site (Figure 4-1 d-f). Then, we followed the overall displacement of beads over 

time by measuring the changes in the length of the bead distribution (Figure 4-1 g).  

 

The procedure was repeated for animals recovering in warm temperature 

without removal and cold temperature (with and without removal of blood clot) (Figure 

4-2). We observed that the bead distribution of animals in cold temperature without 

clot removal did not change over the course of 2 weeks (Figure 4-2 a, left column). On 

the contrary, the bead distribution in warm temperature changed in a manner which 

suggested to be an active directional transport (Figure 4-2 a, middle column). The 

dispersion of beads in cold temperature with clot removal further confirmed the success 

of the procedure (Figure 4-2 a, right column) demonstrating that the clot was effectively 

removed.  

 

We measured the longitudinal displacement of beads over time in warm and 

cold temperatures (without removal, Figure 4-2 b). We found that the difference in bead 

displacement was more pronounced after the first week (Figure 4-2 b). In cold 

temperature, beads only displace 50% of their original length after 2 weeks. Meanwhile 
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at warm temperature the beads displace 250% of their original length, a difference of 

over 5 times compared to cold.  

 

These results lead us to believe that removing the clot in cold temperature might 

enhance the regeneration of this animals to a more adaptive endpoint. Therefore, we 

removed the clots of animals in cold temperature 1 week after injury using GelFoam® 

(Figure 4-3). Three weeks after injury, we opened the injury site of animals without 

clot removal and still saw a great amount of blood (Figure 4-3 d). On the other hand, 3 

weeks after injury (2 weeks after removal), the injury site of animals with clot removal 

appeared to be free of all blood clots and the spinal cord seemed to have regenerated 

(Figure 4-3 e). We then sought to analyze whether clot removal had improved or 

worsen the regeneration of animals in cold temperature.  

 

4.2.2 Vertical static swimming and head to tail coordination 

Uninjured animals swim by forming a traveling wave, where each section of 

the animal oscillates at the same frequency creating a coordinated movement. When 

injured, this coordination stops and it must be recovered for their regeneration to be 

called “adaptive”. We used this fact to analyze the effects of clot removal on lampreys. 

Our vertical static swimming set-up retained the static system of reference and 

restricted the movement of the animals to a 2-dimensional plane which improved the 

accuracy of our measurements (Figure 4-4).  
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Control animals have the same characteristic frequency at different sections of 

the animal (head, middle and tail, Figure 4-4). Animals left to recover in cold 

temperature from injuries at mid body lost much of their coordination and had a 

different frequency in each section (Figure 4-5 left). However, when the clot is 

removed, animals left to recover in cold temperature had a more similar frequency in 

each section (Figure 4-5 right). 

 

Each animal recovers in a unique way, we demonstrated this by plotting the 

difference between the characteristic frequencies at the head vs. tail (Figure 4-6). An 

animal without injury has the same frequency in the head and tail (zero difference) thus, 

the greater the difference in frequencies the more maladaptive the recovery. For 6 

animals with clot removal, 4 of them had an excellent recovery (difference below 0.5 

Hz), one of them had a recovery above 0.5 but below 1.0 Hz and another had a more 

maladaptive recovery with a difference above 1.0 Hz. For 6 animals without clot 

removal, all of them had a difference above 0.5 Hz. Two of them were below 1.0 Hz 

and 4 of them were above, reaching a difference of almost 3 Hz. Interestingly, no two 

animals had the same difference between frequencies and when plotted in the same 

graph, their recovery followed a monotonic relationship 

 

To better understand the frequency changes over time we calculated the 

spectrogram of head and tail movements for different animals. Control animals have a 

similar spectrogram in the head and the tail (Figure 4-7 left). The changes in the 

spectrum of frequencies at the head and the tail are coordinated; in other words, at the 
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same point in time, both the head and tail have a similar frequency spectrum. By 

contrast, animals that have maladaptive recovery showed a difference in the 

spectrogram for head and tail movements (Figure 4-7 right). We applied this analysis 

to animals in cold temperature with and without clot removal (Figure 4-8). We can 

clearly observe how animals without clot removal have a maladaptive recovery (Figure 

4-8 right) and those with clot removal have a more adaptive recovery (Figure 4-8 left) 

as indicated by their frequency spectrums. The difference between head and tail 

frequencies and spectrograms indicate that animals in cold temperature with blood clot 

removal have a more adaptive recovery than those without removal. 
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Figure 4-1. Fluorescence imaging of the injury site. a) Sketch of the lamprey, the spinal 

cord is shown in yellow. b) After injury beads are injected at the injury site, blood is 

shown in red and beads in green. c) Live lampreys are placed in a fluorescence 

microscope where imaging is done every 2 days. d) Bright field image of the dorsal 

part at the injury site. e) Superpose image of the fluorescent beads at the injury site. f) 

Fluorescence beads at the injury site. g) Diagram of the measurements for bead 

displacement. System of reference is shown in both left and right columns. Scale bar is 

1mm in all figures. 
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Figure 4-2. Fluorescent beads dynamics after spinal cord injury. a) Dynamics after 4, 

8, 11 and 15 days after injury for animals recovering in warm and cold temperature 

(with and without removal). Blood was removed after 1 week, which is confirmed by 

the lack of fluorescently labeled beads on animals at 11 and 15 days. b) Displacement 

measurements 2 weeks after injury for animals recovering in warm and cold 

temperature. Scale bar is 1 mm in all figures.  
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Figure 4-3. Blood clot removal. a-c) Diagram of blood clot removal, first we injured 

the lamprey and 1 week after injury removed the clot using GelFoam. d) Bright field 

image of a lamprey without clot removal 3 weeks after injury showing the blood at the 

injury site. e) Bright field image of a lamprey with clot removal showing the absence 

of blood at the injury site, 3 weeks after injury and 2 weeks after removal. The yellow 

arrows indicate the location of the injury site.  
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Figure 4-4. Head to tail coordination analysis. We used vertical static swimming to 

record the oscillations of the animal from head to tail. Then, we plotted the oscillations 

as a function of time we used a Fourier transform to obtain the characteristic frequency. 

In this figure we can observe an example of a control animal; all uninjured animals 

have the same frequency from head to tail.  
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Figure 4-5. Frequency analysis of animals with and without removal. Left, cold animals 

without removal show maladaptive behavior, the frequency varies from head to tail. 

Right, cold animals with clot removal show a more adaptive behavior, the frequency is 

more similar from head to tail. The oscillations were obtained using animal recordings 

during vertical static swimming, each plot shows the oscillations of a specific segment 

of the lamprey body. The frequency plots were calculated from each sections 

oscillatory movement using a fast Fourier transform.  
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Figure 4-6. Frequency difference for animals with and without clot removal. Each 

animal is represented by a dot, black dots represent animals without clot removal and 

white dots represent animals with blood clot removal. The closer the frequency 

difference between the head and the tail is to zero, the more adaptive the recovery. We 

can observe that most of the animals with clot removal have a more adaptive endpoint 

compared to those without removal.  
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Figure 4-7. Frequency spectrum analysis of animal locomotion. We calculated the 

frequency spectrum at the head and tail of animals before and after injury. Left, in the 

spectrogram of a control animal we can observe how the head and tail have similar 

spectrums as a function of time. Even when the frequency changes (black, blue and red 

dotted lines) both the head and tail maintain similar oscillations. Right, maladaptive 

animals have different spectrograms for the head and the tail, demonstrating the lack 

of coordination between their movements as a function of time.  
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101 
 

Figure 4-8. Frequency spectrum analysis of animals with and without clot removal. In 

this figure we show the spectrogram of 4 animals, 2 with and 2 without blood clot 

removal. We can observe that for animal 1 and 2 which had clot removal, the 

spectrogram of the head and the tail are similar. Animals 3 and 4 which didn’t had clot 

removal have different spectrograms from the head and the tail. These results 

demonstrate that the regeneration in cold temperature with clot removal has a more 

adaptive recovery than without removal.  
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4.4 Summary and conclusions 

 

  After spinal cord injury, it is widely accepted that the human response creates 

a non-permissive environment that physically blocks regeneration [15]. We used the 

dual regenerative capabilities of the lamprey (mostly adaptive at 23 ⁰C and mostly 

maladaptive at 10 ⁰C) to explore whether a similar obstruction was present in 

maladaptive animals. We used the transport of fluorescent beads at the injury site in 

warm and cold temperature as a way to observe the lamprey’s ability to clean the injury 

site. We concluded that 1 week after injury, the beads were transported away from the 

injury in warm but not in cold temperature (Figure 4-2). This indicated that in cold 

temperature the lamprey ability to clear the injury site is hindered and might be 

responsible for the maladaptive behavior.  

 

Second, we hypothesized that by removing the blood clot at the injury site of 

cold animals we could enhance their recovery to a more adaptive endpoint. After we 

removed the blood from the injury site, we quantified lamprey head to tail coordination 

by using a time frequency analysis (Figure 4-8). This allowed us to analyze the 

difference in locomotion of individual animals in cold temperature, with and without 

clot removal. We established a range of adaptive and maladaptive endpoints, from the 

animal with less coordination to the animal with a coordination similar to that of 

uninjured lampreys (Figure 4-4). In this range, lampreys with blood clot removed had 

a coordination more similar to uninjured lampreys and those without clot removal were 

mostly maladaptive.  
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In our group of lampreys after clot removal, we had 4 animals that recovered 

adaptive coordination and 2 that had a more maladaptive endpoint. Without clot 

removal, all of the animals had a maladaptive endpoint. The difference in head and tail 

coordination of those maladaptive animals varied linearly from 0.5 to 3 Hz. A similar 

linear trend of maladaptive behavior has been observed using electromyography on the 

muscle and spinal cord of lampreys in cold temperature. The factors that vary between 

individual animals which affect the coordination in such a linear fashion remains to be 

understood. Future work could investigate the role of the nerves, neurotransmitters and 

other molecules that could be involved in the varying maladaptive and adaptive 

endpoints. The non-invasive analysis using vertical static swimming and head-to-tail 

coordination can be of great use to determine the functionality of regeneration without 

harming the animal. This could allow researchers to use the same animal for other 

invasive procedures and correlate the level of coordination with the results from 

procedures such as histology and immunostaining for individual animals.  

 

Understanding the degree of recovery is important because what in lampreys 

translates to lack of coordination, in humans could translate to respiratory, 

cardiovascular, motor and sensory malfunctions. Thus, we stress on the fact that nerve 

regeneration does not equal successful recovery and that there exists a range of 

recovery, even in lampreys in the same temperature, with or without clot removal. The 

existence of maladaptive regeneration has been clearly shown for the lamprey, but it 

doesn’t necessarily mean it exists only in this animal model. In fact, we believe that 
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research done in other animal models demonstrates hints of maladaptive regeneration. 

For example, studies done in newts [56] and eel [54] report that not all animals 

recovered normal function after injury 

 

Unfortunately, simply stopping coagulation cannot solve the problem of nerve 

regeneration. SCI is after all, an injury that without coagulation could cause internal 

hemorrhage, external excessive bleeding and death [188]. But the same process can 

also cause obstructions of blood flow and nerve regeneration that induce apoptosis and 

hinder behavioral recovery [189, 190]. Thus, SCI cannot be viewed as a simple static 

process, but a time dependent one in which is important to understand when to leave a 

clot and when to remove it.  

 

Treatments after spinal cord injury have been found to be more efficient early 

after injury, after a few days or weeks [191, 192]. Unfortunately, there is not much 

information on spinal cord injury and/or regeneration during that period of time. 

Therefore, we sought to use fluorescent beads to track the transport of beads away from 

the injury site every 48 hours during a period of 2 weeks, for warm and cold 

temperature. This technique allowed us to measure the rate at which adaptive and 

maladaptive animals were able to clean the injury site from fluorescent beads. We were 

able to measure that the greatest difference between the displacement of beads in warm 

and cold temperature, occurs 1 week after injury. These results helped us hypothesized 

that regeneration in cold temperature could be enhanced by removing the blood clot 1 

week after injury   
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We used fluorescence imaging to better understand the behavior at the injury 

site, which is further proof that the creation of technologies that can detect and monitor 

spinal cord injuries early after injury (in humans) is key to the development of repair 

strategies. It is also important to consider that one treatment might not cure all spinal 

cord injuries. In some cases a pharmacological agent could help recover locomotion 

and in others the removal of fluid might help recover a better neurological outcome. As 

the field of spinal cord regeneration advances, it remains to be seen what the 

combination of molecular therapies with surgical treatments could do to the 

neurological outcome after SCI.   
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Chapter 5:  Summary and Future directions 

 

5.1 General Summary  

5.1.1 Spinal cord regeneration: Adaptive vs. Maladaptive vs. Clot removal 

Overall, from the work generated by this thesis project we have learned some 

of the physical factors that differ between adaptive and maladaptive recovery. We 

believe that the results from this work are not restricted to lampreys and the general 

principles can be translated to other animals. The main principles learned from this 

work are the following: 

 

Specific Aim 1: Adaptive vs. Maladaptive 

1. The spinal cord in warm temperature regenerates faster than in cold 

temperature.  

2. The difference in regeneration might be due to the blood clot that is 

present in cold temperature but not in warm. 

3. The meninges does not seem to be involved in the regeneration of the 

spinal cord in both temperatures.  

 

Specific Aim 2: Mechanics and structure  

1. The spinal cord in physiological conditions is under stress, which 

causes it to recoil after injury.  



 

 

107 
 

2. After regeneration in warm temperature, tensile loading 

measurements indicate that the only few of fibers have regenerated, 

but enough to recover the mechanical properties at physiological 

conditions.  

3. The notochord of lampreys is segmented and suffers mechanical 

damage after injury. 

4. In cold temperature, the notochord does not recover the 

morphological features of uninjured notochords. 

5. In warm temperature, the notochord recovers the morphological and 

mechanical properties of uninjured notochords.  

 

Specific Aim 3: Clot removal and head to tail coordination 

1. In cold temperature, animals are unable to clear the injury site of 

fluorescent beads. 

2. After manually removing the blood clot, animals in cold temperature 

recover to a more adaptive endpoint (compared to animals without 

removal). 

3. A time frequency analysis of head and tail coordination can be used to 

measure the different levels of recovery for each individual animal. 

 

All of our results point at one single scenario: in cold temperature the spinal 

cord has an inhibitory environment that results in maladaptive recovery. The first event 

starts with the injury itself, a complete transection to the spinal cord cuts every fiber 
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and the release of mechanical tension (recoil) creates a larger gap between each nerve-

end that must be regenerated in order to form connections. Furthermore, it appears that 

the damage is not independent to the spinal cord, as we have shown that the notochord 

right after spinal cord injury, shrinks and collapses at the injury site. These events are 

immediate after injury and independent of the temperature, chronologically they are 

the first physical factors that must be repaired in order to achieve regeneration.  

 

Following this chronological order, the next physical factor was found to be the 

blood clot at the injury site. In this case, we have shown that animals in cold 

temperature are unable to displace the blood (and fluorescent beads) away from the 

injury site, which leaves a physical blockade between the nerve ends. This physical 

factor might be the most devastating, the spinal cord in cold temperature might still be 

able to regrow, but with a physical blockade in the way regeneration is inhibited.  

 

The blood clot and the mechanical changes were observed within a 2 week time 

frame and regeneration in cold temperature might eventually be achieved after many 

more weeks. But it was our objective to understand the early events, and analyze the 

factors that can affect the behavioral outcome. As we have shown in our last aim, we 

believe that treatments done early after injury will have the most effect to promote a 

functional outcome, versus treatments that are done late after injury, when a complete 

glial scar has been formed and most neurons have suffered apoptosis. Removing the 

blood clot could be a much easier treatment than removing the glial scar, which 

contains a greater number and greater variety of cells.  
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Therefore, one of the most promising parts of this work, is the fact that 

completely removing the blood clot enhances the regeneration of maladaptive animals. 

This is important because it shows that the outcome of regeneration can be changed by 

removing the physical blockade. In this case, the lamprey is a simpler organism than 

humans and the surgical procedure to remove the blood clot was relatively easy. Human 

anatomy and physiology after injury is much more complex and understanding when 

and how to remove the physical blockade will be a bigger challenge. But our results 

indicate that searching for a way to physically remove this blockade might give us a 

greater reward than a challenge. The development of new technologies to diagnose 

spinal cord injuries and the advancement of surgical techniques will without doubt 

make the challenge of removing such physical blockades easier.  

 

 5.1.2 Blood coagulation and the immune response  

It is clear that the blood clot is one of the main players that influences recovery 

after SCI. In warm temperature the blood clot disappears early after injury, but in cold 

temperature the blood clot blocks regeneration during the 2 week period that we 

covered in this study. Although the scope of this work was not to study the lamprey’s 

immune system, we investigated what is the involvement of blood after SCI in the 

lamprey and other animal models.  

 

A blood clot is formed via a natural process in which blood coagulates after 

injury to prevent excessive bleeding [193]. Lampreys formed a clot in response to the 
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intrusive injury performed in our experiments. But this response is not independent to 

lampreys, most animals (most importantly humans) will also create a clot to prevent 

bleeding, especially after an injury to a major tissue such as the spinal cord.  Therefore, 

an interesting question is: how is the immune response in warm temperature different 

than in cold, and what are the changes that allow for the injury site to be clean of a 

blood clot in warm but not in cold temperature? 

 

Such a contrast in the same animal model is impressive, mainly because only 

by changing 1 variable (temperature) we have remarkable differences in recovery. 

Similarly, by only removing the blood clot without the aid of any pharmacological 

agent we were able to change again the outcome of lampreys, this time from 

maladaptive to adaptive. The fact that removing the clot yielded a positive result does 

not indicate that this will happen with every treatment, thus the necessity to carefully 

analyze animal behavior and establish a range of recovery levels.  

 

Human spinal cord injuries might present a more complicated case. Not only 

there is a more complex anatomy and physiology, but also the damage can vary greatly 

depending on type of injury. Thus, it is important to develop technologies that can 

detect and monitor the spinal cord injury over time. It is also important to consider that 

one treatment might not cure all spinal cord injuries. In some cases a pharmacological 

agent could help recover locomotion and in others the removal of fluid might help 

recover a better neurological outcome. As the field of spinal cord regeneration 
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advances, it remains to be seen what the combination of molecular therapies with 

surgical treatments could do to the neurological outcome after SCI. 

 

5.2 Future Directions  

5.2.1 Electrophysiology studies after clot removal  

Although our time frequency analysis using videos of lampreys can measure 

the level of coordination between body segments, another tool that will give 

information about individual and groups of fibers is electrophysiology. Regenerated 

spinal cords could be used for electrophysiological experiments; by doing this 

researchers could obtain more information about fiber connectivity and the level of 

coordination between rostral and caudal fibers.  

 

Regenerated spinal cords from warm and cold temperature, with and without 

removal could be placed in a cooled chamber (10 ⁰C), super fused with lamprey saline, 

prepared as previously described [169]. Then, recording electrodes could be placed 

above the rostral and caudal sections with respect to the injury site (Figure 5-1). In 

order to obtain locomotor signal, fictive swimming could be induced with application 

of d-glutamate (0.25-0.50 mM), and the two burst nerve recordings digitalized and 

rectified using custom software. For analysis of functionality, bursting of muscle or 

spinal cord fibers could be examined for evidence of abnormal coordination between 

segments rostral and caudal to the lesion site (Figure 5-1).  
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Spinal cord function could be tested by looking at the coordinating system 

during fictive swimming in similar fashion as previously reported [169]. 

Electrophysiology has the disadvantage that the tissue will no longer be usable for other 

techniques such as histology and that the animal has to be sacrificed; but it has the 

advantage that it can record burst of individual or groups of fibers as well as muscle 

recordings. For experiments were the animals need to survive and structural 

measurements are needed, researchers could use the time frequency analysis presented 

in this thesis to correlate the functionality of animal locomotion.  

 

Figure 5-1. Electrophysiology on isolated spinal cords. Frequency burst can be 

measured in the rostral and caudal sections of spinal cords to analyze their level of 

coordination.  

 

 



 

 

113 
 

5.2.2 Molecular studies in adaptive and maladaptive animals 

In this thesis we have carefully characterized the morphological and mechanical 

changes of lampreys after regeneration. However, there is also a need to gain an 

understanding of the changes at the molecular and cellular level. Thus, future directions 

should include the use of cellular (Table 5-1) and molecular techniques (Table 5-2, 5-

3) to understand the differences between regeneration in cold and warm temperature, 

with and without clot removal.  

 

Alternative experiments might include looking at specific proteoglycans and 

proteins in the scar, however due to time and number constrains we summarized some 

of the most important molecules in Table 5-2 and included a complete list of molecules 

in Table 5-3. These tables not only helps us with future directions, but can also be a 

help for potential pitfalls. For example, if GAG staining does not work or the 

expression of CSPGs is not specific, researchers might try to look at more specific 

proteoglycans. Also, if netrin-1 is not found in the spinal cord then researchers could 

try other molecules such as Nogo or MAG. Other experiments besides immunostaining 

can be done in the area of genetics and microbiology.  

 

The expression of CPGs, myelin-associated proteins and neurotransmitters 

might be different for adaptive and maladaptive animals. Immunostaining methods of 

frozen and paraffin sections could be adapted from [56]. Stain for the GAG section of 

CSPGs, could give a general illustration of CSPG expression and localization and 

researchers could analyze the differences between adaptive and maladaptive animals. 
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Other experiments could include expression using antibodies for NG2, neurocan and 

phosphacan which are proteoglycans up regulated after stab injuries [194-196]. For the 

expression of myelin-associated molecules, researchers could choose Netrin-1 since 

the receptors have been found in the lamprey; however if nothing is found another 

option could be to use Nogo, MAG or OMgp antibodies.  

 

For immunostaining in the lamprey, the specificity of the secondary antibodies 

should be verified by treating adjacent sections with secondary antibodies in the 

absence of primary antibodies. Since paraffin processing may affect GAG labeling, 

CSPGs must be analyzed in frozen sections. Expression patterns could be verified in 

whole-mount preparations of isolated spinal cords. In summary, future directions for 

cellular and molecular work could be divided in two set of experiments: Group 1) 

Cellular elements (axons, glial cells, blood vessels) and neurotransmitters, Group 2) 

CSPGs, myelin-associated proteins and adhesion molecules. In this section we have 

provided two tables that will help easily design this set of experiments in lampreys, 

although all of these expression experiments could be easily translated to other animal 

models, only in lampreys we could analyze the difference between adaptive and 

maladaptive behavior.  
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Glial Cells   

   

Staining Method Reagent Elements Revealed 

Toluidine Blue Toluidine Blue 

Nucleus (blue) and 
cytoplasm (light 
blue).Shows general 
structure, completion 
time is a few minutes 

H&E Haematoxylin and eosin 

Most common 
histology method for 
general purpose. 
Nucleus (blue), 
cytoplasm, connective 
tissue (pink-red) 

PTAH Phosphotungstic acid hematoxyli 
Reactive Astrocytes 
(blue) 

Martius Scarlet 
Blue Biebrich scarlet 

Fibrin (yellow), 
collagen (blue), blood 
cells (red) 

Masson's trichrome 
stain 

Hematoxylin, Biebrich scarlet, acid 
fuchsnm, analine blue 

Collagen (blue), 
nuclei (deep blue), 
blood cels and 
muscles, conective 
tissue (red), 
parenchymal tissue 
brain (glia) (pink) 

Myelin 
Mordanting followed by hematoxylin or 
Luxol blue Myelin sheaths (blue) 

Neuroglia 
Cajal's gold sublimate or Hortega's silver 
sublimate 

Astrocytes, 
oligondreocytes and 
microglia (black on 
brown background for 
Cajal's), Nerve cells 
(Red-Cajal's). 
Microglia (blue-Silver 
sublimate) 

Neurons   
   

Staining Method Reagent Elements Revealed 

Nissl 

Methylene blue or cresyl violet or 
hematoxylin. Only Nissl and Myelin can 
be used in combination 

Nuclei of neurons, glia 
and blood vessels 
(blue) 

Silver 
Silver nitrate methods (Cajal, Bodian, 
Bielschowsky, Glees) 

Nerve cell bodies and 
larger dendrites, 
axons and synapses. 
Body (yellow), axons 
and synapses (black) 

 

Table 5-1. Histological Methods for CNS 



 

 

116 
 

 

 

Table 5-2. Immunostaining antibodies 

Molecule Description Group Reference 

Neurofilament  

Neurofilaments play an 
important role in the 
regeneration after SCI 

Cellular 
element [56] 

GFAP 

Protein specific for 
astrocytes and 
ependymal cells in the 
CNS 

Cellular 
element [56] 

Serotonin 

Modulates the central 
pattern generator for 
locomotion 

Neurotrans
mitters [197] 

GABA 

Modulates synpatic 
transmission for 
interneurons 

Neurotrans
mitters 

[197] 

GAG 

Glycosaminogylcan 
(GAG) is a part of most 
CSPGs used for 
localization 

Scar 
(CSPG) 

[198] 

Netrin-1 

Myelin-associated protein 
found to affect axonal 
growth in CNS  

Scar 
(myelin-
associated  
protein) [44, 45] 

NG2 

Chondroitin sulfate 
proteoglycan (CSPG). 
Increase after stab injury  
and column transections 

Scar 
(CSPG) [195, 196] 

Nuerocan 

CSPG. Increase after 
stab injury  and column 
transections 

Scar 
(CSPG) [198] 

Phosphacan 

CSPG. Increase after 
stab injury  and column 
transections 

Scar 
(CSPG) 

 
 
[198] 
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Molecule Description Group Antibody Reference 

Neurofilament  

Neurofilaments play 
an important role in 
the regeneration 
after SCI Cellular element 

Mouse IgG1 
mAb [56] 

GFAP 

Protein specific for 
astrocytes and 
ependymal cells in 
the CNS Cellular element 

GFAP antibody 
(Rabbit) [56] 

Olig1 

Specific for 
oligondreocytes in 
the nervous system Cellular element Goat IgG pAb [56] 

von Wilebrand 
factor 

Labels endothelial 
cells  Cellular element Rabbit pAb [56] 

Hoescht 
Stains for living cell 
nuclei Cellular element 

Blue-
fluorescence 

Sigma-
Aldrich 

Serotonin 

Modulates the 
central pattern 
generator for 
locomotion 

Neurotransmitter
s 

Anti-body for 
neurotransmitt
er [197] 

GABA 

Modulates synpatic 
transmission for 
interneurons 

Neurotransmitter
s 

Anti-body for 
neurotransmitt
er 

[197] 

Dopamine 

Modulation of spinal 
neurons and 
synaptic potentials 

Neurotransmitter
s 

Anti-body for 
neurotransmitt
er 

[197] 

Calcitonin 

Modulation of 
serotonergic 
system, calcium 
homeostasis, pain 
relief  Neuropeptide 

Rabbit 
antibody 

[199] 

Galanin 

Inhibitory 
neuropeptide, 
increased during 
axotomy, involved in 
neural diseases.  Neuropeptide 

Rabbit 
antibody 

[199] 

NG2 

Chondroitin sulfate 
proteoglycan 
(CSPG). Increase 
after stab injury  and 
column transections Scar (CSPG) Rabbit anti-G2 [195, 196] 

Nuerocan 

CSPG. Increase 
after stab injury  and 
column transections Scar (CSPG) 

Mouse anti-
neurocan [198] 

Phosphacan 

CSPG. Increase 
after stab injury  and 
column transections Scar (CSPG) 

Mouse anti-
phosphacan 

[198] 

GAG 

Glycosaminogylcan 
(GAG) is a part of 
most CSPGs used 
for localization Scar (CSPG) 

Mouse anti-
CSPGs (CS-
56) 

[198] 
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Table 5-3. Complete antibody table for CSPGs, myelin-associated protein, adhesion 

molecules, neurotransmitters and neuropeptides, and cellular elements in the spinal 

cord.  

  

Netrin 

Netrin 1 is a myelin 
associated protein 
found to affect 
axonal growth in 
CNS of humans, 
rats and lampreys 

Scar (myelin-
associated  
protein) 

Netrin-1 Chick 
antibody [44, 45] 

Nogo 
Inhibitory molecule 
of the CNS 

Scar (myelin-
associated  
protein) 

Nogo-A rabbit 
pAb [21] 

MAG 
Inhibitory molecule 
of the CNS 

Scar (myelin-
associated  
protein) 

MAG (chick) 
mouse IgG1 
mAb [22] 

Fibronectin Adhesion protein 
Extracellular 
matrix (ECM) 

Anti-body for 
fibronectin [56] 

Collagen Adhesion protein ECM 
Anti-body for 
collagen [56] 

Laminin Adhesion protein ECM 
Anti-body for 
laminin [56] 

Keratin Adhesion protein ECM 
Anti-body for 
keratin [56] 

Chondroitinas
e 

Bacterial enzyme 
that promotes 
functional recovery 
of spinal injury Bacteria 

Chondroitin 
ABC [200] 
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5.2.3 Coordination tests for other SCI treatments 

Treatments for spinal cord injuries (SCI) have greatly evolved with the use of 

molecular and cellular therapies. The use of stem cell therapy [201-206], targeted 

antibodies [207-210] and enzymes [211, 212] designed to control the immune response 

are some examples of molecular methods which have emerged as possible methods of 

treatment for SCI. Although not readily available for human use, these treatments have 

improved the neurological outcome of rodents [207, 211-213]. However, most results 

were effective for only a brief time window immediately after SCI [214-217]. In some 

cases, it may be necessary to use surgical techniques to enhance the effect of molecular 

therapies and prevent malfunctions of spinal circuitry.  

 

In combination with molecular therapies, other techniques include the use of 

scaffolds [109, 213, 218-221], non-stem cell transplants [222, 223] and different 

surgical strategies [224], such as spinal decompression [225-229]. Similarly to 

molecular treatments, patients with surgical decompression done early after injury had 

an improved neurological outcome [224, 226]. Therefore, some researchers have 

concentrated in the use of imaging techniques, such as MRI, to better diagnose the 

damage after SCI in a prompt and effective manner [226, 230-233]. Despite the 

numerous advancements made in these fields, there still remains no way for humans to 

regain nervous function after complete SCI [234].  

 

We have learned that the lamprey is an animal model that can be used to test 

the functionality of regeneration. We used clot removal to measure whether this 
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technique will improve the behavior of maladaptive animals. This same approach could 

be used for other treatments, such as the use of chondroitinase enzyme to degradate 

inhibitory molecules or the use of scaffolds to promote axonal regeneration. 

Researchers could use intraspinal injection of antibodies or enzymes for an inhibitory 

molecule on animals injured at warm and cold temperature (23 °C and 10 ⁰C). Then, 

animals could be euthanized and the cord will be sectioned for immunostaining studies 

or we could use a time frequency analysis to leave the animal alive and observe their 

regeneration as a function of time.  

 

Scaffold implantation could be used to investigate the development of a 

guidance tube or a porous hydrogel to be injected in situ after injury. Collagen gels 

could be investigated; other options are available such as alginate, agarose, hyaluronic 

acid, PEG and others [25]. In order to elaborate the scaffolds, investigators could use 

the mechanical properties of uninjured or adaptive animals that were studied in this 

thesis, so that the environment is permissive for regeneration.  

 

Collagen has been use to promote axonal growth in rats [235] and to reduce 

scarring in human spinal laceration [236]. Collagen offers biocompatibility and natural 

cell adhesion; however, due to the extreme changes in pH and temperature needed for 

their cross linking, they are unsuitable for use as injectable gels. Therefore, gels could 

be done in a mold similar to the neural tube of the lamprey. New preparation 

techniques, such as the use of enzymatic crosslinkers or fibrillogenesis could make it 

possible to use gels in situ [237]. After scaffold implantation, a time frequency analysis 
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could be done to test animal coordination with different gels and observe which gel 

promotes the most effective recovery.  
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