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Excess fine sediment is one of the main pollutants contributing to water 

quality degradation in the upper Chesapeake Bay. Recent management efforts have 

focused on reducing sediment inputs within the Bay watershed to achieve water 

quality standards set in the Chesapeake Bay Total Maximum Daily Load (TMDL). 

However, the models used to develop the TMDL did not account for the evolving 

sediment loads to and storage in the Bay, which include reduced sediment capacity in 

the Conowingo Reservoir, the last reservoir on the Susquehanna River, increased 

shoreline protection measures, and resurgence of SAV in the upper Bay in a region 

known as the Susquehanna Flats. The overall goal of this dissertation is to assess the 

current sediment dynamics of the upper Bay and specifically evaluate the 

connectivity of sediment transport from the Susquehanna River through the Flats into 

the upper Bay. 



  

First, I evaluated sedimentation on the Susquehanna Flats over seasonal to 

decadal time scales using radioisotopes within the context of submersed aquatic 

vegetation (SAV) biomass and geomorphology. Seasonal-scale sedimentation 

variability was related to river discharge, sediment supply, and geometry over the 

SAV bed, while decadal-scale sedimentation was influenced by flood events and 

changes in SAV biomass abundance. Next, I analyzed sediment geochemical patterns 

in the upper Bay using statistical analyses. Elements associated with aluminosilicate 

minerals, rare earth elements, and heavy metals explained the most variability in the 

dataset due to changes in grain size, salinity, and anthropogenic input, respectively. A 

sediment-provenance analysis was performed using the sediment-geochemistry data 

and indicated that the Susquehanna is the dominant source of fine-grained material 

throughout the upper Bay. Finally, I developed an updated sediment budget through 

quantitative analysis of sediment sources (Susquehanna River and shoreline erosion) 

and sinks (Susquehanna Flats and mainstem sediment-accumulation rates). 

Conservation-management practices have reduced Susquehanna River sediment loads 

at low flows, but sediment loads at high flows have increased, consistent with a 

decreasing scour threshold for bottom sediments in Conowingo Reservoir as it has 

filled. Increases in shoreline stabilization have reduced shoreline erosion inputs. 
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Chapter 1 : Introduction 

 

Estuaries are highly dynamic and productive coastal environments, often 

forming the transition zone between rivers and oceans. Estuaries are ephemeral 

geologic features, and modern estuaries are relatively young, forming ~6,000 years 

ago as sea level began to stabilize following a period of rapid marine transgression 

(Dalrymple et al. 1992). Since their formation, these estuaries have been filling in 

with sediment from external (rivers and oceans), internal (in situ production), and 

marginal (shoreline) sources. The rate of accretion within estuaries is a function of 

sediment supply and accommodation space, both of which vary with changing 

geography and geology (Dalrymple et al. 1992). Fluvial sediment supply is largely 

controlled by basin area, geology, elevation, temperature and precipitation (Syvitski 

and Kettner 2011), while marine sources are transported landward by waves and tides 

through estuary mouths (Meade 1969; Dalrymple et al. 1992). Accommodation space 

is determined by antecedent topography, tectonics, subsidence, and sea-level rise 

(Syvitski et al. 2005). Once completely filled in with sediment, estuaries transform 

into prograding deltas (ex. Mekong River Delta; Ta et al. 2002). 

In addition to these natural processes, humans have significantly modified 

sedimentation within estuaries, particularly through alterations to sediment delivery 

(Syvitski et al. 2005; Walling 2006). Estuaries have long been ideal locations for 

human settlement due to access to abundant resources and navigation (Day et al. 

2011). Although evidence of human influence on sediment supply is present in the 

sediment record as early as 4000 years ago (i.e. Anthony et al. 2014), dramatic 
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changes began ~300 years ago as a result of increased population and 

industrialization. Major changes in land use, including deforestation, mining, 

increased agriculture, and urbanization resulted in higher rates of soil erosion and 

subsequent increases in global river sediment loads (Syvitski et al. 2005; Syvitski and 

Kettner 2011). However, the relatively recent (~1940s-1950s to the present) increase 

in dam construction has resulted in trapping of much of these loads behind large 

dams, thus decreasing total sediment delivery to estuaries and coasts (Syvitski et al. 

2005; Walling 2006). Humans have also altered sediment input from shoreline 

erosion through increased development, which increased sediment loads, and 

subsequent shoreline stabilization, which decreased sediment loads (Gittman et al. 

2015). Lastly, humans have directly affected accommodation space through periodic 

dredging to maintain navigation channels (i.e. USACE 2017). Dredging modifies 

channel hydrodynamics and sediment transport, leading to increased channel 

sedimentation and thus more frequent maintenance dredging (i.e. van Maren et al. 

2015).  

These alterations in the sedimentary environment have led to many sediment-

related issues in coastal and estuarine environments. Some areas have too little 

sediment like coastal Louisiana, where sediment deficits have led to rapid land loss 

and the inability of coastal marshes to accrete sediments on pace with sea-level rise 

(Templet and Meyer-Arendt 1988). Similarly, many deltas around the world are 

submerging due to sediment-load reductions from retention behind large reservoirs, 

such as the Yangtze River (Yang et al. 2006) and Mississippi River Deltas (Blum and 

Roberts 2009). These deficits are compounded by those induced by shoreline-
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protection structures that disconnect natural exchange at the land-water interface 

(Dugan et al. 2011). In contrast, some areas receive too much sediment, such as the 

coasts of tropical countries (e.g. Papua New Guinea, Indonesia) due to increased 

deforestation and mining (Wolanski and Spagnol 2000; Syvitski et al. 2005). Excess 

sediments decrease light availability to submersed plant communities (Dennison et al. 

1993), increase nutrient loads fueling hypoxia/anoxia and harmful algal blooms (Diaz 

and Rosenberg 2008), impede navigation (Gottschalk 1945), and smother benthic 

ecosystems (Restrepo et al. 2006).  

Evolving coastal and estuarine sediment dynamics can also be attributed to 

climate change. For example, East and Southeast Asian river sediment loads to the 

Pacific Ocean have shown high correlation with precipitation patterns, where loads 

during years with major floods are much greater than during droughts (Wang et al. 

2011). Therefore, changing climate dynamics, such as increases in winter-to-spring 

precipitation and storm intensity in the northeastern United States will likely result in 

increased streamflow and sediment loads (Najjar et al. 2010; Boesch 2008). 

Conversely, increased incidences of droughts in summer and fall, will likely decrease 

sediment loads (Boesch 2008). In addition to anthropogenic-induced sediment 

deficits, wetland loss in the Mississippi-Atchafalaya River System (Bianchi and 

Allison 2009; Anderson et al. 2013) results from increased rates of relative sea-level 

rise (combined sea-level rise and subsidence) and wave attack, suggesting that 

continued increases in sea level will result in increased coastal erosion. 

The upper Chesapeake Bay serves as an excellent example of these trends. In 

the Chesapeake Bay, sediment can act as both a pollutant and a resource; i.e. excess 
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fine sediment supply degrades water quality but is also necessary for marsh survival 

(Kirwan et al. 2011). Excess fine sediment has contributed to degraded water quality 

(US EPA 2010; USACE 2015) and benthic habitats, such as oyster reef mortality due 

to burial (Rothschild et al. 1994; Colden and Lipcius 2016), and loss of submersed 

aquatic vegetation (SAV) from both burial and reduced light availability (Bayley et 

al. 1978; Dennison et al. 1993). Excess sediments transport particulate nutrients, 

which enhance eutrophication by fueling algal blooms that reduce water clarity and 

lead to oxygen depletion in the water column and/or harmful algal blooms (Kemp et 

al. 2005). Approximately 4x106 m3 of sediment is dredged from the Bay each year to 

maintain navigation channels, which is costly and disruptive to benthic ecosystems 

(USACE 2017). Therefore, improving water quality by reducing sediment inputs has 

been a major management focus within the Bay watershed and one of the main goals 

of the Chesapeake Bay Total Maximum Daily Load (TMDL) developed by the U.S. 

Environmental Protection Agency (EPA) to achieve water quality standards by 2025 

(USEPA 2010). However, sediment is an important resource to Chesapeake Bay 

marshes, which have become increasingly vulnerable to coastal erosion due to 

decreases in sediment delivery and acceleration of relative sea-level rise (Kearney 

and Stevenson 1991; Kirwan et al. 2011). Marsh survival depends on the availability 

of both mineral and organic sediment to build elevation at approximately the same 

rate as sea-level rise. Many marshes along the lower Eastern Shore of the Chesapeake 

Bay do not receive adequate sediment supply to keep up with current sea-level rise 

and are submerging (Kearney et al. 2002; Ganju et al. 2015; Beckett et al. 2016). 

Although marshes of the upper Bay are currently keeping pace with current sea-level 
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rise rates, accelerating rates of relative sea-level rise will likely outpace future 

sediment delivery (Boesch 2008).    

Humans have altered the main sources of sediment to the upper Chesapeake 

Bay for >300 years, although the greatest impacts occurred after industrialization 

(Brush 2009). Sediment loading from the Bay’s main tributary, the Susquehanna 

River, has a complex history. Susquehanna River watershed sediment loads increased 

in the mid-19th and early 20th centuries as humans cleared forests to support intensive 

agriculture and mining activities, but loads declined following farm abandonment and 

the implementation of conservation-management practices (Brush 1984). 

Susquehanna sediment loads bound for the upper Bay were further altered in the early 

20th century by construction of three sequential hydroelectric dams in its lower 

reaches (~50 km; the lower Susquehanna River Reservoir System) and subsequent 

sediment trapping in associated reservoirs, Lake Clarke, Lake Aldred, and 

Conowingo Reservoir (Langland 2009; Langland 2015). These reservoirs historically 

captured ~75% of the annual Susquehanna River sediment load, but the sediment-

trapping efficiency of these reservoirs has decreased over time due to sediment 

infilling. In fact, Lakes Clarke and Aldred reached dynamic equilibrium (i.e. sediment 

inputs and outputs are approximately equal over long time scales; Langland 2009) in 

the 1950s-1960s. Recent work suggests that Conowingo Reservoir has also reached 

this state, resulting in increased sediment loads to the Bay (Hirsch 2012; Zhang et al. 

2013; Langland 2015).  

The Susquehanna currently delivers 85% of the total freshwater and 67% of 

the sediment load to the upper Bay (Schubel and Pritchard 1986; Langland 2015). 
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The other ~1/3 of the sediment load comes from shoreline erosion, which becomes 

the dominant sediment source south of the Chesapeake Bay Bridge (Schubel 1968; 

Biggs 1970). Shoreline erosion varies spatially depending on factors such as shoreline 

orientation, fetch, bathymetry, sediment composition, and land use (Langland and 

Cronin 2003). Shoreline development increased after World War II, exacerbating 

erosion rates (Hardaway and Byrne 1999). Furthermore, extensive shoreline loss has 

been linked to increasing rates of relative sea-level rise (Kearney and Stevenson 

1991; Boesch 2008) and intense storms (Hennessee and Halka 2005). In response, 

more than 300 miles of stabilization structures, such as seawalls and bulkheads, have 

been installed between 1978 and 1997 (Titus 1998; Hardaway and Byrne 1999; Halka 

et al. 2005). These structures can reduce fastland erosion (above mean low water 

(MLW); used interchangeably with “shoreline erosion” in this dissertation) and 

turbidity caused by fine-grained particles. But, structures can increase nearshore 

erosion (below MLW) by decreasing sand supply to adjacent habitats and/or 

reflecting, rather than dampening, wave energy (Hardaway and Byrne 1999; Halka et 

al. 2005). 

Previous studies have quantified upper Bay sedimentation rates (e.g. ~3x106 t 

y-1; Officer et al. 1984a); however, the impact of evolving sediment supplies is 

unclear. Importantly, the connection between the Bay and its major tributary is 

missing from previous studies, especially sediment processing through the transition 

zone formed by the Susquehanna Flats. Thus, the overall goal of this dissertation is to 

evaluate the connectivity of sediment transport from the Susquehanna River through 

the Flats into the upper Bay. The Susquehanna Flats is the subaqueous delta of the 
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Susquehanna River and is colonized by dense submersed aquatic vegetation (SAV) 

beds. These beds were historically dense, but they disappeared following Tropical 

Storm Agnes (1972). There was little change in plant abundance between 1972 and 

2000, and then a rapid resurgence of both SAV bed area and density began in ~2001 

(Gurbisz and Kemp 2014). SAV enhance sediment deposition by attenuating wave 

energy and flow velocity (Ward et al. 1984; Fonseca and Fisher 1986), but it is not 

clear how the Susquehanna Flats SAV bed modulates sediment delivery to the upper 

Bay. This is the focus of Chapter 2, which evaluates vegetation influences on 

sediment burial over seasonal and decadal time scales. 

Susquehanna sediment arriving in the upper Bay joins with that supplied from 

shoreline sources. Susquehanna and shoreline sediments have different impacts to 

Bay ecosystem dynamics. Relative to shoreline sediments, Susquehanna sediments 

are typically finer and more nutrient-rich, thus more likely to increase turbidity and 

fuel algal blooms (Marcus and Kearney 1991). Determining the relative contributions 

of these sources to upper Bay sediments is important for management but requires 

sophisticated analytical techniques that have only recently become available. These 

techniques and their potential application to sediment-provenance analyses are 

presented in Chapter 3, which focuses on sediment geochemistry. In particular this 

chapter examines how geochemical patterns in surficial and down-core sediments 

vary spatially and the underlying processes driving this variability. These results are 

then used to perform a sediment-provenance analysis to evaluate source contribution 

to bottom sediments in the upper Bay.  
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Another approach to quantifying the relative role of fluvial versus shoreline 

sediments is through constructing sediment budgets. The most recent sediment budget 

for the upper Bay was developed in 1992 (Hobbs et al. 1992) and thus does not reflect 

the current sedimentary environment. Importantly, it does not include two recent 

changes along the river-estuary continuum: 1) recent infill of the Conowingo 

Reservoir (Langland 2015); and 2) the resurgence of SAV beds on the Susquehanna 

Flats (Gurbisz and Kemp 2014). In chapter 4, the impacts of these recent changes are 

evaluated through quantitative analysis of sediment sources (Susquehanna River and 

shoreline erosion) and sinks (mainstem sediment-accumulation rates) and synthesized 

into an updated sediment budget of the upper Bay. 
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Chapter 2 : Seasonal-scale and decadal-scale sediment-

vegetation interactions on the subaqueous Susquehanna River 

delta, upper Chesapeake Bay 
 

 

Abstract 

Submersed aquatic vegetation (SAV) have been a prominent feature on the 

Susquehanna Flats, the shallow, subaqueous delta of the Susquehanna River, 

Maryland. SAV were absent from the Flats between 1972 and 2000, but have since 

recovered. While it is well established that SAV can improve water quality by 

promoting sediment and nutrient retention, it is not well understood how SAV on the 

Flats modulate sediment input from the Susquehanna River into the Upper 

Chesapeake Bay over different time scales. This study evaluates sedimentation on the 

Flats over seasonal to decadal time scales, using naturally occurring radioisotopes 

(7Be, 210Pb) within the context SAV biomass and Flats geomorphology. Results 

indicate sedimentation on the Flats is both spatially and temporally variable. 

Although this variability cannot be explained by relationships with grain size and 

SAV biomass, river discharge, sediment supply, and geometry over the SAV bed 

likely control sedimentation in this system. Decadal-scale sedimentation is influenced 

by both flood events and changes in SAV biomass abundance. Average annual 

sediment accumulation was higher when SAV was present than when SAV was 

absent.  SAV bed area was strongly correlated with average annual accumulation rate. 

These results suggest that a positive feedback between SAV abundance and 
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accumulation rate exists; however, sediment supply and transport pathways are also 

important factors.  

Introduction 

Submersed aquatic vegetation (SAV) are known ecosystem engineers that 

modify their environment through interactions with both water flow and sediment 

dynamics (Jones et al. 1994; Koch 2001). SAV canopy friction increases flow 

resistance, attenuating wave energy and current velocities inside the plant bed 

(Fonseca et al. 1982; Fonseca and Fisher 1986; Gambi et al. 1990; Fonseca and 

Cahalan 1992). These zones of reduced flow promote sediment deposition and 

suppress resuspension (Ward et al. 1984; Gacia and Duarte 2001), providing a 

positive impact on water quality by retaining sediment and attached nutrients.  

SAV historically were abundant in the shallow coastal zones of the 

Chesapeake Bay (Stevenson and Confer 1978; Orth and Moore 1984). However, 

SAV populations began to decline following European colonization, due to poor 

water quality and the advent of intensive agriculture (Davis 1985), and vanished from 

most Chesapeake habitats following tropical storm (TS) Agnes in 1972 (Orth and 

Moore 1984; Brush and Hilgarten 2000). SAV beds in the freshwater reaches of the 

upper Bay were especially sensitive to TS Agnes flooding, where abundances 

declined by more than 60% (Kerwin et al. 1976). In particular, the dense SAV beds 

that occupied the Susquehanna River subaqueous delta, known as the Susquehanna 

Flats (hereinafter referred to as “the Flats”), disappeared following TS Agnes (Bayley 

et al. 1978). However, the SAV beds on the Flats made a remarkable recovery in the 

early 2000s in response to improved water quality from a combination of 
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conservation management actions and several years with relatively little precipitation 

(Gurbisz and Kemp 2014). Additionally, the bed was able to withstand a relatively 

large storm event in 2011 (Tropical Storm Lee) (Gurbisz et al. 2016). 

While it is well established that SAV promote sediment and nutrient retention, 

it is not well understood how SAV on the Flats affect sediment input into the Upper 

Chesapeake Bay over different time scales. Because of its location at the interface 

between the Chesapeake Bay and its major tributary (Susquehanna River), the Flats 

plays an important role in modulating sediment input into Chesapeake Bay and thus 

also sediment supply to downstream ecosystems (e.g., marshes, oysters). More 

broadly, sediment-vegetation interactions at the fluvial-estuarine interface are not yet 

well understood, and seasonal and decadal shifts in SAV abundance on the Flats offer 

a unique opportunity to examine how SAV modulate sediment input from rivers into 

adjacent estuaries. 

 The objectives of this study are to 1) determine seasonal-scale sedimentation 

patterns within the context of SAV biomass and Flats geomorphology; and 2) assess 

whether historical changes in SAV abundances are reflected in decadal-scale 

sedimentation rates.  

 

Methods 

Study Site 

The Flats are located on the shallow, seasonally vegetated (growing season 

June-October; Bayley et al. 1978; Gurbisz and Kemp 2014), subaqueous sandy 

deposit at the confluence of the mouth of the Susquehanna River and the upper 
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Chesapeake Bay (Fig. 2.1a). The Flats are in the tidal freshwater region of the Bay, 

where salinity ranges between 0 and 3. The average depth across the Flats at mean 

lower low water (MLLW) is 1 m, with a mean tidal range of 0.6 m (Bayley et al. 

1978). The main stem Bay channel (ranging from 3-7 m in depth) is located west of 

the Flats; however, discontinuous channels are located to the north (Fig. 2.1b). Waves 

in the upper Bay are fetch-limited and primarily wind-generated (Sanford 1994); 

significant wave heights are typically <1 m with a mean period of <2.5 s 

(https://buoybay.noaa.gov/). Current velocities rarely exceed 0.2 m s-1, even when 

SAV are absent (LSRWA 2015).   

The Susquehanna River largely controls circulation on the Flats, directing 

freshwater and sediment seaward (Schubel and Pritchard 1986). The Susquehanna 

River is the largest source of freshwater and sediment to the upper Bay, with an 

average river discharge of 1100 m3 s-1 (Schubel and Pritchard 1986) and annual 

sediment load of 2x106 tons (Langland 2015). The Susquehanna River exhibits strong 

seasonality in river discharge, with annual maximum flows coinciding with the spring 

freshet, and minimum flows occurring in late summer (Schubel and Pritchard 1986). 

Sediment load is tightly coupled with river discharge, and in a typical year (i.e. one 

without major flood events) 50-60% of the annual Susquehanna River sediment load 

is associated with the spring freshet (Gross et al. 1978). Discharge has twice exceeded 

20,000 m3 s-1 (at the USGS Conowingo Dam gauging station, ~15 km upstream of the 

Flats; http://www.water.usgs.gov) – during TS Agnes (1972) and in association with 

the remnants of TS Lee (2011). Tropical Storm Agnes produced the highest river 

discharge (~32,000 m3 s-1) ever measured on the Susquehanna River and delivered the 
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largest sediment loads (30 x 106 tons) to the Chesapeake Bay (Gross et al. 1978). The 

second highest recorded discharge was associated with TS Lee (~22,000 m3 s-1) and 

delivered an estimated 6.7 to 19x106 tons of sediment to the Chesapeake Bay (Cheng 

et al. 2013; Hirsch 2012).  

The Flats historically supported dense SAV beds during the growing season; 

however, SAV populations began to decline in the 1960s due to poor water quality, 

and largely disappeared following TS Agnes. There was little change in the SAV 

abundance between 1972 and 2000; a rapid resurgence began ~2001, with an increase 

in both bed area and plant density, lasting through 2008, when the bed reached a 

stable area of ~55 km2 (Gurbisz and Kemp 2014). SAV area decreased to ~25 km2 

following TS Lee (Gurbisz et al. 2016), and although the bed area remained below 35 

km2, it gradually increased in size between 2012 and 2016 (Orth et al. 2016).  Co-

dominant SAV species on the Flats include wild celery (Vallisneria Americana), 

water stargrass (Heteranthera dubia), Eurasian watermilfoil (M. spicatum), and 

Hydrilla verticillata (Bayley et al. 1978; Gurbisz et al. 2016). 

 

Field methods 

Patterns of sedimentation were assessed at five primary sites inside the Flats 

SAV bed (Fig. 2.1b). Three replicate push cores (30 cm long, 5 cm diameter) were 

collected at each site during three sampling trips (4 August 2014, 29 May 2015, and 

26 August 2015) to evaluate seasonal-scale sedimentation. These periods generally 

corresponded to SAV presence (August) and absence (May). One push core was 

collected at an additional eight sites within the SAV bed (secondary sites; Fig. 2.1b) 
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in August 2014 and May 2015 to increase spatial resolution. After collection, push 

cores were taken to the laboratory and sectioned into 1-cm intervals for analysis of 

grain size, bulk density, organic content, and the naturally occurring radioisotope 7Be 

(half-life 53.3 days). SAV above-ground biomass data, collected for a companion 

study during the same three sampling trips, are reported in this study (C. Gurbisz 

unpublished data). 

One vibracore (3 m long, 8 cm diameter) was collected at each of the five 

primary study sites in August 2014 to evaluate decadal-scale sedimentation. 

Vibracoring is a commonly used coring method in coastal sedimentary environments, 

with 80-100% core recovery in homogeneous sands and sandy muds (Lanesky et al. 

1979), similar to those found on the Susquehanna Flats. Vibracores were frozen upon 

arrival to the laboratory. Cores were thawed and subsampled into 1-cm (top 20 cm), 

2-cm (20 cm-80 cm), and 4-cm (80 cm-end of core) increments prior to performing 

grain size, bulk density, organic content, 210Pb, and 137Cs analyses. Increment lengths 

varied down the core to reflect expectations of sediment age; i.e., highest resolution 

near the top of cores (youngest sediment), decreasing toward the base of cores (oldest 

sediment). Note that vibracores disturb the upper few centimeters of the sample, and 

so the upper sediment layers of the core were treated as a surface mixed layer to 

account for potential mixing during sediment collection.  

 

Laboratory methods 

Grain size was analyzed by wet-sieving samples at 64 µm to separate the mud 

(silts+clays; <64 μm) and sand (>64 μm) fractions. The mud fraction was 
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disaggregated with 0.05% sodium metaphospate in an ultrasonic bath and then 

analyzed using a Sedigraph 5120. The sand fraction was dry-sieved through a 

standard set of 13 sieves, from 500 μm to 64 μm (at ¼-phi size intervals; phi=-

log2(particle diameter, mm)). The mud and sand data were joined to calculate median 

diameters. Bulk density was assumed to be a function of porosity, calculated from 

water loss after drying at 60°C until constant sediment weight was reached, assuming 

sediment density of 2.65 g cm-3. Organic content was determined using a modified 

version of the methods of Johnson and Bustin (2006); sediment was digested in 30% 

H2O2 on hotplates set to 90°C. H2O2 was added to the sediment, at 10 mL increments, 

until it no longer effervesced. After the sediment was completely dry, it was rinsed 

with deionized (DI) water and placed in drying ovens set at 60°C. This method was 

chosen over loss on ignition due to the presence of coal in the sediment (Hainly et al. 

1995).   

Push-core samples were prepared and analyzed for 7Be activities following the 

methods of Palinkas et al. (2005). 7Be is a naturally occurring radioisotope produced 

through cosmic-ray spallation of nitrogen and oxygen in the atmosphere. It is 

deposited onto the Earth’s surface through precipitation and dry deposition, where it 

is adsorbed onto sediment particles that are subsequently eroded and transported into 

adjacent waters, settling on the bottom sediment surface (Olsen et al. 1986). 7Be is 

well suited to measure seasonal deposition, and it has been used previously in 

dynamic estuarine environments (Olsen et al. 1986; Dibb and Rice 1989) and in 

seasonally vegetated tidal freshwater marshes (Neubauer et al. 2002; Palinkas et al. 

2013). 
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To prepare samples for 7Be analysis, bulk sediment from the 1-cm increments 

of the push cores, starting with the topmost 1 cm (0-1 cm), was ground and placed 

into 60-mL plastic jars, which were filled to the same height to ensure consistent 

counting geometry. 7Be activities (dpm g-1; disintegrations per minute per gram) were 

measured through gamma spectroscopy of the 477.7 keV photopeak, using 

germanium detectors, calibrated following Larsen and Cutshall (1981); gamma 

emissions were counted for 24 hours. For each core, analysis proceeded with every 1-

cm section down the core until 7Be activity was not detected; one additional section 

below this horizon was counted. Measured 7Be activities were decay-corrected to the 

time of core collection and used to calculate depth-integrated 7Be inventories (Itotal; 

dpm cm-2) (ex. Fig. 2.2) 

��	�
� = ∑ �� ∙�
� �� ∙ ℎ� (1) 

where Ai
  is the activity (dpm g-1)  in interval i, ρi is the bulk density (g cm-3) in 

interval i, and hi is the thickness (cm) of interval i. Errors in 7Be inventories were 

calculated by propagating the counting error associated with measuring 7Be activities. 

Total inventories were assumed to represent “new” sediment deposition between each 

sampling period, since >77 days (mean lifetime of 7Be) passed between each period. 

Total 210Pb (half-life 22.3 y) activities were analyzed using alpha spectroscopy 

and following the procedures of Palinkas and Engelhardt (2016). 210Pb is produced 

naturally through 238U decay, and thus all sediment has “supported” 210Pb from the 

decay of its effective parent, 226Ra. Particles eroded from land and transported into 

adjacent waters can scavenge “excess” 210Pb from the water column, supplied from 

the atmosphere (gaseous 222Rn escapes to the atmosphere, decays to 210Pb, and is 
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scavenged by precipitation) and direct runoff (Koide et al. 1972; Nittrouer et al. 

1979). 210Pb geochronology has previously been applied to vegetated habitats (Arnold 

et al. 2000; Palinkas and Koch 2012; Palinkas et al. 2016). In the present study, 226Ra-

supported 210Pb activity was assumed to be equal to the activity at the bottom of each 

core and was calculated via gamma spectroscopy from a weighted average of the 

214Pb energies (295 and 352 keV) and 214Bi photopeak (609 keV) (Palinkas and 

Engelhardt 2016). Excess 210Pb activities were obtained by subtracting supported 

210Pb activity from the measured total 210Pb activities. All activities were decay-

corrected to the time of collection; excess activities were normalized to the 

corresponding measured mud fraction, because 210Pb preferentially adsorbs to fine 

particles (Nittrouer et al. 1979; Goodbred and Kuehl 1998). 

 

Calculating sediment accumulation rates 

Two age-depth models were considered for calculation of sediment 

accumulation rates: the constant flux/constant sedimentation (CFCS) and constant 

rate of supply (CRS) models (Appleby and Oldfield 1978). The CFCS model assumes 

a constant supply of unsupported 210Pb to the sediment and steady-state 

sedimentation. Sedimentation rates (S; cm y-1) are calculated by 

S= -λ210Pb * m (2) 

where λ210Pb is the 210Pb decay constant (0.031 yr-1) and m is the slope of the line fit 

between the log of excess 210Pb activity and depth. The constant rate of supply (CRS) 

model also assumes constant supply of unsupported 210Pb but allows for time-variable 

sedimentation rates. In this model, sediment age at depth z (tz) is calculated by 
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tz = 1/ λ210Pb * ln(A0/A(z)) (3)  

where λ210Pb is the 210Pb decay constant (0.031 yr-1), A0 is the cumulative inventory of 

excess 210Pb activity in the sediment column, and A(z) is the cumulative inventory of 

excess 210Pb activity below depth z. 210Pb inventory for each interval is calculated by 

multiplying excess 210Pb activity by the bulk density and thickness of that interval. 

The sedimentation rate is calculated by dividing sediment depth by its calculated age.  

Sedimentation rates were calculated with both the CFCS and CRS models and 

verified with 137Cs, an independent chronometer. 137Cs activities were measured 

through gamma spectroscopy of the 661.6-keV photopeak, following the methods 

described above for 7Be (Palinkas and Nittrouer 2007). 137Cs is an anthropogenically 

derived radioisotope that was introduced to the atmosphere through nuclear weapons 

testing, first appearing in the sedimentary record in 1954. The maximum fallout of 

137Cs occurred in 1963 prior to the Partial Nuclear Test Ban Treaty ratification 

(Walling and He 1997). The depths of the 1954 and 1963 horizons identified from 

137Cs for each core were compared to the depth range predicted by the CRS model for 

these years.  

 

Comparing SAV distribution to sedimentation 

Submersed aquatic vegetation (SAV) density data on the Flats (1984-1987; 

1988-2014) were obtained from the Virginia Institute of Marine Sciences (VIMS) 

SAV in Chesapeake Bay and Coastal Bays GIS data server, which reports data from 

annual aerial surveys (http://web.vims.edu/bio/sav/gis_data.html; Orth et al. 2016). 

The density class (0%, <10%, 10-40%, 40-70%, and 70-100%) was extracted at each 
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primary site and reported as the median percentage in each range (i.e. 0%, 5%, 25%, 

55%, and 85%). 

To assess the relationship of sediment accumulation rates with historical SAV 

presence/absence on the Flats, annual accumulation rates at each primary site were 

calculated by interpolating between the sediment ages from the CRS model. The 

annual sedimentation data then was directly compared to SAV density maps. Because 

SAV density data were not collected prior to 1984, sediment accumulation rates and 

SAV density were compared qualitatively within 3 time periods: 1) abundant SAV 

prior to TS Agnes in 1972 (<1972; Bayley et al., 1978); 2) no SAV between TS 

Agnes and a resurgence in the early 2000s (1972-2000; Gurbisz and Kemp 2014); 3) 

abundant SAV following the resurgence (2001-2014). 

 

Supporting data  

Daily Susquehanna River discharge (m3 s-1) data at Conowingo, MD (the last 

downstream gauge on the Susquehanna River) were obtained between 1 March 2014 

and 1 September 2015 from the USGS National Water Information System 

(http://www.water.usgs.gov; station 01578310). Suspended-sediment concentrations 

(SSC; mg L-1) at the Conowingo Dam outlet were obtained over the same time period 

from the Chesapeake Bay Program water-quality database 

(http://www.chesapeakebay.net/data). Suspended-sediment concentrations data were 

collected ~1-2 times a month, depending on flow conditions, while Susquehanna 

River discharge data were averaged for each day. Assuming that the instantaneous 

SSC measurements represent daily conditions, daily SSC values were calculated by 
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establishing an empirical relationship with daily Susquehanna River discharge. First, 

additional SSC and discharge data were obtained from 4 October 2011 to 1 

September 2015 to establish a longer record. 4 October 2011 was chosen to exclude 

discharge from TS Lee in September 2011 (Palinkas et al. 2014) and instead include 

only similar discharges as occurred during the study period. Then, an exponential 

model was fit to Susquehanna River discharge data on days with available SSC 

measurements to predict daily SSC values over the entire study period (R2=0.72, 

p<0.001). Daily Susquehanna River discharge and calculated SSC were multiplied to 

obtain a daily sediment load. The daily sediment loads were summed over the 77 days 

(mean lifetime of 7Be) prior to sampling in order to estimate sediment loads 

associated with seasonal-scale coring observations.  

 

Statistical Analyses 

 All statistical analyses were performed in R version 3.3.2. I used the package 

“lme4” (Bates et al. 2015) to perform a linear mixed-effects analysis to determine the 

effect season (fixed effect) had on surficial sediment grain size, 7Be inventory, and 

above-ground biomass among the core locations (random effect). Analysis of 

variance (ANOVA) tests, comparing models with and without fixed effects, were 

used to obtain p-values. Pairwise linear regressions were performed to determine 

correlations between sediment grain size, 7Be inventory, and above-ground biomass 

over the three sampling periods. An intervention analysis using the package 

“struccchange” (Zeileis et al. 2003) was performed to identify breakpoints, or 

structural changes, in the sedimentation time series. These breakpoints were then used 
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to examine differences in decadal-scale accumulation rates among the three periods 

with different SAV abundances (<1972, 1972-2000, 2001-2014). Additionally, linear 

regression models were developed to determine the CFCS fit for the vibracores and 

the relationship between SAV bed area and annual accumulation rates. For all 

statistical tests, p-value <0.05 was considered significant. A Bonferroni correction 

was made to adjust the p-value to account for errors due to multiple comparisons.   

 

Results 

Susquehanna River discharge and sediment supply 

Average river discharges preceding the August sampling in 2014 and 2015 

were similar: 980±92 m3 s-1 and 940±74 m3 s-1, respectively (Fig. 2.3a). Prior to the 

May 2015 sampling, average river discharge was 1670±110 m3 s-1, ~1.5-2 times 

larger than the August discharges. Maximum river discharges during the study period 

were associated with the 2015 spring freshet (4560 m3 s-1 on 12 April) and periods of 

prolonged precipitation during late spring 2014 (4900 m3 s-1 on 19 May) and early 

summer 2015 (2600 m3 s-1 on 2 July). All of these discharges exceeded the 90th 

percentile of Susquehanna River flows at Conowingo since monitoring began in 1968 

(>2400 m3 s-1).  

Because SSC was calculated directly from river discharge, higher SSC tended 

to occur in the spring, when river discharge was highest, and lower SSC occurred in 

the summer, when river discharge was lowest (Fig. 2.3b). Average SSC values 

preceding the August 2014, May 2015, and August 2015 samplings were 9.0±1.2 mg 

L-1, 14.0±1.3 mg L-1, and 7.8±0.4 mg L-1, respectively. Maximum calculated SSC 
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values during each study period occurred on the same dates as maximum discharge 

and were 85.8 mg L-1, 69.3 mg L-1, and 20.1 mg L-1 on 19 May 2014, 12 April 2015, 

and 2 July 2015, respectively. 

The total sediment loads (calculated as the product of river discharge and 

SSC) delivered by the Susquehanna River prior to the August 2014, May 2015, and 

August 2015 samplings were 1.1x105 tons, 2.3x105 tons, and 6.6x104 tons, 

respectively.  

 

Seasonal variability of sedimentation and vegetation biomass 

Although the general character of surficial sediment on the Flats was sandy 

(>64 um), median grain size of the upper 1 cm of push cores varied both spatially and 

temporally, ranging from 113.1 to 405.3 μm over the study period (see Table A.1 in 

the supplementary material). The average median grain size across all sites (n=13) 

was statistically similarly (p-value=0.68) at 290.5±22.6 μm and 281.1±16.4 μm in 

August 2014 and May 2015, respectively (Table 2.1). Over the primary sites (n=5), 

the average median grain size in August 2015 was 215.0±31.7 µm, but was not 

significantly different from May 2015 after applying a Bonferroni correction 

(p=0.05). Grain size typically decreased with distance from the river mouth. Larger 

grain sizes were also observed at sites near the main channel (west of the bed) and the 

discontinuous channel (north of the bed; see Fig. 2.1b). During both Augusts, the 

smallest median grain size was observed in the middle of the SAV bed at SF3. 

Organic content was negatively correlated with grain size and ranged from 0.50 to 

5.78% over the three periods (Table A.1).  
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Total 7Be inventories also varied spatially and temporally (Table 2.1 and 

Table A.1). Over the study period, 7Be inventories ranged from below detection 

(minimum detection activity for this study 0.5 dpm g-1) to 3.53 dpm cm-2. Sites where 

7Be activity was not detected were assigned an inventory of 0 dpm cm-2, which 

assumes no deposition. Average 7Be inventory was 0.71±0.21 dpm cm-2 in August 

2014, where six of the thirteen sites contained detectable 7Be, and 0.67±0.23 dpm cm-

2 in May 2015, where four of the thirteen sites contained detectable 7Be (Table 1). 

Although the average 7Be inventories in August 2014 and May 2015 were statistically 

similarly (p=0.92), the locations with detectable 7Be activity were different between 

the two seasons. In general, the sites with detectable 7Be activity in August 2014 were 

adjacent to a narrow, unvegetated channel that ran northwest to southeast along the 

center of the SAV bed, while in May 2015, the sites with detectable 7Be were near the 

southwestern and southern boundaries of the bed. In August 2015, 7Be was present at 

all five sites sampled, with an average 7Be inventory of 2.23±0.52 dpm cm-2. When 

only the five primary (SF1-5) were included in the statistical tests, mean 7Be 

inventories were significantly higher in August 2014 (p=0.01) and August 2015 

(p<0.001) than in May 2015. 

SAV was collected along with push cores at all sites, except sites SF1 and SF5 

that were outside the 2014 and 2015 SAV bed boundaries 

(http://web.vims.edu/bio/sav/maps.html). Average above-ground biomass was 

301.1±458.0 g m-2 in August 2014 (n=11), 40.9±230.4 g m-2 in May 2015 (n=11), and 

271.8±113.9 g m-2 in August 2015 (n=3) (C. Gurbisz unpublished data; Table 2.1). 

Spatial heterogeneity of biomass is indicated by the relatively high standard 
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deviations, as well as aerial imagery from August 7, 2014 (Landsat-8 USGS 2017; 

see Fig. 2.1b). This photo highlights areas inside the SAV bed boundary with sparse 

or absent vegetation, as well as a channel near the transect of primary sites.  

There were no statistically significant linear relationships between grain size, 

7Be inventory, or above-ground biomass over the three sampling periods after 

applying a Bonferroni correction factor (Table S2).  

 

Decadal patterns of sedimentation 

Vibracores from all sites (n=5) had relatively coarse material (median grain 

size >196 μm) in the upper 10 cm; however, grain-size trends below this depth varied 

for each site. For example, SF1 had the largest range in median grain size and a 

distinct coarsening upward trend, in which median grain size ranged from 6.3 μm at 

the bottom of the core (120-124 cm) to 359.0 μm towards the top of the core (13-14 

cm), with an average of 231.5±29.96 μm. Grain size at SF5 varied from 5.9 μm (at 

50-52 cm depth) to 205.7 μm (at 2-3 cm depth), with an average of 123.8±19.6 μm. 

Sediments in the upper 20 cm of the core contained fine and medium sand (median 

diameter 196 to 390 μm), underlain by a layer of finer material (82.5 to 150 μm) 

between ~20 and 40 cm. Median grain size was finer for the remainder of the core 

(50-76 cm), ranging from 5.9 to 96.5 μm. Median grain size varied the least at SF4, 

ranging from 102.0 to 234.1 μm, with an average of 185.6±11.6 μm. Similar to the 

patterns at SF5, cores from SF2 (average median grain size of 210.1±43.3 μm) and 

SF3 (average median grain size of 189.7±25.8 μm) did not have any consistent trends 
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with depth but rather had interlayering of medium and fine sand (125-390 μm) with 

very fine sand and silt (9-125 μm).   

Organic matter in the vibracores ranged from 0 to 4.6% with an average of 

1.4±0.42% at SF1, from 0.44 to 6.85% with an average of 2.37±0.41% at SF2, from 0 

to 6.55% with an average of 2.56±0.38 at SF3, from 0.39 to 16.75% with an average 

of 2.77±0.87% at SF4, and from 0 to 3.77% with an average of 1.69±0.25% at SF5.  

Trends in excess 210Pb activities (normalized to mud content) also varied 

among cores, reflecting differences in the nature of sedimentation. As noted in the 

Methods, steady-state accumulation is usually indicated by a relatively steady log-

linear decrease of 210Pb activities with depth, whereas more variable down-core 210Pb 

activities indicate non-steady-state accumulation. The former is present in SF1 

(underneath a ~20 cm thick surface layer) and SF5 (Fig. 2.4a). In contrast at SF2 and 

SF4, excess 210Pb activities decreased log-linearly to ~30 cm, then varied with depth, 

indicating non-steady-state accumulation (Fig. 2.4b). SF3 also showed non-steady 

state behavior, with excess 210Pb activities initially increasing from 8 to 23 dpm g-1 in 

the surface layer (0-15cm), then decreasing (Fig. 2.5b). Intervals with low 210Pb 

activities and high mud content were present in all cores, such as those at 29 and 65 

cm at SF3 (Fig. 2.5a and 2.5b).  

Figure 2.5 shows an example 210Pb profile, CFCS model fit, and CRS-

determined accumulation rates for SF3. SF1, SF4, and SF5 had relatively robust 

CFCS model fits, with R2 values of 0.71, 0.60, and 0.75 and p-values 0.0001, 0.006, 

and, 0.0004, respectively. The average accumulation rates calculated by the model 

were 0.68 cm y-1 at SF1, 0.52 cm y-1 at SF4 and 0.41 cm y-1 at SF5. The model fits at 
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SF2 and SF3 were relatively weak (R2=0.24 and 0.27, respectively) and not 

statistically significant (p=0.2 and 0.06, respectively). The CRS core-averaged 

accumulation rates decreased with increased distance from the Susquehanna River 

mouth, ranging from 0.91±0.05 cm y-1 (1.25±0.12 g cm-2 y-1) at SF1 to 0.46±0.03 cm 

y-1  (0.63±0.04 g cm-2 y-1) at SF5. The average accumulation rates calculated with the 

CFCS model were within 15% of those from the CRS model at SF4 and SF5, but 

were 25% lower at SF1 (Table 2.2).  

Average sedimentation rates were also calculated from the 1954 and 1963 

137Cs horizons. Note that the 1954 and 1963 horizons were identifiable in all cores 

except at SF2, where only one horizon was present and assumed to be 1963, since its 

activity was comparable to the 1963 horizon in other cores. Average sedimentation 

rates calculated from the 137Cs horizons (1954 and 1963) are listed in Table 2.2. The 

average accumulation rates at SF4 and SF5 calculated from the CFCS model were 

within 10% of the rates calculated from the 137Cs horizons, while SF1 was within 

30%. The 1954 and 1963 horizons indicated by the 137Cs data were within the depth 

range predicted by the CRS model (see Table 2.2; Fig. 2.5d) for all intervals except 

the 1963 horizons in cores SF2 and SF4, which were within 2 cm.  

Sediment ages could only be calculated up to 1990 in core SF1 due to the 

large surface mixed layer. Therefore, results obtained from SF1 were omitted from 

the following average annual SAV density and accumulation calculations. Average 

SAV was <4% between 1984 and 2000 (Fig. 2.6a). SAV density generally increased 

between 2001 and 2007, except for declines in 2003, 2004, and 2006. SAV density 

remained high and stable from 2008 through 2010, and then decreased in 2011 and 
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2012. SAV density remained constant between 2012 and 2014. SAV bed area showed 

similar patterns to changes in SAV density over time, with total bed area <25 km2 

between 1984 and 1999, and rapidly increasing to 55 km2 between 2000 and 2010 

(Gurbisz and Kemp 2014). SAV bed area then decreased to 25 km2 in 2012, and 

remained <30 km2 through 2014 (Orth et al. 2016).  

Average annual accumulation rates ranged from 0.95±0.16 to 1.06±0.16 g cm-

2 y-1 1950-1972, from 0.76±0.12 and 0.93±0.16 g cm-2 y-1 between 1972 and 2000, 

and from 0.95±0.16 to 1.09±0.19 g cm-2 y-1 between 2001 and 2008 (Fig 2.6b). 

Statistical structural breaks (see Methods) occurred at 1971, 1979, 1992, and 2000 in 

the time series. Average annual accumulation rates prior to 1950 are not reported 

because this was the earliest date that was calculated for SF2 using the CRS model. 

Calculating average annual accumulation rates beyond 2008 were limited by surface 

mixed layers. Average accumulation rates when SAV were present (i.e. 1950-1972 

and 2001-2008) were significantly greater (p<0.001, for both periods) than when 

SAV were absent (1972-2000). SAV bed area explained 75% of the variability in 

average annual accumulation rates (p<0.001; Fig 2.7).  

 

Discussion 

Seasonal-scale dynamics 

The spatial patterns of grain size on the Flats are consistent with other river-

dominated deltaic environments, where grain size generally decreases with distance 

from the river mouth. These changes are typically driven by increases in basin width 

and decreases in fluvial influence (Fisk et al. 1954; Wright 1977), which decrease 
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energy (current velocities) and fine-sediment supply with distance from the river 

mouth. Thus, larger grain sizes near the main channel reflect higher current velocities 

that produce stronger shear stresses capable of winnowing away finer particles and/or 

preventing them from settling (Kuehl et al. 1986). Grain-size differences in the 

middle of the SAV bed between spring (no SAV) and summer (SAV) likely also 

reflect changes in energy, since high plant densities decrease current velocities and 

allow finer particles to settle (van Katwijk et al. 2010; Sand-Jensen 1998).  

However, sediment deposition on the Flats is highly variable in time and 

space, as shown by the variability in 7Be inventories. Because this variability could 

not be explained through relationships with grain size and SAV biomass, differences 

in pathways of sediment supply to individual sites likely influence sediment 

deposition. Sediment-transport pathways over marshes are functions of discharge, 

topography, vegetation, proximity to channels/marsh edges, and hydrodynamic 

gradients (Temmerman et al. 2005; D’Alpaos et al. 2007; Marani et al. 2003). 

Furthermore, interactions between hydrodynamics and vegetation are important 

controls on the geomorphic evolution of tidal landscapes (Temmerman et al. 2007; 

van Wesenbeeck et al. 2008; Vandenbruwaene et al. 2011). On the Flats, differences 

between spring and summer 7Be inventory patterns likely arise from differences in 

flow patterns between seasons, due to differences in river discharge, sediment supply, 

and vegetation coverage. Although sediment supply is significantly greater during the 

spring, the statistically similar average 7Be inventories measured during spring and 

summer on the Flats along with the presence 7Be at sites on the southwestern and 

southern edges of the SAV bed in the spring suggest that downstream sediment 
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transport, and thus bypassing of the Flats, is facilitated by higher river discharges and 

the absence of vegetation to increase bottom friction.  

Spatial patterns in 7Be inventories in August and May are not simple functions 

of distance from sediment source (i.e. Susquehanna River), but rather appear to be 

driven by geomorphic differences. The geomorphology of the Flats is spatially 

complex, as shown in Fig 2.1b by the unvegetated patches and shallow channels 

through the SAV bed. Water flow can be diverted around and between vegetation 

patches, increasing current velocities and associated near-bottom shear stresses 

(Cotton et al. 2006; Bouma et al. 2007) and thus promoting non-deposition and/or 

erosion (van Wesenbeeck et al. 2008; Vandenbruwaene et al. 2011). These faster 

velocities are not conducive for plant growth or seed germination, creating a feedback 

loop that prevents lateral expansion of the vegetation patch (van Wesenbeeck et al. 

2008) and maintaining channel morphology. I propose that these channels influence 

the sedimentation patterns by directing sediment-rich fluvial waters into the interior 

of the bed without much interaction with upstream vegetation. These waters can then 

“spill over” onto shallower areas on the sides of the channel, so that sites closest to 

the channel receive relatively large suspended-sediment inputs. This is consistent 

with observations of higher 7Be inventories at sites adjacent to channels. Sediment 

supply decreases with distance from the channel due to increased sediment settling 

facilitated by vegetation that intercepts sediment and slows currents (French and 

Spencer 1993; Leonard and Luther 1995; Christiansen et al. 2000; Neubauer et al. 

2002; Palinkas et al. 2013). This may explain why sites inside the SAV bed that were 

not adjacent to a channel did not have measurable 7Be activity. This process creates a 
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local increase in sedimentation at the channel edge similar to patterns observed in 

subaerial floodplains (Lambert and Walling 1987) and on vegetated tidal marsh 

platforms (D’Alpaos et al. 2007; Palinkas and Engelhardt 2016). Thus, while the 

spatial heterogeneity of Flats geomorphology can explain the observed patterns, it 

prevents robust statistical relationships between 7Be inventory and the linear distance 

to the nearest channel for all sites.  

 

Decadal-scale geochronology and relationship with vegetation 

The nature of long-term sedimentation is revealed by core profiles of 210Pb 

activity. Core profiles from areas with steady-state sedimentation (relatively constant 

sediment supply over time) exhibit relatively uniform grain size and log-linear 

decreases in excess 210Pb activities with depth. In contrast, core profiles from areas 

with pulsed sedimentation (e.g. from flood events) have more variable grain size and 

210Pb activities with depth (Jaeger et al. 1998). The former are well described by the 

CFCS model, which assumes steady-state sedimentation, but the latter requires a 

different approach, typically the CRS model. On the Flats, robust regression fits were 

obtained at SF1, SF4, and SF5 with the CFCS model, explaining much of the down-

core variability in 210Pb activities; the weak fits at SF2 and SF3 were not statistically 

significant. The CRS model provides insight into the role of variable sedimentation, 

especially at these latter two sites, by allowing calculation of discrete sediment ages 

(and corresponding sedimentation rates) down cores that can be compared with 

potential environmental influences.  On the Flats, two major influences are large 

flood events and historical changes in vegetation coverage. 
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Sediment delivery to the Flats is largely controlled by the Susquehanna River, 

which has had several large historical flood events (Schubel and Pritchard 1986; 

Gross et al. 1978). Sediment deposits from these events are an important part of the 

sedimentary record in the upper Chesapeake Bay (Hirschberg and Schubel 1979) and 

can be recognized in core profiles by layers with relatively low excess 210Pb activities 

and high mud content (Sommerfield et al. 1999; Palinkas et al. 2005); e.g., signatures 

present at ~30 cm and ~65 cm in core SF3 (Fig. 2.5a and 2.5b). Flood layers in 

sediment cores on the Flats correspond to several historic flood events of the 

Susquehanna River, especially TS Agnes in 1972 (Zabawa and Schubel 1974) and a 

large flood event in 1936 (Hirschberg and Schubel 1979). Flood layers corresponding 

to these events were found at SF1, SF2, SF3, and SF4; the absence at SF5 may reflect 

the relatively coarse-scale of sampling intervals or lack of obvious signature in core 

profiles. Anomalously low activities tend to decrease the slope (and R2) of the 

regression fit between 210Pb activities and depth, resulting in underestimated sediment 

accumulation rates. This is evident by the much lower average CFCS model rates 

than both the average CRS model rate and 137Cs derived rates for SF2 and SF3, which 

were most impacted by pulsed sedimentation (lowest R2 values). The CFCS and CRS 

average rates were more similar for sites with higher CFCS R2 values (>0.5; e.g. SF4 

and SF5), reflecting more steady-state sedimentation.  

Abrupt changes between historical periods with and without large SAV 

populations on the Flats can also drive sedimentation patterns. The decline in average 

annual sediment accumulation on the Flats after 1971 is coincident with the 

precipitous decline in SAV following Agnes (Bayley et al. 1978). Similarly, the rapid 
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increase in average annual sediment accumulation after 2000 is consistent with the 

resurgence of the Flats SAV bed in the early 2000s (Gurbisz and Kemp 2014). 

Although sedimentation appears to gradually increase between 1980 and 1998 in Fig 

2.5a, this may be an artifact due to linear interpolation between consecutive samples 

analyzed at relatively coarse intervals (~5 cm). The robust regression fit between total 

SAV bed area and average sediment accumulation rates indicates that these variables 

are strongly correlated, which further supports that a positive feedback mechanism 

exists between total SAV bed size and sediment trapping on the Flats. However, 

because data of SAV bed area were not available prior to 1984, and accumulation 

rates could only be calculated through 2008, the time-series data were not able to 

capture changes due to TS Lee. Based on the comparison between the historical 

periods with and without SAV, I expect that the decrease in bed area would also lead 

to a decrease in sediment accumulation rates. However, sediment load likely controls 

accumulation rates as well. For example, SAV bed area decreased between 2002 and 

2003, and SAV bed density decreased between 2002 and 2004, while accumulation 

rates appear to increase over both years. In contrast, SAV bed area and density 

rapidly increase in both 2007 and 2008, while accumulation rates remain relatively 

constant. Both 2003 and 2004 were relatively wet years, while 2007 and 2008 were 

relatively dry years (Gurbisz and Kemp 2014), which further indicates that annual 

accumulation rates are sensitive to both SAV bed area and sediment supply.  
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Summary  

Dense SAV beds disappeared from the Flats following TS Agnes in 1972, but 

recovered in the early 2000s. Because these seasonally vegetated beds are 

immediately downstream from the largest sediment source to the upper Chesapeake 

Bay, they are important for modulating the sediment input to the Chesapeake Bay. 

The main objective of this study was to assess how these seasonal and decadal shifts 

in vegetation influence sedimentation at corresponding time scales. Although 

variability in seasonal-scale sedimentation cannot be explained by grain size and 

SAV density, Susquehanna River discharge and Flats geomorphology strongly 

influence the spatial and temporal patterns of sedimentation; i.e. sites closest to 

channels had greater sedimentation. At decadal scales, variability in fluvial sediment 

supply and abrupt changes in SAV abundance influence sedimentation. Historical 

periods of SAV presence and absence generally correspond with higher and lower 

sedimentation rates, respectively. Additionally, the strong correlation between SAV 

bed area and average annual sediment accumulation on the Flats suggest a positive 

feedback between these variables exist.  
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Tables  

 

Table 2.1 Average (over sample period) surficial (0-1 cm) median grain size and 

organic content, depth-integrated 7Be inventories, and above ground biomass (C. 

Gurbisz; unpublished data) for push cores. Standard errors are reported for all 

columns except depth-integrated 7Be inventories, for which the error is the 

propagated 7Be activity counting error. The (n*) under the inventory column 

represents the number of sites with detectable 7Be activity; inventories for sites with 

non-detectable 7Be were assumed to be 0 dpm cm-2 (no deposition). 

 
Date Grain size (µm) Organic Content 

(%) 

Inventory (dpm 

cm-2) 

Biomass (g m-2) 

Aug 2014 

(n=13) 

290.5±22.6 2.03±0.32 

 

0.71±0.21 

(6*) 

254.8±111.8 

May 2015 

(n=13) 

281.1±16.4 1.98±0.28 0.67±0.23 

(4*) 

34.6±17.2 

     

Aug 2014 

(n=5) 

259.6±44.8 2.64±0.65 1.52±0.33 

(4*) 

339.6±291.9 

May 2015 

(n=5) 

282.9±21.9 2.22±0.31 0.71±0.18 

(1*) 

17.3±2.0 

Aug 2015 

(n=5) 

215.0±31.7 3.06±1.01 2.23±0.52 

(5*) 

163.1±68.7 
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Table 2.2 Decadal-scale sediment accumulation rate data: CFCS rate; total 210Pb 

inventory; core-averaged CRS rate; 1954 137Cs depth range and corresponding 

average accumulation rate; 1963 137Cs depth range and corresponding average 

accumulation rate; CRS-predicted 1954 and 1963 depth ranges; average CRS annual 

rates from1950-1972 (1950 was chosen because it was the earliest date SF2 could be 

dated with 210Pb), from 1972-2001, and from 2001-2008. *Indicates only rates 

between 1972 and 1990 could be calculated due to large surface mixed layer. NA 

indicates no data available.  
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Figures  

 

Figure 2.1 a) Map of Chesapeake Bay and the lower portion of the Susquehanna 

River, with the location of Susquehanna Flats indicated by the box. b) Landsat 

imagery collected on August 7, 2014 near low tide. The black lines indicate the 

location of the main channel to the west of the bed and discontinuous channel to the 

north of the bed. c) Primary (circles) and secondary (triangles) coring locations 

superimposed over 2014 SAV density map (VIMS).   
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Figure 2.2 a) Down-core 7Be activity and b) bulk density at SF3 in August 2014. 7Be 

inventory was calculated through equation 1, multiplying the 7Be activity of each 

depth interval by its bulk density and thickness (1 cm) and summing over the entire 

core. Inventory in this core was 2.66±0.29 dpm cm-2. All errors were propagated from 

7Be activity counting errors.  

ND

ND

a
0.5 1 5 10

5.0

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

7
Be Activity (dpm g

−1)

D
e

p
th

 (
c
m

)
b

0.0 0.1 0.2 0.3 0.4 0.5

Bulk Density (g cm
−3)



 

 39 

 

 

 
 

Figure 2.3 a) Daily Susquehanna River discharge and b) calculated suspended-

sediment concentration (SSC) at the Conowingo Dam between 1 March 2014 and 1 

September 2015. Open squares in the SSC time series indicate measured values. In 

both figures, shaded regions represent the three periods over which sediment 

deposition was calculated, with right and left boundaries corresponding to the 

sampling date and the 77 days prior to sampling, respectively.  
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Figure 2.4 a) SF5 depicts more steady state sedimentation, as indicated by the higher 

R2 value, while b) SF2 depicts more non-steady state sedimentation, as indicated by 

the low R2 value.   
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Figure 2.5 SF3 down-core profiles of a) median diameter and b) excess normalized 

210Pb activity, showing CFCS model regression fit and average accumulation rate. c) 

Corresponding CRS-derived mass accumulation rates over time (top right) with 

dashed lines indicating SAV disappearance in 1972 and reappearance in 2001. d) 

Down-core CRS-predicted sediment ages (black squares); the grey triangle and circle 

indicate horizons associated with 1954 and 1963, respectively, by 137 Cs data. 
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Figure 2.6 a) Time series of average SAV density across sites SF2-SF5 (Orth et al. 

2016) and total SAV bed area (Gurbisz and Kemp 2014) and b) average annual 

accumulation rates across sites SF2-SF5. The dashed lines indicate years of SAV 

disappearance (1972) reappearance (2001).   
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Figure 2.7 Linear regression between total SAV bed area and average annual 

accumulation rate across sites SF2-SF5 between 1984 and 2008. Years before SAV 

resurgence (1984-2000) indicated by black squares and years after SAV resurgence 

(2001-2008) indicated by grey triangles.   
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Chapter 3 : Sediment geochemical patterns and provenance in 

upper Chesapeake Bay 

 

Abstract 

Geochemical patterns in upper Chesapeake Bay sediments can reflect a 

variety of important processes. Quantifying the spatial and down-core geochemical 

patterns is important for understanding the underlying conservative (sediment 

provenance) and non-conservative (salinity, redox, anthropogenic influences) 

processes driving these patterns. It is particularly important to distinguish between 

conservative and non-conservative processes in order to quantify sediment sources, 

which will help developing management strategies to limit excess sedimentation in 

estuaries. In this study, elemental concentrations were measured via inductively 

coupled plasma emission/mass spectroscopy (ICP-ES/MS) and analyzed using 

principal component analysis. The sediment geochemistry data were then applied to 

evaluate contributions of Susquehanna River and shoreline erosion to bottom 

sediments in the upper Bay using a sediment-provenance analysis. Elements 

associated with aluminosilicate minerals, which were sensitive to grain-size changes, 

and rare earth elements, which were sensitive to salinity changes, explained the most 

variability in the dataset. Variability in heavy metal concentrations demonstrated 

changes in anthropogenic input over time. The results from the sediment-provenance 

analysis indicated that the Susquehanna River is the dominant source of fine sediment 

in the upper Bay.   
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Introduction 

Spatial patterns of geochemical signatures in estuarine sediments reflect a 

variety of important processes, depending on element behavior. For example, 

conservative geochemical tracers, such as Al, Li, and ratios of rare earth elements 

(REEs), reflect sediment provenance (Loring 1991; Windom et al. 1989; Munksgaard 

et al. 2003), while non-conservative tracers, such as organic matter, Fe and Mn, total 

REE concentrations, and heavy metals reveal changes in salinity, redox conditions, 

and/or anthropogenic influences (Sholkovitz and Elderfield 1988; Bricker 1993; 

Owens and Cornwell 1995; Guo et al. 1997; Zimmerman and Canuel 2000; Spencer 

et al. 2003). Elements can also behave differently depending on environmental 

context, such as Fe and P, which behave conservatively in fresh water under 

oxidizing conditions but non-conservatively in salt water under hypoxic conditions 

(Guo et al. 1997; Jordan et al. 2008). Therefore, it is important to analyze as many 

parameters as possible and interpret them within a specific environmental context.  

Historically, analytical constraints have limited the number of samples and/or 

elements considered by individual studies, hindering interpretation of the 

geochemical record preserved in sediment cores. For example, most previous studies 

have been restricted to a specific group of elements (i.e. trace elements, heavy metals, 

or rare earth elements) and have limited scope, focusing on either spatial patterns of 

surface sediments or down-core changes at individual sites (e.g. previous work in 

Chesapeake Bay by Sinex and Helz 1981; Sholkovitz and Elderfield 1988; Owens 

and Cornwell 1995; Zimmerman and Canuel 2000). Recent advancements in 

analytical techniques, particularly inductively coupled plasma mass spectroscopy 
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(ICMPS), now allow analysis of >50 elements on small amounts of sediment for a 

relatively low cost, greatly expanding datasets needed for robust understanding of 

geochemical patterns in space and time. 

These datasets often have high dimensionality and contain co-varying 

elements, making statistical analyses challenging; however, techniques such as 

correlation and principal component analyses reduce dimensionality and highlight 

underlying relationships in the data (Reid and Spencer 2009; Hannigan et al. 2010; 

Prajith et al. 2016). These advances allow the competing influences of conservative 

(sediment provenance) and non-conservative (salinity, redox, anthropogenic 

influence) processes on sediment geochemistry to be untangled, which is critical for 

using these data to address many scientific and management issues. For example, 

reducing sediment inputs is a major management focus in coastal and estuarine areas, 

as excess fine sediment is one of the main pollutants degrading water quality (Thrush 

et al. 2004; US EPA 2010; USACE 2015). Sediment-provenance analyses, which 

quantify sediment contributions from distinct sources, provide the data needed to 

develop effective sediment-management strategies (Mukundan et al. 2012). 

Sediment-provenance analyses employ a suite of geochemical parameters (i.e. trace 

metals, nutrients, radioisotopes, and stable isotopes) to produce a characteristic 

signature for individual sediment sources. These signatures can then be used to 

quantify the relative contributions of source materials to suspended or bottom 

sediments. For example, sediment-provenance analyses have been used to quantify 

source contributions from surface and subsurface sediments in river (Walling 2005) 

and deltaic floodplains (Jalowska et al 2017), and to determine contributions of 
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different land uses (Gellis and Noe 2013; Voli et al. 2013) and physiographic 

provinces (Devereux et al. 2010) to suspended-sediment loads.  

Understanding the fate of sediment sources in the Chesapeake Bay is critical 

for developing targeted sediment-management approaches, especially with respect to 

recent total maximum daily load (TMDL) sediment reduction goals (US EPA 2010). 

Sediment-provenance analyses can potentially differentiate between sediments 

delivered from the Bay’s main tributary, the Susquehanna River, and those eroded 

from shorelines, but these analyses require conservative element changes. There is 

limited information from previous studies on the geochemical character of sediments 

from the Susquehanna River, shoreline sediments, and upper Bay. Thus, the first step 

in determining provenance of Bay sediments is to identify the most prevalent 

elements and whether they are conservative or non-conservative in the estuary. This 

study takes advantage of relatively new analytical and statistical analyses of sediment 

geochemistry to take this first step and move forward to applying the results to a 

sediment-provenance analysis, providing a foundation for future work. Specifically, 

the objectives are to: 1) identify the most prevalent conservative and non-

conservative elements in upper Bay sediments; 2) describe spatial patterns in surficial 

sediments and with depth in cores; 3) determine the underlying processes driving the 

observed patterns; and 4) evaluate the potential for results to quantify relative 

contributions of Susquehanna River and shoreline sediments to upper Bay sediments. 
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Methods 

Study Site 

The upper Chesapeake Bay is the ~100 km section between the Susquehanna 

River and Choptank River mouths (Fig. 3.1). Here, the Bay varies in width between 5 

km and 20 km. Although the narrow main stem Bay channel reaches depths up to 53 

m south of Annapolis, the average depth of this portion of the Bay is only 4 m due to 

broad shallow shoals flanking the main channel 

(https://www.ngdc.noaa.gov/mgg/bathymetry/estuarine/). The tidal range increases 

from 0.3 m near Annapolis to 0.6 m at the head of the Bay. Tidal currents are also 

lowest near Annapolis at 0.13 m s-1, increase to 0.6 m s-1 near Baltimore, then 

decrease north of Baltimore to 0.2 m s-1 at the head of the Bay (Zhong and Li 2006). 

Significant wave heights in the upper Bay are typically <1 m with a mean period <2.5 

s (https://buoybay.noaa.gov/). These waves are generally fetch-limited and generated 

by winds (Sanford 1994).  

There are three salinity regions in the upper Bay: tidal freshwater (0-0.5), 

from the Susquehanna River mouth to Turkey Point; oligahaline (0.5-5), from Turkey 

Point to the Patapsco River mouth; and mesohaline (5-18), from the Patapsco River 

mouth to the Potomac River estuary mouth (http://eyesonthebay.dnr.maryland.gov/). 

These salinity regions are largely influenced by freshwater discharge from the 

Susquehanna River, which delivers >80% of the total freshwater to the upper Bay 

(Schubel and Pritchard 1986). River discharge is generally highest during the spring, 

pushing the saltwater front farther seaward, and lowest during the summer, allowing 

the saltwater front to migrate farther landward (Schubel and Pritchard 1986).  
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The Susquehanna River is also the primary source of sediment to the upper 

Bay, supplying ~2x106 t annually (Langland 2015). Much of this sediment is trapped 

northward of 39°10’ N (~40 km from the Susquehanna River mouth) in the estuarine 

turbidity maximum (ETM) (Biggs 1970; Schubel and Pritchard 1986; Donoghue et al. 

1989). Shoreline erosion is another significant source to the upper Bay, contributing 

~1.0x106 t y-1, and becoming the dominant sediment source south of the ETM 

(Fig.3.1; Schubel 1968; Biggs 1970; calculated after applying dry bulk density 

correction factor from Langland and Cronin (2003)). This value reflects fastland 

erosion (erosion above mean high water (MHW), and was used interchangeably with 

shoreline erosion in this study) but not nearshore erosion, which can more than 

double this value when included (Langland and Cronin 2003). Sediment grain sizes in 

the upper Bay range from sandy-silts to silty-clays, although shorelines are 

predominately sandy (Kerhin 1988).  

Previous research of sediment geochemistry in the upper Bay focused on 

surficial sediments, showing that several elements (Mn, Fe, Co, Ni, and Cu) decrease 

with distance from the Susquehanna River and that heavy metals (Zn, Cd, and Pb) are 

enriched due to anthropogenic influences (Sinex and Helz 1981). Also, analysis of 

particulate Fe revealed that the Susquehanna River contributes 85% of the material in 

the upper Bay, with shoreline erosion supplying 15% (Helz et al. 1985a).  Lastly, 

while dissolved concentrations of rare earth elements (La, Ce, Pr, Nd, Sm, Eu, Gd, 

Dy, Y, Er, Yb) were studied, few reports of sediment concentrations exist (Sholkovitz 

and Elderfield 1988).  
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Field and Laboratory Methods 

Sediments cores were collected at seven sites in the upper Bay, four of which 

were sampled via box cores on 11 August 2015 (Fig. 3.1; Table A.3). Box cores were 

subcored onsite using 6 cm inner diameter core liners (20 cm long); subcores were 

immediately extruded and sectioned into 1-cm intervals before returning to the 

laboratory for analysis. All sites were sampled via gravity cores (1.5 m long, 7 cm 

diameter) on 28 April 2016. Intact gravity cores were returned to the laboratory, 

where they were sectioned into 1-cm (top 20 cm) and 2-cm (20 cm-end of core) 

increments. Sediments from all cores were analyzed for grain size and elemental 

composition.  

Field samples were also collected to characterize Susquehanna River and 

shoreline sediment sources (Fig. 3.1; Table A.3). Suspended sediment from the 

Susquehanna River was collected on 6 April 2015 at the Conowingo Dam outlet 

during high flow (4474 m3 s-1), using a 20 L carboy. Physical constraints prevented 

additional water collection at the Conowingo Dam outlet; surface sediments (0-1 cm) 

from the Conowingo Reservoir with detectable 7Be activity (tracer of recently eroded 

watershed sediment; Olsen et al. 1986), collected in 2015-2016 (Palinkas 2017) were 

assumed to represent Susquehanna River sediment (n=13). Sediment from the three 

sites closest to the Dam was used. Surface grab samples were taken from unprotected, 

erosive shorelines to represent shoreline sediments (Fig. 3.1; n=16). 

Grain size was analyzed by wet-sieving samples at 63 µm to separate the fine 

(silt+clay; <63 μm) and coarse (sand; >63 μm) fractions. The fine fraction was 

disaggregated with 0.05% sodium metaphospate in an ultrasonic bath and then 
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analyzed using a Sedigraph 5120. The coarse fraction was dry-sieved through a 

standard set of 13 sieves, from 500 μm to 64 μm (at ¼-phi size intervals; phi=-

log2(particle diameter, mm)). The fine and coarse data were joined to calculate 

median diameters of the bulk sample; median diameters were also calculated for the 

fine fraction only.  

For elemental analysis, two-gram aliquots were taken from the dried surface 

sediment (0-1 cm) of all box and gravity cores. Seven to nine additional aliquots were 

taken from dried sediment at ~5-cm increments within gravity cores, for a total of 61 

aliquots. Elemental analyses were also performed on Susquehanna River and 

shoreline sediments. Each aliquot was sieved at 63 µm; the <63 µm fraction was 

transferred into a 20-mL plastic scintillation vial. Vials were sent to Bureau Veritas 

Commodities Canada Ltd. (Vancouver, Canada) for analysis via inductively coupled 

plasma emission and mass spectroscopy (ICP-ES/MS). For these analyses, 0.25 g 

sediment split was dissolved using microwave-assisted multi-acid digestion (HNO3, 

HClO4, HF, HCl), following the methods of Totland et al. (1995) to determine 

concentrations for 59 elements. Standard reference materials (NIST 1646a, estuarine 

sediment; OREAS 25a, ferruginous soil; OREAS 45e, lateritic soil) and replicates 

were analyzed to determine accuracy and precision, respectively. Elements with 

>10% error (19 of the original 59) were omitted from further consideration. 

 

Statistics 

All statistical analyses were performed in R version 3.3.2, considering surface 

(uppermost 1 cm) and core-averaged (>1 cm deep in cores) elemental compositions 



 

 52 

 

separately; surface compositions were further divided into spring and summer. Core-

averaged element concentrations (��) were calculated using a weighted average 

approach, based on differing interval thicknesses. For core n,  

����� = ∑ ��,� ∙ ��
�

�
�,���   (1) 

where Ce,i is the concentration of element e in interval i, hi is the thickness of interval 

i, and H is the total core thickness.  

Inter-element correlations were quantified using a correlation matrix. 

Principal component analysis (PCA) was run to reduce the dimensionality of the data 

and determine which elements explained the most variability across all cores. PCA 

generates principal components, which are uncorrelated variables made up of linear 

combinations of the original variables. For each principal component, a loading is 

assigned to each of the original variables, determined by correlation between the 

original variable and the principal component. The correlation matrix and PCA were 

run on all 61 samples (surface and down-core) in order to identify spatial and 

temporal patterns driving data variability. Simple linear models were developed to 

compare element concentrations (spring surface, summer surface, and core-averaged 

values) with distance from the Susquehanna River mouth; p-values <0.05 were 

considered significant.  

Element concentrations were also normalized to those in Susquehanna River 

surficial sediment. This places all elements on a similar scale and directly compares 

upper Bay element concentrations to Susquehanna River values without affecting the 

underlying geochemical patterns. Because silt and clay differences can impact 
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element concentrations, an enrichment factor (EFAl) was calculated that normalizes 

elemental concentrations to Al (Schropp et al. 1990).  

�� � = !"��#���
 � $

%
#&��
/ !"��#���

 � $
()%*

(2) 

In Eq. 2, [Element/Al]sample is the Al-normalized element concentration of the 

sediment sample, and [Element/Al]Susq is the Al-normalized element concentration of 

the surficial Susquehanna River sample. The EFAl was only calculated for elements 

that were correlated with grain size.  

A sediment-provenance analysis was then performed, in which source 

contributions from the Susquehanna River and shoreline erosion were quantified on 

target (upper Bay) sediments using the United State Geological Survey (USGS) 

Sediment Source Assessment Tool (Sed_SAT; Gorman-Sanisaca et al. 2017). 

Differences in element concentrations between Susquehanna River (metamorphic 

rocks such as schist, gneiss and quartzite, and felsic and mafic igneous intrusions) and 

shoreline sediment sources (unconsolidated clastic sediments like quartz) were 

assumed to reflect differences in underlying geology (Markewich et al. 1990). The 

Sed_SAT tool runs a series of statistical tests to remove outliers, eliminate non-

conservative elements, and select a group of elements that best discriminates among 

different sources. All elements that were correlated with grain size were normalized 

to Al in both the source and target datasets. Elements that behaved conservatively 

with a normal distribution were passed into a Forward Stepwise Linear Discriminant 

Function Analysis (DFA), which selects a combination of elements that best 

differentiates between the source samples by minimizing the Wilks’ lambda variable 

(Collins et al. 1997; Gellis and Noe 2013). A Wilks’ lambda close to 1 means the 
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sources cannot be distinguished, while a value closer to 0 means the sources are 

significantly different. A mixing-model analysis using Monte Carlo simulations was 

then applied, minimizing the following equation: 

∑ +,�� − (∑ .%/%�
#
��� )0 ��⁄ 234�; 678ℎ ∑ .% = 1�

%��
�
���  (2) 

“where Ci is the concentration of tracer I in the target sample, Ps is the optimized 

percentage of source type (s); Ssi is the mean concentration of tracer i in source s; Wi 

is the weighting factor applied to tracer i; n is the number of tracers in the optimum 

composite fingerprint; and m is the number of sediment source types” (Gorman-

Sanisaca et al. 2017). All elements were included in the first Sed_SAT model run; the 

second model run excluded elements with non-conservative behavior in the upper 

Bay.   

 

 

Results 

Correlation Matrix 

Individual values of core-averaged bulk grain size, fine-fraction grain size, 

and element concentrations varied widely in the upper Bay (Table 3.1). The down-

core data were combined with those from spring and summer surficial sediments 

(Table 3.2) to calculate a correlation matrix for the 40 elements (Fig. 3.2). Several of 

the 40 elements were positively correlated (R2 values > 0.5) across all study sites (Fig. 

3.2). There were 2 main groups of similarly correlated elements. Group 1 was 

composed of Li, Mg, Al, K, Sc, V, Cr, Fe, Ga, As, Rb, Tl, and Bi. Most R2 values for 
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this group were >0.75, but Cr, As, and Bi had lower values of 0.52-0.81. Group 2 was 

composed of Th, U, and the rare-earth elements (REEs) La, Ce, Pr, Nd, Sm, Eu, Gd, 

Dy, Y, Er and Yb. R2 values in this group ranged from 0.50 to 0.97, with the highest 

values occurring between the light REEs (La, Ce, Pr, and Nd) and Th.  

Other correlations between elements with R2 values > 0.5 were present: Na 

had a positive correlation with Mg (R2=0.60) and P (R2=0.58) and a negative 

correlation with La, Ce, Pr, Th, and Zr (R2=0.51-0.58); Zr was negatively correlated 

with Li, Mg, and Tl (0.50-0.54); Zn was positively correlated with Cr (R2=0.63) and 

Bi (R2=0.53); and Sr was positively correlated with Al (R2=0.50) and Rb (R2=0.52). 

Correlations between median grain size of the fine fraction and the 40 elements were 

also evaluated. Although all R2 values were <0.5 for all elements, group 1 elements 

tended to have a negative relationship with median grain size (R2 values 0.37-0.48). 

R2 values between median grain size and group 2 elements were < 0.1.  

 

Element concentrations and enrichment factors 

Concentrations of group 1 elements (e.g. Li, Sc, V) in surficial sediments 

generally increased with distance from the Susquehanna River in both spring and 

summer as did core-averaged concentrations (Fig. 3.3a; see Tables 1 and 2 for 

concentration data). After normalizing to Al, enrichment factors for K, Sc, Ga, Rb, 

and Tl showed no trend in either spring or summer, with values ~1, while the other 

elements significantly increased with distance downstream (p<0.01; R2 = 0.49-0.98). 

Core-averaged enrichment factors for K, Sc, Fe, Ga, Rb, and Tl were ~1 and had no 

relationship with distance downstream. However, enrichment factors for Li, Mg, and 
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As increased downstream (R2 = 0.55, 0.54, 0.74, respectively; Fig. 3.3b). For V and 

Bi, the core-averaged EFAl increased between Lee7 and Lee5, decreased at Lee2.5, 

and increased through LeeS2 (Fig. 3.3b); for Cr, the core-averaged EFAl decreased 

between Lee7 and Lee0, and increased slightly at LeeS2. 

Because REEs tend to behave similarly over the salinity gradient (Sholkovitz 

and Szymczak, 2000), total REE concentration was used to assess changes in group 2 

elements across study sites (Fig. 3.4a). Although Th and U were not included, they 

generally show a similar spatial pattern in both core-averaged and surficial 

concentrations to the other REEs. Total REE in surface sediments generally decreased 

with distance downstream, even though there was a slight increase at Lee2 in spring. 

The core-averaged total REE was relatively uniform between Lee7 and Lee5 (191.01-

193.71 ppm), increased to a maximum at Lee2.5 (221.58 ppm), decreased to a 

minimum at Lee0 (145.45 ppm), and then increased again to 189.24 PPM at LeeS2. 

REE ratios were also analyzed by comparing the sum of light REEs (LREE; La, Ce, 

Nd, Pr) to the sum of heavy REEs (HREE; Er, Yb). The LREE and HREE 

concentrations of each sample were normalized to the LREE and HREE 

concentrations from Susquehanna River sediment, respectively. There was a slight 

decrease in surficial (spring and summer) and core-averaged LREE to HREE ratios 

with distance downstream (Fig. 3.4b). 

For elements not in groups 1 or 2, spatial patterns of surficial sediments were 

generally similar in spring and summer (see Table 3.2). For example, Na and P 

increased downstream while Zr decreased; surficial Mn increased between Lee7 and 

Lee2.5 and then decreased at LeeS2. However, surface Mn concentrations at Lee2.5 
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were nearly two times higher in summer than in spring. The core-averaged 

concentrations of these elements were more spatially variable (see Table 3.1): Na and 

P concentrations increased from Lee7 to Lee0, and decreased at LeeS2; Zr increased 

from Lee7 and Lee5, and then decreased through Lee0. Mn concentrations increased 

between Lee7 and Lee2, then decreased through LeeS2. 

Core-averaged values were used in the preceding analyses, because elemental 

values did not vary considerably down individual cores. There were some exceptions: 

group 1 elements As and Bi varied by a factor of 2.5; and group 2 elements varied by 

up to a factor of 1.5 at Lee0 and LeeS2. And, distinct concentration peaks were 

present in the heavy-metal down-core data profiles, particularly for Co, Ni, Cu, Mo, 

and Pb. For example, peaks in Pb occurred between 30-32 cm at Lee6 (123.07 ppm) 

and 12-13 cm at Lee2.5 (96.48 ppm); the Pb concentrations then declined towards the 

surface of the cores (Fig. 3.5). 

 

PCA 

Principal Component Analysis (PCA) showed that 75.4% of the variability 

across all samples (surface and down-core) was explained by the first three principal 

components (38.6%, 29.6%, and 7.2% for PC1, PC2 and PC3, respectively). 

Elements of group 1 projected strongly onto PC1 (i.e. elements from group 1 had 

large PC1 loadings relative to PC2), while the elements of group 2 projected strongly 

onto PC2 (Fig. 3.6). Grain size also projected strongly onto PC1, but in the opposite 

direction of the group 1 elements, reflecting negative correlations with these 

elements. Strontium and Zn projected more strongly onto PC1, while Zr, P and Na 
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had similar PC1 and PC2 loadings. Calcium, Ti, Mn, Co, Ni, Cu, Mo, Ba and Pb had 

relatively small loadings in both PC1 and PC2, and therefore did not contribute much 

to the overall variability on these principal components. Heavy metals Co, Ni, Zn, 

Mo, and Pb projected strongly onto PC3 (not shown in Fig. 3.6).  

Surface (summer 2015 and spring 2016) and core-averaged element 

concentrations were transformed using the PC1 and PC2 loadings of each element 

and projected onto the first 2 principal components (Fig. 3.7). Minimum and 

maximum PC1 values occurred at Lee7 and LeeS2, respectively, in both summer 

2015 and spring 2016 surface sediments. Both spring and summer PC1 values 

significantly increased with increased distance from the Susquehanna River (p-values 

0.03 for both linear regression models), although spring PC1 values at Lee2.5 and 

Lee0 were outliers. In contrast, summer and spring PC2 values significantly 

decreased with distance from the Susquehanna River (p-values 0.01 and 0.001 for 

respective linear regression models). Direct comparisons between spring and summer 

surficial sediments were possible at Lee7, Lee5, Lee2.5, and LeeS2. In both spring 

and summer, minimum PC1 values and maximum PC2 values occur at Lee7, and 

maximum PC1 values and minimum PC2 values occur at LeeS2. However, summer 

surficial PC1 values were lower at Lee5 than at Lee2.5, but spring values were lower 

at Lee2.5 than at Lee5. PC2 values were similar between seasons at all sites except 

LeeS2, where values were lower in summer. 

Core-averaged PC1 values showed a similar pattern to the surficial sediments, 

with values generally increasing with distance downstream (p-value=0.003), but over 

a much larger range. Core-averaged PC1 values at each site were also higher than 
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corresponding surficial PC1 values. Core-averaged PC2 values gradually increased 

from Lee7 and Lee5, reached a maximum at Lee2.5, and then decreased to a 

minimum at Lee0 (Fig. 3.7). Core-averaged and surficial PC2 values at each site, 

except at LeeS2, where surficial PC2 values were much lower. Core-averaged PC2 

values were significantly higher in the oligohaline (Lee7-Lee2.5) than in the 

mesohaline (Lee2-LeeS2) regions of the Bay (p<0.001). Down-core variability was 

highest at Lee2.5, Lee0, and LeeS2 and lowest at Lee7, Lee6, Lee5, and Lee2.  

 

Sediment-provenance analysis    

Elemental concentrations in shoreline sediments generally varied more widely 

than concentrations in Susquehanna River sediments (Table 3.3). Of the 40 elements 

in the source (Susquehanna River and shoreline sediments) and target (upper Bay) 

geochemical datasets, only Li, Co, Ti, and Zr behaved non-conservatively in the first 

Sed_SAT model run, which included all elements, and were discarded from further 

analysis. In that run, the group of tracers that best distinguished between sources 

included As, Tl, Fe, and Ce and correctly classified 96.88% of source sediments; only 

1 shoreline site was misclassified as Susquehanna River source. Using this group, 

sediment-source contributions to upper Bay sediments generally showed 

Susquehanna influence decreasing with distance downstream, from a core-averaged 

value of 95.7±0.12% at Lee7 to 75.8±0.90% at LeeS2. Susquehanna sources at Lee2 

and Lee0 were outliers from this trend, having comparable values to those at Lee5 

(Fig. 3.8). Down-core percentages did not vary by more than 20%, with the most 

variability occurring at Lee5, Lee0, and LeeS2.  
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Because the statistical analyses above identified several elements with non-

conservative behavior in the upper Bay due to environmental variability (e.g. salinity, 

oxygen), the second Sed_SAT model run excluded all non-conservative elements. In 

this model run, the group of selected elements (Tl and Fe) correctly classified 90% of 

the source samples, with 3 shoreline sites misclassified as Susquehanna River sites. 

The Susquehanna River was again the dominant source to upper Bay sediments (Fig. 

3.8), ranging from 89.53±1.57% at Lee5 to 98.32±1.33% at Lee0. Susquehanna River 

contribution was significantly higher (p-value <0.01) in the second run at all sites 

except Lee7 and Lee5 (p-value >0.3). The Susquehanna River contribution slightly 

decreased between Lee7 and Lee5, then slightly increased between Lee5 and Lee0, 

and again decreased to LeeS2. All cores displayed little down-core variability in the 

second model run.  

 

Discussion 

Influences on element concentrations in surficial and core-averaged sediments 

 Correlation matrices and PCA are common techniques for analyzing 

multivariate sediment geochemistry datasets. They have been applied previously to 

describe sediment provenance, anthropogenic influence, and changes due to salinity 

in estuarine sediments (Li et al. 2000; Reid and Spencer 2009; Prajith et al. 2016). 

Although both techniques are useful for grouping elements with similar patterns, in 

this study only PCA revealed underlying relationships in the data that explained the 

total variance.  
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Elements that are grouped together (i.e. similar R2 values or PCA loadings) 

have a common source. For example, in this study, group 1 elements (e.g. Li, Sc, V) 

accounted for the most variance in PCA. These elements tend to be associated with 

aluminosilicate clay minerals (Loring 1991; Reid and Spencer 2009), such as illite, 

chlorite, kaolinite, and montmorillontite. These minerals are prevalent in the 

Chesapeake Bay (Goldberg et al. 1978), with changing concentrations along the 

salinity gradient that reflect changes in source (i.e. fluvial or marine) (Feuillet and 

Fleischer 1980). Although clay mineralogy was not evaluated in this study, the 

changing concentrations of group 1 elements could be a proxy for changing influence 

of fluvial versus marine sources; i.e. more fluvial influence near the Susquehanna 

River. However, while both surface and core-averaged element concentrations 

increased with distance downstream, these trends are likely driven by differences in 

grain size, which decreases from silts at Lee7 (most upstream site) to clays at LeeS2 

(most downstream site). As grain size decreases, surface area and adsorption 

efficiency increases (Schropp et al. 1990), resulting in an apparent increase of 

adsorbed elements. Thus, grain-size effects must be separated from differences in 

mineralogy through a grain-size correction, such as granulometric or geochemical 

normalization (Reid and Spencer 2009; Sun et al. 2018). In this study, grain-size 

influence was removed via enrichment factors (EFs; normalization to Al), which also 

help discriminate between different sources of elements, such as terrigenous or 

anthropogenic sources (Reid and Spencer 2009; Prajith et al. 2016). The EFs were 

calculated relative to Susquehanna River surficial sediments, so an EF > 1 suggests an 

additional source of these elements, likely anthropogenic pollution (Sinex and Helz 
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1981; Prajith et al. 2016). In contrast, an EF ≤1 suggests no or minimal pollution 

and/or another sediment source with lower concentrations of these elements (Sinex 

and Helz 1981; Prajith et al. 2016).  

While analyzing only the fine fraction of samples minimizes this variability 

(Sinex and Helz 1981), differences in silt and clay composition can still influence 

observations. Indeed, the lack of significant trend in the core-averaged EFAl for K, Sc, 

Ga, Rb, and Tl with distance downstream indicates that differences in silt and clay 

composition, not differences in sources of these elements, control observed spatial 

patterns. In contrast, the enrichment of core-averaged EFAl for Mg, As, and Li with 

increased distance downstream suggests that there is an additional source of these 

elements. For example, increased Mg can reflect increasing salinity (Elbaz-Poulichet 

et al. 1984), while increases in As can be due to changing redox condition – under 

reducing conditions As can co-precipitate with FeS2 (Morse and Luther 1999) or 

become associated with insoluble humic complexes (Guo et al. 1997). Higher As 

concentrations may also reflect anthropogenic sources (Sanders 1985; Gupta and 

Karuppiah 1996). Lithium, however, is not typically influenced by anthropogenic 

sources or biogeochemical processes, but it is highly sensitive to grain-size changes 

and is sometimes used to correct for grain-size effects (Loring 1991). It is possible 

that Li concentration changes reflect a shift in dominant sediment source, such as 

decreasing influence of Susquehanna River sediments and increasing contributions of 

eroded shoreline sediment (Biggs 1970; Donoghue et al. 1989). Because shoreline 

sediments have lower Li concentrations than Susquehanna River sediments (Table 

3.3), Li concentrations should decrease downstream; however, the opposite trend was 
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observed. The most likely explanation is that grain-size effects were not fully 

removed when normalizing to Al, and the decreasing normalized Li concentrations 

(Loring 1991). The non-linear trend of EFAl for V, Cr, and Bi suggest that these 

elements do not behave conservatively in upper Bay sediments. Changes in surficial 

and core-averaged V and Cr concentrations could reflect changes in redox conditions, 

since V tends to precipitate under reducing conditions (Shiller and Mao 1999) and Cr 

tends to co-precipitate with metal oxides. Changes in Bi concentrations could reflect 

anthropogenic inputs, since peaks in Bi occur near industrial areas (Baltimore and 

Annapolis).   

Although Na and P were generally not correlated with group 1 elements, they 

had similar spatial patterns as Mg. The increase in surficial and core-averaged Na 

with distance downstream could reflect a change in sediment-source contributions 

and/or the increase in salinity and thus major seawater cations, like Mg (Elbaz-

Poulichet et al. 1984). Unlike Na and Mg, P is not a major ion found in seawater but 

can still vary with changing salinity and redox conditions. A large portion of 

particulate P is bound to Fe in freshwater but is released at higher salinities and under 

more reducing conditions (Jordan et al. 2008). This release of P from Fe explains the 

relatively strong correlation of P and Fe between Lee7 and Lee2 (R2=0.68) and the 

lack of relationship at Lee0 and LeeS2. Manganese is also sensitive to redox 

conditions; high surficial and core-averaged concentrations between Lee5 and Lee2 

likely reflect the presence of Mn oxides under oxidizing conditions, and the 

subsequent decrease between Lee0 and LeeS2 reflects the reduction of Mn to 

dissolved form under reducing conditions (Guo et al. 1997). 
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The significant difference between core-averaged PC2 values in the 

mesohaline and oligohaline reflects the sensitivity of REEs to changes in salinity. At 

low salinities, REEs are removed from the water column and adsorbed to sediments 

due to the salt-induced coagulation of riverine colloids (Sholkovitz and Elderfield 

1988). As salinity increases, REEs are released from sediments and resupplied to the 

water column (Sholkovitz and Szymczak 2000). My results are consistent with these 

patterns – enrichment of core-averaged REEs at Lee2.5 likely due to salt-induced 

coagulation of riverine particles, and the subsequent decline at the mesohaline sites 

suggesting desorption of REEs at higher salinities. Previous work showing a positive 

linear trend between salinity and water-column REE concentrations implies that there 

should be a corresponding negative linear trend between salinity and sediment REE 

concentrations (Sholkovitz and Szymczak 2000). Although core-averaged REE 

concentrations generally follow this pattern between Lee2.5 and LeeS2, REE 

concentrations at Lee0 are much lower than expected. REE concentrations are 

depleted by up to 30% at Lee0, and subsequently increase by ~20% at LeeS2, 

suggesting either a significant release of REEs from the sediment particles followed 

by adsorption downstream, or dilution of these sediments by REE-poor sediments 

(Elderfield et al. 1990; Prajith et al. 2015). Lee0 has REE concentrations that are 

<10% of the core-averaged REE concentrations measured in Susquehanna River 

sediments (Table S3). This site is located at the mouth of the Chester River, whose 

watershed is entirely within the Coastal Plain physiographic province, so its low REE 

concentrations at Lee0 may result from dilution by Chester River sediments and/or 

shoreline erosion. The decrease in LREE to HREE ratios downstream could either 
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indicate REE fractionation or changes in dominant sediment source. Previous 

research has shown that HREEs are preferentially released from sediments at mid- to 

high salinities (Sholkovitz and Szymczak 2000), which would increase LREE:HREE. 

Therefore, the decreasing trend in my data more likely represents changing sediment 

sources, supporting the use of REEs for assessing sediment provenance (Munksgaard 

et al. 2003) even though they behave non-conservatively. However, since average 

LREE:HREE in Susquehanna River and shoreline source sediments were not 

significantly different, REE ratios were not used for the provenance analyses 

discussed below.  

 

Temporal changes in element concentrations 

Differences in the spring and summer datasets highlight seasonal shifts in 

estuarine processes. For example, the differences in PC1 values at Lee5 and Lee2.5 

between spring and summer (i.e. PC1 values were lower at Lee2.5 in spring than at 

Lee5, but were higher at Lee2.5 than at Lee5 in summer) likely reflect seasonal 

migration of the estuarine turbidity maximum (ETM) (Sanford et al. 2001). In spring, 

Susquehanna River discharge is high, and the ETM is farther seaward near Lee2.5; in 

summer, river discharge is lower and the ETM is nearer the head of the Bay and Lee5 

(Schubel and Pritchard 1986). In spring, PC1 values of surficial sediments at Lee2.5 

are lower than at Lee5, suggesting that fluvial sediment was transported farther 

downstream (Fig. 3.7). In summer, surficial PC1 values increase with distance 

downstream, similar to core-averaged patterns. The only other notable seasonal 

difference occurs in Mn at Lee2.5. Because this site is near the northern limit of the 
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seasonal anoxic zone (Officer et al. 1984b; Gavis and Grant 1986), the high Mn 

concentrations observed in summer surficial sediments likely represents Mn 

accumulation at the redox boundary, where dissolved Mn are precipitated as oxides 

(Burdige 1993). 

Differences over longer, decadal time scales are reflected in concentration 

changes with depth in sediment cores. Generally, there was not much variability with 

depth in group 1 or 2 elements, which suggests that the sources of these elements 

and/or estuarine processes impacting these elements have been consistent over the 

past ~100 years. However, the slight variability in As and Bi may reflect 

anthropogenic sources (Gupta and Karuppiah 1996). Heavy metals, included in the 

third principal component, were the most variable with depth in cores and usually had 

a distinct peak in the depth profile. These peaks likely represent anthropogenic 

pollution such as those documented in the Chesapeake Bay (Goldberg et al. 1978; 

Owens and Cornwell 1995) and other estuaries with significant industrial and 

population growth throughout the late 19th and 20th centuries (Bricker 1993; Spencer 

et al. 2003). However, several pollution control measures have been adopted since the 

late 20th century that reduced heavy metal inputs. These changes are preserved in the 

sediments; for example, the removal of Pb from gasoline is well documented in 

previous studies and results in peak concentrations at depths corresponding to the late 

1970s in sediment cores (Bricker 1993; Owens and Cornwell 1995; Spencer et al. 

2003). These peaks were observed in upper Bay cores, at depth horizons consistent 

with the late 1970s using accumulation rates from Russ and Palinkas (in prep). Thus, 
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the down-core profiles of heavy metals likely reflect temporal shifts in anthropogenic 

inputs.  

 

Sediment-provenance application  

I expected to decreasing influence of Susquehanna River sediments with 

distance downstream in the upper Bay, as well as a corresponding increase in 

shoreline influence. The results from the first Sed_SAT mixing model run (all 

elements) support this hypothesis. However, the second run of the Sed_SAT mixing 

model (conservative elements only) indicated unexpectedly high contributions from 

the Susquehanna River at downstream sites. The differences between the model 

results using the first (As, Tl, Fe, and Ce) and second (Tl and Fe) groups of elements 

underscore how sensitive the model is to different groups of elements. 

The results of the first model run are consistent with previous results based on 

Fe con centration data (Helz et al. 1985a), in which ~85% of bottom sediments in the 

upper 50 km of the Bay come from the Susquehanna River. Because most of the 

Susquehanna River sediment is trapped within the ETM (north of Lee2.5) (Donoghue 

et al. 1989), I expected shoreline erosion to contribute most of the sediments south of 

Lee2.5. However, Susquehanna River sediment was dominant throughout these cores. 

It is important to note that the sediment-provenance results in this study represent the 

source contribution of the fine fraction. And so, one explanation for the relatively 

high Susquehanna input in my results is that my sites received more fine 

Susquehanna River sediment than fine shoreline sediment. Susquehanna River source 

sediments were generally fine (ballpark %sand), but shoreline source sediments were 



 

 68 

 

predominately sandy (>90% sand). Indeed, <35% of upper Bay shoreline sediments 

are composed of fine particles (Schubel 1968) that can be transported into deeper 

water (Halka 2000). Most of the larger, sand-sized shoreline sediments are deposited 

along shallow shoals immediately adjacent to the shoreline, with relatively little 

transport beyond nearshore zones. My results are consistent with these ideas, showing 

that Susquehanna River sediments contribute more fine sediment in the deeper 

portions of the upper Bay than shorelines, with increasing contributions from fine 

shoreline sediments downstream.  

Although the results from the first model run agree with previous results, the 

mixing-model analysis included elements with non-conservative behavior in the Bay 

(As and Ce), as determined by this study. The Sed_SAT tool determines conservative 

behavior through a range test (i.e. target sediment element concentrations are within 

the minimum and maximum element concentrations of source sediments) (Mukundan 

et al. 2012), without consideration of environmental influence on elemental 

concentrations. Thus, it is critical to identify in a particular study area prior to using 

Sed_SAT as was done in the second model run. However, the results from this second 

run were unexpected in that Susquehanna River influence increased downstream, 

contrasting previous work showing dominance of shoreline sediments in the 

mesohaline Bay (Biggs 1970). Although the elements selected for the second run 

behaved conservatively in the upper Bay, these elements did not show any 

downstream trend after normalizing to Al, which likely explains why source 

contributions were similar between all sites. A possible explanation for unexpectedly 

low shoreline-source contributions in this model is the wide variability in Tl and Fe 
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concentrations in shoreline sources (Table 3.3). The mixing model uses the mean 

element concentration of each source to quantify its contribution to the target 

sediments; a wide range in element concentrations results in a mean concentration 

that may not appropriately represent source sediments. In this case, Fe concentrations 

(normalized to Al) ranged between 556-680 (average 611) in Susquehanna River 

sediments and between 545-3114 (average 1453) in shoreline sediments. Target 

sediment Fe concentrations (normalized to Al), which ranged between 537-782, 

closer to average Susquehanna River concentration than to average shoreline 

concentration, resulting in source contributions that indicate greater Susquehanna 

River influence. 

Regardless of the differences between the two model runs, it is clear that the 

Susquehanna River is the dominant source of fine material near the main channel of 

the upper Bay, including at downstream sites. While quantifying exact contributions 

throughout the study area, as well as expected future changes due to natural and 

anthropogenic activities (climate change, dam infilling) remain fruitful areas for 

future research, identifying the main source(s) of fine material to the upper Bay is a 

critical, immediate management need. Sediment-provenance analyses have been 

applied in freshwater environments to better manage excess sediment inputs (i.e. 

Walling 2005; Gellis et al. 2009; Devereux et al. 2010; Mukundan et al. 2012); 

however, it has not, to my knowledge, been applied as a management tool in estuarine 

environments since one of the main challenges to performing these analyses in 

estuaries, versus freshwater environments, is that estuarine biogeochemical processes 

(i.e. changes in salinity, redox condition) alters sediment geochemistry. Excess fine 
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sediment is one of the main pollutants contributing to water quality degradation in the 

Chesapeake Bay (USEPA 2015), and has been linked to benthic habitat degradation 

in the Chesapeake Bay, such as oyster reef mortality due to burial (Rothschild et al. 

1994; Colden and Lipcius 2016) and loss of submersed aquatic vegetation (SAV) 

communities as a result of both burial and reduced light availability (Bayley et al. 

1978; Dennison et al. 1993). Excess sediments also carry particulate nutrients, which 

enhance eutrophication by fueling algal blooms that reduce water clarity and lead to 

oxygen depletion in the water column and/or harmful algal blooms (Kemp et al. 

2005). Recent studies have demonstrated that the nutrients associated with sediment 

particles have more of a deleterious effect on water quality than sediment alone 

(USACE 2015; Cerco and Noel 2016), and Susquehanna River sediments contain 

higher nutrient concentrations than shoreline sources (Marcus and Kearney 1991). 

Sediment-provenance analyses therefore offer a useful tool for quantifying sediment, 

and by association particulate nutrient, inputs from different sources. 

  

Summary  

To my knowledge, this is the first study to report synoptic spatial and 

downcore geochemical patterns of trace elements, REEs, and heavy metals in bottom 

sediments of the upper Chesapeake Bay. Statistical analyses on this large dataset 

reveal element correlations and processes affecting sediment composition. Two 

groups of elements explain most of the observed geochemical variability; i.e. 

aluminosilicate minerals and REEs reflect grain-size effects and salinity changes, 

respectively. Heavy metals also influence geochemical variability and were linked to 



 

 71 

 

changes in anthropogenic loading. Sediment provenance was evaluated by comparing 

geochemical compositions in upper Bay sediments to Susquehanna River and 

shoreline sediments, and indicated that the Susquehanna River is the dominant source 

of fine sediment. 
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Tables 

Table 3.1 Core-averaged mean (standard error) of grain size (first 2 rows) and 

concentrations of 40 elements at each site. Units in PPM unless specified otherwise in 

left hand column. 

 Lee7 Lee6 Lee5 Lee2.5 Lee2 Lee0 LeeS2 

Grain size (µm) 20.75 

(2.51) 

4.04 

(0.68) 

2.68 

(0.75) 

2.72 

(0.36) 

0.94 

(0.14) 

0.73 

(0.25) 

0.60 

(0.08) 

Grain size <63 

(µm) 

9.31 

(1.16) 

 

3.14 

(0.42) 

 

2.26 

(0.39) 

 

2.21 

(0.23) 

 

0.91 

(0.11) 

 

0.67 

(0.23) 

 

0.55 

(0.10) 

 

Li 42.01 

(0.88) 

47.57 

(1.94) 

54.57 

(1.81) 

66.6 

(3.43) 

72.09 

(1.7) 

70.44 

(3.51) 

82.11 

(2.71) 

Mg (%) 0.46 

(0.01) 

0.54 

(0.01) 

0.61 

(0.02) 0.7 (0.03) 

0.92 

(0.01) 

0.89 

(0.03) 

0.93 

(0.01) 

Al (%) 4.17 

(0.08) 

4.72 

(0.14) 

4.94 

(0.12) 5.9 (0.35) 

6.88 

(0.14) 

6.44 

(0.39) 

7.08 

(0.33) 

K (%) 1.39 

(0.02) 

1.56 

(0.04) 

1.69 

(0.02) 

1.81 

(0.05) 

2.27 

(0.05) 

2.14 

(0.10) 2.2 (0.04) 

Sc 8.02 

(0.18) 

8.83 

(0.33) 9.4 (0.26) 

11.4 

(0.62) 

12.91 

(0.27) 

11.93 

(0.78) 

13.51 

(0.69) 

V 62.45 

(1.09) 

 

74.04 

(1.51) 

 

82.5 

(2.49) 

 

86.69 

(3.61) 

 

105.19 

(1.96) 

105.43 

(5.17) 

121.91 

(3.69) 

Cr 59.77 

(2.98) 

64.15 

(1.58) 

67.5 

(2.05) 

69.67 

(2.32) 

79.29 

(1.23) 

74.36 

(2.24) 

91.56 

(2.37) 

Fe (%) 2.62 

(0.05) 

3.07 

(0.10) 

3.48 

(0.14) 

3.83 

(0.19) 

4.35 

(0.08) 

3.91 

(0.26) 

4.59 

(0.10) 

Ga 11.84 

(0.31) 

13.56 

(0.49) 

14.46 

(0.32) 

15.37 

(0.58) 

18.53 

(0.34) 

17.49 

(0.86) 

19.63 

(0.51) 

As 6.31 

(0.37) 

8.98 

(0.33) 9.5 (0.85) 

14.39 

(1.17) 

14.19 

(0.63) 

12.64 

(0.44) 

20.39 

(1.43) 

Rb 67.32 

(1.05) 

 

75.39 

(1.98) 

 

84.55 

(1.79) 

 

102.51 

(5.77) 

117.10 

(2.20) 

102.89 

(7.11) 

115.20 

(6.44) 

Tl 0.46 

(0.01) 

0.53 

(0.02) 

0.57 

(0.02) 

0.61 

(0.02) 

0.73 

(0.02) 

0.71 

(0.03) 

0.77 

(0.02) 

Bi 0.22 

(0.01) 

0.29 

(0.01) 

0.32 

(0.02) 0.3 (0.02) 

0.43 

(0.01) 

0.38 

(0.02) 

0.48 

(0.03) 

La 35.39 

(0.75) 

34.81 

(0.52) 

33.93 

(0.64) 

38.24 

(1.37) 

33.3 

(0.81) 

24.75 

(1.86) 

32.23 

(2.97) 

Ce 70.95 

(1.09) 

71.51 

(1.35) 

70.87 

(1.35) 

80.62 

(2.93) 

70.44 

(1.53) 

52.19 

(3.98) 

68.87 

(5.98) 

Pr 9.11 

(0.15) 

9.03 

(0.15) 

9.12 

(0.16) 

10.09 

(0.38) 

8.87 

(0.16) 

6.62 

(0.50) 

8.68 

(0.71) 

Nd 34.09 

(0.55) 

33.8 

(0.52) 

34.51 

(0.66) 

40.64 

(1.93) 

35.01 

(0.66) 

26.27 

(1.95) 

33.21 

(2.77) 

Sm 6.77 

(0.13) 

6.84 

(0.13) 7.2 (0.16) 

8.34 

(0.45) 

6.99 

(0.21) 

5.60 

(0.40) 

7.23 

(0.55) 

Eu 1.29 

(0.03) 

1.33 

(0.04) 

1.42 

(0.04) 

1.58 

(0.09) 

1.37 

(0.04) 

1.06 

(0.06) 

1.38 

(0.11) 

Gd 5.34 

(0.17) 

5.89 

(0.21) 

6.09 

(0.19) 

6.97 

(0.44) 

6.16 

(0.14) 4.7 (0.22) 

6.08 

(0.51) 

Dy 4.10 

(0.10) 

4.58 

(0.16) 

4.79 

(0.16) 

5.20 

(0.30) 

4.87 

(0.13) 

3.73 

(0.18) 

4.87 

(0.36) 

Y 19.64 

(0.56) 

20.55 

(0.63) 

20.83 

(0.52) 

23.95 

(1.52) 

20.97 

(0.58) 

16.45 

(0.62) 

21.48 

(1.60) 

Er 2.12 

(0.06) 

2.32 

(0.04) 

2.39 

(0.09) 

3.01 

(0.13) 

2.57 

(0.07) 

2.09 

(0.09) 

2.73 

(0.19) 

Yb 2.21 2.35 2.55 2.92 2.47 2.02 2.47 



 

 73 

 

(0.05) (0.06) (0.08) (0.14) (0.05) (0.06) (0.16) 

Th 

9.8 (0.19) 

9.82 

(0.14) 

10.13 

(0.2) 

10.24 

(0.26) 

9.44 

(0.16) 

7.88 

(0.52) 

9.97 

(0.81) 

U 2.97 

(0.06) 

3.42 

(0.10) 

3.42 

(0.07) 

3.91 

(0.14) 

2.88 

(0.07) 

2.34 

(0.13) 

3.65 

(0.34) 

Na (%) 1.03 

(0.03) 

1.13 

(0.04) 

1.19 

(0.04) 

1.27 

(0.05) 

2.03 

(0.04) 

2.65 

(0.18) 1.8 (0.27) 

P (%) 0.53 

(0.05) 

0.66 

(0.05) 

0.75 

(0.06) 

0.81 

(0.07) 

1.00 

(0.07) 

1.27 

(0.14) 

0.88 

(0.07) 

Ca (%) 0.24 

(0.01) 

0.31 

(0.03) 

0.22 

(0.01) 

0.35 

(0.05) 

0.27 

(0.03) 

0.26 

(0.01) 

0.38 

(0.09) 

Ti (%) 0.32 

(0.03) 

0.37 

(0.01) 

0.39 

(0.01) 

0.35 

(0.01) 

0.34 

(0.00) 0.3 (0.01) 

0.34 

(0.01) 

Mn 934.14 

(83.19) 

1039.96 

(112.32) 

1531.27 

(101.11) 

1348.14 

(292.19) 

1720.21 

(75.58) 

1074.6 

(66.91) 

695.84 

(26.84) 

Co 35.18 

(2.62) 

39.16 

(2.68) 

39.48 

(2.37) 

35.3 

(5.51) 

37.65 

(1.90) 

34.94 

(7.31) 

43.08 

(3.14) 

Ni 52.42 

(3.09) 

55.03 

(2.83) 

60.68 

(2.79) 

52.65 

(4.06) 

56.86 

(2.03) 

45.15 

(1.8) 55 (2.34) 

Cu 

124.07 

(7.31) 

116.55 

(10.47) 

126.17 

(13.02) 

142.93 

(6.37) 

71.99 

(14.44) 

97.33 

(15.91) 

85.63 

(4.53) 

 

Zn 185.77 

(13.14) 

211.65 

(15.1) 

219.53 

(11.43) 

200.79 

(19.05) 

249.20 

(4.10) 

205.96 

(4.01) 

304.14 

(28.62) 

Sr 64.91 

(1.31) 

78.46 

(3.10) 

73.62 

(1.30) 

92.00 

(3.47) 

96.24 

(1.73) 

84.69 

(3.35) 95.06 (7) 

Zr 

119.40 

(9.03) 

125.13 

(3.98) 

131.74 

(3.94) 

120.32 

(3.19) 

93.48 

(1.25) 

 

84.82 

(3.58) 

 

86.67 

(1.11) 

 

Mo 1.45 

(0.19) 

1.14 

(0.18) 

1.11 

(0.14) 

1.54 

(0.10) 

1.14 

(0.07) 

1.42 

(0.14) 

2.25 

(0.14) 

Ba 337.64 

(7.92) 

362.08 

(14.13) 

345.46 

(4.67) 

350.67 

(13.26) 

395.64 

(6.04) 

324.57 

(23.10) 

234.25 

(20.83) 

Pb 46.44 

(3.99) 

 

67.23 

(7.55) 

 

58.93 

(4.53) 

 

67.21 

(6.61) 

 

66.91 

(1.45) 

 

57.06 

(6.17) 

 

108.41 

(8.75) 
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Table 3.2 Surficial spring (top) and summer (bottom) of grain size (first 2 rows) and 

concentrations of the 40 elements at each site. Units in PPM unless otherwise stated 

Lee7 Lee6 Lee5 Lee2.5 Lee2 Lee0 LeeS2 

Grain size (µm) 27.23 4.72 3.10 2.08 1.93 2.56 0.97 

 21.69  8.13 2.27   1.32 

Grain size <63  6.49 3.35 2.99 1.51 1.49 2.34 0.96 

(µm) 9.61 3.00 1.78 1.29 

Li 38.3 41.5 46.2 46.4 56.7 48.3 75.1 

41.9 43.4 47.8 69.4 

Mg (%) 0.5 0.6 0.66 0.57 0.81 0.67 0.91 

0.49 0.57 0.67 0.99 

Al (%) 4.21 4.76 4.52 4.11 5.84 4.11 5.46 

4.09 4.37 4.43 5.43 

K(%) 1.41 1.7 1.62 1.48 1.91 1.65 2.1 

1.44 1.64 1.76 2 

Sc 7.8 8.6 9 8 10.9 7.8 9.7 

7.7 7.7 8.3 9.7 

V 64 72 75 68 89 81 113 

61 70 81 96 

Cr 55 63 64 57 75 60 86 

47 58 62 78 

Fe (%) 2.51 2.88 3.02 2.61 3.64 2.93 4.27 

2.49 2.83 2.99 3.85 

Ga 11.79 13.28 13.13 11.67 15.57 12.76 18.07 

10.99 12.82 14.02 16 

As 5.5 7.9 8.8 7.6 10.1 10.1 16.2 

6.6 6.7 8.7 11.2 

Rb 66 75.9 78.1 73.2 98.9 75.6 94.9 

68.3 78.4 81.3 66.7 

Tl 0.43 0.45 0.5 0.44 0.61 0.54 0.69 

0.43 0.47 0.55 0.66 

Bi 0.16 0.24 0.35 0.27 0.36 0.53 0.38 

0.16 0.19 0.21 0.31 

La 40.4 35.4 34.8 32.4 34.1 25.8 18.2 

37.5 35.7 31.2 13.9 

Ce 75.42 71.75 68.96 67.1 69.68 53.74 40.94 

73.63 71.4 64.7 31.12 

Pr 9.7 9.2 8.5 8.3 8.4 6.6 5.3 

9.3 9.1 8.1 4.1 

Nd 36.4 35.3 33.4 32 34.3 25.4 20.7 

35.5 36.6 30.6 16.1 

Sm 6.9 6.5 7 6.5 6 5.1 4.5 

6.6 6.9 5.7 3.7 

Eu 1.4 1.4 1.2 1.2 1.3 1 0.8 

1.2 1.3 1 0.8 

Gd 5.1 4.5 5.1 4.9 5.2 4.7 3.7 

5.4 5.5 4.8 3.6 

Dy 3.6 4 4.1 3.3 4.3 3.1 3.5 

3.4 3.7 4 2.6 
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Y 18.5 18 19.2 16.7 17.8 14.7 13.9 

17 18 16.5 11.9 

Er 2.3 2.3 2.2 2.2 2.5 1.8 1.9 

2 2.2 2.1 1.5 

Yb 2.3 2.2 1.9 2.3 2.1 1.9 1.7 

2.2 2.4 2.1 1.5 

Th 10.5 9.9 9.5 9 9 7.7 6 

10.6 9.6 8.6 4.6 

U 3.1 2.9 3 3 2.7 2.2 2.3 

3.1 3.2 3.2 1.2 

Na (%) 0.987 1.048 1.515 1.359 2.134 2.311 2.51 

0.972 1.25 1.506 3.851 

P (%) 0.379 0.364 0.464 0.436 0.811 0.729 1.185 

0.375 0.649 0.579 1.123 

Ca (%) 0.32 0.38 0.27 0.23 0.25 0.26 0.26 

0.28 0.26 0.23 0.31 

Ti (%) 0.459 0.446 0.401 0.379 0.341 0.321 0.329 

0.386 0.358 0.327 0.286 

Mn 1048 1438 2014 1987 1538 697 686 

1382 1083 3734 627 

Co 22.8 24.1 27.5 23.2 30.1 20.8 25.4 

23.7 22.1 29.5 30.4 

Ni 41.5 43.2 46.6 41 46.6 36.2 47 

40.7 39.5 45.9 43.8 

Cu 144.2 145 84.7 154.2 210.4 211.7 84 

125 124.8 164 84.4 

Zn 142 145 161.7 167 219.4 184.2 254 

131.4 134.6 187.9 215.2 

Sr 71 95 84 83 94 76 73 

71 77 81 65 

Zr 163.7 142.9 141.2 133.9 97.6 112.4 85.2 

135.7 141.7 117.8 78.7 

Mo 0.59 1.09 0.92 1.07 1.03 1.27 1.64 

0.57 0.57 1.13 1.66 

Ba 337 393 365 357 368 305 310 

353 353 369 261 

Pb 31.74 59.08 50.49 40.97 65.83 103.86 57.77 

32.6 38.83 44.84 65.86 
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Table 3.3 Average concentration (standard error) of 40 elements at Susquehanna 

River and shoreline sites. 

Element Susquehanna River Shoreline 

Li 55.39 (1.9) 30.7 (2.74) 

Mg 0.8 (0.13) 0.71 (0.1) 

Al 5.53 (0.21) 3.93 (0.34) 

K 2.05 (0.06) 1.5 (0.18) 

Sc 9.98 (0.41) 8.72 (0.82) 

V 81.31 (3.37) 108.56 (13.06) 

Cr 51.92 (2.88) 110.44 (21.3) 

Fe 3.39 (0.15) 5.33 (0.64) 

Ga 16.27 (0.72) 12.06 (1.02) 

As 7.31 (0.27) 23.54 (2.9) 

Rb 102.91 (3.87) 63.48 (9.81) 

Tl 0.65 (0.03) 0.36 (0.03) 

Bi 0.29 (0.02) 0.28 (0.03) 

La 37.38 (1.39) 30.59 (2.7) 

Ce 78.19 (3.14) 66.48 (6.24) 

Pr 8.98 (0.37) 7.58 (0.67) 

Nd 37.12 (1.6) 30.09 (2.55) 

Sm 7.37 (0.34) 6.16 (0.55) 

Eu 1.41 (0.07) 1.26 (0.11) 

Gd 6.18 (0.37) 5.32 (0.46) 

Dy 4.78 (0.26) 4.38 (0.38) 

Y 21.45 (1.06) 20.73 (1.84) 

Er 2.52 (0.12) 2.31 (0.21) 

Yb 2.48 (0.13) 2.14 (0.2) 

Th 9.38 (0.37) 6.94 (0.55) 

U 2.72 (0.09) 3.11 (0.23) 

Ca 0.88 (0.58) 0.68 (0.11) 

Ti 0.21 (0.03) 0.15 (0.02) 

Mn 1485.77 (80.06) 2259.5 (398.86) 

Co 33.49 (1.92) 24.65 (4.23) 

Ni 57.24 (2.19) 61.89 (9.52) 

Cu 95.21 (6.82) 299.94 (46.01) 

Zn 207.62 (9.07) 203.33 (23.85) 

Sr 106.46 (23.43) 105.12 (6.84) 

Zr 69.04 (7.6) 34.29 (8.56) 

Mo 0.93 (0.05) 3.02 (0.36) 

Ba 475.77 (31.02) 311.19 (35.07) 

Pb 38.51 (3) 71.88 (16.09) 
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Figures  

 

Figure 3.1 (A) Map of Chesapeake Bay; the red box outlines the area shown in B. (B) 

Location and names of cores (black circles) and location where Susquehanna River 

(green squares) and shoreline sediments (tan triangles) were collected. White 

diamonds indicate the locations of places noted in the text. The major salinity regions 

are shown in the shading indicated by the legend.  
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Figure 3.2 Correlation matrix of 40 elements measured across all upper Bay samples 

(n=63). To aid in visual interpretation, elements have been organized into groups with 

similar correlations (red box=group 1; green box= group 2). Black dashes indicate 

negative correlations (e.g. Na and Zr), and the shading represents the R2 value for 

correlations with R2 >0.5 as noted in the legend (gray indicates R2<0.5). The x- and 

y- axes labels correspond to column and row, respectively.  
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Figure 3.3 Examples of observed trends in elements concentrations (Li, Sc, and V) 

with distance from the Susquehanna River mouth. A) Core-averaged (squares), spring 

(0-1 cm) samples (circles), and summer (0-1 cm) samples (triangles) element 

concentrations with distance downstream. B) Core-averaged, spring, and summer 

sample enrichment factors (normalized to Al) with distance downstream. For visual 

clarity, the element concentrations have been normalized to surficial Susquehanna 

River sediment concentrations in order to be placed on the same scale. 
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Figure 3.4 Core-averaged (squares), spring (0-1 cm) samples (circles), and summer 

(0-1 cm) samples (triangles) total REE concentrations (ΣREE) (La, Ce, Pr, Nd, Sm, 

Eu, Gd, Dy, Y, Er, Yb) in PPM with distance from Susquehanna River sediments (A) 

and LREE:HREE (ΣLa, Ce, Pr, Nd:ΣEr, Yb (B).  
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Figure 3.5 Down-core Pb concentration profile. Black circles and gray triangles 

represent Lee6 and Lee2.5 profiles, respectively.  
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Figure 3.6 Relative loadings of elements and grain size on the first two principal 

components. Elements from group 1 and group 2 have been averaged into single 

vectors (bolded arrows, black text) because of significant overlap among elements in 

these groups. Vectors for the non-correlated variables (thin arrows, gray text) are also 

plotted.  
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Figure 3.7 Core averaged (squares), spring (0-1 cm) samples (circles), and summer 

(0-1 cm) samples (triangles) PC1 and PC2 values across upper Bay sites. Error bars 

represent standard error of both PC1 (horizontal) and PC2 (vertical) for the core-

averaged values.  
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Figure 3.8 Average percent Susquehanna River source contribution (with error bars) 

with distance downstream in the first Sed_SAT model run (A) using As, Tl, Fe, and 

Ce to determine provenance and the second Sed_SAT model run (B) using Tl and Fe. 
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Chapter 4 : Sediment dynamics in upper Chesapeake Bay 

Abstract 

The upper Chesapeake Bay is an important sediment sink for fluvial and 

shoreline erosion sediment sources; however, evolving sediment dynamics such as 

increases in sediment-conservation activities, trapping behind large dams, and 

increased shoreline protection have altered sediment loads. Sediment budgets are 

important tools for quantifying sediment dynamics through identifying sources, sinks, 

and transport pathways. The most recent upper Bay sediment budget was developed 

>25 years ago and does not reflect the evolution of sediment delivery. The objective 

of this study is to develop an updated sediment budget through quantitative analysis 

of sediment sources (Susquehanna River and shoreline erosion) and sinks 

(Susquehanna Flats and mainstem sediment-accumulation rates) in upper Chesapeake 

Bay. Results indicate that Susquehanna River input to upper Bay has decreased 

during low flows due to implementation of conservation-management strategies; 

however sediment delivery has increased during high flows as a result of sediment 

infilling of the Conowingo Reservoir. Inputs from shoreline erosion have decreased 

due to increased shoreline stabilization. Mass accumulation rates in the upper Bay 

generally decrease with distance downstream, but elevated sedimentation rates occur 

in deeper water, likely due to sediment focusing in the channels. Susquehanna River 

and shoreline erosion sediment input from both will likely increase with changing 

climate due to increases in precipitation, storminess, and sea-level rise. However, 

shoreline erosion may be reduced due to increased shoreline stabilization, which will 

likely lead to changes in sediment character.  
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Introduction 

Estuaries often form the interface between terrestrial and marine 

environments, facilitating exchange and storage of materials derived from watershed 

and coastal sources. Estuaries are also locations with intense human development and 

disturbance, and every estuary in the US has been impacted by some level of human 

activity (Bricker et al. 1999). These activities have resulted in estuarine ecosystem 

changes such as increased eutrophication (Nixon 1995; Cloern 2001; Paerl 2006; 

Brush 2009), hypoxia (Diaz and Rosenberg 2008; Rabalais et al. 2010), and heavy 

metal contamination (Bricker 1993; Owens and Cornwell 1995; Spencer et al. 2003). 

In particular, human activities have altered sediment delivery in contrasting ways. For 

example, land-use changes often increase fluvial sediment loads; e.g. conversion of 

forests to agriculture during European settlement along the US Atlantic coast (Brush 

2009; Kirwan 2011), or relatively recent increases in mining and deforestation in 

Papua New Guinea and Indonesia (Wolanski and Spagnol 2000; Syvitski et al. 2005). 

Conversely, dam construction decreases sediment delivery to estuaries and the coastal 

ocean (Syvitski et al. 2005; Walling 2006), leading to sinking deltas (i.e. Yangtze 

River; Yang et al. 2006) and rapid land loss (i.e. coastal Louisiana; Templet and 

Meyer-Arendt 1988; Blum and Roberts 2009). These deficits are compounded by 

those induced by shoreline-protection structures (e.g. bulkheads, seawalls, riprap) that 

disconnect natural exchange at the land-water interface (Dugan et al. 2011; Gittman 

et al. 2015). Since estuaries effectively trap sediments from a variety of sources (e.g. 

rivers, shoreline erosion, and ocean input), determining the net result of these impacts 

to specific sediment sources and sinks is important for resource management. 
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Sediment budgets offer a simple box-model approach to identify sediment sources 

and sinks, as well as likely transport pathways. Budgets can also help evaluate how a 

system responds to natural and anthropogenic sediment forcing (Eulie et al. 2018) and 

inform engineering project designs (Rosati 2005). 

These issues have come to the forefront in Chesapeake Bay, the largest 

estuary in the United States. Humans have altered the main sources of sediment to the 

upper Chesapeake Bay, Susquehanna River and shoreline erosion, for >300 years, 

although the greatest impacts occurred after industrialization (Brush 2009). 

Susquehanna River watershed sediment loads were high between the mid-19th and 

early 20th century as humans cleared forests to support intensive agriculture and 

mining activities, but loads declined following farm abandonment and the 

implementation of conservation-management practices in the mid-20th century (Brush 

1984). Historically, up to 75% of the annual Susquehanna sediment load was trapped 

within the Lower Susquehanna River Reservoir system, which spans the lower 50 km 

of the river and includes three sequential hydroelectric dams and their associated 

reservoirs (in downstream order: Lake Clarke, Lake Aldred, and Conowingo 

Reservoir; Langland 2009; Langland 2015). The sediment-trapping capacity of these 

reservoirs has decreased over time due to sediment infilling, and Lakes Clarke and 

Aldred reached dynamic equilibrium (i.e. sediment inputs and outputs are 

approximately equal over long time scales; Langland 2009) in the 1950s-1960s. 

Recent work indicates that the last reservoir, upstream of the Conowingo Dam, has 

also reached this state, increasing sediment loads to the Bay (Hirsch 2012; Zhang et 

al. 2013; Langland 2015).  
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Humans have also modified shoreline inputs to the Chesapeake Bay, 

exacerbating land loss from increasing rates of sea-level rise (Kearney and Stevenson 

1991; Boesch 2008) and intense storms (Hennessee and Halka 2005) through 

increased shoreline development (Hardaway and Byrne 1999). To protect 

development and prevent further land loss, more than 500 km (300 miles) of 

stabilization structures, such as seawalls and bulkheads, were installed between 1978 

and 1997 (Titus 1998; Hardaway and Byrne 1999; Halka et al. 2005). Although these 

structures can reduce fastland erosion (above mean low water (MLW); used 

interchangeably with “shoreline erosion” here) and turbidity caused by fine-grained 

particles, nearshore erosion (below MLW) can be enhanced by decreasing sand 

supply to adjacent habitats and/or through reflecting, rather than dampening, wave 

energy (Hardaway and Byrne 1999; Halka et al. 2005). 

Several sediment budgets have been previously developed for the Chesapeake 

Bay (Biggs 1970; Officer et al. 1984a; Donoghue et al. 1989; Hobbs et al. 1992) to 

evaluate sediment dynamics. However, the most recent sediment budget (Hobbs et al. 

1992) was developed >25 years ago and does not reflect recent changes in sediment 

delivery to the Bay. Specifically, increased sediment loads from the Susquehanna due 

to reservoir infilling (Hirsch 2012; Zhang et al. 2013), and increased (from climate 

change and relatively rapid sea-level rise; Boesch 2008) or decreased (from increased 

shoreline stabilization; Titus 1998; Gittman et al. 2015) inputs from shoreline erosion. 

Furthermore, sediment accumulation on the Susquehanna Flats, the subaqueous delta 

of the Susquehanna that lies between the Susquehanna and upper Bay, has never been 

explicitly included in a sediment budget. The Susquehanna Flats contain the largest 
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submersed aquatic vegetation (SAV) bed in the upper Bay; it was decimated 

following the passage of Tropical Storm (TS) Agnes in 1972 but returned in the early 

2000s (Gurbisz and Kemp 2014). This resurgence has increased sediment trapping on 

the Flats, modulating sediment delivery of Susquehanna River sediments to the upper 

Bay (Russ and Palinkas 2018). Thus, the overall goal of this study is to develop an 

updated sediment budget through quantitative analysis of sediment sources 

(Susquehanna River and shoreline erosion) and sinks (Susquehanna Flats and 

mainstem sediment-accumulation rates) in upper Chesapeake Bay. The insights 

gained from this study directly inform sediment management in the upper Bay, 

especially within the context of the Chesapeake Bay Total Maximum Daily Load 

(TMDL), that seeks to reduce fine-sediment input by 20% in 2025 (US EPA 2010). 

The findings from this study are also broadly applicable to other fluvial-estuarine 

systems, particularly those with dams approaching dynamic equilibrium.     

 

Methods 

Study Site 

In this study, the upper Chesapeake Bay is defined as the 100 km section 

extending from the Susquehanna River mouth to the Choptank River mouth (Fig. 

4.1a). The Susquehanna River is the only Bay tributary that discharges directly into 

the Bay, rather than into a sub-estuary, supplying 85% of the total freshwater flow 

(average annual discharge of 1100 m3 s-1; Schubel and Pritchard 1986) and ~60% of 

the sediment input (Officer et al. 1984a). Sediment delivery from the Susquehanna is 

controlled by river discharge, which is generally highest in the spring, due to 



 

 90 

 

snowmelt and precipitation, and lowest in the summer (Schubel and Pritchard 1986); 

50-60% of the annual sediment load is typically delivered during the spring freshet 

(Gross et al. 1978). However, large storm events can contribute sediment loads that 

are an order of magnitude higher than average annual sediment loads (e.g. 30x106 

from Tropical Storm Agnes in 1972; Gross et al. 1978; 6-19x106 from Tropical Storm 

Lee in 2011; Hirsch 2012; Palinkas et al. 2014). These immense storm loads include 

scoured sediments from three sequential reservoirs along the lower portion (last 50 

km) of the Susquehanna.  

Shoreline erosion is the other main sediment source to the upper Bay, 

supplying ~1x106 t y-1 between the mouths of the Susquehanna River and the 

Potomac River estuary (Fig. 4.1; Schubel 1968; Biggs 1970; Langland and Cronin 

2003). Shoreline erosion around the Bay varies spatially and depends on shoreline 

orientation, fetch, bathymetry, sediment composition, and land use (Langland and 

Cronin 2003). Shoreline-change rates range from -3 to +3 m y-1 (Sanford and Gao 

2018), with ~70% of the shoreline classified as eroding (Hennessee et al. 2006). 

Much of the coarse material from shoreline erosion is deposited adjacent to shore in 

depths <3 m, while the fine fraction is transported into deeper water (Halka 2000). 

While biogenic production and oceanic input contribute sediment to the Bay, their 

input is only significant in the southern Bay, well downstream of the study area 

(Hobbs et al. 1992).   

Historic sedimentation rates in the upper Bay range from 0.1 to 1.2 g cm-2 y-1 

(Officer et al. 1984a). Although the variability is wide, sedimentation rates are 

generally highest in the upper 20-40 km of the Bay, within the estuarine turbidity 
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maximum (ETM) (Sanford et al. 2001), and decrease to a minimum between 100-150 

km (Biggs 1970; Officer et al. 1984a; Schubel and Pritchard 1986; Donoghue et al. 

1989). Previous sediment budgets indicate that between 1x106 t y-1 (Biggs 1970) to 

3x106 t y-1 (Officer et al. 1984a) sediment is buried in the upper Chesapeake Bay 

annually. Approximately 70% of this material comes from the Susquehanna River 

and the remaining ~30% from shoreline erosion (Officer et al. 1984a). However, 

Susquehanna River sediment makes up ~80% of the material buried in the upper 40 

km of the Bay, but <30% south of 40 km (Biggs 1970).  

 

Susquehanna River sediment load 

Susquehanna River discharge (m3 s-1) and suspended-sediment concentrations 

(SSCs; mg L-1) at the Conowingo Dam between 1 January 1978 (earliest date of SSC 

data collection) and 31 December 2017 were used to quantify Susquehanna River 

sediment loads. Average daily discharge and instantaneous SSC were obtained from 

the USGS National Water Information System (https://waterdata.usgs.gov/nwis; site 

01578310). SSC data were collected 1-2 times per month, depending on flow 

conditions, and assumed to represent daily SSC. An exponential model (R2=0.79, p-

value<0.001) was fit to average daily discharge on days with corresponding SSC 

following the methods of Russ and Palinkas (2018):  

//� = 21.74 × exp(2.68 × 10FG × H7IJℎKLMN) − 18.73 (1) 

This model was used to fill gaps in the SSC record; daily SSC was then multiplied by 

daily average discharge to calculate daily sediment load. The annual sediment load 

was calculated by summing up the daily loads for each year (Russ and Palinkas 
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2018). This model assumes that the relationship between discharge and SSC is 

constant over the 40-year record. However, recent work indicates that this 

relationship has evolved due to land-use changes and reservoir infilling (Langland 

2015; Zhang et al. 2016a; Palinkas et al. submitted). Therefore, additional exponential 

models of discharge and SSC (in the same format as eq. 1; Table A.6) were 

developed for each decade to account for possible changes in sediment loads (Fig. 

4.2).  

For this budget, the Susquehanna is assumed to be the major source of fluvial 

sediments to the Bay, neglecting contributions from other, smaller tributaries in this 

region. The fluvial loads of these tributaries are at least an order of magnitude smaller 

than the Susquehanna River fluvial load (i.e.0.0014-0.1x106 t y-1; Yarbro et al. 1983; 

Marcus and Kearney 1991; Langland and Cronin 2003), and most sediment is 

retained in tributary estuaries under normal conditions (Schubel and Carter 1977).  

 

Shoreline-change calculation 

All shoreline-change data were calculated from existing spatial datasets using 

Python 3.7.0 and the GeoPandas library (http://geopandas.org/). The most recent 

shapefiles of shoreline-stabilization structures (2004) and bank heights (2002-2006) 

from the Comprehensive Coastal Inventory Program, Center for Coastal Resources 

Management (Virginia Institute of Marine Science (VIMS), and shoreline-change 

transects (1970s shorelines versus 1990s or 2000s shorelines, except Talbot, which 

used 1942 and 1992 shorelines) from the Maryland Geological Survey (MGS) were 

obtained from http://data.imap.maryland.gov/. Average annual shoreline-change rates 
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from the MGS were calculated using the Digital Shoreline Analysis System (DSAS) 

(Thieler et al. 2009) by dividing the distance of shoreline change over shore-normal 

transects by the number of years between shoreline surveys. Average annual shoreline 

area (change in area between shoreline surveys) and volume change were calculated 

using the shoreline-change transects, stabilization structures, and bank heights 

shapefiles. Shoreline sediments were assumed to come from unprotected shorelines, 

and so only unprotected shorelines (as of 2004) were included in the shoreline-change 

calculations. However, many shoreline stabilization structures around the Bay were 

installed within the past 30 years, presumably in areas with high erosion rates (e.g. 

Palinkas et al. 2018). Therefore, both protected and unprotected shorelines were 

included to estimate maximum shoreline change; rates of change along protected 

shorelines were obtained from the shore-change transect shapefile. Only shorelines 

along the mainstem of the upper Bay were included, which assumes that tributaries 

retain shoreline sediments eroded within them (Schubel and Carter 1977).  

All shapefiles were imported into GIS and used to quantify shoreline area and 

volume change for the counties surrounding the upper Bay (Fig. 4.1). Shapefiles for 

shoreline-stabilization structures, shoreline-change transects, and bank heights were 

spatially joined. Note that bank heights in the shapefile were reported as ranges (e.g. 

0-1.5m, 1.5-3m, etc.); mean values (0.75 m, 2.25 m, etc.) of these ranges were used 

for volume-change calculations. Shoreline change could not be calculated along all 

upper Bay shorelines due to missing bank-height data. For example, these data were 

not publically available for ~80% of Harford County shorelines, which include  

Aberdeen Proving Grounds, a US Army facility in southeastern Harford County.  
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Total shoreline length, length of shoreline analyzed (sometimes shorter than 

the total length due to missing data), area change, and volume change were then 

calculated for unprotected only as well as protected and unprotected shorelines. 

Shoreline area and volume change were calculated along shoreline segments (i.e. 

continuous segments of unprotected shoreline). Shoreline positions in the shoreline-

structures shapefile were assumed to represent the most current shoreline locations, 

since they were most recently surveyed (2004). The location of these shorelines after 

1 year was determined by projecting the annual shoreline-change rate along shoreline 

transects. Area change was the change in area between the current and projected 

shoreline positions, with negative and positive values indicating erosion and 

accretion, respectively. Annual volume change was calculated by multiplying the 

average bank height along each shoreline segment by the change in area. An example 

of these calculations is illustrated in Fig. 4.3b. Repetition of this process for every 

shoreline in the counties of interest yields the total annual change in shoreline area 

and volume around the upper Bay. The change in volume was multiplied by 1.5 g cm-

3, the average bulk density for Maryland shoreline sediments (Langland and Cronin 

2003), to determine the mass of sediment derived from shorelines. 

   

Sediment-accumulation rates 

 Sediment cores were collected using a gravity core (~1.5m long; 7 cm 

diameter) at seven sites in the upper Bay (Table 4.1, Fig. 4.1b) on 28 April 2016. 

Intact gravity cores were returned to the laboratory and sectioned into 1-cm (0-20 cm 
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depth in core) and 2-cm increments (20-end of the core) for grain size and 

geochronological analyses.  

Grain size was analyzed by wet-sieving samples at 64 µm to separate the mud 

(silts and clays; <64 μm) and sand (>64 μm) fractions. The mud fraction was 

disaggregated with 0.05% sodium metaphospate in an ultrasonic bath and then 

analyzed using a Sedigraph 5120. The sand fraction was dry-sieved through a 

standard set of 13 sieves, from 500 μm to 64 μm (at ¼-phi size intervals; phi=-

log2(particle diameter, mm)). The mud and sand data were joined to calculate median 

diameters. Bulk density was assumed to be a function of porosity, calculated from 

water loss after drying at 60°C until constant sediment weight was reached, assuming 

sediment density of 2.65 g cm-3. 

Sediment accumulation rates were determined using 210Pb (half-life 22.3 

years) geochronology and verified with an independent geochronometer, 137Cs (half-

life 30.17 years). 210Pb is primordial, and part of the 238U decay series, so all sediment 

particles have supported 210Pb activity due to decay of its effective parent 226Ra 

(“supported activity”). 210Pb is also supplied to the water column through 

precipitation and runoff; watershed sediments delivered to the upper Bay scavenge 

210Pb as they settle through the water column (“excess activity”; Koide et al. 1972; 

Nittrouer et al. 1979). 137Cs is an anthropogenic radioisotope that was introduced to 

the atmosphere through nuclear testing, beginning in 1954 and reaching a peak in 

1963 (Walling and He 1997).  

Total 210Pb (half-life 22.3 y) activities were measured using alpha 

spectroscopy and following the procedures of Palinkas and Engelhardt (2016). 226Ra-
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supported 210Pb activity was assumed to be equal to the activity at the bottom of each 

core and was calculated via gamma spectroscopy from a weighted average of the 

214Pb energies (295 and 352 keV) and 214Bi photopeak (609 keV). Excess 210Pb 

activities for each core were calculated by subtracting the corresponding supported 

210Pb activity from total 210Pb activities. If the core was not long enough to reach a 

constant, low 210Pb activity indicative of the supported value, and the 210Pb profile 

had a relatively steady logarithmic decrease with depth characteristic of steady-state 

accumulation, its supported 210Pb activity was estimated by calculating the remaining 

activity of the total 210Pb activity at the top of the core (below the surface mixed 

layer, if present) after five half-lives (assumed limit of detectability). All measured 

activities were decay-corrected to the time of collection; excess activities were 

normalized to the corresponding measured mud fraction, because 210Pb preferentially 

adsorbs to fine particles (Nittrouer et al. 1979; Goodbred and Kuehl 1998). 

Sedimentation rates were calculated using the constant flux/constant 

sedimentation (CFCS) model, which assumes a constant supply of unsupported 210Pb 

to the sediment and steady-state sedimentation (Appleby and Oldfield, 1978). This 

model was chosen since most (5 of 7) profiles exhibited steady-state behavior (Fig. 

4.4a). Linear sedimentation rates (cm y-1) were calculated from the slope of the linear 

regression fit between the log of excess 210Pb activity and depth. Mass accumulation 

rates (g cm-2 y-1) were calculated by multiplying the sedimentation rate by the core-

averaged dry bulk density. For the 2 profiles with variable 210Pb with depth, 

characteristic of non-steady-state sedimentation (Fig. 4.4b), minimum sedimentation 
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rates were calculated by dividing the maximum depth of excess 210Pb by 100 years 

(the assumed limit of detectability; Jaeger et al. 1998).  

The total amount of sediment buried in the upper Bay was calculated by 

extrapolating these mass accumulation rates across its area. The upper Bay was 

sectioned into 1-km long (from north to south) compartments in R (version 3.3.3), 

generated by intersecting a series of 100 equal-sized rectangles with a polygon of the 

upper Bay (Fig. 4.5a). A single mass accumulation rate was calculated for each 

compartment by linearly interpolating the mass accumulation rate between the nearest 

sites. The rates were multiplied by the compartment area and summed together to 

obtain annual sediment burial. Because upper Bay sedimentation displays much 

spatial variability likely not captured by the cores collected for this study, 210Pb 

accumulation from previous studies were added to the dataset (Table A.7) to obtain 

another estimate of sediment burial in the upper Bay. The complete dataset was also 

used to generate a predictive multiple-linear-regression model of accumulation rate 

with distance from the Susquehanna River mouth and water depth. A third estimate of 

sediment accumulation was quantified by applying this model to raster datasets of 

bathymetry and distance from the Susquehanna River mouth.  

 

Results 

Sediment sources: Susquehanna River and shoreline erosion  

The average annual discharge of the Susquehanna River from 1978-2017 

ranged from 667.13 m3 s-1 (2001) to 2041.37 m3 s-1 (2011) with an average of 

1123.4±52.3 m3 s-1. Average discharge in 2011 was exceptionally high due to 
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Tropical Storm Lee, which produced the second highest river discharge recorded at 

the Conowingo Dam outlet on 9 September 2011 (22000 m3 s-1; Palinkas et al. 2014). 

Other notable high-discharge events occurred in 1996 (ice dam melt) and 2004 

(remnants of Hurricane Ivan), which had average annual discharges of 1797.2±98.6 

m3 s-1 and 1855.8±81.5 m3 s-1, respectively. Measured suspended-sediment 

concentration (SSC) values from 1978-2017 (~1000 samples) varied from 1 mg L-1 (2 

February 1982) to 3680 mg L-1 (20 September 2004) with a median of 13 mg L-1 and 

average of 39.7±5.3 mg L-1. Approximately 6% of all measured SSC were above 100 

mg L-1.  

Annual suspended-sediment loads calculated from eq. 1, which includes all 

years, ranged from 0.3-15.7x106 t y-1, with an average annual load of 1.7±0.4x106 t y-

1. However, there were differences in the relationship of discharge and SSC among 

the 4 decadal time periods evident in Fig. 4.2. For example, calculated SSCs were 

lower in 2008-2017 than 1978-1987 at discharges below 3500 m3 s-1, while SSCs 

were higher in 2008-2017 than 1978-1987 at discharges above 3500 m3 s-1. Using 

separate equations for each decade of measurement (Table A.6), average annual 

sediment loads were 1.5±0.3 t y-1 for 1978-1987, 1.3±0.4 t y-1 for 1988-1997, 1.8±0.8 

t y-1 for 1998-2007, and 2.9±2.2 t y-1 for 2008-2017, with an average of 1.9±0.6 t y-1. 

Note that all of these time periods include high-flow events. For flows above ~11,300 

m3 s-1 (400,000 cfs), scoured sediment from reservoir bottoms joins with eroded 

watershed sediments to produce exceptionally high sediment loads (Gross et al. 1978; 

Hirsch 2012; Palinkas et al. 2014). This is especially apparent in 1996, 2004, and 



 

 99 

 

2011, for which >70 % of the annual sediment load occurred during individual 

events.  

Erosion, rather than accretion, dominates shoreline change in the upper Bay as 

indicated by the net negative change in shoreline area and volume (Table 4.2). 

Annual shoreline area change ranged from +1.9x103 m2 in Baltimore County to -

12.9x103 m2 in Kent County, for a total land loss of 22.0x103 m2 y-1 along 

unprotected shorelines. Total sediment volume eroded from unprotected upper Bay 

counties was 64.4x103 m3 y-1, which is equivalent to 0.10x106 t y-1. When protected 

shorelines were included in the calculations, the annual sediment loss from upper Bay 

counties nearly doubled (0.19x106 t y-1). However, this is a conservative estimate 

because elevation data were not available for ~35% of shorelines (unprotected and 

protected). The missing mass of sediment can be estimated by multiplying the 

calculated change in area along each county by the average bank height in each 

county and sediment bulk density, increasing the total loss to 0.24 t y-1.  

 

Sediment sinks: sediment accumulation rates and net burial 

Sediments in upper Bay cores were dominantly muddy (grain sizes <63 µm), 

with core-averaged mud fractions ranging from a minimum of 69±1.0% at Lee6 to a 

maximum of 99±0.2% at LeeS2 (Table 4.3). Median diameters were relatively 

uniform with depth in all cores, and core-averaged median diameter generally 

decreased with distance downstream from silt-sized (20.65±2.62 µm) in the north 

(Lee7) to clay-sized (0.49±0.06 µm) in the south (LeeS2). Core-averaged bulk 



 

 100 

 

densities ranged from 1.14±0.10 g cm-3 at the northernmost site (Lee7) to 0.35±0.01 g 

cm-3 at a southern site (Lee0).  

Most cores had relatively strong CFCS model fits (R2 = 0.71-0.91; p-values < 

0.01), exemplified by the 210Pb profile for Lee2.5 (Fig. 4.4a). However, there was no 

significant relationship between depth and excess 210Pb activity at Lee2 and Lee0 

(e.g. Fig. 4.4b) indicating non-steady-state sedimentation; minimum sedimentation 

rates (0.81 cm y-1) were calculated for these cores by dividing the maximum depth of 

excess 210Pb (base of the cores) by 100 years. Lee2 and Lee0 are closer to the main 

channel (<0.5 km) and in deeper water than the other sites (13.5 m) (Table 4.1), 

suggesting depositional processes are different in deeper water. Sediment 

accumulation rates increased between Lee7 (0.34 cm y-1) and Lee5 (1.20 cm y-1), then 

decreased to the south (minimum of 0.26 cm y-1 at LeeS2). The minimum rates at 

Lee2 and Lee0 are higher than those at the adjacent up- and down-stream sites, 

suggesting higher accumulation in deeper waters of the main channel. 

Sediment horizons corresponding to 1954 and 1963 were identified from the 

137Cs profile (first appearance and maximum activity, respectively) for all cores 

except Lee5, where maximum 137Cs activity occurred at the base of the core. The 

137Cs-derived sedimentation rates at Lee7, Lee6, Lee2.5, and LeeS2 were within 20% 

of CFCS derived rates (0.26-0.84 cm y-1 for 210Pb vs 0.29-0.85 cm y-1 for 137Cs). At 

Lee5, 137Cs, the activity at the bottom of the core was similar to the activity of the 

assumed 1963 peaks in the other cores (~1.00 dpm g-1). Assuming the base of Lee5 

corresponds to ~1963, the 137Cs-derived rate was 1.11 cm y-1, similar to the CFCS-

derived rate of 1.20 cm y-1. The 137Cs-derived sedimentation rate at Lee2 (0.87 cm y-
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1) is consistent with the minimum sedimentation rate from 210Pb; however, at Lee0, 

the rates differed by a factor of >2.5 (0.30 cm y-1 for 137Cs and 0.81 cm y-1 for 210Pb).  

Net sediment burial was calculated using mass accumulation rates (linear 

210Pb-derived rates multiplied by the corresponding core-averaged bulk density; Table 

4.3). Assuming uniform sedimentation in each 1-km compartment, 3.50x106 t y-1 is 

buried in the 1071 km2 area between Lee7 and LeeS2 (Fig. 4.5a). When the mass 

accumulation rates from previous studies are included (Table A.7; Fig. 4.5b), 

4.42x106 t y-1 is buried in the upper Bay. Lastly, spatial predictors for sedimentation 

rates were assessed through linear relationships with distance downstream and water 

depth (Table 4.1 and Table A.7). Mass accumulation rate was not linearly correlated 

with depth (p>0.1) but was weakly correlated with distance downstream (R2=0.17; 

p<0.02). Mass accumulation rates were best predicted from a multiple linear 

regression model that included both distance downstream (km) and depth (m) 

(R2=0.62; p<0.001). Using this model on raster grids of bathymetry and distance 

downstream, 4.04x106 t of sediment is buried in the upper Bay each year (Fig. 4.6). 

To these totals, sedimentation on the Susquehanna Flats (upstream of Lee7) 

can be added by extrapolating accumulation rates from Russ and Palinkas (2018), 

which ranged from 0.63 g cm-2 y-1 to 1.25 g cm-2 y-1 and averaged 0.99±0.12 g cm-2 y-

1. Since sedimentation on the Flats is controlled by both plant presence and spatial 

focusing (see Discussion), net burial in this area was calculated by multiplying the 

average SAV bed area size between 1984 and 2016 (28.02±2.01; Gurbisz et al. 2014; 

Orth et al. 2016) by the maximum and minimum sedimentation rate, yielding a range 
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of 0.18-0.35x106 t y-1. Adding this to the upper Bay yielded a total sediment burial of 

3.68-4.77 t y-1 buried.  

 

 

Discussion 

A sediment budget provides a useful framework for evaluating current 

sediment sources and sinks, as well as discussing possible future changes relevant to 

sediment management. The text below discusses uncertainties of calculations within 

the context of previous work, as well as broader implications and relevance to 

management.  

 

Sediment sources 

In upper Chesapeake Bay, the two dominant sediment sources are fluvial input 

and shoreline erosion. In this study, I evaluated fluvial delivery only from the Bay’s 

main tributary, the Susquehanna River, and calculated an annual average load of 1.7-

1.9x106 t y-1. This load agrees well with previous load estimates (1-2x106 t y-1; Gross 

et al. 1978; Langland 2015), even though the relationship of suspended-sediment 

concentration (SSC) to river discharge has changed over time (Zhang et al. 2013; 

Palinkas et al. submitted). These changes are evident in the decadal-scale rating 

curves (Fig. 4.2), highlighting the role of “normal” versus event (high-flow) river 

discharges. In particular, lower SSCs at discharges <3000 m3 s-1 in recent years 

indicate reduced sediment supply at lower discharges over time. This decrease in 
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sediment loading has been attributed to recent changes in land use and 

implementation of erosion control/soil conservation best-management practices 

(BMPs) in the Susquehanna River watershed (Langland 2015; Zhang et al. 2016a; 

Palinkas et al. submitted). In contrast, recent increases in SSC at high river discharges 

are consistent with increased scouring due to infilling of the Conowingo Reservoir 

(Hirsch 2012; Zhang et al. 2013; Palinkas et al. submitted). Although infrequent, 

these flood events deliver enormous volumes of sediment to the upper Bay, greatly 

outweighing contributions from normal flows (e.g. up to 80% of the 2011 load was 

delivered by TS Lee) and influencing the shape of rating curves (Zhang et al. 2016b). 

The lower end of my range in annual Susquehanna sediment load was derived from 

equation 1, which uses data from 1978-2017; in contrast, Gross et al. (1978) and 

Langland (2015) used data from 1966-1976 and 1928-2012, respectively to calculate 

previous sediment loads. The higher end (1.9x106 t y-1) was calculated using discrete 

decadal equations, which include events, and most likely represents the “true” 

Susquehanna sediment load (“best estimate” in Table 4.4). Note that neither of these 

values includes sediment from other rivers. This potential input is poorly 

characterized, but the few studies that exist indicate that most tributaries retain their 

sediment and even import sediment from the Bay (Schubel and Carter 1977; Palinkas 

and Cornwell 2012), although sediment transport during high-flow events has not 

been studied.  

My calculations of sediment load from shoreline (fastland) erosion range from 

0.10x106 t y-1 to 0.24x106 t y-1, depending on treatment of protected shorelines. It is 

important to note the average bank height was used in my calculations; using 
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maximum bank heights yields greater shoreline contributions (between 0.14x106 t y-1 

and 0.31x106 t y-1), while using minimum bank height yields lower shoreline 

contributions (between 0.06x106 t y-1 to 0.12x106 t y-1). The lower estimate of 

shoreline sediment load (0.10x106 t y-1) is more representative of shoreline erosion 

within the past 15 years, since only unprotected shorelines as of 2004 are considered; 

the upper estimate (0.24x106 t y-1) is probably more representative of shoreline 

erosion >15 years ago, since it includes both protected and unprotected shorelines. 

Therefore, the best estimate of decadal-scale shoreline erosion is likely between my 

low and high calculations, assumed to be the average (0.17x106 t y-1), since shoreline 

erosion has varied over time due to increased shoreline stabilization. My calculations 

are 1.5-4 times lower than previous estimates of shoreline erosion (0.39x106 t y-1 

Schubel 1968; Biggs 1970), likely due to increased shoreline protection. Many 

seawalls and bulkheads were installed in the Chesapeake Bay following World War II 

to protect recently built coastal structures (Hardaway and Byrne 1999), and continued 

to increase, especially between the 1970s and 1990s (Titus 1998). Recently “green” 

stabilization techniques have increased following the implementation of the Living 

Shorelines Protection Act enacted by Maryland state law in 2008 

(http://dnr.maryland.gov/ccs/Documents/ls/2008_LSPA.pdf). 

Taking the best estimates together, the Susquehanna River and shoreline 

erosion deliver 2.07x106 t y-1 to the upper Bay. An important sediment source not 

considered by this study is nearshore erosion (erosion below MLW), because 

shoreline-change rates only consider changes in shoreline position. This source can 

contribute up to 1.5 times more sediment than fastland shoreline erosion (Langland 
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and Cronin 2003) and assumed to be 0.32x106 t y-1.  When added to the other terms, 

the total sediment input to the upper Bay is 2.39x106 t y-1. 

 

Sediment Sinks  

Mass accumulation rates from the Susquehanna Flats through the upper Bay 

range over an order of magnitude, 0.13-1.25 g cm-2 y-1, similar to previous studies 

(see Table S2). Most cores exhibited steady-state sedimentation, as indicated by the 

strong log-linear relationship between 210Pb activity and depth, and sedimentation 

rates decreased with distance downstream. However, observations at Lee2 and Lee0 

deviated from these trends; rates were higher at these sites and 210Pb profiles showed 

non-steady-state behavior. One explanation for the variability in 210Pb profiles is 

pulsed sedimentation during flood events (Hirschberg and Schubel 1979), in which 

large sediment loads are transported farther downstream than during normal flow 

conditions. Typically flood events can be distinguished in sediment profiles by 

relatively low 210Pb activities and high mud content (e.g. Russ and Palinkas et al. 

2018); however, the mud content was relatively uniform within these cores, making it 

unclear whether variable 210Pb activities reflect flood events. Another explanation for 

these observations is sediment focusing due to the proximity of these sites to the main 

channel (Officer et al. 1984a; Sanford et al. 2001). Sedimentation rates in the channel 

are somewhat unknown, since the channel is dredged to allow ship passage to 

Baltimore Harbor (Halka et al. 1991; Sanford et al. 2001). Dredging not only removes 

sediment but also causes slumping (Officer et al. 1984a) that would result in variable 

210Pb activities observed at these sites.  
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Using the mass accumulation rates from the 7 upper Bay sites from this study 

and those from the Susquehanna Flats from Russ and Palinkas (2018), total sediment 

burial along the entire dispersal system ranges 3.68-3.85x106 t y-1. These results agree 

well with the burial estimates from Officer et al. (1984), but are 2-4 times higher than 

those from Biggs (1970) and Hobbs et al. (1992). Some of the discrepancy may be 

due to different calculation methods for sediment-accumulation rates (i.e. mass 

balance on inputs and outputs, radioisotope geochronology, and volumetric 

differences between bathymetry surveys for Biggs 1970, Officer et al. 1984a, and 

Hobbs et al. 1992, respectively). However, more of the discrepancy probably arises 

from extrapolating measurements from a small number of cores over large areas. 

While there are no other coring studies on the Flats to my knowledge, there have been 

many previous studies in the upper Bay. To avoid potential methodological 

differences, only data from previous 210Pb measurements were added to the dataset 

from literature (Table S2); this expanded dataset yielded total burial of 4.42x106 t y-1 

for the upper Bay, and thus 4.60-4.77x106 t y-1 for the Flats-Bay dispersal system. 

Statistical models offer another approach to calculating sediment burial, predicting 

sedimentation rates from site-location characteristics like water depth and distance 

downstream. Each of these parameters reflect some of the spatial variability, 

including enhanced sedimentation in the ETM (Sanford et al. 2001), but neither could 

explain the variability alone. Instead, a multiple-linear regression model using both 

parameters was significant (R2=0.62, p-value=2x106), and was used to predict 

sedimentation given site-location characteristics. Using this model, 4.22-4.39x106 t y-

1 of sediment is buried in the upper Bay-Flats dispersal system. Spatial variability 



 

 107 

 

with both distance and depth is better captured in this model, and is therefore my best 

estimate for total sediment burial. This model predicts that sedimentation is higher in 

deeper water, indicating sediment focusing in channels. Since spatial variability with 

both distance and depth is better captured in this model, it is considered the best 

estimate for total sediment burial. However, note that it considerers the entire upper 

Bay to be depositional, contrasting with the assertion of Hobbs et al. (1992) that only 

52% of the Bay is net depositional, and thus likely overestimating actual burial in the 

upper Bay. Also, dredging is an important sediment sink not included in any of these 

calculations; nearly 1x106 m3 of sediment is removed from the upper Bay annually, 

which is equivalent to 0.57x106 t y-1, assuming a dry bulk density of 0.57 g cm-3 

(Sanford et al. 2001; Halka 2000). Therefore, the total burial in the upper Bay 

(including the Susquehanna Flats) is between 4.25x106 t y-1 and 5.34x106 t y-1.  

 

Implications and relevance to management 

This sediment budget connects sediment transport from the lower 

Susquehanna River to the upper Bay. Sediment dynamics in this system have changed 

over time and are likely to continue evolving in the future due to both natural and 

anthropogenic processes. These changes often have contrasting influences. For 

example, land-use changes in the Susquehanna River watershed have decreased 

watershed supply of sediment to the Bay in normal flows. Similar soil-conservation 

practices have led to decreasing sediment loads in many rivers around the world, such 

as the Yellow River (Wang et al. 2007). Additional sediment reductions from the 

Susquehanna River watershed are expected in the future because one of the main 
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goals of the Chesapeake Bay total maximum daily load (TMDL) is to reduce 

sediment loads by 20% by 2025 (USEPA 2010). In contrast, dam construction 

decreases sediment supply from rivers to estuaries due to retention of sediment 

behind reservoirs (Syvitski et al. 2005; Walling 2006). However, this retention 

capacity decreases once reservoirs reach dynamic equilibrium, as is the case for the 

three reservoirs on the lower Susquehanna. In particular, infilling of the Conowingo 

Reservoir has led to a lower scour threshold, such that more sediment can be 

resuspended at lower discharges than in the past, and thus an increase in suspended-

sediment concentrations during high flows (Hirsch 2012). Understanding the impacts 

to downstream ecosystems from this increase in sediment supply is an important 

management issue for many river-estuarine systems, including Chesapeake Bay 

(Palinkas et al. submitted). Indeed, many reservoirs in the US were designed to have a 

>100 year life span, but this has been shortened due to sedimentation (Hargrove et al. 

2009). Because many reservoirs were built in the 1940s-50s, understanding sediment-

load changes due to reservoir infill will be even more important in the coming years. 

Susquehanna River sediment loads may also increase in the future as a result 

of increased precipitation in the Mid-Atlantic, particularly during winter and spring, 

which will likely increase watershed erosion and streamflow (Boesch 2008; Najjar et 

al. 2010). Increased rain also increases shoreline erosion (Boesch 2008), but rising 

sea level and increased storminess will likely have a greater influence on shoreline 

erosion (Mariotti and Fagherazzi 2010; Sanford and Gao 2018). In response, property 

owners are hardening shorelines everywhere (Gittman et al. 2015). Increases in “gray 

infrastructure” (i.e. bulk heads, seawalls) have decreased fastland erosion in the upper 
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Bay, but these structures increase nearshore erosion (Hardaway and Byrne 1999). 

Additionally, these structures do not adapt to changing environmental conditions and 

deteriorate over time (Sutton-Grier et al. 2015). As a result, living shorelines and 

other “green” approaches to shoreline stabilization have been encouraged and/or 

mandated in the Chesapeake Bay; these approaches stabilize shorelines and have 

other ecosystem benefits such as habitat creation and nutrient sequestration 

(Subramanian et al. 2008; Bilkovich et al. 2016; Davis et al. 2015). 

One consequence of evolving sediment dynamics is the change in balance 

between fluvial and shoreline input, which alters sediment character. For example, 

Susquehanna River sediment is generally finer grained than shoreline sediments. 

Increases in Susquehanna River input would increase mud inputs and turbidity in the 

upper Bay, while decreases in shoreline erosion decrease sand supply. Reducing sand 

availability, along with coincident increases in mud, is detrimental to SAV habitats 

along the shoals of the upper Bay (Palinkas and Koch 2012). In addition to increasing 

turbidity, increased fine sediment alters the biological and chemical properties at the 

sediment-water interface, limiting biological productivity (Cahoon et al. 1999; Duarte 

2002). Another outcome of evolving sediment dynamics is the relationship of 

sedimentation rates to those of sea-level rise. Currently, the average linear 

sedimentation rate in the upper Bay (average 0.95±0.18 cm y-1) exceeds average sea-

level rise in the Bay (3-4 mm y-1; Boesch 2008; Najjar et al. 2010). However, it is 

important to consider the range of sedimentation rates (0.10-4.16 cm y-1) in predicting 

possible trajectories of smaller areas. For example, sedimentation rates on the 

Susquehanna Flats are relatively high (0.46-0.91 cm y-1) and currently outpacing sea-
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level rise, suggesting persistence of this SAV bed in the future, assuming other 

habitat requirements (i.e. light availability, wave environment; Koch 2001; Dennison 

et al. 1993) remain suitable. However, sea-level rise outpaces accretion in other areas, 

especially south of the ETM and in shallow waters. Indeed, the shallow margins of 

the upper Bay, where shoreline erosion is the main sediment source, may be most 

vulnerable to sea-level rise in the future, becoming deeper over time due to increases 

in gray shoreline protection structures that disconnect these areas from sediment 

sources.  

 

Summary  

The upper Chesapeake Bay traps sediment from the Susquehanna River and 

shoreline erosion; however, sediment input to the upper Bay has evolved over time as 

a result of natural and anthropogenic impacts. Results indicate that Susquehanna 

River sediment supply has decreased at low to normal river discharges due to 

implementation of soil conservation practices, but has increased at high river 

discharges due to Conowingo Reservoir infilling. Increased shoreline stabilization has 

reduced sediment input from shoreline erosion. Sedimentation rates are generally 

highest near the mouth of the Susquehanna River and decrease with distance 

downstream. Accumulation rates are higher in deeper water, likely due to sediment 

focusing into the channels. Sediment loads from both Susquehanna River and 

shoreline are expected increase due to increased precipitation, sea-level rise, and 

storminess. However, these increases in shoreline erosion may be offset by increased 

shoreline stabilization. These evolving sediment dynamics will likely change the 
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downstream sediment character, which can have important implications on benthic 

habitats, such as reduced light availability due to increased fine-grained sediment and 

subsequent reductions in suitable SAV habitat.  
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Tables 

Table 4.1 Study site names, coordinates, distance from Susquehanna River (SR) 

mouth, water depth at each site, and distance to main channel. 

Site Coordinates Distance from 

SR mouth (km) 

Water Depth 

(m) 

Distance to main 

channel (km) 

Lee7 39.414°N, 

76.079°W 

14.68 3 2.62 

Lee6 39.380°N, 

76.088°W 

18.52 7.5 0.55 

Lee5 39.346°N, 

76.197°W 

24.44 6.5 1.17 

Lee2.5 39.197°N, 

76.311°W 

43.68 5.0 2.97 

Lee2 39.135°N, 

76.328°W 

50.49 13.5 0.13 

Lee0 39.061°N, 

76.328°W 

58.07 13.5 0.41 

LeeS2 38.757°N, 

76.473°W 

94.02 11.0 3.72 
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Table 4.2 Shore change information for unprotected (unprotected and protected) 

shorelines: total mainstem shoreline length, length of shoreline analyzed, area change, 

and volume change. 

County Total 

Shoreline 

Length 

(x105 m) 

Length 

shoreline 

analyzed 

(x105 m) 

Area 

Change 

(x103 m2) 

Volume 

Change 

(x103 m3) 

Mass (x106 

tons) 

Harford 1.29 0.18 

(0.19) 

0.04 

(0.07) 

-2.2 

(-2.2) 

-0.003 

(-0.003) 

Baltimore 0.29 0.23 

(0.28) 

1.9 

(1.9) 

2.1 

(2.1) 

0.003 

(0.003) 

Anne Arundel 0.83 0.76 

(0.77) 

-9.0 

(-9.1) 

-8.8 

(-8.9) 

-0.01 

(-0.01) 

Cecil 0.54 0.29 

(0.46) 

-1.8 

(-3.5) 

-11.9 

(-22.2) 

-0.02 

(-0.03) 

Kent 1.46 1.11 

(1.14) 

-12.9 

(-23.4) 

-43.1 

(-85.1) 

-0.06 

(-0.13) 

Queen Anne’s 0.36 0.13 

(0.36) 

1.1 

(-4.3) 

0.3 

(-2.7) 

0.0005 

(-0.004) 

Talbot 0.19 0.05 

(0.13) 

-1.2 

(-8.7) 

-0.9 

(-6.6) 

-0.001 

(-0.01) 

Total 4.96 2.75 

(3.33) 

-22.0 

(-47.0) 

-64.4 

(-125.5) 

-0.10 

(-0.19) 
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Table 4.3 210Pb and 137Cs accumulation results of upper Chesapeake Bay: CFCS rate 

(cm y-1 and g cm-2 y-1), 1954 137Cs depth range and corresponding average 

accumulation rate; 1963 137Cs depth range and corresponding average accumulation 

rate; and core-averaged mud fraction 

Site Distance 

from SR 

mouth (km) 

CFCS cm y-1,  

g cm-2 y-1 (R2) 

1954 137Cs depth cm  

(cm y-1) 

1963 137Cs depth 

cm 

 (cm y-1) 

Mud 

fraction  

 

Lee7 14.68 0.34, 0.36 (0.78) 20-22.5 (0.34) 19-20 (0.37) 0.73 

Lee6 18.52 0.84, 0.70 (0.77) 48-50 (0.79) 44-46 (0.85) 0.70 

Lee5 24.44 1.20, 0.85 (0.71) NA >58 (>1.11) 0.92 

Lee2.5 43.68 0.29, 0.22 (0.91) 20-22 (0.34) 13-14 (0.25) 0.89 

Lee2 50.49 >0.81, >0.37* 

 

54-56 (0.89) 44-46 (0.85) 0.98 

Lee0 58.07 >0.81, >0.29* 

 

19-20 (0.31) 15-16 (0.29) 0.97 

LeeS2 94.02 0.26, 0.13(0.75) 18-19 (0.29) 15-16 (0.29) 0.99 
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Table 4.4 Sediment budget for upper Chesapeake Bay describing sources (top) and 

sink (bottom). 
 

 Range 

 (x106 tons y-1) 

Best estimate 

 (x106 tons y-1) 

Sources   

Susquehanna River (at Conowingo Dam) 1.70-1.90 1.90 

Shoreline (fastland) shoreline 0.10-0.24 0.17 

Nearshore shoreline1 0.32 0.32 

Total 2.12-2.41 2.39 

Sinks   

Susquehanna Flats2 0.18-0.35 0.26 

Upper Bay 3.50-4.42 4.04 

Dredging3 0.57 0.57 

Total 4.25-5.34 4.87 
1 Data from Langland and Cronin (2003) 
2 Data from Russ and Palinkas (2018) 
3 Data from Sanford et al. 2001; Halka 2000 
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Figures 

 
Figure 4.1 A) Map of Chesapeake Bay, with upper Chesapeake Bay study area 

enclosed by red box. B) Black circles indicate core locations. Site names, from north 

to south, are Lee7, Lee6, Lee5, Lee2.5, Lee2, Lee0, LeeS2 (see Table 1). The upper 

Bay coastal counties are delineated in dark gray and the estuarine turbidity maximum 

(ETM) in orange. 
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Figure 4.2 Exponential relationship between Susquehanna River discharge and 

suspended-sediment concentrations including all years (dashed black line; 1978-2017; 

Eq. 1) and for individual decadal time periods (solid lines; see Table A.7). Dark blue 

is the earliest decade (1978-1987), and light green is most recent decade (2008-2017). 

The inset highlights differences in the relationships SSC concentrations at lower river 

discharges (0-3500 m3 s-1; the first flood gate opens at ~2500 m3 s-1 (Velleux and 

Hallden 2017)) typical of most time periods. 
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Figure 4.3 Shoreline change example. A) Accretion (blue lines) and erosion (red 

lines) along unprotected shorelines in Cecil County. B) Calculation of average bank 

height (ℎ���), area change (∆�), and volume change (∆P), along a shoreline segment. 

Average bank height (ℎ���) for this shoreline segment is 1.5m, which is the average 

bank height of all transects (ht) in this shoreline segment. Area change (∆�) for this 

shoreline segment is -6.9x103 m2 y-1, and is the area of the polygon shown in pink. 

This polygon reflects the difference in area between the most current shoreline (2004) 

and the projected shoreline after 1 year using annual shoreline-change rates (red lines; 

length indicates the rate of change). Volume change (∆P) for this shoreline segment 

calculated from multiplying the area change by average bank height is 10.4x103 m3 y-

1.  
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Figure 4.4 Excess normalized 210Pb activity at (A) Lee2.5 showing steady-state 

sedimentation and (B) Lee2 showing non-steady-state sedimentation. Linear 

sedimentation rate (S), R2,and p-value are included. 
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Figure 4.5 A) Linearly interpolated mass-accumulation rates of the upper 

Chesapeake Bay using mass-accumulation rates from Susquehanna Flats (Russ and 

Palinkas 2018) as well as upper Bay. B) Linearly interpolated mass-accumulation 

rates using data from Table S2. 
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Figure 4.6 A) Predicted mass-accumulation rates of the upper Chesapeake Bay using 

multiple-linear regression with depth and distance downstream on data from Table 

S2. B) Observed vs predicted mass-accumulation rates, following the symbology in 

A. 
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Chapter 5 :  Summary and synthesis 
 

 

In the three previous chapters of this dissertation, I evaluated sediment 

sources, sinks, and transport pathways in the upper Chesapeake Bay through 

geochronological, geochemical, and spatial analyses. I have summarized the major 

findings of this work in the following paragraphs.     

Results from Chapter 2 revealed that the dense, seasonally-vegetated beds on 

the subaqueous Susquehanna River delta (Susquehanna Flats) are important for 

modulating the sediment input to the Chesapeake Bay. Seasonal-scale variability in 

sediment deposition is explained by Susquehanna River discharge, sediment supply, 

and Susquehanna Flats geomorphology. Decadal-scale sediment accumulation 

variability is driven by flood events and abrupt changes in submersed aquatic 

vegetation (SAV) abundance. The strong positive correlation between SAV bed area 

and average annual sediment accumulation on the Flats suggests that a positive 

feedback between these variables exist.  

In Chapter 3, I evaluated surficial and down-core geochemical patterns using 

correlation and principal component analyses. Elements associated with 

aluminosilicate minerals, which were sensitive to grain-size changes, and rare earth 

elements, which were sensitive to salinity changes, explained the most spatial 

variability in the dataset. Variability in heavy metal concentrations reflected changes 

in anthropogenic inputs over time. A sediment-provenance analysis was performed 

using the sediment-geochemistry data to evaluate contributions of Susquehanna River 
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and shoreline erosion to bottom sediments in the upper Bay. The results from the 

sediment-provenance analysis indicated that the Susquehanna River is the dominant 

source of fine sediment in the upper Bay.   

Chapter 4 presented an updated sediment budget that highlighted the evolving 

sediment dynamics of sources and sinks in the upper Chesapeake Bay. Results 

revealed that the Susquehanna River input to upper Bay has decreased over the past 

40 years, during low and normal flows over the past 40 years, reflecting increased soil 

conservation; however sediment delivery has increased during high flows, consistent 

with a decreasing scour threshold for bottom sediments in Conowingo Reservoir as it 

has filled. Inputs from shoreline erosion have decreased due to increased shoreline 

stabilization. Mass-accumulation rates in the upper Bay generally decreased with 

distance downstream, similar to previous studies; however, elevated rates were 

observed in deeper water near the main channel, suggesting sediment was focused 

into the channels. 

Collectively, this research connects sediment delivery from the lower 

Susquehanna River through the Susquehanna Flats to its fate in upper Chesapeake 

Bay, highlighting major sources, sediment transport pathways, and sinks. Sediment 

has a dual nature in the Chesapeake Bay, acting as a pollutant in areas that receive 

excess fine sediment (e.g. main channel, estuarine turbidity maximum) and a resource 

in areas that do not receive enough sediment (e.g. eroding beaches, wetlands). 

Quantifying the relative contributions of sediment sources to the upper Bay is 

important given Susquehanna sediments are typically finer and more nutrient-rich, 
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thus more likely to increase turbidity and fuel algal blooms than shoreline sediments 

(Marcus and Kearney 1991) 

Understanding the current sediment dynamics in the Chesapeake Bay is 

critical for developing effective sediment-management strategies. One of the main 

goals of the Chesapeake Bay Total Maximum Daily Load (TMDL), established by 

the US Environmental Protection Agency (EPA) in 2010, is to reduce excess 

sediment inputs by 2025 to achieve water quality standards (USEPA 2010). However, 

the sediment loads predicted for the TMDL report relied on models that were 

calibrated with historical data (1984-2005), which do not capture changes due to 

resurgence of SAV at the head of the Bay or infilling of the Conowingo Dam. These 

major changes were therefore not accounted for in the TMDL sediment reduction 

plans. This dissertation builds upon previous upper Bay sediment budgets and 

specifically discusses recent changes on the lower Susquehanna River and upper 

Chesapeake Bay continuum, which will help inform future sediment-management 

decisions.  

 This work also provides context for how sediment dynamics are expected to 

evolve in the future due to anthropogenic impacts and climate change. Susquehanna 

River inputs are expected to increase due to both Conowingo Reservoir infilling and 

increased precipitation/streamflow (Boesch 2008; Najjar et al. 2010). However, the 

SAV bed on the Susquehanna Flats can modulate sediment input to the upper Bay and 

are likely to persist in the future given sedimentation rates that are greater than sea-

level rise (Russ and Palinkas 2018). Future inputs from shoreline erosion are more 

uncertain, as accelerated sea-level rise and increased storminess are expected to 
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increase shoreline erosion (Boesch 2008; Najjar et al. 2010), but increased shoreline 

stabilization may offset this erosion (Gittman et al. 2015). Parts of the Bay that rely 

on shoreline erosion may become deeper over time, if sedimentation is unable to keep 

up with sea-level rise. 

 The findings of this research address how sediment dynamics in the upper 

Chesapeake Bay vary over space and time due to both natural and anthropogenic 

processes and are broadly applicable to other fluvial-estuarine/coastal systems. 

Particularly, this research is relevant to systems that have reduced sediment inputs 

due to soil-conservation practices and dam construction, ultimately increasing SAV 

habitat suitability as well as systems with reservoirs approaching dynamic 

equilibrium, which will likely be an issue in the coming years. 
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Appendix A : Supplemental Tables 
 

Table A. 1 Surficial (0-1 cm) median grain size in μm, % surficial organic content, 

depth-integrated 7Be inventories in dpm cm-2 (propagated 7Be activity counting 

error), and above ground biomass from Gurbisz (unpublished data) in g m-2 (standard 

error) at all push core sites during the three samplings. NA means core not collected, 

ND means 7Be activity not detected. 

Site Aug-14 May-15 Aug-15 

Median Grain Size 

(μm) 

   

SF1 328.6 326.6  310.1  

SF2 375.7  323.6  236.1  

SF3 114.1  287.0  113.1  

SF4 243.3  270.6  210.7  

SF5 236.1  206.5  204.8  

SAV1 173.5  318.9 NA 

SAV5 313.5  221.3  NA 

SAV6 320.6  270.8  NA 

SAV7 405.3  370.1  NA 

SAV8 294.3  320.9  NA 

SAV9 366.9  338.1  NA 

SAV10 298.7  175.9 NA 

SAV11 305.6  223.6  NA 

Organic Content (%)    

SF1 0.50 2.04 0.82 

SF2 2.29 1.26 5.18 

SF3 3.74 2.51 5.78 

SF4 2.46 2.16 2.04 

SF5 4.20 3.15 1.5 

SAV1 2.91 2.51 NA 

SAV5 2.28 1.89 NA 

SAV6 1.72 1.62 NA 

SAV7 0.60 0.59 NA 

SAV8 1.06 0.84 NA 

SAV9 0.73 1.33 NA 

SAV10 2.28 4.41 NA 

SAV11 1.61 1.44 NA 

Inventory (dpm cm-2)    

SF1 2.11 

(0.44) 

ND 2.64 

(0.65) 

SF2 ND ND 2.08 

(0.30) 

SF3 2.66 

(0.29) 

ND 1.82 

(0.33) 

SF4 0.73 (.30) ND 1.82 

(0.34) 

SF5 2.09 

(0.42) 

0.71 

(0.40) 

2.79 

(0.78) 

SAV1 ND ND NA 

SAV5 ND 3.53 

(0.37) 

NA 

SAV6 ND ND NA 
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SAV7 ND ND NA 

SAV8 0.76 

(0.11) 

2.82 

(0.50) 

NA 

SAV9 ND ND NA 

SAV10 ND 1.66 

(0.40) 

NA 

SAV11 0.94 

(0.26) 

ND NA 

Above Ground 

Biomass    

SF1 NA NA NA 

SF2 

1503.8 

(268.6) 

25.7 

(20.4) 

327.6 

(75.7) 

SF3 

112.2 

(45.0) 5.4 (3.5) 

219.8 

(40.9) 

SF4 

82.2 

(46.1) 

43.8 

(30.3) 

268.0 

(74.7) 

SF5 NA NA NA 

SAV1 11.5 (5.9) 5.6 (1.7) NA 

SAV5 

66.5 

(17.3) 4.8 (2.1) NA 

SAV6 

257.3 

(75.3) 

221.8 

(211.7) NA 

SAV7 

398.7 

(315.9) 

94.9 

(82.4) NA 

SAV8 

239.8 

(100.2) 4.5 (2.2) NA 

SAV9 

126.2 

(19.6) 3.3 (1.8) NA 

SAV10 

452.9 

(125.5) 

32.3 

(11.8) NA 

SAV11 

61.1 

(39.1) 7.4 (3.6) NA 
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Table A. 2 Statistical parameters for pairwise linear regressions; R2 (p-value). None 

of these relationships are statistically significant after applying Bonferroni correction. 

 

 

 

 

 

 

 

  

 August 2014 May 2015 August 2015 

 Grain size Biomass Grain size Biomass Grain size Biomass 

Inventory 0.30 (0.05) 0.21 (0.15) 0.14 (0.20) 0.003 (0.87) 0.32 (0.32) 0.86 (0.25) 

Biomass 0.07 (0.42)  0.08 (0.40)  0.80 (0.29)  



 

 129 

 

Table A. 3 Site coordinates of upper Bay core locations and locations where surficial 

source sediment was collected from the Susquehanna River and upper Bay shorelines. 

*Indicates site was reoccupied multiple times. 

Site Coordinates Date 

Upper Bay   

Lee7 

Lee7 

39.414°N, 76.079°W* 

39.414°N, 76.079°W* 

08/2015 

04/2016 

Lee6 39.380°N, 76.088°W 04/2016 

Lee5 

Lee5 

39.346°N, 76.197°W* 

39.346°N, 76.197°W* 

08/2015 

04/2016 

Lee2.5 

Lee2.5 

39.197°N, 76.311°W* 

39.197°N, 76.311°W* 

08/2015 

04/2016 

Lee2 39.135°N, 76.328°W 04/2016 

Lee0 39.061°N, 76.328°W 04/2016 

LeeS2 

LeeS2 

38.757°N, 76.473°W* 

38.757°N, 76.473°W* 

08/2015 

04/2016 

Susquehanna 

River 

  

SR1 (Dam) 39.661°N, 76.173°W 04/2015 

SR2  

SR3  

SR4  

SR5 

39.697°N, 76.211°W* 

39.697°N, 76.211°W* 

39.697°N, 76.211°W* 

39.697°N, 76.211°W* 

07/2015 

09/2015 

12/2015  

04/2016 

SR6 

SR7 

SR8 

SR9 

SR10 

39.663°N, 76.185°W* 

39.663°N, 76.185°W* 

39.663°N, 76.185°W* 

39.663°N, 76.185°W* 

39.663°N, 76.185°W* 

05/2015 

07/2015 

09/2015 

12/2015 

04/2016 

SR11 

SR12 

SR13 

39.669°N, 76.181°W* 

39.669°N, 76.181°W* 

39.669°N, 76.181°W* 

05/2015 

07/2015 

04/2016 

Shoreline   

Sh1 39.542°N, 76.003°W 04/2017 

Sh2 39.520°N, 75.980°W 04/2017 

Sh3 39.520°N, 76.107°W 04/2018 

Sh4 39.475°N, 75.994°W 03/2018 

Sh5 39.399°N, 76.038°W 04/2017 

Sh6 39.358°N, 76.120°W 03/2018 

Sh7 39.356°N, 76.345°W 04/2018 

Sh8 39.283°N, 76.168°W 04/2018 

Sh9 39.249°N, 76.197°W 04/2018 

Sh10 39.219°N, 76.418°W 04/2018 

Sh11 39.214°N, 76.244°W 04/2018 

Sh12 39.087°N, 76.424°W 04/2018 

Sh13 39.061°N, 76.473°W 04/2018 

Sh14 39.034°N, 76.241°W 03/2018 

Sh15 38.886°N, 76.541°W 04/2018 

Sh16 38.882°N, 76.494°W 04/2018 
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Table A. 4 All element names and chemical symbol described in this manuscript 

Element Symbol 

Lithium Li 

Magnesium Mg 

Aluminum Al 

Potassium K 

Scandium Sc 

Vanadium V 

Chromium Cr 

Iron Fe 

Gallium Ga 

Arsenic As 

Rubidium Rb 

Thallium Tl 

Bismuth Bi 

Yttrium Y 

Lanthanum La 

Cerium Ce 

Praseodymium Pr 

Neodymium Nd 

Samarium Sm 

Europium Eu 

Gadolinium Gd 

Dysprosium Dy 

Erbium Er 

Ytterbium Yb 

Thorium Th 

Uranium U 

Calcium Ca 

Sodium Na 

Phosphorus P 

Titanium Ti 

Manganese Mn 

Cobalt Co 

Nickel Ni 

Copper Cu 

Zinc Zn 

Strontium Sr 

Zirconium Zr 

Molybdenum Mo 

Barium Ba 

Lead Pb 
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Table A. 5 REE concentrations in Chester River suspended sediments 

Element Concentration (PPM) 

La 1.6 

Ce 3.31 

Pr 0.3 

Nd 1.7 

Sm 0.5 

Eu <0.1 

Gd 0.4 

Dy 0.3 

Y 1.4 

Er 0.2 

Yb 0.1 
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Table A. 6 Equations to calculate SSC at 10-year intervals (see Fig. 3). Calculated 

range and average annual sediment load. 
 

Decade SSC equation Range (x106 t y-1) Average (x106 t y-1) 

1978-1987 47.2N(�.Q×�RST×U�%V�
WX�) − 40.9 0.6-2.9 1.5±0.3 

1988-1997 13.4N(3.G×�RST×U�%V�
WX�) − 1.1 0.5-3.7 1.3±0.4 

1998-2007 5.4N(G.3×�RST×U�%V�
WX�) − 3.4 0.3-8.9 1.8±0.8 

2008-2017 30.8N(3.Q×�RST×U�%V�
WX�) − 32.4 0.4-22.7 2.9±2.2 
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Table A. 7 Supplemental 210Pb data from upper Chesapeake Bay. * Indicates only 

linear sedimentation rate (cm y-1) was available in the study and the mass 

accumulation rate was estimated by multiplying by bulk densities from nearby sites. 

Study Coordinates Distance 

from  

SR mouth 

(km) 

Water 

depth 

(m) 

Distance to 

main 

channel 

(km) 

Mass accumulation rate  

(g cm-2 y-1) 

Russ et al. (2018) 39.527°N, 

76.061°W 

2.61 0.5 1.93 1.15 

Russ et al. (2018) 39.533°N, 

76.061°W 

2.15 0.5 1.89 1.25 

Russ et al. (2018) 39.515°N, 

76.051°W 

4.13 0.5 2.90 1.08 

Russ et al. (2018) 39.505°N, 

76.039°W 

5.69 1 3.89 0.78 

Russ et al. (2018) 39.497°N, 

76.036°W 

6.53 1 3.30 0.63 

Cooper and Brush 

(1991) 

38.650°N, 

76.406°W 

103.44 16 0.88 0.084* 

Cooper and Brush 

(1991) 

38.652°N, 

76.435°W 

103.93 14 1.59 0.064* 

Cooper and Brush 

(1991) 

38.644°N, 

76.428°W 

104.61 14 0.87 0.049* 

Cooper and Brush 

(1991) 

38.652°N, 

76.486°W 

105.34 10 6.02 0.090* 

Goldberg et al. 

(1978) 

38.967°N, 

76.383°W 

69.51 32 0.48 1.23 

Goldberg et al. 

(1978) 

38.950°N, 

76.467°W 

72.34 12 2.56 0.35 

Goldberg et al. 

(1978) 

38.567°N, 

76.450°W 

113.38 12 1.03 0.30 

Helz et al. 

(1985b) 

39.317°N, 

76.233°W 

28.78 4 1.34 0.41 

Helz et al. 

(1985b) 

39.150°N, 

76.383°W 

51.25 5 5.04 0.42 

Helz et al. 

(1985b) 

38.817°N, 

76.400°W 

85.62 15 0.37 0.47 

Hirschberg and 

Schubel (1979) 

39.367°N, 

76.100°W 

20.01 5 1.38 0.37* 

Karlsen et al. 

(2000) 

38.560°N, 

76.427°W 

113.57 16.5 0.79 0.058* 

Karlsen et al. 

(2000) 

38.544°N, 

76.427°W 

115.27 24.3 0.12 0.029* 

Nie et al. (2001) 39.103°N, 

76.333°W 

53.93 6.5 2.49 0.48 

Nie et al. (2001) 38.367°N, 

76.333°W 

132.68 21 0.91 0.028 

Zimmerman and 

Canuel (2002) 

38.887°N, 

76.392°W 

78.05 26.5 0.23 1.21 

Zimmerman and 

Canuel (2002) 

38.878°N, 

76.445°W 

80.62 7.9 4.14 0.14 

Zimmerman and 

Canuel (2002) 

38.567°N, 

76.445°W 

113.18 15 0.62 0.48 
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