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ABSTRACT
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Visual tracking is one of the most important applications of Computer Vision and
several tracking systems have been developed, which, either focus mainly on the tracking
of targets moving on a plane or attempt to reduce the 3-dimensional tracking problem to
the tracking of a set of characteristic points of the target. These approaches are seriously
handicapped in complex visual situations from segmentation and point correspondence

problems.

A mathematical theory for visual tracking of a three-dimensional target moving

rigidly in 3-D is presented here and it is shown how a monocular observer can track
an initially foveated object and keep it stationary in the center of his visual field. Our
attempt is to develop correspondence—free tracking schemes and take advantage of the
dynamic segmertation capabilities inherent in the optical flow forméiism. Moreover, a
general tracking criterion, the Tracking Constraint is derived, which reduces tracking to

an appropriate optimization problem. The connection of our tracking strategies with the

Active Vision Paradigm is shown to provide a solution to the Egomotion problem. . - -

In the first part of this work, tracking strategies based on the assumption that we
know the optical flow field are examined and tra.cking is formulated as a constrained op-
timization and a penalized least-squares problem. In the second part, tracking strategies
based on the recovery of the 3—b motion of the target are devised under the assumption
that we know the shape of the target. A correspondence-free scheme is derived, which
depends on global information about the scene (provided from linear features of the im-

age) in order to bypass the ill-posed problem of computing the spatial derivatives of the



image intensity function and amounts to the solution of a linear system of equations in
order to estimate the 3-D motion of the target. An important feature of these tracking
strategies is that they do not require continuous segmentation of the image in order to
locate the target. Supposing that the target is sufficiently textured , dynamic segmenta-
tion using temporal derivatives of the linear features provides sufficient information for
the tracking phase. Therefore, this approach is expected to perfo_rm best when previous
ones perform worst, namely in a complex visual envirﬁnment.

Experimental results for the algorithms presented here demonstrate their robustness

in the presence of noise.
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CHAPTER

ONE

INTRODUCTION

The problem of visual tracking is related to some of the most important applications
of Computer Vision and several tracking systems have been developed, which, either
examine the tracking of a planar target moving in two dimensions or attempt to reduce
the three-dimensional tracking problem to the tracking of a characteristic point of the
target on the image-plane using image segmentation and feature correspondence~based
algorithms. In the general case, visual tracking is a problem of especial difficulty, since
it involves dynamic imagery and scene analysis, which is not yet fully understood. A
mathematical theory for visual tracking of a three-dimensional target moving rigidly in
3-D is presented here and it is shown how a monocular observer can track an initially

foveated object and keep it stationary in the center of his visual field.

* In Ch. 2 a kinematic model of the system is derived and the Tracking Constraint
is introduced, which reduces the problem of tracking to an appropriate optimization
problem.  The connection of our tracking strategies with the Active Vision Paradigm is

shown to provide a solution to the Egomotion problem.

In Ch. 3, tracking strategies based on the assumption that we know the optical flow
field on a subset of the image plane are examined. Various formulations of the tracking
prbblem as an optimization and a penalized least-squares problem are examined and

techniques such as Generalized Cross-Validation are applied for its solution.

In Ch. 4, tracking strategies based on the recovery of the 3-D motion of the
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target are devised under the assumption that we know the shape of the target. A
correspondence~free scheme is derived, which does not depend on measurement of local
quantities, but uses global information from the image (linear features) and amounts to
the solution of a linear system of equations for the estimation of the 3-D motion. An
important characteristic of those tracking strategies is that they do not require segmen-
tation of each new frame of the image in order to locate the target. Supposing that
the target is sufficiently textured , dynamic segmentation, using temporal derivatives of
linear features of t'he.image, provides sufficient information for thé tracking phase.
: Ekﬁé;imental results for the algorithms presented here, demonstrate their robustness
in the presence of noise. ‘ - |
- In the next section (Ch. 1.a) we present an overview of the primate tracking system
and attempt to answer the question why we need tracking. Then, in Ch. 1.b we describe
previous approaches to the tracking problem and give a general description of a tracking
system. In Ch. l.c we provide the motivation for our approach to the 3-D tracking
problem, by attempting to answer the question why we need to estimate the 3-D motion
or the optical flow of 3-D targets moving in 3-D and show the advantages of this approach

with respect to previous ones.

Ch. 1.a) Tracking in the Primate Oculomotor System

Retinal projections of the 3-D world provide the brain with valuable information
about its environment. Due to the loss of inforination about depth during the image
formation process, this information is only a partial description of the world, but most
observers are able to reconstruct correctly the 3-D world. Object motion is one of the
clues used for this reconstruction, but, since a specific retinal motion may have been
induced by an infinite number of 3-D motions, additional information about possible
regularities in the world, such as rigidity (Ullman [71}, Hoffman and Benett {38]), is
necessary in order to obtain a unique reconstruction of the 3-D world structure.

The retina in primates is composed by an array of two kinds of photoreceptors, the
rods, which are sensitive to variations of the image intensity, and the cones, which are
gensitive both to variations of intensity and to wavelength and allow color perception.
Primates have developed an area with high density in cones, the macula lutea, and in

its center, the fovea centralis, they have the most acute visual perception of color and
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of intensity variation. From there, the most important visual information is transmitted
through the optical nerve to the lateral geniculate body and to the cortical visual center.
Therefore the target of interest should be moved in the fovea so that the visual perception
be optimized. In a visual enviroﬂment which changes continuously, due either to the
motion of objects of the scene or to the motion of the observer himself, reorientation of
the eye is necessary in order 'ﬁrst to keep a moving target‘ in the field of view and then
to foveate it, so that the collected visual infermation be maximizéd. Moreover, motion
induces blurring of the image formed on the retina and this prevents useful information
from being. seen. Physiological studies showed that even a relatively slow motion of 3
degrees per secon;d., produces a decrement of resolution of the perceived‘image analogous
to the one caused by myopia (Westheimer and McKee [78]). Therefore, eye movements

are again necessary in order to stabilize the target image on the retina.

Four basic types of eve movements can be distinguished :

Saccades, which are fast relocations of the line of sight and are used to foveate an
object. The velocity of this eye movement is large enough (in the order of 100 deg./sec)
to prevent any useful vision while the eye is moving, but its purpose is to relocate the
line of sight and stabilize the target of interest at the fovea as fast as possible and thus
maximize the time devoted to the visual processing of a stable and foveated object.

Smooth Pursuit, which is a slow and continuous movement used to keep 2 target
steady on the fovea despite its motion. ‘

Vestibulo-ocular eye movements, which are used to maintain fixation during head
movements and allow simultaneous motion and vision. They are driven by a direct reflex,
from the vestibular organs in the inner ear which act as stability and equilibrium sensors,
to the oculomotor system.

Vergence movements, which converge appropriately the line of sight of the two eyes
s0 that the observer may look to nearby objects. A

For target tracking, humans use mostly a sequence of saccades and smooth pursuit
movement:s (Bahill and LaRitz [8]). The target is foveated by a saccadic .movément and
theﬁ smooth pursuit movements attempt to keep it foveated. If it drifts by a significant
amount or leaves the field of view, a new saccade is necessary in order to foveate it
again. In the case of fast moving targets, e.g. when athletes track fast moving balls,

anticipatory saccades may put the eye ahead of the target and let the target catch with
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the eye ([8]). Psychophysical experiments showed that there exists a time delay of about
150 ms in the response of the human tracking system. Saccadic motion is again employed
to overcome this delay, catch up with the target and then allow smooth pursuit to follow
its trajectory (Bahill and McDonald IQ]). It is then obvious that saccadic eye movements
act as a prediction mechanism for the primate oculomotor system. But it seems that it is
the Smooth pursuit ,mechanism"'th'a.t keeps the target foveated angl allows the extraction

of useful visual information.

Ch. 1.b) Optical Tracking System Description

T&acking systems may employ active sensors like radar, sonar and laser in order
to produce range data of a scéne, with explicit depth information. The problems ia
processing range data are very similar to those in processing visual data (Bes! and Jain
[14]). But they involve scanning devices, which are potentially unreliable and they
consume excessive power, which is an important factor especially in space applications
(Wilcox, Gennery, Bu and Litwin [80], Kern, Kugel and Hettlage [45]). Thus passive
electromagnetic sensing, and vision systems in particular, are an attractive alternative,
providing very good spatial and temporal resolution and accuracy (Gilbert et al. [32],
Gennery [29]). Moreover, active research in this field over the last 30 years, provided
solutions to a number of practical problems.

Applications of visual tracking include aircraft and missile tracking, robot manipula-
tion of objects, navigation, traffic monitoring, cloud tracking in meteorology, cell motion
and tracking of moving parts of the body (e.g. heart) in biomedicine.

In the past, the planar motion of 2-D targets (Bouthemy and Benveniste [17}, Venet-
sanopoulos-and Cappellini {73]) and 3-D targets (Schalkoff and McVey [64], Rajala,
Riddle and Snyder [58], Legtérs and Young [46), Nagalia [51]) received considerable at-
tention, due to its important applications, such as the motion of parts on conveyor belts
in industry- and the analysis of satellite pictures of atmospheric disturbances in meteo-
rology. ‘

Here we will consider mainly the more general problem of tra.cking 3-D targets
moving in the 3-dimensional space.

In Roach and Aggarwal [59] tracking of rigid convex polyhedra is considered. For

each new frame the objects are specified by segmentation. The centroid of each object

4



is computed and from its displacement an estimate of the translational velocity of the
object is derived. If the object is partially occluded or uncertainty in the scene prevents
segmentation, then individual features such as corners are tracked.

In Gilbert [31] and Gilbert et al. [32], the-design of the U.S.Army Videotheodolite
is-presented. Segmentation of the image is performed at video rate, using a statistical
clustering algorithm to separate the target (missile or aircraft) from the background
and plume areas. A window around the target is specified, which simplifies subsequent
segmentation. The segmented image is transformed into a binary image of the target,
which is used tb compute the centroid and orient_atibn of the target. These are the input
to the tracking processor, which computes the ch’aﬁge in azimuth and elevation of the
tele§cop‘e: necessary to continue tracking.

Wallace and Mitchell [76] characterize the boundary of the projecfion of a known
moving target (aircraft) by the coefficients of its expansion in 2 complex Fourier series.
After normalization, these are compared to a library of coefficients corresponding to dif-
ferent projections of the target and the target orientation is specified. Tracking involves
identification of the target in each new frame, extraction of its boundary and estimation
of its orientation using library data.

Cornog [24] describes the MIT Eye-Head robot, as well as control strategies to
fixate and track high contrast targets in 3-D. The tafgets are white spheres on blaék
background and the image is segmented using thresholding, where the threshold varies
with the illuminaticn conditions. In the tracking phase, the previous position of the
center of the sphere is used as initial point for radial search in order to specify its new
position. Its deviation from the line of sight is used as an error signal to the controlier
that must specify the camera rotation. Error exceeding a threshold induces a saccadic
repositioning of the system.

Gennery [28], {29] and Wilcox et al. {80] describe a stereo system developed at JPL
for tracking 3-D targets whose models are known. In the acquisition phase, features such
as vertices of polyhedra are detected and tracked in 2-D, the stereo matching problem
is solvéd and thus the 3-D location of the features is inferred and matched to those of
the object model. During the tracking phase, features are matched directly from images
to the object model, without need for stereo matching between pairs of them from the
cameras. The object position and orientation is predicted by extrapolation from previous

data and is adjusted from new data from feature detection.
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The optical tracking systems presented to this moment, are composed of two ma-
jor subsystems: The Vision and the Control Modules. The first generates a desired
trajectory in real-time, that the second has to implement, also in real-time.

The Vision Module consists of one or more cameras, frame grabbers and the neces-
sary computer hardware and software for the processing of the visual information. It gets
the analog image, digitizes it, cieates an array of intensities for all points of the field of
view and from this information locates the target and computes the camera positioning
that will achieve tracking. | 7 h

Loéating-thé tﬁr_get is the part of the tracking process referred to as the Target
Acquis_ition phase and corresponds i»nrthe human chloinotor system to the fixation of
a target usin‘é gaccades. It may encompass problems like recognition of the target and
recovery of its approximate location in 3-D and those may require image segmentation,
feature extraction, creation of 2 model of the target and matching this model to one of a
database of target models. Very often range data from active sensors ([80]) or structured
light ([51]) are used for the acquisition of the target, if its initial position is not preset by
a human operator ([64]) or by a database of possible target locations. The more complex
the scene, the more sophisticated the algorithms for this phase must be and the more
sophisticated they become, the more delay do they introduce in the system.

The Tracking proper phase includes the computation and execution of a smooth and
continuous camera motion that will achieve tracking by keeping the target foveated and
corresponds in the human visual system to the smooth-pursuit of a moving object.

During this phase, the target tends to drift slowly away from the center of the image
and, after some time, it may be lost. Then a new acquisition phase is required.

As in many vision applications, we face here the problem of processing the images
in real-time, which is defined as the processing of images, which, when viewed on an
appropriate display, has an apﬁarent continuity ([73]). A measure of this is the number N
of operations that must be performed per second to realize that processing. For an image
of dimensions m X n, a television scan rate of ! images per second and if r operations
per pixel a.ré required, this number is N = m x n X I x r. For the case of a 256 x 256
image updated at video rate (30 Hz), we have N = 2 x 10°r = 2 x r MOPS (mega-
operations 'per second). With r in the range of 10° to 10° operations per pixel, which
may be necessary to solve the vision problems mentioned earlier, N becomes impressively

large (10° to 10°M OPS). Conventional uniprocessor architectures cannot match these

6



processing requirements, but suitable parallel architectures may be found for the specific
processing task.

The Vision Module then, provides a desired trajectory, that has to be implemented
in the Control Module of the system. The plant in this case is the camera, with the
tracking mount and the actuators that drive it in the azimuth and elevation directions
and is usually modeled as a second-order system ([24]). From. the System Theoretic
point of view, 'thé problem of trajectory tracking;‘ in the sense of deriving the control
law that will forf’ce tjhe_ plant to follow a desired trajectory, has received considerable
attention and several techniques have been examined for its solution. Depending on
the technique, thé selection of an éppropriate control strategy to implement the optimal
camera trajecto;y may be a complicated ;‘.ask. In any case, the hard real-time regime
of the problem will impose control cycles ranging from 0.1 to 1 ms, while the updating
of the sensory information will be done at video rate (30 to 60 Hz). Bernstein [13]
argues that although the computer speed improvement over the last 25 years has been
in the order of 105, the average control computer speed improvement was only in the
order of 10. This is especially important for visual servoing applications, where scene
complexity may increase dramatically the processing time requirements and considerable
time delays in the controller may be intolerable. A solution seems to lie in the use of a
hierarchy of control computers with assembly programmed ones handling Input/Gutput
intensive and real-time critical tasks and with high-level programmed ones handling task
synchronization and supervisory control. Such hierarchical schemes were successfully
used in the past ({24]).

Inertia of such a mechanical system will prevent instantanecus repositioning of the
camera in case the target drifts away from the center of the camera. Therefore, pre-
diction of future positions of the target is necessary, in order for the target to be kept
foveated. Moreover, the image processing algorithms in the Vision Module will introduce
additional delays, which must be compensated. A physiological analogous of a predic-
tion mechanism does exist in the human oculomotor system (see Ch. 1.a). In Hunt and
Sanderson [43],§\'a:ious predictive schemes for visual tracking, based on linear regression
and Kalman ﬁftering, are presented. As we saw, one important reason for tracking is.
to reposition -a:high resolution, but narrow field of view, photoreceptor array (like the
fovea), so thatf'more information about the target become available. Then, accurate

prediction of the target’s future positions becomes more critical, since, if the target is
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lost, the time- consuming acquisition phase must be repeated. In general, due to delays
introduced from the image processing-and control systems, a trade-off between the veloc-
ity of the moving target and the complexity of the visual situation, which will influence
our choice of the Vision Algorithms, seems inevitable in a tracking system. The delays
are difficult to quantify a priori, since they will depend a lot on the hardware which is
a.va.ilable for computations and control..

Finally, the mechanical problems arising in the ‘design of high-performance ma-
" chines, like the choice of actuators and iransm_ission components in order to achieve the
best dynamic p-erformanAce‘a_nd many other engiﬁeering issues related to the manufac-
turing of those machines, are also present in f,_he design of a trai:king system and should

be given appropriate consideration. -

Ch. 1.c) Main Results in this Thesis

In the following we will concentrate on the tracking phase of the tracking of a 3~
D target moving in 3-D and assume that during the acquisition phase the target was
brought to the center of the image plane.

Previous approaches to the problem are composed of 3 main steps : First they
perform segmentation of the image or of appropriately selected parts of it in order to
locate the target and extract the new position of some characteristic points of its image
(centroid, feature points, etc. ). Second they match those new characteristic points
with their corresponding ones in previous or current (in the binocular case) frames and
thus extract information about the displacement of the target. Third they compute the
necessary camera rotation that will achieve tracking.

In the sequel we describe those steps and the problems that they introduce in more
detail. '

In the first step, image segmentation is used in order to separate the target from its
background. In most early tracking schemes, segmentation is done at every new frame
in order to specify ‘the target location. In later schemes, segmentation is done mainly
dﬁring the acquisition phase and windows are specified around the target or around
feature points of the target, which are updated during the tracking phase according to
the estimated target motion. These windows facilitate segmentation by restricting it to

a relatively small area of the image.



In Computer Vision, Image Segmentation has been established as one of the most dif-
ficult problems, especially in complex scenes. Segmentation algorithms based on thresh-
olding and stochastic image models for inlage generation have been developed, but their
usefulness is usually limited for natural images, due either to their assumptions for the
visual world or the need for continuous adjustment of thresholds in the case of varying
iﬁxaging conditions. - ‘

" The sécond step is a generalization of the centroid algoritﬁms used in tracking
planar targets moving in 2-D. In the 9-D case the centroid of the image corresponds to
a specific physical point -6n,the target or in the_are'a of the target and, most important,
will continue to correspond to the same physical point during the entire motion of the
target. Therefore; the claim that its motion describes the motion of the whole target is
justified, since the motion of every other point of the rigid target is kinematically related
to the motion of this characteristic point. If we attempt to use a similar analysis in 3-D
though, it is going to fail, since, as the target moves, the center of brightness at each
time instant will not correspond to the same physical point on the target (this can be
readily seen by considering the tracking of a car moving tewards the observer; initially
the centroid will probably correspond to a point of the front windshield, but as the car
passes in front of the observer, the new centroid will correspond to a point on the door).
Therefore, knowing the motion of the centroid does not necessarily provide the motion
of every other point of the target, thus it does not characterize satisfactorily the motion
of the target. Then the computationally simple tracking methods of the 2-D case, based
on the recovery and tracking of the image center of brightness, have to be replaced by
harder ones in the 3-D case, which use feature extraction, matching and feature tracking.
In this case feature correspondence between consecutive frames has to be accounted for
and the difficulty of this problem is proportional to the complexity of the scene.

The third step involves the computation of thé camera angular velocity w needed
to achieve tracking. Usually w is computed as w = Ke, where e is the displacement of
one of the characteristic points computed in the second step and K a constant. Clearly
the issue here is whether this displacement has been computed accurately despite all
the segmentation:and point correspondence problems and, more important, whether the
displacement of this point really characterizes the displacement of the target.

In our approach we propose a class of tracking algorithms which will perform best

when segmentation and feature correspondence-based algorithms perform worst, namely
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in the case of a heavily textured 3-D target moving over a heavily textured background,
which is the case in most natural images.

The fundamental question every visual tracking scheme has to answer is “Where
is the new position of the target?” Previous methods attempted to do so by exploit-
ing only “static” information, such as the one provided by each separate frame. We
attempted to exploit directly information about the temporal variation of the image in-
duced frozﬁ the target motion, such as the one provided by optical flow. The target
separation problem has then a very élega.np solution based on “dynamic” information
from consecufive fr'amés, -which enables us to diétinguish what moves (target) from what
doesn’t (background). The carriers of information are then the derivatives of the image
intensity functions; rot the displacements of heuristically specified characteristic points
of the target. ’

For example, in the case of a ball moving over a uniform background, the view-
ing situation is simple enough to allow segmentation and feature correspondence-based
algorithms to perform satisfactorily. But in the case of a book moving in front of a
bookcase full of books, the edge detection algorithm will produce such a large number
of edges, that the segmentation task will become impossible. On the other hand, the
image spatiotemporal derivatives will capture the variation of the image generated from
the target motion and optical flow informatior{ will segment dynamically the image into
moving and static parts.

In our approach, we consider a general criterion for 3-D tracking, the Tracking
Constraint, which, if satisfied, guarantees tracking in the sense of keeping an initially
foveated target stationary in the center of the camera, without being restricted to a
specific target or visual environment. We follow the Continuous Motion approach and
use the concept of optical flow to formulate this constraint. The Tracking Constraint
uses global information from entire areas of the image, not local information from specific
points and does not require feature extraction or matching. It requires though knowledge
of either the optical flow field in a neighborhood of the origin of the image plane or the
shape and motion of the target. Computing the optical flow field has been a research
topic in Vision that attracted much interest recently and many algorithms have been
devised for its computation. Since this still remains a difficult task for images with
discontinuities, the Tracking Constraint was also formulated in terms of shape and 3-D

motion instead of the optical flow field. An algorithm is presented, which estimates the
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3~-D motion of the target from image data, provided its shape is known. This estimate
of the target motion parameters, together with the known shape of the target, are used
from the Tracking Constraint to produce the desired camera angular velocity that will
track the target. A requirement for knowledge of the shape in a general tracking scheme
is by.fa: less restrictive than an ad-hoc tracking scheme for a specific target or class
of targets as was done before, since it may be used for any tracking problem where the
shape is known exactly or a;bproxima.tely. This is a very common situation in practice
and even in the human visual system, one may argue that in most cases shape is known
fhrough Iearnjng; k _ ‘ '

Assuming that we know the optical flow the tracking and optical flow constraints are
‘combined to provide a cost functional, whose minimizer is the desired camera angular
velocity that will achieve tracking. This}minimization problem is solved in two ways :
first, by formulating the problem as an equality constrained problem and applying the
classical results of Optimization Theory and second, by formulating the problem as a
penalized-least squares problem and applying Generalized Cross—Validation techniques.

If, on the other hand, we assume that we know the shape of the target, we can use the
theory of linear features and moment invariants and the optical flow constraint to derive
an algorithm for the estimation of the 3-D motion of the target. The linear features
are global quantities that encompass informa.tion about whole areas of the image, not
just specific points of it. Then we can use the Tracking Constraint, together with the
estimated 3-D target motion parameters, to specify the desired camera angular velocity
from an unconstrained minimization problem.

Neither approach uses point correspondence of some kind or local features of the
image.

Simulations were:made to test our algorithms and their performance and robustness
in the presence of noise. Because of la.ck:of a good a.lgorithm for accurate computation of
the optical flow in a generic imaging situation, our main focus has been on the algorithms
that assume knowledge of the shape of fhe target, estimate its 3-D motion and use the
Tracking Constraint i-:n order to achieve tracking. The relevant results demonstrate very
desirable properties fof these algorithms, namely satisfactory 3-D motion estimation,
accurate tracking of the target and graceful degradation of the aigorithm in the presence

of noisy data.
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CHAPTER

TWO

THE SYSTEM MODEL

In this Chapter we will devise the model we use in our analysis of the tracking
process. In Ch. 2.2 the Camera Model will be provided, which gives an approximate
answer about how the image is formed cn the retina of the eye or the film of the camera.
In Ch. 2.b the motion of the target is described with respect to 2 number of appropriate
coordinate systems. This analysis is particularly useful for simulating the relationship
between the 3-dimensional target motion and its projected motion on the image plane.
In Ch. 2.c, the tracking process will be explicitly defined and a Compatational Theory

(in the sense of Marr) for Tracking will be derived from the above modeling process.

2.a) The Image Formation Model

Tracking requires that a mathematical model be established, which describes the
relationship between the target and its image taken by the camera and between informa-
tion derived from this image and the kinematic parameters of the motion of the target.
To this end, we will define the coordinate systems that we will need and provide their
relationships. \

Suppose there exists an inertial~ frame in IR%, the world coordinate system
SXoYoZo, with respect to which all quantities are measured (fig. 2.1) .

The ideal pinhole camera model, showrn in fig. 2.2, is used. An image is a two-

dimensional pattern of brightness projected on the image plane. Consider the camera
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coordinate system OXY Z, with Z along the optical axis, i.e. the perpendicular from
the pinhole to the image plane pointing toward the scene. This induces a two—dimensional
coordinate system, the image-plane coordinate system ozy on the image plane. The
Jocal length f of the camera is defined as the distance Oo.’

Consider finally a target coordinate system WX'Y’Z’ attached to the rigid body

that we want to track.
If P: IR® — IR?is the projection function, consider a point A in JR® with coordinates
X= (X,Y, Z) relative to the camera coordinate system, which is projected to the point

P4 of the image plane with coordinates X = (z,y).(fig. 2.2) . Then :

- (2N _ proy _ Pl(i)>
x_(y)_P(X)_(Pg(i) . | (2.2.1)

Under Orthographic Projection we have:

i:(f/):(f) (2.0.2)

Under Perspective Projection we have:

= (2)-(

X
f,_) . (2.a.3)
Z

13



Fig. 2.1 : The World, Camera and Target Coordinate Systems
(General Case)
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Fig. 2.2 : The Camera and Target Coordinate Systems .
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2.b) The System Kinematics

Consider the position vector q of a point relative to an inertial coordinate system k

and its position vector @Q relative to a moving coordinate system K, where k and K are

oriented.Euclidean spaces (fig. 2.3) .

Theorem 2.1

" Consider two inﬁnitesima.ll_y separated time instants ¢ and 1o, sulc'h that t = to + dt.

i)
_q(t) = r(1) + B(YQ(1)

(2.5.1)

with B(.) € IR x S0O(3), where SO(3) is the Special Orthogonal (Rotation) Group of

order 3.
ii)

dqgo) =T +oX(to) + B(to)g%(tﬁ)_) ’

where T the translational velocity of X, defined as :

T=

o dr(te) .
T(gto) - @r(to)

and w the spatial angular velocity of K, defined as :

o= "=2B (%)
Moreover,
(1) = r(to) + d—'%ld;.—. Tdt + (I + &dt)r(to)
and
B(t) = B(to) + dBd(:")dt = (I + &d1)B(to)

Proof : See Appendix A.

16

(2.5.2)

(2.5.3)

(2.b.4)

(2.5.5)

(2.5.6)



Fig. 2.3 : Inertial and Moving Coordinate Systems
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Consider the three coordinate systems describing the motion of the camera and the
target as shown in fig. 2.1. Consider a point A of the target with position vectors Xy, X
and X' re]a.ti-ve to the world, camera and target frames respectively.

Assume the target is stationary with respect to the target.coordinate frame, i.e.
X'=0= X'(t) = X'(to) X' and is moving rigidly with respect to the other

coordinate frames.

Corollary 2.1 :
‘Consider the tar_get wifth its point W (fig. 2.1) moving with translational velocity T

and with spat;'ial angular velocity w relative to the camera frame.
i) X@)=r)+ R(t)k' with R(.) € IR x SO(3)..
ji) ¢2lel o T +&X(to) , where & = “““”127(1 )and T = 4e) _ or(t0) .

Moreover,

(1) = r{to) + y")dt Tdt + (I + @dt)r(to)

and
dR(to)
dt

R(t) = R(to) + dt = (I + &dt)R(to)

Proof : Result is immediate from the Theorem.

Corollary 2.2 :
Consider the target with its point W (fig. 2.1) moving with translational velocity

T, and with spatial angular velocity wg relative to the world {rame.
i) Xo(t) = ro(t) + Ra(t)o X', with Ro(.) € IR x SO(3).
li) ———M(to =T+ Xo(to) where &g = ——-dRzlt‘O) Rg(to) and T = -——drO(tO) - Uof‘o(io)
Moreover,
dro(to)
dt

fo(t) = To(to) + dt = Todt + (I + (:Jodt)ro(to)

and
Ro(t) = Ro(to) + d—Rg-gﬂ)—)dt = (I + Wodt)Ro(to)

Proof : Result is immediate from the Theorem.
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Corollary 2.3 : 4
Consider the camera with its point O (fig. 2.1) moving with translational velocity

T, and with spatial angular velocity w, relative to the world framg.

i) Xo(t) = d(t) + A(t)X(2) , with A(.) € IR x SO(3).

ii) 2Xslo) = T, 4+ & Xo(to) + A(t0)X(to) , where &, = 24{20 4T (t5) and T, = 2&to) _
 dd(to) - ' .

- Moreo-ver,

dd(to)
dt

d(t) = d(io') + dt = T.dt + (I + d)cdt)d(tO) |

and

A() = A(to) + dAd(tt“

dt = (I +.d1)A(to)

Proof : Result is immediate from the Theorem.

Theorem 2.2

Consider the system of fig. 2.1. with Ty, T, Te,wo,w and w, defined as above.

i) ‘

Xo(t) = ro(t) + Ro(DX"' . (2.5.7)
ii)

dXo(t ;

—%ﬂ = To + &6 Xo(tc) , (2.5.8)
where

Do = @e + Ato)0AT (1) (2.5.9)
and . .

To=Te + Allo)o — A(to)AT (to)d(to) - (2.5.10)
Moreover, )
ro(t) = d(t) + A(t)r(t) = Todt + (I + Dodt)ro(to)

and

CRo(t) = A(R(1) = (I + Oedt) Ro(to)

Proof : See Appendix A.
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In the following we will consider that the origin S of the world and O of the camera
frame coinside (fig. 2.4) .

From the above modeling process an important, for our subsequent analysis, fact
emerges : The effect of a rotation of the camera on the image formation process, is
exactly the same to the effect of an opposite rotation of the target on the process. Put in
another wéy, since the formation of an image én the image plane depends on the relative
" motion of the camera and the target, it is irrelevant to this procéss whether the camera
is rotating in one dire_ctidn or the target is rotating in the opposite one. More formally,

we have :

Corollary 2.4

Consider the system of fig. 2.4. Let the camera rotate with angular velocity w. with
respect to the world coordinate system at time t, while the target remains stationary.
Then, in the camera coordinate system, the target appears to rotate with angular velocity
w such that :

w = ~&, (2.6.11)

where

Ge= AT (10)DeA(to) - (2.5.12)
Proof : The result is immediate from Theorem 2.2 withd = 0,7y = O,wg = 0and T, = 0.

Using this fact in the unext sectior (Ch. 2.c) we will refer to the “camera angular
velocity that achieves tracking™ and mean &g, not w.. This will allow us to make the
entire analysis of Ch. 3 and 4 in the camera coordinate frame and achieve a remarkable

simplification of the corresponding formulae.






2.c) Computational Theory of Tracking

2.c.I) Continuous Motion and Optical Flow--

Optical-Flow is the velocity field generated on the image plane either from the
projection of objects moving in 3-D. or from the motion of the observer with fespect to
the scene or from apparent motion, when a series of images givés the illusion of motion.

A review of the psvchological work related to optical flow generated from apparent
motion is given in Marr [40] and Schunk [66]). Optical flow is used quite extensively
for the analysis of the Short.:-Rang'e 'processcéi (Ullman [71]); e.g. in the Continuous
Motion approach in the Str;u:ture from Motion probiem, etc. The main problem in
those schemes has always bee;l the estimation of the optical flow field for a sequence of
natural images. The task has been proved very difficult, mainly because of occluding
boundaries, incompatible flow constraints from objects with different motions and noisy

images.

Optical Flow Constraint Equation
= The image intensity s(x,y,t) at a point (x,y) of the image plane at time t is related

to the instantaneous velocity (u!(z,y), v'(z,y)) at that point with the equation:
s2(2, 1, 1)u'(2,¥) + sy(2, 9, )v'(2,¥) + 8u(2,9,8) = 0, (2.c.1)

The proof ,which is very easy if s(x,y,t) does not contain discontinuities and there are
no optical flow discontinuities due to occlusion, can be found in Horn and Schunk (41].
Based on (2.c.1), several algorithmic schemes for the computation of optical flow were
devised and will be presented later (Ch. 3.a). .

Schunk [66] extended the above result so that (2.c.1) holds in the more general
case where the image is smooth everywhere, except at a finite number of discontinu-
ities, and the perceived change in image irradiance at each point on the image plane
is entirely due to motion of the image pattern, not to reflectance effects. Moreover, he
demonstrated that severe errors in (2.c.1) are produced from sampling the time-varying

intensity function s(x,y,t) in-order to produce an image sequence.
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2.c.I1) The Active Vision Paradigm for Early Vision Problems

The ill-posed nature of most early vision problems led to atte;x;pts to make them
. well-posed, but in the same time avoid the regularization process, which still presents sev-
eral untractable problems, especially in the analysis of complex scenes. A very importa.nt
- and fruitful one was driven by the observation that human perception of a dynamically
evolving scene, is an equally _zdyuAamical act, whether conscious or unconscious. As we
saw-in Ch. 1, humans tend to move their eyes and heads in a variety of \vays; in order to
obtain a better view of a scene and hdjuét to its specific visual requirements. In general,
they attempt to focus on a certain moving object of interest and track it.in time. After
the object is stabilized on thé retina, extraction of informvation about its structure and
properties, as well as its motion, is no longer limited by blurring associated with motion
and becomes much easier. This observation led to the Active Vision Paradigm, which
has been recently introduced (Aloimonos, Weiss and Bandopadhay {2]). The key idea is
that if we are able to move thé camera at will and, if needed, focus on a target and track
it, then many significant ill-posed problems in early vision become well-posed (Shape
from Shading, from Contour, from Texture), while others which are unstable or where
non-linear constraints have to be solved, become stable with simpler linear constraints
(Structure from Motion, Egomotion).

Next, we will present an overview of the research in each of those problems and
summarize the basic results of Active Vision related to each one. Finally, we will show
how target tracking can influence the results of this new approach for the Egomotion
problem.

The Shape from Shading problem is the recovery of a surface from image data, i.e.
the recovery of its orientation at each point of the image. From the image irradiance
equation we get:

E(%) = R(7,%,5), (2.¢.2)

where E(Z) is the image irradiance at a point I of the image plane and is available
by direct measurement, R(f,7,5) is the surface reflectance map, which specifies the
radiance of a surface patch.as a function of its orientation ‘i, the viewing direction ¢

and the light distribution and surface properties 5. The problem is to solve (2.c.2) and
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recover # at each point Z. Several interesting attempts were made to solve this problem
by variational and regularization methods (Horn[40]), which amount to formulating a
surface functional depending on #i(Z), which should be minimal for the correct surface.
Moreover, two cameras were introduced either very close to.each other, or far apart, but
then the correspondence problem has to be accounted for and current techniques for that
are not entirely satisfactory ([40}). In the monocular case noisy data restrict severely the
performance of these methods. The Active Vision provides the flexibility of controlling ¥
in (2.c.2) and t_.hué more viewpoints are available and the geometry of the visible surface
can be recovered at each individual point. ‘ |

The Shape from Contour problem is the recovery of 3-D shape and surface orienta-
tion from a Q—D cortour. Ijsing the_passiv:e -approaéh, for a planar contour in the case
of the monocular ohserver an infinity of solutions are p-;)ssible for the orientation of the
corresponding plane. Several assumptions and heuristic schemes were introduced, but
the results were not generally satisfactory. In the binocular case, either we encounter
again the correspondence problem, or in other formulations two sets of non-linear con-
straints extracted from the areas enclosed by the projections of the contours and from
the perimeters of those areas, have to be solved. Even when this is possible, uniqueness
and stability of the solutions cannot be guaranteed. The Active observer can rotate
the cameras and, since occlusion will not be affected by the rotation, this will provide
additional information about the areas of the two projections. This can lead to a system
of equations linear in the shape parameters.

The Shape from Texture problem is the recovery of the orientation of a surface
covered with texture, from a monocular view. In the passive observer analysis, several
assumptions were made in order to overcome the non-uniqueness of the possible solu-
tions, such as the uniform distribution of texels (Gibson [30], Bajcsy and Lieberman (7))
and, more recently, the directional isotropy of the peripheral contours in the figures of
the texture, i.e. that those contours have edge segments uniformly distributed over all
orientations (Witkin [79]). In the case of an Active observer and under the assumption
that the observer moticn is controllable, an analysis, much like the one we present in
Ch. 4.b, leads in t:he planar case to a linear system, where from the shape para.fneters
“can be recovered.

The problexﬁ (:)f Structure from Motion consists of recovering the shape of a moving

object from a sequence of images. Ciosely related is the problem of Passive Navigation,
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which is the recovery of 3-D motion, also from a sequence of images. For the Continuous
case the two problems are equivalent in the sense that knowledge of the optical flow
field and of the motion allows the uniqﬁe recovery of structure. On the other hand,
knowledge of the optical flow and the structure allows the unique specification of the
motion parameters. For the Continuous case of the Passive Navigation problem, it was
proved (Bruss and Horn [21], Prazdny [57) ) that if the optical flow is known, recovery of
3-D motion i's possible, using least-squares methods. Problems with this approach are

'_the non-—lineari;y of the relevant constraints, where from the neéd for iterative solution -
schemes emanates, and the high dimension of the .space of unknowns. In the case of the
monocular observer there is a degeneracy in this problem, since; even if the optical flow
is known, not all 6 ﬁérarﬁeters of the motion can be recovered, but only the direction of
translation and the rétation of the target (5 parameters). Longuet-Higgins andl Prazdny
[47] derived closed-form solutions to the problem, but used higher—order derivatives of
the optical flow, which makes their scheme very error~prone in noisy data.

If the Active observer is able to track a prominent feature of the target, it was
shown (Bandopadhay [10]) that in the monocular case the dimension of the space of
unknowns reduces to four, without incrgaée in the degree of nonlinearity of the respective
constraints, while in the binocular case, when each of the two cameras tracks the target,
it was shown that closed form solutions can be obtained for the Navigation problem ard
that if the rotation, angular velocity and angular acceleration of the tracking observer are
available, the optical flow need not be computed. Moreover, the Active Vision approach
attacks not just the passive navigation problem, where an observer is moving with respect
to a static scene, but also the more general one, namely Egomotion, when the observer is
moving in a moving environment. This approach is named Active Navigation. Therefore,
if the tracking schemes presented here are combined with the Active Navigation method,

a solution to the continuous case of the Egomotion problem can be formulated.

2.c.III} The Tracking Constraint

Let R be the projection of our target on the image plane S. Obviously R C S C IR,
Suppose that our target has a prominent feature that we want to track, located at a point
W in IR3, which can be easily identified during the target acquisition phase and which

is projected to a point Py of the image plane. Because we will devise tracking schemes
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where only global information from large areas of the image will be used, not local one
from specific points, we don’t need an exact solution to the feature extraction problem,
i.e. the exact location of the point Py . All we need isa neighbbrhood Bw(Pw,ew) C R,
with ew acceptably small. This is very important, since recovering the area By in the
target acquisition phase is going to be much more robust to noise, than attempting to
recover a single point Pw. '

Supposé that during the target acquisition phase, the area By was recovered and
moved at the origin of the image plane. -

We define the Tracking Problem as follows : Find the camera rotation (wz,w,) that
will hold Bw(Pw, ew) stationary iatia neighborhood B(o, €) of the origit o of the image

" plane. ) . |

Suppose now that we get an image s(x,y,t) at time t and we want to solve the
tracking problem defined above. We must specify a camera rotation (wz,w,) that will
act from time t to t + dt and that will keep Bw at the origin despite the motion of the
target. Let the optical flow at time ¢ be (u'(z,y), v'(z,y)) at a point (z,y) € S and at
time ¢ + dt be (u'*¢(z,y), v**9(z,¥)). Now, (u**% *+9!) wijll be the superposition of
the optical fiow induced by two motions : The motion of the target by (T,w) and the
tracking motion of the camera by (wz,wy, 0). Suppose that due to the infinitesimal nature
of the motions analyzed in the Continuous Motion approach to the Egomoti;n problem,
the target motion in the time interval [t, t+dt] that will produce the first component
of (ut+¥, v'*+4") will be almost identical to its motion in the time interval [t-dt, t] that
induced the optical flow (uf,v!). Therefore this first component of (u'td, vt+dt) will
be (u’,v') and is supposed to be known or retrievable from visual data. The second
component of (u**%, v**+4t) will be induced from the motion of the camera and let it be
(ucanm, vc anr)-Therefore: .

w9 ut o (2.c.3)

and

vt o+ voans . (2.c.4)

Let see now exactly how the motion influences the induced optical flow.

Theorem 2.3 : _
Let the point W of the target move with translational velocity T = (N, T3, T3)7

and the target with angular velocity w = (w,_,wg,wa)'r at time t relative to the camera
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frame. This target motion induces on the image plane an optical flow field, which at the
projection (z,y) on the image plane of the point (X,Y, Z) of the surface of the target,
will be:

Ty — =T z z? + f?
u=————f ?Z 3-w1—fg+w2-———-—( ff )’Usy » - (2.¢.5)
B N o T
v:‘fzzya—w?(y ff)+w2—fq+w3:r »(2.c.6)
Proof : See Appendix A.
Corollary 2.5 : ]
For focal length f =1 we get : .
T, — zT:
ul(z,y) = —I——Zii —wizy +wa(z? + 1) - w3y (2.¢.7)
T, — yT: 2
vi(z,y) = —'——Zg—i —w(y° 4+ 1)+ wrzy +wiz. (2.¢.8)

Proof : Resuit is immediate from the Theorem.

The more general case of an arbitrary projection P : IR3 — IR? is treated in Ch. 4.b.

Therefore 4!, v! are related to the target motion by (2.c.5) and (2.c.6). Let see how
Ucanf, UcAAs are Telated to the camera motion.

Here we take advantage of the nature of optical flow as the velocity field induced
by the relative motion of the camera and the target; therefore, we can argue somehow
informally that the camera moving by w,w, generates optical flow ucaM, VCAarr, Which
is exactly the same to the one that would be generated by the target, if it underwent an
additional motion by —w;, —wy . This was formally shown in Corollary 2.4.

Then the respective camera-induced optical flow will be given from {(2.c.5) and

(2.c.6), with T=0 and wy = ~wz, Ly = —wWy, W3 = 0:
: z z? + 2y
UCAM = w:"% - uy(——'f_j’l : (2C9)

: 2, g2 '
+ - T
VCAM = wzﬁg___[_) —wy = (2.¢.10)

Y
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Thus, assuming we know (u?,v?), for f = 1 the total optical flow at time t+dt wili be:
u't? = ut 4wz~ wy(2? + 1) (2.¢.11)

pitdt =yt 4 w,(y2 +1) ~wyzy ~(.2.c.12)

Now, for the tracking to be successful, at time t+dt the point 'Pw must be stationary

at the origin-and therefore the optical flow at the origin must be zéro.There_{ore we want:
u'e(0,0) = v*9(0,0) = 0 _ (2.¢.13)

or

u*(0,0) + ucaar(0,0) = v%(0,0) + vc 4rr(0,0) = 0

and the idea is that by appropriate choic;e of w; and wy, the induced ucarr and vegas
be such that (2.c.13) holds.

In order to increase robustness, in addition to (2.c.13), we require that the optical
flow on an entire neighborhood B{o, €) of the origin (with ¢ > ew ), be minimal. This is

then our Tracking Constraint and is formulated as follows:

The Tracking Constraint : The desired camera angular velocity (w;,w;) that

will achieve tracking is the minimizer of:

flwz,wy) = / /B (') + (v'9)?]dz dy

= //5 [(u‘ + w:TY _Uy(z2 -+ 1))2 + (ft +wz(y2 + 1) - wyzy)'.’] dz dy

_ (2.c.14)

Notice that the tracking coﬁstrajnt is expressed in terms of the neighborhood B of

the origin of the camera, not some neighborhood of a target feature whose specification
would require segmentation of the image and feature extraction during the tracking

phase.
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An algorithm then for tracking the motion of an object moving in 3-D, suggests

itself :

Step 1 :
Compute the optical flow induced by this motion, e1ther directly from the i 1mage
or, first, compute ( , z 3 ,wl,wg,w3) {from the image and then derive

the optical flow using eq. (2.c.5) and (2.c.6).

Step 2 : _ _
Minimize the expression (2.c.14) and derive the desired camera angular-velocities
that will achieve tracking.

Typically Step -1 involves the Optical Flow C(_)nstrajﬁt‘and Step 2 the Tracking Con-

straint. In Step 1 if we assume that the Opti;_a.l Flow is compﬁted directly from the

image, we get the class of algorithms presented in Ch. 3. If we attempt to compute first

the target motion parameters, we get the algorithms presented in Ch. 4.
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CHAPTER

THREE ..

‘TRACKING USING KNOWLEDGE OF OPTICAL FLOW

In this Chapter we will present tracking strategies that will assume knowledge of the
Optical Flow cn the entire image. Methods for the recovery of the optical flow field from
the image intensity function s(x,y,t) will be reviewed in Ch. 3.a. In Ch. 3.b the utilization
of this information in crder to track a moving target will be formulated as a Constrained
Optimization problem (Tracking Schema 3.1) and as a Penalized Least-Squares problem
(Tracking Schema 3.2), using the Tracking and the Optical Flow Constraint equations
presented in Ch. 2.

3.a) Methods for the Recovery of Optical Flow

The difficulty in computing optical flow starts from difficulty in detecting motion.
Due to the aperture problem, local operators are unable to detect motion tangent to
a moving contour. Moreover, the ambiguity of the optical flow field, i.e. the non-
uniqueness of the possible estimates of this field from a sequence of images, makes nec-
essary additional constraints about the imaging situation.

~ Hildreth [35] presents an overview of previous methods to compute optical flow
and classifies them in three categories according to the major assumption they make
about the nature of the motion that generated the image : Algorithms of the first
category assume locally constant velocity over small areas of the image. Algorithms of

the second category assume rigid motion of the projections of ob jects on the image plane
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(not all 3-D motions generate projected motion that corresponds to 2-D rigid motion).
Algorithms of the third category assume that the velocity field is smooth, claiming that
the real world consists mainly of solid objeéts with smooth surfaces, which, in general,
will generate a smoothly varying velocity field. One of the first algorithms that made

this last assux_nptibn- was presented in Horn and Schunck [41], where a functional of the
type | | |
// [(szu +s,04+5) +P(ud+ “: +vi4 ”3)] dz dy

was used for the computation of (u,v) and expressed thje requirement that the optical
flow satisfy the Constraint Equation and be as smooth as possiBle. In this paper they
did not present a specifi¢ method for the computation of e, bu-t iater Poggio, Torre and
Koch {56] mentioned the use of Generalized Cross-Validation techniques.

Hildreth [35) examined the extraction of the optical flow field from moving contours
and ways to bypass the aperture problem. If s denotes arclength on the contour, the
optical flow V(s) can be decomposed into components tangent and perpendicular to the
contour as follows: V(s) = VT(s)ZT(s) + V*(s)dt(s), where @7(s) and #(s) are the
corresponding unit vectors Supposing that ¥+ (s) can be measured from zero-crossings
in the output of the convolution of th-e image with an V2G local operator, but there

, : 17 ' :
is error in the measurements, then V(s) = (V’) can be recovered from the solution
v

of a2 one-dimensional minimization problem along a closed zero~crossing contour, with

minimization functional of the form:
/dﬁai-vlﬂn+ﬁ/qm +( Uﬂa
* fs ds

It was proven that a unique and physically plausible solution can be determined from
the above optimization procedure.

These approaches were generalized when the ill-posed nature of the problem was
realized and Tikhonov Regularization techniques became a standard analysis tool for
this type of problems (Poggio, Torre and Koch [56] , Poggio and Koch [55], Verri and
Poggio [74]). Tikhonov [70] proposed the pth-order Sobolev norm

lull; = Z/ d u(z?) *dz,
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as a stabilizer for univariate regularization, while for the multivariate case, generalized

spiine functionals of the following form were proposed (Brady and Horn (18], Terzopoulos

[68]):
_ om u(::) -
lulf /n (GG,

8::.--

i1 rim=1
Those are quadratic functional_s and when used as stabilizers in regularization they do
not apply to problems involving discontinuities.

A unification of the above schemes was attempted in Brockett [19], in the context.of
the least squares theory, which was used in order to determ:ine necessary and sufficient
~ conditions for the identification of the unique optical flow field fitting best with the data
and the objects. _ -

In the regularization schemes that have been presented: the global smoothness im-
plied by the quadratic stabilizing functionals considered, enforces smooth variation of
the optical flow even across the image of occluding edges or of texture and illumination
discontinuities. This is not desirable, and several methods exploiting discontinuities of
scene characteristics started to emerge. |

Cornelius and Kanade [23] deactivated the smoothness requirement in the neigh-
borhood of zéro—crossing contours. Nagel [52] and Nagel and Enkelmann [53] examined
the ‘oriented smoothness’ condition, which allows variations of the displacement vector
field only in directions with small or no variations of the image intensity. Under the
assumption that the displacement is locally constant around points where the gradient
of the intensity function changes fast enough (gray value corners), both its components

are computable from the Constraint Equation, which led to a minimization functional

of the type:
// (VsTu+s) + a’trace(VuTWVﬁ)dz dy,

where W a weight matrix that encompasses the idea of oriented smoothness (as opposed
to the ‘unoriented’ one introduced in Horn and Schunck [41], which corresponds to W=,
the identity matrix).

Terzopoulos [69] considered the problem cf epecifying alternatxves to Tikhonov sta-
bilizing functionals, that will accommodate visual discontinuities of arbitrary orders and
suggests a class of multidimensional ‘controlled- continuity’ stabilizefs, where, by adjust-

ing a set of weighting functions their continuity properties can be controlled spatially
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and the stabilizers can be used to reconstruct localized discontinuities. He proposes as
stabilizing functionals for piecewise continuous. regularization the following combination

of splines:

P -
”u”:.@ = Z/ _wm(-f) E ; ,m! - l(' ja’mu(z)jm )2d5',
: ap J R? it igmm J e de oz .. ..3_::4 ‘
The weighting functions wm(Z) are allowed to make jump transitions to zero over IRY,
which provides the capability of selectively introducix{g spe;:iﬁc discontinuities into the-
solution {depth di-scontinuities, orientation discbntinujties, occluding contours).
Aloimonos and Shulman {3] investigated learning techniques—fér the regularization
of ill-posed problems with non-linear constraints. They required that the surface in view

be smooth and they attempt to minimize a functional of the type :

/ / [L3(f,0.2,0) + M2+ 2 + g2+ g2)]dz dy,

where L(f,g,x,y) the nonlinear constraint derived from the ‘shape from X’ problems and
f,g the stereographic space coordinates. They used Stochastic Approximation techniques
such as the Robbins-Monro procedure to analyze learning by examples of quadratic
smoothness constraints by a connectionist network. Once the network has learned the
regularization parameter by examples, an iterative scheme can provide unique solutions,

under certain conditions for the nonlinear constraint, to the ‘shape from X' problem.
p

3.b) Tracking -

Assume that we know the Optical Flow field (uf, vt) at time t for every point (x,y) of
our image S. We want to specify the camera angular velocities (wz,wy) that will achieve
tracking. '

We saw in Corollary 2.5 that the optical flow at time t + dt induced by the relative

motion of the target and the camera will be :
u =t twozy - wy(zf 4 1) (3.5.1)

v = ot fw (v 4 1) —wyTy . (3.b.2)
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As a result of successful tracking, the optical flow at ¢ + dt in a neighborhood B of the
origin of the image plane should be minimal. Therefore, from the Tracking Constraint

that we obtained in Ch. 2.c.Ill, the w;,w, should minimize:

f(w:’wv) = //B [(ut+dt)2 + (vH-dt)'.’]dz dy

= /A [(ut + WY —- Uy(zz <+ 1))2 + (v‘ +w:(y2 + 1) -w,,Azy)z} dz dy

. i i (3.5.3)
Moreover, the Optical Flow Constraint Equatxon should hold at txme t + dt at every

point of the 1mage ie. wr,w, should b° such that:
sz(z,y, t+d)ut ¥ (z ) + sy (z, v, t + d)v (2, y) + se(z, vt +dt) =0 , Y(z,y)€ S,

or, equivalently:

// [sz(z, v, t + dt)ut T (2, p) + s,(z, .t + dt)oT¥ (2, y) + selz, 9,1 + dt)]*dzdy = 0.
s

(3.b.4)
_If we expand s, s, and s, in Taylor series around the point (x,y,t), we get:
ds s 8%s
a—z(-‘ﬂ,y,t + dt) = E(xs y,t) + ét—a—z(z’y’t)dt +...
Os d%s
ay(z y,t+dt) = 5 (x J,t)-{- 910y (z,y,t)dt + .. (3.5.5)
0s ds 8°s
6 (I y»t+d1)- (I y’t)'*' ato (Ivyvt)dt+

In the proof of the Optical Flow Constraint (Horn and Schunck [41]), because of the
Continuous Motion assumption, the second—order derivatives of s(x,y,t) at (x,y,t) were

neglected as very small. For the same reason in (3.b.5) we get
A
“8-‘!(:1 Y, t+ dt) = 3;(1?, Y, t) =8z,

' N
sy(z,y,t+dt) = sy(z,y,t) =8y,

A
si(z,y. 1+ dt) = se(z,y,t) = 8¢
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and these are computable from the image frames at time ¢ — dt and t. Therefore (3.b.4)

becomes:

9wz, wy) = // (szutte 4 s vt 4 g ) odz dy -
A i ‘ |
= //s (sr(U‘ +wery = wy(z? +1)) ' (3.6.6)

} ' + 5, (vt we (¥ + 1) —wyzy) + s,) dz dy.,

where s;,s,, s, u’ and v* are given from previous image data.

Then the appropriate w;,w, will be the ones that minimize a cost functioral which

encompasses the above requirements (3.b.3) and (3.b.6), like the following:

J(wz,wy, A) = g(wsz,wy) + Af(wzwy)
= // (szu'te 4+ s, 0" 4 5 )2 dr dy + )\// [(u'*¥)? + (v**9)?]dz dg3.5.7)
) B

2
= ,/// (s, (uf +wezy = wy(z? + 1)) + 5, (v* + wo(y® + 1) - wyzy) + Sg) dz dy
)

+ //s [(ut +wezy —wy (2 + 1))2

+ (v +w (P +1) - uy:y)z] dzdy (3.b.8)

= @l + baw? + oz + dawy + e2wzwy + fo

+ A (alwz + b}(dz + wr + dlwy + qwrwy + f]) (3b9) R

where
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a; = //B [#*y* + (v* +1)})dzdy,
b = // (22 + 1) + 2*y*|dz dy,
JJB
3 =_.2 // [u'zy-}- v (y? + 1)]&:: dy,
B
. : (3.5.10)
d, = -2 // [u'(»:r:2 +1) + v'zy]dz dy,

- | e = -'-2// [:ry(:r2+y2+2)]dzdy,
B

_fl = /A[(ltt)2-+ (v')"’]dz dy,

gy = /Jé [sezy + s, (3% + 1)) *dz dy,

by = //S[s,(z2 +1) + s,y dz dy,

e = 2//5 [s2zy + 5, (3* + 1)) [sz0* + s,0° + s¢]dz dy,

dy = -2 //S [s2(z? + 1)’+ syzy) [s:u! + syv* + s¢]dz dy,
er = ~2 //s [s:2y + sy(v* + 1)] [s2(z® + 1) + s,2y]dz dy,

fo= //;[s,u‘ +syvt + s,]gdz dy.

Provided we know the parameter A, it is a simple optimization problem to express the

optimal w3,w; as functions of A and the parameters ay,..., f2 as follows:

" = (d1ey - 2b1CI)A2 + (e1dy + dye3 = 20165 — 2¢1b2)A + (d2e2 - 2bs¢2)
T (4a:1by + ei )X" +2(2bya2 + 2a,07 + 1Y) + (4a2b2 + e%)

(3.5.11)
ot = (C181 - 2a1d1)/\2 + (Cleg + €6 — 2d1(12 - QGldz)A + (82C2 - 202d2)
v (4a1b1 + e%)/\z + 2(21)102 + 2a1by + elez)z\ -+ (4(121)2 + C%)

The selection of A can be thought of as our ‘weighting’ of the relative importance of
the two constraints for w;,w, and its selection may be viewed as an engineering design

decision. Nevertheless, there are ways to select an appropriate A based on the data of the
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problem. One is to consider the retrieval of w;,w, that correspond to the Tracking and
Optical Flow Constraints (eq. (3.b.6) and (3.b.8)) as an equality constrained minimiza-
tion problem, where we want to minimize f(w:,w,) under the constraint g{ws,w;) = 0.
Then A can be seen as the Lagrange multipliér of the problem (Tracking Schema 3.1).
Another way is to consider A as a regularization parameter for the problem (3.b.7), re-
duce it in a penalized least-squares problem and appiy Genera}ized Cross-Validation
techniques in order to retrieve A from the data. Then, the corresponding w; and wy can

be found from (3.b.11) or from an equivalent formulation (Tracking Schema 3.2).

Tracking Schema 3.1 : Constrained Qptimization Formulation

Problem :

min {f(we,wy)lglws,wy) = 0. (P)

We formulate the Lagrangian of the problem:

F(“’z,wyv A)= f(“"szv) + ’\g(.“"z.swy)

= alwf, + blwz + awr + diwy + eywzwy + fi , (3.5.12)

+ AMaaw? + bgw:', + Cowr + dowy + e2wzwy + f2)
where ay,..., f» are defined in (3.b.10).

Theorem 3.1 :

i) (First-Order Necessary Conditions)

The local extrema of (P) are the solutions w. = (wz,w,) of the following system:
Al + (Bywy + By)wr + (Thw? + Towy +T3) = 0 © (3.6.13)
and
awy + fud + qwl+ b, +e=0, ‘ : (3.6.14)

where 4, By, B>, T'1,T2,T3,a,8,7,6, ¢ are functions of ay,..., f; and are defined in Ap-
pendix B. The equation (3.b.14) has at most 4 real solutions w, which are specified in

Appendix B. To each one of them correspond at most 2 real solutions w; 6f (3.b.13). Then
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there exist at most 8 real solutions w = (ws,wy) of the system and the corresponding
Lagrange multiplier is:

201wz + 01 + 1wy

A = - .
) 20wz + 2 + €Wy

ii) (Second-Order Sufficiency Conditions)

The strict local minima w = (wz,wy) of (P) satisfy:

: [(a1 + /\(w)ag]Kz(w) + [(e; + z\(w)egl_K(w) + [b1 + z\(w)bg] >0,

"~ where _
_ , p 7
K(w) = _ 20wy +dy + 3wz ‘
201w + €2 + €2wy

iii) (Global minima) _

Supposing that there exist / strict local minima o' of (P), with z = 1,...,l and
0 <1< 8, the global minima w" are the ones that minimize f(w*).
Proof See Appendix B.

If more than one global minima exist, then additional criteria (e.g. minimization of

[lw]|* ) can be used in order to compute the most suitable w.

Tracking Schema 3.2 : Generalized Cross ~ Validation Formulation

Consider the ridge regression model
y=X0+e¢,

where y is an n—dimensional vector of measurements, 8 a p~dimensional parameter vector,
X an n X p design matrix and € an n-dimensional error vector, with E¢ = 0 and E¢e' =
a1 .

Consider the problem of minimizing L{ly—X8||*+ A}|6}|?, over § . Here |- indicates
the Euclidean norm. There has been substantial interest in obtaining a good estimate
of A from the data and several methods have been proposed ({34]). One of the most
successTul ones has been the Generalized Cross-Validation technique (QCV), developed
by Golub, Heath and Wahba {34] as a generalization of the Ordinary Cross-Validation
technique (Allen [1]), which obtains an optimal A as the minimizer of :V()\) given by:

_ (/mlI = Ayl
T [ATrace(I = AW’

V({A)
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where A(A) = X(X7X + nAI)~1X 7 and then the ridge estimate of § is :
6N =(XTX +a)D) X7y,

Generalized Cross-Validation has been applied to a wide range of problems such as
ridge regression (Golub, Heath and Wahba [34]), thin plate smoothing splines (Wahba
and Wendelberger [75]) and ill-posed probleins (Hilgers [36], O’ Sulivan and Wahba [54)).
The last da_;s of applications is particularly ix-nport_ant for Computer Vision, since many
_early vision problems are ill-posed (see Ch. 2.c.II). Based on this technique; GCVPACK,
a packége of routines for calculations in data analysis, was developed (Bates, Lindstrom,
Wa.hb# and Yandell [11]). The most general GCV calculation considered there is the

solution of the penalized least-squares problem witi1 an objective function of the form:
_ 1 2 T
5x(0) = —lly - X6|I* +267Z4, (3.5.15)

where 6 is a p-dimensional parameter vector, y is an n-dimensional response vector, X is
an n X p design matrix and £ is a p X p positive semi~definite symmetric matrix, defining
the smoothness penalty. The corresponding GCVPAK driver is the subroutine dsnsm.
Our problem (3.b.7) can be formulated as a penalized least-squares problem, if we
consider the corresponding discretized problem. Let (u;;,v;;) denote the optical flow at
a pixel (i,j) at time t + dt. Consider S as a k& X k array of pixels and let B C S be a
neighborhood of the origin of the image-plane frame (fig. 3.1) . Then the discretized

form of the cost functional (3.b.7)

JA = // (szut+dt + 8yvt+dt + 8¢)2d2 dy+ /\// [(u!+dt)2 + (v‘“’)’]dz dy
S B - ’

is : X
J,{) = ESE (('St(i$j)uij + sv(ivj)vij + 3!({1.7.))2 + A ZBE (uc?j + v?j) .
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Theorem 3.2 :
Consider JP = ESE (8208, 3)ui5 + 8y(3, 7)vi; + 848, 5))* + A EBE (ud; +v%).

Define
( Uy
un

U2
6=1 N12 yy=k

—sv‘u'

=Sty

ULk
Vkk )

and

0 0 0 0 ... Sz Sy,
where 6 is a 2k*-vector, y is a k?-vector and X is a k? x 2k? matrix. Then JP can
be formulated as

JP = Lo”y X8|P+ 6728,
where T is the following 2k* x 2k* symmetric matrix :

Zn o0 ... 0
0 Ly ... 0

with

(5 %) iGies
Zj = <o 0

0 0), otherwise.

If B is nonempty, then X is positive-definite.

Proof : See Appendix B.

Therefore, the GCV is readily applicable to the above problem with p = 2k? and n = k2. _
If we can find an estimate of the optical flow field at time ¢ + dt, i.e. (u""‘“, ff‘“), yd
from the above scheme, then, we can compute w; and wy, from (3.b.1) and (3.b. 2) a.pphed

at the origin or from an equivalent formulation like:
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wr EBE ij-w, X (2 +1)= EBZ(u:;r“ - uf;) (3.5.24)

CODNCGESECHIWIEDHNC L) (3.6.25)

In both cases, a very simple non—homogeneous second-order linear system has to

be solved.

Alternatively, since from the above scheme the regularization parameter A can be

estimated, we can compute wy and w, from (3.b.11).
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Fig. 3.1 : Simple 4 x 4 array of intensities
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CHAPTER

FOUR

TRACKING USING KNOWLEDGE
‘OF THE SHAPE OF THE TARGET

Certain important shortcomiﬁgs handicap the general applicability of the methods
of Ch. 3, as well as every method based on the assumption that we know the optical
flow on the entire image. Assumptions like this base the whole tracking scheme on the
solution of an ill-posed problem. These problems are solvable using the Tikhonov Regu-
larization Theory, with quadratic stabilizing functiona:ls,v which irﬁplicitly impose global
smoothness constraints on the possible solutions. Therefore discontinuities in the scene
(e.g. occluding contours), present serious difficulties to standard regularization methods.
~ The utilization of smoothness constrains as above in vision has often received ad hoc jus-
tification, that is implicitly based on computational convenience, rather than theoretical
consideration, but even though there exists some excellent research on discontinuous
regularization (see Ch. 3.a) the problem seems to be far from solved. Additional errors
will be introduced in the previous tracking scheme, even in the case of a simple scene,
from the numerical differentiation of the image intensity function s(z,y,t), which is an
ill-posed problem by itself, from our model of the optical flow at time t+dt, as well as

from the estimation of the regularization parameter using Generalized Cross-Validation.

We attempted to bypass these problems by making a sensible assumption : That
we know the shape of the moving target. Our theory of tracking an object whose shape

is known, proceeds as follows:
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First, we compute the three-dimensional motion parameters of the object (direction
of translation and angular velocity). An estimate of the optical flow can then be found,
which depends only on information available from the image, where we used the shape
information in order to eliminate the depth terms of eq. (2.c.5) and (2.c.6). Based on
this and on the theory of linear features (Ch. 4.a), we can estimate the target motion
parameters, by solving a system of linear equations (Cil. 4.b). The system does not use
point correspondence, only global information from the picture.

Second, from the Tracking Constraint, we formulate a cost functional, whose min-
imizers are the camera angular velocities w; and wy, which are necessary ‘in order for
the camera to track the moving target. Our estimate of the target motion parameters
computed in the first step is used and we can solve this minimization problem for w.
and w, (Ch. 4.c) .

Simulation results for the above algorithms are presented in Ch. 4.d.

4.a) The Theory of Linear Features

Linear Features of an image are sets of functionals of the type

F={fi(H)lf(t) = //DS(I,y,t)m(r,y)dx dy,i=1,...,n},

where s is the image intensity at a point (x,y) of a subset D of the image at time t and
pi : IR* — IR is the measuring function.

Linear features have been used extensively in Pattern Recognition for the study of
pattern classification and the invariants of perception. The objective of pattern recogni-
tion is to derive from an image a description of what it depicts. If the desired description
is just a classification of the image as one of a set of prespecified classes (e.g. classify
the picture of a single printed character as ‘A’,'B’,...), then this can be done by measur-
ing some global properties of the image. If, on the other hand, the description should
involve relations between objects on the image, then accurate location of the objects
(image segmentation) should precede the measurement of their properties. In the first
case (pattern classification), the problem is to find a function that maps a set of patterns
into the desired classes. This is done in three steps : First some preprocessing of the
image is done in order to reduce the noise, second, feature extraction is performed and

the image is mapped into an n-dimensional real features vector and third, classification
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of the image from the position of this vector in IR®. In Feature Extraction the main
problem is how to select an adequate set of features for the given classification task. A
general approach is to use knowledge about the structure of patterns and the definition
of classes.

In the human visual system, objects are recognized, no matter where they are located
on the field of view, what their orientation is, their app-arent size, their motion or their
pfojective and binocular distortion. Physiological and neuroanatomicat evidence suggests
that- after an initial visual processing, an abstraction of the visual scene is constructed,
whjcﬁ, even though it carries all information the shapes and contours of the image can
provide, is invariant to object transformations like the ébove. This abstract image on
the striate cortex is called the visual manifold (Hoffman [39]). It is"possible to formulate
mathematically the perception invariances as Lie groups of transformations over the
visual manifold and specify those invariant transformations (Hoffman [39), Foster [26],
Blaivas [15]).

Features of patterns that remain invariant under specific transformations of the
pattern were studied and linear features in particular have received much attertion.
Moment invariants, i.e. linear features with u;(z,y) = zPy9, p,q = 0,1,2,... were
introduced by Hu [42] for the recognition of planar geometric figures. He established
their invariance under 2-D translation, scaling and rotation using algebraic invariance
theory. Moment invariants were used by Teague [67] for the reconstruction of characters
and were applied to aircraft identification problems by Dudani et al. [25]. In cases
where the patterns can be normalized, e.g. in character recognition systems, the Fourier
coefficients of an image function, i.e. linear features with u;(z,y) = e**+A¥ o, B, € ¢
were also considered (Rosenfeld [60], Rosenfeld and Kak {61), Wallace and Mitchell {76)).

A connection between these two lines of research was attempted by Amari [4], [5]
where the problem of determining the invariant transformations from changes in the
features of the pattern under transformation is considered for the case of linear features
of planar visual patterns. He uses group theoretical methods to prove the invariance of
moment features under the group of planar affine transformations.

Qur purpose for introducing linear features in the study of the 3~D motion estima-
tion problem is not to classify or reconstruct a pattern of some kind, but is related to
the errors introduced to the Optical Flow Constraint equation when it is used to process

discretized information. In principle, the 3-D motion parameters could be recovered (up
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to depth) by a formulation like the following: From s:t + syv + 8, = 0 and (2.c.7) and
(2.c.8) we get for every point (x,y) :
I

T: T, T ‘
Sz [—Z——zé'-—wl(y2+1)+wgzy+w3z] +3, [-—Zz-y—zg —w;zy+wg(z2+1)-w3y] +8;=0.

Then :

T I, Y O
. srfl + vz~ (sz2 + svy)'z— ~ [32(4% + 1)syzylen

+ [szzy + s,,(:r:2 + Dws + [827 = syyjws = =3¢ .

Given enough points (x,y)rwe will take a system of linear equationé Az = y, where
z= IZ’-, Izz, I-Zl,wl,wg,wg) and solve it"to derive the motion parameters. The problem
is that A depends on the spatiotemporal derivatives of s at each point (z,y) and, since
numerical differentiation is an ill-posed problem, severe errors will be introduced if we
attempt to evaluate numerically these derivatives.

Therefore an algorithm is presented in the next section, where, using linear features
to collect global information from an area of the image, the computation of the spatial
derivatives of the image is no longer necessary (Ito and Aloimonos [44] ). A problem
common in this approach and in the use of linear features in Pattern Recognition is how
to select the most appropriate measuring functions and what the 1ength of the linear

feature vector should be, so that the characterization of the image by this vector be

“rich™ enough in information. This point will be discussed further in Ch. 4.d.

4.b) Recovery of the Three — Dimensional Motion

Suppose that an object exists in IR3, with its sufface given as a function Z=g(X,Y)
in the camera coordinate system OXY Z. The following analysis is done with respect to
the camera coordinate frame. It can be readily extended to the world frame using the
relationships between the two frames of Ch. 2.b. A point A on the surface of the object
is projected to the point P4 of the image plane. Suppose further that A has coordinates
X = (X,Y, Z) with respect to the camera coordinate system at time t and that P4 has

coordinates ¥ = (z,y) with respect to the image-plane frame at the same time instant.
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Theorem 4.1 :

The optical flow £ = (1, v) generated from the motion of a rigid target relative to

our camera is a linear function of the target motion parameters of the form :

. 6
P (“) =Y mas), (4.6.1)
v k=1» ‘ . '

where m; are the motion parameters (direction of translation and rotation) and i) are

known functions of the shape, the projection functior and the retinal coordinates..
Proof

~ As we saw in Ch. 2.aif P : IR® — IR?is the projection function, then :

'-_ = _ (A(X)
£f=PX)= (ﬁ(f)) (4.5.2)

Suppose that the object in view performs a rigid motion. In Ch. 2.b we saw that each
point A will move with a velocity V, which is a function of its position X with respect

to the camera coordinate system. More precisely from Corollary 2.1 :

Ao _X - T1 0 —W3 (55) X
=V X)=|Y | =T+0X=|Th | +| w3 0 -—uw Y |, (4.6.3)
t VA <T3 —W9 wh 0 / Z

where T is the translational velocity of the center W of the target frame and w the

>

d

aL

angular velocity of the target. The velocity V can be written as:

. 0 0 0 o\ z -Y
Vi) =T 0] +T|1]|+T| 0] +w|{ -Z 4w 0 |+wl| X
(8)7(2) m(2) = () (5) ()

6
= Z mk‘fk(f) ’
k=1
(4.6.4)

where m; are the target motion parameters defined as follows:
my =Ty, my =T, m3 = T3,my = w1, Ms = wz, Mg = wy

and



0 z -Y
V(X)) = (-z),vs()?)= ( 0 ),%(X): (x ) .
Y \-X 0

As the target moves in IR?, its image also moves on the image plane. The projection
P, of the point A, with image plane coordinates £ = P(X), moves with velocity Z, which
is the optical flow at this point. From (4.b.2) :

s 3 d_ o OP .. . (0B 8B om (X
z(A)=(’f)é(:‘) ZPX) = S (XW(X) = (&’3& 74 gf‘z) Y.
, y oX 8X 8Y 82 AR

- (4.5.5)
Moreover, from the projection function 7 = P(}?) we can derive the inverse projection
mapping P;‘ from the image to the surface, i.e. X = Pg'1 (Z), which is known up to a

factor (depth), since the shape Z=g(X,Y) of the target is known. We can then consider

g; and V and thus the optical flow Z itself as functions of the retinal coordinates Z.
Then:
3P ~
PYE)), V=V(P7YE),
o= @), T = V(E @)
and

F={ =——(P‘1(”))V(P‘1(5))
(%)

where for A C IR? and B C IR® we have P; 1. A — B the inverse transformation of
P. The function P is surjective, thus the inverse function exists, it may not be injective
though and then the inverse transformation is not unique, but physical intuition may
solve in most cases this non—uniqueness.

From (4.b.4) and (4.b.5) we have:

g

é’: (") kaVk(X) zmk-—(}? l(ﬂ)Vk(P 1(5))_ zm (ukl(;g)
where we defined :

2u(5) 2 (“*f@)) = ——(P'I(:E'))Vk(P 7). (4.6.6)

uk:(z)
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Obviously #x(Z) depends only on the shape of the target and is known. Then:

£ = ( z) = ;mk&'k(f) : (4.6.7)

and we have expressed the optical flow at a point of the image as a function of the shape
of the target, its motion parameters m; and the retinal coordinates. Moreover it is given

as a linear combination of the motion parameters.

Ezample : The Planar Case

The above analysis is particularly simple in the planar case. We: will show how _
(4.b.7) transforms in this case under perspective projection. Suppose we want to track
a p;)int' W on the plane and suppose that this point translates with velocity T ar;d the
plane rotates with angular velocity w with respect to the camera frame.

The projection function is: V

f= (z) =P(X)= (Zf) (4.5.8)

z

Consider the plane Z = g(X,Y) = pX + ¢¥ + ¢. The shape parameters p and q are
supposed to be known, but not the depth factor c. It is simple to find the inverse

projection transformation P;1(Z):

- X —1/= c | z

Then from (4.b.8) and (4.b.9):

ERE N

(i} )

0P _1,=_ f—pPT—qy
= EX:(P” @)= —7T—

TN
O
[ =)
1 1
ey
S

It is easy to prove from (4.b.3) and (4.b.9) that:

. D(f-pz—qy)+wrf— w3y
V(P7HE)) = Y Jre— L(fepr-qy)+wsz—uw f

- DT
f-p -é‘(f—pz—quww-wzz
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Deﬁningm1=—Tc-‘-,m2=%,m3=%,m4=w;,m5=w2,m6=w3and
7 c f-pz-qy\ _ c 0
1(1)—m g ,2(5)=m f—P;—qy )

: 0 0
Va(2) = ———— 0 S ViE) s ——— [ -f ],
A LT fmpz-aqy V@) f—pz—qy(yf

: [ f | -y
- [ - [+
Ve(T) = ——r-r— T) =
STl 2 = T 0 )

we get from (4.b.6):

o _z(f=pr—gy)
() = (f P; qy> y (Z) = (f - 0 ) , B3(Z) = (_v(f—PjS"qy) ) !
f

pT—qy
_zy 12422 _
m(f)=( e ) | 7(2) = (f_‘l_fz ), %@ = (#)
7 T/
Then from (4.b.7):

with the parameters &Iy depending on the shape parameters of the target and on retinal
coordinates. Moreover the optical flow (u,v) is expressed as linear combination of the

motion parameters m;.

The above scheme requires knowledge of the shape parameters (p,q) of the plane at
each time instant. This may seem a restrictive assumption, but anatomical, physiological
and psychophysical evidence suggests that early image analysis in human vision is indeed
performed by a variety of distinct systems in the brain. In particular, psychophysical
data exist (Savoy [62]) about the separation of the Orientation and Motion Subsystems
of Vision, which may act surprisingly independently, except that the output of one may
act as an input to the other. An important question is then how the brain manages
to synthesize, out of relatively isolated and independent components extracted from an

image under the analysis process, an internal representation that seems to capture the

* 50



salient characteristics of the visual stimulus. An answer could be provided using the
above scheme .

From the Computer Vision point of view, several methods have been proposed for
the computation of orientation and in particular the orientation of a plane. Those meth-
ods lie in two broad cafegories, the shape from X techriques, which attempt to recover-
surface orientation based on physical constraints and natural a.;ssu'mptions and the model-
_ based matching techniques, which attempt to recover 3-D information by comparing 2-D
image features with a known set of 3-D object models. In techniques c;f the first kind,
various clues can be used for the computation of shape, like occluding contours, textu-
ral variations in the image and s_hading. An important alternative is the Photometric
Stereo Algorithm (Horn[40]), when orientation of surface patches can be recovered from
a aumber of images taken under different lighting conditions of the scene, provided the
reflectance map is known. Many of the above approaches lead to ill-posed problems and
various schemes have been provided for their solution, such as Regulatization and Active

Vision (see Ch. 2.c.II).

Estimation of the Motion Parameters m;

The problem now is to compute the motion parameters m;,i = 1,...,6 of (4.b.1),
without actually computing the optical flow. For this purpose, we use the Theory of
Linear Features presented in Ch. 4.a.

Consider a set F of linear features over a neighborhood B(0, €) of the origin of the
image plane F(t) = {fi(t) = .UE s(z,y,t))ui(z,y)dz dy, i = 1,...,n}. From the Optical
Flow Constraint Equation we have : s;u + s,v+s; = 0 or % = -—.‘:fTVS. Consider the

temporal derivative of the i-th linear feature:

: 0s
fi= //Baﬂidz dy

=- / /B p;(a'?TVs)dz dy (4.6.10)

6
(4.67) _ Z mk// pi(tk, Sz + uk, 8y )dz dy .
k=1 B

Defining A = — [[etti(tr, 8z + ur, s, )dz dy , we get fr= 35_, myhix and then:
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Hii=f, (4.6.11)

where H is the n x 6.matrix of the coefficients h; and M = (my,..., ms)7. The vector of

derivatives of linear feaﬁures }'a.nd the matrix H depend on measurable quantities. We
want to solve the linear system (4.b.11) and obtain the motion parameter vector fi. Since
the number n of linear features will be gfeater than 6, the system will be inconsistent in
the general: case. We can select the linear features such that rank(H) = 6. 'Ifhel;efore, a

least—squares approximate solution becomes necessary.

In our case, the system (4.b.11) has the unique minimal norm solution :

m = Hf}", . (4.5.14)

where Ht is the Moore-Penrose inverse of H, which can be computed either directly from
the formula H' = (HTH)™'HT if H has rank(H) = m, or using Greville’s Algorithm, an
iterative procedure that computes H' in m iterations. At the k-th iteration it computes
H!, where Hy is the submatrix of H consisting of its first k columns. The advantage
of the second method is that we don’t have to check the rank of H and we avoid the
enormous analytic expressions created e.g. from macsyma for (HTH)"1HT. Greville’s
Algorithm is very well suited for our case, since it will compute H' in m = 6 steps, no
matter how long the linear features vector is. For the definition of the Moore—Penrose

inverse , Greville’s Algorithm and related results, see Appendix C.

In our target motion parameter estimation scheme no explicit calculation of the
optical flow field is needed, as we have seen up to this point. In Ch. 4.c we will see '
that neither is it needed for the tracking schemes developed there. Moreover, the only
calculation involving the derivatives of the image intensity function s is done in order
to obtain the parameters h;;. Spatial differentiation of s is needed there, but, since
numerical differentiation is an ill-posed problem, we attempted to bypass it, by using

integration by parts in (4.5.10) .

Supposing that the area B is a rectangle B = {a,b]x ¢, d] in image plane coordinates,
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we have:
b pd
hijp = -// Hi(Uk, 8z + Uk, 8y )dz dy
d .
= — [ 10,8006, 8) i, (2, 3506, )]
- , A _ _
—_/ Uz;(:,d)uk,(z,d)s(x,d)—pg(z,c)uk,(z,c)s(z,c)_]dz
o bpd _ ‘
+/4/¢ S(I,y)[%(ue(z,y)ukl(zyy))+;%(#’i(z,y)uk,(z,y))]dz dy

. Therefore, spatial differentiation of s was feplaced by differentiation of p;, ux, and
ux,, which can be done analytically.

Due to the problem degeneracy (see Ch. 2.b.III), from the above process, as well as
from every method for the recovery of motion from monocular data, we can only recover
the rotation and the direction of translation, due to the unknown depth scale. This is
obvious from our example, where we defined m; = zc"-,i = 1,2, 3, where c is essentially a

measure of depth.

4.c) Tracking

From the algorithm presented in Ch. 4.b we get an estimate of the motion pa-
rameters of our target. It remains to see how we use it in order to fulfill the Tracking
Condition presented in Ch. 2.c.IIl. We derived two schemata for tracking, one where we
use our knowledge of the shape of the target (Tracking Schema 4.1) and one where we
don’t (Tracking Schema 4.2). In both cases we use the Tracking Constraint and reduce
the problem of specifying the camera angular velocities to an unconstrained optimization

problem, namely that of minimizing a cost functional of the form:
J(wzywy) = aw? + ﬁw: + ywz + bwy + ewew, + €. (4.c.1)

Lemma .1 :

Consider a cost functional of the form :

J(z,y) = ez’ + By’ + 12 + 6y + ezy + C,
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with a,8 > 0, not simultaneously zero and 4af8 — € # 0. Such a cost functional has a

unique global minimizer x* = (z*, y") of the form:

. be—2py
zT = m, (4-C.2)
- 76208 (4.c3)

v

Proof See Appendix C.

Supposing that the target motion induces optical flow (u'(z,y),v(z,y)) at the
point (x,y) of the image plane at time t, while the camera motion induces optical flow
(ucarr(z,y), vcar(z,y)), the Tracking Constraint of Ch. 2.c.IIl says that the w,,w,

we seek are the minimizers of:
J(wz,wy) = -//B [(u‘(z,y) + ucan(z, y))2 + (v'(z, y) + veam(z, y))z] dzdy (4.c.6)

In the sequel, we attempt to bring (4.c.6) in the form (4.c.1) using two different ap-

proaches.

Tracking Schema 4.1 : Using Shape Information

Under the assumption that we know the shape of our target, we derived an estimate
of the target motion parameters m;,i = 1,...,6 (Ch. 4.b). We derived also an expression

of the target-induced optical low of the form (eq. (4.b.7)):

(4:9) = Yom (229 (o)

Hzy) ) = 2™ Lualz,e) )

where u;; are known functions of the shape of the target (see example of planar case in Ch.
4.}) and m; the known estimates of the target motion parameters (where (m;,m,, m3)
" is the direction of target translation and (my, ms, mg) is the target rotation). Similarly,

the camera-induced optical flow will be given by an expression like (4.c.7) with m; =

0,myr=0,m3=0,my = —w;,mg = —w, and mg =0 :
uc,m(z,y)] __ [ v (z,y) ] _ [ usu(z,y)] 408
[ veam(z,y) “z L ua(z,y) “V{ usa(z,y) ) (4.c8)
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where u41, 42, Usy, Us2 are known functions and w:,w, are the unknown camera rotation
parameters. By substituting u!, v, ucam,vcam from (4.c.7) and (4.c.8) to (4.c.6), the

only unknowns will be w, and w, and J can be brought to the form :
J(wz,w,) = awi + Bwy + Yws + wy + ey + (4.c.9)

where

a= [[ e+ e ol a,

s= [/ [’( )+ (@b,
== [ e ponlens) + (e Do )
= =2 [[ e e, + oo, 0)usala, )l d,
e=2 [[ lua(e (e, ) + vale, usale,9)ldz b,

¢= [ 1) + (e ) le .

where uf(z,y) = E?=1 muqi(z,y) and vi(z,y) = Z?=1 m;uiz(z,y) . Obviously @, 5 > 0.

Simulation results show that they are not simultaneously zero and 4af — €2 # 0 (see also

the example below). Then from Lemma 4.1, w;,wy are given from (4.c.2) and (4.c.3):

. be—=2pBy . 7e—2aé
Yz = Gaf - & and  wy = 4o — € '

Ezample : The Planar Case

Consider the same planar case as before and let apply Tracking Schemé. 4.1. We
expect this tracking scheme to produce a motion of the camera in the direction of that
of the target, if our tracking goal is to be accomplished. Suppose that the point W is
near the center of the image-plane coordinate frame and is moving with a translational
velocity T and the target rotates with angular velocity w and assume that these are
exactly known from the estimation part of our algorithm. Then, in the small area B
that we consider around the origin of the image plane, we will have z ~ 0 and y = 0.

Therefore, the expressions we found for uy,..., us, will be as follows:
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1 0 0 0 1 0
U & 0 y Uz = 1 y Uz & 0 yUg = -1 Uy = 0 ,Ug = 0/

Therefore the optical flow in this area will be: -
u'(z,y) = _sz_ +. wy and v‘(.z,y) zz} - uwy
Deﬁnj_ng AS Il fs dz dy, the par;;meters of J(wz,wy) will become:
ax 4, BzA,7z2(%—w1)A, 6#12(%+w2)A, ezOh.

Thus, from (4.c.2) and (4.c.3) we get:

and

From fig. 2.2 we can see that this is exactly the motion our camera should perform in
order to track the target. In Ch. 4.d we present simulation results that show how this

scheme is actually working in this case.

Tracking Schema 4.2 : Without Using Shape_Infor.mation

A different approach can be considered and lead to a more general tracking scheme,
where the requirement for knowledge of the shape of the target is replaced by an as-
sumption for well~behavedness of the shape in the neighborhood Byy of the feature Py
that we attempt to track. The target motion parameters (direction of translation %, %
and angular velocity wy,ws,ws) are supposed to have been estimated in the first part of
the algorithm. In the above expression (4.c.6), the target-motion induced optical flow
is given from equations (2.c.5) and (2.c.6) and the camera-induced optical flow is given
from equations (2.c.9) and (2.c.10), i.e. for f=1: .

Ty Ty

T:
u'(z,y) = ﬁi—zé—w13y+wz(zz+l)-—w3y, (4.¢.10)

A
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T, T3 T

vi(z,y) = -fs--Z -V ~wi(y? + 1) + wezy + w3z, (4.c.11)
ucam(z,y) = wezy — wy(z? + 1), (4.¢.12)
veam(z,y) = w(v* +1) —wyzy. (4.c.13)

In the above equations, the unknowns are —%’;,w,,wy. Suppose now that the target
surface is si_nooth enough around W, so that the depth Z corresponding to-all points

" projected in By is ‘almost the same, i.e. Zw. Then for all points (z,y) € Bw, we have:

gy 'Ts

u*(z’ y)= To Zw - 7}; —w1zy +‘w2(:z + 1) - w3y, (4.c.14)
T, T '
vi(z,y) = ﬁ—zfv—— 23— —wi (¥t + 1) +wrzy + warz, (4.c.15)

From the Optical Flow Constraint (3.b.6.a) we get :
S:(l’, y)[ut(zs y) + uCA;‘W(Iv y)] + sy(za y){vt(z, y) + UCAM(I, y)} + St(l', y) =0. (4(‘16)

Then:

//B [sz(z, etz y)+rcanm(z, ¥)]+54(2, Y[V (3, v) +vcam(z, y)]+st(x,y)] dzdy=0,

(4.6.17)
with (u?,v?) as above. From this we can obtain -Zz‘lw— as an affine function of wz,wy of the
form:

T3
7‘; = Miw: + Mgw,, + M, (4.C.18)
where

s [szzy +sy(v" + 1)] dz dy

M, =- ’
flo[sul® - 20+ (B - )|z
Hafsete? + 1)+ sy21] sy
M; = _ ,
ﬂs [s, z) + sy( —y)ldzdy
.Us [St z,y) +syp(z,y) - S:J dzdy
M; = ,

ffa[sz 2y 4 s (B —y)]dzdy
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with
A(zs y) =wzy _w2(z2 + 1) + w3y,

p(z,y) = wi(y® + 1) ~wizy —waz .

We can integrate by parts the above expressions and avoid the computation of the spatial
derivatives of the image intensity function s(x,y). Using (4.;:.18) in (4.c.14) and (4.c.15),
we can express these estimates of the optical flow as functions only of the camera rotation
-pa.rameiers wz and . Then, if we substitute the expressions for u',v*, ucinr, voan in

(4.c.6), the only remaining inknowns will be w, and w, and we can easily brmg J(wz,wy)

in the form

J(@rywy) = awl + ﬂwz +ywr +6wy + ewewy + ¢, (4.c.19)
where

o= [/ '[«% ~ )i 23+ (R - )M+ 07 + 1) azay,
5= [[ (G -2t = @ 4 174 (G - s - 2]z,
v=2 [[[ (@ -2+ 2R - 108 - M)
H(g =M+ (7 + D)(FE - 9)Me - stz ) | doay,
6=2 [[ [(F - - 4 ) - 21345 = 2z 9)
HE - DM = 29)(FE = 1)Ms - a2, )| do .
€= 2//3 [((% - )M, + zy)((% —2)M; - (22 +1))
H(ZE ~ M+ (0 + DN - 9 = 2p)]dz ay,

T
¢= [[[ |G - o202+ (F - 0¥ - o0 .
Then, from Lemma 4.1 we can compute the optimal w7 and wy, which will be:

be - 20~ d . _ Y€—2aé
Y= B - e a “WEap-e
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4.d) Tracking System Simulation

The simulation of the tracking system was written in C and used the graphics
environment of a Silicon Graphies Inc. IRIS workstation. The simulation is divided in

the following parts:

The Image Formation Process

Our target is a plane in R® with surface normal vector (—=p, —¢,1). We consider the
target covered-by a grid and for each of its points we specify the -respectfve pr’ojectién
on the image pline from the perspective projection function, the target kinematics and
its position of the point in the target coordinate frame. The image on the image plane
is then a textured shape like the ox;e shown in fig. 4.1. (From the displacement of the
target, we can specify the new array of intensities and thus simulate the image formation

process. The kinematic models of Ch. 2.b are used for this purpose.

The I/O Process

Contains the graphics routines that represent the image-plane view of the moving

target. Input is the array of intensities s(x,y,t) generated at the Image Formation process
at time t. Output on the display of the IRIS is the image frame at time t with the image
of the moving target, the actual and estimated target motion parameters and a plot of
the distance (measured in pixels) of the point Py, the projection on the image plane of
the point W of the target (which is marked with a blue cross) from the origin of the image
plane coordinate system (marked with a red cross on the image) at each time instant. On
this diagram yellow segments represent the target motion, while red segments represent

the tracking action of the camera (fig. 4.1).
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Fig. 4.1 : Display of simulation results on the IRIS
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The Target Tracker

The tracking schemes of Ch. 4.c were implemented. They assume that a feature
extraction process has found the feature -Pw on the image-plane during the acquisition
phase, but, due to noise and computational errors, its position may be specified only
up to a neighborhood By and they attempt to stabilize By in thé center of the image'

plane.

1) Tracking Schema 4.1: _
The exact -fofmulation of this Tracking Schema for the planar case used in the

. simulations was gi\-'en as an example in Ch. 4.c. Very good results were obtained for this
tracking scheme fed with “perfect™ estimates of the target motion (accurate direction of
translation and rotation) and for very general motions. Results degenerate “gracefully”
as the quality of estimates decreases due to very fast motion or noisy imagés. The random
number generator of C was used in order to generate a sequence of “noisy” target motion
estimates in order to test the performance of the algorithm under inaccurate estimates.
The algorithm performs well with 30% to 60% noise in target motion estimation and
even in the case when some of the paxjaxheters are estimated with 90% deviation from
real values, it performs satisfactorily enough. In the experimental results below, the
target translational velocities are given in (length units) per (time unit) and the angular
velocities in degrees per (time unit).

a . Only translational motion of the target (T3 = —20,T; = 30,T5 = §). 0%
noise in motion estimation. The tracking algorithm keeps the target foveated (fig. 4.2).

b . Only rotation of the target (w; = =2,w; = 3,ws = 4). 0% noise in motion
estimation. The tracking algorithm keeps the target foveated (fig. 4.3).

¢ . General motion of target (T} = 20,T; = 30,73 = 5,w; = 2,wy = 3,w3 = 5).
0% noise in motion estimation. The tracking algorithm keeps the target foveated (fig.
4.4).

d . General motion of target (77 = 20,T2 = 30,T3 = 5,wy = 2,wy = 3,w3 = 5).
30% noise in motion estimation. Very small deviation of the target (2-3 pixels) from the
center of the image plane (fig. 4.5).

e . General motion of target (T} = 20,73 = 30,T3 = 5,w; = 2,w; = 3,w3 = 5).
60% noise in motion estimation. Small deviation of the target (6-7 pixels) from the

center of the image plane (fig. 4.6).
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f . General motion of target (T3 = 20,T; = 30,T3 = 5,wy = 2,w; = 3,ws = 5).
90% noise in motion estimation. Deviation of the target about 8 pixels from the center
of the image plane (fig. 4.7). Small enough compared to the resolution of the image we
consider (91 x 91) pixels.

g - General motion of target along the line of sight (T} = 20, T, =0T =
5,wy = 0,w2 = —2,w3 = 10). 60% noise in motion estimation. The tracking algorithm

keeps the target foveated (fig. 4.8).

2) Tracking schema 4.2:

Poor results comnpared to the previous scheme. When the denominator of the M; ’s

T T,
//B[sx(:,.s 1)+5y(T3 v) C{I dy

becomes very small, the wlole scheme becomes unstable and since B is a neighborhood
of the origin of the image plane, if the spatial variation of the target intensity is not large

enough, this expression will be very small {fig. 4.9) .
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Fig. 4.2 : Target tracker, target translation, 0% noise.

Fig. 4.3 : Target tracker, target rotation, 0% noise.
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Fig. 4.4 : Target tracker, general motion of target, 0% noise.

a9

Fig. 4.5 : Target tracker, general motion of target, 30% noise.
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Fig. 4.7 : Target tracker, general motion of target. 90% noise.
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Fig. 4.8 : Target tracker, target motion along the line of sight, 60% noise.
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The Target Motion Parameler Estimalor

The motion estimation involves the formulation and solution of a linear system of
equations of the form Hm = f, where m is the target motion parameter vector, fis
derived from image information and H is derived from image and target shape informa-
tion. The formulation of this system for the planar case considered in the simulations
was given in the example of Ch. 4.b. The system is solved usiﬁg Greville's algorithm
for partitioned Generalized Inverses, an iterative scheme, which determines the Moore-
Penrose pseudoinverse H! of the general n X m.matrix H in m steps. This algorithm is
particularly well suited for our case, where m = 6 and the computation of H' is com-
pleted in 6 steps no fnat.ter what the length n of the vector of linear features is. This
flexibility is not allowed if we attempt to estimate H' from the formula (HTH) 1HT,
~where in addition a rank test is required.

Several sets of linear features were considered before establishing experimentally
that the best results are obtained with moments of the image, i.e. with linear features

of the form

//ziyjs(x,y,i)dzdy ,0<14+j7<k.
5.

The quality of the motion parameter estimation depends on the order k of the moments
considered. Moments up to order k=10 were considered and in certain cases significant
improvement in performance was obtained from experiments with moments of order up
to k=4 or less.

The results that follow show the target motion parameter estimator combined with
the tracking schema 4.1 for an image with resolution 21 X 21.
) ~ a . Only translational motion of the target (T} = 30). Moments up to order
tk_'—-.-lf') are used (fig. 4.10) .

b . Only translational motion of the target (T3 = 30). Moments up to order

k=2 are used (fig. 4.11) .

¢ . Only rotation of the target (w2 = 5). Moments up to order k=10 are used

(fig. 4.12) .
d . Only rotation of the target (w; = 5). Moments up to order k=2 are used

(fig. 4.13).
| e . General motion of target (T = 40,w; = —2,_w3.= 5). Moments up to order

k=5 are used (fig. 4.14) .
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{ . Motion of target along the line of sight (T} = 20,T; = 0,73 = 5,w; =
0,w; = —2,w; = 10). Moments up to order k=2 are used (fig. 4.15) .

Implementation Issues

Errors are introduced in this scheme from the following sources:

1) Discrefization éﬂ'ects, which will affect mainly the Optical Flow Constraint equa_-
tion used in the .derivatiou of H‘and the discrete temporal derivatives of the linear
- features. ' |

2) Numerical instabilities in the solution of the linear system
Hm=f.

3)The coarse resolution of the image used in simulations. Due to this a translation
may have the same visual effect as a specific rotation and vice versa. This may affect
the motion estimation algorithm. but ultimately it will not affect tracking. Using the
fine resolution of a real system, this effect is expected to disappear.

The use of moments as linear features has the advantage that they are easily imple-
mentable in hardware (Cagney and Mallon [22]), therefore the above scheme can be used
for real-time applications. Moreover, multiprocessor architectures such as the fine—grain
Connection Machine (Hillis [37]) are an interesting alternative for the real-time compu-
tation of the matrix H and the vector of linear features, which are the computational

bottlenecks of the above algorithm.
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Fig. 4.10 : Motion parameter estimator and target tracker,
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Fig. 4.11 : Motion parameter estimator and target tracker,

target translation, k=2
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Fig. 4.14 : Motion parameter estimator and target tracker,

general motion of the target, k=5
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CHAPTER

FIVE

CONCLUSIONS AND FUTURE RESEARCH

The problem examined in this thesis was the tracking phase of the visual tracking
of 3—dimensional targets moving in 3-dimensions, which is the most general tracking
situation in practice. We devised a general class of algorithms based on the continuous
motion and optical flow formalism, which, contrary to previous approaches, use dynamic
segmentation of the image sequence and are correspondence-free. Therefore, two ma-
jor shortcomings of most previous tracking systems, namely segmentation and feature
matching, are bypassed and a novel formulation of the visual tracking problem as an op-
timization problem is presented, which leads to the Tracking Constraint. This expresses
the camera angular velocity that will achieve tracking as the minimizer of an appropriate
cost functional, which requires that for the tracking to be successful, the optical flow in

a neighborhood of the origin of the image plane has to be minimized.

The Tracking Constraint, together with the Optical Flow Constraint are used to
create two classes of a.lgorithmic schemes for tracking, one where we assume knowledge
of the optical] flow field on a neighborhood of the origin of the image plane and one where
we assume knowledge of the shape of the target. In the second case, the optica.l flow can
be e;:pressed as a linear combination of the motion parameters (direction (_)f translation
and rotatiénr), which can be estimated using linear {eatures of the image, which in turn
provide us with global, correspondence-free information about the temporal variation

of the image. The linear features formulation allows us not to compute numerically the
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spatial derivatives of the image intensity function, which is an ill-posed problem, but
use instead the spatial derivatives of the corresponding measuring functions, which can
be computed analytically.

Simulation results demonstrate the success of this class of algorithms in tracking
'3-D targets, even under very noisy information like -very coarse image resolution and
erroneous motion pa.raméter estimation. . '

Hardware implementation and testing of our algorithms in a real visual environment
is one of our prixhar.y future research goals. -The moment invariants which we used as
linear features have fhe-’advantage of being easily implementable on speéia.l hardware
or computable on multiprocessor computer systems such as the Connection Machine.
Therefore the computational bott_leneck. which in our simulations was the computation
of the lineal features vector and the matrix H (see Ch. 4.b), can be eliminated and real-
time application of the algorithms becomes possible. These algorithms will generate
a desired trajectory for the camera actuators to follow and appropriate modeling and
control schemes are necessary, in order to implement this desired motion in real-time.

In Aloimonos, Bandopadhay and Weiss [2] a 3-D shape estimation scheme was pre-
sented, which assumes knowledge of the 3-D motion and estimates shape, following a
very similar approach to the one used in our 3-D motion estimation algorithm. A co-
operative scheme based on these two algorithms may be able to achieve tracking in the
case when both approximate shape and approximate motion information are available a
priori. Interaction between these two algorithms, together with additional visua! infor-
mation, may be able to improve the shape and motion estimates as time evolves, until
some kind of equilibrium is reached.

Provided we have an estimate of the target 3-D motion from the algorithm presented
in Ch. 4.b, thié information can be used not just for tracking, but as part of an aug-
mented system able to acquire a target (track and approach it) and/or perform obstacle
avoidance. Apart from obvious obstacle avoidance applications in robot navigation, this
may have other interesting applications such as grabbing a rotating satellite based on
visual information or combining visual and tactile information in an intelligent control
scheme (Fu [27]:, Saridis [63]) that will allow a robot to approach, grasp and manipulate
a moving object in a flexible manufacturing environment,

Even though linear features have been proven a very important tool both in classical

Pattern Recognition and in novel correspondence~{ree motion and shape estimation al-
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gorithms, like the ones presented here, no theoretical investigation has been undertaken
on the relative merits of specific measuring functions y; and the optimal length k of the
linear features vector. The experirhental‘ attempt has been to make this vector as rich
in image-related information as possible, but the exa;ct meaning of “richness” has never
been stated formally. A formal measure of the richness of information depending on the
selection of y; and k will possibly enable the use of our powerful optimization tools in
order to derive optimalit)' results applicable to ;each specific visual situation.

Finally, the whole previous approach was related to rigid targets. Humans are
perfectly able to track the motion of non-rigid ones, such as clouds, flags, sea waves and
other humans, even though their shape or motion parameters may not be exactly known,
This is related to the understanding of non-rigid motion from visual information and
several researc-hers are already studying t};is problem (see e.g. Shulman and Aloimonos
[65]). An answer to the problem may be provided through learning and neural nets, but

several aspects of such an approach are still not very well understood and require further

investigation.
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APPENDIX A

Proof of Theorem 2.1 :
i) See Arnold [6] and Goldstein [33].

ii) Consider two time instants ¢y and ¢ with 1o > t.
q(1) = r(t) + B(1)Q(2), - (A1)

io) =r 10) + B(io io) (AQ)

with B(t), B(to) € SO(3).
The matrix B is a function of time t and we can expand it to Taylor series around

o (Bottema and Roth [16]). Defining At =t — g, we get:

B(t) = B(zo)+ TR ,

Since B(.} € IR x 50(3), we have:

dzB(to)

d
Blio)’ At Z— 7 A 4.

dt 2

BYt)=BT(t) = BT<t ) +

and from B(t)BT (t) = I, we get:

dB(to) . dBd(:.o) 5T (to) —o

B(to)

“Therefore ‘B(“) BT t ) is a skex&-—s) mmetric matm. The corresponding vector w is the
spatial a.ngular velocity of the point (i.e. its angular velocity with respect to the inertial
frame, not the moving one) and then:

dB(to)
dt

BT (1) = L) g1 ()

w=

Similarly we can expand r(t), Q(t) and q(t):

r(t) = r(to) 4 dr(to)Af- + = Ldr (to)

2
di IPTER (4.4)
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Q1) = Q(to) + do("’)aw 21! £9 d(;")m +. (A.5)
g(t) = q(zo)} dq‘g:")m + 21! d 3t(f°) 882 +..., (4.6)
From (A.1), (A.4), (A.5) and (A.G), we get:
q(?) = r(t) + B(1)Q(t)
[;-(t )% dr{g:")aw 21, d'dtt")z;z +..]
B(f@)-}— dBl(tO)Ai+21!d f(“’)A + ...
x {Q(to) + —5——= de) t+ =~ 2! dQ(;O)'AtZ +.. (A7)

drito) | dB zo) dQ(to)

= [r(to) + B(ta)Q(2)) + [ QU) + Blts) =5 ]A1
C1d%r(t) | 1d°B(tg)
TPTER TR TRy

dt dt

In the Continuous approach to the 3-D Motion prdblem in Vision, images are taken
in very small time intervals, so that the motion of the target between any two frames
can be considered infinitessimal. The infinitessimal velocity distribution can be obtained
as an approximation of the general expression (A.7) for g(t), if we neglect terms of order
higher than one in At and consider At — dt.

Then the velocity distribution is described by the first derivative of q as follows:

dlto) _ drlte) | dBlto)

dQ(to)
dt = dt dt dt

Q(?) + B(tg)

dr dB
= go) + ;:")B'l("’)lx(z")"(‘o)]+ B(t")de(:O)
4 ) | s (10) = ()} + Bl )dQUo) a8
- {Sf.’”é.:_el ~ erlto J+W-X’(1o)+5(:o)dQ(’°>

£=T+ X(to)+B(zo)519-g-92.
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Then:
q(t) = Tdt + (I + &dt)q(te) + B(10)Q(to)dt . (A.9)

Therefore, supposing that we know the position of the-target at time o (i.e. r(¢p)
and B(%)) and its velocity distribution T and w, we can specify its position at time t.

FromT = d—'g:—ﬂ — wr(tp) we have:

r(t)=r(to) + %fﬁ?)d( = Tdt + (I + @dt)r(tp)

Jrom o = 9—8—;{°—)B7(t0) we have :

dB(fo)_

—dt = (I +&d1) B(to)

" B(t) = Bito) +

Proof of Theorem 2.2 :

i) From Corollaries 2.3 and 2.1 :
Xo(t) =d(t) + A(1)X (1) = d(t) + A(@)r(t) + AR()X'.

Defining ro(t) = d(t) + A(t)r(1) and Ro(t) = A()R(t) we get (2.b.7).
ii) From Corollaries 2.1 and 2.3 :

Ro(t) = AWR(t) = (I + &.dt)Alto)(I + &dt) R(to)
= A(to) R(t0) + A(to}oR(to)dt + &eA(to) R(t0)dt + Ge Alto }oR(to)dt?

Ignoring the terms of order higher than one in dt and since from (i) : Ro(to) =

A(to)R(to) , we get :
Ro(t) = Ro(to) + A(to)AT (to) Ro{to)dt + &eRo(to)dt
= [T + (@ + A(to)2AT (t0)df] Ro(to) '

Therefore, &p = & + A(lo)OAT (o) -
From Corollaries 2.3 and 2.1 :

5'%%"—? = T + e Xollo) + Alto) X (fo)

=T, + O Xolto) + A(to)[T + OX (1))
=T+ 0 Xo(to) + A(to)T + AA(to)CuX(to)
= T. + A(t0)T = Alto)>AT (t0)d(to)

+ [De + A(t0)AT (10)][d(t) + A(to) X (to)] -
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Defining To = T + A(to) — A(1o)@AT (t0)d(to) and since from Corollary 2.3 we have :
Xolte) = d(to) + Al1o)X (fo) , we take (2.b.8).

Proof of Theorem 2.3 :

* Assume perspective projection and-consider a point A of the target with coordinates

X =(X,Y, Z) with respect to the camera frame, which is projected on the image plane
at a point with coordinates (x,y). Differentiating the projection equations (2.a.3), we
- get: ' '

uéi:f%’-f%?

and

;From Corollary 2.1 :

- - {X=Tl+(WQZ—W3}")
X=T+wX = Y = Tg <+ (UJ3.¥ - wlz)
'Z=T3+(w1Y—WQX)

Therefore:

_ ST —2T3 zy . (224 f)
u= 7 wx—f +<~2—-—'——f w3y

- 2 2 .

v 102 yTs_wl(y +f7) zy

7 7 +w2-f—+w3$-
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APPENDIX B :

Proof of Theorem 3.1 :

Consider the Lagrangian of the problem:

F(wz,wy, )\) = f(wz,wy) + Ag(wzywy)
.= a;wﬁ-{:b]wz + Gy +_d1wy +€1;way+ f1 N (Bl)
+ A(ugu‘;;". + bng + cowr +-dawy + €20y + f2)

where aj,..., f2 are defined in (3.b.10).

i) First-Order Necessary Conditions

Supposing w = (wr,wy) is a local minimum for the above problem and that .‘1‘7_(_‘;;;_"":_)

is full row rank, there exists A € IR such that:
'aaTJF:‘(wxswya ’\) 0
VF(wzywy,A) = 0= gf;(wr,wy,z\) =10] >
‘g_’:(wx’wyv A) 0

20w + 2 + €2w,y,

2 (20 =0=Xr=-
awz + e1 + ewy + M202ws + €2 + €2wy) 2aws + €1 + €1y

2aswz + €2 + Ealdy (2b

20wy, +d -
1wy +d; + ewr Tarws 4 &1 + €10,

Wy + dr+ e} =0

= Awl 4+ Blwy)wz +T(wy) =0 (B.2)
where A= 2(ay65 — e103), Blwy) = Buwy + By = 4(arhs = bras ks + 2(ardy = draz) +
(cre2—eycz) and T(wy) = Twl + Tawy +T3 = 2(e1d ~bye)w? +(2(erdy = byea) + (e1d2 -
diez2))wy + (c1dy — dy¢z). (From g(wz,wy) = 0, we get:

awl + bgw: + cwp + dawy + eawzwy + f2 =0, " (B.3)

Solving (B.2) for w; and replacing its expression to (B.3), we can get the following

fourth—order equation, from whose real solutions we can specify wy, :

aw;+ﬁw§+7uz+5uy+€=0, | (B.4)

t
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where

a = 4[«124421‘% + b%A‘ + agbgA.zB;z -+ (6% - 2a2b2)A3F1 - 02€2A231r1 - bgegAaBl] ,

B = 4[2a§,421‘11‘2 + 2&2524231 Bz + agdzAzBf + (eg - Qngz)Asrz - 0202A231r1
+2(cge; ~ azds) ATy = azes A*(BiT2 + ByTy)

—(bng + dgCQ)AsBj + 2b2d2A4 - bzezAsBz} N

v =4 [a?_,Az(l“g + 90, Ta) + d3A% + a2bs A2 B2 + 20,0, A’ By By + ay f; A2 B?

(€3 ~ 2a252)A%T3 — a2¢2A%(BiTa + BaTy) + 2(caes — ayd2) AT,
—a2e2 A% BiT3 + BaT2) + (¢} — 222 f2) ATy = (baca + dze2)A® By

—(cody — €2/2)A By + 202 f A,

§ = 4[20.%,421121‘3 + agdgAng + 2(12f2A231 32 - 0262A2(31r3 + Bzrg)
+2(Cgeg - aga’g)Asrg - a2e2.4233P3 + (C% - 2agf2)A3I‘2

—(c2dz + €2f2)ABy — e, ABy + 2112)'2/44] )

€= 4 [a'g’Azl‘g + f;A‘ + a-gnggB;;’ - 0203.‘1232r3 + (c§ - 2(13f2).43r3 - szgAng] .
By substituting y = «, + ;—% and dividing by a, we bring (B.4) in the following form:
y' +ry +qy+r=0, (B.5)

2 -3 4 2
wherep= 2 -3¢ ,¢9g=5+ 3%1 -2%7 yand r= % - S5 — 20 4 -L'§16a . Consider now

the cubic resolvent of (B.5), which is the following cubic equation in normal form :
B4 2pt 4+ (pP—4r)z-¢*=0. (B.6)
Substitute w =z+ 33‘-’ and get its reduced form:

v su+1=0, (B.7)
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n

with s = —=3(p* + 12r) and t = —(%5p° - $pr + ¢%).
Consider the discriminant of (B.7): D; = §3 + -;—2. ;From Cardano’s formula

(Bronshtein and Semendyayev [20]), the solutions of (B.7) are : w; = v+ v,w; =

-—-;-(u+ v) + i\/g(u-- v),wa = -Lu+v)-i 3(u-v), withu = § —{,—-{-\/El and

Then, the solutions of the cubic resolvent (B.6) are: z; = w; — %E,i = 1,2,3 and the

solutions of the fourth-order equation (B.4) are: .
W= lzo A
Wy =<§(\/;1+\/_52+\/:’-3)‘Es

wf,e’ = l(\/El - \/::2 - \/:-:3) - b

2 4a’

. 5 (B.8)
“’53):5(‘\/;1+\/‘:2_\/;3)-Ev
R O A R
wy = 3 -V = .;2+ <3 "'4a.

For D; < 0, the equation (B.7) has 3 real solutions w;, otherwise it has a real one
and a pair of complex conjugate ones. ;From the theorem of Vieta: 212323 = ¢ >0,
therefore, either all 3 solutions of (B.6) will be non-negative, or one will be non-negative
and two negative. Then, for D; £ 0 and z; > 0,¢ = 1,2,3, the fourth—order equation

B.4) has at most four distinct real solutions w(i),i =1,2,3,4. For D; > 0 the equztion
v

has at most two distinct real solutions wgi).i = 1.2. In all other cases it does not have
real solutions.

If we get real solutions wf,i) for (B.4), we should compute the corresponding w, from

(B.2). For each wg'l) we get a different quadratic equation in w; of the form:
A0 4 Bl Wl + T(wl?) = 0. (B.9)

Consider its discriminant Dgi) = B(wgi))"’ - 4A1"(u§,")). We are interested only in real
solutions of (B.9), i.e. in the case D} > 0. Then we get : w{) = — (B + /D:(3)) and

Wl = -5 (B - /D:2(3)).

Thus, from the necessary conditions for the minimization problem (P), we get the

local extrema (w(zi),;.;g,'.)'), for i=1....m and j=1..n, withl1<m<4and1<n<2 To
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every such extremum corresponds a Lagrange multiplier of the form:

_2a1w£‘,) +c; + elwgi)
26,08 F €3 + el

AL, WD) = (B.10)

ii) Second-Order Sufficiency Conditions
-VVe must check the secbnd—order conditions for those local extrema, in order to
specify the strict local minima. For w G‘BZ"’, consider ihe set T(w)={h € le%lh =
'0}. It is easy to see that for our problem T(w) = {(h1,h2) € R?|h; = K(w)hy}, where
Kw)= -—%—g—’;%‘ij_—ﬁ{%% , which represents a line through the origin in IR?.

Now, suppose that w € IR? is sush that g{w) = 0 and there exists A € IR such that

VF(w,A\)=0. HYh € T(w),h # 0 we have < A, %ﬁh > > 0, then w is a strict local
minimizer of the above problem.

In our case for h = (hy,ha) € T(«w) with h # 0,i.e. hy = K(w)hy,hy # 0, we have:
(a1 + M(w)a2) K*(w) + (3 + Aw)e2) & (w) + (b1 + AMw)b2)]h3 > 0
Obviously this is true for every w sush that:

Di(w) 2 (a1 + Aw)aa) WP (w) + (e; + A(w)ea) K (W) + (b + Alw)by) > 0.  (B.11)

Every pair w' = :.;E,J);wg')) that satisfies DY (w') > 0 is a strict local minimizer of the

problem.

iii) Global minima

Supposing that there exist £ such pairs w', with i = 1,...,f£and 0 < £ < 8, we can

compute f(w') and specifv the global minimaw" of the problem."
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Proof of Theorem 3.2 :

For simplicity, consider the case when § is a 4 x 4 array, where B is as shown in fig.

.3.1. Then k=4 and :

. 16 ) ) - e
JP =) (sauitsyvits) +4 Y (ul40d)

i=1 . i=6,7,10,11
=52 W24s? 2o NP 2 o L o2
= Sz, u; + Sy ¥1 + 282,88, U V1 + 252, 8¢, Uy + Sy S, 1 + st
2,2 52,2 . w : 2
T8z, Ud F 8, U F 280,800 4 285,81, Un + 25, 84,v2 + st,

+.o..+

2 2 2 .2 . 2
+ Sz6tl16 + Syie V16 + Zsrxesyxsumvls + 25-‘&'163!:6 us + 25!4165‘16”15 + Stie

+Aud + 03 + ud + o + oy + ofy + 1l + 0]

=60T50-2CT0+d+ 20758,

where:
u -
vl £, 0 0
! i 0 % 0
8= = . \
u . -
16 0 0 16
Vie
with
2
< 31‘, sr.SV‘
- - 2 Y
Sz, 8y, sy
=8y Sty . - - -
=S8y, 84y
—8:-,81: P
- a2 2 2
C= : ,d_s,l+s,,+...+st“,
81148134
“SyreStye
and
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We must now transform (B.12) in the form (B.15). Define :

-5y, 8z, S, 0 0 ... 0 0

-3 : 0 0 s8z;- 8 . 0 0
y ___A_ E i3 ’ é E E ) 12

—St56 : 0 0. 0 0 ... s, S,

It is easy to see that :

| __>':=I1-XTX cT yTX, d= =y Ty

Gl
?r

Then :

750 -2CT0+d= -1-}2-(97};7)&'9 -2y X0+147y)

=Z1-2-(<y,y>—<y,X9>—<.XO y>+<X8,X6>)
1 , .

=7"— —Ae,y—ke>
1

= ---Hy-?&(?H2

Therefore :

1 -
JP = iy — X6 + 267,

where T is symmetric and positive definite.
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APPENDIX C

Moore.— Penrose Inverse :

The Moore-Penrose Inverse of an n X m real matrix A is defined as the unique
matrix _Aij € IR™*" for which: :
| » AAtA=A4,

ATAAT = AT,
- (C.1)
(AAN)T = 44T,

(ATA)T = ATA.

Lemma C.1 : Let A€ IR™*™, b e IR™. Then, among the least-squares solutions of the

equation Az = b, zo = A'bis the one of minimum norm, i.e. for any other least-squares
solution z; of Az = &, we have ||z¢[| < ||z1]|. Conversely, if X € IR™*" is such that for

all b, Xb is the minimum-norm least-squares solution of Az = b, then X = Al

Proof : See Corollary 3.2.3 of Ben-Israel and Greville [12].
Then for zg we have:
|Azo — b]| < [[Az - b]], Vz

and
llzoll < llzall , Vzi such that [JAzo — ]| = ||Azy - b][.

Therefore, the general least-squares solution of Az = b will be:
I =z‘o+5=A7b+5?,
where £ € A(A), the null space of A.

Lemma C.2 : Let A € R™™ and rank(A) = m, then:

Al =(4TA)tAT
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Proof : It is easy to prove for any matrix A that : A? = (ATA)'A7 by checking the
properties (C.1). For A such that rank(A4) = m, we have rank(AT A) = m and since
ATA € R™*™ | then ATA is nonsingular, in which case (4TA)! = (AT4)~! and the

result is immediate.

Lernma C.8 : (Greville’ Algorithm) -

Consider the notation below:

Hy = [Hy_1|hy], k =2,...,m,
with hy the k-th col*:umn of Hy. A.lsq D
dp = H} _ by
¢k = hx — Hx_1dx
Then, fork=2,...,m:

Hl - dkb;r) ’

H = [Hi1|h' = ( 5T
k

where
BT = cl, if ex #05
FT @ +dld) T HL,, ifa=0;
Proof : See Theorem 5.5.7 in Ben-Israel and Greville [12].
A more efficient procedure was devised also from Greville for the celculation of H! f
, without the need for computing H? first. Consider the augmented matrix H = [Hlf]
Then H'H = [H'H|[H'/) and if we can get H'H from an iterative procedure, which in ’

the kth-step computes HLfI, then the last column of H'H is the solution @ = H? f of

_..-.our system. . ... -

From the previous lemma, for k=2,...,m

H!_H-db]H )

H?I:I = [Hk_llhk]fﬁ = ( ~
i bJH

a.nd di can be seen as the k-th column of Hi_lf{ . Moreover,

. b:‘ﬁ - CI_I‘:I, z if Ck # 0;
(1+d7di)"Yd]HI_H, ifci=0;
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Proof of Lemma 4.1 :

Once J is twice continuously differentiable in its arguments, its Hessian P exists and
is a symmetric 2 x 2 matrix:

83J 2y

P= 9_2_‘1 = | 97 58z3v 20 0
T8z T | 221 gy
Byéz . By7

= 0 2ﬂ.

Consider a nonzero vector x = (z,y) € R%.Then:

xT Px = 2(az? + fy?).

Under the above hypothesis about a and 3, the matrix P is positive definite, thus J is a

strictly convex function.(Luenberger [48]). Therefore, the minimizer of J is unique and
global (Varaiya[72]). Let x* = (z,y") be such a minimizer, i.e.

VJ(x*)=0.
Then x"° is the unique global minimizer of j and can be computed from: VJ(x*) = 0.

/. ey 2ax‘+ey'+7] _
VJ\Z: ’y)—[2ﬂy-+fz.+6 "‘0=>

2az" + ey = -7, (C.2)

ex” + 20y = —4. (C.3)

If 4af ~ €* # 0, which in general holds in our system, then (C.2) and (C.3) have the
unique solution (4.¢.2) and (4.c.3).
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