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Abstract

This paper describes a system, still under development, whose purpose is to make
numerical experiments in nonlinear filtering easy. Given a description, in terms of a list
of keywords and pieces of data, of both the nonlinear filtering problem and the algorithm
to solve it, the system, which is written itself in Macsyma, produces a Fortran program.
Emphasis has been put on graphic output, using GKS. There is also an interactive mode,
in which the system helps the user building this list of keywords and pieces of data.
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1. Motivation

“w

Nonlinear filtering is an estimation problem whose exact solution involves, in gen-
eral, a stochastic partial differential equation (Zakai equation). Therefore it has the same
limitation as any partial differential equation concerning the space variable dimension. A
recent attempt to compute the exact optimal filter with no reference to any partial dif-
ferential equation, thus circumventing the abovementioned limitation, has proved rather
unsuccessful (F.LeGland [4]). On the other hand, a large number of so-called “approxi-
mate” nonlinear filters have been designed. The point is that, apart from a very few works
(e.g. J.Picard |7],]9]), the approximate nature of those filters is not proved, while they are
commonly used in practice.

As a consequence, one would like to be able to test — for any kind of model, by means
of numerical simulations computing any kind of conditional statistics — any “approximate”
nonlinear filter, old, new or to-be-found, against the exact filter given by Zakai equation
or an approximation to it. This means that Zakai equation is to be our reference method
and that we must be able to rely on an efficient and accurate algorithm to solve it.

Therefore, it has been considered worth building a system with the following two main
purposes:

1) help designing efficient and accurate algorithms for the solution of Zakai equation,
with extensive numerical experiments
2) help testing any other filter and compare it to the reference filter

One feature is that, since numerical experiments are involved, our system should gen-
erate Fortran code. In particular this would make possible the use of general mathematical
libraries (Nag, Linpack,...) wherever they are available. On the other hand, Macsyma has
already proved able to take care of the generation of Fortran code (see C.Gomez et al. [1}),
and is certainly exactly suited to do the few symbolic computations involved, so that our
system is actually written in Macsyma, with parts in Lisp as well.

The rest of the paper is organized as follows. Coming next is section 2 which shows
how the system works. Section 3 contains a short presentation of nonlinear filtering. In
section 4 we discuss some possible algorithms for the solution of Zakai equation we would
like to make our system test, and the kind of information to feed it with. Section 5 discusses
implementation issues and future development.



2. How the system works

"

Basically, our system can be ran in two different modes, either interactive or batch. In
batch mode, it is feeded with a list of keywords and pieces of data describing our problem
(those are presented in section 4, and from now on will appear in boldface characters). In
interactive mode, the system actually builds itself this list of keywords and pieces of data
by asking the user appropriate questions. At this point, it should be stressed that in both
modes, the user is supposed to have a minimum knowledge of nonlinear filtering theory
(for a short presentation, see next section).

The next step is the system to analyze this list and accordingly to build a new big
list whose innermost elements are instructions in an intermediate language, known as
macrofort for macro-Fortran and originally written in Macsyma by J.P.Quadrat (INRIA-
Rocquencourt). When the process of building this second list is completed, it is finally
translated into Fortran 77 program.

One additional feature is that whenever a formal constant (actually an atom) is found
in any of the symbolic expressions that describe our model and are given in the original
list, it will automatically be considered by the system as a parameter. According to a given
switch, the numerical value of this parameter will be either prompted for interactively, or
read in a data file, at Fortran runtime.

Moreover, there is some kind of bookkeeping in the sense that some informations
concerning the Fortran program actually generated will be made available in symbolic form,

in a Macsyma batchable file. The main interest of this is to make easy the modification of
the data file.

Altogether, the system produces as its output three different files:
- a Fortran source file (the program itself)
- a Fortran data file
- a Macsyma file, for bookkeeping.



3. A short presentation of nonlinear filtering

-

We will discuss here the problem of estimating the state of a diffusion process when
only a white-noise perturbed observation of it is available. This is the situation our system
is able to deal with now. Other situations will perhaps be included progressively.

3.1 The model

Let us consider two stochastic processes, one known as the signal and the other as the
observation:

dX; = b(Xt) dt + U(Xt) dW,
dYy = h(Xt) dt + th

Here (Wy; t > 0) and (Wy; t > 0) are independent Wiener processes, with covariance I
and Q respectively (for the sake of simplicity we will assume @ = I from now on). The
random variable X, is independent of (W;; t > 0) and its law is absolutely continuous
with respect to Lebesgue measure: let po(.) denote its density.

The pieces of data describing our model are therefore:

po(.) initial density
b(.) drift

a(.) = o0*(.) diffusion
h(.) sensor

Another quantity of interest for the rest of this section is the infinitesimal generator of the
signal process:

1 92 0

L= Eaij(.) _——_8.7:58:1:]' + b,()-éz

Remark: As far as the solution of Zakal equation (see below) is concerned, the
dimension of the signal has to be small. At the present time, our system is only able to
deal with dimension 1. In the future, we plan to allow dimension 2 and perhaps 3 as well.
On the other hand, as far as testing “approximate” nonlinear filters is concerned, there
is not such kind of limitation, although no comparison will be possible with our reference
method in case the dimension is large.

3.2 The problem and its solution

What we are interested in is to compute such quantities as: E(f(X;)|Y:) for any
bounded measurable function f(.), where Y; = o(Ys; 0 < s < t), i.e. to compute the
conditional density of the signal X; given Y;.

In the rest of this section, we will just state Zakal equation, which actually gives the
solution to the problem under consideration. Define:

2y = exp(/ot h(Xs)dY, — %/ h2(Xs) ds)

0

Provided for instance that h(.) is bounded, the process (Z; '; t > 0) is a (Gs; t > 0)
martingale under P, where §; = o(X,,Ys; 0 < s < t). One can therefore define a
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o]
new probability measure P, absolutely continuous with respect to the original probability
measure P and such that:

dp
haliall =z 1
dP 1G, t

The conditional expectations given Y;, under P and P are related by the Kallianpur-
Striebel formula:

o]

BU(X0)[Y) = ZU ) ZilFe)

E (Z]Y:)

The following equation, known as Zakal equation:

dpy = L*py dt 4 hpy dY;
Po = po(.)

where L* is the adjoint operator of the infinitesimal generator of the signal process, has a

unique solution (E.Pardoux [5]). This solution satisfies:

(b, ) =E (F(X2) ZelYe)

for every bounded measurable f(.), which means that p; is the (unnormalized) conditional
density of the signal X; given Y;.

In the next section, we are going to discuss some possible algorithms to solve this
equation. In particular, we will describe the keywords and pieces of data related to them.
Since the system is still under development, it might very well happen that some of those
keywords change in the next future.



4. Keywords

e

In section 3, we have already found four pieces of data which describe the model:
initial_density, drift, diffusion, sensor. In the list our system is to be fed with, each
of those keywords must appear, followed by its symbolic expression. As was said above,
whenever a formal constant is found in such a symbolic expression, it is considered as a
parameter, a model-parameter actually. There are other parameters, which are related to
algorithms (e.g. time step, grid size, ...) We will not list them here since the user has
not to take care of them. There is just a special keyword that should appear into the list,
either prompted _for or read_on _file, specifying how the Fortran program will manage
to assign a numerical value to each of the parameters.

Observation can either come from a record i.e. actual measurements previously
stored on a file, or be generated by simulation. In the latter case, one must choose
an appropriate discretization scheme. At this point there is not much flexibility in our
system, since only Milshtein’s scheme is used. If needed, other schemes could be included
(see E.Pardoux-D.Talay [6]). What quantities are to be found on the file or to be simulated,
depend on the sampling procedure {(see below).

Another point of interest is the purpose of the specific program the system is going
to generate. It can be either to:

- just compute the conditional density (the default)

- test an algorithm on the basis of a single observation (single_trajectory_test). For
instance one can plot the density and look at its deformation as time runs.

- compute some conditional statistics for a whole set of observations and then perform
some Monte-Carlo analysis (monte_carlo_analysis). The symbolic expression of
those conditional statistics is another piece of data to be found in the input list just
after the keyword statistics. Most likely in this case are the observations to be
generated by simulation, so the corresponding keyword is expected. One can plot
the rms error vs. the number of Monte-Carlo runs, i.e. the number of observations
simulated. Another option is sensitivity_analysis: here one lets a parameter vary
within the Monte-Carlo analysis and plot the rms error vs. this particular parameter.
What is needed is just to introduce a loop at the appropriate place in the Fortran
program being generated. For this particular parameter, one needs a whole range of
numerical values. Moreover it can be either a model-parameter (the most difficult
case since every step is concerned, including simulation), an algorithm-parameter or
a parameter of the conditional statistics itself (the easiest case).

In the next future, it will be possible to compare some (let us say 2) algorithms for either
single_trajectory_test or monte_carlo_analysis (with or without additional sensitiv-
ity _analysis), with plots to help comparison.

Let us now describe some of the various algorithms we have in mind for the approxi-
mation of Zakai equation.

4.1 Time discretization

We follow the approach of H.Korezlioglu-G.Mazziotto [2], since it provides easy prob-
abilistic interpretation for the numerical schemes involved. Three steps are considered:
sampling of the observation, discretization and approximation of the signal.
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a. Sampling

This is the process by which the information contained in the whole trajectory (Ys; 0 <
s < t) is replaced by some simpler information provided by a finite collection of random
variables. The sampling time step, denoted by k, is a parameter associated to sampling.
There are different sampling strategies depending on the finite collection of random vari-
ables considered. If one uses only the increments of the observation process on time
‘intervals of length k, one gets simple_sampling (the default). If one adds quantities like

3/ kkrg"'*'l) sdY, and/or % /| kk,fnﬂ) Y, ds one gets second_order_sampling. Higher order
sampling strategies can also be defined, but will not be considered here.

b. Discretization

Here one replaces the original signal process by a piecewise constant process. In the
next future, it will be possible to consider discretization intervals smaller than sampling
intervals: this will be refined_discretization, the default being simple_discretization.
In the former case, the ratio of those interval lengths will be a parameter asssociated to
discretization. The system will be able to decide whether to use a refined discretization or
not. This is one of the few points where a kind of expertise could be found in the system.

On a discretization interval, the signal can be replaced by its value at either the
left_point or the right_point of this interval (the latter choice has been considered in
J.Picard (8]). This gives the two possible schemes:

k k k
pn—{—l:PI:\Ilnpn
k k k
pn+1:\ynP:pn

where (P}; t > 0) is the semigroup with infinitesimal generator L* and:
k
Uk = exp(h(.)AY ~ ) AYY = Yi(nt1) = Yin

c. Approximation

Here one replaces the signal by an approximating Markov chain. This can be done by
discretizing the signal equation, as in [2]. We follow here a different approach, which is to
approximate the underlying semigroup. The only scheme available now in the system is
euler_implicit, which corresponds to approximating the semigroup by its resolvent, but
we plan to introduce higher order schemes as well.

What is possible now is to refine the time step for approximation: this will give re-
fined_approximation as opposed to simple_approximation (the default). Here again
the system is able to make the choice of a refined approximation. One possible scheme
would now be:

(I —kL)* pk.y =¥k p

A detailed presentation of these refined and higher order time-discretization schemes
will appear elsewhere.

4.2 Space discretization



At the present time, this point is less developed than time discretization, but will be
paid much attention in the next future. As a matter of fact, the system is only able to deal
with dimension 1. The first step here is to restrict the whole state space to a fixed bounded
subregion (unless the state space was already bounded itself). In the one-dimensional case,
this is just an interval, whose characteristics (location and width) are just considered as
parameters. In higher dimension, one will have to describe more explicitly the shape of
this subregion. The boundary conditions can be of either Dirichlet type (stopped) or
Neumann type (reflected), where both keywords refer to the behaviour of the underlying
signal process with respect to the boundary.

Then one has to design a grid, whose mesh size denoted by ¢ is again a parameter.
Following H.J.Kushner [3], we approximate on this grid the infinitesimal generator L of the
original process by a finite difference operator L. that can be interpreted as the infinitesimal
generator of an approximating Markov process with countable state space. One possible
scheme would now be:

(I —kLe)* plos, = Wk phe

What we plan to introduce in the next future concerning space-discretization includes
adaptive selection of the grid and the bounded subregion, and multigrid methods to solve
the linear problems involved.

5. Implementation issues and future development

A preliminary version of the system has been written by the second author during
a 2-months stay at INRIA-Sophia-Antipolis. This version runs under Multics operating
system, i.e. it uses the MacLisp version of Macsyma. The Fortran program generated also
uses some routines of the Nag library. Another system-dependent point is that it uses the
Multics random number generator for the simulations. It would not be difficult to make
our system generate Fortran program that would take advantage of the software currently
available on any site. However the software we plan to consider are: Nag or Linpack for
some linear algebra routines, and GKS or possibly Plot10 for graphic output.

Next we will have to consider what was called the second main purpose of this system,
i.e. to introduce “approximate” nonlinear filters and make it easy to compare them to the
reference filter, whatever approximation scheme we choose for it.

In the long run, it would be possible also to include some parameter estimation prob-
lems with partial information, since these problems are closely related to nonlinear fil-
tering. In particular, the likelihood ratio would be nothing but the denominator of the
Kallianpur-Striebel formula introduced in section 3.2.
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