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ABSTRACT

We study the problem of choosing the optimal wavelet basis with compact support for signal representation
and provide a general algorithm for computing the optimal wavelet basis. We �rst brie
y review the multiresolu-
tion property of wavelet decomposition and the conditions for generating a basis of compactly supported discrete
wavelets in terms of properties of quadrature mirror �lter (QMF) banks. We then parametrize the mother wavelet
and scaling function through a set of real coe�cients. We further introduce the concept of information measure
as a distance measure between the signal and its projection onto the subspace spanned by the wavelet basis in
which the signal is to be reconstructed. The optimal basis for a given signal is obtained through minimizing this
information measure. We have obtained explicitly the sensitivity of dilations and shifts of the mother wavelet with
respect to the coe�cient set. A systematic approach is developed here to derive the information gradient with
respect to the parameter set for a given square integrable signal and the optimal wavelet basis. A gradient based
optimization algorithm is developed in this paper for computing the optimal wavelet basis.

Keywords: wavelets, data compression, signal processing.

1 INTRODUCTION

The last few years have witnessed extensive research interest and activities in wavelet theory and its applications

in signal processing, image processing and many other �elds 1; 2 . The most attractive features of wavelet theory
are the multiresolution property and time and frequency localization ability. The wavelet transform decomposes a
signal to its components at di�erent resolutions. Its application actually simpli�es the description of signals and
provides analysis at di�erent levels of detail. There are some successful applications of these properties in the

�elds of signal processing, speech processing and especially in image processing 3; 4; 5 . Wavelet transform di�ers
from short-time Fourier transform (STFT) in the sense of producing a varying time-frequency window for signal
representation. It admits nonuniform bandwidths, so that the bandwidth is higher at higher frequencies, which
makes it possible to implement the wavelet transform through di�erent levels of decimation in �lter banks.

We know that wavelet functions can be used for function approximation and �nite energy signal representations
which are useful in signal processing and system identi�cation. The wavelet basis is generated by dilating and
shifting a single mother wavelet function  (t). The wavelet function is not unique and its design can be related
to that of a power symmetric FIR low pass �lter. Obviously, di�erent wavelets  (t) shall yield di�erent wavelet
bases. However, appropriate selection of the wavelet for signal representation can result to maximal bene�ts of this
new technique. Di�erent wavelet functions may be suitable for di�erent signals or functions to be represented or
to be approximated. It is reasonable to think that if a wavelet contains enough information about a signal to be
represented, the wavelet system is going to be simpli�ed in terms of the level of required resolution, which reduces
the computational complexity of the problem for system implementation. This paper addresses the issue of �nding
the optimal mother wavelet function to span the appropriate feature space for signal representation.

The key to choosing the optimal wavelet basis lies in the appropriate parameterization and the adequate
performance measure in addition to the accurate interpretation of physical phenomena. A method was proposed
for choosing a wavelet for signal representation based on minimizing an upper bound of the L2 norm of error
6; 7 in approximating the signal up to the desired scale. Coifman et al. derived an entropy based algorithm for

selecting the best basis from a library of wavelet packets 8 . However, a direct method to systematically generate
the optimal orthonormal discrete wavelet basis with compact support has not been developed as yet. We proposed

1Email: yzhuang@src.umd.edu. Tel.: (301) 405-6578.
2Martin Marietta Chair in Systems Engineering. Email: baras@src.umd.edu. Tel.: (301) 405-6606.
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an information measure based approach for constructing the optimal discrete wavelet basis with compact support

in our earlier work on adaptive wavelet neural networks 9 . We shall provide here a direct approach to calculate
the optimal discrete wavelet basis.

This paper will study the problem of selecting the optimal wavelet basis with compact support of an appropriate
size. We �rst review brie
y the multiresolution property of wavelet functions and the conditions for generating
a basis of compactly supported discrete wavelets in terms of properties of quadrature mirror �lter (QMF) banks
10 . We then introduce the concepts of information measure as a distance measure and the optimal discrete
orthonormal wavelet basis under the information measure. A systematic approach is being developed here to
derive the information gradient and the optimal wavelet basis. This approach can be implemented in real time
systems due to our parameterization.

2 WAVELET TRANSFORM AND QMF BANKS

2.1 Wavelet Transform

All the basis functions are dilations and shifts of a single function called the mother wavelet. A general form is

 a;b(t) =
1p
a
 (
t� b

a
); (1)

where a 2 R+, b 2 R. The parameters a and b provide scaling and shift of the original function  (t). The wavelet
transform is de�ned as

Xw(a; b) =
1p
a

Z 1

�1

 �(
t� b

a
)x(t)dt: (2)

The discretized version of the wavelet basis functions is

 m;n(t) = a
�m=2
0  (a�m0 t� nb0); m; n 2 Z; a0 > 0; b0 6= 0; (3)

which corresponds to a = am0 and b = nam0 b0, where the size of the shift depends on the scaling factor. We are

interested in the dyadic case, that is, a0 = 2 and b0 = 1. It was shown 11 that it is possible to construct a mother
wavelet function  (x) 2 L2(R) such that for j; l 2 Z, f j;l(x)gj;l2Z with

 j;l(x) = 2�j=2 (2�jx� l) (4)

is an orthonormal basis of L2(R). Any signal in L2(R) can be decomposed to its components in di�erent scales in
subspaces of L2(R) of corresponding resolutions and the reverse is true when the regularity condition for the base

wavelet  (x) is introduced 2; 11 . The base wavelet function  (x) plays a central role in this formulation.

2.2 Multiresolution Approximation

A multiresolution approximation 11 of L2(R) is a sequence fVjgj2Z of closed subspaces of L2(R) such that the
following hold (with Z denoting the set of all integers),
(I).

Vj � Vj�1; 8j 2 Z (5)

+1[
j=�1

Vj is dense in L
2(R) and

+1\
j=�1

Vj = f0g (6)

(II).
f(x) 2 Vj () f(2x) 2 Vj�1; 8j 2 Z (7)

(III).
f(x) 2 Vj =) f(x� 2jk) 2 Vj ; k 2 Z (8)
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and there is a scaling function �(x) 2 L2(R), such that, for all j 2 Z,
�j;l = 2�j=2�(2jx� l))l2Z (9)

is an orthonormal basis of Vj with Vj � Vj�1.
With this setting, Wj , the complement of Vj � Vj�1, can be expressed as

Vj �Wj = Vj�1; (10)

with
VJ = �1j=J+1Wj : (11)

For all j, there is a wavelet function  (x), such that,

 j;l(x) = 2�j=2 (2�jx� l))l2Z (12)

is an orthonormal basis of Wj . The additional information in an approximation at resolution 2�j compared with
the resolution 2�j+1 is contained in the subspace Wj , the orthogonal complement of Vj 2 Vj�1. If we de�ne PVj
to be a projection operator in L2(R) and I to be the identity operator, then

PVj ! I; as j ! �1: (13)

Any square integrable function f(x) 2 L(R2) can be represented as

f(x) =
X
j;l

wj;l j;l(x); (14)

the coe�cients wj;l carry the information of f(x) near frequency 2�j and near x = 2jl.

2.3 Orthonormal Wavelet Basis and QMF

A particular useful setup for our problem is a basis of discrete orthonormal wavelets with compact support. It is
useful for real time implementation on digital computers. The compactness of support provides a means of isolation
and detection of signals at a certain region, which has proven useful in signal processing problems. Our interest is
in parameterizing the discrete wavelet basis functions with a �nite number of parameters to generate the optimal
wavelet basis for signal representation.

>From the multiresolution property of wavelets due to Mallat 11 , for �(t) 2 Vj , we have �(2t) 2 Vj�1 and
�(2t�n) is a basis for the space Vj�1. Hence, we have the expression for the scaling function �(t) with t denoting

time as 2

�(t) =
p
2

1X
k=�1

ck�(2t� k): (15)

The corresponding discrete wavelet is given by

 (t) =
p
2

1X
k=�1

dk�(2t� k); (16)

where the coe�cient
p
2 is for normalization purposes. These are the two fundamental equations for the scaling

function �(t) and wavelet function  (t) which is determined by the scaling function �(t). The scaling function is
to be parameterized by a �nite set of parameters as we proceed. Let us denote h0(k) = ck and h1(k) = dk and take
their Fourier transforms

H0(e
j!) =

X
k

h0(k)e
�j!k ; (17)

and
H1(e

j!) =
X
k

h1(k)e
�j!k : (18)
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Figure 1: (a) Wavelet analysis QMF bank and (b) its equivalent four channel system

The coe�cients fckg and fdkg can be identi�ed with the impulse response of a low pass �lter and a high pass
�lter respectively. The frequency domain versions of the fundamental equations are available by taking the Fourier
transform of Equation (15) and Equation (16) with �(!) and 	(!) being their Fourier transforms respectively.

�(!) =
1p
2
H0(e

j!=2)�(!=2) (19)

and

	(!) =
1p
2
H1(e

j!=2)�(!=2) (20)

These two equations can be used recursively to generate the scaling and wavelet functions.
We need to consider the case when H0(z) is a causal FIR �lter, i.e., there are only �nite many nonzero ck for

the �lter. Without loss of generality, we assume that ck 6= 0 when k 2 [0;K] where K is a positive odd integer.
The scaling function �(t) can be nonzero only on [0;K] due to the �nite duration of the sequence fckg. The base
wavelet function obtained through �(t) is also compactly supported. With the FIR assumption, the fundamental
equation for the scaling function becomes

�(t) =
p
2

KX
k=0

ck�(2t� k): (21)

The corresponding discrete mother wavelet is given by

 (t) =
p
2
KX
k=0

dk�(2t� k); (22)

We need to �nd the conditions for the generated wavelet function to produce an orthonormal basis for a subspace
of L2(R) for function approximation and signal representation. Interesting enough, the dyadic orthonormal wavelet
functions can be related to binary tree structured QMF banks constructed from the two basic FIR �lters which
determine the scaling function and the wavelet function.

Figure 1 (a) shows a three level dyadic tree structured QMF bank for wavelet transformation. The input
sequence x(n) is decomposed to di�erent resolutions by passing the signal through the QMF bank. The output xi;n
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Figure 2: (a) Wavelet synthesis QMF bank and (b) its equivalent four channel system

are the related wavelet coe�cients. Figure 1 (b) provides the equivalent four channel �lter bank which is derived
from (a) through block transforms. Figure 2 demonstrates the corresponding synthesis QMF bank whose input
is the sequence of the wavelet coe�cients while the output is the reconstructed signal ~x(n) which is the wavelet
representation of the original signal.

Theorem 2.1 Let H0(z) and H1(z) be causal FIR �lters, then the scaling function �(t) and the wavelet function
 (t) generated by the QMF bank of Figure 1 and Figure 2 are causal with �nite duration Kb0. Further, if H0(z) and

H1(z) satisfy the paraunitary condition 10 , jH0(1)j =
p
2 and H0(e

j!) 6= 0 while j!j < �=2, the wavelet functions
 j;l(t) are orthonormal.

The condition imposed for orthonormality of wavelets can be relaxed when the number of levels of the QMF tree
is �nite, in this case, both the scaling function and the base wavelet function are obtained through �nite recursion
by using Equation (19) and Equation (20) respectively, i.e., the paraunitary condition alone is enough to guarantee

the orthonormality of the wavelet functions. A proof of this fact in the frequency domain is provided in 10 . As a
matter of fact, this is the usual situation in practical application and implementation.

Lemma 2.1 Compactly supported scaling function and wavelets generated through the �nite recursion are orthonor-
mal if the matrix

H(!) =
�

H0(e
j!) H1(e

j!)

H0(e
j(!+�)) H1(e

j(!+�))

�
(23)

is paraunitary for all ! for the two-channel quadrature mirror �lter (QMF) bank.

This is the constraint that the parameters ck should satisfy. In particular, the cross-�lter orthonormality implied
by the paraunitary property, is satis�ed by the choice of

H1(z) = �z�KH0(�z�1); K odd (24)

or in the time domain,
h1(k) = (�1)kh0(K � k): (25)

As we can see from the above, both the scaling function and the wavelet function depend on the selection of fckg
for k 2 [0;K]. As a consequence, the dilations and shifts of the base wavelet depend on the selection of this set of
parameters subject to the paraunitary condition imposed on the �lters of the QMF bank.

5



3 OPTIMALDISCRETEWAVELET BASISWITH COMPACT SUP-

PORT

3.1 Parameterization of Wavelet Functions and Information Measures

We �rst introduce a distance measure for optimization purpose. Inspired by the work in 8 , we de�ne an additive
information measure of entropy type and the optimal basis as the following.

De�nition 3.1 A non negative map M from a sequence ffig to R is called an additive information measure if
M(0) = 0 and M(

P
i fi) =

P
iM(fi).

De�nition 3.2 Let x 2 RN be a �xed vector and B denote the collection of all orthonormal bases of dimension
N , a basis B 2 B is said to be optimal if M(Bx) is minimal for all bases in B with respect to the vector x.

We shall de�ne a distance measure between a signal and its decompositions to subspaces of L2(R) motivated

by Shannon entropy (Shannon's formula) 12

H(X) = H(P ) = �
X
x2X

P (x) logP (x); (26)

which is interpreted as a measure of the information content of a random variable X with distribution Px = P in
information theory.

De�nition 3.3 Let H be a Hilbert space which is an orthogonal direct sum

H = �
X

Hi; (27)

a map E is called decomposition entropy if

E(v;	) = �
X kvik2

kvk2 log
kvik2
kvk2 (28)

for v 2 H, kvk 6= 0, such that

v = �
X

vi; vi 2 Hi; (29)

and we set
p log p = 0; when p = 0: (30)

Entropy is a good measure for signal concentration in signal processing and information theory. The value
of expE(v) is proportional to the number of coe�cients and the length of code words necessary to represent the

signal to a �xed mean error and to error-less coding respectively. The number kvik
2

kvk2
is the equivalent probability

measure in the decomposition entropy which is the stochastic approximation of Shannon entropy since the density
function of the signal is unknown. Entropy obtains its maximum when energy of the signal is uniformly distributed
in its frequency domain. On the contrary, lower entropy value means higher concentration of the signal energy
over certain frequency bands. In our formulation, energy concentration is identi�ed with a model of lower order
or networks with less complexity. The implication of using entropy as a performance measure takes advantage of
the fact of the nonuniform energy distribution of the signal or system in consideration over its energy spectrum.
The optimization of the wavelet basis is �nding the suitable wavelet for a certain class of signals which have energy
concentration at certain frequency bands. In other words, we are seeking a representative of certain class of signals
to generate suitable subspaces in which the decomposition entropy is minimized or equivalently that the energy of
the signal is concentrated.

Let  (t) be the mother wavelet function and let 	(t) represent the orthonormal discrete wavelet basis of L2

generated by dilation and shifting of  (t), similarly, we de�ne 	j to be the basis of Hj . We write 	(t) = f j;l(t)g
and 	j(t) = f j;l(t)gl2Z respectively. We treat both 	(t) and 	j as operators and thus de�ne the following.
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De�nition 3.4 Let 	 be a basis given above, a base operation is de�ned to be a map from L2(R) to a set of real
numbers, i.e., 	(t)f(t) = ffj;lgj;l2Z where fj;l = hf(t);  j;l(t)i for all f(t) 2 L2.

Consider VJ , the subspace of L
2(R), with

VJ = �1j=J+1Hj ; (31)

and Equation (14), let M and N be appropriate positive integers, we truncate the approximation in Equation (14)
to a scale up to M , we have

f(x) =

MX
j=�M

NX
l=�N

wj;l j;l(x): (32)

The subspaces used to approximate the function f(x) has a mesh of size (2M + 1)� (2N + 1) as in Figure 3.
Given a function or signal f(t) 2 L2(R) and a base wavelet function  (t) with a �nite mesh of size (2M +1)�

(2N + 1), we decompose the signal to the orthogonal subspaces as

f(t) =

MX
j=�M

NX
l=�N

fj;l j;l(t): (33)

We are going to �nd the optimal wavelet base function  (t) for a given signal f(t) such that the additive information
measureM is minimized. The result of the base operation 	f(t) appears as the weights on the nodes of the mesh.
The weights on the vertical line with coordinate j form the number set produced by 	jf(t).

Although the decomposition entropy is a good measure for the \distance", it is not an additive type of map
because the norm kvk is used to scale the vector. We thus further introduce a cost functional

�(	; v) = �
X
j

kvjk2 log kvjk2 ; (34)

which relates to the decomposition entropy through

E(v;	) = kvk�2 �(�; v) + log kvk2 (2M + 1): (35)

As shown in the above expression, the cost functional � takes the wavelet basis 	 and the signal vector v as its
arguments. For any �xed signal, it is a functional of the basis and hence that of the wavelet function  (t). The
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function in (34) is an additive measure. Since the above two functionals share the same set of minimal points, we
minimize the functional �(�; f) to �nd the optimal wavelet basis through multiresolution decomposition of a given
signal of �nite energy.

The weight of the decomposition of the signal f(t) on a subspace Hj is measured by a subnorm kfjk de�ned as

kfj(t)k =


PHj

[f(t)]


 ; (36)

where

kfjk2 =
NX

l=�N

f2j;l: (37)

Similarly, the norm of the decomposed signal is given by

kf(t)k2 =
MX

j=�M

kfjk2 : (38)

3.2 Sensitivity Gradient of Wavelet Components

We need to further compute
@fj;l
@ck

which is a measure of the sensitivity of the components of the signal decomposition
with respect to a wavelet basis versus the change of the de�ning parameter set of the mother wavelet. One can
compute this quantity through numerical methods from the relations and de�nitions. Based on the de�nition of
information gradient and the properties of QMF discussed earlier, we derive an explicit expression below.

Lemma 3.1 The sensitivity gradient
@ j;l

@ck
of the component  j;l of the wavelet basis 	 with respect to the parameter

ck is given by

@ j;l
@ck

=
p
2�j+1

X
n

�
(�1)K�k�(2�j+1t� 2l � n)

+ (�1)n
p
2cK�n�(2

�j+2t� 4l � 2n� k)
i
: (39)

Proof:
From the fundamental equation of wavelets (22) and the wavelet basis function,

@ j;l
@ck

=
p
2�j+1

@

@ck

X
n

h1(n)�(2
�j+1t� 2l� n); (40)

or
@ j;l
@ck

=
p
2�j+1

X
n

�
@h1(n)

@ck
�(2�j+1t� 2l� n) + h1(n)

@

@ck
�(2�j+1t� 2l � n)

�
: (41)

From Equation (21), we have
@�(t)

@ck
=
p
2�(2t� k): (42)

hence,
@

@ck
�(2�j+1t� 2l� n) =

p
2�(2�j+2t� 4l � 2n� k): (43)

We next need to �nd @h1(n)
@ck

. From the time domain relation (25) of the QMF, we have ,

h1(n) = (�1)nh0(K � n) (44)

with h0 being compactly supported on [0;K]. Thus,

h1(n) =
@

@ck
(�1)ncK�n; (45)
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and there is only one nonzero term when K � n = k. This yields,

@h1(n)

@ck
= (�1)K�k: (46)

The lemma is proven through (43) and (46).

2

This lemma establishes a direct link between the rate of change of the components in the basis 	 and the variations
of the parameters in the fundamental equations of wavelets, which leads to the next theorem. We introduce the
following theorem to show the relationship between the information measure and the parameter set fckg and the
relation here shall provide a clue for developing an algorithm to �nd the optimal base wavelet function for signal
representation.

Theorem 3.1 Let �(�; �) be the additive information measure and [0;K] be the compact support for fckg and 	 be
the corresponding wavelet basis from dilations and shifts of the wavelet  (t). Let f(t) be a �xed signal in L2(R).
Then the gradient of the information measure with respect to the parameter set fckg for the given signal is described
by

@�(	; f(t))

@ck
= �

p
2�j+2

X
j

X
l

log 2 kfjk2

� fj;l
X
n

�
(�1)K�k 
f(t); �(2�j+1t� 2l� n)

�
(47)

+(�1)ncK�n


f(t); �(2�j+2t� 4l� 2n� k)

��
:

Proof:
By the chain rule, we have the information gradient

@�(	; f(t))

@ck
=
X
j

@�(	; f(t))

@kfjk2
@kfjk2
@ck

: (48)

The de�nition of information measure �(f(t)) in (34) yields,

@�(	; f(t))

@kfjk2
= � log kfjk2 � 1

= � log 2 kfjk2 ; (49)

with 2 being the base of the log function. We use the chain rule again,

@kfjk2
@ck

=
@

@ck

X
l

f2j;l

= 2
X
l

fj;l
@fj;l
@ck

: (50)

We have so far
@�(	; f(t))

@ck
= �2

X
j

X
l

log 2 kfjk2 fj;l @fj;l
@ck

: (51)

Since
@fj;l
@ck

=

�
f(t);

@ j;l
@ck

�
; (52)

the result from the previous lemma concludes the proof.
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2

This theorem demonstrates an explicit relation among the gradient of the additive information measure, the
parameter set fckg and the measured signal f(t). It will facilitate the search for the optimal wavelet basis due to
our parameterization and the information measure. This algorithm starts by assigning an initial set of parameters
which form the low pass �lter of the QMF bank which is followed by the generation of both the scaling function
�(t) and the wavelet  (t) through a recursive process. The wavelet decomposition is implemented through passing
the input signal through the QMF bank composed of H0(z) and H1(z). The 
ow chart in Figure 4 describes this
process.

4 ALGORITHMS

We have identi�ed the problem of �nding the optimal wavelet basis 	 with that of �nding a parameter set fckg such
that the additive information measure � is minimized. Once the set fckg is determined, both the scaling function
� and the base wavelet function  can be derived afterwards. Equipped with the above theorem, the information
gradient is available, and di�erent optimization schemes can be applied to solve this problem. We have developed
a basis selection algorithm based on the steepest descent method as follows. To simplify notation, we denote the
parameter set fc0c1 � � � cK�lg by a vector C.

Algorithm 4.1 Computation of the optimal wavelet basis

Step 1: Set i := 1,
�0 := 0,
mesh parameters M;N ;

Initialize vector C0;
Input f(t).

Step 2: If Ci dose not satisfy the constraint,
then, modify Ci and repeat Step 2.

Step 3: Ci := Ci�1 + pi�1
@�

@Ci�1
.

Step 4: Compute � and  .
Step 5: Compute �.
Step 6: If j�i � �i�1j > �,

i := i+ 1, go to Step 2.
Step 7: Output the optimal basis 	 and stop.

The mesh size is governed by the choice of parameters M and N . Obviously, when M and N turn to in�nity, the
supporting subspace spanned by the dilations and shifts of the base wavelet turns to the space L2(R). The size of
the mesh is identi�ed with the complexity of the resulting wavelet system. The constraint on the parameter ck is
dominated by the unitary property of the QMF bank which can be transformed into a set of algebraic equations.
The parameters M and N can be predetermined by the time and frequency localization property of the signal in
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consideration. We can also perform an adaptation scheme to generate the system with the appropriate order. This
is realized by a modi�ed algorithm as follows.

Algorithm 4.2 Computation of the optimal wavelet basis with variable mesh size.

Step 1: Set i := 1,
�0 := 0,
mesh parameters M;N ;

Initialize vector C0;
Input f(t).

Step 2: If Ci does not satisfy the constraint,
then, modify Ci and repeat Step 2.

Step 3: Ci := Ci�1 + pi�1
@�

@Ci�1
.

Step 4: Compute � and  .
Step 5: Compute �.
Step 6: If j�i � �i�1j > �,

i := i+ 1,
M :=M + 1,
N := N + 1, go to Step 2.

Step 7: Output the optimal basis 	 and stop.

This algorithm starts from an initial mesh size determined by M and N in step 1. While updating the parameter
set fCig, the algorithm adjusts the size of the mesh until the error tolerance is met to �nish the iterative process.
The sequence of order updating and parameter updating can be organized adequately for reducing computation
complexity.

5 CONCLUSIONS

This paper has provided a direct approach to construct an optimal orthonormal wavelet basis with compact support
for signal representation. The cost functional, an additive information measure, is introduced based on the decom-
position entropy of the given signal with respect to an initial wavelet basis. This entropy measures the nonuniform
energy concentration of the given signal of �nite energy in the sense of being square integrable. The sensitivity of
each dilation and shift of the base wavelet function  (t) with respect to the governing coe�cients has been found,
which establishes the gradient of the information measure versus the parameter set. The parameterization of both
the information measure and the base wavelet allows an explicit expression of information gradient with respect to
the optimization parameters and thus paves the way to an e�cient basis selection algorithm.

The constraint on the optimal basis selection can be removed through appropriate parameterization and struc-
ture analysis of the corresponding QMF bank to yield an unconstrained optimization problem. The results of
this research shall appear in a forthcoming paper. This methodology of the optimal basis selection in a general
setting is useful not only for signal approximation and reconstruction in L2(R) but also for data compression and
system identi�cation. In the context of pattern recognition, it is also a way to construct the feature space and for
partitioning the signal space according to its representatives. The parametrization of the cost functionals described
here is very helpful; other forms of measures or cost functions may be introduced depending on the contexts of the
actual physical problems.
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