
ISR develops, applies and teaches advanced methodologies of design and analysis to solve complex, hierarchical,
heterogeneous and dynamic problems of engineering technology and systems for industry and government.

ISR is a permanent institute of the University of Maryland, within the Glenn L. Martin Institute of Technol-
ogy/A. James Clark School of Engineering. It is a National Science Foundation Engineering Research Center.

Web site http://www.isr.umd.edu

I R
INSTITUTE FOR SYSTEMS RESEARCH

TECHNICAL RESEARCH REPORT

Anti-Collusion Fingerprinting for Multimedia

by Wade Trappe, Min Wu, K.J. Ray Liu

TR 2002-17

Anti-Collusion Fingerprinting for Multimedia

Wade Trappe, Min Wu, Zhen Wang, and K. J. Ray Liu

Department of Electrical and Computer Engineering
University of Maryland, College Park, MD 20742

E-mail: wxt, minwu, zhenwang, kjrliu @eng.umd.edu

Abstract

Digital fingerprinting is a technique for identifying users who might try to use multimedia content for
unintended purposes, such as redistribution. These fingerprints are typically embedded into the content
using watermarking techniques that are designed to be robust to a variety of attacks. A cost-effective
attack against such digital fingerprints is collusion, where several differently marked copies of the same
content are combined to disrupt the underlying fingerprints. In this paper, we investigate the problem of
designing fingerprints that can withstand collusion and allow for the identification of colluders. We begin
by introducing the collusion problem for additive embedding. We then study the effect that averaging
collusion has upon orthogonal modulation. We introduce an efficient detection algorithm for identifying the
fingerprints associated with K colluders that requires O(K log(n/K)) correlations for a group of n users. We
next develop a fingerprinting scheme based upon code modulation that does not require as many basis signals
as orthogonal modulation. We propose a new class of codes, called anti-collusion codes (ACC), which have
the property that the composition of any subset of K or fewer codevectors is unique. Using this property,
we can therefore identify groups of K or fewer colluders. We present a construction of binary-valued ACC
under the logical AND operation that uses the theory of combinatorial designs and is suitable for both the
on-off keying and antipodal form of binary code modulation. In order to accommodate n users, our code
construction requires only O(

√
n) orthogonal signals for a given number of colluders. We introduce four

different detection strategies that can be used with our ACC for identifying a suspect set of colluders. We
demonstrate the performance of our ACC for fingerprinting multimedia and identifying colluders through
experiments using Gaussian signals and real images.

1 Introduction

The advancement of multimedia technologies, coupled with the development of an infrastructure of ubiquitous

broadband communication networks, promises to facilitate the development of a digital marketplace where

a broad range of multimedia content, such as image, video, audio and speech, will be available. However,

such an advantage also poses the challenging task of insuring that content is appropriately used. Before

viable businesses can be established to market content on these networks, mechanisms must be in place to

ensure that content is used for its intended purpose, and by legitimate users who have purchased appropriate

distribution rights.

Although access control is an essential element to ensure that content is used by its intended recipients,

it is not sufficient for protecting the value of the content. The protection provided by encryption disappears

when the content is no longer in the protected domain. Regardless of whether the content is stored in an

unencrypted format, or decrypted prior to rendering, it is feasible for users to access cleartext representations

of the content. Users can then redistribute unencrypted representations, which affects the digital rights of

the original media distributors.

In order to control the redistribution of content, digital fingerprinting is used to trace the consumers who

use their content for unintended purposes [1–4]. These fingerprints can be embedded in multimedia content

through a variety of watermarking techniques [2,5–10]. Conventional watermarking techniques are concerned

with robustness against a variety of attacks such as filtering, but do not always address robustness to attacks

mounted by a coalition of users with the same content that contains different marks. These attacks, known

as collusion attacks, can provide a cost-effective approach to removing an identifying watermark. One of

the simplest approaches to performing a collusion attack on multimedia is to average multiple copies of the

content together [11]. Other collusion attacks might involve forming a new content by selecting different

pixels or blocks from the different colluders’ content. By gathering a large enough coalition of colluders, it is

possible to sufficiently attenuate each of the colluders’ identifying fingerprints and produce a new version of

the content with no detectable fingerprints. It is therefore important to design fingerprints that are not only

able to resist collusion, but are also able to identify the colluders and thereby provide a means to discourage

attempts at collusion by the users.

1.1 Prior Art

One of the first works on designing fingerprints that are resistant to collusion was presented by Boneh

and Shaw [4]. This work considered the problem of fingerprinting generic data that satisfied an underlying

principle referred to as the Marking Assumption. A mark was modeled as a position in a digital object

1

that could be in a finite number of different states, while a fingerprint was a collection of marks. A mark is

considered detectable when a coalition of users do not all have the same mark in that position. The Marking

Assumption states that the undetectable marks cannot arbitrarily be changed without rendering the object

useless. However, it is considered possible for the colluding set to change a detectable mark to any other

state or into an unreadable state. Under their collusion framework, Boneh and Shaw show that it is not

possible to design totally c-secure codes, which are fingerprint codes that are capable of tracing at least one

colluder out of a coalition of at most c colluders. Instead, they use randomization techniques to construct

codes that are able to capture at least one colluder out of a coalition of at most c colluders with arbitrarily

high probability.

A similar work was presented in [3]. This work is concerned with the distribution of large amounts of

content, such as through television broadcasts, where each user has a decoder that contains a set of keys

needed to decrypt the broadcast content. Users might collude to create a pirate decoder that consists of

keys from some of the colluders’ decoders. When a pirate decoder is captured, the goal is then to be able to

trace and identify at least one of the colluders involved in creating the illicit device. Thus, the goal is not

to trace the leakage of the content, but rather to trace the decryption keys needed to access the content. In

this case, the challenge lies in reducing the size of the ciphertext from being linear in the amount of users.

In both of these cases, the ability to trace or identify a colluder relied on the fact that the identifying

information cannot be blindly altered by the coalition. In particular, the construction of the fingerprinting

schemes for generic data, as presented in [4], relies on the validity of the Marking Assumption. One key

difference between generic data and multimedia data is that multimedia data is sensually robust to minor

perturbations in the data values. This sensual robustness of multimedia data makes it desirable and feasible

to embed digital fingerprints in the multimedia. Rather than attaching fingerprints in headers, embedding

will tie the fingerprint with the host multimedia signal and make the fingerprint resilient to format con-

version, compression, and other moderate distortions. Watermarking techniques that embed information in

multimedia invisibly, such as those in [5, 6], can be used to embed digital fingerprints. While generic data

may allow long fingerprint marks to be attached to them, the number of marks that can be embedded in

multimedia data and accurately extracted after distortion by hostile parties is limited [12,13]. Thus, the long

fingerprint codes proposed for generic data may not even be embeddable in multimedia data. The process

of fingerprinting multimedia should, therefore, jointly consider the design of appropriate fingerprints, and

the efficient and effective detection of these fingerprints. Furthermore, unlike Boneh and Shaw’s assumption

for generic data, where adversaries can easily manipulate the detectable marks to any value, different bits of

fingerprint codes that are additively embedded in multimedia may not be easily identifiable and arbitrarily

2

manipulated by colluders. For this reason, linear collusion attacks, such as averaging several fingerprinted

signals, are often more feasible for multimedia [11].

The resistance of digital watermarks to linear collusion attacks has been studied [11, 14–17]. In [14],

the original document is perturbed by the marking process to produce fingerprinted documents with a

bounded distortion from the original document. They propose a collusion attack that consists of adding

a small amount of noise to the average of K fingerprinted documents. In their analysis, they show that

O(
√

N/ log N) adversaries are sufficient to defeat the underlying watermarks, where N is the dimensionality

of the fingerprint. This result supports the claim of [15], where the watermarks are assumed to be uncorrelated

Gaussian random vectors that are added to the host vector to produce fingerprinted documents.

Further work on the resistance of digital watermarks to collusion attacks was done in [16]. They con-

sider a more general linear attack than [14], where the colluders employ multiple-input-single-output linear

shift-invariant (LSI) filtering plus additive Gaussian noise to thwart the orthogonal fingerprints. Under the

assumption that the fingerprints are independent and have identical statistical characteristics, they show

that the optimal LSI attack involves each user weighting their marked document equally prior to the addi-

tion of additive noise. Additionally, they investigated an alternative fingerprinting strategy by embedding

c-secure codes, such as described in [4,18], and studied the amount of samples needed in order for the mark-

ing assumption to hold while maintaining a prescribed probability of falsely identifying a colluder. Their

fingerprinting capacity study suggested that independent fingerprints require shorter sequence length than

fingerprints constructed from c-secure codes.

Finally, a different perspective on collusion for multimedia was presented in [19]. A watermark conveying

the access and usage policy is embedded in the multimedia content. Different users’ media players use

different variations of the watermark to correlate with marked content in detection. Each detection key

is the sum of the watermark and a strong, independent Gaussian random vector that serves as a digital

fingerprint. When an attacker breaks one device, obtains the detection key inside, and subtracts the key

from the watermarked content, the watermark will not be completely removed from the attacked copy

and a fingerprint signal will remain in the attacked copy that indicates the attacker’s identity. The paper

quantitatively analyzed the collusion resistance issues and discussed related problems of segmentation and

key compression.

1.2 Paper Organization

The work of [16] suggested that independent, or orthogonal, fingerprints are advantageous to fingerprints built

using collusion-secure codes. However, several disadvantages for orthogonal fingerprints remain, such as the

3

high computational complexity required in detection, and the large storage requirements needed to maintain

a library of fingerprints. In this paper, we address these disadvantages by proposing an efficient detection

scheme for orthogonal fingerprints, and introducing a new class of codes for constructing fingerprints that

require less storage resources. Our results are suitable for both averaging-based collusion attacks, and for

collusion attacks that interleave values or pixels from differently marked versions of the same content. For

the convenience of discussion, we will use images as an example, while the extension to audio or video is

quite straightforward.

We begin, in Section 2, by describing multimedia fingerprinting, and introduce the problem of user

collusion for a class of additive watermark schemes. We then review orthogonal modulation in Section 3,

and examine the effect that collusion has upon orthogonal fingerprinting. In order to overcome the linear

complexity associated with traditional detection schemes for orthogonal modulation, we develop a tree-

based detection scheme that is able to efficiently identify K colluders with an amount of correlations that is

logarithmic in the number of basis vectors. However, storage demands remain high and it is desirable that we

use fewer basis signals to accommodate a given amount of users. Therefore, in Section 4, we propose the use

of a class of codes, which we call anti-collusion codes (ACC), that are used in code-modulated embedding.

The resulting fingerprints are appropriate for different multimedia scenarios. The purpose of ACC is not

only to resist collusion, but also to trace who the colluders are. The proposed ACC have the property that

the composition of any subset of K or fewer codevectors is unique, which allows us to identify groups of

K or fewer colluders. We present a construction of binary-valued ACC under the logical AND operation

that uses the theory of combinatorial designs. For a given number of colluders, our code construction

is able to accommodate n users, while requiring only O(
√

n) basis vectors. We study the detector, and

present four different strategies that may be employed for identifying a suspect set of colluders. We evaluate

the performance of these detection strategies using simulations involving an abstract model consisting of

Gaussian signals. We also examine the behavior of our fingerprints using actual images. Finally, we present

conclusions in Section 5, and provide proofs of various claims in the appendices.

2 Fingerprinting and Collusion

In this section, we will review additive embedding, where a watermark signal is added to a host signal.

Suppose that the host signal is a vector denoted as x and that we have a family of watermarks {wj} that are

fingerprints associated with the different users who purchase the rights to access x. Before the watermarks are

added to the host signal, every component of each wj is scaled by an appropriate factor, i.e. sj(l) = α(l)wj(l),

where we refer to the lth component of a vector wj by wj(l). One possibility for α(l) is to use the just-

4

noticeable-difference (JND) from human visual system models [6]. Corresponding to each user is a marked

version of the content yj = x + sj . The content may experience additional distortion before it is tested for

the presence of the watermark sj . This additional noise could be due to the effects of compression, or from

attacks mounted by adversaries in an attempt to hinder the detection of the watermark. We represent this

additional distortion by z. There are therefore two possible sources of interference hindering the detection

of the watermark: the underlying host signal x and the distortion z. For simplicity of notation, we gather

both of these possible distortions into a single term denoted by d. As we will discuss later, in some detection

scenarios, it is possible for d to only consist of z. A test content y that originates from user j, thus can be

modeled by

y = sj + d. (1)

The watermarks {wj} are often chosen to be orthogonal noise-like signals [5], or are represented using a

basis of orthogonal noiselike signals {ui} via

wj =
B∑

i=1

bijui, (2)

where bij ∈ {0, 1} or bij ∈ {±1} [20]. We will present detailed discussions on different ways to construct

watermarks for fingerprinting purposes in Section 3 and Section 4.

One important application of fingerprinting is identifying a user who is redistributing marked content yj

by detecting the watermark associated with the user to whom yj was sold. By identifying a user, the content

owner may be able to more closely monitor future actions of that user, or gather evidence supporting that

user’s illicit usage of the content. There are two different detection strategies that might arise in fingerprinting

applications. They are differentiated by the presence or lack of the original content in the detection process.

We will refer to non-blind detection as the process of detecting the embedded watermarks with the assistance

of the original content x, and refer to blind detection as the process of detecting the embedded watermarks

without the knowledge of the original content x. Non-blind fingerprint detection requires that the entity

performing detection first identify the original version corresponding to the test image from a database of

unmarked original images. This database can often be very large and requires considerable storage resources.

In the non-blind fingerprint detection, the distortion can be modeled as d = z. Blind detection, on the other

hand, offers more flexibility in detection, such as distributed detection scenarios. It does not require vast

storage resources, and does not have the computational burden associated with image registration from a

large database. This is particularly attractive for enabling fingerprint detection by distributed verification

engines. However, unlike the non-blind detection scenario, in the blind detection scenario the host signal is

unknown to the detector and often serves as a noise source that hinders the ability to detect the watermark1.
1Note that there are other types of watermarking schemes that do not suffer from interference from unknown host signals

5

In this case, the distortion can be modeled as d = x + z.

The detection of additive watermarks can be formulated as a hypothesis testing problem, where the

embedded data is considered as the signal that is to be detected in the presence of noise. For the popular

spread spectrum embedding [5, 6], the detection performance can be studied via the following simplified

antipodal model: {
H0 : y(l) = −s(l) + d(l) (l = 1, ..., N) if b = −1
H1 : y(l) = +s(l) + d(l) (l = 1, ..., N) if b = +1 (3)

where {s(l)} is a deterministic spreading sequence (often called the watermark), b is the bit to be embedded

and is used to antipodally modulate s(l), d(l) is the total noise, and N is the number of samples/coefficients

used to carry the hidden information. If d(l) is modeled as i.i.d. Gaussian N (0, σ2
d), the optimal detector is

a (normalized) correlator [22] with a detection statistic TN given by

TN = yT s/
√

σ2
d · ‖s‖2 (4)

where y = [y(1), ..., y(N)]T , s = [s(1), ..., s(N)]T and ‖s‖ is the Euclidean norm of s. Under the i.i.d.

Gaussian assumption for d(l), TN is Gaussian distributed with unit variance and a mean value

E(TN) = b ·
√
‖s‖2

/σ2
d. (5)

If b is equally likely to be “-1” and “+1”, the optimal (Bayesian) detection rule is to compare TN with a

threshold of zero to decide H0 against H1, in which case, the probability of error is Q(E(TN)), where Q(x) is

the probability P (X > x) of a Gaussian random variable X ∼ N (0, 1). The error probability can be reduced

by raising the watermark-to-noise-ratio (WNR) ‖s‖2
/(Nσ2

d), or increasing the length N of the spreading

sequence per bit. The maximum watermark power is generally determined by perceptual models so that

the changes introduced by the watermark are below the just-noticeable-difference (JND) [6]. Assuming that

both {s(l)} and {d(l)} are zero mean, σ2
d is estimated from the power of y(l) and s(l), for example via

σ̂2
d = (‖y‖2 − ‖s‖2)/N .

The i.i.d. Gaussian noise assumption is critical for the optimality of a correlator-type detector, but it

may not reflect the statistical characteristics of the actual noise and interference. For example, the noise

and interference in different frequency bands can differ. In such a scenario, we should first normalize the

observations {y(l)} by the corresponding noise standard deviation to make the noise distribution i.i.d. before

taking the correlation [22,23]. That is,

T ′
N =

N∑
l=1

y(l) · s(l)
σ2

d(l)

/

√√√√ N∑
l=1

s2(l)
σ2

d(l)

(6)

[12, 21]. Their appropriateness for fingerprinting and anti-collusion capabilities are to be investigated and will be addressed in
our future work.

6

and

E(T ′
N) = b

√√√√ N∑
l=1

s2(l)
σ2

d(l)

. (7)

This can be understood as a weighted correlator with more weight given to less noisy components. Simi-

larly, colored Gaussian noise needs to be whitened before correlation [2]. In reality, the interference from

the host signal as well as the noise introduced by many attacks and distortions are often non-Gaussian and

non-stationary. Under these scenarios, an optimal detector can be derived by using a non-Gaussian and/or

non-stationary noise model in the classic detection framework [22, 24]. For example, generalized matched

filters have been proposed as watermark decoders for the generalized Gaussian channel model [25,26]. Chan-

nel estimation has also been used in conjunction with the generalized matched filter against fading and

geometrical distortions with unknown parameters [25].

For concept proving purposes, in this paper we consider the simple noise model of independent Gaussian

noise and use the correlator with normalized noise variance as described in (6). This simplification allows us to

focus on the unique issues of fingerprint encoding and colluder detection for the anti-collusion fingerprinting

problem. From a layered viewpoint on data hiding systems [20], the modules of fingerprint encoding and

colluder detection are built on top of the modules of one-bit watermark embedding and detection. The design

and optimization of the former and latter modules have some degree of independence in system development.

We can replace the simplified model used here with more sophisticated single-watermark detectors considering

more realistic noise such as those in [25, 26] to improve the performance in the watermark detection layer

and in turn enhance the overall performance.

Another model, used often for conveying ownership information [5,6], leads to a similar hypothesis testing

problem described by:{
H0 : y(l) = d(l) (l = 1, ..., N) if watermark is absent
H1 : y(l) = s(l) + d(l) (l = 1, ..., N) if watermark is present (8)

This is often referred as On-Off Keying (OOK). The detection statistic is the same as shown in (4) for

additive white Gaussian noise (AWGN) or (6) for independent Gaussian noise with non-identical variance.

The threshold for distinguishing the two hypotheses is a classic detection problem, for which we can use a

Bayesian rule or a Neyman-Pearson rule [22]. The probability of detection errors can be obtained accordingly.

In the following sections we shall examine collusion for fingerprints constructed using orthogonal modu-

lation as well as using binary code modulation. When two parties with the same image (but fingerprinted

differently) come together, they can compare the difference between the two fingerprinted images. The col-

lusion attack generates a new image from the two fingerprinted images so that the traces of either fingerprint

in the new image is removed or attenuated. For fingerprinting through additive embedding, this can be

7

…
…

…

original
image

x

adding fingerprints

s1

sK

sn

collusion
by averagingy1

yK

yn

1/K
z

y

attacked
image

additional
additive noise

Figure 1: Model for collusion by averaging

done by averaging the two fingerprinted images λ1y1 + λ2y2 where λ1 + λ2 = 1, so that the energy of each

of the fingerprints is reduced by a factor of λi
2. The requirement that λ1 + λ2 = 1 is necessary in order

to retain the pixel magnitudes of the original image. As a result of this weighted average, the detection

statistic with respect to the i-th fingerprint is scaled by a factor of λi. In a K-colluder averaging-collusion

the watermarked content signals yj are combined according to
∑K

j=1 λjyj . Alternatively, the new image can

be formed by taking part of the pixels or transform coefficients from each of the two images Λy1 +(I−Λ)y2

where I is the N × N identity matrix and Λ = diag(λ1, λ2, ..., λN) with λi ∈ {0, 1}. In terms of the effects

on the energy reduction of the original fingerprints and the effect it has upon the detection performance,

this alternating type of collusion is similar to the averaging type of collusion. For this reason, we shall only

consider the averaging type collusion, where λj = 1/K for all j in the remainder of this paper. Further,

additional distortion noise z is added following averaging. We illustrate the model for this type of collusion

in Figure 1. A similar model for collusion was used in [14,16]. We note, however, that there may exist cases

in which the underlying fingerprints will not necessarily have the same energy, or be independent of each

other, and that other choices for λj might be more appropriate. These cases are beyond the scope of the

current paper.

3 Orthogonal Modulation and Anti-Collusion

In this section we will focus on the methods of orthogonal modulation [27] for embedding unique fingerprints

in multiple copies of images. In orthogonal modulation, there are v orthogonal signals sj that are used to

convey B = log2 v bits by inserting one of the v signals into the host signal. These B bits can be used to

identify the n users by identifying a B-bit ID sequence with each user, and therefore we have n = v. The

detector determines the B information bits by performing the correlation of the test signal with each of the

8

v signals, and decides the signal that has the largest correlation above a minimum threshold. Typically, v

correlations are used to determine the embedded signal, and the computational complexity associated with

performing v correlations is considered one of the drawbacks of orthogonal modulation. In Section 3.1, we

present an improved detection strategy that cuts the computational complexity from O(v) to O(log v).

An additional drawback for using orthogonal modulation in data embedding is the large number of

orthogonal signals needed to convey B bits. In many situations, it might not be possible to find 2B orthogonal

signals in the content. In audio applications, it might be desirable to periodically repeat a watermark

embedding in the content in order to fingerprint clips from the audio. In this case the number of orthogonal

basis signals available is limited by the sample rate. For example, if we repeat a watermark every second

in audio with a 44.1kHz sample rate, then we can allow for at most 44, 100 users to purchase the content if

orthogonal modulation is used in fingerprinting. Although other media, such as images and video, might have

more points per embedding period, many of these degrees of freedom will be lost since embedding should

only take place in perceptually significant components [5]. In particular, some content, such as smoothly

textured images and binary images, are known to have a significantly lower embedding rate than what is

suggested by the amount of points in the image. Further, the necessary bookkeeping and storage of the

v = 2B basis vectors, or a set of keys for generating them, is another drawback of orthogonal modulation.

In Section 4, we build watermarks using code modulation that are able to accommodate more users than

orthogonal modulation for the same amount of orthogonal vectors.

We can study the effect of collusion on orthogonal modulation by calculating the distance between the

constellation points and averages of the constellation points. Additionally, since the goal of collusion is to

create a new content whose watermarks have been sufficiently attenuated that they are undetectable, we

would like to calculate the distance between the averages of the constellation points and the origin. In an

additive white Gaussian noise model, the Euclidean distance between the constellation points as well as the

distance between the constellation points and the origin are directly related to the probability of detection

through the argument of a Q function [27]. Smaller distances lead to higher probability of detection error.

Suppose each watermark is embedded using E energy. If we average K watermarks, then the distance

from the colluded mark to any of the watermarks used in forming it is
√E(K − 1)/K. The distance from

the colluded mark to any of the other watermarks not used in the collusion is
√E(K + 1)/K. Further, the

distance of the colluded mark from the origin is
√E/K. Thus, as K increases, the identifying watermarks

in the colluded mark will become harder to detect.

9

3.1 Efficient Detection Strategy for Orthogonally Modulated Fingerprints

The classical method for estimating which signal was embedded in the host signal is done via v correlators, and

determines the B-bit message that identifies which user’s watermark was present. This has been considered

a major drawback of the method of orthogonal modulation [5, 28]. In this section we present an algorithm

that dramatically reduces the computation needed to detect which watermarks are present in a host signal.

Suppose that K colluders are involved in forming a colluded signal yc. We desire to identify the basis

vectors of these K colluders. For a set A = {wj}j∈J where J is an indexing set, we define the sum of A

by SUM(A) =
∑

j∈J wj . We start by considering the case of detecting 1 watermark. Let us denote by

S = {w, · · · ,wv} the set of orthogonal watermark signals, and suppose the test signal is y. Suppose that we

break S into two complementary subsets S0 and S1. If we correlate the test signal y with SUM(S0) then

the correlation will satisfy

〈y,
∑

wj∈S0

wj〉 =
∑
j∈J

〈y,wj〉, (9)

where 〈y,w〉 denotes a correlation statistic, such as is described in (4). If the one watermark we desire to

detect belongs to the set S0 then 〈y, SUM(S0)〉 will experience a large contribution from that one basis vector,

and all the other terms will have small values. If this watermark is not present in S0, then 〈y, SUM(S0)〉
will consist only of small contributions due to noise. Therefore, if we test two sets S0 and S1 such that

S1 = S\S0, then we are likely to get a large value in at least one of the two correlations with the sum of the

basis vectors. We can repeat this idea by further decomposing S0 and/or S1 if they pass a threshold test.

This idea can be extended to detecting the presence of K orthogonal signals. At each stage we test two sets

S0 and S1, and if a set passes a threshold test, then we further decompose it.

We use this idea to develop a recursive detection algorithm for detecting the presence of K orthogonal

signals in a test signal y. In Algorithm 1, we begin by initially splitting the set S into S0 and S1. There are

many possible choices for dividing S into S0 and S1 in such an algorithm. In Algorithm 1 we have chosen S0

such that |S0| = 2�log2 |S|�−1, which is the largest power of 2 less than |S|. Another possible choice would be

to take S0 such that |S0| = �|S|/2�. The algorithm proceeds in a recursive manner, subdividing either S0 or

S1 if a threshold test is passed. As we will shortly discuss, the choice of τ0 and τ1 is dependent on the signal

to noise ratio, the cardinality of either S0 or S1, and the desired probability of detection for that level.

We now make some observations about the performance of this algorithm. First, the algorithm can be

described via a binary tree, where each internal node corresponds to two correlations. Let us assume that

each correlation truthfully reveals whether there is a colluder present or not. We denote by C(n,K) the

number of correlations needed in Algorithm 1 to identify K signals from a set S of n orthogonal signals.

Lemma 1 provides a bound for C(n,K) in the ideal case where each correlation is truthful.

10

Algorithm: EffDet(y, S)
Divide S into two sets S0 and S1, where |S0| = 2�log2 |S|�−1, and S1 = S\S0 ;
Calculate e0 = SUM(S0) and e1 = SUM(S1) ;
Calculate ρ0 = 〈y, e0〉 and ρ1 = 〈y, e1〉 ;
τ0 = DetermineThreshold(|S0|) ;
τ1 = DetermineThreshold(|S1|) ;
if ρ0 > τ0 then

if |S0| = 1 then
output S0 ;

else
EffDet(y, S0) ;

end
end
if ρ1 > τ1 then

if |S1| = 1 then
output S1 ;

else
EffDet(y, S1) ;

end
end
return ;

Algorithm 1: Efficient detection algorithm, EffDet(y, S)

Lemma 1. The number of correlations C(n, K) needed in Algorithm 1 satisfies

C(n,K) ≤ 2
(
−1 + K

(
log2(2

�log2 n�/K) + 1
))

. (10)

This lemma can be shown using standard techniques for tree-based algorithms [29–32]. In particular, the

result of this lemma gives us that if we were trying to detect a single signal, then we need to perform at most

2(�log2 |S|� − 1) correlations as opposed to |S| in a traditional implementation. Also, as K becomes larger,

the improvement in the amount of correlations performed decreases since it becomes necessary to perform

correlations for multiple branches of the tree.

Realistically, however, the correlations performed at each node of the algorithm are not guaranteed to

be truthful. In fact, although we have achieved an improvement in computational efficiency, this comes at

a tradeoff in detector variance. When we calculate the correlation with the sums of basis vectors, we get

many small, noisy contributions from correlating the test signal with signals not present in the test signal,

as in (9).

We now provide analysis for this phenomenon when there is only one colluder, i.e. y(k) = s1(k) + d(k).

For simplicity, let d = N(0, σ2
dI). The sj are known and have power ‖sj‖2 = E . The two possible hypotheses

are {
H0 : y = d
H1 : y = d + s1

(11)

11

We break S into S0 = {s1, s2, · · · , sn/2} and S1 = {sn/2+1, sn/2+2, · · · , sn}. For simplicity of derivation,

we use an unnormalized correlator for the detection statistics ρ0 and ρ1. That is

〈y, s〉 =
N∑

k=1

y(k)s(k). (12)

Under hypothesis H1, the calculation for ρ0 is

ρ0 = 〈s1 + d, s1 + s2 + · · · + sn/2〉 = ‖s1‖2 +
n/2∑
j=1

〈d, sj〉. (13)

Under hypothesis H0, the calculation for ρ0 is

ρ0 = 〈s1 + z, s1 + s2 + · · · + sn/2〉 =
n/2∑
j=1

〈z, sj〉. (14)

Then E(ρ0; H0) = 0, E(ρ0; H1) = E , and V ar(ρ0; H0) = V ar(ρ0;H1) = (n/2)σ2
dE . Thus ρ0 ∼ N(0, nσ2

dE/2)

under H0, and ρ0 ∼ N(E , nσ2
dE/2) under H1. Similar results can be derived for ρ1. The probability of

detection is

PD = Pr(ρ0 > τ ; H1) = Q

(
τ − E√
σ2

dnE/2

)
. (15)

The probability of false alarm is

PFA = Pr(ρ0 > τ ; H0) = Q

(
τ√

σ2
dnE/2

)
. (16)

As we iterate down the tree, the SNR will become better. For example, at the second level of the

algorithm’s tree, the set S0 has n/4 elements, and ρ0 ∼ N(0, nσ2
dE/4) under H0, and ρ0 ∼ N(E , nσ2

dE/4)

under H1. At each level of the algorithm, the decision threshold τ may be determined using either a chosen

value for the probability of detection or probability of false alarm for the one colluder case, i.e. from (15) or

(16). If we choose τ at each level of the tree to keep PD fixed at a sufficiently high value, then the probability

of a false alarm will change at each level of the tree. This means that initially we will let through some false

alarms until we proceed further down the tree, where there are higher effective SNRs.

We now provide a bound for the expected amount of correlations, E[C(n, 1)], needed to identify a single

colluder when n = 2r. We denote the probability of false alarm for a node b by PFA,b, where b corresponds

to the binary representation describing the path from the root to that node.

Lemma 2. When n = 2r and there is only one colluder, which we label as user 1, the expected number of

correlations E[C(n, 1)] needed in Algorithm 1 satisfies

E[C(n, 1)] ≤ 2 + 2(r − 1)PD + 2
r−1∑
k=1

PFA,bk
(2r−k − 1), (17)

where bk is the binary string consisting of k − 1 zeros followed by a single 1.

12

−30 −25 −20 −15 −10 −5 0 5 10
0

50

100

150

200

250
n=128

WNR (dB)

N
um

be
r

of
 C

or
re

la
tio

ns

Upper Bound on E[C(n,1)]
Simple Detection

Figure 2: The bound for the expected amount of correlations needed when there is one colluder, n = 128
users, and PD = 0.99 for each level. As a baseline, we plot the bound for E[C(128, 1)] against the amount
n, which is the amount of computations needed in performing simple detection.

The proof of Lemma 2 is provided in Appendix 1. The bound depends on the choice of PD and the

PFA,bk
values. In Figure 2, we present the bound for the expected amount of correlations needed when there

is one colluder, n = 128 users, and PD = 0.99 for each level. As a baseline, we have plotted the bound for

E[C(128, 1)] against n = 128, which is the amount of computations needed in performing simple detection.

Examining this figure, one observes that at low WNR, which could correspond to a blind detection scenario,

the bound on amount of correlations needed in Algorithm 1 is above the baseline amount of correlations

needed for simply correlating with each of the fingerprint waveforms. This poor performance of the bound

is due to the tradeoff between PD and PFA. Specifically, given PD = 0.99 it is not possible to make the

PFA,bk
small at low WNR. Thus, at low WNR the efficient detection scheme may not be advantageous over a

simple detection scheme. However, at higher WNR, which corresponds to non-blind detection scenarios, the

separation between the detection hypotheses increases, and it does become possible to make PFA,bk
small.

In these cases, the bound guarantees that we will need less correlations than simply correlating with each

waveform to identify a single colluder.

3.2 Experiments on Efficient Detection of Orthogonal Fingerprints

We desired to study the performance of the efficient detection algorithm, and the effect that collusion had

on the detection statistics. In our experiments, we used an additive spread spectrum watermarking scheme

similar to that in [6], where a perceptually weighted watermark was added to DCT coefficients with a block

size of 8 × 8. The detection of the watermark is performed without the knowledge of the host image via

the detection statistics as shown in (6). The 512× 512 Lenna was used as the host image for fingerprinting,

13

� � � � � � � � � 	
 � �
 � �

� �

� ! " # $ % & ' () * + , - . / 0 1 2 3 4 5 6 7 7

8 9 : ; < = > ? @ A B C D E F G H I J K L M N O P Q

R S T U V W
X Y Z [Y

\] ^ _ ` a
b c d e f

� � � � � � � � � 	
 � �
 � �

� � � � � ! " # $ % & ' ()

* + , - . / 0 1 2 3 4 5 5 6 7 8 9 : ; < = > ? @ ? A

B C D E F G H I J K L M M N O P Q R S T U V W X W W

Y Z [\] ^
_ ` a _ b

c d e f g h
i j k l l m n o p q rs t u v w

x y z { | }
~ � � � �

(a) One Colluder (b) Three Colluders

Figure 3: Detection trees for identifying colluders using Algorithm 1. The images for different users are
fingerprinted via orthogonal modulation. The fingerprints of colluders are indicated by shadowed boxes Uj .
The notation “TN |U?” denotes the detection statistics from correlating the test image with the sum of the
fingerprints U?.

and the fingerprinted images had no visible artifacts with an average PSNR of 41.2dB. Figure 3 illustrates

the process of identifying colluders out of 8 users using the efficient detection algorithm (Algorithm 1). The

detection statistics are averaged over 10 different sets of watermarks, and each set has 8 mutually uncorrelated

spread spectrum watermarks for 8 users. These watermarks are generated via a psedudo-random number

generator and used as an approximate orthogonal basis in orthogonal modulation.

Figure 3(a) shows the process of detecting colluders from an image with user 1’s fingerprint embedded.

The notation “TN |U?” denotes the detection statistics when correlating the test image with the sum of the

fingerprints U?. Detection statistics close to zero indicate the unlikely contributions from the corresponding

fingerprints, and the branches of the detection tree below them, indicated by dotted lines, are not explored

further. The number of correlations performed is 6. Figure 3(b) shows the process of detecting colluders

from an image colluded from user 1, user 2, and user 4’s fingerprinted images. The number of correlations

performed is 8.

We see from Figure 3(a) that the detection statistics when correlating with a sum of a larger number

of basis vectors are smaller than that with a smaller amount of basis vectors. This reflects the noisy

contributions from the basis vectors that are present in the sum of basis vectors but are not present in

the test image. We discussed this phenomena earlier in Section 3.1. Since the detection statistics we use

have their variance normalized to 1, the noisy contributions lower the values of detection statistics. We also

observe in Figure 3(b) a decrease in the detection statistics in images colluded by more users.

In addition, we conducted a non-blind detection test with one colluder amongst n = 128 users on the

Lenna image. Our test confirmed the findings of Figure 2. Only 14 correlations were needed, which is a

14

significant reduction over the 128 correlations needed in a simple detection approach.

4 Code Modulation Embedding and Anti-Collusion Codes

In the previous section, we mentioned that a drawback of the usage of orthogonal signaling is the large

amount of basis vectors needed to convey user information. In this section we will present another form

of modulation, known as code modulation, that may be used to convey more fingerprint code bits for a

given amount of basis vectors than orthogonal modulation. Therefore, we are able to accommodate more

users than orthogonal modulation with the same amount of orthogonal signals. We will use this modulation

technique, in conjunction with appropriately designed codewords, known as anti-collusion codes, to construct

a family of watermarks that have the ability to identify members of the colluding set of users.

In code modulation, there are v orthogonal basis signals {uj}, and information is encoded into a water-

mark signal wj via

wj =
v∑

i=1

bijui, (18)

where bij ∈ {0, 1} or bij ∈ {±1}. The first of the two possibilities for choosing the values of bij corresponds

to on-off keying (OOK) while the second choice of {±1} corresponds to an antipodal form [27]. If bij = 0,

this is equivalent to having no contribution in the ui direction. At the detector side, the determination of

each bij is typically done by correlating with the ui, and comparing against a decision threshold.

We assign a different bit sequence {bij} for each user j. We may view the assignment of the bits bij for

different watermarks in a matrix B = (bij), which we call the derived code matrix, where each column of

B contains a derived codevector for a different user. This viewpoint allows us to capture the orthogonal

and code modulation cases for watermarking. For example, the identity matrix describes the orthogonal

signaling case since the jth user is only associated with one signal vector uj . In the following section, we

shall design a code matrix C whose elements are either 0 or 1. By applying a suitable mapping that depends

on whether the OOK or antipodal form of code modulation is used, the code matrix C is used to derive the

matrix B that is used in forming the watermark signals.

In binary code modulation, if we average two watermarks, w1 and w2 corresponding to bit sequences

bi1 and bi2, then when bi1
= bi2 the contributions attenuate or cancel depending on whether the OOK or

antipodal form is used. However, when bi1 = bi2 the contributions do not attenuate. For example, if antipodal

code modulation is used with
√E/v for each component, then the result of averaging two watermark signals

is that many of the components will still have
√E/v amplitude, which is identical to the amplitude prior to

collusion, while other components will have 0 amplitude. When we average K watermarks, those components

in the bit sequences that are all the same will not experience any cancellation, and their amplitude will remain

15

√E/v, while others will experience diminishing (though not necessarily complete cancellation).

4.1 Anti-Collusion Codes

In this section we design a family of codevectors {cj} whose overlap with each other can identify groups

of colluding users. A similar idea was proposed in [33], where projective geometry was used to construct

such code sequences. As we will explain in this section, our proposed code construction makes more efficient

usage of the basis vectors than the codes described in [33].

For this section, we describe codes using the binary symbols {0, 1}. These codevectors are mapped to

derived codevectors by a suitable mapping depending on whether the OOK or antipodal form of binary code

modulation is used for watermarking. For example, when used in the antipodal form, the binary symbols

{0, 1} are mapped to {−1, 1} via f(x) = 2x − 1.

We assume, when a sequence of watermarks is averaged and detection is performed, that the detected

binary sequence is the logical AND of the codevectors cj used in constructing the watermarks. For example,

when the watermarks corresponding to the codevectors (1110) and (1101) are averaged, we assume the output

of the detector is (1100). When we perform 2 or more averages, this assumption might not necessarily hold

since the average of many 1’s and a few 0’s may produce a decision statistic large enough to pass through

the detector as a 1. We discuss the behavior of the detector in these situations further in Section 4.2, and

detail approaches to improve the validity of the AND assumption.

We want to design codes such that when K or fewer users collude, we can identify the colluders. To

accommodate a given number of users and trace a given number of colluders, we prefer shorter codes since,

for embedded fingerprints, longer codes would require constructing and bookkeeping more basis vectors, and

would have to distribute the fingerprint energy over more basis vectors. In order to identify colluders, we

require that there are no repetitions in the different combinations of K or fewer codevectors. We will call

codes that satisfy this property anti-collusion codes. In the definition that follows, we provide a generic

definition in terms of semigroups [34], and then specify the relevant case that we use in this paper.

Definition 1. Let G be a semigroup with a binary operation �. A code C = {c1, · · · , cn} of vectors belonging

to Gv is called a K-resilient (G, �) anti-collusion code, or a (G, �) ACC when any subset of K or fewer

codevectors combined element-wise under � is distinct from the element-wise � of any other subset of K or

fewer codevectors. When G = {0, 1} and � is the logical AND, a K-resilient (G, �) ACC is simply called a

K-resilient AND-ACC.

We first present a n-resilient AND-ACC. Let C consist of all n-bit binary vectors that have only a single 0

bit. For example, when n = 4, C = {1110, 1101, 1011, 0111}. It is easy to see when K ≤ n of these vectors are

16

combined under AND, that this combination is unique. This code has cardinality n, and hence can produce

at most n differently watermarked media. We refer to this code as the trivial AND-ACC for n users.

It is desirable to shorten the codelength to squeeze more users into fewer bits since this would require

the use and maintenance of fewer orthogonal basis vectors. To do this, we need to give up some resiliency.

We now present a construction of a K-resilient AND-ACC that requires O(K
√

n) basis vectors for n users.

This construction uses balanced incomplete block designs [35]:

Definition 2. A (v, k, λ) balanced incomplete block design (BIBD) is a pair (X ,A), where A is a collection

of k-element subsets (blocks) of a v-element set X , such that each pair of elements of X occur together in

exactly λ blocks.

The theory of block designs is a field of mathematics that has found application in the construction

of error correcting codes and the design of statistical experiments. A (v, k, λ)-BIBD has a total of n =

λ(v2 − v)/(k2 − k) blocks. Corresponding to a block design is the v ×n incidence matrix M = (mij) defined

by

mij =
{

1 if the ith element belongs to the jth block,
0 otherwise.

If we define the codematrix C as the bit-complement of M, and assign the codevectors cj as the columns of

C, then we have a (k−1)-resilient AND-ACC. Our codevectors are therefore v-dimensional, and we are able

to accommodate n = λ(v2 − v)/(k2 − k) users with these v basis vectors. Assuming that a BIBD exists, for

n users we therefore need v = O(
√

n) basis vectors.

Theorem 1. Let (X ,A) be a (v, k, 1)-BIBD, and M the corresponding incidence matrix. If the codevectors

are assigned as the bit complement of the columns of M, then the resulting scheme is a (k − 1)-resilient

AND-ACC.

The proof is provided in Appendix 2. We now present an example. The following is the bit-complement

of the incidence matrix for a (7, 3, 1)-BIBD:

C =




0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1
0 1 1 1 1 0 0
1 1 0 0 1 1 0
1 0 1 1 0 1 0
1 1 0 1 0 0 1




. (19)

This code requires 7 bits for 7 users and provides 2-resiliency since any two column vectors share a unique pair

of 1 bits. Each column vector c of C is mapped to {±1} by f(x) = 2x− 1. The code modulated watermark

is then w =
∑v

i=1 f(c(i))ui. When two watermarks are averaged, the locations where the corresponding

17

AND-ACC agree and have a value of 1 identify the colluding users. For example, let

w1 = −u1 − u2 + u3 − u4 + u5 + u6 + u7 (20)

w2 = −u1 + u2 − u3 + u4 + u5 − u6 + u7 (21)

be the watermarks for the first two columns of the above (7, 3, 1) code, then (w1 + w2)/2 has coefficient

vector (−1, 0, 0, 0, 1, 0, 1). The fact that a 1 occurs in the 5th and 7th location uniquely identifies user 1 and

user 2 as the colluders.

The (7, 3, 1) example that we presented had no improvement in bit efficiency over the trivial AND-ACC

for 7 users, and it had less collusion resilience. A useful metric for evaluating the efficiency of an AND-

ACC for a given collusion resistance is β = n/v, which describes the average amount of users that can be

accommodated per basis vector. AND-ACCs with a higher β are better. For codes (v, k, λ)-BIBD AND-

ACC, their efficiency is β = λ(v − 1)/(k2 − k). Therefore, the efficiency of an AND-ACC built from BIBDs

improves as the codelength v becomes larger. By Fisher’s Inequality [35], we also know that n ≥ v for

a (v, k, λ)-BIBD, and thus β ≥ 1 using the BIBD construction. In contrast, the K-resilient construction

in [33] has efficiency much less than 1, and thus requires more spreading sequences (or marking locations)

to accommodate the same amount of users as our scheme. It is possible to use the collusion-secure code

constructions of [4] in conjunction with code modulation for embedding. However, the construction described

in [4] is limited to collusion resistance of K ≤ log n, and is designed to trace one colluder among K colluders.

Their construction has codelength O(log4 n log2(1/ε)), where ε < 1/n is the decision error probability. This

codelength is considerably large for small error probabilities and practical n values. For example, when

n = 210, the codelength of [4] is on the order of 106, while the codelength for our proposed AND-ACC is

on the order of 102. Additionally, for the same amount of users, the use of code modulation watermarking

with an AND-ACC constructed using a (v, k, 1)-BIBD requires less spreading sequences than orthogonal

modulation. A code modulation scheme would need v orthogonal sequences for n = (v2 − v)/(k2 − k) users,

while orthogonal signaling would require n sequences.

There are systematic methods for constructing infinite families of BIBDs. For example, (v, 3, 1) systems

(also known as Steiner triple systems) are known to exist if and only if v ≡ 1 or 3 (mod 6); the Bose

construction builds Steiner triple systems when v ≡ 3 (mod 6), and the Skolem construction builds Steiner

triple systems when v ≡ 1 (mod 6) [36]. Another approach to constructing BIBDs is to use d-dimensional

projective and affine geometry over Zp, where p is of prime power. Projective and affine geometries yield

((pd+1−1)/(p−1), p+1, 1) and (pd, p, 1) BIBDs [35,37]. Techniques for constructing these and other BIBDs

can be found in [38]. Other combinatorial objects, such as packing designs and pairwise balanced designs,

have very similar properties to BIBD, and may be used to construct AND-ACC where the codevectors do

18

not all have the same weight. The construction and use of AND-ACC built from other combinatorial objects

is beyond the scope of this paper.

4.2 Detection Strategies

In this section, we discuss the problem of detecting the colluders when our AND-ACCs are used with code

modulation. We present several detection algorithms that can be used to identify possible colluders. This

section serves as a basis for demonstrating the performance of our ACC. Our goal here is to find efficient

detection structures by taking advantages of the special characteristics of our ACC.

We assume that the total distortion d is an N -dimensional vector following an i.i.d. Gaussian distribution

with zero-mean and variance σ2
d. Under the colluder-absent hypothesis H0, the observed content y is the

distortion signal d = x + z. Under the colluder-present hypothesis H1, K colluders come together and

perform an averaging attack that produces a colluded version of the content y. Presented in a hypotheses-

testing framework, we have

H0 : y = d (22)

H1 : y =
1
K

∑
j∈Sc

yj + z =
1
K

∑
j∈Sc

sj + d

where K is the number of colluders, and Sc indicates a subset with size K. The marked content yj for each

user j is given as

yj = x + sj = x + α

v∑
i=1

bijui (23)

where α is used to control the strength of the fingerprint. Clearly the precise probability law under H1

depends on fingerprint signals of the colluders and, since the collusion behavior represented by K and Sc is

unknown, the hypotheses to be tested are composite. Due to the discrete nature of our model, the optimal

maximum likelihood (ML) approach usually involves the enumeration of all possible parameter values, and

hence the computational cost can be prohibitively high.

Due to the orthogonality of the basis {ui}, for the purpose of detecting colluders, it suffices to consider

the correlator vector TN , with ith component expressed by

TN (i) = yT ui/
√

σ2
d· ‖ ui ‖2 (24)

for i = 1, ..., v. It is straightforward to show that

TN =
α1

K
BΦ + n (25)

where the column vector Φ ∈ {0, 1}n, indicates colluders via the location of components whose value are 1;

α1 = α
√‖ u ‖2 /σ2

d is assumed known, with ‖ui‖ = ‖u‖ for all i; and n = [u1, ...,uv]T d/
√

σ2
d· ‖ u ‖2 follows

19

Algorithm: SuspectAlg(Γ)
Φ = 1;
Define J to be the set of indices where Γi = 1 ;
for t = 1 to |J | do

j = J(t) ;
Define ej to be the jth row of C;
Φ = Φ · ej ;

end
return Φ ;

Algorithm 2: Algorithm SuspectAlg(Γ), which determines the vector Φ that describes the suspect set.

a N(0, Iv) distribution. Here B is the derived code matrix and K the number of 1’s in Φ. Thus, the model

(22) can be equivalently presented as

H0 : f(TN) = N(0, Iv) (26)

H1 : f(TN |Φ) = N(
α1

K
BΦ, Iv)

with reference to (22) and (25).

Our goal in this section is to efficiently estimate Φ. However, before we examine the candidate detectors,

we discuss the choice of using either the OOK or antipodal form of code modulation. Suppose that a

codevector cj has weight ω = wt(cj). In the OOK case the remaining v − ω positions would be zeros, while

in the antipodal case the remaining v − ω positions would be mapped to −1. If we allocate E energy to this

codevector, then the OOK case would use E/ω energy to represent each 1, while the antipodal case would

use E/v energy to represent each ±1. The amplitude separation between the constellation points for the 0

and 1 in OOK is
√E/ω, while the separation between −1 and 1 in antipodal is 2

√E/v. Therefore, since it is

desirable to have the separation between the constellation points as large as possible, we should choose OOK

only when ω < v/4. In the AND-ACCs presented in Section 4.1, the weight of each codevector is ω = v − k.

OOK is advantageous when k > (3/4)v, and antipodal modulation is preferable otherwise. Typically, in

BIBDs with λ = 1 the block size k is much smaller than v [38] and therefore the antipodal form of code

modulation is preferred.

4.2.1 Hard Detection

We first introduce a simple detection scheme based upon hard thresholding. Upon applying hard thresholding

to the detection statistics TN (i), we obtain a vector Γ = (Γ1, Γ2, · · · , Γv), where Γi = 1 if TN (i) > τ and

Γi = 0 otherwise. Given the vector Γ, we must determine who the colluders are.

Algorithm 2 starts with the entire group as the suspicious set, and uses the components of Γ that are

equal to 1 to further narrow the suspicious set. We determine a vector Φ = (Φ1,Φ2, · · · , Φn)T ∈ {0, 1}n that

20

Algorithm: AdSortAlg(TN)
Sort elements of TN in descending order and record corresponding index vector as J ;
Set Φ = 1; Set i = 0 and calculate the likelihood LL(i) = f(TN |Φ) according to (26) ;
Flag = True ;
while Flag & i < v do

Set i = i + 1 ;
j = J(i) and Γ(j) = 1 ;
Define ej to be the j-th row of C ;
Φup = Φ · ej ;
LL(i) = f(TN |Φup) ;
if LL(i) > LL(i − 1) then

Φ = Φup ;
else

Flag = False ;
end

end
return Φ ;

Algorithm 3: Algorithm AdSortAlg(Γ), which uses an adaptive sorting approach to determine the
vector Φ that describes the suspect set.

describes the suspicious set via the location of components of Γ whose value are 1. Thus, if Φj = 1, then the

jth user is suspected of colluding. In the algorithm, we denote the jth row vector of C by ej , and use the

fact that the element-wise multiplication “·” of the binary vectors corresponds to the logical AND operation.

We start with Γ and Φ = 1, where 1 is the n dimensional vector consisting of all ones. The algorithm then

uses the indices where Γ is equal to 1, and updates Φ by performing the AND of Φ with the rows of the

code matrix C corresponding to indices where Γ is 1.

4.2.2 Adaptive Sorting Approach

One drawback of the hard detection approach above is that the threshold τ is fixed at the beginning.

This choice of τ is applied to every detection scenario, regardless of the observations. To overcome this

disadvantage, it is desirable to avoid the hard-thresholding process. Consequently, in Algorithm 3, we

present a soft-thresholding detection scheme where Φ is updated iteratively via the likelihood of TN . We

start with the highest detection statistic TN (j) to narrow down the suspicious set. At each iteration, we

check whether the next largest statistic TN (j) increases the likelihood. If the likelihood increases, then we

use this to further trim the suspicious set. The iteration stops when the likelihood decreases.

4.2.3 Sequential Algorithm

The approaches in both Section 4.2.1 and Section 4.2.2 share the same idea that the colluders can be uniquely

identified by utilizing the locations of 1s in Γ due to the structural features of our AND-ACC. These two

21

Algorithm: SeqAlg(TN)
Set K = 0;
Calculate the likelihood LL(0) = f(TN |Φ = 0) ;
Set J = ∅ and Flag = True ;
while Flag do

Let K = K + 1 ;
Estimate iK , assuming that (K − 1) users have indices ij = J(j), for j = 1, ..., (K − 1) via

iK = arg max
iK

{f(TN |J = {i1, · · · , iK})};

J = {i1, ..., iK} and Φup(J) = 1 ;
Calculate LL(K) = f(TN |Φup) ;
if LL(K) > LL(K − 1) then

Φ = Φup ;
else

Flag = False ;
end

end
return Φ ;

Algorithm 4: Algorithm SeqAlg(TN), which uses the sequential detection approach to determine the
vector Φ that describes the suspect set.

procedures are simple, and easy to implement. One key disadvantage of these schemes is that, in practice,

the noise causes the thresholding decision to have errors, which in turn results in incorrect indications of

colluders. Therefore, it is desirable to estimate Φ directly from the pdf behavior of TN , as suggested by

model (26).

Thus, we introduce Algorithm 4, which we refer to as the sequential algorithm, for estimating Φ from the

pdf of TN . This algorithm is similar to the adaptive sorting scheme in its sequential nature. The difference

is that Algorithm 4 directly estimates the colluder set, while the adaptive sorting algorithm first estimates

the code bits before deciding the colluder set.

4.2.4 Alternate Maximization (AM) Approach

We observe that, since a binary variable is assigned to each user that indicates his/her presence or absence in

the coalition, the collusion problem (25) is related to the estimation of superimposed signals [39]. Different

algorithms have been proposed for the estimation of superimposed signals: exhaustive-search ML methods

have high accuracy but are computationally expensive, while a number of other approaches have been

proposed to reduce the load. Particularly, the Alternating Maximization (AM) method [40,41] gives a good

tradeoff between accuracy and computational complexity. The AM algorithm approaches an M -dimensional

estimation problem by solving M one-dimensional problems iteratively. We apply the AM idea in our

situation in Algorithm 5. In this algorithm, we start with an initial estimate of K = 1 for the number of

22

Algorithm: AMAlg(TN)
Set K = 0;
Calculate the likelihood LL(0) = f(TN |Φ = 0) ;
Set J = ∅ and Flag1 = True ;
while Flag1 do

Let K = K + 1 ;
Set t = 0, estimate i

(0)
K , the index of the K-th user, via the ML criteria, assuming that (K − 1)

users have indices i
(0)
j = J(j), for j = 1, ..., (K − 1) ;

Flag2 = True ;
while Flag2 do

t = t + 1 ;
for j = 1, ..., K do

i
(t)
j = arg maxij

{f(TN |J = {i(t)1 , · · · , i(t)j−1, ij , i
(t−1)
j+1 , · · · , i(t−1)

K })} ;

end
Sort i

(t)
j ;

if ∀j i
(t)
j = i

(t−1)
j then

Flag2= False ;
end
J = {i(t)1 , ..., i

(t)
K } and Φup(J) = 1 ;

Calculate LL(K) = f(TN |Φup) ;
end
if LL(K) > LL(K − 1) then

Φ = Φup ;
else

Flag1 = False ;
end

end
return Φ ;

Algorithm 5: Algorithm AMAlg(TN), which uses the alternate maximization approach to determine
the vector Φ that describes the suspect set.

colluders. For each K we apply the AM idea to estimate the index of K colluders. We increase K by one

and continue this process until the likelihood decreases.

The AM algorithm converges to one of many local maxima, which, depending on the initial condition,

may or may not be the global one. Therefore the initialization is a critical element in this algorithm. Based on

our simulations, the initialization used in this Algorithm 5 leads to good performance and fast convergence.

We evaluate the performance of the detection schemes in Section 4.3.

4.3 ACC Simulations with Gaussian Signals

In this section we study the behavior of our AND-ACC when used with code modulation in an abstract

model. The distortion signal d and the orthogonal basis signals ui are assumed to be independent and each

of them is a N = 10000 point vector of i.i.d. Gaussian samples. The factor α is applied equally to all

23

components and is used to control the WNR, where WNR = 10 log10 ‖s‖2/‖d‖2dB. We use these simulations

to verify some basic issues associated with collusion and code modulation.

In the simulations that follow, we used a (16, 4, 1)-BIBD to construct our AND-ACC code. The (v, 4, 1)

codes exist if and only if v ≡ 1 or 4 (mod 12). By complementing the incidence matrix, we get the following

code matrix

C =




0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1
1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1
1 0 1 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1
1 0 1 1 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0
1 1 0 1 1 0 1 1 1 1 0 1 1 1 1 1 0 1 1 0
1 1 0 1 1 1 1 0 1 1 1 1 0 1 0 1 1 0 1 1
1 1 0 1 1 1 1 1 0 1 1 0 1 0 1 1 1 1 0 1
1 1 1 0 1 0 1 1 1 1 1 1 0 1 1 0 1 1 0 1
1 1 1 0 1 1 0 1 1 1 1 0 1 1 1 1 0 0 1 1
1 1 1 0 1 1 1 1 0 0 1 1 1 1 0 1 1 1 1 0
1 1 1 1 0 1 0 1 1 1 1 1 0 0 1 1 1 1 1 0
1 1 1 1 0 1 1 0 1 0 1 1 1 1 1 1 0 1 0 1
1 1 1 1 0 1 1 1 0 1 0 1 1 1 1 0 1 0 1 1




. (27)

With this code, we use 16 orthogonal basis vectors to handle 20 users, and can uniquely identify up to K = 3

colluders. The fingerprints for each user were assigned according to the antipodal form of code modulation,

using the columns of C as the codevectors.

We first wanted to study the behavior of the detector and the legitimacy of the AND logic for the detector

under the collusion scenario. We randomly selected 3 users as colluders and averaged their marked content

signals to produce y. The colluded content signal was used in calculating TN , as described in (24).

For three colluders using antipodal modulation, there are four possible cases for the average of their bits,

namely −1,−1/3, 1/3, and 1. We refer to the cases −1,−1/3 and 1/3 as the non-1 hypothesis. We examined

the tradeoff between the probability p(1|1) of correctly detecting a 1 when a 1 was expected from the AND

logic, and the probability of p(1|non-1), where the detector decides a 1 when the correct hypothesis was a

non-1. We calculated p(1|1) and p(1|non-1) as a function of WNR when using hard detection with different

thresholds. The thresholds used were τ1 = 0.9E(TN) , τ2 = 0.7E(TN), and τ3 = 0.5E(TN). In order to

calculate E(TN), we used (5) and assumed that the detector knows the WNR and hence the power of the

distortion. The plot of p(1|1) for different thresholds is presented in Figure 4(a), and the plot of p(1|non-1)

is presented in Figure 4(b). We observe that for the smaller threshold of 0.5E(TN) the probability p(1|1) is

higher, but at an expense of a higher probability of false classification p(1|non-1). Increasing the threshold

allows us to decrease the probability of falsely classifying a bit as a 1, but at an expense of also decreasing

the probability of correctly classifying a bit as a 1.

24

−25 −20 −15 −10 −5 0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

WNR

P
ro

b(
1

| 1
)

Probability(1|1)

τ
1
 = 0.9E(T

N
)

τ
2
 = 0.7E(T

N
)

τ
3
 = 0.5E(T

N
)

−25 −20 −15 −10 −5 0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

WNR

P
ro

b(
1

| n
on

−
1

)

Probability(1 | non−1)

τ
1
 = 0.9E(T

N
)

τ
2
 = 0.7E(T

N
)

τ
3
 = 0.5E(T

N
)

(a) (b)

Figure 4: (a) The probability of detection p(1|1) and (b) the probability of false alarm p(1|non-1) for different
WNR and different thresholds using hard detection.

We next examined the performance of the different detection strategies for identifying the colluders. The

following six measures present different, yet related aspects of the performance for capturing colluders:

(a) the fraction of colluders that are successfully captured;

(b) the fraction of innocent users that are falsely placed under suspicion;

(c) the probability of missing a specific user when that user is guilty;

(d) the probability of falsely accusing a specific user when that user is innocent;

(e) the probability of not capturing any colluders;

(f) and the probability that we falsely accuse at least one user.

We calculated these six different performance measures for each of the detection strategies described in

Section 4.2 and present the results in Figure 5. For each WNR we averaged over 2000 experiments. Since

the AM algorithm had almost identical performance to the sequential algorithm, we only report the results

of the sequential algorithm.

We observe in Figure 5 (a) and Figure 5 (b) that for all WNRs, the use of a higher threshold in the hard

detection scheme is able to capture more of the colluders, but also places more innocent users falsely under

suspicion. As WNR increases, the hard detector has lower p(1|non-1), and therefore does not incorrectly

eliminate colluders from suspicion. Similarly, at higher WNR, the hard detector has a higher p(1|1), thereby

correctly identifying more 1’s, which allows for us to eliminate more innocents from suspicion. Therefore,

at higher WNR we can capture more colluders as well as place less innocent users under suspicion. We

25

User 1: −1 −1 −1 −1 1 1 1 1 1 1 1 1 1 1 1 1
User 4: −1 1 1 1 1 1 1 1 1 1 −1 −1 −1 1 1 1
User 8: 1 −1 1 1 1 1 −1 1 −1 1 1 1 1 1 −1 1
User(1,4) Average: −1 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1
User(1,4,8) Average: − 1

3 − 1
3

1
3

1
3 1 1 1

3 1 1
3 1 1

3
1
3

1
3 1 1

3 1
After thresholding: 0 0 0 0 1 1 0 1 0 1 0 0 0 1 0 1

Table 1: The derived codevectors from a (16, 4, 1) AND-ACC for user 1, user 4, and user 8. Also presented
are the vectors from a two colluder scenario, and a three colluder scenario. The bottom row corresponds to
the desired output of the detector using the AND logic for the three colluder case.

note, however, that in Figure 5(b), at low WNR between −25dB and −15dB, the fraction of innocents

under suspicion using threshold τ = 0.9E(TN) is lower than at slightly higher WNR. This behavior can

be explained by examining Figure 4(a) and Figure 4(b). We observe that at low WNR, the p(1|non-1) is

higher than slightly higher WNR, particularly for the threshold τ = 0.9E(TN). However, for this threshold

the p(1|1) at these WNR is relatively flat. These two observations combined indicate that at lower WNR

we falsely decide 1 more often than at slightly higher WNR, while we do not experience much difference in

the amount of correctly identified 1’s. As more 1’s pass through the detector we remove more users from

suspicion. Therefore, since the amount of correctly detected 1’s increases slowly for WNRs between −25dB

and −15dB, the additional 1’s from false detections at lower WNR eliminates more innocent users (as well

as colluders) from suspicion.

Compared to the hard detection scheme with τ = 0.9E(TN), the adaptive sorting scheme captures a

larger fraction of the colluders at all WNR, while for a large range of WNRs between −20dB and −3dB,

the adaptive sorting scheme places fewer innocents under suspicion. However, examining the curves for the

sequential algorithm, we find that we are able to capture more colluders than any other detection schemes

at all WNRs. Further, the amount of innocents placed under suspicion is less than the adaptive sorting

algorithm.

Consistent behavior is observed for the different detection schemes under the other performance measures,

as depicted in Figures 5 (c)-(f). Overall, the sequential detection scheme provides the most promising balance

between capturing colluders and placing innocents under suspicion.

4.4 ACC Experiments with Images

In order to demonstrate the performance of our AND-ACC with code modulation fingerprinting on real

images for fingerprinting users and detecting colluders, we used an additive spread spectrum watermarking

scheme similar to that in [6], where the perceptually weighted watermark was added to 8 × 8 block DCT

coefficients. The detection of the watermark is a blind detection scenario performed without the knowledge

of the host image via the detection statistics as shown in (6). We used the same code matrix, detailed in

26

(27), for the AND-ACC as in the simulations for Gaussian signals. The 512×512 Lenna and Baboon images

were used as the host signals for the fingerprints. The fingerprinted images have no visible artifacts with

an average PSNR of 41.2dB for Lenna, and 33.2dB for Baboon. Figure 6 shows the original images, the

fingerprinted images, and the difference with respect to the originals.

The three derived code vectors that were assigned to user 1, 4, and 8 via antipodal mapping as well

as the colluded versions are presented in Table 1. Two collusion examples are illustrated in Figure 7 and

the detection statistics of the two examples are shown in Figure 8. In one example we averaged the Lenna

images fingerprinted with user 1 and 4’s codes, and the other is for averaging user 1, 4, and 8’s. The

colluded images are further compressed using JPEG with quality factor (QF) 50%. Also shown in Figure 8

are the thresholds determined from the estimated mean of the detection statistics E(TN). We then estimate

the fingerprint codes by thresholding the detection statistics using a hard threshold of τ . The estimated

fingerprint codes are identical to the expected ones shown in Table 1. We can see in Figure 8 and Figure

9 that non-blind detection increases the separation between the values of the detection statistics that are

mapped to {−1, 0, +1}.
We present histograms of the TN statistics from several collusion cases with different distortions applied to

the colluded Lenna images in Figure 9. For each collusion and/or distortion scenario, we used 10 independent

sets of basis vectors to generate the fingerprints. Each set consists of 16 basis vectors for representing 16

ACC code bits. Figure 9 shows the histograms of the blind and non-blind detection scenarios, as well as

the single user, two colluders and three colluders cases. We see that there is a clear distinction between

the three decision regions. This implies that the average magnitude of TN , when the bit values agree, is

much larger than the average magnitude for where the bit values disagree, therefore facilitating the accurate

determination of the AND-ACC codes from colluded images. The statistics TN can be used with hard

detection to determine the colluders, as depicted in Figure 8. Similarly, we can use TN with other detectors,

whose performance was presented in Section 4.3.

We studied the effect of averaging collusion in the presence of no distortion, JPEG compression, and

low pass filtering. We present an aggregated histogram in Figure 10 to show the separation of the one and

non-one decision regions. The histogram depicts the blind detection statistics from a total of 8 collusion

scenarios ranging from 1 to 3 colluders, and 4 distortion settings including no distortion, JPEG compression

with quality factor of 50% and 90%, and low pass filtering.

27

5 Conclusion

In this paper, we investigated the problem of fingerprinting multimedia content that can resist collusion

attacks and trace colluders. We studied linear collusion attacks for additive embedding of fingerprints.

We first studied the effect of collusion upon orthogonal embedding. The traditional detection schemes

for orthogonal modulation in embedding applications require an amount of correlations that is linear in

the amount of orthogonal basis signals. To address this deficiency, we presented a tree-based detection

algorithm that reduces the amount of correlations from linear to logarithmic complexity, and is able to

efficiently identify K colluders.

A further drawback of orthogonal modulation for embedding is that it requires as many orthogonal signals

as users. We developed a fingerprinting scheme based upon code modulation that does not require as many

basis signals as orthogonal modulation in order to accommodate n users. We proposed anti-collusion codes

(ACC) that are used in conjunction with modulation to fingerprint multimedia sources. Our anti-collusion

codes have the property that the composition of any subset of K or fewer codevectors is unique, which allows

for the identification of subgroups of K or fewer colluders. We constructed binary-valued ACC under the

logical AND operation using combinatorial designs. Our construction is suitable for both the on-off keying

and antipodal form of binary code modulation. Further, our codes are efficient in that, for a given amount

of colluders, they require only O(
√

n) orthogonal signals to accommodate n users. For practical values of n

this is an improvement over prior work on fingerprinting generic digital data.

We introduced four different detection strategies that can be used with our ACC for identifying a suspect

set of colluders. We performed experiments to evaluate the proposed ACC-based fingerprints. We first used

a Gaussian signal model to examine the ability of the ACC to identify the colluders, as well as reveal the

amount of innocent users that would be falsely placed under suspicion. We observed a close connection

between the ability to capture colluders and the side-effect of placing innocent users under suspicion. From

our simulations, we observed that the proposed sequential detection scheme provides the most promising

balance between capturing colluders and placing innocents under suspicion out of the four detection strategies

examined. We also evaluated our fingerprints on real images, and observed that in both the blind and non-

blind detection cases, the values of the detection statistics were well-separated. This behavior allows the

detector to accurately determine the colluder set by estimating a fingerprint codevector that corresponds to

the colluder set.

28

Appendix 1

We now prove the bound presented in Lemma 2 of Section 3.1. This bound is for the expected number of

correlations performed by Algorithm 1. Suppose, without loss of generality, that the single colluder we wish

to detect is user 1. We may place the n = 2r users at the terminal nodes of an r-level binary tree, with user

1 on the left-most branch. This binary tree represents the underlying recursive nature of the algorithm. At

the initial calling of Algorithm 1, two correlations are performed to calculate ρ0 and ρ1. We expand the left

side of the tree when the statistic ρ0 is greater than the threshold. This occurs with probability PD, and

incurs 2PD correlations to the total. On the other hand, the right hand side of the tree will be expanded

with probability PFA,1, where PFA,b represents the probability of false alarm for a node and the binary

representation describing the path from the root to this node is b. In the worst-case, the right hand side of

the tree will require 2(2r−1 − 1) correlations. Therefore, the expected amount of computations needed by

the right hand side of the tree is bounded above by 2PFA,1(2r−1 − 1). We may continue to expand the left

branch of the tree, at each level performing an additional 2PD correlations due to the left child, while adding

at most 2PFA,bk
(2r−k − 1) correlations for the right child at level k, where bk is the binary string consisting

of k − 1 zeros followed by a single 1 and k = 1, 2, ..., r − 1. Collecting terms, we get

E[C(n, 1)] ≤ 2 + 2PD + 2PFA,1(2r−1 − 1) + 2PD + 2PFA,01(2r−2 − 1) + · · · + 2PD + 2PFA,00···01(28)

= 2 + 2(r − 1)PD + 2
r−1∑
k=1

PFA,bk
(2r−k − 1). (29)

Appendix 2

We prove Theorem 1 presented in Section 4.1 by working with the blocks Aj of the BIBD. The bitwise

complementation of the column vectors corresponds to complementation of the sets {Aj}. We would like

for ∩j∈JAC
j to be distinct over all sets J with cardinality less than or equal to k − 1. By De Morgan’s

Law, this corresponds to uniqueness of ∪j∈JAj for all sets J with cardinality less than or equal to k − 1.

Suppose we have a set of k − 1 blocks A1, A2, · · · , Ak−1, we must show that there does not exist another

set of blocks whose union produces the same set. There are two cases to consider. First, assume there is

another set of blocks {Ai}i∈I with ∪j∈JAj = ∪i∈IAi such that I ∩ J = ∅ and |I| ≤ k − 1. Suppose we take

a block Ai0 for i0 ∈ I. Then Ai0 must share at most one element with each Aj , otherwise it would violate

the λ = 1 assumption of the BIBD. Therefore, the cardinality of Ai is at most k − 1, which contradicts the

requirement that each block have k elements. Thus, there does not exist another set of blocks {Ai}i∈I with

∪j∈JAj = ∪i∈IAi and I ∩J = ∅. Next, consider I ∩J
= ∅. If we choose i0 ∈ I\(I ∩J) and look at Ai0 , then

29

again we have that Ai0 can share at most 1 element with each Aj for j ∈ J , and thus Ai0 would have fewer

than k elements, contradicting the fact that Ai0 belongs to a (v, k, 1)-BIBD. Thus, ∪j∈JAj is unique.

References

[1] N. Heintze, “Scalable document fingerprinting,” in 1996 USENIX Workshop on Electronic Commerce,

November 1996.

[2] I. Cox, J. Bloom, and M. Miller, Digital Watermarking: Principles & Practice, Morgan Kaufmann,

2001.

[3] B. Chor, A. Fiat, M. Naor, and B. Pinkas, “Tracing traitors,” IEEE Tran. on Information Theory, vol.

46, pp. 893–910, May 2000.

[4] D. Boneh and J. Shaw, “Collusion-secure fingerprinting for digital data,” IEEE Tran. on Information

Theory, vol. 44, pp. 1897–1905, September 1998.

[5] I. Cox, J. Kilian, F. Leighton, and T. Shamoon, “Secure spread spectrum watermarking for multimedia,”

IEEE Tran. on Image Proc., vol. 6(12), pp. 1673–1687, December 1997.

[6] C. Podilchuk and W. Zeng, “Image adaptive watermarking using visual models,” IEEE Journal on

Selected Areas in Communications, vol. 16(4), pp. 525–540, May 1998.

[7] R. B. Wolfgang, C. I. Podilchuk, and E. J. Delp, “Perceptual watermarks for digital images and video,”

Proceedings of the IEEE, vol. 87, pp. 1108–1126, July 1999.

[8] F. A. P. Petitcolas, R. J. Anderson, and M. G. Kuhn, “Information hiding - a survey,” Proceedings of

the IEEE, vol. 87, pp. 1062–1078, July 1999.

[9] M.D. Swanson, M. Kobayashi, and A. H. Tewfik, “Multimedia data-embedding and watermarking

technologies,” Proceedings of the IEEE, vol. 87, pp. 1064–1087, June 1998.

[10] F. Hartung and M. Kutter, “Multimedia watermarking techniques,” Proceedings of the IEEE, vol. 87,

pp. 1079–1107, July 1999.

[11] H. S. Stone, “Analysis of attacks on image watermarks with randomized coefficients,” Tech. Rep.

96-045, NEC Research Institute, 1996.

[12] B. Chen and G.W. Wornell, “Quantization index modulation: A class of provably good methods for

digital watermarking and information embedding,” IEEE Trans. on Info. Theory, vol. 47, pp. 1423–1443,

May 2001.

30

[13] P. Moulin and J.A. O’Sullivan:, “Information-theoretic analysis of information hiding,” preprint, Sept.

1999, revised Dec. 2001. Available at http:// www.ifp.uiuc.edu/∼moulin/paper.html.

[14] F. Ergun, J. Kilian, and R. Kumar, “A note on the limits of collusion-resistant watermarks,” in

Eurocrypt ’99, 1999, pp. 140–149.

[15] J. Kilian, T. Leighton, L. R. Matheson, T. G. Shamoon, R. E. Tarjan, and F. Zane, “Resistance of

digital watermarks to collusive attacks,” Tech. Rep. TR-585-98, Department of Computer Science,

Princeton University, 1998.

[16] J.K. Su, J.J. Eggers, and B. Girod, “Capacity of digital watermarks subjected to an optimal collusion

attack,” in European Signal Processing Conference (EUSIPCO 2000), 2000.

[17] W. Trappe, M. Wu, and K.J.R. Liu, “Collusion-resistant fingerprinting for multimedia,” in IEEE Int.

Conference on Acoustics, Speech, and Signal Processing, 2002, pp. 3309–3312.

[18] H.-J. Guth and B. Pfitzmann, “Error- and collusion-secure fingerprinting for digital data,” in Proc. 3rd

Intl. Workshop on Information Hiding, 1999.

[19] D. Kirovski, H. Malvar, and Y. Yacobi, “A dual watermarking and fingerprinting system,” Tech. Rep.

MSR-TR-2001-57, Microsoft Research Laboratories, 2001.

[20] M. Wu and B. Liu, “Modulation and multiplexing techniques for multimedia data hiding,” in Proc. of

SPIE ITcom’01, SPIE vol 4518, Aug. 2001.

[21] M. Wu, Multimedia Data Hiding, Ph.D. thesis, Princeton University, 2001.

[22] H. V. Poor, An Introduction to Signal Detection and Estimation, Springer Verlag, 2nd edition, 1994.

[23] M. Wu, H. Yu, and A. Gelman, “Multi-level data hiding for digital image and video,” in Proceedings

of SPIE, Photonics East Conference on Multimedia Systems and Applications, 1999, vol. 3845.

[24] S.A. Kassam, Signal Detection in Non-Gaussian Noise, Springer Verlag, 1987.

[25] S. Voloshynovskiy, F. Deguillaume, S. Pereira, and T. Pun, “Optimal adaptive diversity watermarking

with channel state estimation,” Proc. of SPIE Photonics West, Electronic Imaging 2001, Security and

Watermarking of Multimedia Contents III, Jan. 2001.

[26] J. Hernandez, M. Amado, and F. Perez-Gonzalez, “DCT-domain watermarking techniques for still

images: Detector performance analysis and a new structure,” IEEE Trans. on Image Processing, vol.

9(1), Jan. 2000, Special Issue on Image and Video Processing for Digital Libraries.

31

[27] J. G. Proakis, Digital Communications, McGraw-Hill, 4th edition, 2000.

[28] A. Herrigel, J. Oruanaidh, H. Petersen, S. Pereira, and T. Pun, “Secure copyright protection techniques

for digital images,” in Second Information Hiding Workshop (IHW), Lecture Notes in Computer Science,

vol. 1525. Springer-Verlag, 1998.

[29] T. Cormen, C. Leiserson, and R. Rivest, Introduction to Algorithms, McGraw Hill, 1989.

[30] J. Aslam and A. Dhagat, “Searching in the presence of linearly bounded errors,” in Proceedings of the

23rd ACM Symposium on Theory of Computing, May 1991, pp. 486–493.

[31] D. Z. Du, G. L. Xue, S. Z. Sun, and S. W. Cheng, “Modifications of competitive group testing,” SIAM

Journal of Computing, vol. 23, pp. 82–96, Feb. 1994.

[32] D. Z. Du and H. Park, “On competitive group testing,” SIAM Journal of Computing, vol. 23, pp.

1019–1025, Oct. 1994.

[33] J. Dittmann, P. Schmitt, E. Saar, J. Schwenk, and J. Ueberberg, “Combining digital watermarks and

collusion secure fingerprints for digital images,” SPIE Journal of Electronic Imaging, vol. 9, pp. 456–467,

2000.

[34] T. W. Hungerford, Algebra, Springer-Verlag, 1974.

[35] J. H. Dinitz and D. R. Stinson, Contemporary Design Theory: A Collection of Surveys, John Wiley

and Sons, 1992.

[36] C.C. Lindner and C.A. Rodger, Design Theory, CRC Press, 1997.

[37] R. Lidl and H. Niederreiter, Introduction to Finite Fields and Their Applications, Cambridge Press,

1994.

[38] C. J. Colbourn and J. H. Dinitz, The CRC Handbook of Combinatorial Designs, CRC Press, 1996.

[39] S. Yau and Y. Bresler, “Maximum likelihood parameter estimation of superimposed signals by dynamic

programming,” IEEE Trans. on Signal Processing, vol. 41, pp. 804–820, Feb. 1993.

[40] I. Ziskind and M. Wax, “Maximum likelihood localization of multiple source by alternate projection,”

IEEE Trans. ASSP, vol. 36, pp. 1553–1560, Oct. 1988.

[41] R. Vaccaro T. Manickam and D. Tufts, “A least-squares algorithm for multipath time-delay estimation,”

IEEE Trans. on Signal Processing, vol. 42, pp. 3229–3233, Nov. 1994.

32

−25 −20 −15 −10 −5 0
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

WNR (dB)

F
ra

ct
io

n
C

ap
tu

re
d

Fraction of colluders captured

Hard: τ=0.7E(T
N

)
Hard: τ=0.9E(T

N
)

Sorting
Sequential

−25 −20 −15 −10 −5 0
0

0.05

0.1

0.15

0.2

0.25

WNR (dB)

In
no

ce
nt

 F
ra

ct
io

n

Fraction of group that are innocents under suspicion

Hard: τ=0.7E(T
N

)
Hard: τ=0.9E(T

N
)

Sorting
Sequential

(a) (b)

−25 −20 −15 −10 −5 0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

WNR (dB)

P
r(

m
is

s
us

er
 1

 |
us

er
 1

 is
 g

ui
lty

)

Probability of missing User 1 when he is guilty

Hard: τ=0.7E(T
N

)
Hard: τ=0.9E(T

N
)

Sorting
Sequential

−25 −20 −15 −10 −5 0
0

0.05

0.1

0.15

0.2

0.25

WNR (dB)

P
r(

ca
tc

h
us

er
 1

 |
us

er
 1

 is
 in

no
ce

nt
)

Probability of falsely accusing User 1

Hard: τ=0.7E(T
N

)
Hard: τ=0.9E(T

N
)

Sorting
Sequential

(c) (d)

−25 −20 −15 −10 −5 0
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

WNR (dB)

P
r(

ca
tc

h
no

 c
ol

lu
de

r)

Probability of not capturing any colluders

Hard: τ=0.7E(T
N

)
Hard: τ=0.9E(T

N
)

Sorting
Sequential

−25 −20 −15 −10 −5 0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

WNR (dB)

P
r(

ca
tc

h
at

 le
as

t o
ne

 in
no

ce
nt

)

Probability of falsely capturing at least one innocent

Hard: τ=0.7E(T
N

)
Hard: τ=0.9E(T

N
)

Sorting
Sequential

(e) (f)

Figure 5: (a) The fraction of colluders that are successfully captured, or placed under suspicion, (b) the
fraction of the total group that are innocent and falsely placed under suspicion for different WNR and
different thresholds, (c) the probability of missing user 1 when he is guilty, (d) the probability of falsely
accusing user 1 when he is innocent, (e) the probability of not capturing any colluder, and (f) the probability
of putting at least one innocent under suspicion. In each plot, there were 3 colluders.

33

Figure 6: The original images (top), fingerprinted images (middle), and difference images (bottom) for
Lenna and Baboon. In the difference images, gray color indicates zero difference between the original and
the fingerprinted version, and brighter and darker indicates larger difference.

34

� � � � � �

� � � � 	
 � � �
 � � � � � � � �

� � � � 	
 �

 � � � �
 �

� � � � � � � � � � � �

� � � � 	
 �

 � � � �
 �

� � � � 	
 � � �
 � � � � � � � �

Figure 7: Illustration of collusion by averaging two and three images fingerprinted with ACC codes, respec-
tively.

2 colluders 3 colluders

Blind
0 2 4 6 8 10 12 14 16

−15

−10

−5

0

5

10

15

ACC code bit index

D
et

ec
tio

n
S

ta
tis

tic
s

(o
)

an
d

T
hr

es
ho

ld
s

(x
)

Blind Detection Statistics on Colluded Lenna Image

0 2 4 6 8 10 12 14 16
−6

−4

−2

0

2

4

6

8

10

12

ACC code bit index

D
et

ec
tio

n
S

ta
tis

tic
s

(o
)

an
d

T
hr

es
ho

ld
s

(x
)

Blind Detection Statistics on Colluded Lenna Image

Non-Blind
0 2 4 6 8 10 12 14 16

−40

−30

−20

−10

0

10

20

30

40

ACC code bit index

D
et

ec
tio

n
S

ta
tis

tic
s

(o
)

an
d

T
hr

es
ho

ld
s

(x
)

Non−blind Detection Statistics on Colluded Lenna Image

0 2 4 6 8 10 12 14 16
−30

−20

−10

0

10

20

30

40

ACC code bit index

D
et

ec
tio

n
S

ta
tis

tic
s

(o
)

an
d

T
hr

es
ho

ld
s

(x
)

Non−blind Detection Statistics on Colluded Lenna Image

Figure 8: Example detection statistics values for 2 users’ and 3 users’ collusion with a (16, 4, 1)-
BIBD AND-ACC fingerprint. (top) Blind detection scenario and (bottom) non-blind detection
scenario. (left) User 1 and 4 perform averaging, resulting in the output of the detector as
(−1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1). (right) User 1, 4, and 8 perform averaging, resulting in the output of
the detector as (0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1).

35

Blind Detection Non-blind Detection

1 colluder
−15 −10 −5 0 5 10 15
0

5

10

15

20

25

Detection Statistics

of

 O
cc

ur
re

nc
es

Histogram of Detection Statistics of Embedded Fingerprints

−50 −40 −30 −20 −10 0 10 20 30 40 50
0

10

20

30

40

50

60

Detection Statistics

of

 O
cc

ur
re

nc
es

Histogram of Detection Statistics of Embedded Fingerprints

(a) (b)

2 colluders
−15 −10 −5 0 5 10 15
0

5

10

15

20

25

Detection Statistics

of

 O
cc

ur
re

nc
es

Histogram of Detection Statistics of Embedded Fingerprints

−60 −40 −20 0 20 40 60 80
0

10

20

30

40

50

60

Detection Statistics

of

 O
cc

ur
re

nc
es

Histogram of Detection Statistics of Embedded Fingerprints

(c) (d)

3 colluders
−15 −10 −5 0 5 10 15
0

5

10

15

20

25

Detection Statistics

of

 O
cc

ur
re

nc
es

Histogram of Detection Statistics of Embedded Fingerprints

−60 −40 −20 0 20 40 60 80
0

10

20

30

40

50

60

70

Detection Statistics

of

 O
cc

ur
re

nc
es

Histogram of Detection Statistics of Embedded Fingerprints

(e) (f)

Figure 9: Histograms of detection statistics of embedded fingerprints: (top row) single fingerprint case,
(middle row) 2-user collusion case, (bottom row) 3-user collusion case; (left column) blind detection, (right
column) non-blind detection.

36

−15 −10 −5 0 5 10 15
0

20

40

60

80

100

120

140

160

Detection Statistics

of

 O
cc

ur
re

nc
es

Histogram of Detection Statistics of Embedded Fingerprints

Figure 10: Aggregated histograms of blind detection statistics of embedded fingerprints covering from 1 to
3 colluders and 4 distortion settings.

37

