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Chapter 1: Introduction 

1.1 Research Background 

Taxi transportation has become an indispensable part of today’s public transportation 

system. Similar to private vehicles, taxis have high mobility and high accessibility. 

However, taxi transportation also raises public’s attention by bringing more traffic 

congestion, fuel consumption, air pollution and high personal travel cost. Solving 

these problems is crucial to the future development of taxi transportation.  

According to New York 2014 Taxicab Fact Book, there are on average 485,000 

yellow taxi trips, and 600,000 passengers per day (Bloomberg & Yassky), which 

gives us an average of 1.24 passengers per taxi trip. Assuming a typical taxi has four 

passenger seats, this leaves 2.76 unoccupied passenger seats per taxi trip and 

1,338,600 unoccupied seats for all the yellow taxi trips in New York in one day, 

which means there are 489 million unoccupied seats for all the yellow taxi trips in 

New York in one year. Effectively using these unoccupied seats is a vital point in the 

current transportation situation. 

Meanwhile, taxi riders have difficulty getting taxi cabs during peak hours in many 

major cities. There is new data to confirm what generations of New Yorkers have 

long known in their bones: just as the afternoon rush is about to begin, the taxicabs 

disappear by the hundreds. From 4 to 5 p.m., the traditional hour for taxicabs to 
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change shifts, the number of active taxicabs on the streets falls by nearly 20 percent 

compared with an hour before (Grynbaum, 2011). 

2014 Taxicab Fact Book(Bloomberg & Yassky) also gives us the shift information 

with real-world taxi data as follows: 

 

Figure 1 Percent of Shifts Started by Time of Day (15-minute Increments)  

As we can see from Figure 1, fleet vehicles tend to start their shifts around a 

centralized time for both the AM and PM shifts. This is especially true on weekdays 

when on average, 39% of vehicles operated under this model start their evening shifts 

in the 5:00-6: 00 PM hour, with over 10% starting in just the 5:00-5:15 block alone. 

The morning shift start times are also clustered to a degree, but less than the evening 

shift. In the morning shift, 28% of fleet vehicles begin weekday AM shifts in the 

6:30-7: 30 PM hour, on average (Bloomberg & Yassky). 
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As shown in Figure 2, there is a daily spike in the percentage of available taxis that 

are occupied between 4 PM and 6 PM each day. On average, 64% of taxis are 

occupied during these hours (Bloomberg & Yassky). 

 

Figure 2 Average Percentage of Taxis Occupied by Time of Day (15-minute Increments)  

Increasing the number of taxicabs seems like an obvious solution to the lack of 

taxicabs during peak hours. However, this will cause more traffic congestion for the 

entire road network. Considering the uneven distribution of taxi occupancy rate and 

the large number of unoccupied seats, a dynamic taxi-sharing (DTS) service which 

can allow more than one taxi users ride on the same taxi together and can be adjusted 

to balance the real-time taxi occupancy rate is necessary to alleviate the issue.  

Technological development is the feasibility enabler to the DTS idea. 64% of 

American adults now own a smartphone, up from 35% in 2011(Smith, 2015). Two-
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thirds of New York taxi passengers own or use a smartphone. 55% say they would 

like the option of using their phone to locate taxicabs, and 54% say they would pay 

for their rides with their phone if they could do so (Bloomberg & Yassky). The 

growing ubiquity of Internet-enabled mobile devices partially enables practical 

dynamic ridesharing (Hartwig & Buchmann, 2007).  

Although the technology is already available, DTS has not been well studied and 

applied. The development of algorithmic approaches for optimally matching taxi 

drivers and users in real-time and the corresponding taxi fare calculation scheme is 

very central to the development of the concept.  

1.2 Advantages  

The DTS can bring many advantages to the taxi providers, users, and the society as 

follows: 

(1) The decrease of personal travel cost 

Sharing the taxi ride with others allows riders to save money on the taxi fare. 

(2) The increase in users  

The price elasticity of demand for personal transportation services is very high. When 

Uber (an online transportation network company which allows consumers with 

smartphones to submit a trip request which is then routed to Uber drivers who use 
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their own cars) launched its low-cost UberX offering in the summer of 2012, the 

company quickly realized that the demand for its transportation services is highly 

elastic. As the company achieved lower and lower per-ride price points, the demand 

for rides increased dramatically. A lower price point delivered a much better value 

proposition to the consumer, yet remained a great business decision due to the 

remarkable increase in demand (Deamicis, 2015). 

Real data has already proved that similar products to DTS can help the taxi service 

providers gain more users from the launching of a DTS similar product – UberPOOL 

(a carpool service Uber offers which will be further introduced in Chapter 2). 

According to the data Uber released on its blog, until April 2015, millions of trips 

have been taken on UberPOOL since it launched in August 2014. Thousands take it 

five times a week during commuting hours in the cities where UberPOOL is active. In 

some concentrated neighborhoods, match rates during this time of day are at 90 

percent (Myhrvold, 2015). 

(3) Fewer cars on the road and fewer CO2 emissions 

Dynamic Taxi-Sharing could be part of the solution for urban transportation 

congestions and car emissions. The taxi providers will need fewer drivers to serve the 

same amount of taxi users and thus reduce the emission and help elevate the 

congestion during peak hours. Take UberPOOL data as an example, if we assume the 

UberPOOL riders’ alternative method is individual personal Uber rides, the miles 
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savings estimate for San Francisco (the distance difference between the sum of the 

individual rider routes and the UberPOOL route) is about 674,000 miles from 

February 20th to March 20th, 2015. Conservatively assuming that every San 

Francisco UberX vehicle is a Toyota Prius with the gas mileage of 50 mpg, 

UberPOOL trips saved around 13,500 gallons of gasoline. Accounting for a savings 

of 8.91 kg of atmospheric CO2 emissions per gallon, San Francisco UberPOOL 

prevented about 120 metric tons of CO2 emissions from February 20th to March 

20th, equivalent to the output of over 128,000 pounds of coal (Myhrvold, 2015). 

(4) More social opportunities for users 

DTS service allows more users in a taxi and thus can give taxi riders and drivers more 

opportunities to talk to each other. The service sometimes even functions like a blind-

date and opens the door to romance. Taking a similar product UberPOOL as an 

example; Uber says that at least one couple, who they identify only as Oliver and 

Jennifer, are now engaged after they found themselves riding together to the same 

restaurant in San Francisco (Wagstaff, 2015). 

1.3 DTS System Structure 

We use the term Dynamic Taxi-Sharing (DTS) to describe an automated system that 

facilitates taxi users to share one-time taxi trips in their desired travel times with other 

taxi riders heading in a similar direction. The system automatically matches riders 

http://www.fueleconomy.gov/feg/bymodel/2014_Toyota_Prius.shtml
http://www.eia.gov/oiaf/1605/coefficients.html
http://www.epa.gov/cleanenergy/energy-resources/calculator.html
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and drivers with certain sequences and calculates the fare for the shared taxi trip. The 

system will also adjust its parameters to balance the real-time taxi occupancy rate in 

the area. 

We assume the DTS system (shown in Figure 3) consists of three parts which can be 

connected to and communicate with each other through the internet: 

 

Figure 3 DTS System Structure 

(1) Taxis and taxi drivers provide current location and availability. The locations 

of all taxis in the system are tracked and monitored by GPS. The On-board 

Units (can be mobile phones) automatically gather this information at a certain 

time window and send updates to the management server. The drivers will 
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receive the matched taxi users’ information (pick-up and drop-off location, 

preferred time window, contact information) after being matched.  

(2) Taxi users order DTS service using their mobile phones. They enter their travel 

origins, destinations, number of travelers (limited to two at most), earliest and 

latest arrival time through a mobile app. The users will receive the matched taxi 

driver’s information (current location, estimated arrival time, vehicle 

information, contact information) after being matched. They have the final 

option to accept or reject the match. 

(3) Management center operates a server that receives all the information from taxi 

drivers and taxi users, matches users to taxi drivers, calculates the estimated 

fare for each taxi user and sends all the information back to the drivers and users 

in real time. If both taxi driver and users accept a proposed match, the driver 

will pick up and drop off the taxi users in a certain assigned sequence. The 

server will also automatically collect the fare from all users to the taxi drivers. 

The location, status of the drivers and users, will also be monitored during the 

DTS ride and sent back to the server so that the taxi provider can track and 

confirm the service status at all times. The occupancy of all the taxis in the 

system will also be monitored. 
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There are many challenges to implementing this DTS system. The key point of the 

DTS system is how to optimally match the taxi drivers and users on behalf of the taxi 

providers and automatically calculate the taxi fare for each user.  
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1.4 Contribution 

This thesis develops a model that gives the matching results for DTS taxi drivers and 

users; each matching result will contain both pick-up and drop-off sequences, as well 

as develop the corresponding fare calculation scheme. The main contributions of this 

thesis can be summarized as follows: 

 We propose a matching model to match taxi drivers and user pairs on behalf of 

taxi providers. The taxi providers can maximize their profit by launching the 

DTS system. 

 We develop a taxi fare calculation scheme which gives both taxi drivers and 

riders monetary incentive to use the DTS system. Besides, the scheme can self-

adjust according to the current taxi occupancy rate to balance the occupancy 

rate over time. 

 We introduce a clustering approach to narrow down the search space for the 

integer programming model so that the model can give matching results more 

efficiently. 

 We perform case studies to validate the feasibility and the effectiveness of the 

DTS system. 



 

11 

 

1.5 Structure of Thesis 

The organization of this thesis is as follows. In Chapter 2, we summarize the previous 

study in this field. In Chapter 3, we develop the integer programming model to match 

the drivers and users optimally. In Chapter 4, we design the scheme to calculate the 

DTS fare for each participant. In Chapter 5, we propose a customized structural 

clustering approach for Preselection on DTS Trips. In Chapter 6, we perform case 

studies to test the model and the clustering approach. In Chapter 7, we provide our 

main summary, conclusions and discuss the future research. 
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Chapter 2: Literature Review 

The study on dynamic taxi sharing is still limited. We believe DTS has some similar 

features to traditional ridesharing and dynamic ridesharing which has been studied for 

years. This chapter aims to review and analyze the existing studies focused on all the 

three ridesharing modes. 

2.1 Classifications 

2.1.1 Traditional Ridesharing 

The first use of carpool matching assistance in the United States of America occurred 

during World War II. The Federal Office of Defense Transportation noted that the 

average number of passengers per vehicle stood at less than two in 1942. Ridesharing 

was promoted in response to gasoline and tire rationing (U.S. Office of Defense 

Transportation, 1942). 

One carpooling method sponsored by the U.S. Office of Civilian Defense was called 

the "Car Sharing Club Exchange and Self-Dispatching System." Participants would 

fill in a card at an exchange office that included information such as address, 

commute hours, and phone number along with whether seeking a ride or passengers. 

A member of the transportation committee operating the exchange would then place 

the card in the appropriate zone that represented the area in which the person lived. 
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Riders were free to look through the cards to find rides or passengers that best suited 

their needs. All ridesharing arrangements and possible fees were made between the 

individuals, not the exchange office. Of course, officials encouraged participants to be 

deliberate about spelling out the responsibilities of each member of the carpool. 

Issues such as lateness, bad manners, or personal hygiene deficiencies could lead to 

friction, or worse (U.S. Office of Civilian Defense, 1942). 

Carpooling and vanpooling were also promoted extensively during the energy crises 

and the oil embargo in the mid-1970s and early 1980s. Many employers and regional 

agencies initiated rideshare programs and carpool matching services during this time, 

and federal funding was used to support many of these efforts (Turnbull, 2000). 

Similar to how financial institutions operated at that time, traditional ridesharing was 

arranged on bulletin boards at local matching institutions. Users accessed these 

systems by providing the necessary information over the telephone or by mailing in 

an application form. They were then offered the potential ridesharing partners’ 

information so they could contact each other and form the ridesharing themselves. 

This was inconvenient for users and thus affected the successful match rate. Also, 

traditional ridesharing was not able to handle real-time and flexible needs. 
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2.1.2 Dynamic Ridesharing 

As new technologies such as mobile technology and global positioning system (GPS) 

evolved, studies considering ridesharing in a dynamic, real-time setting appeared. 

Dynamic ridesharing is defined as two or more people sharing a single, non-recurring 

trip, without regard to previous arrangements or history among the individuals 

involved and do not require long-term commitments. The trips are prearranged (but 

on short notice) which means that the participants agree to share a ride in advance, 

typically while they are not yet at the same location (Agatz, Erera, Savelsbergh, & 

Wang, 2012). In comparison to traditional ridesharing services, which focus on 

commuters traveling to and from the same origins and destinations on fixed 

schedules, a dynamic ridesharing system must be able to match random trip requests 

at any time (Dailey, Loseff, & Meyers, 1997; Turnbull, 2000). 

The real-time or instant carpool concept was tested initially in the Seattle area as part 

of the Bellevue Smart Traveler (BST) project (Pieratti, Haselkorn, & Blumenthal, 

1993). The goal of BST was to design and test an information system that would help 

decrease single-occupancy vehicles (SOV) travel to a downtown employment center 

by making alternative commuting options more attractive and easier to access.  

The BST Traveler Information Center (TIC) integrated phone and paging technology 

to deliver three types of personal commuter information: (1) dynamic ride matching 

information, (2) up-to-the-minute traffic congestion information, and (3) transit 
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information. Registered users with pagers could view a list of riders offered and 

current traffic reports while guest users could only access the system using the 

telephone. 

The demonstration period lasted from late November 1993 to late April 1994. At the 

program’s peak, 53 users were registered. 48 of them formed three ride groups. 

Members of the ride groups offered 509 rides. By telephone, the 48 ride group 

members looked for 148 rides and accessed additional information on 33 specific 

rides. However, only six ride matches were logged. (Note that logging a ride was 

optional, so that ride matches could have occurred without being logged.) Participants 

liked the idea but were either unable or unwilling to form ride matches. And far more 

people were interested in inviting others into their car than they were in getting into 

someone else’s car (Pieratti et al., 1993). 

We believe the main reason for people’s unwillingness to participate in the rideshare 

is they do not have enough incentives. Creating incentives such as cost-sharing, and 

high-occupancy vehicle lane (HOV) use for ridesharing is necessary for future 

attempts. Adjusting the technology accordingly is also essential. In the Seattle 

experiment, although the idea “dynamic” was used, the experiment wasn’t able to 

follow up on people’s real-world dynamic needs using just telephones and pagers. 

Web-based technologies that can be updated more timely and record these ridesharing 

trips will be helpful in the ridesharing industry. Moreover, web-based technologies 
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can help maintain user profiles and trip histories so people will have fewer safety 

concerns about getting into others’ cars. 

The Seattle Smart Traveler (SST) tested a dynamic ride-matching system using the 

Internet and electronic mail (email) at the University of Washington in Seattle from 

1995 to 1997. The SST was designed to meet the needs of individuals interested in 

forming ongoing carpooling arrangements, as well as those interested in offering or 

obtaining a ride for a single trip. Participants completed SST application forms on the 

website. Three types of potential matches could be requested. These were regular 

commute trips, additional regular trips, and occasional trips. A user entered the origin, 

destination, day of the week, departure time window, and arrival time window for 

each trip. A search structure was developed allowing users to identify their desired 

origins and destinations from a search tree containing four levels of details. The 

system then identified potential matches. The SST automatically generated and sent 

an email message with this information if the user desired or the participant could call 

the potential matches. Implementation and operation of the SST lasted for a 15-month 

period from mid-March 1996 to June 1997. Approximately 400 individuals registered 

for the SST, with 200 as the largest number of active participants during the peak 

period. The SST database was updated at the start of each quarter (Dailey et al., 1997; 

Turnbull, 2000). 
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SST was a successful attempt in combining both traditional ridesharing and dynamic 

ridesharing since the user group was relatively large at that time, but like more 

traditional ridesharing services, making the actual connection with potential 

ridesharing partners was left up to the SST participants. The automatic email feature 

enhanced the ease of communicating with possible matches but did not alleviate the 

need for participants to take action themselves (Dailey et al., 1997; Turnbull, 2000). 

As the Internet developed, web-based dynamic ridesharing studies appeared. 

Dobrosielski et al. (2007) built a website for University of Maryland, College Park 

commuters with the main goal of simplifying group travel for purposes of safety, 

resource efficiency, and flexibility. The study is mostly a website interface design. 

Users can search for a carpool or create a new one. Carpool matches are shown 

visually on the map. The matches are also listed with their ranking criteria, to the 

right of the map. There are three methods that users can select to rank the matches, 

and each selection implicitly reorganizes the results. The first is "Time Deviation," 

which is the deviation from the user’s desired arrival time. The second is "Time 

Added to Carpool," which is the time that is added to the carpool if the user’s 

destination is added to the current list of stops. The third is "Your Total Travel Time," 

which is the total time the carpool could take from the user’s stop to the user’s 

destination. Users may choose any carpool to view its details or to request to join it. 

This webpage serves more like a platform to gather and show carpool information 
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and let users choose carpool partners themselves without achieving a systematic goal 

for the entire carpool community (Dobrosielski, Gray, Nhan, & Stolen, 2007). 

Geisberger et al. (2010) designed a pruning strategy to match ridesharing requests and 

offers. The road network was modeled as a weighted graph, and the edge weights 

were travel time between the nodes. Results showed that the algorithm is perfectly 

suitable for a large scale web service with potentially hundreds of thousands of users 

each day (Geisberger et al., 2010). 

Agatz et al. (2011) developed optimization-based approaches that aimed at 

minimizing the total system-wide vehicle miles incurred by system users and their 

individual travel costs. A simulation study was also implemented based on the 2008 

travel demand data from metropolitan Atlanta. Results indicated that the use of 

sophisticated optimization methods instead of simple greedy matching rules 

substantially improves the performance of ridesharing systems. Dynamic ridesharing 

may have the potential for success in large US metropolitan areas, with sustainable 

ride-share populations forming over time even with relatively small overall 

participation rates and when considering only home-based work trips. Besides travel 

costs savings, ridesharing systems may provide travel time savings to participants by 

providing access to high occupancy lanes. Moreover, ridesharing may help to 

decrease traffic congestion and thereby reduce system-wide travel times (N. A. H. 

Agatz, A. L. Erera, M. W. P. Savelsbergh, & X. Wang, 2011). 
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Yan et al. (2011) employed a network flow technique to develop a long-term many-

to-many carpooling model systematically. The model was formulated as a special 

integer multiple-commodity network flow problem. A Lagrangian relaxation-based 

algorithm was also developed to solve the model. The performance of the heuristic 

algorithm was evaluated by carrying out a case study using real data and suitable 

assumptions. The test results confirmed the usefulness of the model and the heuristic 

algorithm and that they could be useful in practice. This study extended the existing 

“fairness” concept among the participants. Instead of merely considering the 

frequency of being a driver, they also included the systematic costs (including 

driver/passenger traveling costs and driver operating costs) for the “fairness” among 

the participants. This study also extended the pooling of “individuals” to “groups of 

members that should be assigned to the same car,” which is closer to the situation that 

occurs in practice. Each participant group would provide a vehicle, and the model 

would find each participant group’s role (driver group or passenger group), driver 

group (vehicle) routes, driver group (vehicle) arrival/departure times for all stations, 

passenger group routes, passenger group boarding and getting-off times, and which 

passenger group should take which vehicle. The model was formulated to minimize 

the maximum cost of each person (Yan, Chen, & Lin, 2011). 

Kammerdiener & Zhang (2011) described the formulation of algorithms for 

measuring the closeness of a match between pairs of potential partners in a university 
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online ridesharing or carpooling system. A measure of “goodness” is defined between 

two users based upon the difficulty of the trip from one user, via the other user, to the 

common destination (Kammerdiener & Zhang, 2011). 

Ghoseiri (2012) developed a Dynamic Rideshare Optimized Matching (DROM) 

model and solution that is aimed at identifying suitable matches between passengers 

requesting rideshare services with appropriate drivers available to carpool for credits 

and HOV lane privileges. The model was designed to maximize the total number of 

matching in a given planning horizon while the total passenger and driver travel times are 

minimized. The research developed a spatial, temporal, and hierarchical decomposition 

solution strategy that leads to the heuristic solution procedure, Three-Spherical Heuristic 

Decomposition Model (TSHDM). A case study was constructed to analyze the model and 

TSHDM behaviors on a road network of the northwest metropolitan area of Baltimore 

city. Results showed it is possible to implement a dynamic rideshare system using 

appropriate technology tools and social networking media (Ghoseiri, 2012). 

Huang et al. (2015) developed a genetic-based carpool route and matching algorithm 

(GCRMA) for the multi-objective optimization problem called the carpool service 

problem (CSP). The paper focused on solving the problem by dramatically acquiring 

optimal match solutions while reducing the required computing time. Evaluation of 

the model and algorithm was accomplished by using test scenarios simulating real-

world environments. The experimental section showed that the proposed GCRMA 
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was compared with two single-point methods: the random-assignment hill climbing 

algorithm and the greedy assignment hill climbing algorithm on real-world scenarios. 

Use of the GCRMA was proved to result in superior results involving the 

optimization objectives of CSP than other algorithms. Furthermore, the GCRMA 

operated with a significantly smaller amount of computational complexity to produce 

the match results in the reasonable time, and the processing time was further reduced 

by the termination criteria of the early stop. The primary objective of the CSP was to 

maximize the total number of passengers matched with drivers, as well as their 

cumulative credit scores (The social terms and ratings of each user were 

systematically normalized as a credit score, by which to establish interpersonal trust 

and responsibility in the carpool system). The secondary objective was to minimize 

the average travel distance of drivers, the average waiting time of passengers, and the 

average travel distance of passengers (S. C. Huang, Jiau, & Lin, 2015). 

Stiglic et al. (2015) investigated the potential benefits of introducing meeting points 

in a ridesharing system. Riders could be picked up and dropped off at a meeting point 

within a certain distance from their origin or destination. The increased flexibility 

resulted in additional feasible matches between drivers and riders and allowed a 

driver to be matched with multiple riders without increasing the number of stops the 

driver needed to make. Maximizing the number of matches and maximizing the 

driving distance savings were both taken into account in a hierarchical fashion, where 
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they considered the first one as the primary objective and second one as the secondary 

objective. Time flexibility of drivers, riders, and departure times were also considered 

in the study. An extensive simulation study was performed, and the results 

demonstrated that meeting points could significantly increase the number of matched 

participants as well as the system-wide driving distance savings in a ridesharing 

system. (Stiglic, Agatz, Savelsbergh, & Gradisar, 2015). 

C. Huang et al. (2016) presented a two-stage integer programming formulation for the 

carpooling problem. Next, they proposed a stochastic Tabu search (TS) algorithm to 

solve this problem. The proposed algorithm aimed at a wide range of passenger 

distribution and routing problems. The computational results based on real-world user 

data showed the effectiveness of the proposed algorithm. Moreover, they developed a 

mobile application based on their carpooling model. The objective function was to 

minimize the total cost and assign the passengers to their nearest driver. In their case 

study for a large amount of carpooling inquiries, the number of participants (P) was 

set to a number between 200 and 500. The number of potential drivers (D) was 

chosen from the range [100, 275]. The maximum allowable number of drivers (K) 

was selected from the range [50, 137]. Their computation results are reported in Table 

1. We can find that the CPU time increases rapidly with the increase in the carpooling 

participants (C. Huang, Zhang, Si, & Leung, 2016). 
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Table 1 Solution Values for a Large Amount of Carpooling Inquiries 

 
 

This algorithm was effective in the study but may have limitations when applied to 

real-world situations since the data they used was simulated data, and they did not 

consider time window in the study. 

2.1.3 Dynamic Taxi-Sharing 

Agatz et al. (2012) defined dynamic ridesharing as an automated system that 

facilitates drivers and riders to share one-time trips close to their desired departure 

times. Dynamic Taxi-Sharing (DTS) contains some features similar to Dynamic 

Ridesharing but also differs from it because DTS does not require participants have a 

vehicle and the DTS taxi drivers do not have a specific trip origin and destination. 

The taxis just exist all over the network, and the current location of an empty taxi 

may change all the time. In this case, we will also need to determine the pick-up and 

the drop-off sequence for the rider groups (Agatz et al., 2012).  
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From October 26 to November 17 in 2006, a field trial of taxi-sharing service was 

conducted at Taipei Nei-Hu Science and Technology Park. Tao (2007) gave an 

overview of the taxi-sharing service, presented key algorithms for dynamic rideshare 

matching processes, described the field trial operation of the system in Taipei Nei-Hu 

Science and Technology Park and discussed empirical results to provide valuable 

implications for better taxi-sharing service in the future. A qualitative analysis using 

the Delphi method (shown in Figure 4) was conducted to survey the degree of 

satisfaction among Taipei city government, taxi operators, taxi drivers, and 

passengers. The results revealed that taxi operators were ready to accept Intelligent 

Transportation Systems (ITS) based technologies because they thought taxi-sharing 

service would help taxi drivers making more money than before. The passengers were 

not so satisfied with dynamic taxi-sharing service, for they still hesitate to ride with 

strangers. Lack of sufficient incentives for taxi-sharing could also discourage 

passengers from using taxi-sharing services. The sharing fee for each passenger was 

computed on a distance traveled basis. The final sharing fee for each passenger was 

computed according to the number of sharing passengers, their O-D data and 

preferences. The paper did not reveal much detail behind the system, but the results of 

the numerical tests and the user surveys demonstrated that the outcomes of these 

heuristic algorithms were fairly plausible. The average matching success rate was 

60.3% on the whole. However, the developed algorithms were only applicable to the 

case of “one-to-many” and “many-to-one.” The case of “many-to-many” which fully 
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represents dynamic ride matching with any O-D pairs for the taxi-sharing problem 

was under development at the time (Tao, 2007). 

 

Figure 4 Qualitative Results of the Satisfaction Survey for Taxi-sharing among Government, Operators, 

Drivers, and Passengers  

Chen et at. (2010) proposed a dynamic taxi-sharing system aiming at fuel-saving and 

pollution-reducing based on ITS technology. Road traffic information was considered 

when deciding the travel path. Since the main objective of this taxi-sharing system 

was to save fuel, the primary consideration of the benefit function was the difference 

in fuel consumption before and after a ridesharing service. As shown in Figure 5, to 

narrow down the search space for a short response time, they only considered shared-

ride taxis whose travel destinations were in the style box of the destination of a 

ridesharing request (Chen, Liu, & Chen, 2010). This consideration might result in 

failing to incorporate better taxi candidates into the system outside the style box. 
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Figure 5 Dividing of the Simulation Area 

Simulations were used to evaluate the dynamic taxi-sharing system and compare it 

with other two systems. The results showed that the solution could exactly select a 

fuel-saving taxi for each ridesharing request and outperform in response time, the 

number of compared taxis and fuel-saving while compared with existing solutions. 

(Chen et al., 2010). 

Zhang et al. (2013) presented a carpool service, called coRide, in a large-scale taxicab 

network intended to reduce total mileage for less gas consumption. An NP-hard route 

calculation problem under different practical constraints was formulated. The paper 

then provided (i) an optimal algorithm using Linear Programming, (ii) an 

approximation algorithm with a polynomial complexity, and (iii) its corresponding 

online version. To encourage coRide’s adoption, the authors presented a win-win fare 

model as the incentive mechanism for passengers and drivers to participate. The study 
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evaluated coRide with a real-world dataset of more than 14,000 taxicabs, and the 

results showed that compared with the ground truth, the service could reduce 33% of 

total mileage; the win-win fare model could lower passenger fares by 49% and 

simultaneously increase driver profit by 76%. The paper also pointed out that it is 

very critical to establish a right policy that would make a large scale deployment 

feasible (Zhang et al., 2013). 

Ma, Zheng, &Wolfson (2013, 2015) proposed a taxi searching algorithm using a 

spatiotemporal index to quickly retrieve candidate taxis that are likely to satisfy a user 

query. A scheduling algorithm was then proposed. It checked each candidate taxi and 

inserted the query’s trip into the schedule of the taxi which satisfied the query with 

minimum additional incurred travel distance. A lazy shortest path calculation strategy 

was devised to speed up the scheduling algorithm. A mobile-cloud architecture based 

taxi-sharing system was devised. The service was evaluated using GPS trajectory 

dataset generated by over 33,000 taxis during a period of 3 months. An experimental 

platform was built that simulated real user behaviors in taking a taxi. The approach 

demonstrated its efficiency, effectiveness, and scalability (Ma, Zheng, & Wolfson, 

2013, 2015). 

Santos & Xavier (2015) dealt with a combinatorial optimization problem that 

modeled situations of both dynamic ridesharing and taxi-sharing. Passengers and 

drivers specified their needs, and all drivers defined a price per kilometer. The 
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problem was to compute routes, matching requests to vehicles in such a way that 

ridesharing was allowed as long as some restrictions were satisfied, such as the 

capacity of the vehicle, maximum trip cost of each passenger and maximum delay. 

Two criteria, maximizing the number of served requests, and minimizing the sum of 

the costs of all served requests were optimized. The cost-sharing rule divided the cost 

of each part of the route evenly among the passengers in the car (Santos & Xavier, 

2015). 

Experiments with instances based on real data were made to evaluate the heuristics 

and the proposed method. In the simulations with taxis, passengers paid, on average, 

almost 30% less than they would pay on private rides. (Santos & Xavier, 2015). 

Besides academic research, there are existing commercial products with the idea of 

taxi sharing on the market. UberPOOL from Uber Technologies Inc. matches riders 

heading in the same direction. Trips are up to 50% less than uberX (a low-cost Uber 

product). Uber first launched UberPOOL in San Francisco in August 2014, and the 

product is now available in 29 cities around the world. (Gurley, 2015; Movable Type 

Scripts; Myhrvold, 2015) 

Uber is not alone in launching taxi-sharing services. Its strong competitor Lyft and 

Sidecar launched similar services - Lyft Line and Sidecar rideshare almost at the 

same time. Uber does not reveal the percentage of passengers who take UberPOOL 

over its other products. The company only reveals that "many thousands" take 



 

29 

 

UberPOOL five days a week to commute to work. While Lyft’s founder Logan Green 

has said that Lyft Line makes up “the majority” of its rides in San Francisco. In San 

Francisco, 50 percent of all Lyft rides are now taken with Lyft Line. Sidecar 

announced that its Shared Rides account for 40 percent of its rides in the cities where 

it’s launched. (Deamicis, 2015; Wagstaff, 2015) 

Although such taxi-sharing products already exist on the market, the matching and 

routing method behind these commercial products are not revealed, and researchers 

continuously study and improve the methods.  

2.1.4 Summary of the Three Ridesharing Services 

Table 2 shows the summary and comparison of the features of the three ridesharing 

services: 

Table 2 Summary of the Features of Three Ridesharing Services 

 Traditional Ridesharing Dynamic Ridesharing Dynamic Taxi-Sharing 

Time aspect Preset  Dynamic 

Recurring or not Usually is long-term 

commuting ridesharing, 

needs commitment.  

Non-recurring; does not need a long-term commitment 
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Matching type Both automated matching 

and self-choosing matching 

exist. [1] 

Automated matching from the centralized system 

Cost and billing Commuting ridesharing 

participants usually take 

turns on driving instead of 

paying each other on each 

ride. Cost calculating and 

automated cost calculating 

also exist. 

Automated cost calculating and billing system 

Driver O-D pair 

Features 

The driver participants who offer the rides have certain 

origin and destinations. 

Taxi drivers do not have certain origins or 

destinations.  

Route Features The vehicle always starts from the driver’s origin, passing 

through the riders’ origins and destinations, and finish at 

the driver’s destination. 

The pick-up and drop-off sequences for 

all users need to be arranged. The trip 

ending point is the destination of the last 

dropped-off user since there is no 

destination for taxi drivers. 

Vehicle ownership 

requirement 

The participants who offer the rides (participate as the 

driver) must have a vehicle. 

Taxi users do not need a vehicle to 

participate. 
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Time Restrictions The drivers and riders usually have time restrictions on 

their arrival time for the destinations. 

The taxi drivers usually do not have time 

restrictions. 

Notes: 

[1].In some traditional ridesharing, there is simply a notice board where participants can post their 

desired schedule, O-D pairs and contact information. Participants choose ridesharing partners 

themselves and contact them to make a ridesharing agreement. 

2.2 Model Features 

We can summarize some considerations from previous ridesharing models below. 

2.2.1 Ridesharing Objectives 

Most existing studies on ridesharing/taxi-sharing consider one (or a combination) of 

the following specific objectives when determining ridesharing matches: 

 Minimize system-wide vehicle-miles;  

 Minimize system-wide travel time;  

 Maximize the number of successful matches/matching success-rate; 

 Minimize additional incurred travel distance;  

 Minimize the maximum cost of each person. 

 Minimize the total cost.  

 Maximize the total difference in fuel consumption before and after a ridesharing 

service.  
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 No systematic objective function.  

However, from the taxi providers’ perspective, traveling mileage cost is not the only 

cost, and none of the objective functions above always help the providers gain 

maximum profit. 

2.2.2 Matching Constraints 

When proposing matches in a ridesharing system, some constraints on the feasibility 

of matches must be met.  They are listed below: 

 The time window of the drivers/rides. For example, Agatz et al. (2011) and 

Zhang et al. (2013) let a participant specify an earliest possible departure time 

and latest possible arrival time(N. Agatz, A. L. Erera, M. W. P. Savelsbergh, & 

X. Wang, 2011; Zhang et al., 2013). Baldacci et al. (2004) and Amey (2011) 

also allow limits on the actual time that users spend traveling on a given trip. 

That is, they allow participants to specify the maximum excess travel time (over 

the direct travel time for their origin to destination) they are willing to accept 

(Agatz et al., 2012; Amey, 2011; Baldacci, Maniezzo, & Mingozzi, 2004). 

 Single-matching constraints need to be considered. 

 The vehicle availability and capacity should be considered (Zhang, D. et al., 

2013). 
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 Participants’ personal preference could be considered for a higher acceptance 

rate. For example, female participants may not feel safe sharing a ride alone 

with a male stranger (Dueker, Bair, & Levin, 1977), while smoking may be 

another critical issue (Ghoseiri, 2012). Of course, the more restrictions a 

potential user places on his pool of potential ride-share partners, the more 

difficult it will be to find successful matches for that user (Dailey et al., 1997). 

 Constraints that restrict feasible matches to those that reduce the total travel 

mileage and individual travel costs need to be considered. Note that not all 

matches that reduce total mileage can lead to reducing personal travel cost 

because the cost calculation system may vary. 

 Maximum allowable trip cost of each passenger 

 Maximum allowable delay for each passenger  

2.2.3 Dynamic Strategy 

In most of the practical dynamic ridesharing implementations, new riders and drivers 

continuously enter and leave the system. A driver enters the system by announcing a 

planned trip and offering a ride, while a rider enters the system by announcing a 

planned trip and requesting a ride. Drivers and riders leave the system when a ride-

share arrangement has been planned and accepted, or when their planned trips 

“expire.” 
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Santos et al. (2015) fulfilled the dynamic scheme by using a non-static vehicle set M 

and requests set N. The set N is empty at the beginning. At each instant of time, new 

requests may be added to N and matched or expired requests are removed. In the 

same way, the set M is not static, and it has all vehicles that are available at the 

current time. To solve this dynamic problem, the day is divided into time periods. For 

each period, an instance of a static problem is created and solved by a greedy 

randomized adaptive search procedure (GRASP) (Santos & Xavier, 2015).  

Agatz et al. (2011) dealt with this planning uncertainty by using a rolling horizon 

solution approach. In this approach, the optimization problem to be solved includes 

all of the offered rides (drivers) and requested rides (riders) that are known at the time 

of execution and that have not yet been matched. 

In a similar setting, Kleiner et al. (2011) applied a rolling horizon solution approach 

where arrangements are committed as late as possible given the time considerations. 

2.2.4 Cost Sharing/Fare Splitting Scheme 

The incentive that encourages people to participate in traditional ridesharing or 

dynamic ridesharing can be reducing personal cost, using the HOV lane, reducing 

travel time and inconvenience in public transit when they don’t have a private 

vehicle, and social and environmental benefits (Agatz et al., 2012). 
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In some recurring ridesharing, cost sharing calculation may not be needed when 

participants take turns driving or when the ridesharing is for completing an 

experiment. Fagin et al. (1983) proposed a calculation method for “fairness” in the 

carpool scheduling system, so the system assigns the driver role fairly among all the 

participants over all times (Fagin & Williams, 1983). 

However, when talking about Dynamic Taxi-Sharing, the alternative transport mode 

is usually non-shared taxi trips. We consider financial incentive as the primary reason 

why taxi users and drivers would choose DTS instead of non-shared taxi trips. 

Researchers have been working on developing reasonable methods to share the cost 

among users. 

Geisberger et al. (2010) suggested dividing the cost of the shared part of the trip 

evenly between the ride-share partners according to fair sharing rule in Algorithmic 

Game Theory. (Geisberger et al., 2010; Nisan, 2007)  

Agatz et al. (2011) proposed a way to allocate the costs of the joint trip that is 

proportional to the distances of the separate trips. (N. A. H. Agatz et al., 2011) 

Kleiner et al. (2011) proposed an auction-based mechanism to determine the driver’s 

compensation. Passengers are bidding for increasing their ranking, and thus visibility 

to drivers, whereas drivers can select passengers according to their preferences. 

(Kleiner, Nebel, & Ziparo, 2011) 
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Zhang, D. et al. (2013) raised a term “carpool benefit” B to represent the benefit on 

the fare of a carpool taxi compared to a non-carpool taxi (Shown in Eq. (1)). They 

also proposed a method to divide the benefit of the ridesharing to drivers and riders 

groups according to the percentage of occupied taxi cabs and further divide the 

benefits among riders’ group according to their non-carpool individual cost. (Zhang et 

al., 2013) 

 B =  ∑ 𝜏𝑖 −  𝜏

𝑐

𝑖=1

 ( 1 ) 

Where c is the total number of passengers in this carpool; 𝜏𝑖 is the separate non-

carpool fare for passenger i; 𝜏 is the regular fare for a distance equal to the carpool 

distance (not the carpool fare). Thus, the total non-carpool fare of all passengers is 

given by Στi, and the regular fare for the carpool distance is given by 𝜏, and their 

difference is a carpool benefit B (Zhang et al., 2013). 

Ma, Zheng, &Wolfson (2013) assumed the following properties for a pricing scheme: 

(i) taxi fare per mile is higher for multiple passengers than for a single passenger; (ii) 

the taxi fare of shared distances is evenly split among the riding passengers (Ma et al., 

2013). 
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Denote p as the regular taxi fare per mile, the taxi fare per shared mile is ( 1)   p

. The taxi fare of each passenger can be then automatically calculated by Eq. (2), 

where 
md  is the travel distance shared by m  passengers, and c  is the capacity of the 

taxi. 

 1

2

( ( 1) / )
c

m

m

fare p d d m


    
 

( 2 ) 

On the other hand, the total fare for all taxi drivers is calculated by Eq. (3), where nD  

is the total traveled distance that is not shared and rD  is the total traveled distance 

that is shared. The appropriate value   is examined to make ridesharing profitable 

for taxi drivers (Ma et al., 2013). 

                                   total_profit = ( (1 ) )n rp D D     ( 3 ) 

They also proposed an idea to incorporate a parameter to balance the carpool 

incentives between the driver and the passengers according to the occupied taxicabs 

rate (Ma et al., 2013).  
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2.3 Chapter Conclusion 

In this chapter, a comprehensive review of the DTS and relevant studies was 

presented.  

To convince taxi providers to launch a DTS system, we have to prove that the system 

is beneficial to them. However, none of the existing studies are based on an objective 

that helps the taxi providers gain the maximum profit. And profit is always the 

number one consideration for a private company to launch a new product. 

On the other hand, the successful launching of a DTS system cannot be completed 

without enough users. The financial benefit of the taxi fare is crucial for attracting 

users to a DTS system. Many existing ridesharing services did not focus much on the 

fare splitting part. To attract more users, we need to design a taxi fare splitting 

scheme which can fully meet the users’ interests. 

Besides providing financial benefits for the taxi providers and users, the society 

should also benefit from a DTS system. As discussed in Chapter 1, the uneven 

temporal distribution of available taxis is one of the main problems in the current taxi 

industry. To deal with this issue, we can adopt the idea from Zhang, D. et al. (2013) 

(Zhang et al., 2013), and design a DTS system with parameters that can self-adjust 

according to the current taxi occupancy rate, thus encourage or discourage users to 
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use the DTS service at a specific time period, and to balance the system-wide taxi 

occupancy rate in real time.  

Furthermore, many of the existing ridesharing methods require building up a network 

before applying the method. The users have to travel from and to the existing nodes in 

the formulated network. This can limit the application. For a whole city or even larger 

system, methods that can handle requests with random origins and destinations is 

more practical. 

Thus, a matching method on DTS which can maximize the total provider profit while 

also attract more users by offering lower fare in the fare calculation scheme can 

balance the system-wide taxi occupancy rate, and can take random origin/destination 

requests still needs to be studied. 
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Chapter 3: Model Formulation 

This chapter presents an integer programming formulation for the Dynamic Taxi-

Sharing problem. This formulation aims at maximizing the taxi provider’s profit 

while offering taxi service to all the users. Only a portion of the users share taxi rides, 

and the rest of the users are assigned to regular non-shared taxis. 

The basic assumptions of this model are: 

 The taxi providers’ goal is to maximize the total profit, which is the 

difference between the total revenue and the total cost while offering taxi 

service to all users. 

 The taxi providers’ cost is mainly composed of two parts: fixed cost and 

routing cost, and each part can be formulated separately. 

 The taxi providers’ total revenue is proportional to the total taxi fare all the 

taxi drivers collect (e.g., 80% of the fare is given to drivers, and 20% of the 

fare is given to the taxi provider company). 

 The taxi fare is a linear function of the distance traveled with passengers on 

board; 

 The taxi providers’ interest is maximizing the total profit while offering taxi 

service to all the users who request service; 
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 All taxi drivers operate according to the taxi provider management center’s 

orders; 

 To maintain the advantages of taxi transportation and avoid too much detour 

and dwell time, each taxi only provides taxi service to at most two taxi user 

groups (one user group can contain one or two persons but only make one 

request in the system); 

 All taxi requests must be served. The user requests which cannot be matched 

with other user requests will ride alone; 

 Each taxi must finish one assigned trip (dropping off all users) before being 

reconsidered available in the system for the next assigned trip; 

 The number of available taxi user requests is always no greater than twice 

the number of available taxis. 
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3.1 Notation 

The notations of the model are listed in Table 3, Table 4, and Table 5. Three sets of 

binary decision variables are used to formulate the model. 

Table 3 Data Sets for DTS 

Data Set Description 

𝑹𝒕 The set of taxi users in the system at time window 𝑡,  𝑡 ∈ 𝑇𝑊 
 𝑸𝒕 The set of taxi drivers in the system at time window 𝑡, 𝑡 ∈ 𝑇𝑊 
 

TW Time windows set, consists of a set of time window 𝑡, 𝑡 ∈ 𝑇𝑊 

Table 4 Decision Variables for DTS 

Variable Description 

𝒙𝒊𝒋
𝒕  

= {
1, 𝑖𝑓 𝑟𝑖𝑑𝑒𝑠ℎ𝑎𝑟𝑒 𝑚𝑎𝑡𝑐ℎ (𝑖, 𝑗) 𝑖𝑠 𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑤𝑖𝑛𝑑𝑜𝑤 𝑡

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 𝒚𝒌𝒊
𝒕  = {

1, 𝑖𝑓 𝑑𝑟𝑖𝑣𝑒𝑟 𝑘 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 user 𝑖 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑤𝑖𝑛𝑑𝑜𝑤 𝑡
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝒛𝒊𝒋
𝒕  

= {
1, 𝑖𝑓 𝑡ℎ𝑒 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑑𝑟𝑜𝑝𝑠 𝑜𝑓𝑓 𝑖 𝑏𝑒𝑓𝑜𝑟𝑒 𝑗 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑤𝑖𝑛𝑑𝑜𝑤 𝑡

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Table 5 Parameters for DTS 

Parameter Description 

𝑶𝒊
𝒕 Origin point of user 𝑖 ∈ 𝑅𝑡 

𝑫𝒊
𝒕 Destination point of user 𝑖 ∈ 𝑅𝑡 

𝑶𝒌
𝒕  Origin/current point of taxi driver 𝑘 ∈ 𝑄𝑡  

𝒅𝒂𝒕,𝒃𝒕 The shortest traveling distance from point 𝑎 to point 𝑏 at time window 𝑡, miles 

𝒕𝒂𝒕,𝒃𝒕  The shortest traveling time from point 𝑎 to point 𝑏 at time window 𝑡, hours 

 
∆𝒕 Duration of each time window 𝑡,  𝑡 ∈ 𝑇𝑊 

M A large positive value (big-M) 

𝒄𝒇  The fixed operating cost for each taxi, dollars/taxi 

 

 

 

 

𝒄𝒑𝒎  The cost for the taxi provider per mile traveled 

𝒕𝒘𝒂𝒊𝒕𝒊𝒏𝒈𝒎𝒂𝒙 The maximum acceptable waiting time for the taxi driver at each taxi users’ origin point, hours 

𝒕𝒅𝒆𝒍𝒂𝒚𝒎𝒂𝒙 The maximum acceptable delay time for the taxi riders at each taxi users’ destination point, 

hours 
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𝒕𝒅𝒘𝒆𝒍𝒍 Dwell time for picking up a user group, hours;  

𝒅𝒅𝒆𝒕𝒐𝒖𝒓𝒎𝒂𝒙 The maximum acceptable detour distance for each taxi user, miles 

𝒅𝒅𝒎𝒄𝒐 The maximum acceptable detour rate for each taxi user 

𝒆𝒊
𝒕 The earliest allowable departure time for user 𝑖 at time window 𝑡  

𝒍𝒊
𝒕 The latest allowable arrival time for user 𝑖 at time window 𝑡  

𝒂𝒇 The fixed initial fare for every taxi trip, dollars/taxi trip 

𝒃𝒇 The certain fare charge for every mile the taxi user travels, dollars/mile 

𝒏𝒖𝒔𝒆𝒓𝒔
𝒕  The number of DTS users in the system at time window 𝑡 

𝒏𝒅𝒓𝒊𝒗𝒆𝒓𝒔
𝒕  The number of DTS drivers in the system at time window 𝑡 

𝝆 The percentage of the original fare that a DTS user pays;  

(The discount rate is 1-𝜌) 

3.2 Objective Function 

Given this setting, we explore the DTS problem in which the taxi providers seek to 

maximize their profit, which is the difference between the total fare and the total cost. 

This objective is also aligned with societal objectives for reducing the total travel 

distance, fuel consumption, emissions and traffic congestion.  
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Figure 6 Data Set 

We use the rolling horizon approach. The relationship among the data sets and the 

variables are shown in Figure 6. In each time window t, DTS users i , and j  can form 

a user pair ( i , j ).  Binary variables are used to represent whether the users will share 

the same taxi together, given the pick-up sequence (represented by 𝑥𝑖𝑗
𝑡 ) ,  and drop-off 

sequence (represented by 𝑧𝑖𝑗
𝑡 ), and driver assignment (represented by 𝑦𝑘𝑖

𝑡 ),  The taxi 

users who are not matched will ride alone. The objective function can be written as 

follows: 

  _

 _  – _

sharing non sharing fixed routing

Max Net Revenue

total fare total cost

f f C C



   

 ( 4 ) 
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We assume the taxis send GPS location and occupancy status to the central server 

continuously. For each time window, the optimization is the same, for simplicity, we 

omit the time window in the formulation and use a rolling horizon approach. The taxi 

drivers and users who were matched already and accepted the match will leave the 

system at each time window. Drivers only return to the system as available taxi 

drivers after the previously assigned users are all completely delivered to their 

destinations.  

The fare in the objective function will be further illustrated in Chapter 4. We consider 

the total fare consists of two parts: the fare from those sharing taxis and the fare from 

those non-sharing taxis.  

(1) Total sharing fare 

We consider this part will be offered a discount rate of (1 − 𝜌) off their original 

individual fare (discussed further in Chapter 4). Thus, the total sharing fare can be 

formulated as: 

   ,  , 
,

2 )( t t t t
ji ji

t

sharing ij f fO D O D
i j

f x a d d b       ( 5 ) 

(2) Total non-sharing fare 

The total non-sharing fare can be formulated as (discussed further in Chapter 4): 
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  
, 

,

12 t t
i i

t t t t

non sharing f iju f ij jiO D
i j i j

sersf a x b d x xn

    
            

 


  
    ( 6 ) 

The cost in the objective function for taxi providers mainly contains two parts: 

(1) Total fixed cost  

We assume there is a fixed cost per trip for each taxi to operate. For each additional 

taxi trip, the taxi provider has a fixed additional cost. 

𝑡𝑜𝑡𝑎𝑙_𝑓𝑖𝑥𝑒𝑑_𝑐𝑜𝑠𝑡 

=  𝑓𝑖𝑥𝑒𝑑_𝑐𝑜𝑠𝑡/𝑡𝑎𝑥𝑖 (𝑑𝑜𝑙𝑙𝑎𝑟𝑠/𝑡𝑎𝑥𝑖)  

×  𝑡𝑜𝑡𝑎𝑙_𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑡𝑎𝑥𝑖𝑠 

( 7 ) 

That is, 

 𝐶𝑓𝑖𝑥𝑒𝑑 = 𝑐𝑓 ×  ∑ 𝑦𝑘𝑖
𝑡

𝑖,𝑘
 ( 8 ) 

(2) Total routing cost  

We assume the routing cost of a taxi trip is proportional to the traveling distance of 

the taxi trip. We have: 
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𝑡𝑜𝑡𝑎𝑙_𝑟𝑜𝑢𝑡𝑖𝑛𝑔_𝑐𝑜𝑠𝑡 

=  𝑐𝑜𝑠𝑡_𝑝𝑒𝑟_𝑚𝑖𝑙𝑒 (𝑑𝑜𝑙𝑙𝑎𝑟𝑠/𝑚𝑖𝑙𝑒)  

×  𝑡𝑜𝑡𝑎𝑙_𝑡𝑟𝑎𝑣𝑒𝑙𝑖𝑛𝑔_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑑𝑡𝑜𝑡𝑎𝑙  (𝑚𝑖𝑙𝑒𝑠) 

( 9 ) 

The total traveling distance of a DTS trip 𝑑𝑡𝑜𝑡𝑎𝑙 is composed of two parts, the first 

part is the travelling distance without any passengers, which is the distance from the 

taxicab’s current location to the first taxi rider, and the second part is the travelling 

distance with one or two passenger groups, which is the distance between picking-up 

the first rider and dropping-off the last rider. For a DTS trip, when the pick-up 

sequence is determined, the second part varies according to the drop-off sequence. As 

shown in Figure 7 and Equation 10, we also take the taxi trips without any sharing 

matches into consideration in the formulation: 
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Figure 7 Drop-off Sequence  

 

𝑑𝑡𝑜𝑡𝑎𝑙 = 

∑ (𝑑𝑂𝑘
𝑡 , 𝑂𝑖

𝑡 ×  𝑦𝑘𝑖
𝑡 )

𝑖,𝑘

+ ∑ ((𝑑𝑂𝑖
𝑡, 𝑂𝑗

𝑡 + (𝑑𝑂𝑗
𝑡, 𝐷𝑖

𝑡 + 𝑑𝐷𝑖
𝑡, 𝐷𝑗

𝑡)  × 𝑧𝑖𝑗
𝑡 + ( 𝑑𝑂𝑗

𝑡, 𝐷𝑗
𝑡 + 𝑑𝐷𝑗

𝑡, 𝐷𝑖
𝑡) × (1 − 𝑧𝑖𝑗

𝑡 )) × 𝑥𝑖𝑗
𝑡 )

𝑖,𝑗

+ ∑ 𝑑𝑂𝑖
𝑡, 𝐷𝑖

𝑡 × (1 − ∑ (𝑥𝑖𝑗
𝑡 + 𝑥𝑗𝑖

𝑡 )
𝑗

)
𝑖

 

  

( 10 ) 

The second part of the total distance, the traveling distance of a taxi with passengers 

on 𝑑𝑡𝑜𝑡𝑎𝑙𝑤𝑝 is: 

 𝑑𝑡𝑜𝑡𝑎𝑙𝑤𝑝 = ( 11 ) 
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 ∑ ((𝑑𝑂𝑖
𝑡, 𝑂𝑗

𝑡 + (𝑑𝑂𝑗
𝑡, 𝐷𝑖

𝑡 + 𝑑𝐷𝑖
𝑡, 𝐷𝑗

𝑡)  × 𝑧𝑖𝑗
𝑡 + ( 𝑑𝑂𝑗

𝑡, 𝐷𝑗
𝑡 + 𝑑𝐷𝑗

𝑡, 𝐷𝑖
𝑡) × (1 − 𝑧𝑖𝑗

𝑡 )) × 𝑥𝑖𝑗
𝑡 )

𝑖,𝑗

+ ∑ 𝑑𝑂𝑖
𝑡, 𝐷𝑖

𝑡 × (1 − ∑ (𝑥𝑖𝑗
𝑡 + 𝑥𝑗𝑖

𝑡 )
𝑗

)
𝑖

 

 

Where, 

𝑧𝑖𝑗
𝑡 = {

1, 𝑖𝑓 ( 𝑑𝑂𝑗
𝑡,𝐷𝑖

𝑡 + 𝑑𝐷𝑖
𝑡,𝐷𝑗

𝑡 −  𝑑𝑂𝑗
𝑡,𝐷𝑗

𝑡 − 𝑑𝐷𝑗
𝑡,𝐷𝑖

𝑡) × 𝑥𝑖𝑗
𝑡 ≤ 0 

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   

Thus, 

 
 

   

 

 

,  ,  , 

, 
, ,

,  , 
 

, 

 

 

  1

1

t t t t t t
i j j i i j

t t
k i

t t t t
j j j i

t t
i i

routing

pm

t

ijO O O D D D
t t

ki ijO O
ti k i j
ijO D D D

pm

t t

ij jiO D
i j

total

C

c

d d d z

d y x

d d z
c

d x

d

x

     
  

     
    

  

  
    

 

 
 
 
 

   


 
 


 
  

 

 

 

( 12 ) 

Now we get the total cost for the taxi provider: 

 𝑡𝑜𝑡𝑎𝑙_𝑐𝑜𝑠𝑡 = 𝐶𝑓𝑖𝑥𝑒𝑑 + 𝐶𝑟𝑜𝑢𝑡𝑖𝑛𝑔 ( 13 ) 

Therefore, the objective function above can be further written as: 
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  

 

,  , 
,

, 
, ,

  _

 _  – _

(

1

2 )

2

t t t t
i i

t t
i i

j j

sharing non sharing fixed routing

t

ij f fO D O D
i j

t t t

f ij f ij ji f kO D
i j i j i

t

us s

k

er

Max Net Revenue

total fare total cost

f f C C

x a d d b

a x b d x x c yn







   

 

    
          
   

     

   





   

 
 

   

 

,  ,  , 

, 
, ,

,  , 
 

, 

 

 

  1

1

t t t t t t
i j j i i j

t t
k i

t t t t
j j j i

t t
i i

t

i

t

ijO O O D D D
t t

ki ijO O
ti k i j
ijO D D D

pm

t t

ij jiO D
i j

d d d z

d y x

d d z
c

d x x

  



 
 
 
 
 
 

  
  

     
    

  

  
     
 

 
   

 

 

 
( 14 ) 

3.3 Constraints 

(1) Single matching for each taxi user constraint 

A single matching constraint for users is used to ensure that each taxi user is selected 

to be included with no more than one proposed match:  

 ∑ (𝑥𝑖𝑗
𝑡 + 𝑥𝑗𝑖

𝑡 )
𝑗

≤ 1,  ∀𝑖 ∈ 𝑅𝑡 ( 15 ) 

(2) Driver assignment constraint 
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 Drivers are assigned to the first picked-up user directly. If user 𝑗 is assigned as the 

second picked-up user, then where is no driver 𝑘 assigned directly to user 𝑗. 

Meanwhile, if a user 𝑗 is not matched with any users, there is a driver 𝑘 assigned to 

the user 𝑗 directly to provide the individual taxi trip: 

 ∑ 𝑦𝑘𝑗
𝑡

𝑘
+ ∑ 𝑥𝑖𝑗

𝑡

𝑖
= 1,  ∀𝑗 ∈ 𝑅𝑡 ( 16 ) 

(3) The single matching constraint for each driver  

Each driver k is selected with no more than one proposed match: 

  ∑ 𝑦𝑘𝑖
𝑡

𝑖
≤ 1, ∀𝑘 ∈ 𝑄𝑡 ( 17 ) 

 (4) Single driver assignment constraint for each rider 

There is always no more than one driver assigned to rider 𝑖,  whether or not he or she 

is matched: 

 ∑ 𝑦𝑘𝑖
𝑡

𝑘
≤ 1, ∀𝑖 ∈ 𝑅𝑡 ( 18 ) 

 (5) DTS driver guarantee constraint 
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If a user taxi-sharing pair (𝑖, 𝑗) is matched, there must be a driver k assigned to the 

user pair to provide taxi-sharing service: 

 ∑ yki
t

k
≥ ∑ xij

t

𝑗
, ∀𝑖 ∈ 𝑅𝑡 ( 19 ) 

 (6) Taxi users’ detour constraint 

DTS usually causes a detour for the taxi users. Detour distance is the distance 

difference between the actual DTS route (the route between being picked up and 

dropped off for one user) and the non-shared individual taxi trip for the taxi user. 

For rider 𝑖, we consider both the situation whether he or she is the first or the second 

picked-up rider: 

𝑑𝑒𝑡𝑜𝑢𝑟𝑖 = ∑ (((𝑑𝑂𝑖
𝑡, 𝑂𝑗

𝑡 + 𝑑𝑂𝑗
𝑡, 𝐷𝑖

𝑡) × 𝑧𝑖𝑗
𝑡 + (𝑑𝑂𝑖

𝑡, 𝑂𝑗
𝑡 + 𝑑𝑂𝑗

𝑡, 𝐷𝑗
𝑡 + 𝑑𝐷𝑗

𝑡, 𝐷𝑖
𝑡) ×𝑗

(1 − 𝑧𝑖𝑗
𝑡 ) − 𝑑𝑂𝑖

𝑡, 𝐷𝑖
𝑡) × 𝑥𝑖𝑗

𝑡 )+ 

∑ (((𝑑𝑂𝑖
𝑡, 𝐷𝑗

𝑡 + 𝑑𝐷𝑗
𝑡, 𝐷𝑖

𝑡) × 𝑧𝑗𝑖
𝑡 + 𝑑𝑂𝑖

𝑡, 𝐷𝑖
𝑡 × (1 − 𝑧𝑗𝑖

𝑡 ) − 𝑑𝑂𝑖
𝑡, 𝐷𝑖

𝑡) × 𝑥𝑗𝑖
𝑡 )𝑗   

( 20 ) 

We set a maximum acceptable detour distance: 
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 0 ≤ 𝑑𝑑𝑒𝑡𝑜𝑢𝑟𝑖 ≤ 𝑑𝑑𝑒𝑡𝑜𝑢𝑟𝑚𝑎𝑥 ,  ∀𝑖 ∈ 𝑅𝑡 ( 21 ) 

Considering the existence of relatively short distance trips, we also set a maximum 

detour ratio to limit the detour distance within a ratio of the original individual trip: 

 0 ≤ 𝑑𝑑𝑒𝑡𝑜𝑢𝑟𝑖 ≤ 𝑑𝑑𝑚𝑐𝑜 × 𝑑𝑂𝑖
𝑡, 𝐷𝑖

𝑡 ,  ∀𝑖 ∈ 𝑅𝑡 ( 22 ) 

 (7) The constraint for drop-off sequence 

For those matched user pairs (𝑖, 𝑗) (𝑥𝑖𝑗
𝑡 = 1), we need to determine the drop-off 

sequence for the taxi users. The sequence is determined according to the travel 

distance. The system will choose the drop-off sequence which results in the shorter 

total travel distance. A decision variable 𝑧𝑖𝑗
𝑡  is used to represent the drop-off sequence 

of user pair (𝑖, 𝑗) at time window t. If 𝑧𝑖𝑗
𝑡 = 1, the taxi will drop off user 𝑖 first, 

otherwise, it will drop off user 𝑗 first. 

 𝑧𝑖𝑗
𝑡 = {

1, 𝑖𝑓  ∆𝑑 ≤ 0 
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 ( 23 ) 

And 𝑧𝑖𝑗
𝑡  = 1 only exists when 𝑥𝑖𝑗

𝑡 =1 because we only consider drop-off sequence 

when the user pair is matched for a DTS trip. 



 

54 

 

This can be formulated as: 

 

𝑀 × (1 − 𝑧𝑖𝑗
𝑡 ) − ∆𝑑 ≥ 0

𝑀 × 𝑧𝑖𝑗
𝑡 + ∆𝑑 > 0

(1 − 𝑥𝑖𝑗
𝑡 ) × 𝑧𝑖𝑗

𝑡 = 0 

 ( 24 ) 

In which, 

 ∆𝑑 = 𝑑𝑂𝑗
𝑡,𝐷𝑖

𝑡 + 𝑑𝐷𝑖
𝑡,𝐷𝑗

𝑡 −  𝑑𝑂𝑗
𝑡,𝐷𝑗

𝑡 − 𝑑𝐷𝑗
𝑡,𝐷𝑖

𝑡 ( 25 ) 

(8) Taxi waiting time constraint 

We set a taxi service delay time constraint for the matched trips. Earliest departure 

time for taxi user 𝑖 at time 𝑇 (T is the time window start time) run is: 

 𝑒𝑖
𝑡[𝑇] = max(𝑇, 𝑒𝑖

𝑡) ( 26 ) 

If the taxi arrives earlier than the earliest departure time for the taxi user, there is a 

taxi waiting time for the taxi provider. The waiting time is the earliest departure time 

for the user minus the actual taxi arrival time if greater than 0. 

𝑡𝑤𝑎𝑖𝑡𝑖𝑛𝑔𝑖 = 𝑚𝑎𝑥(0, 𝑒𝑖
𝑡 − 𝑡 − ∑ (𝑡𝑂𝑘,𝑂𝑖

𝑡 ×𝑘  𝑦𝑘𝑖
𝑡 )) ×  ∑ 𝑥𝑖𝑗

𝑡
𝑗 + ( 27 ) 
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∑ (𝑚𝑎𝑥 (0, 𝑒𝑖
𝑡 − 𝑚𝑎𝑥 (𝑒𝑗

𝑡,  𝑡 +  ∑ (𝑡𝑂𝑘,𝑂𝑗

𝑡 ×
𝑘

 𝑦𝑘𝑗
𝑡 )) −𝑡𝑑𝑤𝑒𝑙𝑙 − 𝑡𝑂𝑗,𝑂𝑖

𝑡  )
𝑗

×  𝑥𝑗𝑖
𝑡 )                                                                                                         

Where 𝑡𝑂𝑘,𝑂𝑖

𝑡  is the travel time between 𝑂𝑘 and 𝑂𝑖 at time window t. 

We set a maximum acceptable waiting time: 

 0 ≤ 𝑡𝑤𝑎𝑖𝑡𝑖𝑛𝑔𝑖 ≤  𝑡𝑤𝑎𝑖𝑡𝑖𝑛𝑔𝑚𝑎𝑥                                          ( 28 ) 

We know  𝑥𝑖𝑗
𝑡  and  𝑥𝑗𝑖

𝑡  cannot be 0 at the same time. Thus the constraint can be 

divided into two parts with both part constrained in [0, 𝑡𝑤𝑎𝑖𝑡𝑖𝑛𝑔𝑚𝑎𝑥]. The maximum 

of the two can also be further transformed in solvable format. 

 (9) Taxi service delay time constraint  

We set a taxi service delay time constraint for the matched trips. If the taxi arrives at 

the destination later than the latest arrival time for the taxi user, the ridesharing 

cannot be formed. The delay time is the actual taxi arrival time minus the latest 

acceptable arrival time for the rider if greater than 0. To make it clearer, we write the 

delay time separately based on whether the user is the first rider or the second rider. 

For the first rider, 
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𝑡𝑑𝑒𝑙𝑎𝑦𝑖 = ∑ ((𝑚𝑎𝑥 (𝑒𝑗
𝑡, 𝑚𝑎𝑥 (t +  ∑ (𝑡𝑂𝑘,𝑂𝑗

𝑡 ×
𝑘

 𝑦𝑘𝑗
𝑡 ), 𝑒𝑖

𝑡) +𝑡𝑑𝑤𝑒𝑙𝑙
𝑗

+ 𝑡𝑂𝑖
𝑡, 𝑂𝑗

𝑡) + 𝑡𝑑𝑤𝑒𝑙𝑙 + 𝑡𝑂𝑗
𝑡, 𝐷𝑖

𝑡 × 𝑧𝑖𝑗
𝑡 + (𝑡𝑂𝑗

𝑡, 𝐷𝑗
𝑡 + 𝑡𝑑𝑤𝑒𝑙𝑙 + 𝑡𝐷𝑗

𝑡, 𝐷𝑖
𝑡)

× (1 − 𝑧𝑖𝑗
𝑡 )) × 𝑥𝑖𝑗

𝑡 ) 

( 29 ) 

For the second rider, 

𝑡𝑑𝑒𝑙𝑎𝑦𝑗 = ∑ ((𝑚𝑎𝑥 (𝑒𝑗
𝑡, 𝑚𝑎𝑥 (t +  ∑ (𝑡𝑂𝑘,𝑂𝑗

𝑡 ×
𝑘

 𝑦𝑘𝑗
𝑡 ), 𝑒𝑖

𝑡) +𝑡𝑑𝑤𝑒𝑙𝑙
𝑖

+ 𝑡𝑂𝑖
𝑡, 𝑂𝑗

𝑡) + 𝑡𝑑𝑤𝑒𝑙𝑙 + (𝑡𝑂𝑗
𝑡, 𝐷𝑖

𝑡 + 𝑡𝑑𝑤𝑒𝑙𝑙 + 𝑡𝐷𝑖
𝑡, 𝐷𝑗

𝑡) × 𝑧𝑖𝑗
𝑡 + 𝑡𝑂𝑗

𝑡, 𝐷𝑗
𝑡

× (1 − 𝑧𝑖𝑗
𝑡 )) × 𝑥𝑖𝑗

𝑡 ) 

( 30 ) 

We set a maximum acceptable delay time: 

 0 ≤ 𝑡𝑑𝑒𝑙𝑎𝑦𝑖 ≤  𝑡𝑑𝑒𝑙𝑎𝑦𝑚𝑎𝑥 ( 31 ) 

In our study, we set 𝑡𝑑𝑒𝑙𝑎𝑦𝑚𝑎𝑥 = 0 to eliminate any late arrivals. If needed in future 

research, this constraint can be relaxed to certain criteria. 
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The DTS does not add extra delay for the non-matched taxi users compared to a 

regular taxi trip. We also have the assumption that we will provide taxi service to all 

the users who request service, whether they are matched or not. We thus omit the 

waiting and delay time constraint for the non-matched taxi users. Note the taxi users 

will always have the final option to choose the taxi service or not. After the trip 

information (driver assignment, matching information, estimated arrival time) is 

given, the users can choose to accept the service or cancel the request whether they 

are matched or not.  

(10) Nonnegative benefit constraint 

For each matched trip, we want to guarantee that the shared fare is no less than the 

fare calculated by the fare formula based on the distance that the taxi goes on the 

shared trip: 
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( 32 ) 

More detailed discussions about the “benefit” will be presented in chapter 4. 
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3.4 Chapter Conclusion 

In this chapter, an integer programming model was proposed for the dynamic taxi 

sharing problem. A few realistic assumptions were first introduced to help define the 

problem. The model has an objective function of maximizing the total profit, and a set 

of realistic constraints to limit the matching sets. The detailed part of the fare 

formulation is further explained in Chapter 4. 
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Chapter 4: DTS Fare Calculation Scheme 

This chapter aims to design an automated fare calculation scheme for the DTS. 

4.1 The Basics 

Designing the fare calculation scheme is an essential step in developing the DTS 

system. We believe that it is reasonable to assume the following features of the DTS 

fare calculation scheme:  

1. the final fare for each DTS user should be less than the fare they pay if riding 

alone;  

2. the summation of the fare from two users, which is also the fare the driver 

receives, should be more than the fare the driver receives when accomplishing 

an equivalent distance non-shared trip for a single taxi user. 

We assume there is a fixed initial charge 𝑎𝑓 for every taxi trip and a certain fare 

charge 𝑏𝑓 for each mile the taxi travels with passengers on board. For simplicity, we 

omit the slow traffic charge and tolls.  The fare can be written as a function of the 

distance travelled with passengers on board 𝑑 as follows: 

 𝑓(𝑑) =  𝑎𝑓 + 𝑏𝑓 × 𝑑 ( 33 ) 
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By using our DTS system, drivers and riders should both receive a monetary benefit. 

We assume users get (1 − 𝜌) discount off their original non-shared fare, that is, they 

only need to pay 𝜌 of their original non-shared fare 𝑓𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 if they are sharing the 

taxi trips.  

The final fare in DTS for each user should be: 

 𝑓𝑢𝑠𝑒𝑟 = 𝜌 × 𝑓𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 ( 34 ) 

The final fare the driver receives in a DTS trip of two users should be   

 𝑓𝑑𝑟𝑖𝑣𝑒𝑟 = 𝑓𝑢𝑠𝑒𝑟 1 + 𝑓𝑢𝑠𝑒𝑟 2 ( 35 ) 

The total fare for an equivalent distance non-shared taxi trip should be: 

 𝑓(𝑑𝑠ℎ𝑎𝑟𝑖𝑛𝑔) =  𝑎𝑓 + 𝑏𝑓 × 𝑑𝑠ℎ𝑎𝑟𝑖𝑛𝑔 ( 36 ) 

Thus, the monetary benefit of one DTS trip for the drivers/taxi providers is: 

 𝑏𝑒𝑛𝑒𝑓𝑖𝑡 𝐵 = 𝑓𝑢𝑠𝑒𝑟 1(𝑑1) + 𝑓𝑢𝑠𝑒𝑟 2(𝑑2) − 𝑓(𝑑𝑠ℎ𝑎𝑟𝑖𝑛𝑔) ( 37 ) 
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𝑓(𝑑𝑠ℎ𝑎𝑟𝑖𝑛𝑔) is the fare calculated by the current fare system according to the taxi 

sharing trip distance, which is the fare the driver should receive for offering an 

equivalent distance non-shared trip for a single taxi user. 

𝑓𝑢𝑠𝑒𝑟 1(𝑑1) and 𝑓𝑢𝑠𝑒𝑟 2(𝑑2) are the fares calculated by the current fare system 

according to the individual trip distance, which are the fares the individual users 1 

and 2 should separately pay if they ride alone. 

4.2 The Dynamics 

As we discussed in Chapter 1, the uneven distribution of the taxi availability is the 

main cause of the current issues. We take the idea from Zhang, D. et al. (2013) as a 

reference and design our fare scheme to be able to incorporate the dynamic change of 

the taxi occupancy ratio throughout time to balance this uneven temporal distribution.  

We set: 

 𝜌 = 𝑤𝑓 ×
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑚𝑝𝑡𝑦 𝑡𝑎𝑥𝑖𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑡𝑎𝑥𝑖𝑠
 ( 38 ) 

Where 𝑤𝑓 is a constant parameter, and 𝜌𝑚𝑖𝑛 ≤ 𝜌 ≤ 𝜌𝑚𝑎𝑥 . Figure 8 shows how 

the parameter could change in different scenarios: 
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Figure 8 Balance System-wide Taxi Occupancy Rate 

4.3 Example 

To further illustrate how the system and the fare calculation scheme work, a one-pair 

DTS matching example is given as follows: 

Figure 9, 10, and 11 show one pair of the DTS matching results. The relevant values 

for 𝑥, 𝑦, 𝑧 are 𝑥(30,16) = 1, 𝑦(44, 30) = 1, and 𝑧(30,16) = 0. From 𝑥(30,16) = 1, 

we know that user No. 30 and user No. 16 are matched in the DTS system with a 

sequence of picking up No. 30 first, and No. 16 second. From 𝑧(30,16) = 0, we 

know the drop off sequence is dropping off No. 16 first, and No. 30 second. From 

𝑦(44, 30) = 1, we know that driver No. 44 will be assigned to the user pair (30,16). 



 

63 

 

We can see the two separate trip routes from Figure 9 and Figure 10 according to 

Google Maps. As shown in Figure 9, the total travel time for an individual trip for 

user No. 30 is 18 minutes, and the total travel distance is 3.1 miles. As shown in 

Figure 10, the total travel time for an individual trip for user No. 16 is 11 minutes, 

and the total travel distance is 1.7 miles. 

 

Figure 9 User No. 30 Route from Google Maps 
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Figure 10 User No. 16 Route from Google Maps 

The DTS route is shown in Figure 11, we can see driver 44 passes the origin of user 

30, the origin of user 16, the destination of user 16, and the destination of user 30 in 

this sequence. The total travel time for the shared DTS trip is 25 minutes, and the 

total travel distance is 3.6 miles. 
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Figure 11 the DTS Trip Route 

In the two individual non-sharing trips, if we set  𝑎𝑓 = 2.5, 𝑏𝑓 = 3, (the parameter 

value settings are discussed in Chapter 6, Section 2) the fares can be calculated 

according to Eq.(39):  

 

𝑓𝑟𝑖𝑑𝑒𝑟_1_𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 = 𝑎𝑓 + 𝑏𝑓 × 3.1 = 11.8 

𝑓𝑟𝑖𝑑𝑒𝑟_2_𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 = 𝑎𝑓 + 𝑏𝑓 × 1.7 = 7.6 

( 39 ) 

In this shared trip, if we set 𝜌 = 0.8, then the fare for each user after the discount is: 

 𝑓𝑟𝑖𝑑𝑒𝑟_1 = 𝜌 × 11.8 = 9.44 ( 40 ) 
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𝑓𝑟𝑖𝑑𝑒𝑟_2 = 𝜌 × 7.6 = 6.08 

 

Table 6 shows the comparison of the original fare and the discounted fare after the 

DTS: 

Table 6 Fare Comparison before and after DTS for the Two Users 

 
Distance 

(miles) 

𝒇(𝒅) ($) 𝝆 × 𝒇(𝒅) ($) Change($) 

Original Trip 1 3.1 11.8 9.44 -2.36 

Original Trip 1 1.7 7.6 6.08 -1.52 

Total 4.8 19.4 15.52 -3.88 

Now we consider the shared trip. Given the taxi-sharing route is 3.6 miles, the fare for 

an equivalent 3.6-mile taxi trip can be calculated as: 

 𝑓 = 𝑎𝑓 + 𝑏𝑓 × 3.6 = 2.5 + 3.6 × 3 = 13.3 ( 41 ) 

From Table 6, we know the fare of this taxi sharing pair is actually: 

 𝑓𝑠ℎ𝑎𝑟𝑖𝑛𝑔 = 𝑓𝑟𝑖𝑑𝑒𝑟_1 + 𝑓𝑟𝑖𝑑𝑒𝑟_2 = 9.44 + 6.08 = 15.52 ( 42 ) 

Thus, the benefit that the taxi driver gets from offering DTS to this user pair is: 
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 𝑓𝑠ℎ𝑎𝑟𝑖𝑛𝑔 − 𝑓 = 2.22 ( 43 ) 

The fare comparison before and after DTS for the driver is shown in Table 7: 

Table 7 Fare Comparison before and after DTS for the Driver 

 Distance (miles) 𝒇(𝒅) ($) 𝒇(𝟏)+𝒇(𝟐) ($) Benefit 

DTS Trip 3.6 13.3 15.52 2.22 

4.4 Chapter Conclusion 

In this chapter, the DTS fare calculation scheme was designed to complete the 

formulation in Chapter 3, and as an essential structure of the DTS system. An 

example was given to illustrate how the scheme works. The fare calculation scheme 

can offer monetary benefits to both taxi users and the drivers (associated with the taxi 

provider) and can balance the whole network taxi occupancy rate in real time with the 

self-adjusting parameter. 
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Chapter 5: A Customized Spectral Clustering 

Approach for Preselection on DTS Trips 

5.1 Background 

In real-world implementations, taxi requests may appear in large amounts, especially 

during the peak hours. Thus we need an approach which can solve the matching and 

assignment in a very short time even if the requests set size is large in a time window. 

We consider narrowing down the search space for the integer programming model by 

doing a preselection on taxi trip requests so that the system only needs to consider the 

trips which have a high possibility to be matched, typically going to the similar 

direction and in close geographical proximity when calculating a match for the 

current trip.  

To represent the location of a trip, simply using the mean of the latitudes and 

longitudes of the start and end points does not seem to be representative on a sphere. 

We thus consider using midpoint, the half-way point along a great circle path between 

the two points. The formula to calculate the midpoint is as follows (Movable Type 

Scripts): 
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𝐵𝑥 =  cos 𝜑2 × cos ∆𝜆 

𝐵𝑦 =  cos 𝜑2 × sin ∆𝜆 

𝜑𝑚 = atan2 (sin 𝜑1 + sin 𝜑2 , √(cos 𝜑1 + 𝐵𝑥)2 + 𝐵𝑦
2) 

𝜆𝑚 = 𝜆1 +  atan2(𝐵𝑦, cos 𝜑1 + 𝐵𝑥) 

( 44 ) 

Where 𝜑 is latitude, 𝜆 is longitude, the subscript 1 and 2 represent the two endpoints, 

the subscript m represents the midpoint, and ∆ represents the difference between the 

two endpoints. The location of the midpoint on the sphere is shown in Figure 12: 

 

Figure 12 Midpoint 
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As for the direction of the trip, there are some existing terms representing directions 

on a sphere. As shown in Figure 13, in navigation, azimuth is a term used for the 

bearing of a celestial body. Geometrically it is the measure of the arc of the horizon 

that lies between the elevated pole and the point where the great circle passing 

through the celestial body cuts the horizon (Kemp, 2005). In this study, we use 

azimuth to describe the angle to observe the other point from the true north when 

giving two points on the same surface, that is, the angle between the true north 

direction and the great circle direction of the two points. 

 

Figure 13 Azimuth in Navigation 

The formula to calculate the Azimuth is shown in Eq. (45) (Movable Type Scripts): 

𝜃 = atan2 (sin ∆𝜆 × cos 𝜑2 , cos 𝜑1 × sin 𝜑2 − sin 𝜑1 × cos 𝜑2 × cos ∆𝜆) ( 45 ) 
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Where 𝜑 is latitude, 𝜆 is longitude, the subscript 1 and 2 represent the two endpoints, 

and ∆ represents the difference between the two endpoints. 

In this way, the “preselection” is based on two characteristics: midpoints and azimuth 

of the trip, which can simply be calculated merely using the trip origin and 

destination coordinates. 

There are some existing concepts that we can use in our “preselection” on the trips in 

DTS. In data mining, clustering is the process of examining a collection of “points,” 

and grouping the points into “clusters” according to some distance measure. The goal 

is that points in the same cluster have a small distance from one another, while points 

in different clusters are at a large distance from one another. (Leskovec, Rajaraman, 

& Ullman, 2014) 

There are many studies in the transportation field used clustering approach. Shin 

(2011) proposed a centroid-based heuristic algorithm for the capacitated vehicle 

routing problem. The method used x and y coordinates to represent point locations in 

a two-dimensional space and the arithmetic mean of the two coordinates separately to 

represent the geometrical center of a cluster. The distance between the clusters is 

represented by the distance between the cluster centers (Shin, 2011). 
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The study of clustering spatial points has been on for decades, and there are different 

types of clustering methods. Finding a suitable clustering method is crucial to the 

problem.  

There are two major approaches to clustering – hierarchical and point-assignment. 

(Leskovec et al., 2014)  

1. Hierarchical or agglomerative algorithms start with each point in its own cluster. 

Clusters are combined based on their “closeness,” using one of many possible 

definitions of “close.” Combination stops when further combination leads to 

clusters that are undesirable for one of several reasons. For example, we may 

stop when we have a predetermined number of clusters, or we may use a 

measure of compactness for clusters, and refuse to construct a cluster by 

combining two smaller clusters if the resulting cluster has points that are spread 

out over too large a region. 

2. The other class of algorithms involves point assignment. Points are considered 

in some order, and each one is assigned to the cluster into which it best fits. 

This process is normally preceded by a short phase in which initial clusters are 

estimated. Variations allow occasional combining or splitting of clusters, or 

may allow points to be unassigned if they are outliers (points too far from any 

of the current clusters). Common examples of this class are k-means algorithms, 
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Density-based spatial clustering of applications with noise (DBSCAN), fuzzy 

clustering, etc. 

Spectral clustering uses a similarity matrix as an input and consists of a quantitative 

assessment of the relative similarity of each pair of points in the dataset. Spectral 

clustering uses ratio cut, which is related to the sizes of the clusters. Thus, 

degenerated solutions will be avoided, and the clusters sizes are more likely to be 

evenly distributed.  

5.2 Approach Design 

We propose a customized spectral clustering approach for preselection on Dynamic 

Taxi Sharing based on trip midpoint and azimuth. The basic procedures of the 

approach are as follows: 

1. Update the trip request data set and the driver location data set at the beginning 

of the time interval; 

2. Calculate the midpoints and azimuth for each trip in the given trip request sets; 

3. Transfer the azimuth from a pure angle to a normalized vector with (x, y) values 

(Figure 14); 
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Figure 14 Normalized Vector Pairs 

4. Calculate the cosine similarity between the vector pairs; 

Cosine similarity, or the cosine kernel, computes similarity as the normalized dot 

product of X and Y as shown in Eq.(46) (Pedregosa et al., 2011). The Function of 

cos x (or cosine similarity value) is shown in Figure 15: 

 

Figure 15 the Function of cos x  

 cosine  
,  
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5. Define and build the “azimuth distance matrix”: 

 Azimuth distance (𝑖, 𝑗) = {
𝑀,   𝑖𝑓 cosine similarity(i,j) < 0

0,   𝑖𝑓 cosine similarity(i,j) ≥ 0
 ( 47 ) 

Where M is a large positive number. From Eq. (46) and Figure 15, we know 

that any two trips with the azimuth angle difference larger than |
𝜋

2
| are 

assigned a large “Azimuth distance” and thus will be more likely forced into 

different clusters. 

6. Calculate the Haversian distance matrix between trip midpoints for the whole 

trip data set; 

We already talked about using the midpoints to represent the trip locations. In 

this step, we use Haversian distance formula to build the Haversian distance 

matrix based on the trip midpoints locations.  

7. Design the distance matrix by simply adding Haversian distance we got from 

step 6 and the Azimuth distance matrix we got from step 5 together: 

 𝑑(𝑖, 𝑗) =  𝐴𝑧𝑖𝑚𝑢𝑡ℎ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑖, 𝑗) +  𝐻𝑎𝑣𝑒𝑟𝑠𝑖𝑎𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑖, 𝑗) ( 48 ) 

In this way, those trips having azimuth angles larger than 90 degrees are forced to 

have a very large distance and then be clustered into different clusters. 
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8. Transform the distance measure to similarity measure: 

There are different measurements that we can use to form the similarity measure 

to perform spectral clustering. We are using a simple exponential function below. 

Other measurements like Gaussian kernel can also be used.  

 
( , )( , ) d i js i j e

 
( 49 ) 

9. Perform spectral clustering using the given matrix.  

The approach we followed to perform this step is from the Scikit-learn package 

(Pedregosa et al., 2011). A second level clustering can also be performed if 

some specific cluster size is too big for the further calculation. There are several 

ways to define the number of clusters we use as the input for the clustering. For 

example, it can be: 

 𝑛𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 = 𝑛𝑡𝑜𝑡𝑎𝑙_𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠//𝑁𝑝𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑_𝑐𝑙𝑢𝑠𝑡𝑒𝑟_𝑠𝑖𝑧𝑒 + 1  ( 50 ) 

Where "//" represents an integer division (floor division), which is the result 

of the division rounded down to the nearest integer; 𝑁𝑝𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑_𝑐𝑙𝑢𝑠𝑡𝑒𝑟_𝑠𝑖𝑧𝑒 is 

the preferred cluster size; 𝑛𝑡𝑜𝑡𝑎𝑙_𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠 is the total number of the taxi 

requests. 



 

77 

 

10. Perform the integer programming model in each cluster separately to get the 

DTS matching and fare calculation results. The calculation in different clusters 

can be parallel for time consideration. If any of the one clusters cannot be solved 

in the limited time, we can simply perform a non-sharing taxi driver assignment, 

or we can do the second level clustering on these clusters and rerun the 

optimization in those subclusters.  

Figure 16 shows the flowchart of the clustering approach: 
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Figure 16 Flowchart of the Approach in One Time Interval 
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5.3 Chapter Conclusion  

This chapter proposed a customized spectral clustering approach for preselection on 

DTS trips. The approach takes geolocations of the origin and destinations points as 

input, and considers both taxi trips geolocations and heading directions when 

performing the clustering. The approach is designed to be conducted at the beginning 

of each time interval if the trip requests set is larger than a certain size. The 

performance of the approach will be tested in Chapter 6.  
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Chapter 6: Case Study 

In this Chapter, we implement the model using real-world taxi trip data.  

6.1 Data Description and Preparation 

We use TLC Trip Record Data (NYC Taxi Limousine Commission, 2016) to 

implement the model. 

This dataset includes trip records from all trips completed in yellow taxis, green taxis, 

and For-Hire Vehicles (FHV, only available starting 2015) in NYC from 2009 to 

2017. Records show that individual taxi trips in the city from January 2009 through 

June 2015 alone is over 1.1 billion. The data records include fields capturing pick-up 

and drop-off dates/times, pick-up and drop-off locations, trip distances, itemized 

fares, rate types, payment types, and driver-reported passenger counts. The data were 

collected and provided to the NYC Taxi and Limousine Commission (TLC) by 

technology providers authorized under the Taxicab & Livery Passenger Enhancement 

Programs (TPEP/LPEP).  

Starting July 2016, the latitude and longitude of origin and destination points are 

substituted by some classified location zone ID. We downloaded December 2015 

Boro Taxis (Green Taxis) data which still has the detailed latitude and longitude 

records. Green taxis cover a much larger pick-up area than those traditional yellow 
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taxis (as shown in Figure 17) and thus could be more likely to give “general” 

performance results than the yellow taxis. 

 

Figure 17 Boro Taxis and Yellow Taxis Cover Area 

As shown in Figure 17, Boro Taxis can pick up passengers by street hail or a 

prearranged trip outside the Manhattan exclusionary zone and by prearranged trip 

only at the airports (NYC Taxi Limousine Commission, 2016). 

A 10-row sample of the data set is shown in Tables 8 and 9. 

Table 8 Sample of the TLC Trip Record Data Set (Part 1/2) 

Ven

dorI

D 

lpep_pick

up_dateti

me 

Lpep_dro

poff_datet

ime 

Store_an

d_fwd_fl

ag 

Rate

Code

ID 

Pickup

_longit

ude 

Pickup

_latitu

de 

Dropoff

_longitu

de 

Dropof

f_latitu

de 

Passen

ger_co

unt 

Trip_

distan

ce 

2 12/1/2015 

0:00 

12/1/2015 

0:00 

N 1 -

73.9793 

40.673

69 

-73.9909 40.7537

9 

1 7.09 

2 12/1/2015 
0:00 

12/1/2015 
0:12 

N 1 -
73.8442 

40.721 -73.8793 40.7383
2 

1 2.26 
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2 12/1/2015 

0:00 

12/1/2015 

0:13 

N 1 -

73.9924 

40.694

39 

-73.9551 40.7351

2 

1 4.91 

1 12/1/2015 
0:00 

12/1/2015 
0:02 

N 1 -
73.8807 

40.748
05 

-73.8709 40.7494
7 

1 0.6 

2 12/1/2015 

0:00 

12/1/2015 

0:05 

N 1 -

73.9445 

40.714

61 

-73.9621 40.7158

2 

1 1.17 

2 12/1/2015 
0:00 

12/1/2015 
0:16 

N 1 -
73.9919 

40.690
66 

-73.9204 40.6883
4 

1 4.04 

2 12/1/2015 

0:00 

12/1/2015 

0:23 

N 5 -

73.9356 

40.833

03 

-73.9094 40.8325

9 

1 5.53 

2 12/1/2015 
0:00 

12/1/2015 
0:17 

N 1 -73.955 40.734
04 

-73.9876 40.7244
3 

1 4.11 

2 12/1/2015 

0:00 

12/1/2015 

0:10 

N 1 -

73.8073 

40.699

49 

-73.7786 40.6968

1 

1 2 

1 12/1/2015 
0:00 

12/1/2015 
0:35 

N 1 -
73.9078 

40.657
83 

-74.1602 40.6207
5 

1 24.7 

Table 9 Sample of the TLC Trip Record Data Set (Part 2/2) 

Fare_am

ount 

Extr

a 

MTA_

tax 

Tip_am

ount 

Tolls_am

ount 

Ehail_

fee 

improvement_su

rcharge 

Total_am

ount 

Payment

_type 

Trip_t

ype  

28.5 0 0.5 5.86 0 
 

0.3 35.16 1 1 

11 0.5 0.5 0 0 
 

0.3 12.3 2 1 

16.5 0.5 0.5 0 0 
 

0.3 17.8 2 1 

4 0.5 0.5 0 0 
 

0.3 5.3 2 1 

6 0.5 0 0 0 
 

0 6.5 2 2 

15 0.5 0.5 4.08 0 
 

0.3 20.38 1 1 

10 0 0 0 0 
 

0 10 2 2 

15.5 0.5 0.5 2 0 
 

0.3 18.8 1 1 

9.5 0.5 0.5 0.2 0 
 

0.3 11 1 1 

66 0.5 0.5 13.46 0 
 

0.3 80.76 1 1 

The data dictionary is given in Table 10: 

Table 10 Data Dictionary 

Field Name Description 

VendorID A code indicating the LPEP provider that provided the record. 
1= Creative Mobile Technologies, LLC; 2= VeriFone Inc. 

lpep_pickup_datetime The date and time when the meter was engaged. 

lpep_dropoff_datetime The date and time when the meter was disengaged. 

Passenger_count The number of passengers in the vehicle. 

This is a driver-entered value. 

Trip_distance The elapsed trip distance in miles reported by the taximeter. 

Pickup_longitude Longitude where the meter was engaged. 

Pickup_latitude Latitude where the meter was engaged. 

RateCodeID The final rate code in effect at the end of the trip. 

1= Standard rate 
2=JFK 

3=Newark 

4=Nassau or Westchester 
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5=Negotiated fare 

6=Group ride 

Store_and_fwd_flag This flag indicates whether the trip record was held in vehicle memory before sending to the 
vendor, aka “store and forward,” because the vehicle did not have a connection to the server. 

Y= store and forward trip 

N= not a store and forward trip 

Dropoff_longitude Longitude where the meter was timed off. 

Dropoff_ latitude Latitude where the meter was timed off. 

Payment_type A numeric code signifying how the passenger paid for the trip. 

1= Credit card 
2= Cash 

3= No charge 

4= Dispute 
5= Unknown 

6= Voided trip 

Fare_amount The time-and-distance fare calculated by the meter. 

Extra Miscellaneous extras and surcharges. Currently, this only includes the $0.50 and $1 rush hour 

and overnight charges. 

MTA_tax $0.50 MTA tax that is automatically triggered based on the metered rate in use. 

Improvement_surcharge $0.30 improvement surcharge assessed on hailed trips at the flag drop. The improvement 

surcharge began being levied in 2015. 

Tip_amount Tip amount – This field is automatically populated for credit card tips. Cash tips are not included. 

Tolls_amount The total amount of all tolls paid for the trip. 

Total_amount The total amount charged to passengers (does not include cash tips). 

Trip_type A code indicating whether the trip was a street-hail or a dispatch that is automatically assigned 

based on the metered rate in use but can be altered by the driver. 
1= Street-hail 

2= Dispatch 

The raw data was filtered before it was used for the analysis. We excluded records of 

taxi trips with empty GPS locations, and the trips starting and ending at the same 

location. We also excluded the trips with distances less than 0.4 miles and travel 

times shorter than 4 minutes since ridesharing will add too much inefficiency for such 

short trips. 

We selected the trip subset of 12/1/2015 which was a Tuesday. The total number of 

trip requests after cleaning is 41,245. The information we used on each trip is the 

pick-up time, drop-off time, pick-up and drop-off locations. 

We used the same set of drop-off locations to represent taxi drivers’ current locations 

since we do not have a separate data source for taxi locations and the taxis are usually 
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distributed randomly in the road network. By having the same number of taxi drivers 

and taxi requests, we can construct the base “non-sharing” model and compare the 

DTS matching and fare results to the base model. Figures 18 and 19 show the 

locations of the points on Open Street Map. 

 

Figure 18 Location of the Pick-up Points 
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Figure 19 Location of the Drop-off Points 

6.2 Implementation Setup 

6.2.1 Approach and Environment  

The model was implemented in Python 2.7 with Gurobi Optimizer 8.0.0 used as the 

integer program solver. The computer we used has an Intel Core i5-2400 processor, 

3.10 GHz CPU, and 16.00 GB RAM.  

We can anticipate that when applied in the real-world, the taxi provider can use more 

powerful computers and run parallel computation to complete the process thus reduce 

the total computation time. 
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6.2.2 Parameters 

We use haversine formula (Mwemezi & Huang, 2011; Oxford English Dictionary, 

1989) to calculate the great-circle distances between two points on a sphere from their 

longitudes and latitudes. Figure 20 and 21 show the idea of using haversine formula 

to calculate the great-circle distance. 

 

 

Figure 20 Using Haversine Formula to Calculate the Great-circle Distance 
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Figure 21: A Rectangular Plane Intersecting a Great Circle Path and the Center of the Earth (Arc b is the 

Path and the Angular Separation of the End Points). 

For any two points on a sphere, the haversine of the central angle between them is 

given by:  

 ℎ𝑎𝑣 (
𝑏

𝑟
) = ℎ𝑎𝑣(𝜑2 − 𝜑1) + cos(𝜑1) cos(𝜑2) ℎ𝑎𝑣(𝜆2 − 𝜆1) ( 51 ) 

Where, 

 ℎ𝑎𝑣 is the haversine function: 

 ℎ𝑎𝑣(𝜃) = 𝑠𝑖𝑛2 (
1 − 𝑐𝑜𝑠(𝜃)

2
) ( 52 ) 

 d is the distance between the two points (along a great circle of the sphere), 

 r is the radius of the sphere, 

https://en.wikipedia.org/wiki/Great_circle
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 𝜑1, 𝜑2: latitude of point 1 and latitude of point 2, in radians 

 𝜆1, 𝜆2: longitude of point 1 and longitude of point 2, in radians 

On the left side of the equals sign 
𝑏

𝑟
 is the central angle, assuming angles are 

measured in radians. 

Solving for b by applying the inverse haversine (if available) or by using 

the arcsine (inverse sine) function gives: 

 b = r ℎ𝑎𝑣−1(ℎ) = 2𝑟 𝑎𝑟𝑐𝑠𝑖𝑛(√ℎ) ( 53 ) 

h is ℎ𝑎𝑣 (
𝑏

𝑟
), or more explicitly: 

b = 2r arcsin (√ℎ𝑎𝑣(𝜑2 − 𝜑1) + cos(𝜑1) cos(𝜑2) ℎ𝑎𝑣(𝜆2 − 𝜆1)) 

=2r arcsin (√𝑠𝑖𝑛2 (
𝜑2−𝜑1

2
) + cos(𝜑1) cos(𝜑2) 𝑠𝑖𝑛2 (

(𝜆2−𝜆1)

2
)) 

( 54 ) 

We used a mean radius of semi-axes r = 3958.76 miles for the radius of the earth in 

the study (National Imagery and Mapping Agency, 2000). 

For real-world taxi trips, the actual travel distance along the route is usually longer 

than the direct great circle distance due to the real-world road network. We thus 

https://en.wikipedia.org/wiki/Radian
https://en.wikipedia.org/wiki/Arcsine
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considered using an elevation rate based on the great circle distance to represent the 

actual travel distance.  

To get an approximate elevation rate, we randomly chose 1000 taxi trips from the 

data set, calculated the great circle distance, and then calculated the ratio by dividing 

the actual trip distance by the great circle distance for each trip. The average of this 

ratio is 139.62%. We thus use a 139.62% ratio on the great circle distance to represent 

the actual travel distance (shown in Table 11). 

Table 11 Trip Distance Ratio Calculation Sample 

trip_ pickup_ pickup_ dropoff_ dropoff_ Haversine 
Distance 

Ratio 
distance longitude latitude longitude latitude 

   2.58 -73.9781 40.75249 -73.9786 40.72965 1.578208 1.63476565 

4.8 -73.9922 40.72531 -73.923 40.69906 4.056978 1.18314663 

0.63 -73.9919 40.7491 -73.9886 40.74295 0.459627 1.37067782 

2.51 -73.9903 40.76244 -73.9596 40.77443 1.805745 1.39000808 

2.77 -73.9478 40.77634 -73.9767 40.75139 2.291531 1.20879902 

1.67 -74.0046 40.73404 -74.0115 40.715 1.363519 1.22477232 

1.85 -73.9807 40.74818 -73.9828 40.72815 1.388001 1.33285168 

1.41 -73.9789 40.75334 -73.9818 40.76838 1.050013 1.3428401 

2.3 -73.9541 40.77477 -73.98 40.75499 1.924815 1.19491987 

8.3 -73.9904 40.75654 -73.9392 40.85122 7.06857 1.17421209 

There are a number of existing studies on advanced travel time prediction. However, 

since the travel time prediction is not a focus of this thesis, we used an average speed 

to calculate the travel time for the sake of simplicity. 
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We used a similar method to get the average speed (real travel distance/travel time) 

by dividing the actual travel distance by the actual travel time in the historical data 

record. The average speed we obtained is 13.83 miles/hour. We thus assumed a 

constant average vehicle speed of 13.83 miles per hour in the study.  

Therefore, we approximated the true travel distances and times and ignored any time-

dependency in travel time caused by congestion in the case study. 

For the earliest departure time and latest arrival time, we used the actual pick-up time 

to represent the earliest departure time and assumed a 20 minutes allowable time 

window for the arrival. That is, we got the latest arrival time by adding 20 minutes to 

the original trips’ arrival time. The parameters values are shown in Table 12: 

Table 12 Parameters Values 

Parameter Value 

M 1E15 

𝒄𝒇  2 

𝒄𝒑𝒎  0.592 

𝒕𝒘𝒂𝒊𝒕𝒊𝒏𝒈𝒎𝒂𝒙 0.25 

𝒕𝒅𝒆𝒍𝒂𝒚𝒎𝒂𝒙 0 

𝒕𝒅𝒘𝒆𝒍𝒍 0.017 

𝒅𝒅𝒆𝒕𝒐𝒖𝒓𝒎𝒂𝒙 5 

𝒅𝒅𝒎𝒄𝒐 0.5 

𝒆𝒊
𝒕 The original trip departure time for each trip 

𝒍𝒊
𝒕 The original trip arrival time for each trip +20 mins 

𝒂𝒇 2.5 

𝒃𝒇 3 

𝑵𝒑𝒓𝒆𝒇𝒆𝒓𝒓𝒆𝒅_𝒄𝒍𝒖𝒔𝒕𝒆𝒓_𝒔𝒊𝒛𝒆 30 
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*Note: Values based on NYC Taxi Limousine Commission charge and AAA: YOUR DRIVING COSTS. How 

much are you really paying to drive?) 

For the fare part, according to NYC Taxi & Limousine Commission, The metered fare 

information is as follows (NYC Taxi Limousine Commission, 2018): 

 … 

 The initial charge is $2.50. 

 Plus 50 cents per 1/5 mile or 50 cents per 60 seconds in slow traffic or when 

the vehicle is stopped. 

 … 

In our study, we omit toll, slow traffic charge, and other charges and thus use a slightly 

higher parameter for the fare per travel distance than the parameter from the NYC TLC. 

We keep the initial rate to be the same as the NYC TLC. Thus, Eq. (33) in Chapter 4 

becomes:  

 𝑓(𝑑) =  𝑎𝑓 + 𝑏𝑓 × 𝑑 ( 55 ) 

Where 𝑎𝑓 = 2.5, 𝑏𝑓 = 3. 
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6.3 Implementation Results 

6.3.1 Preliminary Experiment 

We limited the calculation time to 180 seconds and performed the IP model in Chapter 

3. The calculation time trend of 119 cases with a size range of [3, 136] is shown in 

Figure 22. We can see that as the size of the data set increases, the calculation time 

increases. We considered setting the preferred cluster size at 30 to have better chances 

of getting the matching results within 180 seconds.  

 

Figure 22 Calculation Time for Different Data Set Sizes 

6.3.2 Case Study I 

In this case study, we chose three consecutive 30 minutes time intervals during 

morning peak on a Tuesday:  
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 12/01/2015 07:30:00 - 08:00:00 

 12/01/2015 08:00:00 - 08:30:00 

 12/01/2015 08:30:00 - 09:00:00 

We updated the users and drivers set at each time period with the corresponding trip 

set and performed spectral clustering with a reasonable cluster number. Then we ran 

the optimization separately in each cluster in each time period and compared them 

with a base model without any taxi-sharing (where we used the same model but 

forced all the 𝑥 variables to be zero). 

(1) Time Interval 1 (12/01/2015 07:30:00 - 08:00:00) 

In this time window, we have a total of 1022 trip requests. The clustering results 

are shown in Figure 23. The left figure shows the midpoint latitude and longitude, 

and the right figure shows the azimuth distribution. We can see trips that with 

close midpoint location and with close azimuth distribution are clustered into the 

same clusters. (Note the azimuth here is an angle from 0 to 360 degrees, and two 

trips with an azimuth of 0 and an azimuth of 359 degrees actually have very 

similar directions.) 
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Figure 23 Clustering Results for Time Interval 1 

In this time window, we did a sensitivity analysis of the parameter 𝜌 in the 

optimization step. Results are shown in Table 13: 

Table 13 Results for Different 𝝆 Values in Time Interval 1 

Name 

Non-

Sharing 

Model 

𝝆 = 1.0 𝝆 = 0.95 𝝆 = 0.9 𝝆 = 0.85 𝝆 = 0.8 𝝆 = 0.75 

Time Limit per 

Cluster (s) 
180 

Number of Trip 

Requests 
1022 

Number of Clusters 35 

Average Cluster Size 29.2 

Number of Clusters 

w/o DTS Matching 

Results within Given 

Time Limit 

0 8 7 7 3 2 1 

Matched Users - 638 608 560 668 526 352 

Matching Rate - 62.43% 59.49% 54.79% 65.36% 51.47% 34.44% 

Number of Drivers 1022 703 718 742 668 759 846 

Number of Drivers 

Reduction 
- 319 304 280 354 263 176 

Number of Drivers 

Reduction Rate 
- 31.21% 29.75% 27.40% 34.64% 25.73% 17.22% 

Total Profit ($) 6765.51 8090.83 7790.22 7488.01 7395.69 7139.40 6986.58 
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The last row is “Estimated Taxi User Acceptance Willingness.” 𝜌 = 1 means that the 

DTS users will not receive any discount by using this system and thus they will have 

low willingness in participating the service. As 𝜌 decreases, the users will receive 

higher and higher discounts and their willingness will be higher.  

We can see as 𝜌 decreases from 1.0 to 0.75, the total profit decreases from 8090.83 to 

6986.58. This makes sense because we defined (1− 𝜌) to be the discount rate that the 

DTS users receives from the taxi providers if they are matched with another user. The 

trend is shown in Figure 24: 

Total  Profit 

Increase($) 
- 1325.32 1024.71 722.50 630.18 373.89 221.07 

Total  Profit  

Increase Rate 
- 19.59% 15.15% 10.68% 9.31% 5.53% 3.27% 

Total Driver 

Benefit($) 
- 1816.20 1539.67 1207.49 1284.75 768.77 333.65 

Total Distance 

(Miles) 
5979.93 4818.91 4770.02 4474.24 4472.85 4783.42 4978.69 

Total Distance 

Decrease (Miles) 
- 1161.02 1209.91 1505.69 1507.08 1196.51 1001.24 

Total Distance 

Decrease Rate 
- 19.42% 20.23% 25.18% 25.20% 20.01% 16.74% 

Total Distance w. 

Passengers Onboard 

(Miles) 

3264.88 2925.31 2905.13 2755.18 2804.96 2935.06 3008.00 

Estimated Taxi User 

Acceptance 

Willingness 

- 

* 

(Low 

Willingness

) 

** *** **** ***** 

****** 

(High 

Willingness

) 
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Figure 24 Total Profit for Different 𝝆 Values 

We can see the total Driver Benefit has a decreasing trend as the 𝜌 value decreases. 

(Shown in Figure 25) From Eq. (37) in Chapter 4 we know this trend is also as 

expected. 

 

Figure 25 Total Driver Benefit Change for Different 𝝆 Values 

Figure 26 shows the trend of “Matching Rate,” “Number of Drivers Reduction Rate,” 

“Total Profit Increase Rate,” and “Total distance Decrease Rate.” In this case, study, 
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although 𝜌 = 1 gives us the highest “Total Profit”, we have to consider the “User 

Acceptance Willingness”. Here 𝜌 = 0.85 performs well on these rates and maintains a 

reasonable “User Acceptance Willingness”. We considered using this value for the 

following case studies.  

 

Figure 26 Different Rate Change for Different 𝝆 Values 

 

(2) Time Interval 2 (12/01/2015 08:00:00 - 08:30:00) 

There are total 1158 trips in this time interval. We used 𝜌 = 0.85, and kept other 

parameters the same as Time Interval 1. The clustering results are shown in Figure 

27: 
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Figure 27 Clustering Results for Time Interval 2 

The model results are shown in Table 14: 

Table 14 Results for Time Interval 2 

Name Non-Sharing 

Model 

DTS 

Time Limit per Cluster (s) 180 

Number of Trip Requests 1158 

Number of Clusters 39 

Average Cluster Size 29.69 

Number of Clusters w/o DTS Matching 

Results within Time Limit 

0 5 

Matched Users - 738 

Matching Rate - 63.73% 

Number of Drivers 1158 789 

Number of Drivers Reduction - 369 

Number of Drivers Reduction Rate - 31.87% 

Total Profit($) 7233.11 7927.10 

Total Profit Increase($) - 693.99 

Total Profit Increase Rate - 9.59% 

Total Driver Benefit($) - 1300.98 

Total Distance (Miles) 6448.87 4853.28 

Total Distance Decrease (Miles) - 1595.59 

Total Distance Decrease Rate - 24.74% 

Total Distance w. Passengers Onboard 

(Miles) 

3490.61 3034.92 



 

99 

 

Estimated Taxi User Acceptance 

Willingness 

- **** 

(3) Time Interval 3 (12/01/2015 08:30:00 - 09:00:00) 

There are a total 1330 trips in this time interval. We used 𝜌 = 0.85, and kept 

other parameters the same as Time Interval 1. The clustering results are shown in 

Figure 28: 

 

Figure 28 Clustering Results for Time Interval 3 

The model results are shown in Table 15: 

Table 15 Results for Time Interval 3 

Name Non-Sharing 

Model 

DTS 

Time Limit per Cluster (s) 180 

Number of Trip Requests 1330 

Number of Clusters 45 

Average Cluster Size 29.56 

Number of Clusters w/o DTS Matching 

Results within Time Limit 

0 7 

Matched Users - 908 
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Matching Rate - 68.27% 

Number of Drivers 1330 876 

Number of Drivers Reduction - 454 

Number of Drivers Reduction Rate - 34.14% 

Total Profit($) 8183.97 10141.86 

Total Profit Increase($) - 1957.89 

Total Profit Increase Rate - 23.92% 

Total Driver Benefit($) - 2724.60 

Total Distance (Miles) 7449.10 5675.64 

Total Distance Decrease (Miles) - 1773.46 

Total Distance Decrease Rate - 23.81% 

Total Distance w. Passengers Onboard 

(Miles) 

3976.28 3446.41 

Estimated Taxi User Acceptance 

Willingness 

- **** 

6.3.3 Case Study II 

In this case study, we test the model in three consecutive 10 minute time intervals: 

(1) 12/01/2015 08:00:00 - 08:10:00 

There are total 405 trips in this time interval. We use 𝜌 = 0.85, and keep other 

parameters the same as Time Interval 1 in Case Study I. The clustering results are 

shown in Figure 29: 
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Figure 29 Clustering Results for Time Interval 1 

The model results are shown in Table 16: 

Table 16 Results for Time Interval 1 

Name Non-Sharing 

Model 

DTS 

Time Limit per Cluster (s) 180 

Number of Trip Requests 405 

Number of Clusters 14 

Average Cluster Size 28.93 

Number of Clusters w/o DTS Matching 

Results within Time Limit 

0 4 

Matched Users - 152 

Matching Rate - 37.53% 

Number of Drivers 405 329 

Number of Drivers Reduction - 76 

Number of Drivers Reduction Rate - 18.77% 

Total Profit($) 2622.30 2765.15 

Total Profit Increase($) - 142.85 

Total Profit Increase Rate - 5.45% 

Total Driver Benefit($) - 193.63 

Total Distance (Miles) 2302.99 2022.28 

Total Distance Decrease (Miles) - 280.71 

Total Distance Decrease Rate - 12.19% 
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Total Distance w. Passengers Onboard 

(Miles) 

1261.06 1201.40 

Estimated Taxi User Acceptance 

Willingness 

- **** 

(2) 12/01/2015 08:10:00 - 08:20:00 

There are total 375 trips in this time interval. We use 𝜌 = 0.85, and keep other 

parameters the same as Time Interval 1 in Case Study I. The clustering results are 

shown in Figure 30: 

 

Figure 30 Clustering Results for Time Interval 2 

The model results are shown in Table 17: 

Table 17 Results for Time Interval 2 

Name Non-Sharing 

Model 

DTS 

Time Limit per Cluster (s) 180 

Number of Trip Requests 375 

Number of Clusters 13 

Average Cluster Size 28.85 

Number of Clusters w/o DTS Matching 

Results within Time Limit 

0 5 
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Matched Users - 62 

Matching Rate - 16.53% 

Number of Drivers 375 344 

Number of Drivers Reduction - 31 

Number of Drivers Reduction Rate - 8.27% 

Total Profit($) 2308.79 2358.55 

Total Profit Increase($) - 49.76 

Total Profit Increase Rate - 2.16% 

Total Driver Benefit($) - 79.74 

Total Distance (Miles) 1961.98 1852.98 

Total Distance Decrease (Miles) - 109.00 

Total Distance Decrease Rate - 5.56% 

Total Distance w. Passengers Onboard 

(Miles) 

1094.56 1068.93 

Estimated Taxi User Acceptance 

Willingness 

- **** 

(3) 12/01/2015 08:20:00 - 08:30:00 

There are total 378 trips in this time interval. We use 𝜌 = 0.85, and keep other 

parameters the same as Time Interval 1 in Case Study I. The clustering results are 

shown in Figure 31: 
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Figure 31 Clustering Results for Time Interval 3 

The model results are shown in Table 18: 

Table 18 Results for Time Interval 3 

Name Non-Sharing 

Model 

DTS 

Time Limit per Cluster (s) 180 

Number of Trip Requests 378 

Number of Clusters 13 

Average Cluster Size 29.08 

Number of Clusters w/o DTS Matching 

Results within Time Limit 

0 4 

Matched Users - 106 

Matching Rate - 28.04% 

Number of Drivers 378 325 

Number of Drivers Reduction - 53 

Number of Drivers Reduction Rate - 14.02% 

Total Profit($) 2405.05 2507.30 

Total Profit Increase($) - 102.25 

Total Profit Increase Rate - 4.25% 

Total Driver Benefit($) - 145.93 

Total Distance (Miles) 2009.86 1797.20 

Total Distance Decrease (Miles) - 212.66 

Total Distance Decrease Rate - 10.58% 
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Total Distance w. Passengers Onboard 

(Miles) 

1135.30 1087.68 

Estimated Taxi User Acceptance 

Willingness 

- **** 

We can see the 10-minute time interval case studies generate lower matching rate and 

less “Total Profit Increase Rate” than the 30-minute time interval case studies. This 

may result due to the lack of suitable matches in the user pool. 

6.3.4 Case Study III 

In this case study, we test the “efficiency” of the clustering approach. That is, whether 

the clustering method can distinguish suitable or unsuitable matches, cluster the 

suitable matches within the same clusters and maintain relatively good results.  

We use a data set from Case Study I Time Interval 1 cluster No.25. This data set has a 

size of 106, and an original matching rate of 33.96% and the optimal solution can be 

found in 56 seconds. We conduct another level of clustering and perform the model in 

the “sub-clusters” to see if the second level clustering can still maintain similar 

results. 

Using the same parameters as before, the second level of clustering clusters the data 

set into four sub-clusters. Results are shown in Table 19: 

Table 19 Results with and without 2nd Level Clustering 

Name Non-Sharing 

Model 

w/o 2nd 

Level 

Clustering 

w. 2nd 

Level 

Cluster 

Comparison 
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Time Limit per Cluster (s) 180 - 

Number of Trip Requests 106 - 

Number of Clusters 1 1 4 3 

Average Cluster Size 106 106 26.5 -79.5 

Number of Clusters w/o DTS 

Matching Results within Time 

Limit 

0 0 0 0 

Matched Users - 36 36 0 

Matching Rate - 33.96% 33.96% 0 

Number of Drivers 106 88 88 0 

Number of Drivers Reduction - 18 18 0 

Number of Drivers Reduction Rate - 16.98% 16.98% 0 

Total Profit($) 1227.88 1297.43 1261.53 -35.9 

Total Profit Increase($) - 69.55 33.65 -35.9 

Total Profit Increase Rate - 5.66% 2.74% -2.92% 

Total Driver Benefit($) - 68.45 66.51 -1.94 

Total Distance (Miles) 821.04 652.90 717.09 64.19 

Total Distance Decrease (Miles) - 168.14 103.95 -64.19 

Total Distance Decrease Rate - 20.48% 12.66% -7.82% 

Total Distance w. Passengers 

Onboard (Miles) 

553.64 523.83 525.18 1.35 

Estimated Taxi User Acceptance 

Willingness 

- **** **** - 

We can see we still have the same matching rate in the second level clustering. The 

“total profit increase” decreased 35.9$ in the model with the second level clustering, 

which is a less than 3% decrease rate from the results without second level clustering. 

Other evaluation terms also changed but not significantly. Overall, we can conclude 

that the clustering approach can capture the “matching suitableness” of the different 

trips and thus cluster the suitable matches into the same clusters. 

6.4 Chapter Conclusion 

In this chapter, the proposed model and the clustering approach were tested with real-

world taxi data sets. The case studies were based on a few assumptions. 
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Three sets of case studies were performed. Case study I was based on three 30 minute 

time intervals; Case study II was based on three 10 minute time intervals; Case study 

III showed the results with and without a second level clustering to demonstrate the 

efficiency of the clustering approach.  

Results showed that the DTS could increase the total profit, decrease the total number 

of taxi drivers needed, decrease the total vehicle travel distance, and offer monetary 

benefits for both users and drivers.  

However, the DTS system needs a large enough “user pool” to maintain a preferable 

matching rate. This is not surprising. According to BuzzFeed News (Anand, 2017), 

When Uber first launched Pool in San Francisco, just 3,600 of the 35,000 Uber Pool 

trips completed in the week beginning Sept. 1, 2014, which mean the match rate is 

just 7.9%. Over time, the number of Pool participants increased, and Uber’s 

algorithms improved, and the Pool match rate inched higher. Our study still has room 

to improve over time.  
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Chapter 7: Summary, Conclusions, and Future 

Research 

7.1 Summary and Conclusions 

In this thesis, we proposed a Dynamic Taxi-Sharing system on behalf of the taxi 

providers. The mathematical formulation of the model was proposed in Chapter 3. 

The taxi providers can maximize their profit by launching the system. The DTS 

system can provide taxi sharing solutions to taxi requests by simply taking the 

geolocations of the current taxi drivers, the geolocations of the users’ origins, 

destinations and desired time window, and does not require to pre-formulate the 

entire road network as a graph before the application. 

We also designed a taxi fare calculation scheme which gives both taxi drivers and 

riders monetary incentives to use the DTS system in Chapter 4. Besides, the scheme 

could self-adjust according to the current taxi occupancy rate to balance the 

occupancy rate over time. This is essential in real-world applications due to the 

uneven temporal distribution of the available taxicabs. 

A customized spectral clustering approach was designed in Chapter 5 to narrow down 

the search space for the model and served as a preselection procedure before the 
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implementation of the model. Both taxi route geographical locations and heading 

directions are considered in the clustering approach.  

We performed three sets of case studies in Chapter 6 to validate the feasibility and the 

effectiveness of the DTS system using real-world taxi trip data (New York City taxi 

data). Results show that combined with the clustering approach; the model can 

perform matching and fare calculation in a short time and give monetary beneficial 

(for both taxi providers and users) matching results.  

A sensitivity analysis of the parameter 𝜌 was conducted in the case study I to show 

how the idea of balancing taxi occupancy in real time works. During peak hours, the 

taxi provider can reduce the value of the parameter to attract more users to participate 

in DTS.  

Two different time windows were tested. In the 30 minute time interval case, the total 

profit increase rate ranges from 9.31% to 23.92% for 𝜌 = 0.85. In the 10 minute time 

interval case, the total profit rate ranges from 2.16% to 5.45% for the same 𝜌 value. 

The difference may be due to the lack of suitable matches in a smaller data set, which 

means the DTS needs a large enough “user pool” to maintain a preferable matching 

rate and significant monetary benefits.  

Case study III was a test of the efficiency of the clustering approach. Results show 

that the clustering approach can capture the “matching suitableness” among the 
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different trips and thus cluster the suitable matches into the same clusters for further 

calculation.  

Overall, the proposed model and clustering approach provide considerable monetary 

benefits to taxi providers, taxi drivers, and taxi users. It was also shown that the 

maximization of the total profit also aligned with societal objectives for reducing the 

total travel distance, the total drivers needed, and thus lead to less fuel consumption, 

emissions and traffic congestion.  

7.2 Future Research 

There are several venues for future research to improve the model and the solution 

approach.  

First, more efficient heuristic algorithms could be developed and applied to compare 

with the current method. This is essential to building a real-time implementation. We 

can also consider separating the user matching and the driver assignment into two 

steps to reduce the complexity of the problem. That is, in step 1, the user matching 

could be performed without considering the drivers set, and in step 2, we take the 

output of step 1 (the user matching results) as the input and perform the driver 

assignment to the matched user pairs and all the other non-matched users.  

Furthermore, the integer programming model itself could be enhanced. We could 

consider including matching problems with more than two user groups and including 
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matching for those taxis that already have one user group onboard. More constraints 

(for example, the riders and drivers’ personal preference) can be considered. A 

thorough sensitivity analysis on the value of different coefficients can be studied in 

different scenarios. 

For further accuracy, we can include the real routing part into the model if we can 

find an appropriate approach that does not add too much computation time. In this 

way, we will have the real routing distance and real travel time in the model. The 

matching could also be adjusted based on the actual route features such as 

overlapping section ratios. 

More methods could be tested in the distance matrix and similarity matrix used for 

the clustering. And other clustering approaches could also be studied. 

Our model still needs a decent user size to have enough suitable matches. Future 

studies could focus on how to improve the matching rate without bringing down the 

profit given limited user size. 

More studies could be performed on the parameter used to balance real-time taxi 

occupancy rate and other parameters used in the model. More sensitivity analysis 

could be added to test the model performance and the parameter settings. Taxi users’ 

behavior, for example, the acceptance rate of an assigned DTS trip according to 

different discount rates, could also be studied.  
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For a real-world implementation, the system structure in Chapter 1, Section 3 needs 

to be further illustrated and tested. The model assumes that the number of available 

taxi user requests is always no greater than twice the number of available taxis.  This 

may not stand in real-world implementations. The data sets at each time interval 

should also include a backlog of trips from the previous time interval if they are not 

yet “expired.” 
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