
UMIACS-TR-94-80 July, 1994CS-TR-3310Global Value Propagation Through Value Flow Graphand Its Use in Dependence AnalysisVadim Maslovvadik@cs.umd.eduInstitute for Advanced Computer StudiesDepartment of Computer ScienceUniversity of Maryland, College Park, MD 20742AbstractAs recent studies show, state-of-the-art parallelizing compilers produce no noticeablespeedup for 9 out of 12 PERFECT benchmark codes, while the speedup that was reachedby manually applying certain automatable techniques ranges from 10 to 50. In thispaper we introduce the Global Value Propagation algorithm that uni�es several of thesetechniques.Global propagation is performed using program abstraction called Value Flow Graph(VFG). VFG is an acyclic graph in which vertices and arcs are parametrically speci�edusing F-relations. The distinctive features of our propagation algorithm are: (1) Itpropagates not only values carried by scalar variables, but also values carried by individualarray elements. (2) We do not have to transform a program in order to use propagationresults in program analysis.In this paper we focus on use of the VFG and global value propagation in arraydata
ow analysis. F-relations are used to represent values produced by uninterpretedfunction symbols that appear in dependence problems for non-a�ne program fragments.Global value propagation helps us to discover that some of these functions are in facta�ne.This work is supported by an NSF PYI grant CCR-9157384 and by a Packard Fellowship.

Global Value Propagation Through Value Flow Graphand Its Use in Dependence AnalysisVadim MaslovComputer Science DepartmentUniversity of Maryland, College Park, MD 20742vadik@cs.umd.edu, (301) 405-2726, fax (301) 405-6707May 5, 1994AbstractAs recent studies show, state-of-the-art parallelizing compilers produce no noticeable speedupfor 9 out of 12 PERFECT benchmark codes, while the speedup that was reached by manuallyapplying certain automatable techniques ranges from 10 to 50. In this paper we introduce theGlobal Value Propagation algorithm that uni�es several of these techniques.Global propagation is performed using program abstraction called Value Flow Graph (VFG).VFG is an acyclic graph in which vertices and arcs are parametrically speci�ed using F-relations.The distinctive features of our propagation algorithm are: (1) It propagates not only valuescarried by scalar variables, but also values carried by individual array elements. (2) We do nothave to transform a program in order to use propagation results in program analysis.In this paper we focus on use of the VFG and global value propagation in array data
owanalysis. F-relations are used to represent values produced by uninterpreted function symbolsthat appear in dependence problems for non-a�ne program fragments. Global value propagationhelps us to discover that some of these functions are in fact a�ne.1 IntroductionAutomatic parallelization of the real Fortran programs does not live up to user expectations yet.As the recent studies [Blu92, BE94] show, state-of-the-art parallelizing compilers produce no no-ticeable speedup for 9 out of 12 PERFECT benchmark codes, while the speedup that was reachedby manually applying certain automatable techniques (techniques that can be implemented in acompiler) ranges from 10 to 50.Several of these important techniques are special cases of teh Global Value Propagation that weintroduce in this paper. The basic idea of our approach is to compute Value Flow Graph (VFG)for a given program fragment and then to perform global value propagation using this graph. Eachvertex of VFG is a single statement instance and set of all vertices forms iteration space of theprogram. There is an arc from vertex a to vertex b if statement instance a directly passes value tostatement instance b.The main distinctive features of the Value Flow Graph are: (1) It is acyclic graph because everystatement instance is executed only once, (2) It is parametrized graph, because number of verticesand arcs in VFG is not known statically, it is a parameter of a program. (3) For a�ne programfragments (fragments in which all subscript functions, IF conditions and loop bounds are a�nefunctions of loop variables and symbolic constants) we can compute exact VFG, that is, VFG in1

DO i = 1, MbDO j = 1, iS1: Lmin = jS2: Lmax = iDO k = i, MbS3: DO l = Lmin, LmaxS4: XKL(l) = ...END DO...S5: Lmin = 1S6: Lmax = k + 1END DOEND DOEND DO
" S3:Lmin[i; j; k] = j j 1�j� i=k�MbS3:Lmin[i; j; k] = 1 j 1�j� i<k�Mb (1)" S3:Lmax[i; j; k] = i j 1�j� i=k�MbS3:Lmax[i; j; k] = k+1 j 1�j� i<k�Mb (2)1�j� i�k�Mb ^S3:Lmin[i; j; k]� l�S3:Lmax[i; j; k] (3)1�j� l� i=k�Mb _1�j� i<k�Mb ^ 1� l�k+1 (4)Figure 1: Fragment of OLDA of TRFDwhich for every argument of every statement instance we know coordinates of just one statementinstance that supplies the values used by this argument. Value Flow Graph for non-a�ne programfragments is only approximate.We represent VFG using F-relations (functional relations). The formal de�nition of F-relationis given in Section 2. In Section 3 we present algorithm that computes F-relations for given programfragment. Since existing graph algorithms do not work on parametrized graphs directly, we intro-duce the Characteristic Graph (CG) that serves as compact representation of VFG. Characteristicgraph has a �xed number of vertices, but there's a price to pay | CG may have cycles.The three algorithms presented in Section 4 perform global value propagation with varyingdegree of aggressiveness and performance. The main distinctive features of these algorithms are:(1) They propagate not only values carried by scalar variables, but also values carried by individualarray elements. (2) They change VFG and characteristic graph of a program but we do not haveto transform a program in order to use global propagation results in program analysis.In this paper we focus on use of F-relations and global value propagation in array data
ow anal-ysis. In Section 5 we introduce an extension of the Lazy Array Data
ow Analysis Algorithm [Mas94]that uses F-relations to represent values produced by uninterpreted function symbols that appearin dependence problems for non-a�ne program fragments. Global value propagation helps us todiscover that many of these uninterpreted functions are in fact a�ne functions of loop variables.This makes dependence problem a�ne and therefore increases precision of dependence analysis fornon-a�ne program fragments.In the remaining part of introduction we consider examples of the real Fortran programs fromthe PERFECT benchmark suite [B+89] and show how use of F-relations and value propagationmakes it possible to compute exact dependence information for them.1.1 Propagating values of scalar variablesIn the program fragment in Figure 1 the variables Lmin and Lmax are assigned within the k loop.Since these variables are used as lower and upper bounds for loop l, the existing systems cannotdetermine statically what elements of the array XKL are being written and therefore they cannotparallelize loops i, j and k.However, it is not di�cult to see that Lmin and Lmax are piecewise-a�ne functions of the loop2

S0: I1 = 1S1: IP(1) = XDO l = 1, NlS2: I2 = 3 - I1...S3: IP(I2) = IP(I1)...S4: I1 = I2END DO " S3:I1[l] = 1 j 9� s:t: l=2�+1 ^ 1� l�NlS3:I1[l] = 2 j 9� s:t: l=2� ^ 1� l�Nl (5)" S3:I2[l] = 2 j 9� s:t: l=2�+1 ^ 1� l�NlS3:I2[l] = 1 j 9� s:t: l=2� ^ 1� l�Nl (6)" S3:IP(I1)[l] = S3[l�1] j 2� l�NlS3:IP(I1)[l] = S1[] j l=1 (7)Figure 2: Fragment of CFFT2D1 (simpli�ed)variables i, j and k that can be expressed as F-relations (1) and (2). Substituting these functionsto the non-a�ne set of constraints (3) that describes execution conditions for the statement S4, wediscover that these constraints become a�ne constraints (4). Having a�ne execution conditionswe can parallelize loop l if other criteria are satis�ed.The generalized induction variable recognition techniques [Wol92, HP92] can recognize thatLmin and Lmax are wrap-around variables. However, the existing systems have to transform theprogram in order to use this information in dependence analysis. In this example they have to peelo� the �rst iteration of loop k. We think that program analysis techniques that need to transformthe program should be avoided for several reasons:� User of parallelizing environment expects that when the environment is asked to analyze aprogram, it does not change the program.� Analysis-enabling transformations are not justi�ed by anything except needs of the depen-dence analyzer. As a result, in a number of cases they can cause program slowdown andincrease program size considerably.� These transformations are not always possible. For example, in Figure 2 no transformationcan make dependence analyzer to believe that periodic variables I1 and I2 are a�ne functionsof loop variable l. However, using F-relations (5) and (6) that describe values of I1 and I2as a�ne functions of l we can compute exact F-relation (7) for statement S3.So we use techniques [Wol92, HP92] to compute closed form of generalized scalar inductionvariables. However, we do not substitute these closed forms to the places in program where thesevariables are used. Instead we substitute F-relation that expresses their closed form to the depen-dence problem involving references to these variables.To compute closed form of array references we need to employ more general techniques of[RF93]. However, none of the benchmark studies yet claimed that recognizing array reductionsmay be useful for dependence analysis. So we restrict us to recognizing scalar reductions only.1.2 Propagating values of array elementsConsider a program fragment in Figure 3. Suppose we should run the loop nest k (statementsfrom S8 to S12) on distributed memory machine and the memory distribution is such that XY(j; k; 4)is aligned with X(j; k). For statement S10 the existing systems cannot generate e�cient communi-cations code, because they do not know at compile time that the value of scalar variable Jm (andtherefore, value of array element JMINU(j)) used in subscript of array X is a�ne function of j.Using the global value propagation, we compute F-relation (9) that makes it clear that for all3

C--- subroutine INITIA ---DO j = 1, JmaxS1: JMINU(j) = j - 1END DOIF (.NOT.p) THENS2: JMINU(1) = 1S3: Jlow = 2S4: Jup = Jmax - 1ELSES5: JMINU(1) = JmaxS6: Jlow = 1S7: Jup = JmaxENDIF
C--- subroutine XIDIF ---DO k = Kb, KeS8: DO j = Jlow, JupS9: Jm = JMINU(j)S10: XY(j,k,4) = X(Jm,k) + ...END DOIF (.NOT.p) THENS11: XY(1, k,4) = X(1,k) + ...S12: XY(Jmax,k,4) = X(Jmax,k) + ...ENDIFEND DOjw=1 ^ kw=kr ^ Kb�kw; kr�Ke ^ S8:Jlow[kw]�jw�S8:Jup[kw] ^ :p (8)264 S10:Jm[k; j] = j�1 j Kb�k�Ke ^ 2�j�JmaxS10:Jm[k; j] = Jmax j Kb�k�Ke ^ p ^ j=1S10:Jm[k; j] = 1 j Kb�k�Ke ^ :p ^ j=1(9) 26664 S8:Jlow[k] = 2 j Kb�k�Ke ^ :pS8:Jlow[k] = 1 j Kb�k�Ke ^ pS8:Jup[k] = Jmax�1 j Kb�k�Ke ^ :pS8:Jup[k] = Jmax j Kb�k�Ke ^ p (10)Figure 3: Fragment of XIDIF of ARC2Dj � 2 the statement instance S10[k; j] reads value from the array cell X(j � 1; k). This fact makesgenerating the e�cient communication possible.Also we are able to prove that output dependence S10 �O S11 does not exist. To compute thisdependence we build dependence problem (8) and substitute into it F-relations (10) that describevalues of variables Jlow and Jup. Simplifying we �nd that (8) has no solutions.2 De�nitionsA�ne program fragment. A�ne program fragment (APF) is a body of procedure or a bodyof one of the loops of procedure. APF consists of assignment statements, structured IF statementsand DO loop statements (GOTO statements are not allowed) such that in every statement all (1)subscript functions, (2) conditions in IF statements, and (3) loop bounds should be explicit a�nefunctions of loop variables and symbolic constants assigned outside the fragment (that is, theyhave form c0 +Pni=1 cixi, where ci are integer constants and vi are variables). If either of theserequirements is not satis�ed, the program fragment is called non-a�ne.The smaller the program fragment, the more likely it will be a�ne. For example, in program inFigure 1 the body of the loop l is a�ne program fragment, but the body of the loop k is non-a�nefragment, because lower and upper bounds of the loop l are assigned within the fragment andtherefore they are not explicit a�ne functions of k and l.Tuples and Statement instances. Tuple is simply an ordered set of integers. Tuples aredenoted with bold letters, such as w; r; s. Tuple of length n represents a point in n-dimensionalspace.The smallest unit of computation we consider in this paper is statement instance. The statementinstance S[v] is speci�ed by S | statement of the program, and v | tuple of loop variables values(loops that surround the statement S are included). For example, in Figure 1 statement S1 has4

F-relation F-relation instanceS3[i; j] = 2i�j�2 j 1� i�j�N S3[5; 7] = 1S2[i] = In:A(2N�i) j 1� i�N S2[1] = In:A(2)S2[i; j] = S1[i] + 2S3[i; j] j 1� i�j�N S2[7; 8] = S1[7] + 2S3[7; 8]Out:B(i; i) = S2[i] j 1� i�N Out:B(3; 1) = S2[5]Figure 4: Examples of F-relations and their instancesMb(Mb+1)2 instances S1[i; j] j 1�j� i�Mb.In a�ne fragments that we consider DO loops and IF statements are used to shape the iterationspace, and actual computations are performed exclusively by assignment statements. Therefore wecall assignment statement instances simply \statement instances".F-relations. Functional relation (or F-relation) is an extension of the concept of dependence rela-tion introduced in [Pug91]. F-relation is a union of one or more simple F-relations. Mathematically,simple F-relation is a parametrized set of equalities that de�ne statement instances in the left handside of relation as a function F of statement instances, initial memory reads and constants in theright hand side of the relation. General form of simple F-relation is:S[w] = F (Si1 [r1]; :::; Sim[rm]; In:Aj1(s1); :::; In:Ajn(sn); r) j p(r1; :::; rm; s1; :::; sn; r; w)where p is a conjunction of a�ne constraints. Examples of F-relations and their instances are givenin Figure 4. The semantic meaning of this simple F-relation is:for all r1; :::; rm; s1; :::; sn; r; w: if p(r1; :::; rm; s1; :::; sn; r; w) is True then statementinstance S[w] is a result of application of function F to the values of statement instancesSi1 [r1]; :::; Sim[rm], values of initial memory cells In:Aj1(s1); :::; In:Ajn(sn) and value oftuple r.Terms in the right hand side of F-relation are called arguments of F-relation. Arguments specifythe sources of values consumed by F-relation. There are three types of arguments:� r: constant. Consume value of a constant.� In:Ajl(sl): memory read. Consume value of memory cell that it had before execution of thea�ne program fragment represented by F-relation.� Sil [rl]: statement instance. Consume value computed by another statement instance.Values computed by F-relation can be used in two ways:� S[w] = x: Value of x becomes a value of statement instance S[w] (to be consumed by anotherstatement instance).� Out:Akl(sl) = x: Value of x is written to a memory cell that is used after execution of thea�ne program fragment represented by F-relation.We can represent input and output statements as reads from and writes to global �le memory, soF-relations are sophisticated enough to represent real programs.Correctness properties of F-relations. F-relation R should satisfy certain criteria to be cor-rect: 5

1. There should be no contradictory de�nitions for every statement instance. That is, if somestatement instance S[v] is de�ned twice: S[v] = F (ArgList1) and S[v] = G(ArgList2), thenF = G and ArgList1 = ArgList2.2. There should be no cycles. That is, for every statement instance S[v] there should not existchain of simple F-relation instances that de�nes S[v] as a function of itself.3. In F-relation R that represents a complete a�ne program fragment, then all statement in-stances should be de�ned. That is, for every statement instance S[v] that appears as anargument of some simple F-relation from R there should exist a de�nition of S[v] in R.Operations over F-relations.Domain(R): Domain of F-relation R.This is a set of statement instances consumed by F-relation R:Domain(R) = fSi1 [r1] [� � � [Sim [rm] j �r1;:::;rm(p(r1; :::; rm; s1; :::; sn; r; w))gDomain(R:Sil[rl]): Domain of F-relation R with respect to its argument Sil [rl].This is a set of statement instances consumed by reference Sil [rl] of F-relation R:Domain(R:Sil[rl]) = fSil[rl] j �rl(p(r1; :::; rm; s1; :::; sn; r; w))gRange(R): Range of F-relation R.This is a set of statement instances produced by relation R:Range(R) = fS[w] j �w(p(r1; :::; rm; s1; :::; sn; r; w))gValue Flow Graph (VFG): geometric interpretation of F-relation. F-relation that repre-sents an a�ne program fragment has an elegant geometric interpretation called Value Flow Graph.We build VFG for the F-relation R in the following way:� For every statement instance S[v] 2 Range(R), we create a vertex S[v] in VFG.� If statement instance S1[v1] is an argument of F-relation instance that computes S2[v2], (thatis, if S1[v1] directly passes value to S2[v2]) we create a directed arc (S1[v1]; S2[v2]) in VFG.Value Flow Graph is an directed acyclic parametrized graph that exactly describes
ow of valuesin a�ne program fragment. Actually, VFG of program fragment P or corresponding F-relation canbe viewed as a parametrically speci�ed function from memory before execution of P to memoryafter execution of P .Since every statement instance stores only one value and it does it only once in execution ofprogram P , Value Flow Graph is memoryless program representation. Indeed, VFG speci�es whatstatement instances pass values to what statement instances, but it does not specify what memorycells are used for intermediate storing of these values.Machinery used: Presburger arithmetic solver. In de�nition of F-relation the problemp(r1; :::; rm; s1; :::; sn; r; w) is a conjunction of a�ne equalities and inequalities over integers. Ouralgorithms require the following operations to be performed on problems like p: p1 ^ p2, p1 _ p2,:p, 9 v s:t: p, 8 v : p. These operations produce Presburger arithmetic formulas. We simplify theseformulas to Disjunctive Normal Form (DNF) using the Omega test [Pug92, PW93].6

Often instead of 9 we use more convenient projection operator introduced in [Pug92]:�v(P (v;w)) = 9 w s:t: P (v;w)3 Computing VFG for a�ne fragmentsIn this section we present algorithm to compute Value Flow Graph for a given a�ne programfragment:1. For every assignment statement S : a = F (b1; b2; :::; bm;v)where v is a tuple of loop variables surrounding S and b1; :::; bm are array or scalar references,create simple F-relationS[v] = F (Si1 [v]; Si2[v]; :::; Sim[v];v) j S:IsExecuted(v)Please note that in addition to instances of statement S we create statement instances foreach argument of F that is a reference to scalar variable or array.2. Compute exact value-based dependences for each read reference using algorithm [Mas94].These dependences are expressed as dependence relations [Pug91]:Sx[w]! Sil [v] j p(w;v)Convert each dependence relation to equivalent F-relation:Sil [v] = Sx[w] j p(w;v)3. Propagate all assignments for statement instances Sil [v] to the statement where they areused, that is, to the statement S. Since each Sil [v] is used only in F-relation for S, thispropagation is simple.This simple algorithm just translates dependence relations computed for a�ne program frag-ments to F-relations. The more sophisticated dependence analysis algorithm introduced in Section 5uses global propagation to compute exact dependence information for certain non-a�ne programs.For example, for program in Figure 5 [RF93] F-relation (11) is computed.4 Global Value Propagation4.1 Characteristic GraphSince number of vertices in Value Flow Graph is not known at compile time, regular graph manip-ulation techniques do not readily apply to VFGs 1. To make Value Flow Graph more manageablewe build Characteristic Graph (CG) that represents VFG. F-relation R that consists of n simpleF-relations R1; :::; Rn is represented by CG constructed in the following way:1Number of vertices in VFG is �nite, but since this number is not known at compile time, it can be arbitrarilylarge. However, we think that parametrized graphs that we consider are not in�nite graphs mentioned in graphtheory. 7

S1: X(0) = 0DO i = 1, 2*NS2: SAVE(i) = X(2*N-i+1)S3: X(i) = X(i-1) + SAVE(i)END DO 266664 R1 : S1[] = 0R2 : S2[i] = In:X(2N�i+1) j 1� i�NR3 : S2[i] = S3[2N�i+1] jN+1� i�2NR4 : S3[1] = S1[1] + S2[1]R5 : S3[i] = S3[i�1] + S2[i] j 2� i�2N (11)(R1; R4); (R2; R4); (R2; R5); (R3; R5); (R4; R3); (R4; R5); (R5; R3); (R5; R5) (12)2664 R3 : S2[i] = S3[2N�i+1] jN+1� i�2NR04 : S3[1] = In:X(2N)R05 : S3[i] = S3[i�1] + In:X(2N�i+1) j 2� i�NR005 : S3[i] = S3[i�1] + S2[i] jN+1� i�2N(13) 24 R04 : S3[1] = In:X(2N)R05 : S3[i] = S3[i�1]+In:X(2N�i+1) j 2� i�NR0005 : S3[i] = S3[i�1]+S3[2N�i+1] jN+1� i�2N(14)Figure 5: Program, its VFG and characteristic graphPropagate(R1; R2:S1[v2]) BeginGiven:Simple F-relation R1: S1[v1] = F (Args1(u1)) j p(v1;u1)Simple F-relation R2: S2[w] = G(S1[v2];Args2(u2)) j q(w;v2;u2)Perform propagation only if Transfer(R1; R2:S1[v2]) is not empty:Transfer(R1; R2:S1[v2]) = Range(R1) \ Domain(R2:S1[v2])= fS1[v1] j �v1(p(v1;u1) ^ q(w;v2;u2) ^ v1=v2)gReplace R2 with R02 [R002:R02 : S2[w] = G(F (Args1(u1));Args2(u2)) j �w;v1;u2(p(v1;u1) ^ q(w;v2;u2) ^ v1=v2)R002 : S2[w] = G(S1[v2];Args2(u2)) j q(w;v2;u2) ^ :�w;v2(p(v1;u1) ^ q(w;v2;u2) ^ v1=v2)In characteristic graph:Remove arcs coming to and from R2Compute transfer sets for R02 and R002 and add corresponding arcs to CGIf (vertex R1 has no incoming arcs) Remove vertex R1 from the CGEnd Figure 6: Algorithm to perform single propagation� For each simple F-relation Ri we create one vertex in CG. Therefore CG has n vertices.� For each pair consisting of simple F-relation Ri and argument S[v] of simple F-relation Rjwe compute transfer set: Transfer(Ri; Rj:S[v]) = Range(Ri) \ Domain(Rj :S[v]). If this set isnot empty we add to the CG arc (Ri; Rj) loaded with its transfer set Transfer(Ri; Rj:S[v]).Characteristic graph is a �nite graph with statically known number of vertices, but unlike VFGit can have cycles. These cycles re
ect the recurrent nature of computations that take place inscienti�c programs. For example, F-relation (11) representing a program from Figure 5 consists of5 simple F-relations. Therefore, CG of this program has 5 vertices. Characteristic graph arcs arelisted in (12). There are 2 cycles in the CG: (R5; R5) and (R3; R5; R3).4.2 Single act of propagationFunction Propagate presented in Figure 6 propagates statement instances computed by simple F-relation R1 to argument S1[v2] of simple F-relation R2. The function checks that transfer set from8

SafePropagation(F-relation R) BeginDoWhile (exists simple F-relations R1; R2 2 R and argument S[v] of R2such that Transfer(R1; R2:S[v]) = Domain(R2:S[v]))Propagate(R1; R2:S[v])EndWhileEnd Figure 7: Safe propagation algorithm that avoids splinteringR1 to R2:S1[v2] is not empty. Otherwise there is nothing to propagate.Basically this function replaces instances of S1[v1] with expressions from R1 that compute theirvalues. Since R1 does not necessarily compute values for all instances of S1[v2] used in R2, someinstances of unpropagated R2 (denoted as R002) are left intact. Since the computation of R002 involvesnegation, R002 can contain more than one simple F-relations.Let's consider example in which the algorithm is asked to propagate simple F-relation R2 tothe argument S2[j2] of simple F-relation R5 (both simple F-relations are part of (11)):R2 : S2[i1] = In:X(i2) j 1� i1�N ^ i2=2N�i1+1R5 : S3[j1] = S3[j3] + S2[j2] j 2�j1=j2�2N ^ j3=j2�1We �nd that Transfer(R2; R5:S2[j2]) = fS2[i] j 2� i�Ng is not empty and then the result is:R2 : S2[i1] = In:X(i2) j 1� i1�N ^ i2=2N�i1+1R05 : S3[j1] = In:X(i2) + S3[j3] j 2�j1�2N ^ i2=2N�i1+1 ^ j3=j2�1R005 : S3[j1] = S2[j2] + S3[j3] jN+1�j1=j2�2N ^ j3=j2�14.3 Value Propagation algorithmsIn this section we present several algorithms that perform value propagation for the wholeprogram fragment. The algorithms di�er in performance and aggressiveness. The propagation isdone as a series of invocations of Propagate function.Propagating values in VFG is not simple. Simply invoking Propagate for every arc in thecharacteristic graph may result in in�nite sequence of substitutions. For example, it happens inthe following sequence of substitutions:R1 : S[1] = x0R2 : S[i] = F (S[i�1]) j 2� i�N) R1 : S[1] = x0R02 : S[2] = F (x0)R3 : S[i] = F (S[i�1]) j 3� i�N) R1 : S[1] = x0R02 : S[2] = F (x0)R03 : S[3] = F (F (x0))R4 : S[i] = F (S[i�1]) j 4� i�N) � � �(15)Our algorithms avoid this problem.The safe propagation algorithm presented in Figure 7 propagates values only along the char-acteristic graph arcs that alone carry all the value instances consumed by argument of F-relation.This guarantees that consumer F-relation will not splinter as a result of propagation. Thereforeevery single act of propagation never increases number of vertices in CG. Actually the number ofvertices may decrease if producer F-relation becomes unused after propagation. Since with everypropagation values move closer to the place where they are consumed and the number of verticesin CG does not increase, the safe algorithm is guaranteed to terminate. The safe algorithm can beused in any application, however it can miss some important propagations.9

ConstantPropagation(F-relation R) BeginFind Strongly Connected Components (SCCs) in CG using Tarjan algorithm [Tar72]For (component C in SCCs of characteristic graph in topological order)If (C is a single vertex x such that no (x; x) self-arcs exist) thenFor (y in immediate successors of x)If (y is not involved in a cycle) Propagate(x; y)EndForEndIfEndForEnd Figure 8: Aggressive constant propagation algorithmHeuristicPropagation(F-relation R) BeginArcSet WorkSet := all arcs of characteristic graph for F-relation RWhile (WorkSet is not empty)Arc (x; y) := remove an arc from WorkSetIf (Transfer(R1; R2:S[v]) = Domain(R2:S[v])) thenPropagate(x; y)Add to WorkSet new arcs that appeared in CG due to propagationElseIf ((x; y) is not self-arc) thenTry to Propagate(x; y)If (cost function of R decreases with this propagation) thenCommit this propagationAdd to WorkSet new arcs that appeared in CG due to propagationElseUndo this propagationEndIfEndIfEndWhileEnd Figure 9: Heuristic propagation algorithmThe safe algorithm completely avoids splintering. However, if splintering does not lead to in�nitesequence of substitutions, it may be useful, because it allows deeper propagation. Since this paperis focused on making dependence analysis more precise and propagation of parametrized constantvalues makes this happen, we developed aggressive constant propagation algorithm presented inFigure 8. This algorithm does not propagate values to the vertices inside strongly connectedcomponents to avoid in�nite splintering, it only propagates values from the characteristic graphconstant leaves to the consumer vertices not involved in cycles. Since vertices involved in cyclesnever splinter, number of vertices in CG can increase only by a �nite number.Heuristic propagation algorithm presented in Figure 9 combines some aggressiveness of constantpropagation algorithm and cautiousness of safe propagation algorithm. It always performs safepropagations �rst. Then it uses heuristic cost function to decide whether unsafe propagation makesthe characteristic graph better. Since every single act of propagation is allowed only to decreasethe cost of graph, the algorithm is guaranteed to terminate and it will produce CG that is better10

than original characteristic graph. Currently the cost function is \number of vertices in CG plusmaximum length of a cycle in CG".We think that the heuristic algorithm should not be used in dependence analysis, but it issuitable for applications that require \deep" propagation. For instance, it can be used in generalizedrecurrences recognition [RF93].Heuristic Propagation example. The heuristic algorithm performs the following steps whenworking on program in Figure 5. First, in (11) we try safe propagations: we propagate R1 toR4:S1[1] and R2 to R4:S2[1]. We also try to propagate R2 to R5:S2[i]. This propagation proves tobe bene�cial because while number of simple F-relations stays the same, the cycle (R3; R5; R3) oflength 3 is broken into two cycles (R5; R5) and (R005; R005), each of unit length. The result of thesepropagations is F-relation (13).On next iteration we perform safe propagation of R3 to R005:S2[i]. We also try to propagate R04to R05:S3[i�1] but this results only in increase of number of CG nodes, so we undo this propagation.Finally we get F-relation (14) which is simpler than the original F-relation (11).5 Array data
ow dependence analysis using VFGIn Figure 10 we present an extension of Lazy Array Data
ow Dependence Analysis Algorithm[Mas94]. The basic idea of this extension is to substitute to non-a�ne constraint values of non-a�nereferences obtained by global value propagation. This substitution often makes the constraint a�ne,and therefore we stay in domain of exact dependence analysis. The numbered lines of algorithmconstitute the extension proposed in this paper and details of the rest of the algorithm are givenin [Mas94].So, let's imagine that we build a dependence problem DepProb that has references to scalar andarray references a1; :::; aq and these references are not explicit a�ne functions of loop variables andsymbolic constants (line 10). We break this problem into two parts: �rst part (F) contains onlynon-a�ne constraints, second part (L) contains only a�ne constraints:DepProb(v) = F (a1(v); :::; aq(v);v)�0 ^ L(v)Then we compute F-relations for each non-a�ne reference (line 11). That is, we call the depen-dence analysis routine recursively and ask it to compute source function for references a1; :::; aq. Toavoid recursive cycling, we memorize in stack all read references for which source function is beingcomputed (line 3) and if the given reference is already in stack (line 2), it means that dependenceproblem for the reference includes the reference itself (like in Example 2 below). In this case wegive up on propagation and compute an a�ne approximation of the non-a�ne dependence relation.After we computed F-relations for references a1; :::; aq and they are all a�ne, we create F-relationRD that represents values computed by function F :RD : SD[v] = F (Sa1 [v]; :::; Saq[v]) j L(v)and propagate F-relations for Sa1 [v]; :::; Saq[v] to RD. As a result of propagation RD can splinter.If the resulting relation arguments are constants, then the original non-a�ne constraint can beconverted to a�ne form. That is, when each simple F-relation R0D that is a member of RD afterpropagation has a form R0D : SD[v] = F 0(v;w) j L0(v;w)11

Relation SourceFunction(R:A) BeginInput: R:A is a read reference surrounded by n loops with variables r = (r1; :::; rn).(� Compute dependence relation that represents source function for R:A �)1: Static stack AlreadyInAnalysis2: If (AlreadyInAnalysis contains R:A) Return (NonAffine)3: Push R:A to stack AlreadyInAnalysisRelation DepRel := f;gDnf NotCovered(r) := IsExecuted(R[r])Statement W := RWhile (NotCovered is feasible) doW := statement preceding statement WStatement W is surrounded by m loops with variables w = (w1; :::; wm)If (W is assignment statement that writes to array of R:A) thenBuild dependence problem DepProb(w; r) for dependence from W to R:A10: (a1; :::; aq) := list of non-a�ne references in DepProb)11: For (i := 1 to q) Ri := SourceFunction(ai)12: If (all of Ri are Affine) then13: Create F-relation RD that represents values computed by DepProb(w; r)14: Propagate to RD values carried by relations R1; :::; Rq15: If Domain(RD) = f;g then convert DepProb to a�ne form16: Else17: Source function for R:A is non-a�ne. Compute its a�ne approximation.18: EndIfRelation Cmax := RelMax1�(W [w]! R:A[r] jDepProb(w; r))DepRel := DepRel [CmaxNotCovered := NotCovered ^ :Range(Cmax)... And so on, see [Mas94] ...EndIfEndDo20:Remove R:A from top of stack AlreadyInAnalysisReturn (DepRel)Figure 10: Lazy dependence analysis combined with global value propagationwhere F 0 is an a�ne function and w is a tuple of variables added by propagation, then for eachR0D we generate a�ne constraint F 0(v;w)�0 ^ L0(v;w)The sum of generated constraints is equivalent to the original non-a�ne constraint.Example 1: constraint a�nization using propagation. Computing the source function forreference S3:IP(I1) in Figure 2 we build the following dependence problem:p(lw; lr) = (S3:I1[lw]=S3:I2[lr] ^ 1� lw<lr�Nl)Since equality constraint is not a�ne, we compute F-relations (5) and (6) for references S3:I1 andS3:I2. Then we build F-relation for non-a�ne constraint:SD[lw; lr] = S3:I1[lw]� S3:I2[lr] j 1� lw� lr�Nl12

DO i = 1, NS1: A(A(i)) = xEND DO 1� iw<ir�N ^ S1:A(i)[iw]= ir (16)Figure 11: Propagation cycle exampleand propagate F-relations (5) and (6) to this F-relation:26664 SD[lw; lr] = �1 j 1� lw� lr�Nl ^ lw=2�+1 ^ lr=2�+1SD[lw; lr] = 0 j 1� lw� lr�Nl ^ lw=2� ^ lr=2�+1SD[lw; lr] = 0 j 1� lw� lr�Nl ^ lw=2�+1 ^ lr=2�+1SD[lw; lr] = 1 j 1� lw� lr�Nl ^ lw=2� ^ lr=2�Since now SD[lw; lr] has constant values only, we convert it back to constraint form SD[lw; lr] = 0,simplify and get: p(lw; lr) = (1� lw� lr�Nl ^ lw=2� ^ lr=2�+1) _(1� lw� lr�Nl ^ lw=2�+1 ^ lr=2�+1)Computing lexicographical maximum max�(lw j p(lw; lr)) and simplifying we get dependence rela-tion (7).Example 2: when propagation can cycle. In a program fragment in Figure 11 dependenceproblem (16) constructed when computing source function for the read reference A(i) is non-a�ne.Moreover, the dependence problem refers to the source function it is computing. In this case wedo not perform propagation, we just compute a�ne approximation of the source function.6 Related WorkScalar program graph representations. In recent years there has been a
urry of researchactivity in graph program representations. Static Single Assignment (SSA) form [CFR+91] andProgramDependence Graph (PDG) [FOW87] were introduced. They were followed by Program De-pendence Web [BMO90], Dependence Flow Graph [JP93] and Value Dependence Graph [WCES94].We call these graphs scalar program abstractions, because they are oriented towards representingdata
ow carried by scalar variables in program fragments without loops. When it comes to repre-senting data
ow in programs that have array references and loops, scalar abstractions essentiallycease to be data
ow representations, because the array load and store operations appear in themand individual value path is not followed. Also when representing loops, scalar abstractions haveto distinguish between data arcs and control arcs. Contrary to the scalar program abstractions,VFG has only one type of arcs, it does not have cycles, and it does not use memory for storingintermediate results.Exact array data
ow analysis techniques. The concept of F-relation is based on a concept ofdependence relation introduced in [Pug91]. The most di�cult part of computing VFG is computingexact value-based dependence relations between statements. This part is done by array data
owdependence analysis algorithms [Fea91, PW93, Mas94].13

264 R1 : S1[i] = S0[i] j 1� i�NR2 : S1[i] = F (S1[i�N])j N+1� i�2NR3 : S2[i] = G(S1[i]) j N+1� i�2N (17)(R1; R2); (R2; R3) 264 Q1 : S1[i] = (S0[i] j 1� i�NF (S1[i�N]) j N+1� i�2NQ3 : S2[i] = G(S1[i]) j N+1� i�2N (18)(Q1; Q1); (Q1; Q3)Figure 12: Characteristic graph vs system graphVoevodins work. Valentine and Vladimir Voevodin [Voe92a, Voe92b] use Algorithm Graph (AG)to represent data
ow in a�ne programs. The Algorithm Graph is essentially equivalent to VFGand notation used for specifying Algorithm Graphs seems to be close to F-relations. However,authors do not formalize their notation. Also they do not discuss using the Algorithm Graph forglobal value propagation.What's interesting, they mention review by Yershov [Yer73] in which he writes about ProgramImplementation Data
ow Graph, not discussing, however, its properties and applications. Thisgraph seems to be equivalent to both VFG and AG.Feautrier and Redon work. Systems of Linear Recurrence Equations (SLRE) [RF93] are closeto F-relations. However many important details in de�nitions and algorithms di�er.First, [RF93] uses Quasi-A�ne Search Trees (quasts) to represent SLREs while we use F-relations to represent VFGs. We refer reader to comparison of dependence relations and quasts in[PW93, Mas94], because this comparison is appropriate for F-relations and SLREs.Second, in [RF93] the system graph that is analogue of our characteristic graph has an arc(R1; R2) if some reference x appears both in the left hand side of R1 and in the right hand side ofR2, while we also require transfer set Transfer(R1; R2) to be not empty. This additional requirementmakes our characteristic graph more precise.Our characteristic graph is more re�ned than system graph of [RF93] in other respects too.Consider example in Figure 12. Characteristic graph of the F-relation (17) has no cycles, whilesystem graph of the equivalent SLRE (18) has a cycle (Q1; Q1) that creates a false impressionthat there is an iterative computation going on at Q1. We have more re�ned characteristic graphthat allows deeper propagation, because we require conditions at the simple F-relation to be singleconjunct, while in [RF93] conditions at one SLRE equation can be arbitrary disjunction of conjuncts.Third, we think that [RF93] propagation algorithm is excessively cautious, because they do notallow splintering of the system graph nodes at all and their propagation condition (SLRE to bepropagated should be used only in one other SLRE) is too stringent. As even a relatively small setof our examples (Figures 1, 2, 3) shows, in dependence analysis we need to perform propagationeven if SLRE is used in two or more places, and [RF93] cannot do it.7 ConclusionIn this paper we introduced Value Flow Graph that exactly represents
ow of values in a�neprogram fragment. We presented algorithms that (1) compute VFG, (2) propagate values throughVFG and are not embarrassed by values carried across the loop iterations by array elements, (3)use results of global propagation to compute exact dependence information for many important14

cases of non-a�ne programs.We believe that Value Flow Graph can be used not only for enhancing dependence analysis,but also for (1) generalized recurrence recognition a la [RF93], (2) global dead code elimination,(3) global common subexpression elimination. Also we think that more experimentation is neededto measure the performance of the algorithms introduced in this paper and to �nd new areas oftheir applicability.References[B+89] M. Berry et al. The PERFECT Club benchmarks: E�ective performance evaluation of super-computers. International Journal of Supercomputing Applications, 3(3):5{40, March 1989.[BE94] William Blume and Rudolf Eigenmann. Symbolic analysis techniques needed for e�ective par-allelization of the Perfect benchmarks. Technical Report 1332, Univ. of Illinois at Urbana-Champaign, Center for Supercomputing Res. & Dev., 1994.[Blu92] William Joseph Blume. Success and limitations in automatic parallelization of the PerfectbenchmarksTM programs. Master's thesis, Dept. of Computer Science, U. of Illinois at Urbana-Champaign, 1992.[BMO90] R. A. Ballance, A. B. Maccabe, and K. J. Ottenstein. The program dependence Web. Proc. SIG-PLAN'90 Symp. on Compiler Construction, pages 257{271, June 1990. Published as SIGPLANNotices Vol. 25, No. 6.[CFR+91] R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F. K. Zadeck. E�ciently computingstatic single assignment form and the control dependence graph. ACM Trans. on ProgrammingLanguages and Systems, 13(4):451{490, October 1991.[Fea91] Paul Feautrier. Data
ow analysis of array and scalar references. International Journal of ParallelProgramming, 20(1), February 1991.[FOW87] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The program dependence graph and its use inoptimization. ACM Trans. on Programming Languages and Systems, 9(3):319{349, July 1987.[HP92] M. Haghighat and C. Polychronopoulos. Symbolic program analysis and optimization for parallelcompilers. Technical Report 1237, CSRD, Univ. of Illinois, August 1992. Presented at the 5thAnnual Workshop on Languages and Compilers for Parallel Computing, New Haven, CT, August3-5, 1992.[JP93] Richard Johnson and Keshav Pingali. Dependence-based program analysis. In ACM '93 Conf.on Programming Language Design and Implementation, pages 78{89, June 1993.[Mas94] Vadim Maslov. Lazy array data-
ow dependence analysis. In ACM '94 Conf. on Principles ofProgramming Languages, January 1994.[Pug91] William Pugh. Uniform techniques for loop optimization. In 1991 International Conference onSupercomputing, pages 341{352, Cologne, Germany, June 1991.[Pug92] William Pugh. The Omega test: a fast and practical integer programming algorithm for depen-dence analysis. Communications of the ACM, 8:102{114, August 1992.[PW93] WilliamPugh and David Wonnacott. An evaluation of exact methods for analysis of value-basedarray data dependences. In Sixth Annual Workshop on Programming Languages and Compilersfor Parallel Computing, Portland, OR, August 1993.[RF93] Xavier Redon and Paul Feautrier. Detection of recurrences in sequential programs with loops.In Arndt Bode, Mike Reeve, and Gottfried Wolf, editors, Proceedings of the 5th InternationalParallel Architectures and Languages Europe, pages 132{145, June 1993.15

[Tar72] R. E. Tarjan. Depth �rst search and linear graph algorithms. SIAM J. Computing, 1(2):146{160,1972.[Voe92a] Valentin V. Voevodin. Mathematical Foundations of Parallel Computing. World Scienti�c Pub-lishers, 1992. World Scienti�c Series in Computer Science, vol. 33.[Voe92b] Vladimir V. Voevodin. Theory and practice of parallelism detection in sequential programs.Programming and Computer Software (Programmirovaniye), 18(3), May 1992.[WCES94] Daniel Weise, Roger Crew, Michael Ernst, and Bjarne Steensgaard. Value dependence graphs:Representation without taxation. In ACM '94 Conf. on Principles of Programming Languages,January 1994.[Wol92] Michael Wolfe. Beyond induction variables. In SIGPLAN Conference on Programming LanguageDesign and Implementation, San Francisco, California, June 1992.[Yer73] A. P. Yershov. Current state of program schemes theory. Problems of Cybernetics (in Russian),27:87{110, 1973.

16

