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Cavity quantum electrodynamics (QED) captures the essential interaction be-

tween two quantum systems, an atom (for example) and the quantized electromag-

netic field. The cavity reduces the plethora of spatial modes of the field in free-space

to one or two. This simplification facilitates the study and control of atom-light in-

teractions. In this thesis we show results where we control both aspects of the

interaction.

Our first measurements demonstrate the implementation of a simple feedback

mechanism on a two-mode cavity QED system to preserve the Zeeman coherence of

a ground state superposition that generates quantum beats. Our investigation shows

how to prevent a shift away from the Larmor frequency and associated decoherence

caused by Rayleigh scattering. The protocol consists of turning off the drive of the

system after the detection of a first photon and letting it evolve in the dark. Turning

the drive back on after a pre set time reveals a phase accumulated only from Larmor

precession, with the amplitude of the quantum beat more than a factor of two larger



than with continuous drive.

We present preliminary conditional measurements in a new cavity QED ap-

paratus that show an environment-assisted speed-up of the evolution of our cavity

photon state under weak driving. Changes in the number of atoms (N) that can

couple to the field is our way of tailoring the environment. Our results indicate that

as N increases, the rate of the re-population of the cavity photon state increases.
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Chapter 1: Quantum beats and cavity QED

1.1 Single-mode cavity QED and two-level atoms

The simplest realization of a cavity quantum electrodynamic system consists

of a single material particle coupled to a quantized field. Our work in the opti-

cal regime couples Rb atoms and a finite number of modes of the electromagnetic

field [1]. These systems have numerous applications in quantum information sci-

ence [2–5], and also enable the study of quantum optics effects difficult to observe

in free space [6–12].

The leading term in the interaction between a radiation field and the atom is

the induced electric dipole. Equation 1.1 expresses the coupling constant g associ-

ated with the induced dipole moment ~µ.

g =
~µ · ~E
~

(1.1)

The dipole moment depends on the transition selected, but for electric dipole allowed

optical transitions in alkali atoms it is of the order of a few times ea0 where e is

the charge of the electron and a0 is the Bohr radius. The use of an optical cavity

with a small mode volume can increase the coupling constant between the atom

and the field. Equation 1.2 gives an expression for the electric field associated with

1



the energy of a single photon of frequency ωc coupled to a cavity with spatial mode

volume V .

E =

√
~ωc

2ε0V
(1.2)

The electric field increases as the Volume V decreases, without actually increas-

ing the number of photons through the intensity of the drive. This opens up the

possibility of strong interaction with weak driving, potentially revealing quantum

effects in the fluctuations. The resonator itself provides an ideal avenue for detec-

ε

g

γ/2

κ

Figure 1.1: Fabry-Perot optical cavity. ε is the drive field, g is the dipole coupling,

γ/2 is the atomic polarization decay rate and κ is the decay rate of the cavity.

tion. In Fig. 1.1, coherent probing of a cavity via vertically polarized light (ε),

couples to the atom(s) through the dipole coupling strength g. The spatial mode

of the resonator has a finite probability of collecting spontaneous emission, even in

the orthogonal polarization that then leaks out at a rate of κ carrying important

information encoded in the polarization and the field through their fluctuations.

The Jaynes-Cummings (JC) Hamiltonian is the basic model of choice to de-

scribe the interaction between a two-level atom and a mode of the electromagnetic

2



field, such as the one present inside an optical cavity. It does not include terms

for modeling dissipation channels. We write a modified JC Hamiltonian including

dissipation and drive for a single-mode optical cavity and and N two-level atoms as

in Eq. 1.3 (working in a frame rotating at the frequency of the drive).

H = H0 +H1 +H2 +H3 +H4

H0 = ~ωa
N∑
j=1

σzj + ~ωca†a

H1 = i~g
N∑
j=1

(σ+
j a− a†σ−j )

H2 =
N∑
j=1

(ΓAσ
−
j + Γ†Aσ

+
j )

H3 = ΓFa
† + Γ†Fa

H4 = i~ε(a† − a)

(1.3)

H0 is the free Hamiltonian. H1 describes the interaction between field and atoms

mediated by g (here we neglect spatial variations of the cavity mode). H2 is the

spontaneous emission of the atoms modeled as a coupling between atom and a

reservoir ΓA. H3 is the decay of the cavity modeled as a coupling between the field

in the cavity and a reservoir ΓF . H4 shows a classical driving field ε. The raising and

lowering operators of the single mode are a† and a respectively. The Pauli atomic

operators are σ±,zj . ωa is the atomic transition frequency and ωc the frequency of

the cavity.

It is not difficult to expand this model to multi-level atoms in a two-mode

optical cavity [13], but accurate solutions require numerical methods with photon-

number truncation. Certain assumptions allow calculation of a master equation

3



from Eq. 1.3 (Born and Markov approximations). Tracing over the reservoirs yield

non-reversible decays at a rate of γ for the atoms and κ for the cavity mode.

dρ

dt
=ε
[
a† − a, ρ

]
g
[
a†J− − aJ+, ρ

]
+ κ

(
2aρa† − a†aρ− ρa†a

)
+
γ

2

N∑
j=1

(
2σ−j ρσ

+
j − σ+

j σ
−
j ρ− ρσ+

j σ
−
j

) (1.4)

Equation 1.4 is the master equation we can obtain from the modified JC Hamiltonian

of Eq. 1.3. We use the collective raising/lowering operators J± =
∑N

j=1 σ
±
j .

1.2 Low intensity regime

There is no analytical solution to Eq. 1.4. Two approximate methods are well

known. The small noise approximation or the the weak driving approximation [14].

The latter consists of taking ε/κ� 1.

An expansion of the master equation to powers of ε/κ, leads to the form

ρ = |ψ(t)〉〈ψ(t)| where:

|ψ(t)〉 = |0, 0〉+A1(t)|1, 0〉+A2(t)|0, 1〉+A3(t)|2, 0〉+A4(t)|1, 1〉+A5(t)|0, 2〉 (1.5)

The amplitudes Am obey a set of linear coupled first order differential equations

with A1 and A2 independent of the rest

Ȧ1 = −κA1 + g
√
NA2 + ε

Ȧ2 = −γ/2A2 − g
√
NA1

Ȧ3 = −2κA3 + g
√

2NA4 +
√

2εA1

Ȧ4 = − (κ+ γ/2)A4 − g
√

2NA3 + g
√

2(N − 1)A5 + εA2

Ȧ5 = −γA5 − g
√

2(N − 1)A4

(1.6)

4



The steady state solution to the equations for Am (Ȧm = 0) yields the asymptotic

state |ϕ〉:

|ϕ〉 = |0, 0〉+α|1, 0〉+β|0, 1〉+ (α2/
√

2)pq|2, 0〉+αβq|1, 1〉+ (β2/
√

2)qr|0, 2〉 (1.7)

with the coefficients:

α =
ε

κ

1

1 + 2C
, β = −

√
Ng

α

γ/2
(1.8)

and

p = 1− 2C ′1, q =
1 + 2C

1 + 2C − 2C ′1
, r =

√
1− 1/N (1.9)

where C ′1 = C1/(1 + γ/2κ). The concurrent transmission of two photons by the

cavity has probability density |〈0, 0|a2|ϕ〉|2 = |α2pq|2. For a driven cavity (α 6= 0)

with N atoms, it is possible for the probability density to vanish under certain

conditions. This can happen, for example when p = 0. This is the signature of

non-classical effects such as anti-bunching and sub-poissonian statistics.

The exploration of quantum fluctuations and/or non-classical features of the

system yields more insights when looking at photon correlations separated by time

τ . The mathematical construct ideal for this task is the second-order intensity

correlation function.

1.2.1 Correlation function

The normalized second-order intensity correlation function is generally defined

as:

g(2)(τ) =
〈I(t)I(t+ τ)〉
〈I(t)〉2

(1.10)

5



Measurements based on Eq. 1.10 include the famous Hanbury-Brown and Twiss

proposal for an radio stellar interferometer.

g(2)(τ) applied to quantum mechanics requires the simple substitution I →

a†a, but we must be careful with the normal and time order of the operators as

they act on a quantum state. Under certain conditions g(2)(τ) will exhibit purely

quantum mechanical behavior. A usual example is the anti-bunching g(2)(0) < 1

and g(2)(0) < g(2)(τ) in resonance fluorescence. In this regime, there is suppression

of photon emission due to the excited state lifetime.

g(2)(τ) =
〈Ψ|a†(t)a†(t+ τ)a(t+ τ)a(t)|Ψ〉

〈ΨSS|a†a|ΨSS〉2
(1.11)

Eq. 1.11 shows a general expression for a second order correlation function for a

quantum system, where |Ψ〉 is the state of the system and |ΨSS〉 the steady state.

Returning to our previous discussion, we can apply Eq. 1.11 to Eqs. 1.5 and

1.7. The system starts in the steady state (|Ψ〉 = |ΨSS〉 = |ϕ〉). The first photon

leaves the cavity at time t causing the collapse of the state (conditional state):

|ϕ̄〉 =
a|ϕ〉

〈0, 0|a|ϕ〉
= |0, 0〉+ βq|0, 1〉+ αpq|1, 0〉 (1.12)

The detection of the photon projects the system into Eq.1.12. This holds for any

photodetection if the system is pure. It represents a good approximation when the

rate of photodetection is significantly less than the characteristic rates of the system

(γ, κ).

The state evolves a time τ before emitting the second photon. Our g(2)(τ) is

a measure of the probability density of finding a correlated photodetection at time

6



τ :

g(2)(τ) = |α|2 〈ϕ̄(τ)|a†(τ)a(τ)|ϕ̄(τ)〉
〈ϕ|a†a|ϕ〉2

=
|Ā1(τ)|2

|α|2
(1.13)

The evolution of |ϕ̄(τ)〉 is governed by Eqs. 1.6, taking the right hand side of Eq. 1.12

as the initial conditions.

The solution to g(2)(τ) we can express as:

g(2)(τ) =

(
1 +

∆α

α
e−

1
2

(κ+γ/2)τ

[
cosh Ωτ +

1

2
(κ+ γ/2)

sinh Ωτ

Ω

])2

(1.14)

with

∆α

α
= −2C ′1

(
2C

1 + 2C − 2C ′1

)
(1.15)

and more importantly:

Ω =

√
1

4
(κ− γ/2)2 − g2N (1.16)

Equation 1.14 shows violation of classical field inequalities, but more importantly

for us, it can show photon anti-bunching. The quantum system will undergo vacuum

Rabi oscillations when g2N > 1
4

(κ− γ/2)2 as it is clear from Eq. 1.16.

g(2)(τ) are essential for the study of conditional measurements, where the

first measurement projects the system into a state and then we let it evolve before

measuring again.

1.3 Small noise approximation

In the presence of a large number of atoms and photons, the master equation

simplifies to the semi-classical limit, otherwise known as the Maxwell-Bloch equa-

tions. For a plane wave ring cavity on resonance with atoms and drive, they are:

7



dx

dt
= −κ(x− y − 2CP )

dP

dt
=
γ

2
(xD − P )

dx

dt
= −γ

[
1

2
(xP ∗ + x∗P ) +D + 1

] (1.17)

Where x ≡ 〈a〉/√nsat is the field inside the cavity with atoms, y ≡ 〈ε〉/(κ√nsat) is

the field with no atoms, P is the normalized atomic polarization and is proportional

to 〈σ−j 〉. D is the normalized atomic inversion and is proportional to 〈σzj 〉 Some

important figures of merit that come out Eqs. 1.17 are:

nsat ≡
γ2

8g2
b (1.18)

nsat is the saturation photon number. b is the dimensionless effective mode volume

and depends of the cavity geometry. For a plane wave ring cavity b = 1, but for a

Gaussian standing wave b = 8/3 [15].

C1 ≡
g2

κγ
(1.19)

C1 is the single-atom cooperativity. A similar quantity present in Eq. 1.17 is C ≡

C1N , the cooperativity and N is the number of atoms. The cooperativity gives a

measure of the balance between interaction strength and dissipation.

The steady state solution for Eq. 1.17 is known as the state equation.

Y = X

(
1 +

2C

1 +X

)2

(1.20)

where Y = |y|2 is the normalized photon number in the cavity without atoms and

X = |x|2 is with atoms. The plane wave ring cavity state equation can be simplified

8



further in the weak driving regime X � 1.

Y = X(1 + 2C)2 (1.21)

Equation 1.21 provides a straightforward way of computing the cooperativity in the

cavity if the ratio of photon numbers is known and the system is weakly driven. It is

then easy to compute the effective number of atoms in the cavity mode if we know

g, κ and γ.

1.4 Two-mode cavity QED and multi-level atoms

The most widely used neutral atomic systems are the alkali metals. Their

spectra is relatively simple and their lines are normally within reach of commercially

available lasers. They exhibit complex magnetic hyperfine structure. Section 1.1

deals only with two-level atoms. These systems can be prepared by optical pumping

techniques, but in this thesis we use the extensive structure available in alkali atoms.

The energy level structure of Fig. 1.2 applies to an atom of 85Rb in the presence

of a weak magnetic field (linear Zeeman splitting). An effective two-level system is

realizable in the structure of Fig. 1.2. The transitions |F = 3,mF = 3(−3)〉 → |F ′ =

4,mF ′ = 4(−4)〉 serve as two-level systems if the atom can be optically pumped to

the initial state and the mode of the cavity is right-σ+(left-σ−) circularly polarized.

The selection rules only allow transitions and decays between those levels.

Restricting ourselves to the two-level atom approximation neglects the rich

physics of the magnetic structure of Fig. 1.2. Ground-state superposition states can

have long coherence. We can benefit from the relationship between transitions and

9
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Figure 1.2: |F = 3,mF 〉 → |F ′ = 4,mF ′〉 transition in the D2 line of 85Rb with

magnetic sublevels.

polarization to explore this rich system, and not just detect the escape of a photon,

but also its polarization. Experimentally this entails having great control over the

birefringence of the cavity. Figure 1.3 shows a simple photon detection scheme.

The driving field, vertically polarized, interacts with a multi-level atom, such as an

alkali. After excitation, the atom can undergo different decay paths. The emission

of circularly polarized photons (σ±) appear simply as horizontally polarized photons

for the detector. This gives us a clear way of distinguishing spontaneously emitted

photons from drive photons.

1.5 Conditional quantum beats in a cavity QED system

Our recent work focuses on the long-lived coherences created by spontaneous

emission in the ground state [6]. We describe in this section our system and its

ground state superpositions.

Our cold atomic beam interacts with the two orthogonal modes of a high

10



Figure 1.3: Simple photon counting detection scheme using an optical cavity cou-

pled to an atom.

finesse optical cavity. The 85Rb atoms exhibit ground- and excited-state Zeeman

structure on the D2 line with different magnetic g-factors (see Fig. 1.4). The laser

drives π (V polarization) transitions, F = 3,m → F = 4,m, as indicated by the

red arrows in the figure. Atomic excitation and decay transfer some of this energy

to the orthogonal mode (H polarization). Spontaneous emission generates a long-

lived Zeeman superposition in the ground-state (purple and green wavy lines). Its

signature is a quantum beat seen in a conditional intensity measurement of the

undriven mode. Using the simplified schematic of Fig. 1.4, if an atom enters the

cavity in the m = 0 ground state, the detection of a photon in the orthogonal

mode sets the atom in a superposition of m = ± ground states. The prepared

11



superposition then evolves in the magnetic field, acquiring a relative phase, until

another π excitation transfers the developed ground-state coherence to the excited

state; subsequently, detecting a second (H polarized) photon projects the atom back

into its starting state. The sequence overall realizes a quantum eraser [16,17] as the

intermediate ground-state is not observed.

Before emitting the second H polarized photon—a σ transition—several in-

tervening π spontaneous emissions (Rayleigh scattering) can occur (orange wavy

lines) [18]. Each of these quantum jumps interrupts the atomic dipole and causes

a small phase advance on the ground-state coherence, which accumulates over time

to become a frequency shift [19]. The accumulated jumps occur randomly in time,

so the frequency shift is accompanied by phase diffusion. Eventually, the diffusion

dephases the coherence. Of course, a σ spontaneous emission destroys the coherence

all in one go for the simplified level structure in Fig. 1.4; not, however, for the con-

sidered transition in 85Rb, where there are actually seven rather then three Zeeman

sublevels in the ground state.

The diagnostic tool used to understand and modify this spontaneous cre-

ation and evolution of ground-state coherence is a conditional measurement of the

H-polarized (undriven) mode intensity, i.e., the second-order correlation function

g(2)(τ) of the H-polarized light. Two indistinguishable paths yield “start” and

“stop” photons for the measurement: |g0〉 → |e0〉 → |g+〉 → |e+〉 → |g0〉 and

|g0〉 → |e0〉 → |g−〉 → |e−〉 → |g0〉. Since the phase advance along each path is

different in sign, though equal in magnitude, and the magnitude grows in time, in-

terference between the paths yields oscillations: g(2)(τ) exhibits a quantum beat at

12
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Figure 1.4: Simplified atomic energy level structure of the F = 3→ F = 4 D2 line

in 85Rb with Zeeman shifts. Different magnetic g-factors yield ∆e > ∆g. Both the

π (red and orange) and σ (purple and green) transitions are indicated. We consider

only situations with a π drive, which might be detuned by δ.

the Larmor precession frequency or its double.

The difference in time of detection between pairs of photons make up Fig. 1.5.

If the two photons come from the same source (single atom) then the contribution

is the one-atom interference term (which shows antibunching). If the photons come

from different atoms, then we are in the two-atom regime. Both of these terms

arise solely from the atoms. The oscillation frequency is 2∆g. The homodyne term

represents the case when one of the photons comes from the driven-mode, while the

other comes from the atoms (due to birefringence or deliberate mixing). This causes

the beating frequency to decrease to ∆g (Larmor precession frequency).
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Chapter 2: Control of conditional quantum beats in cavity QED:

Theory

Preservation of quantum coherence is of fundamental importance in many

fields, from atomic clocks to quantum information science. The tension between

interaction with an environment to extract information and dissipation is at the

heart of quantum open systems [20,21]; attempts to isolate a system usually remove

the possibility of measuring and controling its dynamics. Recent developments in

quantum feedback [22–24] and its application in quantum optics, however, point to

an era where the theoretical tools and experimental time scales needed for control

are within reach.

In this chapter we show theoretically that it is possible to preserve the coher-

ences, recovering both amplitude and phase, by following a protocol that starts with

the detection of a photon, which then triggers a pulse to turn off the system drive.

Chapter 3 describes our experimental implementations.

Decoherence of the ground-state superposition arises from several factors. The

simplest to understand is the transit time of the atoms across the mode of the cavity.

However, we have other mechanisms, and an important contribution comes from the

dephasing process due to random Rayleigh scattering. In this section, we present
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–based on the phase shifts from quantum jumps– a simplified model of the rate of

decoherence due to this process and the associated shift in the Larmor precession

frequency [19].

A π polarized coherent field with amplitude α, resonant with the transition

|g0〉 → |e0〉, drives π transitions on the vertical mode of a cavity QED system in

the presence of a magnetic field (see Fig. 1.4). The cavity provides two orthogonal

modes for drive and detection of the system. Some of the spontaneous emission

enters the orthogonal polarization mode H. The input to the correlator consists

of the H spontaneous emission mixed with a local oscillator of strength ε. The

detection of a first H photon prepares a ground-state superposition [6] that evolves

in time as

|ψg(t)〉 = C0
1√
2

(ei(∆g+∆AC)t|g−〉+ e−i(∆g+∆AC)t|g+〉) + C1|g0〉 (2.1)

where the amplitudes C0 and C1 depend on the strength and phase of the local

oscillator. The term |g0〉 appears because it is not possible to know the origin of

the first detected photon in the presence of the local oscillator: it can come either

from the local oscillator or from the atomic spontaneous emission. To lowest order

in g2|α|2 (drive intensity) the ground-state AC Stark shifts are

∆AC = − g2|α|2∆

(γ/2)2 + ∆2
(2.2)

for state |g+〉 and −∆AC for |g−〉.

The amplitudes in Eq. (2.1) couple to the corresponding excited-state ampli-
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tudes, driving a steady-state superposition:

|ψe(t)〉 = C0
gα√

2

(
ei(∆g+∆AC)t

γ/2− i∆
|e−〉+

e−i(∆g+∆AC)t

γ/2 + i∆
|e+〉

)
+ C1

gα

γ/2
|e0〉. (2.3)

The excited-state amplitudes follow the ground-state oscillation; the excited-state

splitting enters through the factors γ/2±i∆ only, which carry a phase shift. Consider

now the effect of quantum jumps from spontaneous emission occurring during the

interval in between the detection of a pair of H polarized photons from the cavity,

i.e., the π jumps which constitute Rayleigh scattering in Fig. 1.4. With jump rate

Γ = 2g2|α|2/(γ/2), the driven dipole between ground and excited states turns off

and the amplitudes of Eq. (2.3) are transferred to the ground state. It follows that

each time a quantum jump occurs there is a phase advance; if n quantum jumps

occur, Eq. (2.1) is replaced by:

Nn|ψg(t)〉 =
C0(γ/2)n√

2

{
(γ/2 + i∆)n

[(γ/2)2 + ∆2]n/2
ei(∆g+∆AC)t|g−〉

+
(γ/2− i∆)n

[(γ/2)2 + ∆2]n/2
e−i(∆g+∆AC)t|g+〉

}
+ C1[(γ/2)2 + ∆2]n/2|g0〉 , (2.4)

with normalization factor:

Nn =
√
|C0|2(γ/2)2n + |C1|2[(γ/2)2 + ∆2]n. (2.5)

The ground-state superposition has acquired a phase advance. The number of quan-

tum jumps increases with time, so the phase advance accumulates over time.

We average against a Poisson distribution with mean Γt to obtain the expec-
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tation value of the ground-state coherences for jump rate Γ:

ρg+,g− = e−2i(∆g+∆AC)t |C0|2

2

∞∑
n=0

(γ/2)2n

N 2
n

(γ/2− i∆)2n

[(γ/2)2 + ∆2]n
(Γt)n

n!
e−Γt

≈ e−2i(∆g+∆AC)t |C0|2

2
e−(2Γdecoh+i2∆jump)t (2.6)

and

ρg±,g0 ≈ e∓i(∆g+∆AC)tC∗0C1e
−(Γdecoh±i∆jump)t, (2.7)

where we assume 2∆/γ � 1 and take (γ/2)2n/N 2
n ≈ 1.

The imaginary part of the exponents in Eqs. (2.6) and (2.7) contains terms

−2∆jumpt and ∓∆jumpt, where to first order in 2∆/γ:

∆jump = Γ
2∆

γ
=

8g2|α|2∆

γ2
= −2∆AC. (2.8)

These terms represent an additional frequency shift arising from the mean rate

of phase accumulation from quantum jumps due to Rayleigh scattering. For the

(g±, g0)-coherence, the net differential ground-state light shift, in the low drive limit,

becomes:

∆light = (∆AC + ∆jump) ≈ −∆AC, (2.9)

and 2∆light = −2∆AC for the (g+, g−)-coherence.

The exponent in Eqs. (2.6) and (2.7) also contains a damping term, which

decoheres the quantum beats at a rate (to lowest order in 2∆/γ)

Γdecoh = Γ
∆2

(γ/2)2
= 2g2|α|2 ∆2

(γ/2)3
. (2.10)

The decoherence arises from the phase diffusion which accompanies the average

phase drift responsible for the frequency shift. The two aspects, drift and diffusion,
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come together as a package from the stochastic nature of the jump process as we

can see in Fig. 2.1.
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Figure 2.1: Sample quantum trajectories showing the phase accumulated in the

ground state through Rayleigh scattering. The points show 200 realizations of an

atom (Blue n = 2.9 and red n = 0.7) while the straight lines show the mean phase

accumulation. The continuous red and blue lines represent typical trajectories.

The probability of detecting a second photon with H polarization following a

trigger detection is proportional to

〈ψ(τ)|(ε∗ + σ†H)(ε+ σH)|ψ(τ)〉, (2.11)

with σH = |g0〉〈e+|+ |g0〉〈e−|, and |ψ(τ)〉 the state of the system at time τ after initi-

ation by the trigger jump. The terms 〈ψ(τ)|ε∗σH|ψ(τ)〉 and 〈ψ(τ)|σ†Hε|ψ(τ)〉 couple

states |e±〉 with |g0〉, and due to the mapping of the ground-state coherence to the
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excited state, they oscillate as ρg±,g0 . For ε sufficiently large these homodyne terms

dominate. We then measure a second-order correlation function whose quantum

beats oscillate at the Larmor frequency plus ∆light.

The driving field can control the frequency shift and decoherence induced by

Rayleigh scattering. Figure 2.2 shows an example of the proposed protocol, cal-

culated on the basis of the simple model of a fixed atom and two cavity modes.

Fig. 2.2(a) displays the time evolution of the intensity correlation function of the

undriven mode with no intervention (blue line) and with the drive laser (π polariza-

tion) turned off 20 atomic lifetimes after the detection of the first photon (red line);

the system then evolves freely until the drive is returned to its previous value after

a further 80 lifetimes (blue trace). Note that the amplitude of the red trace returns

to the same value as before the turn off, while the phase accumulated is different

in the presence of the drive and in the dark. We create and capture the coherence,

preserving it in the dark, where it evolves without interrogation, and then we re-

cover it. The phase difference visible after the oscillations return is a measure of

the average number of intervening quantum jumps. Figure 2.2(b) shows how the

ground-state coherence evolves in the dark for eighty atomic lifetimes, without any

change in frequency or loss of amplitude due to Rayleigh scattering.

The model analyzed in this section is idealized as the considered transition has

many more levels, and σ and well as π transitions occur. It is nevertheless a good

one to gain qualitative understanding of the phenomena. We have also developed a

full quantum simulation of the problem including all relevant experimental realities.

The details of that model and relevant calculations can be found in Ref. [13].
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Figure 2.2: Time response of the system when pulsing the drive (red) and with a con-

tinuous drive (blue). (a) Conditional intensity g(2)(τ) (the traces initially overlap).

(b) Atomic coherence between |g0〉 and |g+〉. For a drive strength corresponding to

one photon in the driven mode, one fixed maximally coupled atom, and ε = 0.1.
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Chapter 3: Control of conditional quantum beats in cavity QED:

experiments

This chapter contains a series of experiments aimed at controlling the quantum

beats and their decoherence. They all respond to a similar kind of experiment where

we perform strong feedback. Figure 3.1 shows a simple diagram illustrating the

necessary components of strong quantum feedback. A measurement carried out on

a quantum system has an associated back-action effect. The feedback is proportional

to the measurement.

Quantum System
Measurement

Device

Amplifier

ENVIRONMENT

Figure 3.1: Strong quantum feedback diagram. The feedback signal is proportional

to the measurement performed on the system, which has a back-action effect
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3.1 Preliminary experiment

3.1.1 Introduction

The detection of a photon escaping a quantum system at a random time heralds

the preparation of a conditional quantum state. Manipulation of these states is

essential in the field of quantum feedback. The preferential probe of this conditional

measurement in quantum optics is the intensity correlation function which has been

used since the pioneer work of Kimble et al. on resonance fluorescence [25].

This section presents the preliminary implementation of quantum feedback

in our cavity quantum electrodynamical (QED) system. It acts on the ground

state coherences we observed [6]. However, it builds up on extensive literature that

has looked into the evolution and control of quantum states such as Refs. [26, 27].

This work closely follows our previous studies [28–30], except our conditional state

manipulation is long-lived (∼ 5 µs) and it consists of a ground state superposition

detected through a homodyne measurement done in photon counting.

Wiseman [31] established the connection between homodyne measurements

and weak measurements in cavity QED. Weak measurements reduce the problems

of back action in quantum feedback [32, 33]. Our previous work with conditional

homodyne detection [34–36] used a strong local oscillator. Recent measurements

perform homodyne detection of resonance fluorescence with a weak local oscillator

[37]. Our work is moving on that direction and we expect to improve our ability to

control the quantum states with new forms of feedback
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3.1.2 Experimental setup

Figure 3.2 shows the main features of the experiment. Figure 3.6 presents a

schematic of the apparatus. Our optical cavity QED system is in the regime of

intermediate coupling, where the dipole coupling constant (g/2π = 1.2 MHz) is

comparable to the cavity and spontaneous emission decay rates (κ/2π = 3 MHz and

γ/2π = 6 MHz). Our experiment consists of a 2mm Fabry-Perot cavity and a source

of cold 85Rb atoms [13]. The source delivers, on average, a few maximally coupled

atoms within the mode volume of the cavity at all times. This continuous cold

atomic beam comes from an unbalanced Magneto-Optical Trap, a technique known

as LVIS (Low Velocity Intense Source) [38]. The cavity supports two degenerate

modes of orthogonal linear polarization (H and V). During their 5µs transit, the

atoms interact with the orthogonally polarized modes and can spontaneously emit

into the cavity. We drive the D2 line of 85Rb between the ground level F = 3 and

the excited level F = 4 in the presence of a magnetic field of about 2 Gauss. For a

more detailed description of the apparatus, see Ref. [7].

Atoms enter the cavity optically pumped to 5S1/2 F = 3,m = 0 which cor-

responds to our |g0〉. A Glan-Thompson polarizer and zero-order half-wave plate

(HWP) placed before the cavity linearly polarize the drive with a very good extinc-

tion ratio that can reach better than 5×10−5. After the cavity another HWP aligns

the output polarization to a Wollaston polarizing beam splitter (PBS) to separate

the H and V modes. The H light passes through a regular beam splitter (BS)

which divides the light between two avalanche photodiodes (APD). Both detector
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Figure 3.2: Schematic of the apparatus. HWP: Half-Wave Plate, APD: Avalanche

Photo-Diode, PBS: Polarizing Beam Splitter, BS: Beam Splitter, AOM: Acousto-

Optic Modulator

outputs then go to a correlator card (Becker and Hickl DPC-230) which records a

continuous stream of detection times with a resolution of 164 ps.

The pulse from the ‘start’ APD (designated arbitrarily) is split into two and

passed through a Lecroy 688AL level adaptor to produce a clean TTL pulse. This

triggers an HP 33120 signal generator whose output controls the amplitude modu-

lation port of an Isomet D323B radio frequency driver box. The driver connects to

an 80 MHz Crystal Technology 3080-122 acousto-optical modulator (AOM), whose

first-order diffracted beam drives the cavity. In this way, the intensity of the drive

can be modulated conditionally, based on the trigger from the ‘start’ APD.
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3.1.3 Results
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Figure 3.3: g(2)(τ) exhibiting a homodyne quantum beat oscillation with f = 860

KHz, corresponding to a magnetic field strength of 1.8 G

We measure the intensity correlation function g(2)(τ) from our cavity in a

regime where the homodyne quantum beat term dominates, which we achieve by

changing the angle on the HWP after the cavity by approximately 2 degrees away

from maximum drive extinction. The effective number of maximally coupled atoms

in the mode is approximately 2. Fig. 3.3 shows our normalized second-order cor-

relation function due primarily to the beating against the drive; this is apparent

because it dips below one.

The basic idea for control is simple. We rely on conditional measurements to

set the initial phase of the quantum beat. Since the intensity of the detected light
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is proportional to the drive intensity (from both the atomic spontaneous emission

and the driven mode response), we can modulate the drive at the same frequency

as the conditional output signal but with opposite phase. This way the beat will

cancel as long as the modulation amplitude is chosen correctly.

We are able to model the signal (after 0.5 µs) with a simple function that

contains an oscillation (cos Ωt) at frequency Ω/2π=860 kHz, Gaussian damping

(exp−(t2/σ2)) with σ = 1.8 µs, and amplitude and time offsets; the intent is to

capture the basic physics, not to fit the exact form. The oscillation corresponds to

the Larmor frequency and the characteristic time of the Gaussian reflects the transit

time of the atoms through the Gaussian transverse profile of the mode. The sharp

peak at the origin is a multiatom contribution (see Fig. 4d in Ref. [6]) that we are

not taking into account. We obtain the numbers for the model by looking at the

fast Fourier transform (FFT) of the data in Fig. 3.3 as well as at the long term (≈

8 µs) value of the background. The width of the resonance in the FFT fits well to

a Gaussian, but there is an asymmetry on the characteristic width; we average the

two numbers and use that for the model. There are other frequencies visible on the

FFT, coming from the standing wave modulation of the dipole coupling constant

and from the harmonics of the Larmor frequency; we ignore these in the model.

Figure 3.4a illustrates the usual undisturbed signal (red squares) and the signal

with the feedback protocol (continuous blue line) based in the model of the signal

that we just presented. It is clear that there is a modification of the response during

the time that the pulse is applied, but the cancellation is not perfect. The difference

Fig. 3.4b between the trace with feedback and that without recovers the applied
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Figure 3.4: Calculated g(2)(τ) signal from the feedback model with parameters ex-

tracted from the experiment. (a) The red squares are model without feedback. The

blue trace is model calculation exhibiting the effects of our feedback. The brown

trace at the bottom identifies the time window where we apply the feedback. (b)

Shows in green the difference between the red squares (no feedback) and the blue

line (with feedback).
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modulation to the input drive.

A photon “click” in the ‘start’ detector triggers the signal generator, which

outputs a sinusoidal voltage pulse whose amplitude-to-offset ratio is 8.5%, in a

voltage region where the AOM and driver amplitude response is linear. The delay in

the application of the modulation to the drive has an intrinsic (∼ 1.5 µs) contribution

from the signal generator, and a variable part which we use to adjust the phase to

match that of the quantum beats.
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Figure 3.5: Experimental measurements of (a) g(2)(τ). The red squares is the

negative-τ portion reflected back across the vertical axis of the data. The blue trace

is the positive-τ portion, exhibiting the effects of our feedback. (b) shows in green

the difference between the red squares (no feedback) and blue traces (with feedback).

The feedback pulse lasts for one period of the quantum beat oscillation (∼ 1.2

µs), after which the beat returns with the same phase as before. We obtain a
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partial attenuation of the oscillations (See blue line in Fig. 3.5a), owing primarily

to the mismatch between the shape of the applied pulse and the measured g(2)(τ).

Performance can be improved with use of a programmable pulse generator that

matches more carefully the shape of the decaying exponential. In addition, trigger

events missed due to signal generator dead time decrease the effects of the feedback.

3.2 Experiment controlling amplitude decoherence and phase shifts

3.2.1 Introduction

This work goes beyond our previous experiments on quantum feedback in

optical cavity QED [28,30] where only the amplitude was recovered, without control

over the phase. Moreover, that protocol depended critically on the specific time of

feedback application after a photon detection. Our current work shares with it

a reliance on strong quantum feedback, where we draw on our knowledge of the

conditional dynamics of the system to capture (store) and at a later time release a

quantum state.

More recent experiments aim at deterministic quantum control [39, 40]. In

contrast, we use spontaneous emission to prepare and detect the ground-state co-

herence. This renders our control protocol non-deterministic. The implementation

of our fast feedback helps us go further in the context of studying the effects of drive

duration and strength on the coherence and accumulated phase of our superposition.

The protocol is rather simple. It requires no processing but simply follows from

the setting of a quantum beat phase by the detection of a single photon. This is in
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contrast with two recent quantum control studies. The first, recent experiments with

Rydberg atoms in superconducting cavities [41,42], performs extensive calculations

based on measurement outcomes to create and maintain a Fock state in a microwave

cavity. The second reports experiments and theory aiming for quantum control of

the full ground state manifold of Cs [26,43,44].

3.2.2 Apparatus

This section explains our apparatus, data taking, data processing, and the

experimental realization of the feedback mechanism to protect the coherence of the

ground-state superposition. The cavity parameters as well as a short description of

the atomic beam are in Sec. 3.1.2. For this work, we use a magnetic field strength

of 5 G.

Birefringence from the cavity mirrors, vacuum chamber windows and lenses

has a small effect on the frequency separation of the H and V modes. At the working

intensities of the experiment the two modes are degenerate to better than 0.1κ and

the extinction ratio at the output is better than 5× 10−4, a negligible contribution.
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Figure 3.6: Schematic of the experimental apparatus. The detection of a photon

generates an electronic pulse that changes the amplitude of the laser drive for a pre-

set amount of time. An electro optical modulator (EOM) sets the drive intensity.

The light exits the cavity and passes through a half wave plate (HWP), a polarizing

beam splitter (PBS), and a beam splitter (BS), which direct photons onto a pair

of avalanche photodiodes (APDs). The photo-pulses from the APDs are correlated

aginst the initial photon detection to obtain g(2)(τ) (corrrelator not shown).

The light at 780nm passes through an EOSpace fiber electro-optic modulator

before reaching the cavity. This device generates amplitude modulation sidebands

at 227MHz on the light. The upper sideband acts as the drive of the system and

the carrier and the lower sideband reflect back from the cavity. The setup allows

us to rapidly manipulate the amplitude of the drive. We use an SRS digital delay

generator DG645 to generate an electronic pulse (risetime less than 10 ns) that opens

a minicircuits ZAD-1-1 double balanced mixer, operating as an RF attenuator, to

generate the 227MHz RF frequency that feeds the EOM. The output of the APDs
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(SPCM-AQR Perkin Elmer), in the form of TTL pulses, travels to a correlator card

(Becker & Hickl DPC-230), where each pulse arrival is time stamped and stored.

We split one of the APD TTL pulses before reaching the correlator card and use it

to trigger the DG645, which then drives the mixer. We set the length of the pulse

and its amplitude with the DG645. The intrinsic electronic delay of the system is

325ns, limited by the internal delay of the DG645 between external trigger and gate

output.

The process of random photon emission via spontaneous decay translates into

a stream of TTL pulses, which causes the DG645 to miss some triggers. The device

can handle trigger rates up to 10MHz, but from a synchronous source. Our photon

detection rate of ∼ 20kHz (start APD) causes about 2% of missing triggers. We

only keep the photon arrivals that successfully trigger the DG645 by implementing

a software filter when processing the data. The DG645 produces a copy that we

also send to the correlator card and use for the software filter 1.

We detect the atomic coherence by directly looking at the light in the undriven

mode of the cavity or using a homodyne process where a small part of the light

exiting the drive mode is mixed with the signal using a half wave plate (HWP in

Fig. 3.6). The latter case allows us to look directly at the Larmor frequency in the

Zeeman ground state superposition, and the oscillations show the interference of

two fields, one that has the oscillation and one that does not, while in the former

case the interference takes place between fields coming from the same source.

1auto-correlation and filtering computer code available at: http://hdl.handle.net/1903/

13306
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The loss of coherence of the superposition is a degradation that is intimately

related to the interrogation by the drive laser [19]. The protocol that we present in

this section to eliminate it consists of reducing the amplitude of the π drive to the

cavity after a pre-set time from the detection of the first photon, and then returning

the amplitude to the previous level after a fixed time to look at the oscillations. Since

the frequency of oscillation is, to first order, set by the Larmor precession frequency;

the atoms preserve the phase without interrogation, continuing their oscillation in

the ground state.

3.2.3 Results

We now present the results of the feedback protocol: an increase in coherence

time of the ground-state superposition, i.e. an increase in beating amplitude, and

the contrast in accumulated phase due to different precessing frequencies in the

presence or absence of drive.

Figure 3.7 shows two experimental traces using the homodyne process. Each

pair of traces represents an average over a little more than 20 million photon arrivals.

The time that elapses for each dataset, at an average rate of 60,000 counts/second

(count rate of detectors A and B), is about ∼6 minutes. Each bin of 16 ns can have

between 3000 and 4000 counts. The blue trace corresponds to no feedback pulse,

and the red to a pulse of 2.5 µs, which is equivalent to 96 atomic lifetimes. The

amplitude of the red trace is clearly larger when it returns, and there is a phase

shift. Our two qualitative predictions are represented in the data.
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Looking only at the undriven mode yields Fig. 3.8. The smaller SNR requires

more averaging, which comes to 40 million photon arrivals. A rate of detection of

60,000 counts/second translates into a data taking time of about ∼12 minutes and

twice as many coincidence counts per bin as the homodyne data run. The red trace

shows a pulse of 1.4 µs.

The quantitative behavior depends on the exact mixing of the driving field

and scattered light in the homodyne detection (1.2 ± 0.2◦ at HWP), the number

of photons in the driven mode (n = 1 ± 0.3), as well as details of the number

(Neff = 0.4 ± 0.2), velocity (10 ≤ vp ≤ 15ms−1), and angular distribution (θ ≤ 20

mrad) of the atoms. At any given time many atoms are present in the cavity

mode. This gives rise to a peak (bunching) in g(2)(0). The data shows a count rate

with the “off” position greater than zero due to a background unrelated to light

scattered from the cavity V mode. The source of the background is scattering off

the cavity mirrors of photons from the Magneto-Optical Trap laser beams and APD

dark counts. These photons are uncorrelated and we set this level as the zero in

the displayed experimental g(2)(τ). The amount of background suppressed is the

distance between the mark where g(2)(τ) = 0 and the bottom line of the frame in

the figure (about 0.05 in this figure).
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Figure 3.7: Measured conditional intensity evolution, g(2)(τ) at ∆g, of the undriven

cavity mode in the presence of feedback (red) and with no feedback (blue). See text

for a discussion of background suppression. For an effective atom number Neff = 0.4,

rotation of 1.2◦ at HWP, and mean number of photons in the driven cavity mode of

n = 1.
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Figure 3.8: Measured conditional intensity evolution, g(2)(τ) at 2∆g, of the undriven

cavity mode in the presence of feedback (red) and with no feedback (blue). For an

effective atom number Neff = 2.3 and mean number of photons in the driven cavity

mode of n = 0.5.

We estimate the intra-cavity driven mode photon number using an independent

calibration of the efficiency and the size of the signal when we mix the polarizations

in the undriven mode. The result is a photon number of n = 1 with an uncertainty

of 30% based on traces similar to that of Fig. 3.7.

We derive a similar estimate for the other type of beat [45]. A value of n = 0.5

is obtained for traces similar to that of Fig. 3.8. The uncertainty is of the same

order as our other calculation.

We repeat the measurements for different delay times as Fig. 3.9 shows. We

extract the amplitude of the oscillation as a function of pulse width. Each trace

taken has one side with no feedback and one with feedback. We perform a least
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squares fit between the no feedback case and the feedback case making adjustments

to match the amplitude and phase of the oscillation after the drive returns to its

steady state. This is done with an algorithm and allows us to determine an error

for the amplitude scaling and the phase shift.
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Figure 3.9: Measured conditional intensity, g(2)(τ) at ∆g , with various feedback

pulse lengths for the homodyne beat

Figure 3.10 explains the fitting process. First, we restrict the fitting to a

limited range of the data [Fig. 3.10(a) and (b)]; for all data sets we use the time

of the drive turn-on as the starting point and a fixed ending point at 4.7µs. We

then fit a second-order polynomial to the maxima and minima of the oscillations.
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We take an average of these curves and subtract them from the data [Fig. 3.10(c)].

This effectively removes differing backgrounds between the sides of the data. In

the final step we perform the least-squares fit between the two batches, using two

parameters: a time shift [Fig. 3.10(d)] and a scaling [Fig. 3.10(e)]; the residuals are

shown in Fig. 3.10(f). We bin the data in 1.64ns (16.4ns) to optimize the phase

shift (amplitude) extraction. Figure 3.10(g) illustrates the results of the process 2.

2MATLAB script available at: http://hdl.handle.net/1903/13307
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Figure 3.10: Least-squares fitting process. (a) g(2)(τ) with no feedback and polyno-

mial fits to maxima and minima in the restricted range. (b) g(2)(τ) with feedback

and similar polynomial fits. (c) Fitting region after removing backgrounds to show

phase and amplitude difference. (d) After shifting. (e) After scaling. (f) Difference

between the traces before (gray) and after (orange) the fitting. (g) End result with

the original trace for comparison.
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The fitting yields a phase shift and an amplitude change. First, we look at

how the phase shift changes as the width of the feedback pulse is increased. The

beat frequency is lowest (equal to the Larmor precession frequency) when the drive

is off, and higher when it is on. The phase accumulated by the two g(2)(τ) branches

at a time τ after the feedback pulse is

φ− = ωonτ, (3.1)

φ+ = ωonτ0 + ωoff(τf − τ0) + ωon(τ − τf), (3.2)

for the phase accumulated without (-) and with (+) feedback, where τ0 is the time

when the drive turns off and τf is the time when the drive turns back on. We take

the difference to obtain an expression for the phase shift:

∆φ = φ− − φ+ = (ωon − ωoff) (τf − τ0) = ∆light(τf − τ0). (3.3)

The expression is linear in τf , and similar behavior is shown by the data in Fig. 3.11.

A least-squares fit (continuous line) yields a slope of ∆light/2π = 0.073±0.004MHz,

consistent with the prediction from the simple model, Eq. (2.8), of ∆light/2π =

0.075± 0.025MHz for n = 1± 0.3.
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Figure 3.11: Accumulated phase shift as a function of feedback pulse width. The

continuous line is the least-squares fit to the data (reduced χ2 = 1.1). Analysis done

on the homodyne beat of frequency ∆g

Equation 2.8 also applies to the purely atomic quantum beat. Figure 3.12

shows the evolution of the phase shift as a function of pulse duration. The linear fit

gives us a value for the light shift of: 2∆light/2π = 0.105± 0.007MHz which is also

consistent with our simple model: 2∆light/2π = 0.103± 0.009MHz for n = 0.5± 0.2

43



0.00

0.04

0.08

0.12

0.16

0.20

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

Δ
Φ

/2
π

Pulse width (μs)

Figure 3.12: Accumulated phase shift as a function of feedback pulse width. The

continuous line is the least-squares fit to the data (reduced χ2 = 1.65). Analysis

done on the atomic beat of frequency 2∆g

Figure 3.13 presents results for the scaling of the oscillating in g(2)(τ) as a

function of feedback pulse width. This is a quantitative measure of the suppression

of decoherence. If, for example, we let the system evolve in the dark for more

than 2.5µs, the amplitude of the oscillation is found to be a factor of two larger

than without the feedback pulse; the protocol is clearly successful in suppressing

decoherence. There other sources of decoherence, though, the dominant ones being

the transit time of the atoms through the cavity mode and the angular distribution

of their trajectories. We take the following simple additive model for decay of

decoherence due to quantum jumps, rate Γdecoh, in the presence of other sources,
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rate Γother:

g(2)(τ) ∝ 1 + e−Γotherτe−Γdecohτ cos(ωτ). (3.4)

It predicts the scaling [g
(2)
+ (τ)−1]/[g

(2)
− (τ)−1] = eΓdecoh(τf−τ0), with τf−τ0 the feedback

pulse width. The decoherence rate obtained from the data is Γdecoh/2π = 0.037 ±

0.001MHz, compared with an expected value of Γdecoh/2π = 0.032±0.010MHz from

Eq. (2.10), at n = 1± 0.3.
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Figure 3.13: Measured scale factor for the amplitude of the oscillations in g(2)(τ) as

a function of feedback pulse width. The continuous line is the expected result from

Eq. (3.4). This is a compilation of several data runs using homodyning

The striking result for the homodyne beat is even more appreciable when

looking at the purely atomic quantum beat. Figure 3.14 shows that the scaling rises

almost a factor of two more rapidly for this type of beat as a function of the pulse
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duration. The exponential fit of Fig. 3.14 yields a value for the decoherence rate of

2Γdecoh/2π = 0.059± 0.004MHz. The similarity between the theoretical prediction

and experiment is clear: 2Γdecoh/2π = 0.064± 0.005MHz, at n = 0.5± 0.2.
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Figure 3.14: Measured scale factor for the amplitude of the oscillations in g(2)(τ) as

a function of feedback pulse width. The continuous line is the expected result from

Eq. (3.4).

A different way to carry out the investigation is to fix the feedback pulse

width at 3µs and change the size of the drive, from the full drive (100%) to smaller

values, noting how the amplitude and phase of the oscillations change. Figure 3.15

presents a set of measurements with five different turn-off ratios. As the background

suppressed in this figure is different for each trace, the distance between the mark

for g(2)(τ) = 0 and the bottom of the frame (about 0.1) shows the maximum amount

we had to suppress. Once the drive returns to its starting level the changes in the
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amplitude and phase of the oscillations are significant, particularly for the 5% case,

and ordered according to color as we would expect.
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Figure 3.15: Measured conditional intensity, g(2)(τ), with fixed feedback pulse length

(3µs) and variable amplitudes as indicated by the color code. For an effective atom

number Neff = 0.4, rotation of 1.2◦ at HWP, and mean number of photons in the

driven cavity mode of n = 1.3.

Figure 3.16 shows how the amplitude of the frequency component in Fourier

space of the recovered oscillations, scales as a function of normalized drive intensity

(normalized against the no feedback case). It analyzes the data runs of Fig. 3.15. If

we completely turn the drive off, we obtain the largest amplitude, as observed both

in the simulation of the experiment. With the drive turned off for 3.0µs, the largest

amplitude we observe is more than a factor of three greater than in the continuously
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Figure 3.16: Amplitude of the recovered oscillation as a function of normalized

feedback intensity after 3µs of lower drive. We take a linear fit with reduced χ2 =

0.732

driven case. The discrepancy between the results of Fig. 3.13 and Fig. 3.16 stems

from the slightly stronger drive used in the latter and the analysis is different.

Figure 3.17 shows the phase shift as a function of normalized intensity (ob-

tained by calculating the discrete Fourier transform of the recovered oscillations).

For the smallest drive (about 5%) the phase shift differs by more than 2 radians

compared to the continuously driven case. The effective frequency shift is of the

order of 100 kHz per drive photon in the cavity which is in agreement with a calcu-

lation for n = (1.3 ± 0.4) using Eq. 2.8 that yields (96 ± 7) kHz. The continuous

line in Fig. 3.17 is to guide the eye.
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lower drive. The line is just a guide for the eye
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3.2.4 Discussion
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Figure 3.18: Comparison of theory and experiment for controlled excitation. The

fit uses effective atom number Neff = 0.55, a rotation of 1.2◦ at HWP, mean atomic

speed vp = 13.5ms−1, a deviation of the atomic beam from perpendicular to the

cavity axis θ = 0.017rad, and mean number of photons in the driven cavity mode

n = 1.21.

The comparison with theory starts with a numerical simulation of the exper-

iment in the absence of feedback to obtain the best parameters for the effective

number of atoms, number of photons in the driven mode, average atomic velocity,

and the angle between the atomic beam and cavity axis. We make this fit after

subtracting from the experimental data any background that prevents the signal
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from going to zero when the drive goes to zero, as is done for all the data figures

in our results section. We first adjust the background following a procedure similar

to the first stage [Fig 3.10(a) and (b)] of the fitting process. The amount of back-

ground suppression is equal to the distance between the mark for g(2)(τ) = 0 and

the bottom of the figure frame (about 0.05).

Using the fit parameters we calculate the controlled case. Fig. 3.18 shows an

example of the results. The qualitative features of the data are all present in the

model. Quantitatively, the model captures the phase shift and does an excellent

job with the time constant of the cavity, which controls the decay and the rise of

the signal when the pulse is applied. The difference between at τ = 0 may come

from unaccounted contributions from multiple atoms and/or additional background.

Modeling all decoherence processes is difficult; the model captures most of the deco-

herence, but makes a slight overestimate as the figure shows. The decoherence rate

is very sensitive to the atomic velocity distribution, which is difficult to reproducibly

control in the experiment to better than ten percent.

Considering comparisons with earlier work, the evolution of the ground state

coherence takes place on time scales that allow implementation of feedback protocols

with available laboratory equipment. This broadens the scope for experimental

exploration compared to the hardware (time response) limitations of the quantum

feedback previously implemented on the vacuum Rabi splitting [28, 30]. Working

with this same ground state coherence we have shown in Ref. [46] how it is possible to

modify the behavior by giving some time dependence to the drive. The combination

of that idea with the current results points to new directions, which include the

51



possibility of incorporating direct RF drives of the Larmor oscillation.

3.2.5 Conclusions

We have shown in this work the idea pioneered by Ramsey [47] of letting

quantum coherence evolve in the dark, is valid for conditional coherences, those not

visible in the mean transmitted light and requiring the measurement of higher-order

correlations for their study. Our use of feedback to counteract and measure the

effects of Rayleigh scattering (both frequency shift and decoherence) shows that the

qualitative behavior of our system is well understood, while we continue to better our

quantitative understanding and detailed modeling. The reported protocol is simple,

robust, and can improve the lifetime of a spontaneously generated coherence by

a significant amount. It is an advance along the path to a new class of quantum

feedback and control.
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Chapter 4: Construction of new apparatus

This is a description of recent improvements to enhance our experimental

apparatus.

Our goal is to further enhance the intra-cavity interactions between the elec-

tromagnetic field and increase the number of atoms at any given time in the cavity

mode. This will open the parameter space that we can explore and improve the

signal to noise ratio achievable in a second. We achieve this by building a new,

improved, optical cavity and a new atomic beam source.

We have built a new vacuum chamber with improved geometry and capabil-

ities. The goal is to make the apparatus more versatile and easier to use in future

explorations of the physics in cavity QED, including the implementation of more

elaborate control protocols than the one described in Chap. 3.

4.1 Optical cavity

A high finesse (low loss) resonator lies at the heart of every optical cavity QED

apparatus. The transmission coefficients for the mirrors used in the resonator may

be as low as a few parts per million, reducing the absorptive losses to this level is a

great experimental challenge [48,49].
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4.1.1 Limitations

Our old cavity [50] (brief descriptions in Sec. 3.1.2 and Sec. 3.2.2) suffers from

higher than expected losses, reducing its finesse by about a factor of two from the

calculated value based only on the transmission of the cavity mirrors.

The mirrors that form this cavity are part of a large batch of mirrors our group

sent to Research Electro-Optics (REO) in Boulder, CO to apply highly reflective

coatings nearly two decades ago. REO guaranteed transmissions of T1 = 15 ppm

and T2 = 270 ppm for the particular mirrors in question.

We expect a finesse of F = 21000 from the above transmission parameters.

We can also estimate the linewidth (FWHM) of 2κ/2π = FSR/F = 3.2 MHz for a

separation of 2.2 mm between the mirrors. Our experimental measurements show

F = 12000 and a FWHM linewidth of 5.6 MHz [51]. We believe this additional

loss stems, primarily, from glue residue deposited on the mirrors during the cavity

building process, but also coating aging.

The dipole coupling strength for the field in this cavity and 85Rb atoms at a

wavelength matching the energy of the D2 line transition yields a value of g/2π = 1.5

MHz using Eq. 4.4 and weighing the Clebsch-Gordan coefficient for the transition

|F = 3,mF = 0〉 → |F ′ = 4,m′F = 0〉. We wanted to increase this quantity

where the coupling rate between a single atom is similar to the decay rates through

spontaneous emission and escape of the cavity (intermediate coupling regime).
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4.1.2 Construction process

Our new cavity has small and well-characterized losses, as well as almost a

factor of two stronger coupling to the atoms and enhanced vibration isolation.

Our experiments require great control of the mode of the electromagnetic field

inside the cavity. It is very important to have great precision in the positioning of

the mirrors that form the resonator. We use shear piezoelectric transducers (PZTs)

from Channel Industries, Inc. for this purpose. We use lead zirconate titanate as

material, specifically model C-5800. We start by using a conductive epoxy glue to

adhere these piezos to a non-magnetic stainless steel base (with a reasonably large

hole in the middle), taking care to orient them along the direction of motion (shear).

After the glue is dry, we also attach thin copper wires to the top of the PZTs (LIVE)

and to the stainless steel base (GND) as can be seen in Fig. 4.1 and 4.4).

Figure 4.1: Side picture of a Fabry-Perot cavity built using the procedure outlined

in this section.

Two spherical mirrors with Research Electro-Optics (REO) high-reflectivity
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coatings form the cavity. We glue these circular mirrors on V -shaped pieces of MA-

COR, a low-outgassing, machinable ceramic that can withstand high temperatures

and provides electrical isolation. Our goal is to obtain a small separation between

the mirrors of the cavity. It is important to glue the mirrors on the bases so that

they stick out noticeably. This is the most delicate gluing phase. If not careful it is

rather easy to touch the mirrors with the tool used to apply the glue.

We glue the input mirror and its base to one of the PZTs. We use a crane-like

mount (Fig. 4.2) to hold the output mirror by its MACOR base and place it as

shown in Fig. 4.3.

Figure 4.2: Full structure for the gluing of the new cavity
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Figure 4.3: Crane holding output mirror of cavity previously glued to MACOR

V-block

We set up a Helium-Neon diverging laser beam using a short focal length lens

before gluing the output mirror and V -block base. We aim this beam at the input

mirror, so that the back reflection overlaps the incoming beam and also the beam

diameter covers the mirror diameter (7 mm). We also connect a high voltage ramp

power supply to the input mirror PZT and ground. The PZT displacement as a
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function of applied voltage is given by:

∆x = d15V (4.1)

where d15 = 390−12 m/V, for material C-5800. We can expect displacements of

roughly λ/2 for an amplitude of the ramp of 1 kV. We use the crane to move the

output mirror to a position such that we can see a changing interference pattern

on the output beam (moving Fabry-Perot fringes). This pattern is localized and

corresponds roughly to the position of the TEM00 mode. We place the interference

as centered as possible using the crane. We simply lift the mirror to allow room

to apply glue and then lower the mirror again, taking care of re-positioning the

interference rings in the middle of the output beam. We constantly monitor the

output screen for changes and use the crane tilt knobs to re-center the pattern

during the curing of the glue.

We use only adhesives that NASA rates as low-outgassing 1 based on percent

total mass loss at low pressure such as Loctite Hysol 1C. These glues are compatible

with high vacuum requirements (∼ 10−8 Torr or lower). We use EPO-TEK H20E, a

silver-filled electrically conductive low-outgassing epoxy, to bond the PZTs to wires

and the stainless steel base. Figure 4.4 shows a picture of the finished cavity.

1NASA outgassing data for selecting spacecraft materials 06/01/2011 http://outgassing.

nasa.gov/
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Figure 4.4: Picture of new Fabry-Perot cavity

4.1.3 Properties

The objectives of building a new optical cavity is two-fold: experimentally

obtain a projected finesse of ∼ 20000 and enhance our coupling strength.

We are aware of the aging effects in the reflective coatings of the mirrors, so

we first determine carefully the new transmissions from a batch of mirrors with

promising advertised parameters.

We choose a pair of mirrors with the following properties: T1 = 242± 2.4 ppm

and T2 = 9± 1 ppm and radius of curvature of both mirrors of 45 cm. We use a 5

mW, 780 nm laser beam and a mounted optical power meter to measure the intensity

transmission coefficient T directly. A 780 nm filter reduces background light into the
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detector to below 0.01 nW. After measuring the power of the unimpeded beam, we

move a mirror into the path of the laser such that it is incident on the coated side,

and the mirror reflects the majority of the power back through the optical isolator

before the laser. Finally, we use an aperture after the mirror to carefully block as

much of the scatter as possible (without clipping the transmitted beam itself), and

record the intensity of transmitted light. Taking the ratio of the transmitted optical

power to the incident optical power (over several independent trials), we determine

the current transmissions of the high-reflectivity mirrors. The labeled T values for

the mirrors did not always agree with our measurements [52].

We start the building process as outlined before with the goal of having a intra-

cavity mirror separation of ∼ 1 mm. We replace the HeNe laser with a 780 nm laser

beam frequency modulated by an EOM at a known value, for example 230 MHz.

The lens should now be chosen so as to mode-match the beam with the predicted

mode-waist in the cavity, w0 = 58 µm. We place a detector (Photo-multiplier tube,

PMT) at the output. We connect the PMT to an oscilloscope, triggering on the HV

ramp. This shows the allowed transmission modes through the resonator. Careful

alignment and mode matching are necessary to couple the light mostly into the

TEM00.

We can use the known frequency separation between carrier and side band

(e.g. 230 MHz) provided by the fiber EOM in the experimental setup to measure,

with the oscilloscope, the linewidth (FWHM) of the cavity. We can estimate the

FSR from the rough estimate of the separation between the mirrors. This yields a

value of finesse of the order of 20000, as we want. The reason we do not pursue
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more accuracy with this method is because we know the environment (cavity in air

with no mechanical isolation) has an adverse effect on the linewidth. We proceed

to place our cavity in vacuum in order to minimize the effect of the environment.

We discuss the vacuum chamber assembly in Sec. 4.3. The estimation of our

resonator properties in vacuo follows exactly the procedure described above, except

we find indirectly the value of the FSR.

We measure on the oscilloscope the frequency difference between two TEM

modes. Our cavity is in the non-confocal regime. The radius of curvature is much

larger than the mirror separation R >> `, then this frequency (in vacuum) is given

by [53]:

∆ν =
c

2πz0

(4.2)

where z0 is the Rayleigh length of the cavity mode. It depends on the resonator

mirror separation, and for a symmetrical cavity as ours, it is related by:

z2
0 =

(2R− `)`
4

(4.3)

Solving Eq. 4.2 for z0, substituting it in Eq. 4.3 and solving for ` yields an intra-

cavity mirror separation of 0.790 ± 0.001 mm. It is easy to compute the FSR

= c/2` = 189.6± 0.2 GHz. We also measure on the scope a value for the linewidth

(FWHM) of 2κ/2π = 9.09 ± 0.01 MHz. A direct measurement of FSR is possible,

but this makes the EOM side bands very difficult to resolve on an oscilloscope,

making it complicated to correctly convert FSR to frequency units.

Our estimate of the finesse is F = FSR/4πκ = 20863± 35 by combining two

numbers, which reaches our goal. This number is a reasonable estimate, though it
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is likely to increase as our cavity length stabilization controls improve.

We combine Eq. 1.1 and Eq. 1.2 to obtain a simple expression for calculating

the dipole coupling for our cavity:

g =
µ

~

√
~ω

2ε0V
(4.4)

The dipole moment contains the appropriate Clebsch-Gordan coefficient for the tran-

sition involved (not included in Eq. 4.4) [54]. Tables 4.1.3 and 4.1.3 show the values

for g/2π as well as important figures of merit for the most important transitions.

F = 3 F ′ = 4 CG g/2π [MHz] C1 nsat

π
m = 0 m′ = 0 −

√
2/7 2.4 0.21 2.1

m = 3 m′ = 3 −
√

1/8 1.6 0.09 4.8

σ+
m = 0 m′ = 1

√
5/28 1.9 0.13 3.3

m = 3 m′ = 4
√

1/2 3.2 0.37 1.2

Table 4.1: Clebsch-Gordan (CG) coefficients, single-atom coupling constants g and

cooperativities C1, and saturation photon numbers for different transitions in the

D2 line of 85Rb from F = 3→ F ′ = 4 for different drive polarizations (π or σ+)
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F = 2 F ′ = 3 CG g/2π [MHz] C1 nsat

π
m = 0 m′ = 0 −

√
3/10 2.5 0.22 2.0

m = 2 m′ = 2 −
√

1/6 1.8 0.12 3.6

σ+
m = 0 m′ = 1

√
1/5 2.0 0.15 3.0

m = 2 m′ = 3
√

1/2 3.2 0.37 1.2

Table 4.2: Clebsch-Gordan (CG) coefficients, single-atom coupling constants g and

cooperativities C1, and saturation photon numbers for different transitions in the

D2 line of 87Rb from F = 2→ F ′ = 3 for different drive polarizations (π or σ+)

4.1.4 Vibrations

We use a method of impedance mismatching in which the stainless steel cavity

mount sits atop a stack of materials with very different resonant frequencies, such

that vibrations do not easily propagate through the entire stack, to improve the

mechanical decoupling of the cavity. The materials include lead, copper, and Sor-

bothane (a shock absorbing synthetic viscoelastic urethane polymer) 2. In order to

find the optimal configuration of the materials, we place the cavity base atop a test

stack and use a PZT attached to the base as a microphone, connecting its output to

a spectrum analyzer (Stanford Research Systems SR770 FFT Network Analyzer).

We then strike the tabletop with a hammer, delivering controlled “delta function”

impulses, several times over a span of ten seconds. We collect PZT voltage and av-

2Sorbothane manufacturer’s website 06/01/2011 http://www.sorbothane.com/
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erage the spectrum over a range of frequencies from 0 to 100 kHz, and we compare

dozens of different combinations of damping materials.

We obtain a drastic improvement to the effectiveness of the damping stack by

altering the geometry of the Sorbothane layer, based on advice from the manufac-

turers of Sorbothane. Instead of a solid sheet of Sorbothane, we cut the material

into twelve roughly 0.25-inch squares, and space the squares out over the area of

the damping stack. As shown in Fig. 4.5, the small pieces of Sorbothane make this

geometry significantly more effective at damping, as they have more room to deform

sideways and dissipate vibrational energy.
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Figure 4.5: Power spectra after impulse excitation. Damping layers: Lead-

Sorbothane-Lead.
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4.2 Atomic beam

We implement a Low Velocity Intense Source [38] (LVIS) of 85Rb atoms. We

achieve this by unbalancing a magneto-optical trap (MOT). The typical MOT re-

quires six laser beams, a pair for each direction. A common setup, for each pair,

uses a combination of a QWP and mirror to retro-reflect the incoming beam.

A slow moving atomic beam, under certain circumstances, can transit through

a small hole in the QWP and mirror combination of one of the pair of laser beams

as shown in Fig. 4.6. There is no light reflected from the hole so the scattering

force in that direction vanishes, subjecting the atoms to the scattering force from

the push beam. To avoid complications we choose the Z-axis (direction of gravity).

This requires that our QWP and mirror with a hole be inside our vacuum chamber.
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Figure 4.6: Low Velocity Intense Source (LVIS) diagram: An atomic beam can

transit through a small gap in one of the trap beams.

4.2.1 Limitations

The old setup allowed us to work under optimal circumstances with one or

two effective atoms in the cavity (we were not able to resolve the vacuum Rabi

splitting). We started with a rather small MOT; The laser beams forming the trap

were no more than 20 mm in diameter, limited by the size of the windows on the

vacuum chamber. The gradient of the magnetic field near the trap center was not

well known. The vacuum pressure was poor as inferred by observations of trap
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lifetimes in the order of hundreds of milliseconds.

The aiming of the atomic beam at a cavity is complicated. In the past setup,

the previous students assembled the QWP and mirror combination in the most

centered way they could find. Then before closing the vacuum chamber, they intro-

duced a thin rod (0.062” in diameter) through the holes of the optics and reaching

between the mirrors of the cavity. This technique is risky because it may damage

the surface of the mirrors and it is no longer applicable to our new cavity with a

mirror separation of 0.79 mm. Complications also arose from a small tilt in the

mounting of the in vacuo optics.

All the above issues can hurt the flux of atoms in our beam, leading to reduced

atomic intra-cavity interactions. We have tried to address most of these issues in

the next generation experimental apparatus.

4.2.2 Large Magneto-optical trap

We emulate to a great extent the optimal experimental parameters for the

LVIS found by [38].
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Figure 4.7: 3D CAD exact model of the MOT beam expander system. The kine-

matic mount in the middle allows tilt even though the mounts firmly attach to our

vacuum chamber using the 60 mm cage.

Our first step is to enhance our MOT. We increase the size of our trap beams

to 40 mm in diameter, except the top Z-axis beam which we set to 25 mm because of

space constraints. We implement an optical system based on work by the research

group of Dr. James V. Porto and later refined by fellow graduate student Jiehang

Zhang [55] (See Fig. 4.7), to obtain a highly collimated beam of the desired diameter.

We construct a hybrid lens tube and cage mount from easily purchasable items

with a few customizations of our own. Figure 4.8 shows a cross section of our mount,

displaying several key positions of the optical elements. The optical system starts

with a FC/APC PM fiber (based on Corning PM85-U25A) with numerical aperture,

NA = 0.12. Shortly after we place a QWP for turning linearly polarized light to
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circularly polarized. At a distance from the fiber tip of about 30 mm, we place a

1/2” plano-concave lens with f = −25 mm. Then at about 40 mm we put a 2”

meniscus lens with f = 150 mm followed closely by a 2” plano-convex lens with

f = 150 mm. We hold the optics in place using retaining rings (not highlighted on

image). We use an extra retaining ring as a spacer in the second SM2V10 lens tube

that carries the positive meniscus lens. We can buy from Thorlabs, Inc all the parts

to assemble this special mount. The only two parts that need customization are

KC1-T and SM05T2. The kinematic mount KC1-T does not actually fit inside a 60

mm cage assembly. It is necessary to grind the edges closest to the cage construction

rods. The SM05T2 lens tube adapter proves too long, so we can cut it roughly in

half.

We use a shear interferometer to optimize the collimation of the beam. We

perform adjustments to the position of the SM2V10 variable length lens tube and

the fiber output coupler position. We can tweak these two parameters while we

monitor the interference fringes and we make them as parallel as possible.
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Figure 4.8: Cross section of 3D CAD model of our MOT beam expander optical

system.

The 60 mm cage housing the optical system fits into a customized 1/8”-thick

“washer” that we pre-attach to the vacuum chamber. This washer, shown in Fig. 4.9,

contains machined holes (4-40) for properly mounting both 30 and 60 mm cages as

well as some extra 1/4-20 holes not currently in use. This ensures great alignment

with the vacuum chamber windows.
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Figure 4.9: Washer for mounting 30/60 mm cage systems to CF 2.75” vacuum

viewports.

We use three of these cage optical systems. The other three beams making our

MOT come from retro-reflection optics. For the x and y directions we use a simple

60 mm cage holding a 2” large focal length achromatic lens (f = 1 m), and also 2”

QWP and mirror. We use this lens to help us center our trap, because our reflected

beams may have losses despite the anti reflecting coatings in the optics which can

shift the position of the trap significantly away from the center.

We have also developed custom-made coils for generating the necessary mag-

netic fields for a MOT. An aluminum spool holds each of our coils. Figure 4.10

shows a 3D CAD model of the spool and Fig. 4.11 shows detailed dimensions. We
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are not concerned now about turning the magnetic coils off and the residual eddy

currents that form on the aluminum. We wind two distinct wires in the interest

of cutting the resistance of the coil in half, obtaining about 180 turns of 14 AWG

wire in total. This comes at the expense of using more current to achieve same field

strength. We place them about 14 cm from the center of the chamber along the axis

of the coils. Our calculations show an estimated field gradient at the center of the

MOT chamber along the coil axis of 3 G/cm and 5 G/cm in the other two directions

when using a current of about 7.5 A (on each strand).

Figure 4.10: 3D CAD exact model of our MOT coil.
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Figure 4.11: Detailed dimensions of MOT coil spool.

4.2.3 Steering

We have limited steering capabilities once we close our vacuum chamber. We

have three pairs of large bias coils for shifting the MOT center in each direction and

we can steer the laser beams. We are also employing long-focal-length converging

lenses in the retro-reflection optics to help us balance the scattering forces and thus

allow us to shift the MOT center.

The target for our atomic beam is the mode of the cavity. The dimensions of

this target are roughly 0.79 mm by 58 µm. It is crucial to start with a very good

initial alignment of the cavity center with the hole in the QWP and mirror and then

do the rest by shifting and/or steering the MOT.
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4.3 Experimental chamber

Our experiments take place inside a vacuum chamber constructed with com-

mercial pieces from Kimball Physics, Inc. It consists of two main parts or separate

chambers: The top chamber that we use to establish our MOT and a lower cham-

ber that houses our optical cavity and where our scientific probes take place. The

reasons for requiring a relatively high vacuum (10−8 to 10−9 Torr) are mainly two:

our slow atomic beam (LVIS) can only be realized in an environment with a low

collision rate. Our optical cavity, very susceptible to temperature changes, is well

insulated from the ever changing environment by the vacuum.

4.3.1 Limitations

Figure 4.12 shows an accurate representation of our old vacuum chamber. It

has several significant drawbacks we want to address.
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Figure 4.12: Accurate 3D CAD model representation for our first vacuum chamber

One of its greatest problems is the limited optical access. The chamber housing

the optical cavity, a 2.75” CF cube, has two of its sides sealed. We use one of this

sides for electrical feedthroughs (HV and ground for cavity PZT’s) and the other for

attaching a Varian 20L ion pump. Also the placement of the optical cavity is not in

the center, allowing little to no room for probing the atomic beam before entering

the cavity.

We suffer significant problems with stray magnetic fields coming from the

pump’s magnets, despite our efforts at insulation. This is because our sole ion

pump is within its characteristic magnetic dipole size from our cavity chamber,

contributing large gradients to the MOT region and to the interaction region where
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the cavity resides.

The MOT chamber directly above our cavity chamber (connected by a 2.75”

close coupler 1.4” in length - MCF275-ClsCplr-C2-1400) is a small 2.75” spherical

hexagon (MCF275-SphHex-C2A6). This leaves small 1.33” viewports for establish-

ing laser beams for a MOT. The flux of the atomic beam is adversely affected by

a small trap (small capture rate). The vacuum conductance between this chamber

and the cavity chamber is rather small because of the QWP and mirror with a hole.

This can hurt the pressure on the top chamber, which also translates into a lower

atom flux.

4.3.2 Vacuum

Figure 4.13 shows our new generation vacuum chamber. It addresses the

problems of our old chamber and serves to house our new optical cavity whose

properties we describe in detail in Sec. 4.1.
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Figure 4.13: Accurate 3D CAD model representation for our new vacuum chamber

Our new chamber provides ample optical access. It is now possible to align a

laser beam on the side of our cavity. This is an ideal location for our optical pumping

beam (see Sec. 4.4). Additionally the cavity is at a height on the same level as the
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center of the viewport. We manage to do this by routing electrical feedthroughs

through the bottom instead of the side. We also connect our 20 L ion pump from

below using a CF “tee”, a four-way cross and a flexible bellow. Placing the ion

pump this far away from our cavity chamber greatly reduces the stray magnetic

field problem without compromising the vacuum too much. We now have a second

vacuum pump on the top chamber. Despite the considerable amount of hardware

and wires inside, we still have optical access from below just as before.

The MOT chamber is now an extended spherical cube from Kimball Physics,

Inc (MCF275-SphCube-C6A8). This piece has six 2.75”-inch CF ports ideal for our

large 40-mm trapping laser beams. It also comes with eight 1.33” CF ports along

the cube diagonals. We use the top four ports for imaging the MOT (2), placing our

rubidium dispenser rods and adding an extra 3 L ion pump as shown in Fig. 4.14.

This small pump is manufactured by Gamma Vacuum and the model number is

3S-CV-1H-5K.
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Figure 4.14: Top view of new vacuum chamber showing detail of the mirror with

the hole and the orientation of the images we obtain from the MOT

The assembly process requires time and careful work. The first step is to make

sure all parts are as clean as possible, following common practices developed at JQI.

The most difficult stage is the wiring of the feedthroughs, while maintaining optical

access from the bottom. The number of wires we need to route is fifteen. Each

RF/Microwave coil needs two, and there are four coils: two along the axis of the

cavity, one on its side and one around it. The magnetometer requires four wires

and the PZT’s of the cavity need the last three. We keep the wires away from

the center by constructing a “wall” to guide them. Figure 4.15 shows an accurate

representation of it. We make the wall using internal mounting parts and eV parts

from Kimball Physics, Inc. The close coupler (MCF275-ClsCplr-C2-1400) provides
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the support for a pair of groove grabbers (MCF275-GrvGrb-CB03). These grabbers

posses mounting holes for clamping two 6-in stainless steel rods (SS-RO-C-6000).

The other two rods are attached to the assembly using a modified screw clamp

assembly (SS-SCA-C5). The modification of this part consists in cutting the last

clamping hole. We do this by simply grinding the part. This part becomes a clamp

for four rods instead of five. Not shown on Fig. 4.15 is the kapton tape we use to

cover the holes in between the rods, effectively making a wall and insulating the

conductive rods from the wires.
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Figure 4.15: Translucent view of the chamber section just below the cavity chamber.

“The wall” formed by 6-in long stainless steel rods held in place by groove grabbers

holding on to the close coupler part. Pictured also is the magnetometer board (in

red) attached to the structure that serves as a base for the cavity.

The detailed wiring order is in Appendix A. Figure 4.16 shows the cavity and

coils in place after we finish the wiring and we attach the cavity chamber (MCF275-

SphCube-C6). The next step is to hold this part of the chamber to a suspended

optical breadboard using an external bracket (MCF275-ExtBrkt-LS). This bracket

fits into a mounting flange (MCF275-MtgFlg-C2) located between the close coupler

and the “tee”. We then attach a 2.75” cross to the “tee”, seal the bottom with a
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viewport and attach an angle valve to one of the remaining open ends and a flexible

bellow to the other. We connect the flexible bellow to our 20L varian ion pump.

Figure 4.16: Translucent view of the cavity chamber. The cavity rests on

three layers of vibration insulation (Pb - Sorbothane pieces - Pb) surrounded by

RF/Microwave coils. Note the closed flange with feedthroughs connector and the

external bracket for supporting the whole chamber on an optical table.

82



The last step in the assembly of our vacuum chamber is the joining of our

MOT chamber to the cavity chamber. We attach a very long cage system directly

above the cavity chamber. This cage system simply helps us implement a very well

aligned vertical laser beam. We then use a power meter below our vacuum system

to measure the power of the laser beam transmitted in between the cavity mirrors.

We maximize the transmitted power by gently moving our optical cavity. This

ensures the cavity is reasonably centered with respect to the vacuum chamber. We

finally close the cavity chamber using regular 2.75” vacuum viewports with glass

AR coated.

We attach a similar cage system to our MOT chamber separately. This takes

place on the side directly opposite to the side holding the QWP and mirror with hole.

The purpose of this procedure is to ensure that the mechanism holding the optics

does not introduce a significant tilt in the reflected beam. We use a cylindrical clamp

with nearly one-inch diameter to hold the optics (MCF275-GrvGrb-CYL1000). This

special clamp is manufactured by Kimball Physics, Inc. It allows mounting on

grabber grooves present in our vacuum chamber parts, also manufactured by the

same company. We measure a tilt angle of under one degree. Figure 4.17 pictures

the cavity and the hole in the mirror. The separation between the hole and the

center of the cavity is about 2 cm. The total approximate distance between the

MOT center and the cavity is nearly 10 cm. The thickness of the QWP plus the

mirror is 1.3 cm.
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Figure 4.17: Translucent side view of the cavity chamber with MOT chamber

attached. The cylindrical clamp holding the QWP and mirror with hole are visible

84



4.3.3 Magnetic environment

Figure 4.18 shows an approximate model of the magnetic field coils and some

permanent magnets present near our vacuum chamber. The cyan rings represent

the MOT coils described in detail in sec. 4.2.2. The blue and magenta rings are

y-axis and x-axis coils respectively. They consist of 13 to 18 turns of 10-wire flat

ribbon cable. The positioning is as close to the physics cavity chamber as possible.

The red rings are the z-axis coils. They are made of roughly 19 turns of 6-wire flat

ribbon cable. The z-axis coils location is also close to the chamber.

Figure 4.18: Magnetic field sources present in our experiment. The distances are

in millimeters and they are accurate to within a few millimeters.

Not included in the model are the magnets attached to the ion pumps. The
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small 3 L ion pump by Gamma vacuum comes with an effective shielding. The

manufacturer has a magnetic field 3D map of the field near the pump 3. Two inches

away from the surface of the CF 1.33” flange attached to the pump (on axis of

the CF 1.33” opening), which roughly corresponds to center of the MOT chamber,

the only non-vanishing component of the magnetic field is along this axis at 1.615

Gauss. The field drops off to 0.503 Gauss three inches away (chamber edge along

cube diagonal). It is clear this field has little impact on the cavity chamber, but

causes a small shift in the MOT.

The strong field the MOT coils generate is of the order of 13 Gauss in the

negative z direction near the cavity center (when a current of about 15 A runs

through them). The z-axis cancellation coils can provide enough field to counter

the strong residual field from the MOT, but this requires high currents of the order

of 1 A. The power dissipation of such a large current by the coils in physical contact

with our chamber causes very large temperature-induced drifts of the length of our

physics cavity.

We solve the problem by placing four Neodymium block magnets (NdFeB,

Grade N42), one at each corner of our cavity chamber and at the height of the

cavity as shown in Fig. 4.18. These magnets have dimensions of: 1/2”×1/2”×1/4”

and are magnetized across their thickness. The surface field is about 4400 Gauss

according to the manufacturer. We place them such that the magnetization points

in the −z axis. This results in a strong combined field at the center along the z

3Magnetic plot for TiTan CV 3S pump with CF 1.33” port (04/25/2014) http://www.

gammavacuum.com/ (login required)
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axis of about 7 Gauss. Adding the field from the MOT coils and from the magnets

yields a total value of the field at about - 6 Gauss. Fig. 4.19 shows the variation of

Bz as a function of z.

0.0 2.0 4.0 6.0 8.0 10.0 12.0

Z (cm)

B
z 

(G
)

-10

-5

0

5 Coils only

Coils+magnets

Figure 4.19: Bz as function of z in the cases of only the MOT coils on and the coils

and the permanent magnets. A field of zero indicates proximity to the MOT. The

position z = 0 corresponds to the location of the cavity.

Figures 4.17 and 4.16 both show the RF/microwave antennas we put inside

our chamber. They are a few turns of copper wire, except for the z axis coil which

we make with a 2.12” CF copper gasket. They are inside the chamber to minimize

reflections from the surface of the vacuum chamber with well defined geometries

to operate in the near filed regime.They may help understand possible unwanted

reflections from the metal surfaces. We did not have any of these in the previous

system and we should be able to drive microwaves and rf transitions with them,
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using appropriate impedance matching.

Figure 4.15 shows the position of a magnetometer PCB (red square). It comes

with a MAG3110 chip from Freescale, capable of measuring magnetic fields in three

dimension in the range between ± 10 G, with a sensitivity down to 1 mG.

The position of the magnetometer chip with respect to the center of the cavity

chamber is: (x, y, z) = (0.138, 0.265,−1.256) in. The magnetometer has its own

left-handed coordinate system as seen in Fig. 4.20.

Figure 4.20: Sparkfun’s MAG3110 breakout board

These directions map into our coordinate system as follows:

Xlab = −Xmag

Ylab = Zmag

Zlab = −Ymag

4.4 Laser systems

The experiment hinges on our capability of addressing narrow atomic transi-

tions using lasers. Rubidium atoms have a large set of easily accessible transitions
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at a wavelength of 780 nm. A plethora of laser devices, especially diode lasers, op-

erate at this wavelength, making this type of atom very popular in atomic physics

experiments.

The D2 line in 85Rb has many transitions, the excited state lifetime gives it

a FWHM of γ/2π = 6.06 MHz. This calls for careful frequency tuning and control

of our lasers to avoid straying from resonance. We used methods similar to the

Pound-Drever-Hall (PDH) technique [56] to stabilize lasers and the length of our

cavities.

It is customary to constrain the atomic population to a two-level system by

clever use of other transitions. These secondary transitions often receive the names:

repumping, depumping or optical pumping. In the D2 line of Rb, we do not necessar-

ily require another independent laser system to address these secondary transitions.

Devices such as acousto-optic modulators (AOM’s) and electro-optic modulators

(EOM’s) can provide frequency shifts in the order of tens of MHz up to several

GHz, respectively from a carrier frequency or reference.

The rest of this section describes our laser systems and our frequency stabiliza-

tion routines. We also elaborate on our primary and secondary atomic transitions.

4.4.1 Limitations

The increase in the size of our MOT requires a significant increase in laser

power used for trapping (∼500 mW). The previous setup produces light of the right

frequency after passing twice through an AOM. This results in significant power loss
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(40% to 50%) due to imperfections in the beam shape and AOM crystal. Saturation

in the crystal can occur at powers near 1 W.

The direction in which we wish to steer the experiment might take advantage

of the simpler energy level structure of 87Rb. The D2 line of this heavier isotope of

Rubidium is accessible to 780 nm light. The internal hyperfine energy level structure

differs from that of 85Rb in the range between MHz for the excited state and GHz

for the ground state.

Our cavities are also quite sensitive to temperature changes. Our main sta-

bilization routine cannot handle slow drifts in the length of the cavity. The imple-

mentation of a slow drift digital control on the HV bias PZT mitigates the problem

but a more robust solution will be necessary for multi-hour operation, right now the

limit is closer to one hour.

We make use of AOM’s to get around some of these issues and implement a

robust solution for easily switching between isotopes and preserving power for our

trap. We also replace problematic pieces of hardware that did not perform reliably

and/or stable enough.

4.4.2 Dual isotope scheme

Our experiment employs four lasers. The primary laser is a Titanium-Sapphire

laser, specifically an MBR-110 at 780 nm, manufactured by Coherent, Inc. A Verdi

V-10 laser (Also from Coherent Inc.) pumps the Ti:Sapph at 532 nm with 10 W

of power. We use the Ti:Sapph for a variety of tasks: cavity probe, MOT cooling
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beams, optical pumping beam and also as the basis of our frequency stabilization

schemes. Figures 4.21 and 4.22 show the appropriate transitions for 85Rb and 87Rb,

respectively.
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Figure 4.21: Current laser frequencies used for probing, optical pumping, frequency

stabilization and cooling of 85Rb atoms using the D2 line
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All these beams have slight differences in frequency, but all are within 270

MHz of the main transition. This proximity makes it possible to use a single laser

to address all these beams with the help of acousto-optic modulators (AOM) and/or

electro-optic modulators (EOM).
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Figure 4.22: Current laser frequencies used for probing, optical pumping, frequency

stabilization and cooling of 87Rb atoms using the D2 line

The 780 nm light coming out of our Ti:Sapph laser is red detuned -22 MHz from

the main transition. This is the MOT cooling transition. This solves the problem
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of losing power by going through an AOM, at the expense of losing tunability.

Figure 4.23 illustrates in detail several beam paths. The optical pumping differs

between the two isotopes. Each needs its own path for optical pumping requiring

a single pass AOM shift at -98 MHz for 85Rb or a double-pass AOM shift at -

122.3 MHz for 87Rb. The most important beam is the cavity drive. We get to near

resonance by using a combination of a double pass AOM at 80 MHz and then taking

the red side-band of the beam from an EOM (-182 MHz shift). The cavity drive

does not change between the two isotopes. The reason is because it is referenced

to the Ti:Sapph laser which does change. It would be easier for us to simply use

the EOM, because shifting frequencies does not lead to misalignment, but the AOM

offers the possibility of variably attenuating the drive beam. The EOM model

AZ-0K5-10-PFA-PFA-780, made by EOSpace, provides a fast way of changing the

frequency. The reference we use for stabilizing the frequency (frequency lock) is a so-

called cross-over transition on the saturated spectrum. The frequency reference for

stabilizing the Ti:Sapph laser changes for each isotope, but we can use two AOM’s

to address both energy levels without realigning. The first AOM provides a 80 MHz

shift and the second one operating in double-pass configuration can change between

-75 MHz for 85Rb and -95 MHz for 87Rb.
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Figure 4.23: Various laser beam paths with the optical systems for frequency

shifting. Green dashed section is the optical pumping for 87Rb, blue is optical

pumping 85Rb, purple is cavity drive and orange is the lock cross-over transition.

The frequency stabilization for the Ti:Sapph relies on an internal fast cavity-

based lock. This can narrow the linewidth of the laser to about 100 kHz. Long-

term frequency drifts force us to implement an absolute frequency reference using

saturated-absorption spectroscopy in a magnetically-shielded rubidium vapor cell

as shown in Fig. 4.24. We derive an error signal from the main transition hyper-

fine crossover transition. The steps to generate the signal are similar to those of

the Pound-Drever-Hall (PDH) method with a few differences. We use a free-space

95



EOM to put a frequency modulation on a probe beam at 20 MHz, while keeping a

more powerful (about 10x) pump beam without modulation (We send part of the

modulated beam to a transfer cavity). Both beams pass through the vapor cell

in opposite directions (~kpump = −~kprobe), taking great care that they overlap very

well. This technique has a two-fold effect: minimizes Doppler broadening and causes

saturation in the atoms which leads to reduced absorption by the probe beam, re-

vealing the narrow cross-over resonances. We collect the light of the probe beam

with a fast photodiode. We use a BIAS-T circuit to split the RF part of the signal

from the DC part. We amplify the RF part prior to mixing it with a local oscilla-

tor. The result of the mixing is the error signal which we feed into a SIM960 PID

controller. The output of this device, i.e. the correction, is routed to the MBR-

110E or the MBR controller box. The DC part contains information regarding the

saturated-absorption spectrum. This stabilization process forms our master lock.

Its robustness means we reference almost all other locks to it.
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Figure 4.24: Saturated spectroscopy laser frequency stabilization diagram.

A rubidium MOT requires the use of light at another frequency to bring back

into the cycling transition atoms that fall into the lower hyper fine state. This

is often dubbed “repumper” transition (See Fig. 4.21 and 4.21). It is difficult to

use the MBR-110 laser for this purpose. The frequency gap with respect to other

transitions is between 3 and 6.8 GHz, out of range of AOM’s. Some groups have

developed ways of obtaining this frequency using a fiber EOM [57], but the power

damage threshold of our available fiber EOM is quite low (circa 10 mW) and they

must use a device like a tapered optical amplifier to boost the power after imprinting

the appropriate side-bands. We simply use another laser system for this purpose.

The previous experiments employed injection locking of Vortex diode laser seeding a
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Sharp laser diode. We substitute our repumper laser system for a Toptica DLX-110

diode laser. This change simplifies the system as well as providing enough power to

supply our large MOT.

This repumper laser needs to have a stable frequency as well. We use a well-

known technique: Dichroic Absorption Vapor Laser Lock (DAVLL) [58] to obtain

an error signal that another SIM960 PID Controller can handle and feed back the

correction to the diode laser. Figure 4.25 shows our experimental setup.

Repumper
Diode Laser

780 nm

HWP

PBSIsolator

fiber

HWP QWP

PBSRb Cell

PD

amplifiers

PDB

Figure 4.25: Dichroic Atomic Vapor Laser Lock (DAVLL).

We use a Toptica DL-100 diode laser at 820 nm for stabilizing the length

of our physics cavity. The interaction of light at this wavelength with the atomic

beam is negligible but still provides a strong reflection from the cavity mirrors. We

stabilize this laser to the Ti:Sapph frequency with the use of a transfer cavity, prior to

stabilizing the physics cavity as shown in Fig. 4.26. We monitor the transmissions of

the two wavelengths through both cavities. One of the PZT’s of each of the cavities

is connected to a HV power supply that serves as a bias and the other PZT’s are

connected to a HV ramp with an amplitude of about 1 kV. The process starts with
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us changing the current to the 820 nm laser diode until both the 780 nm and 820

nm lasers are resonant with the TEM00 mode of the physics cavity. Normally it

is also necessary to change the length of the cavity by adjusting the HV bias to

one of the PZT’s and/or the offset of the HV ramp on the other. We then must

find a resonance overlap in the transmission of the transfer cavity as well. We do

this only by adjusting its length. The Ti:Sapph modulated light at 12.4 MHz is

used to stabilize the transfer cavity length using the PDH technique, a SIM960 PID

controller and feeding back into the PZT initially connected to a HV ramp. Finally,

we stabilize the 820 nm diode laser frequency using the transfer cavity resonance and

the PDH method in a similar manner, but this time we use a 9.04 MHz modulation

applied directly on the laser diode current.
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Figure 4.26: Transfer cavity and 820 nm laser experimental diagram. It also shows

the AOM we use for scanning the length of the physics cavity.

The final step is to stabilize the length of the physics cavity (See Fig. 4.27).

The stable reference is now the 820 nm laser. We use its modulation at 9.04 MHz

to produce a PDH signal and feed back into the ramp PZT. Our checks for an

effective atomic beam include varying the frequency of the driving laser (780 nm)

by shifting the frequency of the RF signal to the EOM. At the same time we need
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to keep it in resonance with the physics cavity. We achieve this by shifting the

frequency of the 820 nm laser in unison with the drive. The scan for 820 nm takes

place before reaching the physics cavity, on a different path as the beam going into

the transfer cavity (See Fig. 4.26). The light double-passes through an AOM and

then couples into a single mode polarization maintaining fiber. This setup uses

a Galilean telescope for compactness and achieves an efficiency circa 80% [59]. It

allows a comfortable scan range of ±20 MHz. It is important to monitor the power

at the fiber output and keep it constant throughout the scanning process. Our power

stabilization scheme is a simple digital PID algorithm that relies on the AM input

of the RF driver of the AOM to make appropriate corrections.

HWP
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amplifier
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lens

lensisolator

BS

To power lock

Figure 4.27: Physics cavity PDH technique experimental setup.

The stabilization of the length of both cavities with the PDH method using a

PID controller is ineffective at dealing with long term drifts caused by temperature

changes throughout the day. A simple control algorithm reads out the correction
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drift from our PID controller and imparts a small change in the voltage of the other

PZT. This can correct the effects of the drift.

Temperature stabilization of a copper enclosure around the transfer cavity

helps distribute heat evenly. We maintain the surface of the copper at about 40o C,

well above room temperature. A plastic box also aids in insulating the environment.

This passive control grants us great control of the cavity length. The long term drift

is minimal to the point where the slow drift control for the transfer cavity is almost

unnecessary.

We also use a helium-neon (HeNe) laser primarily for cavity construction and

alignment (See sections 4.1 and 4.3).

4.5 Detection system

Figure 4.28 illustrates a simplified version of the detection apparatus. The

output of the cavity gets collimated by a converging lens and goes through a zero-

order half-wave plate (HWP). We rotate the HWP to align the polarization with a

Wollaston prism (PBS). The vertically polarized light takes a different path than

the horizontally polarized light.
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Figure 4.28: Simplified detection apparatus. The HWP plate aligns the polarization

to a Wollaston prism (PBS) which separates vertically y horizontally polarized light

into separate paths.

The vertically polarized beam carries 780 nm (drive) and 820 nm (cavity lock)

light. We monitor the intensity of the transmitted light at 820 nm by splitting

a fraction of the vertically polarized beam and sending it to photomultiplier tube

(PMT). We use a combination of filters: 780 nm band filter + AR coated RG-9 +

Semrock 780 nm MaxLine interference filter, to remove the remaining 820 nm light.

During the warm-up and stabilization sequence initiation we do not use the

APD’s. We use another PMT to monitor the transmitted intensity of the 780 nm

light (vertical polarization). We can toggle between using an APD and a PMT for

the vertical polarized path using a remotely controlled motorized flip mirror.

The three APD’s are Perkin Elmer SPCM-AQR-12, 13 and another 12. We

label APD V the detector in the vertically polarized path, while APD A and B

are the labels we use for the horizontally polarized path. The current detection

efficiency for all APD’s is about 30 % which includes path and quantum efficiency.
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The emission of a TTL pulse follows the detection of a photon by an APD.

APD V output goes directly to our computer. The output of the rest passes through

a pulse splitter. This device creates two similar pulses with smaller amplitude. One

travels to a photon counter SR400 for measuring average count rates. The other

copy goes to our computer. The computer carries a time-stamp correlator card

DPC-230 from Becker and Hickl. It can record up to eight channels of TTL events

with a 165 ps resolution.

Our data analysis tool of choice is the intensity correlation function. We can

calculate it from a record of photon arrival times (provided by the DPC-230). The

size of our datasets prompts us to use C++ code for computing the g(2)(τ) in the

interest of speed and adaptability.
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Chapter 5: Environment assisted speedup in an optical cavity

Manipulation of the rate of evolution of a quantum systems by careful tailoring

of the environment is desirable in a large number of areas of physics like quantum

information [60], and, optimal quantum control and feedback [61]. This chapter con-

tains recent “first light” preliminary results from our new apparatus. We show that

increasing the interactions of an optical cavity field with the environment (Number

of two-level atoms) can enhance or speed-up the rate of re-population of the state of

the cavity.

5.1 Introduction

The quantum speed limit is the maximum speed of evolution of a quantum

system between two distinguishable states. This concept dates back to the original

work of Heisenberg in his time-energy uncertainty relation. Lower bounds on the

quantum speed limit time exist for closed or unitary (uncontrolled) quantum sys-

tems [62,63], but only recently there has been theoretical progress [64–66] for more

general open quantum systems that can be controlled externally. These develop-

ments could prove very useful in quantum information, where efficient processing

entails performing gate operations in a time-frame much shorter than the coherence
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time. Quantum speed limit bounds provide guidelines for optimal quantum control

and feedback protocols.

Recent work at the JQI by the groups of Gorshkov and Monroe [67] shows

the maximum speed at which information can propagate in a quantum many-body

system. Another study [64] points to the possibility of observing speed-ups in the

quantum speed limit if a system is subject to environment changes (changing cou-

pling between cavity field and environment - atom). Cavity QED systems in the

intermediate and strong coupling regime can exhibit environment-assisted evolu-

tion [68], such as non-exponential decay and/or Rabi oscillations in the amplitude

associated with one photon in the cavity mode.

Our optical cavity lies in the intermediate coupling regime, with our cavity-

atom parameters of the same order: (g, κ, γ) /2π = (3.2, 4.5, 6.0) MHz. We have at

our disposal a way to enhance our coupling to the field in the cavity by tailoring

the environment, different from the traditional way in cavity QED. Our system is

the field and the controllable environment is a collection of N two-level atoms under

very weak excitation. Our slow atomic beam can provide a large variety of effective

number of atoms in the cavity (Neff = 0.1→ 30). This makes our “effective” dipole

coupling constant scale as the vacuum Rabi splitting, g
√
N . The more atoms, the

more channels the cavity field can couple to.

Conditional measurements of the photons leaving the cavity (g(2)(τ)) represent

an ideal way of looking at environment effects we hope to unravel. Equation 1.14

offers a clean analytic expression for g(2)(τ) under weak driving. We are going to

be looking at the evolution of a system (quantized cavity mode) as we change the
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environment (atomic polarization in the same mode). Eq. 1.16 shows that as N

grows, g(2)(τ) can execute vacuum Rabi oscillations.

This study represents a natural first step towards understanding how we can

measure quantum speed limited dynamics in our cavity QED system. We wish to

apply these concepts in pursuing optimal quantum control protocols [69] beyond

what we show in Chap. 3 for a spontaneously-created coherence.

5.2 Experimental setup

The apparatus description in Chap. 4 is exhaustive. There are some notable

differences with the experiment described in this chapter. Figure 5.1 shows the gen-

eral layout of the physical system. An atomic beam of 85Rb atoms co-propagates

along the push/top MOT laser beam and couples to the TEM00 mode of our 1 mm

optical cavity. The magnetic field points along the −z axis and defines our quan-

tization axis. The MOT coils and an arrangement of four Neodymium permanent

magnets generate this field. We estimate a field about ~B = −7.2 G ẑ. The push

Figure 5.1: Simplified apparatus for measuring driven mode autocorrelations

or top laser beam of the MOT has typical saturation parameter close to 1 and a
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detuning from resonance of 22 MHz. It can propagate through the hole in the QWP

and mirror assembly and scatter on the cavity mirrors. This is the primary source of

background in our photon counting experiment. It can also work to our advantage:

The polarization of the push beam is σ+ and can provide some optical pumping to

the |F = 3,mF = +3〉 state, despite the Doppler shift of the traveling atomic beam

and the large detuning (∼22 MHz). We measure which Zeeman state has the largest

absorption for a given polarization and perform the measurements on that. This is

not a perfect two-level atom and further work will be needed to clean up the optical

pumping and state selection.

The measurements we wish to perform require us to drive weakly, at most

with: n/nsat ∼ 0.10 and also increase the effective number of atoms in the cavity

as much as possible. As Neff grows, the resonant absorption count rate on the

APD’s drops. The large background that comes from the MOT push beam (and

the fluorescence of the trap itself) limits our SNR. This trade-off between optical

pumping and background forces us to block the MOT push beam using a crude

square piece of paper of roughly 4 mm × 4 mm.

We drive the system with H-polarized light, which in the frame of the atoms

appears as a complicated combination of circularly polarized light.

Addressing the atoms in the state where they have been optically pumped to

requires us to easily shift the frequency of our driving laser. We accomplish this by

changing the RF frequency driving our EOSpace fiber EOM. At 182 MHz, the drive

is resonant with the transition |F = 3,mF = 0〉 → |F ′ = 4,mF ′ = 0〉. A magnetic

field of -7 G induces a Zeeman shift of about -10 MHz in the |F = 3,mF = +3〉 →
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|F ′ = 4,mF ′ = +4〉 transition. We observe this shift by performing frequency sweeps

of the drive laser and the cavity length. We operate our drive at a detuning of -10

MHz (172 MHz RF to EOM).

Our system operates has nsat = 1.2 and C1 = 0.37.

The parameter we use to increase the number of atoms is the current of our

Rb dispenser. The size of our MOT increases significantly for as we vary the current

from 3.1 A to 4.0 A.

5.3 Connection between theory and experiment

We are looking for a speed-up in the re-population of the state |1, 0〉 after it

has emitted a photon (Eq. 1.5). In other words, we are interested in changing the

evolution of |A1(t)|2. The model of Sec. 1.2 provides a guide, but we are now tracing

over the atomic polarization constituting the environment. Such environments can

show non-Markovian behavior [70].

Figure 5.2 shows the subsequent evolution of |A1(t)|2 after the cavity pho-

ton leaves but there can be an excitation in the atomic polarization, captured by

the g(2)(τ). Equation 1.14 provides the model based for the second-order auto-

correlation function we ought to expect from a collection of two-level atoms in a

single-mode optical cavity. It is a intimately related to A1(t) (See Eq. 1.13)

It clearly shows a significant increase in the rate of “re-filling” one photon in

the cavity. We can extract this rate from the slope of the graphs. The slope of the

anti-bunching gives us the speed with which the amplitude evolves and returns to
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Figure 5.2: Simple model for g(2)(τ) for the field evolution as function of time for

different values of N . Obtained from Eq. 1.14 for (g, κ, γ)/2π = (3.2, 4.5, 6.0) MHz

and the values of N shown in the legend

steady state. We can extract the maximum slope easily from the analytic expression

for g(2)(τ) traces and plot them as a function of g
√
N , our effective coupling strength

as in Fig. 5.3.

The model of Eq. 1.14 assumes static, maximally coupled atoms to the cavity

field. A refined model, where we simulate the atomic beam number fluctuations with

a poissonian weight and randomly generate the positions of the atoms in the cavity

mode (which is radially Gaussian with a longitudinal standing wave) [71,72], leads to

variable dipole coupling strengths as shown in Fig. 5.4. In other words, g → g(r, z)
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Figure 5.3: Simple model rate of refilling as function of ΩVR = g
√
N/2π.

where r is the radial position of the atom in the mode and z its longitudinal position

along the standing wave. Note that there is no dependence on the velocity of the

atoms, a further necessary refinement.

We can extract the maximum slope for the simulated g(2)(τ) traces in a similar

way as with the simple theory and plot them as a function of g
√
N as Fig. 5.5 shows.

5.4 Results

We show first we can alter the environment to which the cavity field couples

by demonstrating we can obtain large vacuum Rabi splittings with our new system,
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Figure 5.4: g(2)(τ) for different values of N . Note the clear anti-bunching. Calcu-

lated using Eq. 1.14 with a poissonian weight for atomic beam fluctuations and an

effective g by randomly generating the position of the atoms in the cavity mode.

leading to potentially a large Neff .

5.4.1 Vacuum Rabi splitting

Our new cavity and atomic beam offer larger g and a larger sampling of Neff .

The vacuum Rabi splitting is a signature of good atom-field coupling and can give

good predictions for the cooperativity C or the effective number of atoms passing

through the cavity Neff . Figure 5.6 shows a sample vacuum Rabi splitting spectra

we get when we sweep the frequency around our atomic resonance with our drive
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Figure 5.5: Simulation rate of refilling as function of ΩVR = g
√
N/2π. Linear fit

exhibits a slope of 0.21 ± 0.01 µs−1/MHz, an intercept of −0.6 ± 0.1 µs−1 with a

reduced χ2 = 0.25

laser ± 20 MHz at a rate of 2.5 MHz/s. These enhancements in coupling prove

invaluable for carrying out our measurements. Our previous cavity system was

unable to produce such large Vacuum Rabi splittings.

5.4.2 Preliminary measurement of speedup as function of ΩVR

Figure 5.7 shows a raw dataset. The highlights of this g(2)(τ) are the classical

correlation bump between -10 to 10 µs, showing the transit time of the atoms and

the evidence of anti-bunching. This is in contrast to previous results [6, 13], where

the transit time was about 5 µs. It gives us the average speed of the atoms in the

beam ∼ 5 m/s. The zoom of Fig. 5.7 shows a hint of anti-bunching near τ = 0.
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Figure 5.6: Vacuum Rabi splitting for different number of atoms.

Figure 5.8 is a sample of our analyzed experimental traces. We proceed to

extract a slope or rate of change from the anti-bunching valley to the region where

g(2)(τ) > g(2)(0). We do not attempt to fit to the exact analytic form from Eq. 1.14

but instead just fit to an inverted Lorezian around unity. This imprecise modeling

will show in large reduced χ2, but gives a quantitative measurement of the slope by

taking the ratio of the amplitude and the HWHM.

A current of 4.0 A in our Rb dispenser was used for Fig. 5.8. The rate of

detection on our APD’s is about 800 kCs−1 (with absorption from atoms) and a

background count rate of 10 kCs−1. The photon number in the cavity is about

n = 0.10 ± 0.02 once we account for our detection efficiency. We estimate the

number of atoms to be about Neff = 7.1± 0.2.

Figure 5.9 shows a distinct linear growth of the rate of refilling (antibunching

slope) as a function of ΩVR. We expect a rough linear dependence of the slope on
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Figure 5.7: Raw g(2)(τ) of driven mode of cavity showing antibunching for

g
√
N/2π = 8.6 ± 0.1 MHz. Bottom part shows the full g(2)(τ) highlighting the

classical correlation bump characteristic of our atomic beam transit time. Top part

focuses on the area around the anti-bunching.

ΩVR = g
√
N/2π from Eq. 1.16. As the effective coupling to the atomic polarization

reservoir grows, it causes faster rate of change. The slope we obtain from Fig. 5.9 is in

striking agreement with our simulation: aexp = 0.236± 0.029 µs−1/MHz and asim =

0.21 ± 0.01 µs−1/MHz. The offsets on both the simulation and the measurements

do not have quantitative nor qualitative meaning.

We would like to induce the vacuum Rabi oscillations as seen in Fig. 5.2.

We can obtain larger vacuum Rabi splittings as Fig. 5.10 shows (roughly Neff =

31.2±0.2) which lead to oscillations as seen in Fig. 5.11. We have yet to understand

quantitatively these results.
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Figure 5.8: Zoomed in g(2)(τ) of driven mode of cavity showing antibunching for

g
√
N/2π = 8.6± 0.1 MHz.

The results indicate a clear trend of enhanced evolution speed as a function

g
√
N . This is in agreement with theoretical predictions [64] that observe a speedup

as the coupling g increases in a cavity QED system. We realize this by using the

coupling not to one atom but to N atoms as g
√
N .

5.5 Future improvements

A two-level atom realization in our geometry requires the magnetic field to

point along the y direction (parallel to ~k) and σ±-drive. This is possible, but only

in the presence of efficient optical pumping.

We intend to implement efficient optical pumping. Our trials indicate that the

push MOT beam is too strong. Construction of an optical system with an axicon
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Figure 5.9: Speed-up as function of ΩVR. We show a simple linear fit y = ax + b,

with a = 0.236± 0.029 µs−1/MHz, b = −0.8± 0.2 µs−1 and reduced χ2 = 1.67

lens can realize a “hollow” push MOT beam or imaging of a dark spot. We believe

this would alleviate our background problem and permit our optical pumping.
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Chapter 6: Conclusions

We have shown two different approaches for controlling a system consisting

in an optical cavity and an ensemble of atoms. First we show control through

active feedback of an atomic coherence, using the modes of the cavity as part of our

detection system. On the other hand, we show preliminary measurements of the

change in the fill up time of the cavity mode as a function of the number of atoms

interacting with the mode of the cavity.

Our control of an atomic coherence employs a cavity as a convenient detection

tool and interaction enhancer, but we manipulate the driving field to correct the

subtle effects of Rayleigh scattering. We have demonstrated this by implementing

a quantum feedback procedure following the detection of the photon that heralds

the creation of the ground-state coherence. We turn off the drive and let the coher-

ence evolve in the dark. In this way we avoid the quantum jumps associated with

Rayleigh scattering that, although of small enough effect individually, occur suffi-

ciently frequently to produce measurable frequency shifts and faster decoherence.

The last part of this thesis shows preliminary results on the rate of refilling of

the conditional field of a cavity immediately after a photon is detected. Contrary to

an empty cavity that will follow just the exponential decay and for a coherent state
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will show no change in the g(2)(τ) since it always has Poissonian statistics, here we

use the coupling to N atoms that scales with g
√
N to measure the response time.

This way of thinking about the cavity QED system, as a cavity mode coupled

to a reservoir ofN atoms implies that the rate at which the cavity mode can replenish

has a dependence on the number of atoms it can couple to. Increasing the number of

atoms brings a speed-up in the evolution of the cavity mode after a photon escapes

it. We have shown, through conditional measurements that capture precisely the

dynamics of the field inside the cavity, that under this weak driving regime, the

field shows non-classical effects, such as anti-bunching (the field increases after the

detection of a first photon). The rate of increase changes with the number of atoms.

A number of possible protocols come to mind to begin strong control of this

field. Would it be possible to apply RF and/or microwave pulses to change the

atomic state of the atoms? We have the antennas in the new system, but certainly

the required amplitudes of the fields will be large and require careful engineering.

Other alternatives include excitation from the side of the cavity using the D1 line

to also change the number of atoms interacting with the mode of the cavity. Again,

the new system has the access necessary to implement this protocol.

New avenues open for strong quantum control of this simple system where one

or two modes of the electromagnetic field couple to a collection of N atoms in the

presence of dissipation, which allows us to probe, create, and control superposition

and dynamics of an open quantum system.
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Appendix A: Feedthroughs

Instructions to know which wires correspond to the coils, magnetometer, and

cavity. The way the cables are organized is the following: we use color beads, each

one of then corresponding to some element. For the RF coils we use as a reference

the “Tee” of the chamber, specifically the feedthroughs flange. So “right” means

right of the flange if looking directly at the feedthroughs (this right also coincides

with the output mirror of the cavity).

1. RF coils:

• Z axis: Black and blue beads, Yellow (A) and black (B) cables (pair 1).

• Left: White and blue beads, Brown (C) and black (D) cables (pair 2).

• Right: White and gray beads, Orange (E) and black (F) cables (pair 3).

• Side: Green and gray beads, Red (G) and white (H) cables (pair 4).

2. Magnetometer:

• Ground (GND): one green bead, Red (J) pair 5.

• VCC: one blue bead, Black (K) pair 5.

• SDA: one gray bead, Blue (L) pair 6.
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• SCL: one white bead, Black (M) pair 6.

3. Cavity:

• Input piezo (left): two white beads, Green (N) pair 7.

• Output piezo (right): two blue beads, Black (P) pair 7.

• Ground: two green beads, Red (R) pair 8.

The color / letter and pair coding corresponds to a 19-way air service cable

manufactured by Accu-Glass Inc.
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