UMIACS-TR-94-80 July, 1994
CS-TR-3310

Global Value Propagation Through Value Flow Graph
and Its Use in Dependence Analysis

Vadim Maslov

vadik@cs.umd.edu

Institute for Advanced Computer Studies
Department of Computer Science

University of Maryland, College Park, MD 20742

Abstract

As recent studies show, state-of-the-art parallelizing compilers produce no noticeable
speedup for 9 out of 12 PERFECT benchmark codes, while the speedup that was reached
by manually applying certain automatable techniques ranges from 10 to 50. In this
paper we introduce the Global Value Propagation algorithm that unifies several of these
techniques.

Global propagation is performed using program abstraction called Value Flow Graph
(VFG). VFG is an acyclic graph in which vertices and arcs are parametrically specified
using F-relations. The distinctive features of our propagation algorithm are: (1) It
propagates not only values carried by scalar variables, but also values carried by individual
array elements. (2) We do not have to transform a program in order to use propagation
results in program analysis.

In this paper we focus on use of the VFG and global value propagation in array
dataflow analysis. F-relations are used to represent values produced by uninterpreted
Sfunction symbols that appear in dependence problems for non-affine program fragments.
Global value propagation helps us to discover that some of these functions are in fact
affine.

This work is supported by an NSF PYI grant CCR-9157384 and by a Packard Fellowship.

Global Value Propagation Through Value Flow Graph
and Its Use in Dependence Analysis

Vadim Maslov
Computer Science Department
University of Maryland, College Park, MD 20742
vadik@cs.umd.edu, (301) 405-2726, fax (301) 405-6707

May 5, 1994

Abstract

As recent studies show, state-of-the-art parallelizing compilers produce no noticeable speedup
for 9 out of 12 PERFECT benchmark codes, while the speedup that was reached by manually
applying certain automatable techniques ranges from 10 to 50. In this paper we introduce the
Global Value Propagation algorithm that unifies several of these techniques.

Global propagation is performed using program abstraction called Value Flow Graph (VFG).
VFG is an acyclic graph in which vertices and arcs are parametrically specified using F-relations.
The distinctive features of our propagation algorithm are: (1) It propagates not only values
carried by scalar variables, but also values carried by individual array elements. (2) We do not
have to transform a program in order to use propagation results in program analysis.

In this paper we focus on use of the VFG and global value propagation in array dataflow
analysis. F-relations are used to represent values produced by uninterpreted function symbols
that appear in dependence problems for non-affine program fragments. Global value propagation
helps us to discover that some of these functions are in fact affine.

1 Introduction

Automatic parallelization of the real Fortran programs does not live up to user expectations yet.
As the recent studies [Blu92, BE94] show, state-of-the-art parallelizing compilers produce no no-
ticeable speedup for 9 out of 12 PERFECT benchmark codes, while the speedup that was reached
by manually applying certain automatable techniques (techniques that can be implemented in a
compiler) ranges from 10 to 50.

Several of these important techniques are special cases of teh Global Value Propagation that we
introduce in this paper. The basic idea of our approach is to compute Value Flow Graph (VFG)
for a given program fragment and then to perform global value propagation using this graph. Each
vertex of VFG is a single statement instance and set of all vertices forms iteration space of the
program. There is an arc from vertex a to vertex b if statement instance a directly passes value to
statement instance b.

The main distinctive features of the Value Flow Graph are: (1) It is acyclic graph because every
statement instance is executed only once, (2) It is parametrized graph, because number of vertices
and arcs in VFG is not known statically, it is a parameter of a program. (3) For affine program
fragments (fragments in which all subscript functions, IF conditions and loop bounds are affine
functions of loop variables and symbolic constants) we can compute exact VFG, that is, VFG in

DO i =1, Mb Sz.Lminfe, 5, k] =7 | 1<j<i=k<Mb (1)
= Ss.lminfi, j, k=1 | 1<j<i<k<Mb

DO j 1, 1
Si: Lmin = j
S2: Lmax = i ikl =1) <1=
A [S3.Lmax[i, j, k] =i | 1<j<i=k<Mb (2)
=i, .. _ . -
S3: DO 1 = Lmin, Lmax SaLmax{i, j k] = L | 1sjsi<ksMb
S4: EN)SKII;C(JI) = ... 1<j<i<k<Mb A (3)
S3.Lmin[i, j, k] <1< S3.Lmax[i, j, k]
S5: Lmin = 1 ; ;
S6: Lmax = k + 1 1§].§l.§l—k§1"[b\/ (4)
EID DO 1<j<i<k<Mb A 1<I<k+l
END DO
END DO

Figure 1: Fragment of OLDA of TRFD

which for every argument of every statement instance we know coordinates of just one statement
instance that supplies the values used by this argument. Value Flow Graph for non-affine program
fragments is only approximate.

We represent VFG using F-relations (functional relations). The formal definition of F-relation
is given in Section 2. In Section 3 we present algorithm that computes F-relations for given program
fragment. Since existing graph algorithms do not work on parametrized graphs directly, we intro-
duce the Characteristic Graph (CG) that serves as compact representation of VFG. Characteristic
graph has a fixed number of vertices, but there’s a price to pay — CG may have cycles.

The three algorithms presented in Section 4 perform global value propagation with varying
degree of aggressiveness and performance. The main distinctive features of these algorithms are:
(1) They propagate not only values carried by scalar variables, but also values carried by individual
array elements. (2) They change VF'G and characteristic graph of a program but we do not have
to transform a program in order to use global propagation results in program analysis.

In this paper we focus on use of F-relations and global value propagation in array dataflow anal-
ysis. In Section 5 we introduce an extension of the Lazy Array Dataflow Analysis Algorithm [Mas94]
that uses F-relations to represent values produced by uninterpreted function symbols that appear
in dependence problems for non-affine program fragments. Global value propagation helps us to
discover that many of these uninterpreted functions are in fact affine functions of loop variables.
This makes dependence problem affine and therefore increases precision of dependence analysis for
non-affine program fragments.

In the remaining part of introduction we consider examples of the real Fortran programs from
the PERFECT benchmark suite [BT89] and show how use of F-relations and value propagation
makes it possible to compute exact dependence information for them.

1.1 Propagating values of scalar variables

In the program fragment in Figure 1 the variables Lmin and Lmax are assigned within the k loop.
Since these variables are used as lower and upper bounds for loop 1, the existing systems cannot
determine statically what elements of the array XKL are being written and therefore they cannot
parallelize loops i, j and k.

However, it is not difficult to see that Lmin and Lmax are piecewise-affine functions of the loop

SO: I1 = 1 [S3 Il =1 | Ja sit.l=2a+1 A 1<I<LN1 5)
S1: IP(1) = X S3. Il =2 | Jast.l=2a AN 1<I<N1

DOl =1, Nl)
52 12=3-11 [55121 =2 | Ja st l=20+41 A 1<I<NI (6)
§3: IP(I2) = IP(I1) | S3.I2[l]=1 | Jast.l=2a A 1<I<NL

sa: 11 =12
END DO S3.IP(I1)[l] = 51

(7)

S3.IP(I1)[]] = Safi-1] | 2<i<N1
1] (=1

Figure 2: Fragment of CFFT2D1 (simplified)

variables i, j and k that can be expressed as F-relations (1) and (2). Substituting these functions
to the non-affine set of constraints (3) that describes execution conditions for the statement Sy, we
discover that these constraints become affine constraints (4). Having affine execution conditions
we can parallelize loop 1 if other criteria are satisfied.

The generalized induction variable recognition techniques [Wol92, HP92] can recognize that
Lmin and Lmax are wrap-around variables. However, the existing systems have to transform the
program in order to use this information in dependence analysis. In this example they have to peel
off the first iteration of loop k. We think that program analysis techniques that need to transform
the program should be avoided for several reasons:

o User of parallelizing environment expects that when the environment is asked to analyze a
program, it does not change the program.

e Analysis-enabling transformations are not justified by anything except needs of the depen-
dence analyzer. As a result, in a number of cases they can cause program slowdown and
increase program size considerably.

o These transformations are not always possible. For example, in Figure 2 no transformation
can make dependence analyzer to believe that periodic variables I1 and I2 are affine functions
of loop variable 1. However, using F-relations (5) and (6) that describe values of I1 and I2
as affine functions of 1 we can compute exact F-relation (7) for statement 95.

So we use techniques [Wol92, HP92] to compute closed form of generalized scalar induction
variables. However, we do not substitute these closed forms to the places in program where these
variables are used. Instead we substitute F-relation that expresses their closed form to the depen-
dence problem involving references to these variables.

To compute closed form of array references we need to employ more general techniques of
[RF93]. However, none of the benchmark studies yet claimed that recognizing array reductions
may be useful for dependence analysis. So we restrict us to recognizing scalar reductions only.

1.2 Propagating values of array elements

Consider a program fragment in Figure 3. Suppose we should run the loop nest k (statements
from Sg to S12) on distributed memory machine and the memory distribution is such that XY(j, k,4)
is aligned with X(j, k). For statement Sy the existing systems cannot generate efficient communi-
cations code, because they do not know at compile time that the value of scalar variable Jm (and
therefore, value of array element JMINU(J)) used in subscript of array X is affine function of j.

Using the global value propagation, we compute F-relation (9) that makes it clear that for all

C-—- subroutine INITIA -—- C--- subroutine XIDIF --—-

DO j = 1, Jmax DO k = Kb, Ke
Si: JUINU(j) = j - 1 S8: DO j = Jlow, Jup
END DO S9: Jm = JMINU(j)
IF (.NOT.p) THEN S10: XY(j,k,4) = X(Jm,kK) + ...
S2: JMINU(1) = 1 END DO
S3: Jlow = 2 IF (.NOT.p) THEN
S4: Jup = Jmax - 1 Si1: XyY(1, k,4) = X(1,k) + ...
ELSE S12: XY(Imax,k,4) = X(Jmax,k) + ...
S5: JMINU(1) = Jmax ENDIF
S6: Jlow = 1 END DO
ST7: Jup = Jmax
ENDIF . _ .
Jw=1 A ky=k. AN Ko<k, k. <Ke A Ss.Jlow[k,]<j, <Ss.Jup[ky] A —p (8)
S10.Jmlk, jl = j—1 | Kb<k<Ke A 2<j<Jmax Sg.Jlow[k] = 2 | Kb<k<Ke A -p
S1o.Jm[k, j] = Jmax | Kb<k<Ke A p A j=1 Sg.Jlowlk] =1 | Kb<k<Ke A p
S10.-Jmlk, j] =1 | Kb<k<Ke A -p A j=1 Sg.Jup[k] = Jmax—1 | Kb<k<Ke A -p
(9) Sg.Jup[k] = Jmax | Kb<k<Ke A p

Figure 3: Fragment of XIDIF of ARC2D

J > 2 the statement instance Sig[k, j] reads value from the array cell X(j — 1,k). This fact makes
generating the efficient communication possible.

Also we are able to prove that output dependence Sig ¢© 511 does not exist. To compute this
dependence we build dependence problem (8) and substitute into it F-relations (10) that describe
values of variables Jlow and Jup. Simplifying we find that (8) has no solutions.

2 Definitions

Affine program fragment. Affine program fragment (APF)is a body of procedure or a body
of one of the loops of procedure. APF consists of assignment statements, structured IF statements
and DO loop statements (GOTO statements are not allowed) such that in every statement all (1)
subscript functions, (2) conditions in IF statements, and (3) loop bounds should be explicit affine
functions of loop variables and symbolic constants assigned outside the fragment (that is, they
have form ¢ + >_1; ¢;z;, where ¢; are integer constants and v; are variables). If either of these
requirements is not satisfied, the program fragment is called non-affine.

The smaller the program fragment, the more likely it will be affine. For example, in program in
Figure 1 the body of the loop 1 is affline program fragment, but the body of the loop k is non-affine
fragment, because lower and upper bounds of the loop 1 are assigned within the fragment and
therefore they are not explicit affine functions of k and [.

Tuples and Statement instances. Tuple is simply an ordered set of integers. Tuples are
denoted with bold letters, such as w,r,s. Tuple of length n represents a point in n-dimensional
space.

The smallest unit of computation we consider in this paper is statement instance. The statement

instance S[v]is specified by S — statement of the program, and v — tuple of loop variables values
(loops that surround the statement S are included). For example, in Figure 1 statement S; has

(10)

F-relation ‘ F-relation instance

Salig] =2ij2 [1<i<j<N | S[.7] =1

S,[i] = In.A(2N—i) 11<i<N | S[1] = In.A(2)

Ss[i, 5] = Si[i] + 285[i,5] | 1<i<j<N | S5[7.8] = 54[7] + 285[7, 8]
Out.B(i,i) = Sui] |11<i<N | out.B(3,1) = S5[5]

Figure 4: Examples of F-relations and their instances

Mb(Mb+1) . .. R .
% instances Sq[7, j]| 1 <j<i<Mb.

In affine fragments that we consider DO loops and IF statements are used to shape the iteration
space, and actual computations are performed exclusively by assignment statements. Therefore we
call assignment statement instances simply “statement instances”.

F-relations. Functional relation (or F-relation) is an extension of the concept of dependence rela-
tion introduced in [Pug91]. F-relation is a union of one or more simple F-relations. Mathematically,
simple F-relation is a parametrized set of equalities that define statement instances in the left hand
side of relation as a function F’ of statement instances, initial memory reads and constants in the
right hand side of the relation. General form of simple F-relation is:

Siw] = F(Si[r1], - Sip[tm]s InAj (s1), .., InA; (85); ¢) | p(F1, .o, T} 81,400,805 T} W)

where p is a conjunction of affine constraints. Examples of F-relations and their instances are given
in Figure 4. The semantic meaning of this simple F-relation is:

for all r1,...,r0m; S1,...,8,; ¥; W if p(ry,..., 05 S1,...,8,; r; W) is True then statement
instance S[w]is a result of application of function F to the values of statement instances
Sir1]s ooy Si[rm], values of initial memory cells In.Aj (s1), ..., In.A; (s,) and value of
tuple r.

Terms in the right hand side of F-relation are called arguments of F-relation. Arguments specify
the sources of values consumed by F-relation. There are three types of arguments:
e r: constant. Consume value of a constant.

e In.A;(s;): memory read. Consume value of memory cell that it had before execution of the
affine program fragment represented by F-relation.

o 5, [r]: statement instance. Consume value computed by another statement instance.
Values computed by F-relation can be used in two ways:

e S[w]| = x: Value of 2 becomes a value of statement instance S[w] (to be consumed by another
statement instance).

o Out.Ay(s;) = z: Value of z is written to a memory cell that is used after execution of the
affine program fragment represented by F-relation.

We can represent input and output statements as reads from and writes to global file memory, so
F-relations are sophisticated enough to represent real programs.

Correctness properties of F-relations. F-relation R should satisfy certain criteria to be cor-
rect:

1. There should be no contradictory definitions for every statement instance. That is, if some
statement instance S[v]is defined twice: S[v] = F(ArgList;) and S[v] = G(ArgList,), then
I = G and Arglist; = ArglList,.

2. There should be no cycles. That is, for every statement instance S[v] there should not exist
chain of simple F-relation instances that defines S[v] as a function of itself.

3. In F-relation R that represents a complete affine program fragment, then all statement in-
stances should be defined. That is, for every statement instance S[v] that appears as an
argument of some simple F-relation from R there should exist a definition of S[v]in R.

Operations over F-relations.

Domain(R): Domain of F-relation R.
This is a set of statement instances consumed by F-relation R:

Domain(R) = {S;[r1] U -+ U S [tn] | Tey e (P(T1, ooy Ty 81, 0y 8y B3 W)}

Domain(R.S;,[r;]): Domain of F-relation R with respect to its argument S; [r].
This is a set of statement instances consumed by reference 9; [r;] of F-relation R:

Domain(R.S;,[r1]) = {9,[ri] | me,(p(r1, ..., tmis1, ooy Sp3 T3 W)}

Range(R): Range of F-relation R.
This is a set of statement instances produced by relation R:

Range(R) = {9[w]| mw(p(r1,..csTmiS1, .oy Sp; T3 W))}

Value Flow Graph (VFG): geometric interpretation of F-relation. F-relation that repre-
sents an affine program fragment has an elegant geometric interpretation called Value Flow Graph.
We build VFG for the F-relation R in the following way:

e lor every statement instance S[v] € Range(R), we create a vertex S[v]in VFG.

o If statement instance S1[vy] is an argument of F-relation instance that computes S3[vq], (that
is, if S1[v1] directly passes value to S3[vs]) we create a directed arc (S1[vy], S2[ve]) in VFG.

Value Flow Graph is an directed acyclic parametrized graph that exactly describes flow of values
in affine program fragment. Actually, VFG of program fragment P or corresponding F-relation can
be viewed as a parametrically specified function from memory before execution of P to memory
after execution of P.

Since every statement instance stores only one value and it does it only once in execution of
program P, Value Flow Graph is memoryless program representation. Indeed, VFG specifies what
statement instances pass values to what statement instances, but it does not specify what memory
cells are used for intermediate storing of these values.

Machinery used: Presburger arithmetic solver. In definition of F-relation the problem
P(r1, .y T S1,...,8p; T3 W) is a conjunction of affine equalities and inequalities over integers. Our
algorithms require the following operations to be performed on problems like p: py A pa2, p1 V pa,
-p, 3 v skt p, ¥V v:p. These operations produce Presburger arithmetic formulas. We simplify these
formulas to Disjunctive Normal Form (DNF) using the Omega test [Pug92, PW93].

Often instead of 3 we use more convenient projection operator introduced in [Pug92]:

mv(P(v,w))=3 ws.t. P(v,w)

3 Computing VFG for affine fragments

In this section we present algorithm to compute Value Flow Graph for a given affine program
fragment:

1. For every assignment statement
S:oa=F(by,ba,.ccibp;v)

where v is a tuple of loop variables surrounding .5 and by, ..., b,,, are array or scalar references,
create simple F-relation

Slv] = F(S;,[v], Si,[v], ..., 95, [v]; v) | S.IsExecuted(v)

Please note that in addition to instances of statement S we create statement instances for
each argument of I’ that is a reference to scalar variable or array.

2. Compute exact value-based dependences for each read reference using algorithm [Mas94].
These dependences are expressed as dependence relations [Pug91]:

Se[w] = Si[v]| p(w,v)
Convert each dependence relation to equivalent F-relation:

Si[v] = Sa[w]| p(w,v)

3. Propagate all assignments for statement instances 5;[v] to the statement where they are
used, that is, to the statement S. Since each 5;[v] is used only in F-relation for 5, this
propagation is simple.

This simple algorithm just translates dependence relations computed for affine program frag-
ments to F-relations. The more sophisticated dependence analysis algorithm introduced in Section 5
uses global propagation to compute exact dependence information for certain non-affine programs.
For example, for program in Figure 5 [RF93] F-relation (11) is computed.

4 Global Value Propagation

4.1 Characteristic Graph

Since number of vertices in Value Flow Graph is not known at compile time, regular graph manip-
ulation techniques do not readily apply to VFGs . To make Value Flow Graph more manageable
we build Characteristic Graph (CG) that represents VF'G. F-relation R that consists of n simple
F-relations Ry, ..., R, is represented by CG constructed in the following way:

'Number of vertices in VFG is finite, but since this number is not known at compile time, it can be arbitrarily
large. However, we think that parametrized graphs that we consider are not infinite graphs mentioned in graph
theory.

R1 . Sl [] =0
S1: X(0) = 0 R ZSQ[i]IIn.X(QN—i—I—l) |1§Z§N
DO i = 1, 2%N Rs : Sz[i] = Sg[?N—i—l—l] |N—|—1§i§2]\7 (11)
S2: SAVE(i) = X(2%N-i+1) Ra 2 S5[1] = S [1] + S5 [1] .
$3: X(i) = X(i-1) + SAVE(Q) Rs : S3[1] = Sali-1] 4+ 52[1] |2<i<2N
END DO
(R1, Ra), (Ro, Ra), (R2, Rs), (Rs, Rs), (Ra, R3), (R4, Rs), (R5, R3), (Rs, Rs) (12)
Ry : Soli] = S3[2N—it1] | N41<i<2N R, : S3[1] = In. X (2N)
R, : S3[1] = In.X(2N) R : Ss[i] = Ss[i-14In X (2N—itl) |2<i<N
R. : Sli] = S3[i1] + In.X(2N—if1) |2<i<N R S3li] = Salicl]+83[2N—i1] | N41<i<2N
RY - S3li] = Sai-1] + Sa[i] | NHL<i<2N (14)
(13

Figure 5: Program, its VFG and characteristic graph

Propagate(Ry, R2.51[v3]) Begin
Given:
Simple F-relation Rq: S1[vq] = F(Args,(u1)) | p(vi,uy)
Simple F-relation Ry: S3[w]| = G(51][va], Argsy(uz)) | ¢(w, vz, uz)
Perform propagation only if Transfer(Ry, R3.51[v2]) is not empty:
Transfer(Ry, R2.51[v3]) = Range(R1) N Domain(R3.51[v2])
= {S1[vi] | v, (p(vi,m) A g(w,vz,u2) A vi=va)}
Replace Ry with R, U RY:
Ry 2 Solw] = G(F(Args;(u1)), Argsy(ug)) | Tw v, up(P(Vi,u1) A ¢(W, v, ug) A vi=vy)
RY : So[w] = G(51[va], Argsy(uz)) | ¢(w,ve,uz) A “Tw v, (p(Vi,u1) A g(w,va,uz) A vi=V3)
In characteristic graph:
Remove arcs coming to and from Ry
Compute transfer sets for R}, and R/ and add corresponding arcs to CG
If (vertex Ry has no incoming arcs) Remove vertex Ry from the CG

End
Figure 6: Algorithm to perform single propagation

o For each simple F-relation R; we create one vertex in CG. Therefore CG has n vertices.

o Lor each pair consisting of simple F-relation R; and argument S[v] of simple F-relation R;
we compute transfer set: Transfer(R;, R;.5[v]) = Range(R;) N Domain(R;.S[v]). If this set is
not empty we add to the CG arc (R;, R;) loaded with its transfer set Transfer(R;, R;.S[v]).

Characteristic graph is a finite graph with statically known number of vertices, but unlike VFG
it can have cycles. These cycles reflect the recurrent nature of computations that take place in
scientific programs. For example, F-relation (11) representing a program from Figure 5 consists of
5 simple F-relations. Therefore, CG of this program has 5 vertices. Characteristic graph arcs are

listed in (12). There are 2 cycles in the CG: (Rs, R5) and (Rs, Rs, R3).

4.2 Single act of propagation

Function Propagate presented in Figure 6 propagates statement instances computed by simple F-
relation Ry to argument Sq[vs] of simple F-relation Ry. The function checks that transfer set from

SafePropagation(F-relation R) Begin
DoWhile (exists simple F-relations Ry, Rz € R and argument S[v] of Ry
such that Transfer(Ry, Ry.5[v]) = Domain(R3.5[v]))
Propagate(Ry, R2.5[v])
EndWhile
End

Figure 7: Safe propagation algorithm that avoids splintering

Ry to Ry.51[v2] is not empty. Otherwise there is nothing to propagate.

Basically this function replaces instances of S1[vy] with expressions from Ry that compute their
values. Since R; does not necessarily compute values for all instances of 51[vs] used in Ry, some
instances of unpropagated Ry (denoted as RY) are left intact. Since the computation of RY involves
negation, RY can contain more than one simple F-relations.

Let’s consider example in which the algorithm is asked to propagate simple F-relation Ry to
the argument S3[js] of simple F-relation Rs (both simple F-relations are part of (11)):

R2 : 52[21] = IIIX(’LQ) | 1§’Ll SN A 7/2:2N_7/1‘|‘1
Rs 2 S3[51] = S3lys] + S2lj2] 12<1=72<2N A ja=jo—1

We find that Transfer(Ry, R5.52[j2]) = {52[¢] | 2<i< N} is not empty and then the result is:

R2 : 52[21] = IIIX(’LQ) | 1§’Ll SN A 7/2:2N_7/1‘|‘1
Ri’) : 53[]1] = IIIX(’LQ) + 53[]3] | 2§]1 SQN A 7/2:2N_7/1‘|‘1 A j3 Ij2—1
RY @ S3[j1] = Sa[ja] + S3[Js] | N41<j1=72<2N A ja=ja—1

4.3 Value Propagation algorithms

In this section we present several algorithms that perform value propagation for the whole
program fragment. The algorithms differ in performance and aggressiveness. The propagation is
done as a series of invocations of Propagate function.

Propagating values in VFG is not simple. Simply invoking Propagate for every arc in the

characteristic graph may result in infinite sequence of substitutions. For example, it happens in
the following sequence of substitutions:

Ry S[l] = o Ry S[1] = a0
Ry 2[1]_:;505 LN 9<i<N T R’; S[2] - FO(Z‘O) = Riz 2[2] _ ﬁ(?) -
Ry 1 S[i] = F(S[i-1]) | 2<i< Rs: Sl = F(S[i—1]) | 3<i< N gi S%Z];F((S[l('ff]))) |4<i<N

(15)

Our algorithms avoid this problem.

The safe propagation algorithm presented in Figure 7 propagates values only along the char-
acteristic graph arcs that alone carry all the value instances consumed by argument of F-relation.
This guarantees that consumer F-relation will not splinter as a result of propagation. Therefore
every single act of propagation never increases number of vertices in CG. Actually the number of
vertices may decrease if producer F-relation becomes unused after propagation. Since with every
propagation values move closer to the place where they are consumed and the number of vertices
in CG does not increase, the safe algorithm is guaranteed to terminate. The safe algorithm can be
used in any application, however it can miss some important propagations.

ConstantPropagation(F-relation R) Begin
Find Strongly Connected Components (SCCs) in CG using Tarjan algorithm [Tar72]
For (component ' in SCCs of characteristic graph in topological order)
If (C is a single vertex z such that no (z,z) self-arcs exist) then
For (y in immediate successors of z)
If (y is not involved in a cycle) Propagate(z,y)
EndFor
EndIf
EndFor
End

Figure 8: Aggressive constant propagation algorithm

HeuristicPropagation(F-relation R) Begin
ArcSet WorkSet := all arcs of characteristic graph for F-relation R
While (WorkSet is not empty)
Arc (2,y) := remove an arc from WorkSet
If (Transfer(Ry, Ry.5[v]) = Domain(R3.5[v])) then
Propagate(z, y)
Add to WorkSet new arcs that appeared in CG due to propagation
Elself ((«,y) is not self-arc) then
Try to Propagate(z,y)
If (cost function of R decreases with this propagation) then
Commit this propagation
Add to WorkSet new arcs that appeared in CG due to propagation
Else
Undo this propagation
EndIf
EndIf
EndWhile
End

Figure 9: Heuristic propagation algorithm

The safe algorithm completely avoids splintering. However, if splintering does not lead to infinite
sequence of substitutions, it may be useful, because it allows deeper propagation. Since this paper
is focused on making dependence analysis more precise and propagation of parametrized constant
values makes this happen, we developed aggressive constant propagation algorithm presented in
Figure 8. This algorithm does not propagate values to the vertices inside strongly connected
components to avoid infinite splintering, it only propagates values from the characteristic graph
constant leaves to the consumer vertices not involved in cycles. Since vertices involved in cycles
never splinter, number of vertices in CG can increase only by a finite number.

Heuristic propagation algorithm presented in Figure 9 combines some aggressiveness of constant
propagation algorithm and cautiousness of safe propagation algorithm. It always performs safe
propagations first. Then it uses heuristic cost function to decide whether unsafe propagation makes
the characteristic graph better. Since every single act of propagation is allowed only to decrease
the cost of graph, the algorithm is guaranteed to terminate and it will produce CG that is better

10

than original characteristic graph. Currently the cost function is “number of vertices in CG plus
maximum length of a cycle in CG”.

We think that the heuristic algorithm should not be used in dependence analysis, but it is
suitable for applications that require “deep” propagation. For instance, it can be used in generalized
recurrences recognition [RF'93].

Heuristic Propagation example. The heuristic algorithm performs the following steps when
working on program in Figure 5. First, in (11) we try safe propagations: we propagate Ry to
R4.51[1] and Ry to R4.53[1]. We also try to propagate Ro to Rs.52[i]. This propagation proves to
be beneficial because while number of simple F-relations stays the same, the cycle (Rs, Rs, R3) of
length 3 is broken into two cycles (Rs, Rs5) and (RY, RY), each of unit length. The result of these
propagations is F-relation (13).

On next iteration we perform safe propagation of Rz to RY.5;[i]. We also try to propagate R
to R%.S5[i—1] but this results only in increase of number of CG nodes, so we undo this propagation.
Finally we get F-relation (14) which is simpler than the original F-relation (11).

5 Array dataflow dependence analysis using VFG

In Figure 10 we present an extension of Lazy Array Dataflow Dependence Analysis Algorithm
[Mas94]. The basic idea of this extension is to substitute to non-affine constraint values of non-affine
references obtained by global value propagation. This substitution often makes the constraint affine,
and therefore we stay in domain of exact dependence analysis. The numbered lines of algorithm
constitute the extension proposed in this paper and details of the rest of the algorithm are given
in [Mas94].

So, let’s imagine that we build a dependence problem DepProb that has references to scalar and
array references ay, ..., a, and these references are not explicit affine functions of loop variables and
symbolic constants (line 10). We break this problem into two parts: first part (/') contains only
non-affine constraints, second part (L) contains only affine constraints:

DepProb(v) = F(ai1(v),...,a(v);v)>0 A L(v)

Then we compute F-relations for each non-affine reference (line 11). That is, we call the depen-
dence analysis routine recursively and ask it to compute source function for references aq, ..., a,. To
avoid recursive cycling, we memorize in stack all read references for which source function is being
computed (line 3) and if the given reference is already in stack (line 2), it means that dependence
problem for the reference includes the reference itself (like in Example 2 below). In this case we
give up on propagation and compute an affine approximation of the non-affine dependence relation.

After we computed F-relations for references aq, ..., a; and they are all affine, we create F-relation
Rp that represents values computed by function F:

Rp: Sp[v] = F(Sa,[V], s Sa[V]) | L(¥)

and propagate I-relations for Sy, [v], ..., 5,[V] to Rp. As a result of propagation Rp can splinter.
If the resulting relation arguments are constants, then the original non-affine constraint can be
converted to affine form. That is, when each simple F-relation R, that is a member of Rp after

propagation has a form
Rp: Splvl=F'(v,w)| L'(v,w)

11

Relation SourceFunction(RR.A4) Begin
Input: R.A is a read reference surrounded by n loops with variables v = (71, ..., rp).
(* Compute dependence relation that represents source function for R.A)
1: Static stack AlreadylnAnalysis
If (AlreadyInAnalysis contains R.A) Return (NonAffine)
3: Push R.A to stack AlreadylnAnalysis
Relation DepRel := {0}
Dnf NotCovered(r) := IsExecuted (R[r])
Statement W := R
While (NotCovered is feasible) do
W := statement preceding statement W
Statement W is surrounded by m loops with variables w = (w1, ..., wp)
If (W is assignment statement that writes to array of R.A) then
Build dependence problem DepProb(w,r) for dependence from W to R.A
10: (a1, ..., aq) := list of non-affine references in DepProb)
11: For (i := 1 to ¢) R; := SourceFunction(a;)
12: If (all of R; are Affine) then

[\]

13: Create F-relation Rp that represents values computed by DepProb(w,r)
14: Propagate to Rp values carried by relations Ry, ..., R,

15: If Domain(Rp) = {0} then convert DepProb to affine form

16: Else

17: Source function for R.A is non-affine. Compute its affine approximation.
18: EndIf

Relation Cmaz := RelMaxl¢ (W([w] — R.A[r] | DepProb(w,r))
DepRel :== DepRel U Cmaz
NotCovered := NotCovered A —Range(Cmaz)
... AND so ON, SEE [Mas94] ...
EndIf
EndDo
20:Remove R.A from top of stack AlreadyInAnalysis
Return (DepRel)

Figure 10: Lazy dependence analysis combined with global value propagation

where F” is an affine function and w is a tuple of variables added by propagation, then for each
'» we generate affine constraint

Fl(v,w)>0 A L'(v,w)

The sum of generated constraints is equivalent to the original non-affine constraint.

Example 1: constraint affinization using propagation. Computing the source function for
reference S3.IP(I1) in Figure 2 we build the following dependence problem:

P,) = (S3.I1[1]=55.12[1,] A 1<1, <l, <N1)

Since equality constraint is not affine, we compute F-relations (5) and (6) for references 55.I1 and
53.12. Then we build F-relation for non-affine constraint:

Spllw,] = S3.11[l] — $3.12[1,] | 1 <1, <1, <N1

12

1<ty <, <N A S1.A(L)[0y] =14, 16
e iy <i SN A SyADli] =i (16)

S1: ACA(D)
END DO

n =

X

Figure 11: Propagation cycle example

and propagate F-relations (5) and (6) to this F-relation:

Spllw, l;] = =1 | 1<, <[, <NL1 A [, =2a+41 A [, =25+1
Spllw, ;] =0 | 1<, <[, <N1 A ly=2a A, =203+1
Spllw, ;] =0 | 1<, <[, <N1 A ly=2a41 A [, =20+1
Spllw, ;] =1 | 1<, <[, <N1 A l,=2a A 1,=20

Since now Splly,[.] has constant values only, we convert it back to constraint form Sp[l,,] = 0,
simplify and get:
(1<l <[, <N1 A I, =2a A1, =25+1)V
Pl) = 20 2120 A Gy =201 A L =2541)

Computing lexicographical maximum max¢ ({,, | p(ly,!,)) and simplifying we get dependence rela-
tion (7).

Example 2: when propagation can cycle. In a program fragment in Figure 11 dependence
problem (16) constructed when computing source function for the read reference A(i) is non-affine.
Moreover, the dependence problem refers to the source function it is computing. In this case we
do not perform propagation, we just compute affine approximation of the source function.

6 Related Work

Scalar program graph representations. In recent years there has been a flurry of research
activity in graph program representations. Static Single Assignment (SSA) form [CFR*91] and
Program Dependence Graph (PDG) [FOWS8T] were introduced. They were followed by Program De-
pendence Web [BMO90], Dependence Flow Graph [JP93] and Value Dependence Graph [WCES94].

We call these graphs scalar program abstractions, because they are oriented towards representing
data flow carried by scalar variables in program fragments without loops. When it comes to repre-
senting data flow in programs that have array references and loops, scalar abstractions essentially
cease to be dataflow representations, because the array load and store operations appear in them
and individual value path is not followed. Also when representing loops, scalar abstractions have
to distinguish between data arcs and control arcs. Contrary to the scalar program abstractions,
VFG has only one type of arcs, it does not have cycles, and it does not use memory for storing
intermediate results.

Exact array dataflow analysis techniques. The concept of F-relation is based on a concept of
dependence relation introduced in [Pug91]. The most difficult part of computing VFG is computing
exact value-based dependence relations between statements. This part is done by array dataflow
dependence analysis algorithms [Fea91l, PW93, Mas94].

13

Ry : S1[i] = So[i] | 1<i<N g § Solil | 1<i<N
Ry : 51[i] = F(S51[i-N])| N+ <i<2N (17) Qv 5l = F(S1[i-N]) | NH1<i<2N
Rs: S3fi] = G(S1[i]) | N+1<i<2N Qs : Soli] = G(S1[i]) | N+L<i<2N

18
(R1, Ra), (Ra, Ra) (Q1,Q1),(Q1,Q3) .

Figure 12: Characteristic graph vs system graph

Voevodins work. Valentine and Vladimir Voevodin [Voe92a, Voe92b] use Algorithm Graph (AG)
to represent data flow in affine programs. The Algorithm Graph is essentially equivalent to VFG
and notation used for specifying Algorithm Graphs seems to be close to F-relations. However,
authors do not formalize their notation. Also they do not discuss using the Algorithm Graph for
global value propagation.

What’s interesting, they mention review by Yershov [Yer73] in which he writes about Program
Implementation Dataflow Graph, not discussing, however, its properties and applications. This
graph seems to be equivalent to both VFG and AG.

Feautrier and Redon work. Systems of Linear Recurrence Equations (SLRFE)[RF93] are close
to F-relations. However many important details in definitions and algorithms differ.

First, [RF93] uses Quasi-Affine Search Trees (quasts) to represent SLREs while we use F-
relations to represent VFGs. We refer reader to comparison of dependence relations and quasts in
[PWO93, Mas94], because this comparison is appropriate for F-relations and SLREs.

Second, in [RF93] the system graph that is analogue of our characteristic graph has an arc
(R1, Ry) if some reference z appears both in the left hand side of Ry and in the right hand side of
Ry, while we also require transfer set Transfer(Ry, Rz) to be not empty. This additional requirement
makes our characteristic graph more precise.

Our characteristic graph is more refined than system graph of [RF93] in other respects too.
Consider example in Figure 12. Characteristic graph of the F-relation (17) has no cycles, while
system graph of the equivalent SLRE (18) has a cycle (Q1,Q1) that creates a false impression
that there is an iterative computation going on at ¢J;. We have more refined characteristic graph
that allows deeper propagation, because we require conditions at the simple F-relation to be single
conjunct, while in [RF93] conditions at one SLRE equation can be arbitrary disjunction of conjuncts.

Third, we think that [RF93] propagation algorithm is excessively cautious, because they do not
allow splintering of the system graph nodes at all and their propagation condition (SLRE to be
propagated should be used only in one other SLRE) is too stringent. As even a relatively small set
of our examples (Figures 1, 2, 3) shows, in dependence analysis we need to perform propagation
even if SLRE is used in two or more places, and [RF'93] cannot do it.

7 Conclusion

In this paper we introduced Value Flow Graph that exactly represents flow of values in affine
program fragment. We presented algorithms that (1) compute VFG, (2) propagate values through
VFG and are not embarrassed by values carried across the loop iterations by array elements, (3)
use results of global propagation to compute exact dependence information for many important

14

cases of non-affine programs.

We believe that Value Flow Graph can be used not only for enhancing dependence analysis,
but also for (1) generalized recurrence recognition a la [RF93], (2) global dead code elimination,
(3) global common subexpression elimination. Also we think that more experimentation is needed
to measure the performance of the algorithms introduced in this paper and to find new areas of
their applicability.

References

[B+89]

[BE94]

[Blu92]

[BMO90]

[CFR*91]

[Feadl]
[FOWS8T]

[HP92]

[1P93]

[Mas94]
[Pugdl]
[Pug9?]

[PW93]

[RF93]

M. Berry et al. The PERFECT Club benchmarks: Effective performance evaluation of super-
computers. International Journal of Supercomputing Applications, 3(3):5-40, March 1989.

William Blume and Rudolf Eigenmann. Symbolic analysis techniques needed for effective par-
allelization of the Perfect benchmarks. Technical Report 1332, Univ. of Illinois at Urbana-
Champaign, Center for Supercomputing Res. & Dev., 1994.

William Joseph Blume. Success and limitations in automatic parallelization of the Perfect
benchmarks”™ programs. Master’s thesis, Dept. of Computer Science, U. of Illinois at Urbana-
Champaign, 1992.

R. A. Ballance, A. B. Maccabe, and K. J. Ottenstein. The program dependence Web. Proc. SIG-
PLAN’90 Symp. on Compiler Construction, pages 257-271, June 1990. Published as SIGPLAN
Notices Vol. 25, No. 6.

R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F. K. Zadeck. Efficiently computing
static single assignment form and the control dependence graph. ACM Trans. on Programming
Languages and Systems, 13(4):451-490, October 1991.

Paul Feautrier. Dataflow analysis of array and scalar references. International Journal of Parallel
Programming, 20(1), February 1991.

J. Ferrante, K. J. Ottenstein, and J. D. Warren. The program dependence graph and its use in
optimization. ACM Trans. on Programming Languages and Systems, 9(3):319-349, July 1987.

M. Haghighat and C. Polychronopoulos. Symbolic program analysis and optimization for parallel
compilers. Technical Report 1237, CSRD, Univ. of lllinois, August 1992. Presented at the 5th
Annual Workshop on Languages and Compilers for Parallel Computing, New Haven, CT, August
3-5, 1992.

Richard Johnson and Keshav Pingali. Dependence-based program analysis. In ACM ’93 Conf.
on Programming Language Design and Implementation, pages 78-89, June 1993.

Vadim Maslov. Lazy array data-flow dependence analysis. In ACM ’94 Conf. on Principles of
Programming Languages, January 1994.

William Pugh. Uniform techniques for loop optimization. In 71991 International Conference on
Supercomputing, pages 341-352, Cologne, Germany, June 1991.

William Pugh. The Omega test: a fast and practical integer programming algorithm for depen-
dence analysis. Communications of the ACM, 8:102-114, August 1992.

William Pugh and David Wonnacott. An evaluation of exact methods for analysis of value-based
array data dependences. In Swzth Annual Workshop on Programming Languages and Compilers
for Parallel Computing, Portland, OR, August 1993.

Xavier Redon and Paul Feautrier. Detection of recurrences in sequential programs with loops.
In Arndt Bode, Mike Reeve, and Gottfried Wolf, editors, Proceedings of the 5th International
Parallel Architectures and Languages Europe, pages 132-145, June 1993.

15

[Tar72] R. E. Tarjan. Depth first search and linear graph algorithms. SIAM J. Computing, 1(2):146-160,
1972.

[Voe92a] Valentin V. Voevodin. Mathematical Foundations of Parallel Computing. World Scientific Pub-
lishers, 1992. World Scientific Series in Computer Science, vol. 33.

[Voe92b] Vladimir V. Voevodin. Theory and practice of parallelism detection in sequential programs.
Programming and Computer Software (Programmirovaniye), 18(3), May 1992.

[WCES94] Daniel Weise, Roger Crew, Michael Ernst, and Bjarne Steensgaard. Value dependence graphs:
Representation without taxation. In ACM 94 Conf. on Principles of Programmaing Languages,
January 1994.

[Wol92] Michael Wolfe. Beyond induction variables. In SIGPLAN Conference on Programming Language
Design and Implementation, San Francisco, California, June 1992.

[Yer73] A. P. Yershov. Current state of program schemes theory. Problems of Cybernetics (in Russian),
27:87-110, 1973.

16

