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This dissertation examines the role that technology plays in climate change 

mitigation. It contains three essays each focusing on different aspects of the process in 

which advancements in low-carbon energy technologies impact the cost of carbon 

dioxide (CO2) abatement.  

The first essay develops the analytical foundation for understanding how 

heterogeneous low-carbon energy technologies induce differential impacts on the 

abatement cost. The analysis derives sets of conditions under which different types of 

advanced technologies can be evaluated for their respective strengths in reducing 

abatement costs at different levels of abatement. It emphasizes the weakness of a single 

point estimation of the impact of a technology and the importance of understanding the 

pattern of abatement cost reductions throughout the potential levels of abatement. 

The second essay focuses on the interactions of the energy technologies in the 

market. The analysis uses a combinatorial approach in which 768 scenarios are created 

for all combinations of considered technology groups. Using the dataset, the analysis 

shows how the reduction in the abatement cost may change significantly depending on 



 
 

the existence of other advanced technologies. The essay shows that many of the 

fundamental insights from traditional representative scenario analyses are in line with the 

findings from this comprehensive combinatorial analysis. However, it also provides more 

clarity regarding insights not easily demonstrated through representative scenario 

analyses. The analysis emphasizes how understanding the interactions between these 

technologies and their impacts on the cost of abatement can help better inform energy 

policy decisions.  

The third essay focuses on the impact technological change has on the cost of 

abatement, but with special attention paid to the issue of delayed technology development. 

By combining the probability of advanced technology success estimates from expert 

elicitations with the abatement cost data estimated with an integrated assessment model, a 

stochastic dynamic programming model is developed. A multi-period extension of the 

model allows intertemporal dynamic optimization where the policy-maker can select the 

technologies to be invested in immediately and the technologies to be invested in later. 

The analysis emphasizes the benefit of having a wait-and-see option that lets the policy-

maker further optimize upon the observation of successes and failures of prior 

investments. 

The three essays collectively serve to demonstrate the importance of clearly 

understanding the differences among low-carbon technologies. They also provide 

methodological foundations upon which such technologies can be assessed and compared.  

Combining these methods with an enhanced understanding of the technologies will 

contribute to the body of research aimed at minimizing the cost of mitigating climate 

change. 
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Chapter 1: Introduction 
 

Fossil fuels constitute over 80% of current world primary energy consumption 

(IEA, 2010). The problem is that combusting fossil fuels for energy production inevitably 

results in emissions of carbon dioxide (CO2), the largest contributor of anthropogenic 

global warming among known greenhouse gases in the atmosphere. Globally reducing 

greenhouse gas (GHG) emissions to mitigate climate change would require either a 

substantial conservation of energy or a substantial shift in energy sources. However, any 

major shift away from fossil fuels to low-carbon energy sources—such as solar, wind, 

biomass, nuclear, etc.—would require overcoming currently existing obstacles, including 

high cost, insufficient capacity, and, in the cases of solar or wind, intermittency.  

Technological changes through innovations in alternative energy technologies 

may provide solutions to overcome—partially or completely—these obstacles. For 

instance, new energy production methods may bring down costs; more efficient 

extraction of energy may allow large scale deployments; and low-cost storage technology 

may relax intermittency constraints. An obvious benefit of such technological change is 

being able to switch to these alternatives at a cost low enough and at a scale large enough 

to abate CO2 emissions substantially.1  

In order to make the most efficient use of limited public resources, public research 

and development (R&D) investment in technological change should be targeted to 

maximize the net social benefit per dollar invested. Figure 1.1 shows how the R&D 

investment for technological change affects climate stabilization policies. Public R&D 

                                                 
1 On the other hand, there may be unintended consequences to technological change. Advancements in 
alternative energy technologies may induce increased energy consumption, which in turn would partially 
offset the mitigation effect. See “rebound effect” in Section 2.3. Secondary effects of reduced energy costs 
also include accelerated economic growth, which in turn may further increase overall energy consumption.  
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policy for energy technology is a classic example of decision-making under uncertainty. 

R&D investments in energy technologies stochastically induce technological change in 

the forms of cost reductions, capacity increases, emission reductions, and so on. The 

relationship between R&D and technological change is not deterministic. Some 

technologies may succeed, while others fail to deliver the change. The probability of 

successful technological change is dependent upon the amount of investment.  

These technological changes, in turn, affect the future shares of the technologies 

in the energy market. The deployment of successfully developed advanced technology 

increases, while other competing technologies lose some of their market shares. As a 

result of the market adjustments, the magnitude of the reduction in the cost of GHG 

abatement is determined. In the final stage, the resulting cost of abatement is combined 

with the expected damages2 from climate change to jointly inform the policy decision on 

the optimal level of equilibrium emissions.  

Energy Technologies

A. Tech 
Change

B. Tech 
Change

C. Tech 
Change

R&D

LBD

Abatement 
Cost Change

Climate 
Change

Expected Damage 
from Climate Change

Equilibrium 
Emission

Fossil

Renewable

Nuclear

Energy 
Market

 

Figure 1.1: Schematics of the impact of technological change on climate stabilization 

policy 

 

                                                 
2 It should be noted that with our current knowledge of climate change, the expected damage is also highly 
uncertain and the estimates are in severe disagreements with one another. For monetization of future 
damages from climate change, see for example, Nordhaus (1994); Tol (2002a, 2002b); and Stern (2006).  
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The focus of this dissertation is the shaded subset of this process: how R&D 

stochastically affects technological changes, how technological changes affect the mix of 

energy technologies in the market, and how the interactions of the technologies in the 

market affect the cost of CO2 abatement. The processes outside the shaded area are 

beyond the scope of this dissertation: how the equilibrium mix of energy technologies in 

the market dynamically induces learning-by-doing and how estimated climate damage 

projections, jointly with the cost of abatement, determine the equilibrium emission level. 

This dissertation contains three essays, each focusing on different aspects of the 

dynamics between technological change and climate change mitigation. The first essay 

presented in Chapter 2 focuses on how advancements in an energy technology impact the 

cost of CO2 abatement. Specifically, the essay develops the analytical foundation for 

understanding how heterogeneous low-carbon energy technologies induce differential 

impacts on the abatement cost. The analysis derives sets of conditions under which 

different types of advanced technologies can be evaluated for their respective strengths in 

reducing abatement costs at different levels of abatement. It emphasizes the weakness of 

a single point estimation of the impact of a technology and the importance of 

understanding the pattern of abatement cost reductions throughout the potential levels of 

abatement. 

The second essay presented in Chapter 3 focuses on the interactions of the energy 

technologies in the market. The analysis uses a combinatorial approach in which 768 

scenarios are created for all combinations of considered technology groups. Using the 

dataset, the analysis shows how the reduction in the abatement cost may change 

significantly depending on the existence of other advanced technologies. The essay 
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shows that many of the fundamental insights from traditional representative scenario 

analyses are in line with the findings from this comprehensive combinatorial analysis. 

However, this analysis also provides more clarity regarding insights not easily 

demonstrated through representative scenario analyses. The analysis emphasizes how 

understanding the interactions between these technologies and their impacts on the cost 

of abatement can help better inform energy policy decisions.  

The third essay presented in Chapter 4 focuses on the impact technological 

change has on the cost of abatement, but with a special attention paid to the issue of 

delayed technology development. By combining the probability of advanced technology 

success estimates from expert elicitations with the abatement cost data estimated with an 

integrated assessment model, a stochastic dynamic programming model is developed. 

The goal of this model is to derive the optimal R&D strategy maximizing reduction in the 

expected total abatement cost of meeting a hypothetical limit on the atmospheric CO2 

level. A multi-period extension of the model allows intertemporal dynamic optimization 

where the policy-maker can select the technologies to be invested in immediately and the 

technologies to be invested in later. The results indicate that some technologies are more 

sensitive to delays in their development, while others are robust in their impacts. The 

analysis emphasizes the benefit of having a wait-and-see option that lets the policy-maker 

further optimize upon the observation of successes and failures of prior investments. 

The three essays collectively serve to demonstrate the importance of clearly 

understanding the differences among low-carbon technologies. They also provide 

methodological foundations upon which such technologies can be assessed and compared.  

Combining these methods with an enhanced understanding of the technologies will 
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contribute to the body of research aimed at minimizing the cost of mitigating climate 

change. 
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Chapter 2: The Impact of Technological Change on the 

Marginal Cost of Greenhouse Gas Abatement 
 

2.1. Introduction 

This chapter addresses the question of how advancement in an energy technology 

impacts the cost of CO2 abatement. From the impact of technological change process 

depicted in Figure 1.1, this essay particularly focuses on how each given technological 

change reduces the abatement cost through changes in the energy market equilibrium. 

Figure 2.1 stylistically shows this sub-process in terms of energy market equilibrium. The 

left panel shows how the equilibrium production level of each individual energy 

technology is determined in the energy market at any given level of energy supply. A 

simple equal marginal cost rule3 determines this equilibrium throughout the market.  

 

MC

QO

MC:µ2MB
MAC

µO

MAC1: x=x1

MAC0: x=0

MAC2: x=x2

MD1

MD2

λ1

λ2
MC:µ1

MC:µ=0

MC

O q

mcj

p0

Q0=qi0+qj0+qk0

(a) Individual technologies (b) Aggregate supply and demand 

qk0 qj0          qi0

mck

mci

(c) Marginal Abatement Cost Curves

µ1 µ2

 

*note: 0 < µ1
 < µ2 

Figure 2.1: The market dynamics of technological change and GHG abatement 
 

 

The marginal cost curves of each technology jointly determine the aggregate 

energy supply curve in the middle panel. This panel also shows how the supply curve 

changes as CO2 abatement constraints restrict the amount of fossil fuel used in the 
                                                 
3 Note that in this highly stylistic illustration, marginal cost curves not only represent financial costs, but 
also represent all conceivable non-financial costs, including institutional constraints on deployment. For 
instance, the inability to expand nuclear power due to public opposition would be represented as an 
infinitely inelastic marginal cost curve.  
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economy. The market clearing price of the energy market equilibrium is determined at 

the point where the aggregate marginal cost curve (supply curve) intersects the marginal 

benefit curve (demand curve). 

The marginal welfare reduction4 corresponding to each incremental abatement 

level can be represented as a marginal abatement cost (MAC) curve in the right panel. 

This panel also shows two different possible marginal damage (MD) curves, as well as 

two additional MAC curves for two different types of technological change: one pivoting 

downward, the other shifting downward. The equilibrium abatement level is determined 

at the point where the marginal damage equals the marginal abatement cost. This panel 

shows how technological changes affect the equilibrium abatement level, as well as the 

equilibrium shadow cost of emission (which equals the optimal CO2 tax or the market 

price for the emission permit in case of a cap-and-trade permits system).  

The importance of accurately representing the impact of technological change on 

the MAC curve is depicted in this panel. If a policy maker is facing a choice between the 

technological changes X1 and X2 under an impending carbon pricing regime, X2 is 

obviously the better choice in the high damage case, in every aspect. 

However, in the lower damage case, while the shadow cost and the optimal 

abatement level are the same for both technological changes, the comparison of the 

integrated area under the MAC curves shows that X1 has a larger value in terms of 

reduction in the total abatement cost. Notice that a simple MAC reduction magnitude at 

the level of equilibrium abatement does not yield sufficient information to estimate the 

                                                 
4 This reduction is a gross reduction, not accounting for foregone climate damages. I intentionally avoid 
using a much common term “deadweight loss”, as it may mislead the readers into thinking there would be a 
net loss to the society from a climate policy. In theory, a socially optimal climate policy would be designed 
to correct market failure of CO2 emission externalities, and hence would result in a net gain to the society. 
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value of a technological change. Understanding the pattern of MAC curve reduction, as 

well as the magnitude, is the key to better estimating the value of technologies. This 

insight is even more valuable when one considers that the marginal damages, as well as 

successes in technology developments are, in fact, uncertain. 

This essay focuses on understanding the energy market mechanisms that 

determine the way the MAC curve changes with respect to technological change. In the 

following section, I review climate change literature representing MAC curves and their 

movements induced by technological change. In Section 2.3, I develop a formal 

analytical framework for characterizing the impact of technological change on the MAC 

curve by assessing individual technologies and their interactions in the energy market. I 

first derive the necessary conditions for energy market equilibrium, and then derive the 

MAC function, defined as gross welfare loss with respect to the abatement constraint. 

Second, I introduce technological change into the market and identify the conditions that 

induce larger reductions in the MAC curve. In Section 2.4, I present heterogeneous 

examples of the MAC curve reductions induced by technological change, and explain the 

differential impacts on the curve using the analytical framework established in Section 

2.3. I conclude the essay by emphasizing the importance of understanding the 

heterogeneous nature of technological changes affecting the MAC curve, and how such 

an understanding can better inform technology R&D policy and climate stabilization 

policy. 
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2.2. Literature Review 

The reduction in marginal abatement cost (MAC) is one of the principal measures 

used to represent technological change in various types of analyses in the climate change 

literature. First and foremost, MAC, or the integrated area under the MAC curve, is used 

to evaluate the value of a specific technological change. Baker et al. (2008c; 2009a; 

2009b; 2010) have published a series of papers combining expert elicitations and 

simulation modeling to analyze the impact of technological change on the cost of climate 

stabilization. Focusing exclusively on modeling results, Chon et al. (2007) synthesized 

the analyses on the three technology groups—solar photovoltaics (Baker et al. 2009a); 

nuclear (Baker et al., 2008c); and carbon capture and storage (Baker et al. 2009b)—and 

compared the distinct ways in which the technological changes in these groups of 

technologies affect the MAC curve. The major findings include: 

1. Not all technological changes affect the MAC curve in the same way: some 

technologies yield large savings in low abatement levels, while others yield large 

savings in high abatement levels; 

2. Some technologies are substitutes: e.g. advanced photovoltaic technology yields a 

smaller reduction in MAC in the scenario with advanced nuclear technology 

compared to the scenario without advanced nuclear technology; 

3. Some technologies are complements: e.g. advanced photovoltaic technology 

yields a larger reduction in MAC in the scenario with low-cost energy storage 

compared to the scenario without low-cost energy storage. 

They defined the value of technology as the difference in the integrated areas 

under the MAC curves of the reference scenario and the advanced scenario. They noted 
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that this value cannot be represented as a single numeric value, but rather as a function of 

the abatement constraint and the status of other advanced technologies. They used this 

value function as a measure for evaluating the effectiveness of public R&D investment in 

energy technologies. 

Beyond its technology valuation purpose, where the major concern is the 

integrated area under the curve (or total abatement cost), MAC is often utilized for 

equilibrium analyses. One example is the different effects of policy tools on the diffusion 

of technological change for pollution control. It is widely acknowledged that, with 

regards to pollution control technology, such as low-carbon energy technology, all four 

market instruments—pollution tax, pollution subsidy, free permit, and auctioned 

permit—would induce an optimal level of technological change (innovation), under the 

assumption that the innovations are non-transferable (Downing and White, 1986). 

Furthermore, the level of technological change under market instruments is higher than 

the suboptimal level induced by command-and-control policy, and hence the market 

instruments are superior. 

However, when the assumption of non-transferability is alleviated, Milliman and 

Prince (1989) argue that the incentives for diffusion of the technological change are 

different among the four market instruments. The intuition is as follows: the emission tax 

or the emission subsidy is set at a given level, such that the innovator firm has to pay (or 

receive in the case of subsidy) the same amount regardless of the diffusion; hence there is 

little incentive for diffusion. On the other hand, the auctioned permit system has a set 

number of emission permits, but permit price is endogenously determined in the market. 

After diffusion, the whole industry would have lower marginal abatement costs such that 
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they will drive down the auctioned permit price. Thus, after diffusion, the innovator firm, 

as well as non-innovator firms, will pay less per permit, such that the innovator firm 

would have higher incentive to diffuse the invention. The assumption on MAC reduction 

plays a central role in this analysis: the extent of diffusion incentive is largely dependent 

on the magnitude of MAC reduction. 

 

 

Figure 2.2: A model of technological change in pollution control  

Reproduced from Baker et al. (2008a) 

 

Baker et al. (2008a) added a special example of technological change using the 

same framework of Milliman and Prince (1989).  Instead of advanced technology 

reducing the marginal abatement cost curve throughout abatement level, their example 

included marginal abatement cost at high levels of abatement increasing due to 

technological change. This counter-intuitive phenomenon can be observed from what 
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they call proportional emission reduction technology. One of the examples they give is 

the thermal efficiency increase in the fossil fuel powerplant. Initially, higher efficiency 

lowers the MAC. But as the abatement constraint reaches 100%, the total abatement costs 

are equal in the reference and advanced cases, as all fossil fuel powerplants must be 

driven out of the system.5 The equality of total abatement costs at 100% abatement, 

combined with lower MAC at the lower abatement level, results in a higher MAC at the 

higher abatement level. In this particular group of technologies and at sufficiently high 

abatement levels, the firm incentive for technology diffusion is the lowest in the 

auctioned permits case, since the diffusion of technology would result in a higher permit 

cost. Accurately representing the change in MAC with respect to technological change is 

the key to determining the best market instruments for technology diffusion. 

MAC is also crucial at determining the optimum intertemporal abatement path. 

Goulder and Mathai (2000) analyzed how the presence of induced technological change 

(ITC) would affect the optimal abatement path, as well as the optimal CO2 tax path. They 

analyzed four scenarios based on whether the source of ITC is from R&D or from 

learning-by-doing (LBD) and whether the climate stabilization policy is based on cost-

effectiveness or net benefit maximization. The results of the analysis indicate that the tax 

trajectory would fall in all four cases, while the abatement path “steepens” in R&D cases 

but is ambiguous in LBD cases.  

 

                                                 
5 They assumed no availability of negative-emission technologies. If negative-emission technologies -- 
such as biomass-fired powerplant with carbon capture and storage – are available, not all fossil fuel would 
need to be driven out of the system. 
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Figure 2.3: Optimal climate policy in a static setting  

Reproduced from Goulder and Mathai, (2000) 
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Figure 2.4: Knowledge-growth and shadow-cost effects  

Reproduced from Goulder and Mathai, (2000) 

 

The logic of the “steepening” of the abatement path is that since R&D lowers the 

MAC in the future, the future abatement level can be higher with the same abatement cost 

(knowledge-growth effect in Figure 2.4). However, in the cost-effectiveness case, only a 

fixed amount of abatement is required (Figure 2.3), and thus the shadow cost of emission 

is reduced, leading to lower abatement in the earlier periods (shadow-cost effect). The 

ambiguity of the effect of LBD on the abatement path arises from the fact that while 

MAC in the future would be reduced by LBD, and hence a higher abatement in the future 

is justified, the level of LBD is at the same time a function of earlier abatement activity 
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(hence the “learning”), and higher abatement activity in the earlier period is also desirable. 

Thus, the relative magnitude of the trade-offs determine the abatement path.  

While the general direction of the impact is only dependent upon the direction of 

MAC curve change induced by the technological change, the pattern of change in the 

MAC curve is a main determinant of the magnitude of the optimal tax path and of the 

slope of the abatement path, as well as the direction of the effect of LBD on abatement. 

The last example relates to the role of MAC in the technology R&D strategy 

under uncertain chance of large climate change damage. Baker et al. (2006) characterized 

technological change in three distinctive types reproduced in Figure 2.5. Their results 

show that as the probability of large climate damage increases, the optimal R&D 

portfolio should include a larger share of the “cost reduction” technologies, as opposed to 

the “emission reduction” technologies. The intuition is that with a high probability of 

large climate damages and a correspondingly high abatement level, cost reduction 

technologies perform the best as a hedging strategy, because the magnitude of MAC 

reduction is larger at the high levels of abatement.  

The results of these analyses are highly dependent upon the impact of 

technological change on the MAC curve, and they point to the need for a better 

understanding of the dynamics of technological change. However, much of previous 

literature makes rather simplistic assumptions on how the MAC curve changes due to 

technological change. First, the technological changes are often represented as 

homogeneous aggregate phenomena, while, as will be shown in the analysis section, each 

specific technological change has distinctive characteristics. Second, the impact of 

technological change on the MAC curve is often represented as a homogenous effect, 
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most commonly a “pivot” (Figure 2.3; a proportional MAC reduction; Goulder and 

Mathai, 2000), a parallel “shift” (Figure 2.5.B; Baker et al. 2006), or some combination 

of the two. And the technological changes are only distinguished by the magnitude or the 

timing.  

 

 

(A) Cost Reduction: The aggregate cost of energy production is proportionally reduced 

across all levels of abatement. The MAC curve is also proportionally reduced (pivot). 

 

 

 

(B)  Constant Emissions Reduction: A fixed amount of emission is reduced across all 

levels of abatement. The MAC curve shifts rightward. 
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(C) Proportional Emissions Reduction: A fixed proportion of emission is reduced 

across all levels of abatement. The MAC curve steepens. 

 

Figure 2.5. Three types of technological change  

Reproduced from Baker et al. (2006)  

 

  
 

Table 2.1: Categorization of representations of technical change in a selection of 

papers. Some papers have multiple representations of technical change  

Reproduced from Baker et al. (2008a) 
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Baker et al. (2008a) have surveyed how technological changes are represented in 

top-down analytical models and simulation models (Table 2.1). While their focus is to 

identify the theoretical framework under which increasing MAC with respect to 

technological change is likely at high abatement levels, this table also shows how often 

these models rely on a singular measure to represent the variety of possible technological 

changes. (Note, however, that some of the models in the survey include multiple 

representations.)  

The heterogeneous patterns of the MAC curve changes simulated in the series of 

papers by Baker et al. (2008c; 2009a; 2009b; 2010) show that the impact of technological 

change on MAC curve may not sufficiently be represented with a singular measure. For 

instance, Figure 2.6.A shows the MAC curves estimated by MiniCAM integrated 

assessment model with different photovoltaic (PV) cell technologies available in 2050 

(Baker et al. 2009a). From the scenario with no advancement in current PV technology 

(36¢/kWh 20% limit) to PV cost reduction scenarios (3¢/kWh; 5¢/kWh 20% limit), the 

change in the MAC curves can be best represented as a “constant shift down”. However, 

the storage cost reduction scenarios (3¢/kWh; 5¢/kWh free storage) not only shift down 

the MAC curve, but also do so at an increasing rate with respect to the abatement level 

(right panel). 

Figure 2.6.B shows an example that clearly illustrates the differences in the 

impacts of advanced technologies on the MAC curve. The movement of the MAC curve 

between No-CCS and ADV-CCS represents the introduction of carbon capture and 

storage in the energy market, which effectively “pivots down” the MAC curve—
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increasing reduction with respect to abatement level. On the other hand, the impact of 

cost reduction in a nuclear powerplant technology, represented by the movement between 

REF-Nuclear and ADV-Nuclear, is better characterized by a combination of shift and 

pivot down --with the pivot factor less prevalent compared to the CCS case. 

 

 

(A) MAC curves under different photovoltaic technology assumptions. The left and 

right panels show the MAC for abatement between 0%-50% and 50%-90% for 

emphasis  

 

 

(B) MAC curves under different nuclear and CCS technology assumptions  

 

Figure 2.6: The 2050 MAC curves simulated under different technology assumptions. 

Reproduced from Baker et al. (2009a) and Chon et al. (2007).  
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These two examples emphasize some of the potential shortcomings of 

representing technological change by a singular aggregate metric. Failure to accurately 

represent the impact of technological change could misinform technology policy or 

climate stabilization policy by either overestimating or underestimating expected returns 

to R&D investment.  

What are the factors that characterize the different pattern of changes in the MAC 

curve with respect to technological change? The following analysis section attempts to 

answer this question in a formal analytical framework. Enhanced understanding of the 

impact of technological change on the marginal abatement cost curve can help more 

accurately represent the technological change in top-down models, and in turn, better 

inform technology R&D policy and climate stabilization policy. 

 

2.3. Analytical Framework 

In this section, I develop a formal analytic framework to explain the impact of 

technological change on CO2 abatement cost. First, I set up the framework in a general 

form and present associated assumptions and definitions. Second, I reduce the framework 

space into a readily interpretable scale with three technology groups: the generic fossil 

energy group that represents the aggregate of all CO2 emitting technologies, the non-

fossil technology group that undergoes technological change, and the other technology 

group that includes all other non-fossil technologies. I derive the energy market 

equilibrium conditions for the three technologies. Third, I introduce a technological 

change in the system, and show how the change affects the equilibrium conditions. 

Fourth, I analyze the conditions determining the level of initial abatement induced by 
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technological change. Fifth, I analyze the conditions determining the magnitude of 

reductions in the marginal abatement cost induced by the technological change. 

 

2.3.1. General Setting 

This subsection describes the general framework under which my analysis will be 

conducted. First, I define the optimization condition for the baseline energy mix under no 

abatement constraint. Second, I introduce the abatement constraint and define 

optimization conditions under the constraint. Third, I define marginal abatement cost and 

express it in terms of benefit and cost functions. 

The analytical framework developed here is highly abstract and follows textbook 

microeconomic assumptions. It is a single period model and does not explicitly address 

temporal dimensions of the issue.6 The energy produced in the system is instantaneously 

consumed, and the corresponding benefits and costs are realized. Such simplification 

provides the opportunity to derive easily interpretable results. On the other hand, the 

framework overlooks the possibility of act-and-learn strategy addressed in Chapter 4. 

Another simplifying assumption is a perfectly competitive energy market without any 

market failure other than the greenhouse gas effect. While gaining clear interpretability, 

this assumption sacrifices addressing existing oligopolistic behavior in the energy market.  

The baseline energy production level is defined as the equilibrium level of energy 

production in the absence of a CO2 abatement policy. The energy market clears when the 

net benefit from energy consumption/production is maximized. 

                                                 
6 This setup can also be thought of as a perfect foresight model with time dimension, where energy quantity 
and prices are measured in the initial period equivalent units—e.g. the amount of energy that on average 
provides the equivalent benefit of one kWh in 2010. 
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i represents the amount of energy produced by each technology i, and Q represents the 
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Assuming strict convexity on each cost function and strict concavity on the 

aggregate benefit function, there exists a unique combination of qi0 that solves the net 

benefit maximization problem.8 This combination is the baseline energy mix under no 

carbon policy. 

Now I introduce an emission abatement constraint: 

µεε −≤ 0.. ff
qqts      (3) 

where,  [ ]0,0 f
qεµ ∈  

µ is the abatement level that takes value between zero and the total emission level at the 

baseline energy mix. Superscript f denotes a generic fossil energy production technology. 

                                                 
7 I follow the convention of denoting a partial derivatives with a subscript. 
8 The nature of energy technologies utilizing scarce resources imply that the strict convexity assumptions 
may indeed apply. However, depending on how one defines a “technology”, there may be non-convex 
portions of a cost curve. For instance, an individual wind farm may face decreasing marginal cost once 
adequate transmission and distribution capacity is fulfilled. The convexity assumptions are more applicable 
to an aggregate group of similar technologies where such saturation effects are averaged out. 
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For simplicity, I assume each unit of fossil energy emits fixed amount of CO2 with an 

emission coefficient of ε (e.g. tons of carbon per GJ).  

The net benefit maximization problem becomes: 
 

)()(max ii

q

qcQB
i

∑−       (1) 

µεε −≤ 0.. ff
qqts      (3) 

Expression (1) indicates the objective is to maximize the net benefit from 

producing energy. Expression (3) constrains the level of emission to be no greater than 

the constraint imposed. The Lagrangian and the corresponding first order conditions are: 

)()()( 0 µεελ −−+∑−= ffii
qqqcQBL   (4) 

F.O.C.s: 

fiqcQB
ii

qQ ≠∀= )()(     (5.1) 

ελ+= )()( ff

qQ qcQB      (5.2) 

00 ≥−− µεε ff
qq      (5.3) 

Assuming strict convexity for cost functions and strict concavity for benefit 

functions, there exists a unique combination of qi
(µ) and λ(µ) that solves the cost 

minimization problem under the abatement constraint. λ(µ) is the shadow value of 

incremental carbon emission. It represents the additional cost inflicted by tightening the 

emission abatement constraint by a unit (not accounting for externalities caused by the 

emission). Substituting Expression (5.1) into Expression (5.2), this shadow value can be 

expressed as:  
 



24 
 

fi
qcqc

ff

q

ii

q
≠∀

−
=

ε

µµ
µλ

))(())((
)(            (6) 

Since under optimization condition (5.1) the marginal costs of all non-fossil 

technologies are the same, if Expression (6) is satisfied with one technology, then it 

would be satisfied for all other technologies. This shadow value is equal to the difference 

between the marginal cost of energy production for fossil and non-fossil energy 

production, multiplied by the inverse of the emission coefficient. In other words, it 

represents how much more it costs to substitute the marginal fossil energy with the non-

fossil energy. I define this as the marginal abatement cost (MAC), and it is equal to the 

optimum emission tax for achieving an abatement constraint, as well as the equilibrium 

price of emission quota in a cap-and-trade system.  

 

2.3.2. The Three Technology Analysis 

Depending on the boundary definition of technologies, the number of 

technologies present in the energy market is quite large. And each additional technology 

represented in the model requires one additional first order condition. Clear 

interpretations of the analysis quickly become difficult with a large number of first order 

conditions. Hence, from this subsection and on, I reduce the technology space into three 

groups and provide a simple framework under which the impact of technological change 

on the marginal abatement cost is analyzed.  

The three groups of technologies represented in this section are generic fossil 

energy technology group, conventional alternatives energy technology group, and 

advanced alternative energy technology group. Generic fossil technology is denoted with 

superscript f. As defined in the previous section, this technology includes all CO2 
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emitting fossil energy—e.g. coal, oil, and gas—and is assumed to emit a fixed amount of 

CO2 with emission coefficient ε. The conventional alternative technology is denoted with 

superscript i. This represents the aggregate of all non-fossil technologies except the 

technology that is affected by the (impending) technological change. Advanced 

alternative technology is denoted with superscript j. This represents one technology that 

will undergo the technological change. For simplicity, I assume only generic fossil emits 

carbon dioxide, and both alternatives are assumed to emit zero carbon dioxide9. Also, 

again I assume strict convexity for all three cost functions, in order to ensure an interior 

solution. 

The modified net benefit maximization problem is: 

)()()()(max
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The Lagrangian and the corresponding first order conditions are: 
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Applying the Implicit Function Theorem: 

                                                 
9 In reality, some alternative technologies do emit carbon dioxide, albeit at a lesser rate than conventional 
fossil energy technologies (e.g. Carbon Capture & Storage with less than 100% capture rate). And many 
alternative technologies may indirectly induce emissions by energy used to produce equipment or fuel (e.g. 
diesel fuel used for farm equipment producing biomass). However, with stringent abatement constraints, 
this energy may also be derived from zero-emission technologies.  
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The equilibrium quantity, qi
(µ), and the marginal abatement cost, λ(µ), can be expressed 

as an implicit function of abatement level: 
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The production of fossil energy decreases with respect to the abatement level, 

while the production of both alternative technology groups increase. It is also shown that 

the marginal abatement cost function is an increasing function of the abatement amount. 

Note that the ratio of marginal production of the two alternative technologies is the 

inverse of the ratio of the slopes of their marginal cost functions. In other words, 

marginal production is larger for technologies with a marginal cost function that is less 

sensitive to quantity. Generally, technologies with expansion constraints have steeper 

marginal cost functions. Further elaborations of marginal cost functions and their 

sensitivity to quantity are included in the Subsection 2.3.4. 
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2.3.3. Introducing Technological Change 

Now I introduce technological change in the advanced alternative technology and 

analyze the impact on MAC. Technological change can take many different forms, 

including an average cost reduction, efficiency increase, or resource pool expansion. In 

order to capture a broad range of possibilities, technological change—denoted as x—is 

represented in a general form: ),( xqc
jj . Technological change is specified as changes 

that lower the cost function of advanced alternative technology j in any form:10 
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The change in cost function brought on by the technological change, in turn, 

affects the optimal production of each technology. The maximization problem in three 

technology framework with technological change becomes: 

),()()()(max
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I distinguish two components of the impact of technological change on abatement 

cost (Figure 2.7). The first component is the technology-induced initial abatement at non-

binding emission constraint (hereafter initial abatement). When a technological change 

sufficiently reduces the cost of advanced alternative, it drives out some level of fossil 
                                                 
10 In reality, technological changes may take different forms. For instance, a new nuclear reactor design 
may increase the safety of the reactor, while driving up the operating cost.  Such cases are not explicitly 
addressed here. However, by reducing every aspect of the technology into a single cost curve, we can 
theoretically formulate such cases in the same framework. For instance, a financially low-cost nuclear 
reactor facing institutional barriers to deployment can be represented with an infinitely inelastic marginal 
cost curve. A new reactor design that allows expanded deployment through improved safety could be 
represented with a high marginal cost, but still being less than infinity, hence satisfying the definition of 
“technological change” used in this analysis. 
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energy solely by price competition, without the confounding effect of the emission 

constraint. The second component is the reduction in the marginal abatement cost when 

the abatement level is high enough, such that the constraint is binding, and hence the 

shadow value of CO2 emissions would be positive. 

 

 

Figure 2.7: Two components of the impact of technological change on the MAC 

 

 

2.3.4. Technology-Induced Initial Abatement in the Case of a Non-Binding Emission 

Constraint  

The level of initial abatement can be derived by solving the maximization 

problem for fossil energy quantity with the abatement constraint set to zero. This answers 

the question of what amount of GHG emissions will be abated solely due to technological 

change without the abatement constraint. For example, a cost reduction in the advanced 

alternative technology will increase the optimal production of the technology, and thus 
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reduce the optimal production of fossil energy. This equilibrium effect, in turn, reduces 

emissions even without abatement constraint. With the abatement constraint non-binding, 

the maximization problem (1) becomes: 
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Under the assumptions of strict convexity for cost functions and strict concavity 

for benefit function, the unique combination of {q
i(0,x), qj(0,x), qf(0,x)} that solves the 

maximization problem can be expressed as the implicit function of technological change, 

x.  
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Solving for {q
i(0,x), qj(0,x), qf(0,x)}, we get: 
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The production of fossil energy and conventional alternative energy decrease with respect 

to the technological change on the advanced alternative energy. The production of 

advanced alternative energy increases with respect to the technological change. 

Since the level of initial abatement ( )(~ xµ ) given technological change x can be 

defined as: 

),0()(~ 0
xqqx

ff =−= µεεµ      

The change in the level of initial abatement ( )(~ xµ ) due to technological change can be 

expressed as:  
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This Expression (7) indicates that the changes in initial abatement with respect to 

technological change is determined by the extent to which the marginal cost of the 

advanced alternative is reduced, adjusted for relative slopes of the marginal benefit 

function and the marginal cost functions of competing technologies. Unlike the case of 

binding abatement constraints, the level of initial abatement is also affected by the slope 

of marginal cost function of fossil energy production.  

 

Proposition 1: 

Ceteris paribus, the size of initial abatement induced by technological change is larger 

when: 

1. the reduction in the marginal cost of advanced alternative energy is larger; 

2. the marginal cost of advanced alternative energy is less sensitive to quantity; 

3. the marginal cost of conventional alternative energy is more sensitive to quantity; 
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4. the marginal cost of fossil energy is less sensitive to quantity; 

5. the marginal benefit of aggregate energy is more sensitive to quantity. 

 

Concrete examples of each proposition may provide clarity. Proposition 1.1 is 

stating the obvious; moving from 30¢/kWh solar panels to 5¢/kWh solar panels provides 

larger impact than do 10¢/kWh solar panels. Propositions 1.2 and 1.3 address the relative 

curvatures of the marginal cost curves. Typically, expansion constraints on a technology 

induce high sensitivity to quantity. In an extreme example, nuclear reactor technology in 

the countries that legally limit the amount of nuclear reactors would face an infinite 

marginal cost beyond the legal limit. Proposition 1.2 is stating that the same low-cost 

nuclear reactor technology will have a larger impact in the countries without legal limits 

than the ones with legal limits. The flipside is Proposition 1.3; a low-cost solar panel 

technology will have a larger impact if the expansion of the competing technology 

(nuclear) is legally limited and hence faces rapidly increasing marginal costs.  

Proposition 1.4 addresses the cost curve of aggregate fossil energy. Aside from 

temporary fluctuations due to political instability, extreme weather events, among others, 

the marginal cost of fossil energy is relatively insensitive to the quantity. Further into the 

future, we may observe a substantial increase in the marginal cost of crude oil, when we 

are nearing the exhaustion of the economically viable crude oil deposits. However, on the 

aggregate, unconventional oil and liquefied coal could substitute depleted crude oil, 

hence reducing the sensitivity of the cost to quantity. With the long-run equilibrium cost 

of fossil energy generally insensitive to quantity, Proposition 1.4 has little effect on the 

initial abatement amount. 
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Proposition 1.5 addresses the aggregate demand curve for energy. The marginal 

benefit being insensitive to quantity implies an elastic demand curve. There are regional 

and sectoral differences in the demand curve. For example, the energy demand for 

passenger transport in the countries without widespread public transit options would be 

less elastic than the energy demand for freight transport, where small changes in energy 

prices determine the profitability of firms.  

Consider an extreme case where the energy demand is perfectly elastic; in other 

words, a sector that will consume unlimited amount of energy under 10¢/kWh. Suppose 

the market equilibrium before the technological change consisted of 100 units of coal and 

10 units of solar. Now suppose a technological change allowed 50 units of solar to be 

supplied under 10¢/kWh. The resulting market equilibrium would consist of 100 units of 

coal and 50 units of solar, because the perfectly elastic sector will consume any and all 

energy under 10¢/kWh. The initial abatement amount is exactly zero in this extreme 

example. In an opposite case, where a sector with perfectly inelastic demand would 

consume 110 units of total energy regardless of price, the resulting equilibrium could be 

60 units of coal and 50 units of solar, yielding 40 units of the initial abatement. In reality, 

most regions and sectors fit somewhere in between the two extremes. Proposition 1.5 

states that the less elastic the demand, the larger the amount of the initial abatement. 

 

2.3.5. The Reduction in the Marginal Abatement Cost 

When the abatement constraint is no greater than initial abatement level, the 

constraint is non-binding, and thus MAC is zero. However, when the abatement 

constraint goes beyond the initial abatement level, the constraint is binding, and thus we 
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can assess the magnitude of reduction in the MAC. The maximization problem with 

binding abatement constraint is: 
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The equilibrium quantity, qi
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expressed as implicit function of abatement level: 
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The production of conventional alternative energy decreases with respect to the 

technological change on the advanced alternative energy. The production of advanced 

alternative energy increases with respect to the technological change. The production of 

fossil energy is constrained by the abatement requirement, and hence does not change 

with respect to technological change. The marginal abatement cost decreases with respect 

to the technological change.  

Substituting Expression (8.1) into Expression (8.4) and rearranging yields:  

ε
λ

j

x

j

qq

j

qx

x

qcc +
=      (9) 

The first term of the numerator on the RHS represents a reduction in the marginal 

cost due to technological change. The cost reduction effect in Figure 2.8 shows this effect. 

The second term of the numerator on the RHS represents an upward movement along the 

marginal cost curve due to increased production of advanced alternative energy. The 

rebound effect in Figure 2.8 shows this effect. The resulting reduction in MAC is smaller 

than the nominal cost-reduction effect. As the cost reduction makes the advanced 

alternative technology more competitive in the market, the amount of its production 

increases. According to the convexity assumption on cost curves, an increase in 

production results in an increase in marginal cost. This rebound effect partially offsets the 

nominal cost reduction.  

 Solving the maximization problem for the MAC change with respect to 

technological change yields: 
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Expression (10) indicates that the impact of technological change x on MAC is 

determined by the extent to which the marginal cost of advanced alternative energy is 

reduced, adjusted for the relative slopes of the marginal benefit function and the marginal 

cost functions of competing technologies. Unlike initial abatement in the case of a non-

binding emission constraint, the reduction in MAC is not affected by the slope of 

marginal cost function of fossil energy production.  

 

 

Figure 2.8: A simple discrete representation of the effect of technological change on 

MAC. Two distinct technological changes are shown for illustrative purposes. 

 

Proposition 2: 

Ceteris paribus, the size of reduction in MAC induced by technological change is larger 

when:  

1. the reduction in the marginal cost of advanced alternative energy is larger; 
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2. the marginal cost of advanced alternative energy is less sensitive to quantity; 

3. the marginal cost of conventional alternative energy is more sensitive to quantity; 

4. the marginal benefit of aggregate energy is more sensitive to quantity. 

 

Proposition 2 is identical to Proposition 1, except for the fact that Proposition 1.4 

regarding the marginal cost curve of the fossil energy is no longer relevant, because the 

abatement constraint effectively determined the amount of fossil energy, regardless of 

technological change in other energy forms. Thus, same logic as Proposition 1 applies 

here.  

 

 

2.4. Applied Examples  

In this section, I present some simulated examples of the MAC curve reductions 

induced by technological change, and explain how these reduction patterns can be related 

to the analytical framework established in the previous section. 

First, I present the modeling assumptions used to simulate the MAC curves. 

Second, I analyze a batch of MAC curves under different solar photovoltaics (PV) 

technologies presented in Baker et al. (2009a). Particularly, I focus on the difference in 

the pattern of reductions in MAC between grid-integrated PVs and standalone PVs. Third, 

I analyze how the characteristics of competing technology affects the impact of a 

technological change, using the same advanced PV technologies under the scenarios with 

limited and unlimited nuclear power. Fourth, I extend the scope to include the carbon 

capture & storage (CCS) technologies presented in Baker et al. (2009b), and show the 

trade-off between two aspects of technological change: cost reduction vs. capture rate 
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improvement. Fifth, I compare advanced CCS technologies (Baker et al., 2009b) and 

advanced nuclear technologies (Baker et al., 2008c) to emphasize the heterogeneity of 

technological changes: one with a large initial abatement potential and the other with a 

large MAC reduction potential only under stringent abatement constraints. 

 

2.4.1. Modeling Assumptions and Specifications  

The model used for deriving MAC curves for each technology scenario is 

MiniCAM integrated assessment model (Kim et al., 2006; Clarke et al., 2007; Brenkert et 

al., 2003), which is a descendant of the model developed by Edmonds and Reilly (1985). 

MiniCAM and its predecessors and successors11 have been used extensively in global 

climate change analyses conducted for the Intergovernmental Panel on Climate Change 

(IPCC), various national governments, and nongovernmental organizations. 

MiniCAM links a global energy economy model and an agricultural land-use 

model with a suite of coupled gas-cycle, climate, and ice-melt models integrated in the 

Model for the Assessment of Greenhouse-gas Induced Climate Change (MAGICC).12 

MiniCAM tracks emissions and concentrations of greenhouse gases and short-lived 

chemical species.13 The economic simulation of MiniCAM is driven by assumptions 

about population size and labor productivity that determine potential gross domestic 

product in each of 14 geopolitical regions. MiniCAM is solved by establishing market-

clearing prices for all energy, agriculture, and land markets such that supplies and 

                                                 
11 The latest model description can be found at www.globalchange.umd.edu/models/gcam/. 
12 For this study I used MAGICC 4.1 (Wigley, 2003). 
13 Fifteen greenhouse-related gases are tracked: CO2, CH4, N2O, NOx, VOCs, CO, SO2, carbonaceous 
aerosols, HFCs, PFCs, and SF6. Each is associated with multiple human activities that are explicitly 
modeled in MiniCAM. All greenhouse gases are priced in U.S. dollars per ton of CO2 equivalent according 
to their 100-year global warming potential, to ensure balance of the climate policies, but given my focus on 
energy technologies, I analyze only the emissions and the cost of abatement of CO2 in this paper. 



38 
 

demands for all markets balance simultaneously; that is, there is no excess supply or 

demand for land, agricultural products, primary energy, final energy, or energy services. 

MiniCAM is solved in 15-year time steps through 2095. It is a dynamic-recursive 

model: decisions in any period are made only with information about that period, but the 

consequences of decisions made in one period (resource depletion, capital stock build-up, 

etc.) sequentially influence subsequent periods, including the decision set available in 

those periods.  

The MiniCAM energy system includes representations of primary energy 

resources, the processes involved in primary energy production and transformation to 

final fuels, and the employment of final energy forms to deliver energy services. Energy 

supplied from depletable resources—fossil fuels and uranium—depends on the 

abundance and grade of available resources as well as available extraction technologies. 

These depletable resources exhibit increasing costs in the absence of significant 

technological change. As the more attractive resources are consumed, less attractive 

resources are exploited, and, all else being equal, costs rise. Renewable resources such as 

wind and solar are produced from graded renewable resource bases.  

Primary energy forms include oil, natural gas, coal, bioenergy, uranium, 

hydropower, geothermal, solar, and wind energy. MiniCAM models the transformations 

from these primary energy forms into the following six final energy forms: refined 

liquids, refined gas, coal, commercial solid bioenergy, hydrogen, and electricity. These 

energy forms are then used to provide end-use services in the buildings, industry, and 

transportation sectors.  
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MiniCAM is a technology-rich integrated assessment model. It contains detailed 

representations of technology options in all of the economic components of the system. 

Technology choice in MiniCAM is determined by market competition. Individual 

technologies compete for market share based on their technological characteristics (their 

efficiency in producing energy from inputs), the cost of inputs, and the price of outputs. 

MiniCAM uses a logit choice methodology to determine the market shares of different 

fuels and technologies, based on a probabilistic model of the relative prices of the 

competing fuels or technologies (Clarke and Edmonds, 1993; McFadden, 1974, 1981). 

This methodology is based on the idea that every market includes a range of different 

suppliers and purchasers, each of which may have different needs and may experience 

different local prices. Therefore, not all purchasers will choose the same technology when 

the average price of that technology is lower than the average price of a competing 

technology. The logit choice methodology allocates market shares based on prices, but 

ensures that higher-priced goods gain some share of the market, which is consistent with 

the heterogeneity observed in real markets. 

The characteristics of technologies analyzed in this essay are explained in detail in 

the following section. All other model assumptions in this analysis are based on the 

version of the model used in the Climate Change Science Program (CCSP) MiniCAM 

reference scenario (Clarke et al. 2007).  

MAC curves under each specific technology scenario were presented by plotting 

the levels of emissions reduction against carbon prices. First, a range of carbon price 

paths were created leading up to 2050. In each path, the carbon price increases over time 

at the discount rate, modified by the average natural system uptake rate (i.e., consistent 
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with a Hotelling (1931) approach to resource extraction modified by Peck and Wan 

(1996)). Second, the model output emission abatement levels in 2050 were plotted on the 

horizontal axis against the corresponding carbon price in 2050 on the vertical axis (See 

Figures 2.11 & 2.13).  

The future period of 2050 is chosen for this analysis of MAC for the following 

reasons. First, the advanced technologies I’ve assessed are likely to take a decade or two 

to be fully developed for commercial scale applications. Second, it would take a few 

more decades to replace the existing stock of powerplants. Four decades until 2050 gives 

sufficient time for the advanced technology to be fully integrated into the market.  

Third, previous studies have indicated that there would be a clear divergent trend 

near the mid-century between low stabilization targets (e.g. 350 ppmv or 450 ppmv) and 

less stringent targets (e.g. 550 ppmv or 650 ppmv) (see for example, Figure 2.9 

reproduced from Wigley, Richels, and Edmonds, 1996). With the residence time of CO2 

in the atmosphere ranging over 100 years, the path to a low stabilization target must 

incorporate structural changes in the energy market towards a near steady-state level by 

2050. On the other hand, a less stringent stabilization target still leaves room for slower 

change, with the peak emission level at or after mid-century. In the WRE scenarios 

(Wigley, Richels, and Edmonds, 1996), 450ppmv and 550ppmv roughly corresponds to 

60% and 25% abatement levels, respectively. This difference in abatement targets may be 

large enough to potentially switch the ranking (in terms of the value of technology) 

between technologies that pivot the MAC curve and ones that shift it. 
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Figure 2.9: CO2 Concentration and emission trajectories for different stabilization 

scenarios Reproduced from Wigley, Richels, and Edmonds (1996) 
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The numerical results presented in this section should be treated with caution. 

Particularly the results for very high carbon prices above thousands of dollars are 

illustrations of the effect under extreme stress in the system. An equilibrium model, such 

as the one used here, is typically created by an abstract representation of the system of 

interest. The model is then calibrated to the empirical observations on the effect of 

perturbation to the system, such as the effect of a gasoline price increase on the distance 

traveled. This methodology is suitable for modeling future gradual changes to the system 

that are within the same order of magnitude as the observations to which the model is 

calibrated. However, large-scale structural changes that are beyond the scope of empirical 

observations may not be effectively modeled by the same method. Such structural 

changes to the system may need to be exogenously specified to the model.  

For instance, the results below include extremely high carbon prices up to 

$3000/tC, roughly equivalent to $8/gal tax on gasoline. The effects on the economy from 

a tripling or a quadrupling of energy prices may be fundamentally different from the 

nominal feedback parameter calibrated to observations from marginal changes. Thus, 

instead of taking the results with very high carbon prices at their face value, they should 

be treated as a thought experiment on how, in one possible scenario, the system might 

behave under extreme stress, if there had been no fundamental changes to the system. 

The focus should be more on the comparison across scenarios built on the same 

underlying system, rather than the absolute value of the results.  
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2.4.2. Solar Photovoltaic Technology: Limited Capacity 

Baker et al. (2009a) have assessed a wide range of cost reduction in PV cells. The 

baseline of comparison has the cost of PV staying constant at the current level of 36 cents 

per kWh of electricity14. The lowest cost considered is 3 cents per kWh in the year 2050.  

PV deployment was assessed in two different settings. First, the reference setting 

(20% constraint) assumes the PVs are directly connected to the existing electricity grid. 

Due to the intermittent nature of solar insolation, an increased share of electricity 

produced from PV requires backup generation capacity. The backup requirement was 

assumed to increase gradually with an increase in the share of PV electricity production, 

and reach a 1:1 backup requirement in 20% of capacity (see Figure 2.10 for a simplified 

representation). The backup electricity was assumed to be provided by natural gas 

turbines. Second, the “no constraint” setting assumes PVs come with a self-sufficient 

storage—such as batteries or fuel cells—thus eliminating the need for backup generation. 

This setting would require substantial cost reductions in energy storage technology to be 

competitive in the market. 

Figure 2.11 shows resulting MAC curves under five different PV technology 

assumptions. Notice that advanced PV with a 20% constraint provides a relatively 

constant reduction (downward shift) in MAC throughout the abatement level, while the 

one with no constraint provides an increasing level of reduction (downward pivot) in 

MAC with respect to abatement level.  

In Figure 2.12, the top panels show the electricity production technology mix 

under each technology scenario and the bottom panels show the difference in electricity 

production by each technology compared to the reference scenario with 36¢/kWh PV. 
                                                 
14 Throughout this paper I use 2005 constant dollars, unless otherwise indicated. 
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The bottom panels—a discrete approximation of f

x

j

x

i

x qqq ,, —clearly depict the 

differences between the two advanced PV scenarios. Throughout the abatement level, 

advanced PV with the 20% constraint case does not show much change in additional PV 

electricity production compared to the reference case. In the case of advanced PV with no 

constraint, on the other hand, increasing difference in PV electricity production with 

respect to abatement level is shown.  

These modeling results are consistent with the analytical framework developed in 

the previous section. The slope of the demand function and the slopes of the MC 

functions of competing technologies and of fossil energy are the same in both cases. The 

major difference between the two advanced PV cases is the slopes of PV electricity’s MC 

functions.  

 

 

Figure 2.10: A simple representation of backup requirement  

Reproduced from Baker et al. (2009a). 
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Figure 2.11: MAC curves under different PV technology assumptions. The left and 

right panels show the MAC for abatement levels between 0%—50% and 50%—90% for 

emphasis  

Reproduced from Baker et al. (2009a). 
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Figure 2.12: Electricity Production Technology Mix under Different Levels of 

Abatement 
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This difference is almost non-existent at very low levels of PV deployment, 

because the backup requirement is minimal (Figure 2.10). This explains why the initial 

abatement level shows minimal difference. However, as the abatement constraint 

increases, the deployment of PV increases as well. This triggers backup requirements to 

increase, which in turn, rapidly increases the cost of deploying PV with respect to 

quantity and steepens the slope of MC curve. This effect, according to Proposition 2.2., 

results in a smaller reduction in MAC. This effect is also exacerbated at a higher 

abatement level, as larger PV deployment demands larger share of backup electricity 

(Figures 11 & 13). Thus, the MAC curves of the two advanced technologies show 

increasing divergence with respect to the abatement level (Figure 2.11). 

 

2.4.3. Solar Photovoltaic Technology: Competing Technologies 

The impact of technological change on the MAC is dependent upon the 

composition of competing technologies in the market. I show this effect by comparing the 

impact of low-cost PV in two different assumptions on nuclear power: one assuming 

freely expanding nuclear power and the other assuming a phase-out of nuclear power. 

Figure 2.13 shows the MAC derived for three different PV technology assumptions; the 

left panel with nuclear power and the right panel without. Obviously, the MAC curves are 

much higher in the no-nuclear scenarios, as the low-carbon technology with the largest 

capacity is removed. However, the focus here is on the relative magnitude of MAC 

reduction in the two cases. The reduction of MAC attributable to the low-cost PV is much 

smaller in the case with nuclear power compared to the no-nuclear case (both with the 

20% constraint and without). This difference is exacerbated at the high abatement levels. 
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Figure 2.13: MAC curves under different PV technology assumptions. The left panel 

shows scenarios with nuclear power, and the right panel shows scenarios without 

nuclear power.  
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Figure 2.14: Electricity Production Technology Mix under Different Levels of 

Abatement. The left panels show scenarios with nuclear power, and the right panels 

show scenarios without nuclear power. 
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In Figure 2.14, the top panels show the electricity production technology mix 

under 6¢/kWh PV with no constraint scenarios, with and without nuclear. The bottom 

panels show the difference in electricity production by each technology compared to 

corresponding reference scenarios with 36¢/kWh PV. The bottom panels clearly depict 

the difference in the magnitude of additional PV electricity generation.  

In the “with nuclear” scenarios, the nuclear power provides some of the lowest 

average costs of electricity at 4.8-5.7 cents/kWh, depending on the type of reactor (Clarke 

et al., 2006). Even the low-cost advanced PVs still have higher average costs than nuclear, 

and thus additional market penetration of PVs are limited to the areas better suited for PV, 

such as places with above average solar insolation.  

In the “no nuclear” scenarios, on the other hand, low-cost PVs become one of the 

lowest cost alternatives available in the market. The removal of the nuclear power option 

effectively increases the slope of the aggregate marginal cost function of the conventional 

alternatives (which includes nuclear in the “with nuclear” scenario). According to 

Proposition 2.3., this means that the reduction in MAC as well as the increase in the 

deployment of advanced PV attributable to advanced PV will be larger in the “no-

nuclear” case. The magnitude of this difference is exacerbated at higher levels of 

abatement, because the marginal cost of the conventional alternatives would increase 

rapidly at high production levels as the “low hanging fruits” of these technologies (e.g. 

hydro, onshore wind, high-yield biomass, etc.) are exhausted. This example clearly 

illustrates how the impact of a technological change on the MAC is highly dependent 

upon the composition and the characteristics of competing technologies in the market.  
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2.4.4. Carbon Capture and Storage: Cost vs. Capture Rate 

Baker et al. (2009b) have assessed several different CCS technologies (Table 2.2). 

The reference case assumes that the cost of CCS technology is prohibitively high and 

therefore cannot be deployed on a commercial scale. Post-combustion CCS, Pre-

combustion CCS, and Chemical Looping CCS technologies share the same capture rate at 

90%, but energy requirements and non-energy cost of capturing CO2 are different (from 

high to low in the same order.) On the other hand, Pre-combustion with High-capture 

technology shares the same parameters with the regular Pre-combustion technology, 

except the capture rate is raised to 98%. I focus on the differential impact on MAC 

between Chemical Lopping—characterized by low-cost low-capture-rate—and Pre-

combustion High-capture—characterized by high-cost high-capture-rate.  

Figure 2.15 shows MAC curves in 2050 under four different CCS technology 

scenarios and one scenario without CCS. Notice that the technology with the lowest 

MAC is switched from Chemical Looping to Pre-combustion High-capture, at around a 

70% abatement level. 

In Figure 2.16, the top panels show the electricity production technology mix 

under each technology scenario and the bottom panels show difference in electricity 

production by each technology compared to the regular Pre-combustion CCS scenario. 

The bottom panels clearly depict the differences between Chemical-looping and Pre-

combustion High-capture. Chemical-looping scenario shows a gradual increase in 

additional CCS deployment up to the 60% abatement level, and a gradual decrease 

thereafter. On the other hand, Pre-combustion High-capture scenario shows virtually no 

difference up to the 50% abatement level and a rapidly increasing difference thereafter. 
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These modeling results are consistent with the analytical framework developed in 

the previous sections. The slope of demand function and the slopes of MC functions of 

competing technologies and of fossil energy are the same in both cases. The major 

differences between the two advanced CCS cases are the magnitudes of cost reduction 

and the capture rates.   

 

Fuel Coal Gas Oil Coal Gas Oil Coal Gas Oil Coal Gas Oil

Energy Requirement MJ/kgC 4.7 10.3 7.5 2.0 4.5 3.3 2.0 4.5 3.3 0.7 1.4 1.0

Non-Energy Cost ¢/kgC 3.0 8.3 6.0 2.4 6.6 4.8 2.4 6.6 4.8 1.1 3.0 2.2

Capture Rate % 90% 90% 90% 90% 90% 90% 98% 98% 98% 90% 90% 90%

Chemical Looping
Pre-Combustion      

w/ High-Capture
Technology Post-Combustion Pre-Combustion

 

Table 2.2: Summary of Model Parameters for the year 2050  

Reproduced from Baker et al. (2009b). 
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emphasis  

Reproduced from Baker et al. (2009b). 
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Figure 2.16: Electricity Production Technology Mix under Different Levels of 

Abatement 

 

The initial abatement is virtually non-existent in both cases. No matter how low 

the cost of CCS becomes, it will be always higher than the same powerplant with the 

CCS function turned-off. Aside from small scale carbon capture to supply CO2 for 

industrial uses, the deployment of CCS will be minimal in the absence of abatement 

constraints. However, as the abatement level increases and the carbon price increases, the 

deployment of CCS will increase accordingly. This characteristic of CCS technologies 

results in a pattern of MAC reduction quite different from that of other technologies such 

as PV or nuclear. While most other alternative technologies will show some combination 

of the downward shift and pivot of MAC curves, MAC curves with CCS technologies 

mostly show only a downward pivot (Baker et al. 2009b). 
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The analytical framework expects Chemical-looping and Pre-combustion High-

capture to switch their rankings in terms of the largest impact on the MAC. From 

Proposition 2.1., we know that Ceteris paribus, the size of the reduction in MAC is larger 

when the reduction in the marginal cost of advanced alternative energy is larger. As seen 

in Table 2.2, this reduction is substantially larger in Chemical-looping compared to Pre-

combustion High-capture. Hence, when the differences in the relative sensitivities of MC 

curves (Proposition 2.2) are small at low abatement levels, Chemical-looping would have 

a larger reduction in the MAC.  

However, the slopes of MC curves of CCS production diverge substantially in the 

high abatement levels. This is due to the nominal differences in less-than-100% capture 

rate of the CCS technologies. As the carbon price increases rapidly at high abatement 

levels, this cost applied to the modest 10% release of CO2 substantially increases the 

marginal cost. In fact, at some very high level of abatement, some of CCS production is 

driven out of the market15 (Dooley et al. 2006). This effect can be observed in the top 

panels of Figure 2.16. The highest production of CCS electricity is at around an 80% 

abatement level for Chemical-looping, while it is 90% for Pre-combustion High-capture. 

Given the five-fold difference in the release rate of CO2, and hence in the impact of the 

carbon price, the rapidly diverging slopes of the advanced MC curves may eventually 

result in a crossing of the advanced MAC curves. In this example, the crossings were 

observed at around 70%, but the exact crossing point is highly sensitive to assumptions. 

                                                 
15 The exact point at which CCS starts being driven out of the market does not necessarily coincide with 
capture rate. For example, under reference technology scenarios, the transportation sector is the most 
difficult sector in which to reduce CO2 emissions, as existing alternatives (e.g. fuel cell vehicles) are very 
expensive. On the other hand, the electricity generation sector has readily available options other than CCS 
with zero emissions (e.g. wind, nuclear, biomass). Thus even at an abatement level less than 90%, it may be 
optimal to switch away from CCS to other zero emission alternatives, while allocating a larger emission 
quota to transportation sector. 
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The analytical framework assumes zero CO2 emissions for alternative 

technologies, and thus cannot accurately explain the low-CO2 alternative such as CCS 

without modifications. However, with some modifications, general insights could still be 

applied in explaining the distinct patterns of MAC curve change. 

  

2.4.5. CCS vs. Nuclear: Pivot vs. Shift   

In this subsection, I compare advanced CCS and advanced nuclear power 

technology. For advanced CCS technology, I use Pre-combustion 90% capture CCS from 

Baker et al. (2009b) used in the previous subsection. For advanced nuclear power, I 

consider a simple technological change reducing capital cost of a nuclear reactor in 2050 

from $2000/kW to $1000/kW (Baker et al., 2008c). Figure 2.17 shows the MAC curves 

for each technology scenario. 

The first thing to note is that CCS technology mainly induces MAC curves to 

pivot downward, while cost reductions in nuclear technology induces MAC curves to 

shift downward and, to a lesser extent, to pivot downward. As noted earlier, having CCS 

technology brings little initial abatement in the absence of carbon price. Advancement in 

nuclear, on the other hand, brings a sizeable initial abatement—in this example, about 5%. 

The initial abatement is large both because of large reduction in overall cost (Proposition 

1.1.) and because of an assumption that the MC of nuclear power is less sensitive to the 

number of reactors (Proposition1.2.) so long as they are built in the regions that are 

favorable to nuclear power.  
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Figure 2.17: MAC curves under different CCS and Nuclear technology assumptions.  
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Figure 2.18: Electricity Production Technology Mix under Different Levels of 

Abatement 
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In Figure 2.18, the top panels show the electricity production technology mix 

under each technology scenario and the bottom panels show the difference in electricity 

production by each technology compared to the reference scenario without CCS 

availability. The bottom panels clearly depict the differences among advanced nuclear 

and advanced CCS.  

In the absence of a binding abatement constraint, advanced nuclear scenario 

already shows substantial increase in nuclear deployment. Nuclear power is a low-carbon 

technology that is already cost-competitive in many parts of the world. Substantially 

reducing the capital cost would make it even more competitive even without an 

abatement constraint. Advanced CCS scenario, on the other hand, shows little difference 

in the absence of a binding abatement constraint. CCS powerplant will always be more 

expensive than the same powerplant with capture component turned off, and thus little 

CCS technology will be deployed in the absence of a binding abatement constraint, no 

matter how low the cost is. This explains the difference in the initial abatement levels. 

However, as the abatement level increases, the CCS becomes more and more 

competitive in the market, and starts to increasingly diverge from the reference MAC 

curve. A similar divergence of advanced nuclear MAC curve from the reference MAC 

curve is observed, but the rate at which this occurs is less than in the CCS case, 

especially at the high abatement levels. 

Notice, in Figure 2.18, that the advanced CCS scenario shows rapidly increasing 

additional CCS deployment with respect to the abatement level (up to the point where 

CCS must be driven out due to a high carbon price). On the other hand, the advanced 
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nuclear scenario shows a rather slower rate of increase. In the absence of CCS 

technology (and also in the absence of a low-cost energy storage technology for 

intermittent sources), nuclear power may be the only technology capable of supplying the 

majority of base-load electricity without substantially raising the electricity cost. As can 

be seen in the reference scenario without CCS (top left panel in Figure 2.18), the 

deployment of nuclear power increases rapidly to the point where more than half of 

electricity is produced by nuclear power. Cost reduction in nuclear electricity 

substantially increases nuclear deployment, but nuclear power still remains more or less 

the sole means to decarbonize the remaining energy market. If rapid expansion in nuclear 

hits an obstacle—such as uranium shortage, limits on uranium enrichment imposed due 

to security concerns, limits on nuclear waste disposal capacity, etc.—there aren’t any 

other alternatives to substitute nuclear power at substantial scale at modest cost. 

However, while CCS is a relatively expensive alternative, having CCS provides 

an option to optimally diversify the base-load among nuclear and CCS. This allows the 

energy market to avoid deploying either technology to the potential maximum, where the 

marginal cost is likely to rapidly rise (due to unfavorable conditions). At high abatement 

levels, this diversification option may prove to be valuable.  

Combining the larger initial abatement of advanced nuclear and the faster rate of 

divergence of advanced CCS inevitably results in a crossing point where the two 

advanced MAC curves switch rankings (in this example, at around 30% abatement). The 

exact level at which the crossing occurs is sensitive to the assumptions of the 

technologies. The important insight from this example is that the relative values of the 
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two technologies are dependent upon the levels of abatement constraints imposed (or 

ultimately the level of damage from climate change).  

Consider, for instance, a policy-maker facing a decision between the two 

advanced technologies that can be achieved with the same level of investment in R&D. If 

the abatement constraint—informed by the predicted level of climate damage—is lower 

than the crossing point, investing in advanced nuclear would be preferable; the MAC as 

well as the total abatement cost would be lower compared to the advanced CCS case. On 

the other hand, if the abatement constraint is higher than the crossing point, the 

investment decision could be different. Investing in CCS would yield a lower MAC than 

investing in nuclear, but the total abatement cost would not necessarily be lower for CCS. 

Only at the abatement level beyond the point16 where the integrated area under advanced 

CCS MAC curve is smaller than that of advanced nuclear MAC curve, would CCS have 

advantage over advanced nuclear in terms of the total abatement cost.  

The comparison between the advanced CCS and the advanced nuclear emphasizes 

the heterogeneities among characteristics of technologies. Not all technologies yield the 

same pattern of impacts on the MAC curve. Some technologies allow achieving some 

low levels of abatement solely induced by technological change at zero cost, but yield 

relatively smaller reductions in MAC at high abatement levels. Other technologies allow 

little zero-cost initial abatement, but yield substantially larger reductions in MAC at high 

abatement levels. The relative values of technologies depend on the level of abatement 

constraint. Under uncertainties regarding the potential level of damage from climate 

change, diversification of alternative energy technologies may be useful as a risk-hedging 

strategy.  
                                                 
16 Trivially, this point would be higher than the MAC curve crossing point. 
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2.5. Conclusion and Discussion 

In this essay, I attempted to establish an analytical framework to assess the value 

of alternative energy-producing technologies under carbon dioxide emissions constraints. 

Particularly I focused on the impact that advanced technologies have on the marginal 

abatement cost. First, I developed a general framework defining marginal abatement cost 

and the conditions under which the energy production mix is optimized.  

Second, I simplified the framework into a three technology model, and derived 

functions for marginal production, initial abatement, and the reductions in marginal 

abatement cost. It was observed that these three variables are determined by the 

magnitude of reduction in marginal cost of production, as well as the relative slopes of 

demand function and of marginal cost functions of competing technologies. I have found 

that, in general, larger benefit in terms of both initial abatement and reductions in MAC 

would occur when: 

1. the reduction in the marginal cost of advanced alternative energy is larger; 

2. the marginal cost of advanced alternative energy is less sensitive to quantity; 

3. the marginal cost of conventional alternative energy is more sensitive to quantity; 

4. the marginal benefit of aggregate energy is more sensitive to quantity. 

Also, for initial abatement the slope of fossil technology’s MC function matters: the less 

sensitive to quantity it is, the larger the initial abatement. 

Third, I applied the framework to explain the differential behavior of the MAC 

curve in several simulated examples, each emphasizing different issues. First, I analyzed 

advanced solar PVs focusing on the confounding effect of deployment limitations. 

Second, I analyzed solar PVs focusing on the characteristics of competing technologies in 
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the market. Third, I analyzed CCS technologies focusing on the trade-off between cost 

reduction and capture rate. Fourth, I analyzed a CCS technology and advanced nuclear 

technology focusing on the different distribution of reduction throughout the MAC curve, 

emphasizing the importance of diversification. 

These examples show that depending on the technology specifications, the impact 

of technological change on marginal abatement cost is not uniform across abatement 

levels. Rather, different types of technological changes show distinct patterns of impact, 

with relative strengths and weaknesses under different abatement levels. Merely focusing 

on either aggregate marginal abatement cost or reduction in the cost of energy production 

alone cannot adequately assess the value of technology under emission constraints. The 

dynamic interactions in the market matter. It is important to look at the characteristics of 

each technology to fully explain the interactions and resulting equilibrium.  

The framework for assessing the impact of technological change on the abatement 

cost developed in this essay is highly stylistic in its design. While the simplicity of the 

design provides clarity to the issue, its drawback is limited coverage across 

heterogeneous technological characteristics. For one thing, the framework exclusively 

focuses on the cost aspect of the technologies; essentially reducing every other aspect of 

the technologies into the cost curve. This is simple to do in an abstract model, but 

numerically estimating the shadow cost of non-market barriers – most notably for nuclear, 

with its regulatory constraints, security concerns, etc. – is a difficult task in practice. 

Future research could explicitly address the non-market constraints and how innovation 

in its broadest sense could impact the abatement cost by changing the stringency of such 

constraints. 
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Another direction of potential extension is to explicitly address the interactions 

among multiple advanced technologies. This is the focus of Chapter 3. The current 

framework mainly addresses each technological change in isolation. However, as 

demonstrated in Chapter 3, the availability of competing advanced technologies in the 

market has large impact on the value of an advanced technology. The explicit focus on 

the substitutability of the technologies would provide a richer understanding of the issue. 

The current framework is also deterministic in its design. It has limited focus on 

the deterministic process after the advanced technologies have been developed. However, 

both the advanced technology development process and the market interaction process of 

the technology are stochastic in their nature. Explicitly representing the stochastic nature 

could provide a broader picture of the process. Moreover, the current framework reduced 

future impact into a single aggregated variable, and it does not address the intertemporal 

dynamics of technology R&D. This simplification provides clarity to the deterministic 

process. However, with the introduction of stochasticity, explicit treatment of time 

dynamics would be necessary to adequately represent the resolution of the uncertainties. 

These two issues are the focal points of Chapter 4. 

The framework developed in this essay is the first building block upon which the 

next two essays will be built. The potential extensions suggested here would further 

enrich the understanding of the impact of technological change on the abatement cost. 

The combined body of research would help inform public R&D investment strategies for 

energy technologies. 
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Chapter 3. Technology interactions among low-carbon energy 

technologies: What can we learn from a large number of scenarios? 
 

3.1. Introduction  

Stabilizing atmospheric concentrations of carbon dioxide (CO2) at low levels will 

require a substantially different energy system from that of today. Improvements in the 

technologies that produce and consume energy will ease the transition toward a low-

carbon energy system. Numerous near-term decisions related to this transition—for 

instance, choices about public R&D investments—are based on uncertain projections of 

the mix of different technologies that might be deployed to meet various stabilization 

goals. This uncertainty adds a layer of difficulty for decision makers attempting to define 

the appropriate focus of policies that might influence the development and deployment of 

technologies. Not only is there considerable uncertainty about the cost and performance 

of individual future technologies, there are also complex interactions among technologies. 

For instance, the benefits of improvements to nuclear power will depend on the degree of 

improvements in competing technologies such as solar photovoltaics or wind power. 

Given the numerous uncertainties involved, addressing such interactions has proved a 

demanding analytical challenge. This essay explores the implications of uncertain and 

interacting technological advances for the challenge of stabilizing CO2 concentrations, 

through the use of a large number of runs of the Global Change Assessment Model 

(GCAM).17 

Many studies have used simulation models to estimate the costs required to 

stabilize CO2 concentrations contingent on combinations of assumptions about the cost 

                                                 
17 GCAM is a direct descendant of MiniCAM. The history of this family of models is discussed in more 
detail in Section 2. 
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and performance of potential low-carbon technologies (see, for example, Clarke et al., 

2006, 2008; Luderer et al., 2009; Edenhofer et al., 2010; Richels et al., 2007). Such cost 

estimates can inform decisions about near-term abatement policies and about effective 

R&D investment strategies.18 Given the large number of possible advances over a wide 

range of technologies that are relevant to climate change, most studies have relied on a 

representative scenario approach, in which a small number of scenarios are constructed to 

represent distinct combinations of advances. 

Two recent efforts using MiniCAM, the predecessor of GCAM, illustrate both the 

strengths and the limitations of this approach. In the first of these, Baker et al. (2008c, 

2009a, 2009b, 2010) used expert elicitation to estimate the probability of overcoming 

technological hurdles—such as cost, efficiency, and reliability—for several technology 

groups at different levels of R&D investment. These estimates were then combined with 

marginal abatement cost curves derived from MiniCAM to yield R&D priorities for the 

technologies. Several analyses were conducted, each focusing on a single group of 

technologies—solar photovoltaic (Baker et al., 2009a), carbon capture and storage, or 

CCS (Baker et al., 2009b), nuclear power (Baker et al., 2008c), and automobile battery 

(Baker et al., 2010)—while assuming that the use of all other technologies remained 

constant at business-as-usual levels. The interaction among the technologies, each with 

uncertain improvements, was thus left for future research. 

In the second effort, analysis for the U.S. government's Climate Change 

Technology Program (CCTP) used a representative scenario analysis to evaluate the 

                                                 
18 A full-fledged portfolio approach to such R&D investments would require (1) defining the relationship 
between R&D investments and technological advance, (2) determining the implications or benefits of such 
advances, and (3) an analytical framework for combining these to evaluate and compare portfolios. This 
study focuses on the second of these three steps.  
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impact of advanced technologies and the interactions among them on the cost of 

abatement (Clarke et al., 2006, 2008). The CCTP scenarios were used to estimate the 

total cost of achieving different stabilization levels for a number of representative 

technology scenarios and to describe the associated energy system dynamics. Each 

representative scenario focused on a particular set of assumptions about successful 

technology development: some focused on successful development of individual 

technologies, such as advanced renewable energy, advanced end-use technology, 

advanced nuclear, or advanced CCS; others considered simultaneous advancement in 

combinations of these technologies. (Recent work in the RECIPE and ADAM model-

comparison projects—Luderer et al., 2009; Edenhofer et al., 2010—used a comparable 

sensitivity-based approach to create representative scenarios.) Analyses such as these 

yield valuable insights about the interactions among technologies. For instance, they 

demonstrate that the cost reductions attributable to each advanced technology are not 

necessarily additive,19 they provide a basis for comparing the relative value of particular 

technological advances, and they highlight the manner in which the underlying energy 

system might evolve differently under different technological futures.  

Although the representative scenario studies provide valuable insights, questions 

remain regarding the degree to which a focus on only a small number of scenarios limits 

understanding of the full space of technological futures. To what degree might the 

representative scenario approach miss important insights or lead to erroneous conclusions 

that would be evident from more thorough exploration of the technological space? Or, put 

another way, to what degree does a full combinatorial approach corroborate the insights 

                                                 
19 That is, the sum of the stabilization cost reductions obtained from considering each advanced technology 
individually exceeds that obtained from considering such technologies in combination, because the 
technologies are (imperfect) substitutes for one another. 
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from the representative scenario approach, and what new insights does it provide? This 

essay will address these questions by comparing the CCTP representative scenarios with 

the results of a full combinatorial analysis of 768 model runs based on the CCTP 

technology assumptions. 

Exploring large scenario sets and identifying key variables has a long history, 

particularly in combination with uncertainty techniques such as Monte Carlo analysis. 

For example, Reilly et al. (1987) performed uncertainty analysis of the IEA/ORAU 

model carbon emissions projection using the Monte Carlo method and analyzed the 

database of 400 samples. Scott et al. (1999) performed a similar exercise with the 

MiniCAM model. Gritsevskyi and Nakicenovic (2000) analyzed the effect of induced 

technological learning and uncertainty on future energy systems by examining 130,000 

scenarios with 520 alternative technology dynamics. Webster et al. (2008) conducted a 

400-sample Monte Carlo simulation study using in-house expert elicitation on 

technologies and social parameters of the EPPA model, and they analyzed the relative 

contribution of uncertainty in the parameters considered.  

This essay builds on both of these traditions. I apply variation in technology 

assumptions from the CCTP scenarios to build a database of 768 scenarios. In contrast to 

explicit uncertainty-based studies using probabilistic sampling techniques, this dataset is 

constructed on a full combinatorial approach, and the focus of the resulting analysis is on 

exploration of the technological space. This analysis is the first part of a larger 

exploratory modeling project. In this part of a typical exploratory modeling project, an 

experimental design consisting of a carefully chosen set of different combinations of 

uncertain model input parameters is first created and analyzed through a simulation 
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model. In the second part, the resulting database is analyzed through a combination of 

interactive visualization, statistical analysis, and computer search in order to identify and 

test alternative hypotheses relevant to some decision problem (Bankes, 1993). A primary 

focus of the project is to explore the market interactions among advanced technologies 

and their combined impact on the stabilization cost. 

After introducing the modeling tool used in this study (GCAM) in Section 3.2 and 

describing the experimental design in Section 3.3, in Section 3.4 I summarize the 

database of technology combinations and corresponding stabilization costs from three 

different perspectives, each addressing different policy questions. The first approach is a 

broad assessment of the degree of variation in energy consumption and stabilization costs 

across all scenarios in the dataset, to highlight some general characteristics of the 

technology space. The second approach is an assessment of the ranges of stabilization 

costs associated with each level of technology development, which might be useful if the 

policy goal is to maintain costs below a particular level. The third approach is an 

assessment of the stabilization cost reduction associated with improvements in individual 

technologies, which might be useful if the goal is to allocate R&D budgets among 

technologies using a standard portfolio-based approach.  

Last section concludes with summary thoughts on the analysis and examines what 

has been learned beyond what representative scenario analysis has revealed. This section 

also briefly introduces an example of the dataset utilization in a formal scenario 

discovery method, performed to identify the combinations of technology assumptions 

most strongly associated with an inability to meet stabilization targets at an acceptable 

cost. 
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3.2. The Global Change Assessment Model  

The analysis in this essay uses the GCAM integrated assessment model. GCAM 

was built on the foundations of MiniCAM (Edmonds et al., 2004; Kim et al., 2006; 

Clarke et al., 2007; Brenkert et al., 2003), which, in turn, was a descendant of a model 

developed by Edmonds and Reilly (1985). GCAM and its predecessors have been used 

extensively in global climate change analyses conducted for the Intergovernmental Panel 

on Climate Change (IPCC), various national governments, and nongovernmental 

organizations.20 

GCAM links a global energy economy model and an agricultural land-use model 

with a suite of coupled gas-cycle, climate, and ice-melt models integrated in the Model 

for the Assessment of Greenhouse-gas Induced Climate Change (MAGICC).21 GCAM 

tracks emissions and concentrations of greenhouse gases and short-lived chemical 

species.22 The economic simulation of GCAM is driven by assumptions about population 

size and labor productivity that determine potential gross domestic product in each of 14 

geopolitical regions. GCAM is solved by establishing market-clearing prices for all 

energy, agriculture, and land markets such that supplies and demands for all markets 

balance simultaneously; that is, there are no excess supplies or demands for land, 

agricultural products, primary energy, final energy, or energy services. 

GCAM is solved in 15-year time steps through 2095. It is a dynamic-recursive 

model: decisions in any period are made only with information about that period, but the 

                                                 
20 The model description can be found at www.globalchange.umd.edu/models/gcam/. 
21 For this study MAGICC 4.1 (Wigley, 2003) was used. 
22 Fifteen greenhouse-related gases are tracked: CO2, CH4, N2O, NOx, VOCs, CO, SO2, carbonaceous 
aerosols, HFCs, PFCs, and SF6. Each is associated with multiple human activities that are explicitly 
modeled in GCAM. All greenhouse gases are priced in U.S. dollars per ton of CO2 equivalent according to 
their 100-year global warming potential, to ensure balance of the climate policies, but given my focus on 
energy technologies, in this essay I analyze only the emissions and the cost of abatement of CO2. 
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consequences of decisions made in one period (resource depletion, capital stock build-up, 

etc.) sequentially influence subsequent periods, including the decision set available in 

those periods.  

The GCAM energy system includes representations of primary energy resources, 

the processes involved in primary energy production and transformation to final fuels, 

and the employment of final energy forms to deliver energy services. Energy supplied 

from depletable resources—fossil fuels and uranium—depends on the abundance and 

grade of available resources as well as available extraction technologies. These depletable 

resources exhibit increasing costs in the absence of significant technical change. As the 

more attractive resources are consumed, less attractive resources are exploited, and, all 

else being equal, costs rise. Renewable resources such as wind and solar are produced 

from graded renewable resource bases.  

Primary energy forms include oil, natural gas, coal, bioenergy, uranium, 

hydropower, geothermal, solar, and wind energy. GCAM models the transformations 

from these primary energy forms into the following six final energy forms: refined 

liquids, refined gas, coal, commercial solid bioenergy, hydrogen, and electricity. These 

energy forms are then used to provide end-use services in the buildings, industry, and 

transportation sectors.  

GCAM is a technology-rich integrated assessment model. It contains detailed 

representations of technology options in all of the economic components of the system. 

Technology choice in GCAM is determined by market competition. Individual 

technologies compete for market share based on their technological characteristics (their 

efficiency in producing energy from inputs), the cost of inputs, and the price of outputs. 
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GCAM uses a logit choice methodology to determine the market shares of different fuels 

and technologies, based on a probabilistic model of the relative prices of the competing 

fuels or technologies (Clarke and Edmonds, 1993; McFadden, 1974, 1981). This 

methodology is based on the idea that every market includes a range of different suppliers 

and purchasers, each of which may have different needs and may experience different 

local prices. Therefore, not all purchasers will choose the same technology when the 

average price of that technology is lower than the average price of a competing 

technology. The logit choice methodology allocates market shares based on prices, but 

ensures that higher-priced goods gain some share of the market, which is consistent with 

the heterogeneity observed in real markets. 

The future rates of change in the characteristics of technologies for producing, 

transforming, and utilizing energy under different technology scenarios are explained in 

detail in the following section. All other model assumptions in this analysis are based on 

the version of the model used in the 2008 CCTP study (Clarke et al., 2008). 

To meet particular atmospheric CO2 concentration goals, emissions trajectories 

are imposed on the model. These pathways ensure that the CO2 concentration does not 

exceed the stabilization target at any point in the modeling timeframe (Fig. 3.1). The 

stabilization costs for each model period are estimated by integrating the area under the 

marginal abatement cost curve.23 The net present value of the total cost of stabilization is 

                                                 
23 There are many metrics used to quantify the economic implications of mitigation. Standard cost metrics 
include GDP loss, consumption loss, the area under the marginal abatement cost curve, and compensated 
variation and equivalent variation of consumer welfare loss. The area under the marginal abatement cost 
curve used here represents the total abatement costs of the stabilization policy, including reductions in both 
consumer and producer surplus (Calvin et al., 2009) but excluding surplus gains through avoided climate 
damages. This metric is appropriate for a partial equilibrium model like GCAM, where sectors less related 
to emissions are represented in a highly abstract manner.  
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calculated by summing the discounted annual costs of stabilization from 2005 to 2095. A 

real discount rate of 5% per year is used for discounting future periods. 
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      (a) Emission Trajectories           (b) CO2 Concentration Levels 

Fig. 3.1. Representative trajectories for atmospheric CO2 stabilization at 450 ppmv and 

550 ppmv. Maximal unconstrained CO2 trajectories (“Low Tech”) are shown for 

comparison, represented by the most technology-poor combination (no new nuclear, no 

CCS, and reference level for all other technologies). 

 

3.3. Experimental Design 

3.3.1. Background: The CCTP Scenarios 

Because the research in this study is built from a previous set of representative 

scenarios (the CCTP scenarios; Clarke et al., 2008), it will be helpful to first review this 

set of scenarios. The CCTP scenarios explored 10 distinct technology combinations based 

on variations in assumptions regarding both supply and end-use technologies (Table 3.1). 

They included both a fully advanced scenario, in which all technology assumptions were 

set at their most optimistic levels, and a “reference” scenario, in which all assumptions 

were set to their more pessimistic, or reference, levels. Eight additional combinations of 
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both advanced and reference assumptions were then constructed to create a set of 

scenarios that lie between the above extremes. These intermediate scenarios are intended 

to provide insight into particular technological combinations that might prove particularly 

important. Of course, these 10 scenarios are not a full representation of all the technology 

futures that might evolve based on the underlying technology assumption sets. 

 

Table 3.1. Technology combinations used in the CCTP scenarios. 
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 Ref 
Nuc 
Ref 

Nuc 
Adv 

CCS 
Bio 
CCS 

RE EE EERE Supply Adv 

TRN: Electric 
Vehicles 

REF REF REF REF REF REF ADV ADV REF ADV 

TRN: Fuel 
Cell Vehicles 

REF REF REF REF REF REF ADV ADV ADV ADV 

TRN: Other REF REF REF REF REF REF ADV ADV REF ADV 

Buildings REF REF REF REF REF REF ADV ADV REF ADV 

Industry REF REF REF REF REF REF ADV ADV REF ADV 

Electricity and 
H2 CCS 

FIX FIX FIX REF REF FIX FIX FIX REF REF 

Dedicated 
Energy Crops 

REF REF REF REF ADV ADV REF ADV ADV ADV 

Hydrogen 
Production 

REF REF REF REF REF REF REF REF ADV ADV 

Wind Power REF REF REF REF REF ADV REF ADV ADV ADV 

Solar Power REF REF REF REF REF ADV REF ADV ADV ADV 

Nuclear 
Fission 

FIX REF ADV FIX FIX FIX FIX FIX ADV ADV 

Geothermal REF REF REF REF REF ADV REF ADV ADV ADV 

 

Note: TRN, transportation; CCS, carbon capture and storage.  

Source: Modified from Clarke et al. (2008).
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Table 3.2. Levels of technologies considered in this study. 
 

Fixed Reference Advanced 

Solar N/A 
Capital costs drop by 1%-
2% per year 2005-2050 

Capital costs drop by 2%-3.5% per 
year 2005-2050 

Wind N/A 
Capital costs drop by 
0.25% per year 2005-2050 

Capital costs drop by 0.5% per year 
2005-2050 

CCS 
No CCS in any 
applications 

CCS available in 
electricity, hydrogen, and 
cement sectors (starting at 
about $40 / t CO2) 

N/A 

S
u

p
p

ly
 T

ec
h

n
o

lo
g
y

 

Nuclear 

Nuclear power 
generation 
fixed at 2005 
levels 

Nuclear power available at 
$2300/kW in 2020, 
decreasing at 0.1% per 
year 

Nuclear power available at 
$2300/kW in 2020, decreasing at 
0.3% per year 

Buildings N/A 
Improvement in building 
technologies and shells 
based on EIA (2007) 

Accelerated improvement in costs 
and performance of energy-saving 
technologies and building shells 

Transport-

ation 
N/A 

Improvement in 
transportation technologies 
based on EIA (2007) 

Accelerated improvements in 
conventional technologies, and 
availability of low-cost electric and 
fuel-cell light duty vehicles 

E
n

d
-U

se
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n
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g
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Industry N/A 

Technology efficiencies 
improve at 0.1% per year; 
process intensities improve 
at 0.35% per year 

Boiler and motor system efficiencies 
improve by 10% and 25% by 2035; 
best available practices from IEA 
(2007) are in use by 2035 

O
th

er
 

Other N/A 

Long-term agricultural 
productivity improvement: 
0.25% per year. 
Engineered geothermal 
systems (EGS) not 
available. 

Long-term agricultural productivity: 
0.5% per year. Accelerated 
improvements in hydrogen 
production. EGS available 

 
Source: Modified from Clarke et al. (2008).  
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3.3.2. A Full Combinatorial Approach 

To create the database of simulation runs, 384 combinations of assumptions about 

the future cost and performance of eight different advanced low-carbon technologies 

were developed, as shown in Table 3.2. Assumptions about each individual technology—

three levels of cost and performance for nuclear, and two levels each for solar, wind, CCS, 

buildings, transportation, industry, and a group of “other” technologies—were adopted 

from the CCTP study (Clarke et al., 2008). A full combinatorial design over these 

technology levels gives the 384 cases (3·27 = 384). 

Stabilization costs, primary energy consumption, and other key outputs were then 

calculated using GCAM for each of 768 cases: each of the 384 combinations of 

technology assumptions combined with each of two CO2 stabilization levels: 450 ppmv 

and 550 ppmv. The implications of these low stabilization targets are of significant 

concern for policy makers. 

Table 3.2 describes the differences between the sets of assumptions for each level 

for each technology. Reference-level technology pathways do not represent static 

technology; rather, they represent improvements in the technologies at a level that can be 

considered as a point of departure for the exploration of more aggressive levels of 

advance. Advanced-level technology pathways represent accelerated improvements in the 

technologies that typically result in lower cost per energy output for low-carbon supply 

technologies and lower energy intensity (or higher autonomous energy efficiency 

improvement—AEEI) for end-use technologies. Although all assumptions about future 

technology are inherently speculative, the advanced levels are designed to be considered 

plausibly achievable with sufficient investment to overcome the technical hurdles.  
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Fixed technology pathways represent special cases where the technologies are 

artificially fixed in their base year (2005) quantities and do not freely compete in the 

market. For CCS, this represents a future in which society does not utilize the technology 

at all because of concerns regarding sustainability or reliability or for any currently 

unknown reason. For nuclear energy, it represents a future in which nuclear electricity 

production is held constant at its 2005 level. Such a future may be possible given 

concerns regarding proliferation, waste storage, or safety.  

Finally, a generic group of technologies is lumped together as “others,” also with 

a reference and an advanced level. Technologies that are included in the model but were 

excluded from individual analysis, such as hydrogen, geothermal, and agricultural 

technologies, are included in this group.  

 

3.4. Results 

This section summarizes the database of 768 scenarios using the three approaches 

described above, each addressing different policy questions, and describes the relevant 

findings.  

 

3.4.1. Range of Outcomes 

Fig. 3.2 shows a full scatterplot of results from the 768 scenarios. Cumulative 

primary energy consumption from 2005 through 2095 is shown on the horizontal axis and 

the net present value of stabilization costs on the vertical axis. The plot demonstrates the 

trade-offs between energy consumption and costs over the technology combinations 
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explored in the study. Here I highlight several elements of the scenarios that are evident 

from this overview. 

 

 

Fig. 3.2. Scatterplot of simulation output. Diagonal clusters are formed by combinations 
of common end-use technology levels (transportation, buildings, and industry). Clusters 
C and D are in fact overlaps of two separate clusters each. The cost reduction potentials 
of advanced building and transport technology are very similar at the 450-ppmv 
stabilization level. CCTP scenarios marked for reference. Technology levels associated 
with each cluster are as follows:  

A, TRN-REF, BLD-REF, IND-REF;  
B, TRN-REF, BLD-REF, IND-ADV;  
C, TRN-REF, BLD-ADV, IND-REF or TRN-ADV, BLD-REF, IND-REF;  
D, TRN-REF, BLD-ADV, IND-ADV or TRN-ADV, BLD-REF, IND-ADV;  
E, TRN-ADV, BLD-ADV, IND-REF;  
F, TRN-ADV, BLD-ADV, IND-ADV. 

 

 

 

As would be expected, costs are higher for the 450-ppmv scenarios than for the 

550-ppmv scenarios, and, in general, energy consumption is lower in the 450-ppmv 

scenarios. There is significant overlap in energy consumption, but only limited overlap in 
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costs. Only the most expensive cases of the 550-ppmv scenarios are comparable in costs 

to the least expensive cases of the 450-ppmv scenarios. 

There is distinct diagonal clustering of the scenarios, largely driven by discrete 

end-use efficiency combinations. A shift from one diagonal cluster to another represents 

an end-use technology-induced conservation, where more efficient end-use technology 

allows lower energy consumption and lower stabilization cost. On the other hand, the 

variance within a diagonal cluster represents supply technology-induced price reduction, 

where low-cost, low-carbon technologies reduce the market price of energy at a given 

emissions constraint. This reduction in energy price, in turn, reduces the stabilization cost 

and increases energy consumption. 

Wide variation in stabilization costs is observed, reinforcing the notion that 

technology is a significant factor in determining these costs. For example, for a 450-

ppmv target, the worst-case scenario with fixed nuclear, no CCS, and all other 

technologies at the reference levels has the highest stabilization cost, at $13 trillion, 

whereas the best-case scenario with reference level CCS and all other technologies at the 

advanced levels has the lowest, at $2.7 trillion. The absolute magnitude of the range of 

costs is much larger for the 450-ppmv target: about $9.8 trillion, compared with $2.6 

trillion for the 550-ppmv target.24 Under more stringent targets, the significance of 

advanced technologies becomes more pronounced. 

One goal of this study is to compare the results of the full combinatorial approach 

used here with a representative scenario approach. To highlight this comparison, I have 

mapped the 10 CCTP 450-ppmv scenarios (Clarke et al., 2008) over the scatterplot. By 

                                                 
24 In relative terms, the stabilization cost range is wider for the 550-ppmv than for the 450-ppmv target. The 
minimum cost is 93% below the maximum cost for the 550-ppmv scenarios, and 78% below the maximum 
cost for the 450-ppmv scenarios. 
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design, the CCTP scenarios are selected to represent the extremes and several other key 

data points. These representative scenarios thus span the technology space, covering all 

four corners. Indeed, one of the reasons that the CCTP scenarios can provide useful 

insights despite their small number is that they are carefully designed to provide a sense 

of the extremes. In contrast, the full combinatorial set is designed to fully represent the 

space, revealing the interior distribution.  

Note that all CCTP scenarios lie within the two outside diagonal clusters: all end-

use technologies at their reference level (cluster A) or all at their advanced level (cluster 

F). Understanding the cases in the regions largely ignored by the representative scenario 

analysis is one of the potential benefits of a full combinatorial approach. The pertinent 

comparison in this regard is whether additional insights are available by exploring the full 

space rather than simply the extremes. 

 

3.4.2. Range of Stabilization Costs by Technology 

Fig. 3.3 shows histograms of stabilization costs from the same scenarios for two 

technologies: CCS (left panel) and buildings technology (right panel); each panel shows 

two histograms, each representing a subset of scenarios associated with a specific level of 

the indicated technology. Separating out the distributions by the level of development in 

one specific technology provides insights into the role of each of these different 

technological improvements. Perhaps the most salient point is that merely allowing CCS 

to compete in the market reduces total stabilization costs roughly by half in the high cost 

scenarios. Furthermore, the clustering of costs is tighter with CCS than without CCS. To 

a large degree, the presence of CCS serves as a hedging strategy by truncating the high-
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cost tail. Costs in the low-cost range are less affected by the presence or absence of a 

particular technology such as CCS than costs at the high end of the range. The presence 

of CCS is most valuable when substitutes such as nuclear power are not available. In 

contrast, improvements in buildings technologies result in a relatively constant shift, 

consistent with the nature of advanced end-use technologies that allow given end-use 

service to be provided with less energy by increasing efficiency (discussed in more detail 

later in this section). 

 

 

(a) CCS focus           (b) Buildings focus 

Fig. 3.3. Distribution of the cost of CO2 stabilization at 450 ppmv under different 
technology levels. CCS-FIX, CCS technology fixed in base year (2005); CCS-REF, CCS 
technology set at reference level (see Table 3.2); BLD-REF, buildings technology set at 
reference level; BLD-ADV, buildings technology set at advanced level. 

 

Fig. 3.4 shows the range of stabilization cost estimates associated with each 

specific level of each individual technology. For example, the first column on the left in 

each panel shows costs for all 192 scenarios with reference-level solar technology, and 

the next column shows the other 192 scenarios with advanced-level solar technology. 

Together these two columns represent the full set of scenarios constructed for the 

indicated stabilization level. Each column is an abstract representation of the histogram in 

Fig. 3.3, where each horizontal bar represents an incidence of a stabilization cost level 
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under a specific technology combination. For example, the last column in the top panel of 

Fig. 3.4 represents the same distribution as the partial histogram labeled CCS-REF in the 

left panel of Fig. 3.3.  

In Fig. 3.4 what may appear to be solid black boxes are overlapping incidences 

equivalent to the modal points in a histogram, whereas the sparsely populated areas 

correspond to the troughs in a histogram. The minimum and maximum cost estimates are 

shown with longer bars for emphasis. These correspond to the situations in which all 

other technologies are at their most advanced or their least advanced level, respectively. 

The gray boxes show the range for the middle half of all the considered cases.  

Exploring the distribution of total costs associated with individual technologies 

provides insights that might be of value in a risk-management approach to portfolio 

planning. If the policy goal is to ensure that stabilization costs do not exceed a particular 

level, then it is useful to know which single technological advance would 

deterministically achieve this goal. (The scenario discovery methods performed in 

McJeon et al. (2011) explore this same question, but using formal cluster-finding 

algorithms that allow for more nuanced understanding and greater insight into multiple 

technology interactions.) It is evident from Fig. 3.4 that some technologies substantially 

reduce the number of ways that stabilization costs might exceed a specified level.  

Consider worst-case scenarios where all other technologies have failed to advance. 

The long horizontal bars at the top of each column in Fig. 3.4 represent these cases. For 

example, if CCS technology were fully available in the market (CCS-REF), then even if 

all others failed to advance, the stabilization cost would not exceed $6.5 trillion for 450 

ppmv and $1.6 trillion for 550 ppmv. 
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450 ppmv 

 
 

550 ppmv 

 
 

Fig. 3.4. Distributions of stabilization cost for each technology level. Thick horizontal 
bars at extremes of each column indicate minimum and maximum stabilization costs; all 
other incidences of stabilization costs are marked with thin bars; gray boxes indicate the 
middle half of considered cases. REF, reference; ADV, advanced; SOLR, solar; BLD, 
buildings; IND, industry; TRN, transportation; NUC, nuclear; CCS, carbon capture and 
storage. 
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If CCS were not available, however (CCS-FIX), the costs could be more than $12 trillion 

and $2.8 trillion, respectively. One can imagine an implicit constraint on the maximum 

stabilization cost, beyond which the cost would be socially unacceptable. Having a 

particular advanced technology or a combination of technologies available would 

guarantee that the constraint would be met. Investing in these technologies may serve as a 

hedging strategy against the potential failure of other technologies. 

A more general way to understand the risk-management characteristics is to 

observe the degree to which individual technological advances compress the distribution 

of stabilization costs. For example, Fig. 3.3 showed that the inclusion of CCS compressed 

the cost distribution by eliminating many of the outcomes with the highest stabilization 

cost, but had a more modest influence on those with low stabilization cost; technological 

advances in the buildings sector shifted the distribution in a more consistent manner. Put 

another way, the inclusion of CCS had a larger effect on the high-stabilization-cost 

outcomes (pessimistic technology combinations) relative to the low-stabilization-cost 

outcomes (optimistic technology combinations) than did the technological advances in 

the buildings sector. 

Generally speaking, the supply technologies—particularly nuclear and CCS—

tend to be more effective at limiting stabilization costs in the worst-case technology 

scenarios than the end-use technologies. So long as the end-use sectors can largely be 

supplied by electricity produced from the advanced supply technologies, advances in 

these technologies can bring down the stabilization cost across the economy. In contrast, 

advances in end-use technologies are largely contained within their sector; for example, 
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no matter how effective building insulation materials become, they cannot reduce 

emissions in the transportation sector.  

On the other hand, improvements to end-use technologies tend to have a larger 

relative effect on costs in the best-case scenarios than the supply technologies. The best 

case—the thick horizontal bar at the bottom of each column—represents the situation 

where every other technology succeeds. When there are multiple low-carbon supply 

technologies available, the presence of an additional low-carbon supply technology yields 

little benefit; there is a substantial degree of substitution between these technologies. The 

end-use technologies do not exhibit this substitution effect for two reasons, the first by 

nature and the second by design. First, the logic of sectoral separation applies here as 

well; end-use technologies influence a distinct portion of the energy system, regardless of 

advancement in other sectors. Second, the end-use sectors in this study are represented as 

aggregate sectors, unlike the supply technologies, which are represented individually. If a 

more disaggregated approach to end uses were used in this analysis, one in which 

intrasector technology competition was explicitly introduced—such as a competition 

between electric vehicles and hydrogen vehicles—many end-use technologies might 

behave more like the supply technologies. 

Note that this analysis does not make any assumptions about the probabilistic 

weighting of the 768 cases. Rather, it is intended to help demonstrate key patterns in the 

interactions among technologies. For instance, the notion that some technologies can 

maintain stabilization costs below some specified level is true no matter what the 

probabilistic weighting of the technological advances. Having demonstrated such patterns, 

the analysis presented in this essay can help inform the latter stages of a full decision 
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analysis, in which decision makers might wish to place probability distributions over 

these cases to help suggest which policies they wish to pursue. 

Without attaching such probabilities, interpreting the middle of the distribution in 

definitive terms is more difficult than interpreting the extreme values. For instance, the 

gray boxes that represent the middle half of the cases considered should not be taken as 

the middle 50% probability range, but rather as the range where many of the scenarios are 

congregated. In terms of general patterns, the gray boxes give some indication of the 

relative compactness of the distributions of stabilization costs. Only in cases where the 

majority of other technologies fail would the stabilization cost be above the box. 

Conversely, except in a few fortunate cases where most other technologies succeed, the 

stabilization cost would be above the bottom of the box. The boxes tend to be more 

compact for end-use technologies, especially under less stringent stabilization targets. 

 

3.4.3. The Magnitude of Stabilization Cost Reduction: The “Value” of Technology 

Fig. 3.5 shows the range of reductions in stabilization cost associated with 

successful advancement of each technology. The charts are designed in similar fashion to 

those in Fig. 3.4. For example, in the top panel, the thick horizontal bar at the bottom of 

the CCS column represents the cost difference for stabilization at 450 ppmv between 

CCS-FIX and CCS-REF when all other technologies are at advanced levels (that is, the 

difference in level between the bottom thick bars in the CCS-FIX and the CCS-REF 

columns in the top panel of Fig. 3.4). In a sense, each data point here represents a 

possible “value” of technological change. In contrast to the information on total 

stabilization costs, these data would be most useful for developing an R&D investment 
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portfolio under a budget constraint in which the goal is to obtain the maximum total 

reduction in stabilization cost.25 

Note that two distinct technological changes in the nuclear technology are 

represented. The first one, nuclear-A represents the change from NUC-FIX to NUC-REF: 

a removal of quantity constraint on nuclear deployment without any change in the cost of 

nuclear power. The second one, nuclear-B represents the change from NUC-REF to 

NUC-ADV: a reduction in the capital cost of nuclear power 

Several observations are worth noting, most of which reiterate the themes from 

Section 3.4.2. First, there are vast differences among technological advances in terms of 

their impacts on stabilization cost. For example, advances embodied in wind, nuclear-B, 

and solar have smaller impacts than those represented by CCS and nuclear-A. One reason 

that some technological advances have a lower value than others is that there are 

limitations on the maximum deployment of the associated technologies. For example, the 

value of advances in solar in these scenarios is limited by the assumption that the 

intermittency of solar power limits the total share of solar power that could be 

incorporated into the electric grid. If the scenarios had included more aggressive 

assumptions about the ability to incorporate solar power—for example, through electric 

storage technologies or grid management—the benefits could have been higher (Baker et 

al., 2009a). Wind is subject to similar limitations. 

 

                                                 
25 Combined with probabilities of success, which would be associated with specific levels of R&D 
investments in a formal portfolio analysis, the reduction potential of stabilization costs can show which 
technologies’ expected returns on investment are consistently high given the probabilities of success of 
other technologies. 
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450 ppmv 

     

550 ppmv 

 

Fig. 3.5. Distributions of reduction in stabilization cost. Thick horizontal bars at 
extremes of each column represent cases where all other technologies have their worst 
(top) and their best (bottom) possible future performance. NUC-A, advancing from NUC-
FIX to NUC-REF; NUC-B, advancing from NUC-REF to NUC-ADV. 
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In other cases, the benefits of an advance are limited because it has minimal effect 

on the scale of deployment and mainly reduces the cost of a fixed amount of deployment. 

The two options for improvements in nuclear provide an interesting example of this. 

Reducing nuclear capital costs (nuclear-B) provides less stabilization cost reduction than 

removing quantity constraints on nuclear deployment (nuclear-A), which would result 

from advances in technologies (or social institutions) associated with nonmarket issues 

such as waste disposal, proliferation, or safety. At its reference capital cost, nuclear is 

already cost-competitive and saturates much of its potential market. The bottleneck exists 

in nonmarket issues. Reducing the cost of power plants, most of which would already be 

built at the reference cost, provides less value than developing technologies that will 

allow widespread deployment in the first place. 

A comparison of the values of technological advances in wind and CCS provides 

another window into this dynamic. The benefits of improvements to wind technology 

costs are limited not only by constraints on wind deployment, but also by the forecast that 

future wind technology is likely to be already competitive in many markets at reference 

costs. In contrast, the technological advance in CCS explored in this study is limited to 

making CCS available, which itself has extraordinary value. Advances that further reduce 

the costs of CCS would not have nearly as much value as the advances that allow the 

technology to be used in the market, at reference costs (Baker et al., 2009b). 

Some technological advances deliver substantial benefits even in a technology-

rich future, whereas the impact of others is near zero. For example, improving nuclear 

capital costs (nuclear-B) provides little benefit when all other advanced technologies are 
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available. On the other hand, advanced transportation technologies provide significant 

benefits in the same setting.  

It should be noted that a small impact on stabilization cost should not be 

interpreted as a small value in terms of R&D investment strategy. It may well be the case 

that small-impact technologies also require small investment. For instance, expert 

elicitation results by Baker et al. (2008c) show that the investment required for some 

advanced nuclear technologies is more than an order of magnitude higher than that 

required for the advanced solar technologies considered in Baker et al. (2009a). 

Second, the ranges of benefits across the full suite of technology combinations 

differ substantially among technologies. These ranges show that technologies are not 

always utilized to their full potential. Some have relatively narrower ranges (or consistent 

values; e.g., transportation), whereas others have relatively wide ranges (or diverse 

values; e.g., nuclear). These differences are consistently present for both the full range 

and the middle range represented by the gray boxes in Figs. 3.4 and 3.5. 

More generally, supply technologies exhibit wider ranges than end-use 

technologies. The reasoning follows the same line of logic as in Section 3.4.2. Among the 

technologies considered, supply-side technologies are highly substitutable; when several 

advanced inexpensive electricity technologies are available, having another yields 

decreasing incremental benefits. On the other hand, when there are no other advanced 

technologies in the market, the first advanced technology is highly valuable and will 

penetrate the market to the maximum extent possible. However, representing each end-

use sector as a separate and aggregate sector puts limitations on this substitution effect in 

the results. Disaggregation of the end-use sectors would partially introduce the 
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substitution effect, resulting in larger ranges of stabilization cost reduction potential, 

albeit confined to inherent sectoral limitations. 

Third, there are differences in the patterns between the 450-ppmv and the 550-

ppmv stabilization limits. Overall, both the range of stabilization cost reductions and the 

absolute value of the reductions are substantially diminished in the 550-ppmv case (note 

the scale difference in Fig, 3.5). The relaxed stabilization target reduces the total 

stabilization cost, and hence there is less reduction potential to begin with. So, although 

the relative range may have widened, the absolute range has been reduced.  

In addition, there is a switch in rankings between nuclear-A (removing quantity 

constraints) and CCS when moving between the two stabilization levels. CCS has a larger 

impact at the 450-ppmv level in terms of maximum, minimum, and the gray box, whereas 

nuclear-A has a larger impact at the 550-ppmv level under all measures except for the 

maximum. One reason for this is that removing nuclear energy constraints yields benefits 

even if there is minimal constraint on carbon emissions, whereas CCS is valuable only in 

the presence of a sufficient carbon constraint. This dynamic persists more strongly in the 

less stringent 550-ppmv scenarios than in the more stringent 450-ppmv scenarios.  

A second reason is that although both technologies are increasingly valuable with 

a tightening of carbon constraints, the rate of increase is faster for CCS technology. This 

effect is driven by the assumption that the currently observed aversion to nuclear power 

persists throughout the modeling period. In contrast, the observed preferences toward 

fossil power plants are assumed to carry over to fossil CCS plants in the future.  

A more general way to think about these dynamics is that the lower-unit-cost 

technology with limited social acceptance potential—in this case, nuclear—gets deployed 
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at the lower abatement level and hence yields relatively consistent values even under the 

less stringent stabilization levels. On the other hand, the abundant high-cost technology, 

CCS, gets deployed only as other options are exhausted. Hence, obtaining a high value 

for CCS requires a combination of poor technology availability and stringent targets. 

The value of end-use technology improvements relative to that of supply 

technology improvements is higher at the 550-ppmv stabilization level than at the 450-

ppmv level. One reason is that many of the technological advances in end-use sectors are 

associated strictly with improvements in efficiency. The same degree of efficiency 

improvement, which allows end-use services—heating, cooling, lighting, etc.—to be 

provided with less energy consumption, is applied regardless of the stabilization level. 

Hence, end-use technologies exhibit consistent benefits even at relaxed stabilization 

levels.  

On the other hand, these efficiency measures are aggregated together with 

technological improvements that reduce the costs of switching from high-carbon fuels to 

low-carbon fuels: for example, from gas furnaces to electric heat pumps, or from internal 

combustion engines to electric cars. Fuel switching is more valuable at more stringent 

stabilization levels. In contrast, supply technologies—particularly those with high unit 

costs such as solar and CCS—have only the latter effect, and hence exhibit a sharply 

decreasing impact under relaxed stabilization levels. The combined result is that end-use 

technologies move up in the rankings when one shifts from the 450-ppmv to the 550-

ppmv stabilization level. 
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3.5. Conclusion and Discussion 

In this study I have used the technology assumptions from a representative 

scenario exercise (the CCTP scenarios; Clarke et al., 2008) and two long-term CO2 

stabilization pathways (to 450 ppmv and 550 ppmv) to construct a full combinatorial 

dataset with 768 runs from the Global Change Assessment Model (GCAM). Then this 

dataset was analyzed from three different perspectives: (1) a broad assessment of the 

degree of variation in the energy consumption and stabilization costs across all the 

scenarios in the dataset, to highlight general characteristics of the technology space; (2) 

an assessment of the ranges of stabilization costs associated with each technology 

development level, which provided insights into issues of risk management; and (3) an 

assessment of the reduction in stabilization cost associated with improvements in 

individual technologies, which provided information for normative R&D portfolio 

analysis that seeks the mix and magnitude of R&D investments that minimizes the costs 

of stabilization.     

The experimental design in this study differs from other types of probabilistic 

uncertainty analysis in that explicit likelihoods were not assigned to any of the outcomes. 

Instead, the approach should be seen as a means to explore and understand the associated 

cost and energy system space associated with potential technological improvements. 

By and large, the insights from the analyses confirm and reinforce those of the 

representative scenario analyses upon which they are based. Technological advancements 

have a substantial impact on stabilization costs, and the impact is larger under more 

stringent conditions, such as a lower stabilization targets or lack of advancements in other 

technologies. Improvements to some particular technologies, most notably CCS, have a 
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larger impact on stabilization costs than improvements to others. More generally, 

removing the quantity constraint from a technology, and hence increasing the diversity of 

available technologies in the market (Blanford and Clarke, 2003; Blanford, 2009), has a 

larger impact on stabilization costs than incremental reductions in the production costs of 

existing technologies.  

A primary advantage of using the full combinatorial dataset is that it can provide 

insights into the distributional character of outcomes not available with a representative 

scenario approach. The dataset revealed the interior of the stabilization cost space from 

which the representative scenarios were carefully selected to cover the crucial data points. 

Although these extremes are the most informative scenarios to explore, analyzing the full 

space allows deeper insights to emerge from an understanding of the distributional 

characteristics.  

For example, the full combinatorial approach provided insights into which 

technologies might prove most effective at hedging against high-cost outcomes, and 

which technologies might provide consistent value under different circumstances. In 

general, advances in supply technologies truncate the high-cost tail of the stabilization 

cost distribution, which arises with otherwise pessimistic technology outcomes, in 

conjunction with more aggressive climate goals. A decision maker attempting to 

minimize the chance of very high stabilization costs would consider these technologies 

valuable from a risk-based perspective, as part of a hedging strategy for the worst-case 

possibilities. On the other hand, individual supply technologies yield low value under a 

more relaxed climate goal and under technology-rich conditions, in large part because of 

substitution effects.  
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End-use technologies yield relatively consistent value across the full space, partly 

because they are by their nature contained in a particular sector, and partly because of the 

aggregate representation of end-use sectors in the study design. Investments in aggregate 

efficiency improvements in these sectors provide more stable returns to investment across 

states of technology and stabilization levels. 

The exploration of the implications of advances in different technologies under 

uncertainty is highly complicated; this study has taken only a small step toward adding to 

the literature on this topic and unraveling the associated conceptual and methodological 

issues. Several uses or extensions of the approach taken here could prove valuable 

moving forward.  

One immediate extension of this analysis is presented in McJeon et al. (2011). 

Following the scenario discovery methodology outlined in Bryant and Lempert (2010), 

Lempert, Bryant, and Hackbarth of Pardee RAND Graduate School developed am 

algorithm to identify technology combinations that are crucial in avoiding high 

stabilization costs. This analysis formally examined each combination of technologies 

according to their density—the fraction of high-cost cases among all cases contained in 

the combination—and the coverage—the fraction of all high-cost cases that are contained 

in the combination.  

The analysis confirmed the critical character of CCS that has been demonstrated 

in numerous other studies; however, it also identified interaction effects among 

technologies. For example, it found that energy efficiency technologies in the 

transportation and buildings sectors, in conjunction with CCS, were critical in 

determining high-cost outcomes—with transportation being a slightly better predictor of 
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high-cost outcomes than buildings, when combined with the unavailability of CCS. This 

result was consistent in both 80th percentile threshold (Fig. 3.6) and in 90th percentile 

threshold (Fig. 3.7).  

Of the remaining supply technologies, only advances in nuclear provided 

substantial protection against the high costs of fixed CCS, with most of the benefit 

coming from the initial improvement in nuclear technology from fixed to reference levels, 

and relatively little additional protection gained by further improvement from reference 

to advanced (Fig. 3.8). 

Other directions of future research include exploration of larger sets of scenarios, 

to flesh out some of the insights that this initial effort has suggested. This may include 

extension in terms of (1) the number of technologies and the number of attainable levels 

for each technology; (2) delays in the development of technologies; and (3) regional 

heterogeneity (such as technology lag or participation lag in the mitigation regime). It 

would also be valuable to include uncertainties in underlying socioeconomic drivers such 

as population and GDP per capita.  

Finally, a full-fledged analysis of energy R&D portfolios would combine the 

results from large-scale ensembles, such as the full combinatorial dataset in this analysis, 

with a stochastic dynamic programming or robust decision making framework, 

potentially informed by estimates of required R&D investment level and the associated 

probabilities of success (Baker et al., 2008c, 2009a, 2009b, 2010). As this study suggests, 

the consideration of the full range of interactions among different technologies contained 

in a large number of scenarios in the analyses could more effectively inform public 

decision making in energy R&D. 
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Fig. 3.6. Distribution of cases with costs above the 80th percentile across CCS, 
transportation, and buildings values for a 450-ppmv target. The outer circle in each 
square represents all scenarios, and the inner circle the high-cost scenarios, in which the 
indicated technologies are at the indicated level. For example, the top left square in the 
left panel includes scenarios in which buildings technologies are at the reference level, 
transportation technologies are at the advanced level, and CCS is fixed. 
Source: McJeon et al. (2011) 
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Fig. 3.7. Distribution of cases with costs above the 90th percentile across CCS, 

transport, and building values for a 450-ppmv target. 

Source: McJeon et al. (2011) 
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Fig. 3.8. Distribution of cases with costs above the 80th percentile across CCS and 

nuclear values for a 450-ppmv target. 

Source: McJeon et al. (2011) 
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Chapter 4: R&D Investment Strategy for Low-Carbon Energy 

Technologies: A Stochastic Dynamic Programming Approach 
 

4.1. Introduction and Background 

Globally reducing greenhouse gas (GHG) emissions to mitigate climate change 

would require either a substantial conservation of energy or a substantial shift in energy 

sources. However, any major shift away from fossil fuels to low-carbon energy sources 

would require overcoming currently existing obstacles, including high cost, insufficient 

capacity, and intermittency.  

Successful development of advanced technologies may provide solutions to 

overcome these obstacles, by reducing capital cost, by providing large-scale deployment 

option, or by providing efficient energy storage. In turn, these solutions may facilitate the 

economy to switch away from fossil fuels at a sufficiently low cost and at a sufficiently 

large scale to mitigate climate change.  

In order to make the most efficient use of limited public resources, public R&D 

investment in technological change should be targeted to maximize the net social benefit 

per dollar invested. Figure 4.1 shows how the R&D investment for technological change 

affects climate stabilization policies. Public R&D policy for energy technology is a 

classic example of decision-making under uncertainty. R&D investments in energy 

technologies stochastically induce technological change in the forms of cost reductions, 

capacity increases, emission reductions, and so on. These technological changes, in turn, 

affect the cost of GHG abatement. The optimal equilibrium emission level is jointly 

determined by the cost of abatement and the expected damages from climate change. It 

should be noted that with our current knowledge of climate change, the expected damage 
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is also highly uncertain. This essay looks into the question of which technologies to 

invest in, in order to achieve a given level of emission abatement at a lowest cost to the 

economy. Particularly, this essay focuses on the stochastic process from R&D 

investments to their impacts on the cost of abatement, the shaded area in Figure 4.1. 
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Figure 4.1: Schematics of the impact of technological change on climate stabilization 

policy 

 

While there have been many studies looking into some portion of this problem, 

few have attempted to analyze the entire process. On the estimation of abatement costs 

and the energy market interactions there is a long tradition of research in the field of 

climate change economics. The Intergovernmental Panel on Climate Change Working 

Group III has been reviewing these researches for their assessment reports (IPCC, 2007b). 

The findings from this report, along with other widely referenced studies—such as the 

Stern Review (2006) and Barker et al. (2006)—suggest that the cost estimates vary 

widely. 
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Such wide variations are associated with underlying assumptions of the models 

used for estimation. These assumptions include: underlying socioeconomic 

characteristics (Nakicenovic et al. 2000), flexibility in emission abatement regime 

between sectors or gases (Stern, 2006), and availability of advanced technologies 

(Richels et al. 2003; Baker et al. 2006). The effect of one particular parameter of 

interest—technology—on the stabilization cost was the focus of the Pacific Northwest 

National Laboratory (PNNL) reports (Clarke et al. 2006; Clarke et al. 2008) prepared for 

the U.S. Climate Change Technology Program (CCTP). The results demonstrate the large 

differences in the potential for reducing the cost of abatement across different types of 

technologies. An extension of the study (McJeon et al., 2011) further demonstrated the 

differences by examining a dataset containing the full combinations of technologies 

analyzed in the original study. 

On the relationship between R&D investment and the probabilities of successful 

development of specific technologies, Baker, Chon, and Keisler have published a series 

of papers: solar photovoltaics (Baker et al. 2009a); nuclear (Baker et al. 2008c); carbon 

capture and storage (Baker et al. 2009b); and battery electric vehicles (Baker et al. 2010). 

They have explicitly incorporated expert elicitations on the probabilities of success with 

the expected impact of advanced technologies on the abatement cost. However, the 

effects of the market interaction among successfully developed advanced technologies 

were left for future work. 

Blanford and Clarke (2003) was one of the first studies analyzing the entire 

process from the R&D investment to the impact on the cost of abatement. They 

developed an analytical model involving two investment decision periods and 
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probabilistic technology developments. The dynamic aspect of the model was that the 

success or failure in the first investment period becomes known by the second period, and 

hence the second period decision is informed by the first. Blanford (2009) further 

demonstrates this with a numerical simulation model. His results emphasized the 

importance of clearly understanding the substitution effect among energy technologies 

and the diversification effect across technologies. The latter effect is driven by the nature 

of energy technologies and the energy market structure, including decreasing returns to 

scale, heterogeneous applications, and the low-probability high-returns nature of basic 

science research.  

While highly abstract and simplified in its nature, the model developed in 

Blanford and Clarke (2003) and Blanford (2009) provides a flexible stochastic 

framework in which the probabilities of successful development of advanced 

technologies data and the abatement cost data estimated for different combinations of 

advanced technology can be combined to generate an optimal R&D portfolio under a 

given climate mitigation target.  

This essay contains one such exercise using the expert elicitation data of Baker, 

Chon, and Keisler (2008c; 2009a; 2009b; 2010) and the impact of advanced technologies 

on the abatement cost data of McJeon et al. (2011). These exercises compare across 

technology groups in a comprehensive framework, explicitly incorporating the 

uncertainties regarding the successful development of technologies.  

This essay is organized as follows. The next section presents data for the 

probabilities of success and estimates for the cost of abatement. The third section 

develops a simple single decision period stochastic model to identify the optimal 
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portfolio of technology R&D funding. As an extension, a parametric optimization 

analysis using the R&D budget level as a varying parameter is presented to show how the 

optimal technology portfolio changes with respect to budget level. In the fourth section, 

R&D investment timing is added as another dimension to the problem. A stochastic 

dynamic optimization model is developed to identify the technologies that rank high in 

the early R&D investment portfolio, and other technologies that could better benefit from 

a wait-and-see strategy for future periods. The last section closes the essay with a 

conclusion on the implications of the findings of the analyses and a discussion of future 

research directions. 

 

4.2. Data 

This section describes the data for the probabilities of success and the estimates 

for the costs of abatement used in the analysis. 

 

4.2.1. Probabilities of Success 

The probabilities of success data used in this analysis are obtained from the expert 

elicitation data from Baker, Chon, and Keisler (2008c; 2009a; 2009b; 2010). The 

combined probability elicitation results averaged among all experts are presented in 

Table 4.1. A reprint of the detailed description of the methods used for the expert 

elicitations are beyond the scope of this paper. Below, I describe additional assumptions 

and further modifications made specifically for this analysis.  
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low 40 SOLa 5¢/kWh 26.8%

high 80 SOLa 5¢/kWh 43.2%

low 120 SOLa 5¢/kWh 13.2%

high 860 SOLb* 3¢/kWh 3.9%

SOLz CIGS high 80 SOLa 5¢/kWh 1.7%

SOLw* 3rd Gen high 400 SOLb* 3¢/kWh 1.8%

low 54 59.0%

medium 250 70.1%

high 540 78.4%

low 40 2.8%

medium 160 10.7%

high 400 22.3%

low 20 8.0%

medium 40 29.5%

high 58 41.8%

low 320 21.3%

medium 480 33.8%

high 640 60.0%

NUCa $1500/kW 7.5%

NUCb $1000/kW 0.1%

NUCa $1500/kW 29.5%

NUCb $1000/kW 3.0%

NUCa $1500/kW 37.5%

NUCb $1000/kW 22.5%

NUCa $1500/kW 0.9%

NUCb $1000/kW 0.3%

NUCa $1500/kW 9.2%

NUCb $1000/kW 17.0%

NUCa $1500/kW 10.1%

NUCb $1000/kW 30.2%

TRNa $200/kWh 17.8%
TRNb $125/kWh 12.8%
TRNa $200/kWh 18.4%
TRNb $125/kWh 38.4%
TRNc $135/kWh 4.3%
TRNd $90/kWh 6.6%
TRNc $135/kWh 12.7%
TRNd $90/kWh 16.2%

amount 

(α) in $mil.

success 

state (C)

CCSz

notes

probability 

of success 

(p)

Solar PV

SOLx Inorganic

SOLy Organic

tech 

group (j)

individual 

tech (i)
notes

funding 

level (X)

Fast 

Reactor

Carbon 

Capture 

and 

Storage

CCSx
Post-

combustion
CCSa $30/tC

CCSy
Pre-

combustion
CCSb $24/tC

16000

Chemical 

Looping
CCSc $11/tC

Nuclear

NUCx
Light Water 

Reactor
NUCb $1000/kW

NUCy*

800

medium 1600

high 3200

low 1200

medium 4800

high

TRNy

Lithium 

Metal 

Anodes

low

NUCz*
High Temp 

Reactor

low

80

high 320

Transpor

tation 

Battery

TRNx Lithium Ion
low 240

high 560

 

 

Table 4.1: Key technology characteristics and estimates of the probabilities of success 
Modified from Baker, Chon, and Keisler (2008c, 2009a, 2009b, 2010) 
* excluded from the technology set used in the final analysis 
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Solar Photovoltaic Cells  

The solar photovoltaic (PV) cell technology characteristics and probabilities of 

success estimates used in this analysis are based on Baker et al. (2009a). Four types of 

PV technologies are considered: New Inorganic cells (Inorganic; SOLx), Purely Organic 

cells (Organic; SOLy), Copper Indium Gallium Selenide cells (CIGS; SOLz), and Third 

Generation cells (3rd Gen; SOLw). 

 

 Technology 
Efficiency  
(%) 

Capital Cost  
(2005$/m2) 

Lifetime 
(Years) 

LCOE 
(2005¢/kWh) 

      
SOLx Inorganic  15% 50 30 5.0 

SOLy 
Organic (Low) 
Organic (High) 

15% 
31% 

50 
50 

30 
15 

5.0 
3.0 

SOLz CIGS 15% 50 30 5.0 
SOLw 3rd Gen 36% 100 30 2.9 
      

 

Table 4.2: The success endpoints for Solar PV technologies.  

Modified from Baker, Chon, and Keisler (2009a) 

 

Among the considered PV cells, SOLy is the only one using purely organic 

semiconductors, and all other technologies use inorganic materials. The organic materials 

hold the promise of low cost, but they must overcome the difficulties in producing 

sufficiently stable PV panels for the lifetime of 15 or 30 years.  

Two funding levels are considered for SOLy. The low funding level is defined as 

$15 million per year for 10 years; corresponding to $120 million in net present value 

(NPV) with 5% discount rate. The low funding level targeted producing a 15% efficiency 

PV cells at $50/m2 with a lifetime of 30 years, corresponding to a levelized cost of 
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electricity (LCOE) of 5¢/kWh.26 The high funding level is defined as $80 million per 

year for 15 years; corresponding to $860 million in NPV. The high funding level targeted 

producing a 31% efficiency PV cells at $50/m2 with a lifetime of 15 years, corresponding 

to a LCOE of 3¢/kWh. 

Among the inorganic PV cells, SOLx and SOLz are classified as the thin-film 

cells, or the second generation cells to be distinguished from the silicon wafer based first 

generation PV cells. The thin-film cells have the potential to substantially reduce the 

material cost. Developing a stable structure with sufficiently high efficiency could make 

them competitive in the market. SOLz technology is based on the cells using a 

semiconductor material composed of copper, indium, gallium, and selenium. SOLx 

technology covers the cells using all other inorganic materials, except the Cadmium 

Telluride cells. The elicited experts indicated the toxicity concerns regarding Cadmium 

may preclude large scale deployment. Both inorganic technologies targeted producing a 

15% efficiency PV cells at $50/m2 with a lifetime of 30 years, corresponding to a LCOE 

of 5¢/kWh. Both technologies were considered for a funding level of $10 million per year 

for 10 years; corresponding to $80 million in NPV. A low funding level was also 

considered for SOLx: $5 million per year for 10 years; corresponding to $40 million in 

NPV. 

Lastly, SOLw covers all third generation cells targeted at achieving very high 

efficiency, including the multi-junction cells and the quantum dot cells. The probabilities 

were elicited for the cells that could achieve 36% efficiency or higher at $100/m2 with a 

lifetime of 30 years, but this technology was excluded from the final analysis due to the 

                                                 
26 See Baker et al. (2009a) for detailed calculations. 
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combination of high levels of funding requirement and low probabilities of success 

elicited. 

In the final analysis, only one level of success at 5¢/kWh LCOE was considered; 

denoted as SOLa. Successful development of SOLa level PV cells is also assumed to 

exhibit sufficient stability to be fully competitive in the electricity market by 2050. All 

3¢/kWh level of success was excluded due to the combination of high levels of funding 

requirement and low probabilities of success elicited. The estimate could be reintroduced 

in future research involving higher total R&D investment level.  

 

Carbon Capture and Storage 

The Carbon Capture and Storage (CCS) technology characteristics and 

probabilities of success estimates used in this analysis are based on Baker et al. (2009b). 

Three types of CCS technologies are considered: Post-combustion CCS (CCSx), Pre-

Combustion CCS (CCSy), and Chemical Looping CCS (CCSz). The original expert 

elicitations included large number of success endpoints including cost, efficiency, capture 

rate, operating temperature, compliance with environmental regulations, and so on. For 

modeling purposes, I reduced the endpoints into three main parameters that are common 

across the elicited technologies: energy requirement, non-energy cost; and capture rate. 

The energy requirement parameter measures the amount of energy used in the process of 

capturing CO2, in addition to the energy already used for power generation. Similarly, the 

non-energy cost parameter measures the sum of additional capital cost and O&M cost 

needed for capturing CO2. The capture rate parameter measures the share of CO2 

captured by the technology.  



104 
 

 

Technology Name Post-combustion Pre-combustion Chemical Looping 

Funding Name - 
Success State 

CCSx - CCSa CCSy - CCSb CCSz - CCSc 

Fuel   Coal Oil Gas Bio Coal Oil Gas Bio Coal Oil Gas Bio 

Energy 
Requirement 

GJ/tC 4.7 7.5 10.3 4.7 2.0 3.3 4.5 2.0 0.7 1.0 1.4 0.7 

Non-Energy 
Cost 

2005$/tC 30 60 83 30 24 48 66 24 11 22 30 11 

Capture 
Rate 

% 90 90 90 90 90 90 90 90 90 90 90 90 

 

Table 4.3: The success endpoints for CCS technologies.  

Modified from Baker, Chon, and Keisler (2009b) 

 

These probabilities of success are elicited for these parameters, implicitly 

assuming a coal-fired powerplant. However, once the technologies are successfully 

developed, the same technology could be applied to powerplants fueled by other fossil 

fuels as well as biomass. In order to consistently represent the applications of the CCS 

technologies in the powerplants fired by other fuels, I assumed the rate of reduction in the 

energy requirement and the non-energy cost is the same across different fuel types (see 

Table 4.3). The baseline ratios among the different fuel types for these parameters are 

obtained from Clarke et al (2008). For oil and gas, the parameters are estimated 

conservatively; energy and non-energy cost required per unit capture of CO2 are assumed 

to be higher for these fuels with lower carbon content. On the other hand, the parameters 

for biomass-fired powerplants are assumed to be the same as those for coal-fired 

powerplants, primarily because both of the fuel types are solid, and hence require similar 

processes for the capture (e.g. gasification).  Below I present a brief summary of 

parameters for coal-fired powerplants used in this analysis. For other fuel types, see 
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Table 4.3. For extensive descriptions of the parameter calculations, see Baker et al 

(2009b). 

CCSx covers wide range of technologies that involve removing CO2 from flue 

gases after the fuel has been combusted for electricity generation. The probabilities were 

elicited for several different methods: membranes, solvents, stimulus, and cryogenic 

methods. Main challenge for these technologies is finding low-cost materials that are 

effective and safe for operations. A successful development from any of these methods 

are assumed to result in a CCSa level of coal-fired CCS powerplant technology 

characterized by less than 4.7 GJ/tC energy requirement (equivalent to 30% derating), 

less than $30/tC additional non-energy cost, and more than 90% capture rate .  

Three funding levels are considered for CCSx technology. The low funding level 

is defined as $5 million per year for 15 years; corresponding to $54 million in NPV. The 

medium funding level starts at $15 million per year in the first year, linearly increasing to 

$30 million per year over the next ten years, and then held constant at $30 million per 

year for the last 5 years; corresponding to $250 million in NPV. Lastly, the high funding 

level is defined as $50 million per year for 15 years; corresponding to a $540 million in 

NPV. 

CCSy technology works in conjunction with combined cycle powerplants, such as 

coal Integrated Gasification Combined Cycle (coal-IGCC) powerplants or Natural Gas 

Combined Cycle (NGCC) powerplants. Unlike Post-combustion capture technologies, 

CCSy removes carbon from syngas before the combustion occurs, resulting in a pure 

stream of hydrogen to be used for electricity generation. Because the separation of carbon 

from hydrogen occurs early in the process, the energy loss from the capture process could 
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be made smaller. The challenge is to demonstrate the technology at commercial scale 

with sufficiently low cost. The probabilities of successful development of a coal-fired 

CCS powerplant technology (CCSb) were elicited for achieving less than 2.0 GJ/tC 

energy requirement (equivalent to 10% parasitic energy loss), less than 10% additional 

capital cost ($24/tC), and more than 90% capture rate.   

Three funding levels are considered for CCSy technology: the low-level of $5 

million per year for a 10-year investment period, the medium-level of $20 million per 

year for a 10-year period, and the high-level of $50 million per year for a 10-year period. 

The NPV of the funding trajectories are $40 million, $160 million, and $400 million, 

respectively. 

While CCSx and CCSy work in conjunction with existing designs of powerplants, 

CCSz technology involves a powerplant design fundamentally different from the existing 

ones. Combusting fossil fuels with regular air emits flue gas not only containing CO2 and 

H2O, but also other particles such as NOx. The existence of these other particles makes it 

inefficient to separate out CO2 for sequestration. CCSz instead uses oxidized particles to 

react with fossil fuels, which is then oxidized to produce flue gases purely consisted of 

CO2 and H2O. H2O, the water vapor, is then condensed, yielding pure steam of CO2 to be 

captured and stored. If the technology can be developed with a particle that is both 

effective and durable at high temperatures, CO2 capture can be performed with minimal 

loss in energy.  

The probabilities of successful development (CCSc) were elicited for achieving 

5¢/kWh overall LCOE, along with durability under high temperature and compliance 

with environmental regulations. For the modeling purposes, minimal energy requirement 
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of 0.7 GJ/tC, additional non-energy cost of $11/tC, and 90% capture rate is assumed to 

represent LCOE of 5¢/kWh for coal-fired powerplant.  

Three funding levels are considered for CCSz technology. Each funding trajectory 

has two parts: first 5 year investment period with exploratory amount of funding and the 

next 5 year investment period for a large-scale funding conditional upon successful 

progress in the first 5 years. The low funding level is defined as $0.5 million per year for 

the first 5 years and $5 million per year for the next 5 years; corresponding to $20 million 

in NPV. The medium funding level is defined as $1 million per year for the first 5 years 

and $10 million per year for the next 5 years; corresponding to $40 million in NPV. The 

high funding level is defined as $5 million per year for the first 5 years and $10 million 

per year for the next 5 years; corresponding to $58 million in NPV. 

Overall, in all three aspect of the success endpoints, CCSc is (weakly) superior to 

the other two, and CCSb is (weakly) superior to CCSa. For simplicity, in the event of 

multiple successes in CCS, I assume only the superior technology will prevail in the 

energy market. All successful developments of CCS technology are assumed to have 

fully matured to allow large-scale expansion by 2050, if the levelized costs are 

competitive.  

 

Nuclear  

The nuclear electricity technology characteristics and probabilities of success 

estimates used in this analysis are based on Baker et al. (2008c). The original expert 

elicitations covered three nuclear technologies: Light Water Reactor (LWR; NUCx), Fast 

Reactor (FR), High Temperature Reactor (HTR) and Small Long Lived Core Reactor 
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(SLLC). The elicited success endpoints included standard technology characteristics such 

as capital cost and efficiency, as well as a number of unique characteristics such as 

reduced accident risk, reduced water usage, reduced radioactive waste, and so on.  

Due to difficulties in consistently modeling non-monetary characteristics, such as 

safety and waste disposal, this analysis only modeled capital cost and efficiency. These 

non-monetary characteristics are the main strengths of Fast Reactor, High Temperature 

Reactor, and Small Long Lived Core Reactor. For instance, one of the major benefits of 

Fast Reactor and High Temperature Reactor is substantially reduced radioactive waste 

(Matthew et al. 2003; Rodriguez et al. 2002). Also, these technologies have different 

implications in terms of resistance to nuclear weapons proliferation (Ansolabehere et al. 

2003). Due in part to the difficulties in modeling these non-monetary issues, as well as 

the lowest elicited funding levels being an order of magnitude higher than the scope of 

this analysis, these technologies are excluded from the final analysis. Further research 

into an accurate understanding of the non-monetary issues could allow for the inclusion 

of these technologies in future research with higher total R&D investment levels. 

The sole remaining nuclear technology, NUCx is a design evolved from the 

currently common Light Water Reactors. A successful development of the technology is 

assumed to result in a NUCb level of technology characterized by a substantially lower 

capital cost: from $2600/kW in 2005 to $1000/kW in 2050.  The efficiency of the reactor 

is assumed to remain at the same level of 32%. The ten-fold reduction in accident risk is 

not explicitly considered in the model.  

Three funding levels are considered for NUCx technology. The low funding level 

is defined as $40 million per year for 10 years; corresponding to $320 million in NPV. 
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The medium funding level is defined as $60 million per year for 10 years; corresponding 

to $480 million in NPV. Lastly, the high funding level is defined as $80 million per year 

for 10 years; corresponding to a $640 million in NPV. 

 

Transportation Battery 

The transportation battery technology characteristics and probabilities of success 

used in this analysis are based on Baker et al. (2010). Two types of battery technologies 

are considered: Lithium-ion batteries (Li-ion; TRNx) and Lithium Metal anode batteries 

(TRNy).  

 

  TRNa: Li-ion TRNb: Li-ion TRNc: Li Metal TRNd: Li Metal 

  low endpoint high endpoint low endpoint high endpoint 

Specific energy 150 Wh/kg 200 Wh/kg 200 Wh/kg 600 Wh/kg 

Power density 460 W/L 600 W/L 460 W/L 600 W/L 

Lifetime 8 years 10 years 8 years 10 years 

Recharge rate 6 hours 3 hours 6 hours 3 hours 

Capital cost $200/kWh $125/kWh $135/kWh $90/kWh 

 

Table 4.4: The success endpoints for transportation battery technologies. 

Reprinted from Baker, Chon, and Keisler (2010) 

 

TRNx batteries are essentially the same technology as the current generation Li-

ion batteries, but with lower costs and increased reliability. Two levels of considered 

success states are shown in Table 4.4. The low level of success (TRNa) results in a 

battery at a unit cost less than $200/kWh along with other features including lifetime, 

recharge rate, specific energy, and power density adequate for transportation use. The 

high level of success (TRNb) results in better performance across all considered 
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characteristics; most importantly its unit cost is less than $125/kWh. Either level of 

success is assumed to result in a Plug-in Hybrid Electric Vehicle (PHEV) that is fully 

competitive with conventional internal combustion engine vehicle (ICV) by 2050. 

Two funding levels are considered for TRNx batteries: the low-level of $30 

million per year for a 10-year investment period and the high-level of $70 million per 

year for a 10-year period. The net present value of the funding trajectories discounted at 

5% yields $240 million and $560 million, respectively. Corresponding average 

probabilities of success from the expert elicitations are shown in Table 4.1. 

TRNy batteries are a broad range of battery technologies including both Lithium-

Sulfur batteries and batteries with non-sulfur cathodes. Two levels of considered success 

states are shown in Table 4.4. Each level of success is more aggressive than what would 

result from the corresponding level of successes in TRNx batteries. The low level of 

success (TRNc) results in a battery at a unit cost less than $135/kWh along with other 

features adequate for transportation use. The high level of success (TRNd) attains better 

performance in all considered characteristics, most importantly its unit cost less than 

$90/kWh. Either level of success is assumed to result in a Plug-in Hybrid Electric 

Vehicle (PHEV) that is fully competitive with conventional internal combustion engine 

vehicle (ICV) by 2050. In addition, the high level of success (TRNd) is assumed to result 

in a light-weight battery with sufficient specific energy and quick charging cycle that 

allows a Battery Electric Vehicle (BEV) solely powered by electricity to be fully 

competitive with ICV by 2050. 

Two funding levels are considered for TRNy batteries: the low-level funding of 

$10 million per year for a 10-year investment period and the high-level of $40 million per 
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year a 10-year period. The net present value of the funding trajectories discounted at 5% 

yields $80 million and $320 million, respectively. Corresponding average probabilities of 

success from the expert elicitations are shown in Table 4.1. 

 

Synthesis 

Figure 4.2 shows the probability estimates for all technologies considered in this 

analysis. The line markers are the original probability elicitation data, and the arrows 

indicate the existence of another data point not shown in the chart due to scale, but 

included in Table 4.1. The solid lines denote piecewise linear interpolation of the original 

data, while the dotted lines indicate extrapolation from the original data.  

In order to minimize the potential misuse of the original data, the extrapolations 

are limited to one $40 million funding unit beyond the original data. The marginal 

probabilities of the extrapolated portion of SOLx, SOLz, and CCSz on the upper end of 

the funding level are assumed to be a quarter of immediately preceding estimates. This is 

a conservative assumption motivated by minimizing misuse of the original data beyond 

the experts’ intent. However, these last unit funding results should be interpreted with 

due caution. 

All but one of the technologies are assumed to start at zero probability with zero 

additional R&D investment. Given that Baker et al. focused on breakthrough 

technologies that would otherwise have limited chance of success without additional 

R&D funding, this is a reasonable assumption. However, CCSx is treated as an exception 

to this assumption with a 56% probability of success at the zero additional funding level. 

This decision was motivated by two reasons. First, assuming zero probability of success 
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in CCS technologies results in a R&D portfolio dominated by all considered CCS 

technologies. This result is driven by the fact that CCS is the only technology in this 

analysis that could be utilized for net negative emission energy source in conjunction 

with biomass electricity. The mere existence of feasible CCS technology, regardless of 

cost, drives down the stabilization cost substantially under stringent climate target 

considered in this analysis. Second, some experts consider high-cost CCS to be either 

already developed to be deployed or well on track for successful development with or 

without additional funding (Baker et al., 2009b; National Research Council, 2007). If this 

is the case, assuming zero probability would be a severe underestimation of the 

technology.  For these reasons, the lowest performing CCSx is assumed to have positive 

probabilities of success even at zero funding level. The marginal probability for the 

extrapolated region is assumed to be the same as that of the next highest funding level. 

This modification results in a R&D portfolio less favorable to CCS technologies 

generally, and to CCSx technology specifically. 

With these modifications, the probabilities of success are collected for each unit 

of $40 million of R&D funding. In order to compare the probabilities with large 

variances in the elicited level of funding -- ranging from $20 million (CCSz) to $16000 

(NUCy) – in a single framework, I limit the scope of this analysis to the most commonly 

overlapping funding range from 0 to $160 million. Future research may also exclusively 

focus on the technologies with funding requirements that are an order of magnitude 

higher than those analyzed here. 

Figure 4.2 clearly distinguishes the technologies with high probabilities of success 

(CCSx; CCSz; and SOLx) and those with low probabilities (SOLz). Many technologies 
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show overlapping levels of probabilities (TRNx, TRNy, and SOLy; CCSx and NUCx). 

This is consistent with the intent of the original study of eliciting breakthrough 

technologies with low probabilities of success that could benefit from additional R&D 

funding. With such similar probabilities, the priorities among these technologies will be 

determined by the cost reduction potential of each technology. Also note the general 

trend of diminishing marginal probabilities with respect to funding level (SOLx, SOLy, 

and TRNy). Later, this effect is shown to contribute to an R&D diversification strategy 

across technology groups. 

 

 

Figure 4.2: The probabilities of success  

Modified from Baker, Chon, and Keisler (2008c, 2009a, 2009b, 2010) 

*Solid lines denote piecewise linear interpolation.  

**Dotted lines denote extrapolation from original data 
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4.2.2. Stabilization Costs 

The costs of stabilizing the CO2 concentration are calculated using the Global 

Change Assessment Model (GCAM) version 2.1. GCAM is an integrated assessment 

model built on the foundations of MiniCAM (Kim et al., 2006; Clarke, et al., 2007; 

Brenkert et al., 2003), which in turn has its origins from the first model developed by 

Edmonds and Reilly (1985).  GCAM is a dynamic-recursive model, which links a global 

energy economy model and agricultural land use model with a suite of coupled gas-cycle, 

climate, and ice-melt models integrated in the Model for the Assessment of Greenhouse-

Gas Induced Climate Change (MAGICC). GCAM tracks emissions and concentrations of 

greenhouse gases and short-lived species.27 GCAM has been used extensively for global 

climate change analyses conducted for the Intergovernmental Panel on Climate Change 

(IPCC), various national governments, and non-governmental organizations.28 

The economic simulation of GCAM is driven by assumptions about population 

growth and labor productivity that determine potential economic output in each of 14 

regions. GCAM 2.1 is typically solved in a 5-year time step and is used to assess 

potential future developments to the year 2095. GCAM establishes market-clearing prices 

for all energy, agriculture and land markets such that supplies and demands for all 

markets balance simultaneously. That is, there are no excess supplies or demands for land, 

agricultural products, primary energy, final energy, or energy services. 

                                                 
27 GCAM tracks emissions of 15 greenhouse related gases: CO2, CH4, N2O, NOx, VOCs, CO, SO2, 
carbonaceous aerosols, HFCs, PFCs, and SF6. Each is associated with multiple human activities that are 
explicitly modeled in GCAM. 
28 A formal documentation of the model can be found at http://www.globalchange.umd.edu/models/gcam. 
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The GCAM energy system includes primary energy resources, production, energy 

transformation to final fuels, and the employment of final energy forms to deliver energy 

services. Energy supplied from depletable resources—fossil fuels and uranium—depends 

on the abundance and grade of available resources as well as available extraction 

technologies. These depletable resources exhibit increasing costs in the absence of 

significant technical change. As more attractive resources are consumed, less attractive 

resources are exploited and, ceteris paribus, costs rise. Renewable resources such as wind 

and solar are produced from graded renewable resource bases.  

Primary energy forms include liquids, gases, coal, bioenergy, uranium, 

hydropower, solar, and wind energy. Primary energy forms are refined and transformed 

into end-use energy forms. End-use energy forms include refined liquids, refined gas, 

coal, commercial solid bioenergy, hydrogen, and electricity. These energy forms are used 

in the building, industry, and transportation sectors.  

GCAM is a technology-rich integrated assessment model. It contains detailed 

representations of technology options in all of the economic components of the system. 

Technology choice in GCAM is determined by market competition. Individual 

technologies compete for market share based on their technological characteristics 

(efficiency in production from inputs), cost of inputs and price of outputs. GCAM uses a 

logistic choice framework to determine market shares of different fuels and technologies 

based on a probabilistic model of the relative prices of the competing fuels or 

technologies (Clarke and Edmonds, 1993; McFadden, 1974, 1981). This methodology is 

based on the idea that every market includes a range of different suppliers and purchasers, 

and each supplier and purchaser may have different needs and may experience different 
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local prices. Therefore, not all purchasers will choose the same technology because the 

average price of that technology is lower than the average price of a competing 

technology. The logistic choice methodology allocates market shares based on prices, but 

ensures that higher priced goods can gain some share of the market, which is consistent 

with both empirical observations and economic theory. The logistic choice approach 

captures the observed heterogeneity of real markets in a stylistic way. 

Assumptions for technologies other than the technologies considered in this 

analysis are based on the reference scenario used for the Climate Change Technology 

Program (CCTP: Clarke et al. 2008). The basic methodology for estimating the cost of 

abatement is similar to Baker et al. (2008c; 2009a; 2009b; 2010). However, while those 

studies focused on the marginal abatement cost (MAC) for a specific year 2050, this 

analysis focuses on the total abatement cost (TAC) over the period of 2005 - 2095.  

Given a target level of atmospheric CO2 stabilization and available suite of 

technologies, the model solves for a cost-minimizing optimal emission path (Peck and 

Wan, 1996; Hotelling, 1931). It then derives a marginal abatement cost curve, unique for 

each technology scenario. The total abatement cost for each technology scenario is 

calculated by integrating the area under the marginal abatement cost curve, and then 

summing the net present value over the analysis time frame of 2005-2095.29  

Two stabilization targets are considered: 450 ppmv and 550 ppmv. These levels 

of stabilization are of particular interest from the research perspective. First, both targets 

require substantial abatement in the future (see, for example, Figure 4.3; Wigley et al, 

1996), and thus the cost of stabilization is sufficiently high to be a social concern. 

                                                 
29 Throughout the essay, a 5% real discount rate is used for present value calculations. This applies to both 
R&D investments as well as to the abatement costs. 
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Furthermore, high stabilization costs also indicate a large potential for the cost reduction 

by the introduction of advanced technologies. Second, the low target of 450 ppmv 

requires substantial abatement in the early periods, while the high target of 550 ppmv 

abatement is relatively gradual (Nakicenovic et al. 2000; Wigley et al 1996). Hence, the 

450 ppmv TAC is often more than a factor of 3 or 4 higher (See Clarke et al. (2007) for 

comparison under different stabilization levels and McJeon et al. (2011) for the 

comparison across different technology suites).  
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Figure 4.3: Examples of emissions paths under different levels of stabilization  

Reproduced from Wigley, Richels, and Edmonds (1996) 
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TRNr0 TRNa0 TRNb0 TRNc0 TRNd0 TRNr0 TRNa0 TRNb0 TRNc0 TRNd0

CCSr0 12.27 11.90 11.66 11.75 11.25 9.73    9.41    9.20    9.28    8.85    

CCSa0 11.15 10.79 10.57 10.65 10.16 9.07    8.75    8.56    8.63    8.21    

CCSb0 10.25 9.90    9.67    9.75    9.28    8.53    8.23    8.03    8.10    7.67    

CCSc0 9.51    9.16    8.93    9.02    8.54    8.05    7.74    7.53    7.61    7.18    

CCSr0 11.87 11.50 11.26 11.35 10.87 9.53    9.21    9.01    9.08    8.64    

CCSa0 10.90 10.53 10.30 10.38 9.90    8.92    8.61    8.40    8.47    8.04    

CCSb0 10.07 9.71    9.48    9.57    9.08    8.42    8.11    7.91    7.98    7.55    

CCSc0 9.37    9.02    8.79    8.87    8.39    7.96    7.65    7.45    7.52    7.09    

NUCr0

SOLr0

SOLa0

NUCb0

 

(A)  450 ppmv target 

TRNr0 TRNa0 TRNb0 TRNc0 TRNd0 TRNr0 TRNa0 TRNb0 TRNc0 TRNd0

CCSr0 2.90    2.78    2.71    2.73    2.57    2.11    2.01    1.94    1.97    1.83    

CCSa0 2.70    2.59    2.51    2.54    2.39    2.02    1.92    1.85    1.87    1.73    

CCSb0 2.41    2.30    2.23    2.26    2.11    1.85    1.76    1.69    1.72    1.58    

CCSc0 2.16    2.05    1.99    2.01    1.87    1.69    1.60    1.53    1.56    1.43    

CCSr0 2.66    2.54    2.47    2.50    2.35    1.98    1.88    1.82    1.84    1.70    

CCSa0 2.49    2.38    2.31    2.33    2.19    1.90    1.80    1.73    1.76    1.62    

CCSb0 2.24    2.13    2.06    2.09    1.95    1.75    1.65    1.59    1.61    1.48    

CCSc0 2.02    1.92    1.85    1.87    1.73    1.60    1.51    1.45    1.47    1.34    

NUCb0NUCr0

SOLr0

SOLa0

 

(B)  550 ppmv target 

Figure 4.4: Total abatement costs (in trillions of 2005 constant dollars) 

* 0 at the end of technology level label (e.g. SOLa0) denotes zero delays in the 

technology development 

 

The net present values of the total abatement costs for the two stabilization targets 

under different combinations of successfully developed technologies are shown in Figure 

4.4. Several observations bear note. First of all, 450 ppmv costs substantially more than 

550 ppmv. Furthermore, 450 ppmv cost reduction potential is also substantially more 

than 550 ppmv.  
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Second, the technologies have very diverse potential levels of TAC reduction. In 

general, CCS and NUC technologies show the largest TAC reduction potential, while 

SOL technologies show the smallest. Also note that the relative strengths of technologies 

change between the two targets. For example, CCSz has a larger TAC reduction potential 

under the 450 ppmv target, while NUCb has a larger potential under 550 ppmv target. 

The next two sections show how these differences drive R&D strategies apart under 

different stabilization targets. 

Third, the TAC reduction potentials of a combination of technologies are not 

additive (McJeon et al., 2011). This is particularly evident among the electricity 

generation technologies, which generally behave as (partial) substitutes for one another in 

the market. For instance, when an advanced CCS has already substantially decreased the 

TAC, having an additional breakthrough in solar PV technology is worth less than the 

same breakthrough under the reference scenario with no CCS available. 

 

4.3. Simple Model 

Using the probabilities of success data obtained from expert elicitations and the 

total abatement cost data estimated by a deterministic simulation model, this section 

develops a simple decision making model under technology development uncertainty. 

 

4.3.1. Model Structure 

In the simple model, I assume all funding decisions are made in a single period. 

The goal of the problem is to minimize the expected net present value of total abatement 

cost (ETAC) for 450 ppmv. The set of feasible funding decisions (X) are {0, 40, 80, 120, 
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160} million dollars for each technology denoted with subscript i (note that some 

technologies have fewer than four funding levels). 

I
X }160,120,80,40,0{∈  

The state (C) after funding is a unique combination of success and failure levels (S) of 

each technology group denoted with subscript j (CCS, SOL, NUC, TRN). 

)( SC
Jj

∏
∈

∈  

For example, if there were a combination of chemical looping CCS success, no success in 

solar PV, $1000/kW nuclear success, and a Lithium Metal Anode battery low success, 

this could be expressed as (CCSc, SOLr, NUCb, TRNc). There are 3 different CCS 

successes, 1 level of solar PV successes, 1 level of nuclear successes, and 4 different 

levels of transportation battery success. Including “no success” cases, there are total of 80 

= (3+1)(1+1)(1+1)(4+1) different combinations of technology states, each assigned with 

different total abatement costs as presented in Figure 4.4. In the cases of multiple 

successes in a technology group, only the superior technology is assumed to prevail. For 

example, if CCSc and CCSa succeed at the same time, the CCS technology will be 

assumed to be at the CCSc level of success. 

The expected total abatement cost minimization problem solves: 

)()|(min
)(

CVXCp
SC

X
⋅∑

Π∈

 

BXts i

Ii

≤∑
∈

..  

)|()|( XCpXCp j

Jj

∏
∈

=  
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The goal is to minimize the weighted average of the total abatement cost (TAC). This is 

represented as the sum of probability (p) of reaching a state (C) multiplied by the net 

present value of the total abatement cost (V), given the technology development state (C). 

The individual technology group success probabilities are obtained from the expert 

elicitation. I assume the individual probabilities of success are independent of one 

another; hence the combined probability of a given combination of success levels in all 

four technology groups is equal to the product of individual technology group success 

probabilities of corresponding success levels for each group. The TACs estimated using 

GCAM. The constraint states that the sum of funding should not exceed the budget. 

Solving this formulation yields an optimal combination of funding levels for each 

technology, as well as the minimum expected total abatement cost for a given budget 

level. Using the parametric optimization approach, we can observe how the optimal 

portfolio of funding levels and expected total abatement cost changes with respect to the 

budget level. 

 

4.3.2. Results 

Figure 4.5 and Table 4.5 show the results of the parametric optimization analysis. 

In Figure 4.5, the budget level linearly increases from left to right on the x-axis. 

Cumulative funding on right y-axis also increases linearly with respect to budget. The 

colored bars represent the amount optimally funded for each technology. The solid line 

represents the minimum expected net present value of total abatement cost (ETAC) given 

the budget level and corresponding optimal R&D portfolio.  
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(A) 450 ppmv target 
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(B) 550 ppmv target 

Figure 4.5: Optimal R&D investment portfolio and expected total abatement cost. 
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3 CCSy TRNy NUCx NUCx
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6 SOLy CCSy SOLy CCSy

7 SOLz NUCx TRNx SOLy

8 CCSx CCSx CCSx CCSx

9 TRNx SOLz SOLz SOLz
 

(A) 450 ppmv target                                    (B) 550 ppmv target 

 

Table 4.5: Comparison of optimal funding order and other metrics. 

* SDP1 denotes the simple model. 

 

Several observations bear note. First of all, the ETAC decreases from $12 tril. 

($2.8 tril.) at zero budget to $10 tril. ($2.2 tril.) at $1280 mil. budget for 450 ppmv 

(550ppmv) target. The savings in ETAC are two to three orders of magnitude higher than 

the R&D investment amount; implying a large net social gain from the investment under 

given stabilization targets. Second, the ETAC line shows substantially diminishing 

returns to scale with respect to investment. For example, the first $200 mil. investment 

yields $1.1 tril. ($0.38 tril.) in ETAC savings, while the next one yields only $0.23 tril. 

($0.072 tril.) savings. 

Table 4.5 shows the characteristics of high ranking technologies in terms of R&D 

funding priority. Top ranking technology CCSz show both high impacts measured in 

maximum stabilization reduction potential, as well as high probability of success at a 
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given funding level. On the other hand, the bottom ranking SOLz is characterized by low 

impact and low probability of success. Two distinct types of high ranking technologies 

are also observed: medium-impact high-probability technologies (SOLx and TRNy) and 

high-impact medium-probability technologies (NUCx). The low ranking technologies are 

the opposite; in the 450 ppmv case, there are low-impact medium-probability (SOLy) and 

medium-impact low-probability (CCSx). 

Table 4.5 also demonstrates the added value of using a model optimizing over the 

full set of technology combinations (SDP1). Without comprehensively modeling the 

combinations of technologies, a decision maker could rely on individual data, such as the 

probabilities of success or the maximum TAC reduction potential (max impact). As the 

significantly different orders in the table suggest such individual data could be quite far 

from the optimal order. With both sets of data, the decision maker could do a simple 

multiplication of the probabilities and the maximum impact potential to yield a more 

refined investment order. This order turns out to be mostly similar to the optimal order 

generated by the model. The only differences are the two TRN technologies’ movement 

upward in the optimal portfolio. This difference is consistent with the observation in 

McJeon et al. (2011) that the maximum impact measurement systematically 

underestimates the strengths of end-use technologies. End-use technologies generally 

have limited scopes of impact, such that the maximum impact is limited by the scope. On 

the other hand, these technologies show relatively narrow variability in their impacts; 

while supply technologies may lose much of their impacts when other technologies 

succeed due to substitution effect (CCS vs. NUC), end-use technologies suffer less from 

such effects (TRN vs. BLD). 
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4.4. Stochastic Dynamic Programming Model 

The model presented in this section adds another dimension, namely the timing of 

funding, to the previous simple model. Using the stochastic dynamic programming 

approach, I allow for the possibility of funding some technologies in the future period 

after observing the development of technologies funded in the first period. The objective 

of this model is to identify which technologies should be funded early on to minimize the 

expected total abatement cost.  

There are advantages and disadvantages to delayed funding. One advantage is 

related to time-discounting. A dollar in the budget now is worth more than a dollar ten 

years in the future. One can put the dollar in the bank, and take out the dollar plus 

accrued interest ten years hence. Or if one had a limited budget and borrowed a dollar 

today, he would have to pay back the dollar plus interest in the future. In this analysis a 

5% real discount rate is used, meaning that a dollar in 2010 is equivalent to 1.63 dollars 

in 2020. 

Another advantage is that the decision maker can observe the state of 

development in the technologies funded in the first period, and then further optimize 

using that information (the “wait-and-see” strategy). For example, if the early investment 

in TRNy successfully resulted in a high performance battery TRNd with a $90/kWh unit 

cost, then there would be no reason to fund the TRNx technology that would at best yield 

TRNb battery with a higher $125/kWh unit cost. In other words, the decision-maker can 

benefit from further optimizing with more information obtained from the first period 

investment. 
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On the other hand, the obvious disadvantage of delaying the funding is that the 

development of the technology would also be delayed. Later development means the 

technology is not available in the near future, and thus the abatement cost would be 

higher than in the early development case. Since many energy technologies have 

lifetimes of several decades, technology developed later may take a long time to replace 

the technologies developed earlier. The magnitude of the disadvantage not only depends 

on the potential technology improvement path, but also the stringency of the climate 

target that may either require substantial abatement in the early periods or only in the 

later periods. 
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Figure 4.6: Stylistic illustration of delayed success. 

 

A stylistic illustration of delayed success is shown in Figure 4.6. In 2010, an early 

success technology starts to diverge from the no success trajectory, with accelerated 

technology advancement. Following Baker et al. (2008c; 2009a; 2009b; 2010), a 
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successful technology is assumed to be fully matured and integrated in the market by 

2050. A late success technology follows the no success trajectory up to 2020, when it 

starts to diverge with accelerated technology advancement rate ten years behind the early 

success case. As a result, the late success trajectory asymptotically approaches the early 

success trajectory.  

The advantages and disadvantages of delaying investment may affect 

technologies differently. Some technologies may be crucial for abatement in the earlier 

periods, while others are only necessary in the distant future. Also, the existence of a 

strong substitute within the same technology group could change the optimal funding 

level for a technology. If there is a high probability of success in a close substitute 

technology (e.g. CCSz), the benefit of the wait-and-see strategy would be high for the 

low-performance technology (e.g. CCSx). Sufficiently high benefit of wait-and-see 

strategy could push down the ranking of the low-performance technology. These aspects 

make the multiple funding period analyses richer than the simple single period model. 

 

4.4.1. Model Structure 

The general structure of the model is similar to the simple model, with one major 

difference: there are two possible funding periods, 2010 and 2020 denoted with a 

subscript t. Again, the goal of the problem is to minimize the expected net present value 

of total abatement cost (ETAC) for the given stabilization target (450 ppmv or 550 ppmv).  

The set of feasible funding decisions (X) are {0, 40, 80, 120, 160} for each 

technology i (note some technologies have fewer than four funding levels). 
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The feasible decision space is further restricted by the constraint that states the sum of 

funding in a period should not exceed the budget specified for the period. 

The state (C) after funding is feasible combinations of success levels and failures 

of each technology group j (CCS, SOL, NUC, TRN). 
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This formulation is exactly the same as the simple formulation. There are 3 different CCS 

successes, 1 level of solar PV successes, 1 level of nuclear successes, and 4 different 

levels of transportation battery success. Including “no success” cases, there are total of 80 

= (3+1)(1+1)(1+1)(4+1) different combinations of technology states at the beginning of 

the second period, each assigned with different total abatement costs presented in Figure 

4.4. 

In addition to the 80 states, each success level has a delayed success possibility 

after the second period investment. Now there are 6 different CCS successes, 2 level of 

solar PV successes, 2 level of nuclear successes, and 8 different levels of transportation 

battery success. Including “no success” cases, there are total of 567 = (3+3+1) (1+1+1) 

(1+1+1) (4+4+1) different combinations of technology states at the beginning of the final 

period, each assigned with different total abatement costs. The entire dataset of estimated 

TAC is for the two stabilization targets—total of 1134 data points—are presented in 

Figure 4.7 and Appendix 1. 
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(A)  450 ppmv target 

 

(B)  550 ppmv target 

 

Figure 4.7: Total abatement cost with delayed technology development.
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The number of periods delayed is denoted with a numbered suffix at the end of 

the technology label. For example, the first period success of SOLa is labeled SOLa0 (for 

zero delay). The second period success of NUCb is labeled NUCb1. This labeling scheme 

is designed to allow more investment periods to be added in the future research. For 

example, if there were a combination of delayed chemical looping CCS success, no 

success in solar PV, immediate $1000/kW nuclear success, and a delayed Lithium Metal 

Anode battery low success, this could be expressed as (CCSc1, SOLr0, NUCb0, TRNc1). 

In the case of multiple successes in a technology group, I assumed only the superior 

technology would prevail.  

 The expected total abatement cost minimization problem solves: 

},|)({min)( 11
)(

tttt
CXX

tt XCCVECV
tt

++
∈

=  

 Specifically for the first and the second period, the problem could be elaborated 
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The probability of reaching a state (C) given a funding combination (X) is denoted with p. 

The combined probability is the product of probabilities in each group. V is the ETAC 

given the state (C), and in the 3rd period it is the TAC estimated from GCAM. The 

second period ETAC (V2) is the minimized ETAC in the third period, which is equivalent 

to the sum of probability (p) of reaching a state (C3) multiplied by the net present value of 
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total abatement cost (V3); given technology development state (C3). Each combination of 

state at the beginning of period 2 (C2) yields an optimal combination of funding levels 

(X2) and the minimum ETAC (V2).  

Recursively, the first period ETAC (V1) is the minimized ETAC in the second 

period, which is equivalent to the sum of probability (p) of reaching a state (C2) 

multiplied by the ETAC derived from the second period optimization above (V2), given 

technology development state (C2). Since the state at the beginning of period 1 (C1) is 

given as a reference level for all technology groups, solving the first period optimization 

problem yields a unique optimal combination of funding levels (X1) and a unique 

minimum ETAC (V1).  

The budget constraint is embedded in the feasible funding decision set. The 

stochastic dynamic programming would yield an optimal combination of first period 

funding levels, as well as the expected total abatement cost for any given combination of 

first and second period budget levels. Using a parametric optimization approach, we can 

observe how the optimal combinations of first period funding levels and expected total 

abatement cost change with respect to first and second period budget level. 

 

4.4.2. Results 

For the purpose of illustration, here I present the result for $1000 mil. in total 

discounted R&D investment budget. This example illustrates the optimal balance 

between the first and the second period budget.  

Figure 4.8 shows 25 different allocations of the fixed $1000 mil. total discounted 

R&D budget. The first period portion of the budget increases from left to right on the x-
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axis. The individual funding level is shown on the right y-axis. The diagonal patterned 

bar labeled “future” denotes the budget allocated for the second period.  

The expected total abatement cost (ETAC) is plotted on the left y-axis. Notice that 

the right-most data point is identical to the $1000 mil. data point in the single period 

model (Figure 4.5). Neither the full allocation of the budget to the first period (1000, 0) 

nor the full allocation to the second period (0, 1000) minimizes the ETAC. For both 

stabilization targets, (680, 320) budget allocation is shown to be the ETAC-minimizing 

case under the $1000 mil. total discounted budget; henceforth this ETAC-minimizing 

budget allocation is referred to as the optimal R&D investment portfolio. The solution for 

the optimal portfolio being located in the interior of the feasible allocation space is 

consistent with the observed diminishing returns in probabilities of success (Figure 4.2) 

as well as the presence of the advantages and disadvantages discussed earlier in this 

section. Formally estimating the optimal budget allocation between present and future is 

a value added to the analyses focusing on a single period. Only through a formal analysis 

of the delayed technology development, could a decision maker make an informed 

decision on the optimal budget allocation between the present and future. 

Figure 4.9 shows the optimal R&D investment portfolio for varying levels of total 

discounted budget. The budget level linearly increases from left to right on the x-axis. 

Cumulative funding on right y-axis also increases linearly with respect to budget. The 

colored bars represent the amount optimally funded for each technology. The diagonal 

patterned bar labeled “future” denotes the optimal budget allocation for the second period. 

The solid line represents the minimum expected net present value of total abatement cost 

(ETAC) given the budget level and corresponding optimal budget allocation and optimal 
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R&D portfolio. Notice that the data point for the $1000 mil. total discounted budget is 

identical to the minimum ETAC yielding budget allocation in the Figure 4.8: (680, 320). 

Figure 4.9 is essentially a collection of ETAC-minimizing budget allocations from 50 

different versions of Figure 4.8, with varying total discounted budget.  

Several observations bear note. First of all, generally speaking, 60-70% of the 

total budget is optimally allocated for the first period. Again, this optimal intertemporal 

allocation result is one important contribution that would not be available without 

formally modeling the delayed technology development. 

Second, the ETAC decreases from $12 tril. ($2.8 tril.) at zero budget to $9.4 tril. 

($2.0 tril.) at $2000 mil. budget for the 450 ppmv (550ppmv) target. The savings in 

ETAC are two to three orders of magnitude higher than the R&D investment amount; 

implying large net social gain from the investment under given stabilization targets. The 

ETAC line also shows substantially diminishing returns to scale with respect to 

investment.  

Table 4.6 shows the first-period R&D investment priority rankings of the 

considered technologies. First, notice that the rank order is almost identical between the 

single period model (SDP1) and the two-period model (SDP2). This implies that the 

simple model with much smaller computing power requirement could be used as a 

reasonable substitute for generating an optimal R&D portfolio for the first period if the 

budget allocation across time is not the main concern. Such a situation could arise, for 

example, when the budget allocation and timing are exogenously specified by a legal 

statute instead of being flexible and endogenously determined for economic efficiency.  
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(A) 450 ppmv target 

 
 

(B) 550 ppmv target 

Figure 4.8: Two-period budget allocations and expected total abatement cost for $1000 

mil. total discounted R&D budget. 
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(A) 450 ppmv target 

 

(B) 550 ppmv target 

Figure 4.9: Optimal R&D investment portfolio and expected total abatement cost for 

the two-period stochastic dynamic programming model. 
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1 CCSz 40 CCSz 40 CCSz 40 CCSz 40 CCSz 40

2 CCSz 80 SOLx 40 CCSz 80 CCSz 80 CCSz 80

3 NUCx 40 SOLx 80 SOLx 40 SOLx 40 SOLx 40

4 NUCx 80 CCSz 80 NUCx 40 NUCx 40 NUCx 40

5 NUCx 120 TRNy 40 NUCx 80 NUCx 80 NUCx 80

6 NUCx 160 TRNy 80 NUCx 120 NUCx 120 NUCx 120

7 CCSy 40 TRNx 40 NUCx 160 NUCx 160 NUCx 160

8 CCSy 80 TRNx 80 SOLx 80 TRNy 40 TRNy 40

9 CCSy 120 TRNx 120 CCSy 40 TRNy 80 TRNy 80

10 CCSy 160 TRNx 160 CCSy 80 SOLx 80 SOLx 80

11 CCSx 40 SOLy 40 CCSy 120 TRNy 120 TRNy 120

12 CCSx 80 SOLy 80 CCSy 160 TRNy 160 TRNy 160

13 CCSx 120 SOLy 120 TRNy 40 CCSy 40 TRNx 40

14 CCSx 160 SOLx 120 TRNy 80 TRNx 40 TRNx 80

15 TRNy 40 TRNy 120 CCSx 40 TRNx 80 TRNx 120

16 TRNy 80 TRNy 160 CCSx 80 TRNx 120 TRNx 160

17 TRNy 120 CCSy 40 CCSx 120 TRNx 160 CCSy 40

18 TRNy 160 NUCx 40 CCSx 160 CCSy 80 CCSy 80

19 TRNx 40 NUCx 80 TRNx 40 CCSy 120 CCSy 120

20 TRNx 80 NUCx 120 TRNx 80 CCSy 160 CCSy 160

21 TRNx 120 NUCx 160 TRNx 120 CCSx 40 SOLx 120

22 TRNx 160 CCSy 80 TRNx 160 CCSx 80 CCSx 40

23 SOLx 40 CCSy 120 TRNy 120 CCSx 120 CCSx 80

24 SOLx 80 CCSy 160 TRNy 160 CCSx 160 CCSx 120

25 SOLx 120 CCSx 40 SOLy 40 SOLx 120 CCSx 160

26 SOLy 40 CCSx 80 SOLy 80 SOLy 40 SOLy 40

27 SOLy 80 CCSx 120 SOLy 120 SOLy 80 SOLy 80

28 SOLy 120 CCSx 160 SOLx 120 SOLy 120 SOLy 120

29 SOLy 160 SOLz 40 SOLz 40 SOLz 40 SOLz 40

30 SOLz 40 SOLz 80 SOLz 80 SOLz 80 SOLz 80

31 SOLz 80 SOLy 160 SOLy 160 SOLy 160 SOLy 160

32 SOLz 120 SOLz 120 SOLz 120 SOLz 120 SOLz 120   
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1 NUCx 40 CCSz 40 CCSz 40 CCSz 40 CCSz 40

2 NUCx 80 SOLx 40 CCSz 80 CCSz 80 CCSz 80

3 NUCx 120 SOLx 80 SOLx 40 SOLx 40 SOLx 40

4 NUCx 160 CCSz 80 SOLx 80 SOLx 80 SOLx 80

5 CCSz 40 TRNy 40 NUCx 40 NUCx 40 NUCx 40

6 CCSz 80 TRNy 80 NUCx 80 NUCx 80 NUCx 80

7 CCSy 40 TRNx 40 NUCx 120 NUCx 120 NUCx 120

8 CCSy 80 TRNx 80 NUCx 160 NUCx 160 NUCx 160

9 CCSy 120 TRNx 120 TRNy 40 TRNy 40 TRNy 40

10 CCSy 160 TRNx 160 TRNy 80 TRNy 80 TRNy 80

11 TRNy 40 SOLy 40 CCSy 40 SOLx 120 TRNy 120

12 TRNy 80 SOLy 80 CCSy 80 TRNy 120 TRNy 160

13 TRNy 120 SOLy 120 CCSy 120 TRNy 160 SOLx 120

14 TRNy 160 SOLx 120 CCSy 160 TRNx 40 TRNx 40

15 SOLx 40 TRNy 120 SOLy 40 TRNx 80 TRNx 80

16 SOLx 80 TRNy 160 SOLy 80 TRNx 120 TRNx 120

17 SOLx 120 CCSy 40 SOLy 120 TRNx 160 TRNx 160

18 SOLy 40 NUCx 40 SOLx 120 CCSy 40 SOLy 40

19 SOLy 80 NUCx 80 TRNx 40 CCSy 80 SOLy 80

20 SOLy 120 NUCx 120 TRNx 80 CCSy 120 SOLy 120

21 SOLy 160 NUCx 160 TRNx 120 CCSy 160 CCSy 40

22 SOLz 40 CCSy 80 TRNx 160 SOLy 40 CCSy 80

23 SOLz 80 CCSy 120 TRNy 120 SOLy 80 CCSy 120

24 SOLz 120 CCSy 160 TRNy 160 SOLy 120 CCSy 160

25 CCSx 40 CCSx 40 CCSx 40 CCSx 40 CCSx 40

26 CCSx 80 CCSx 80 CCSx 80 CCSx 80 CCSx 80

27 CCSx 120 CCSx 120 CCSx 120 CCSx 120 CCSx 120

28 CCSx 160 CCSx 160 CCSx 160 CCSx 160 CCSx 160

29 TRNx 40 SOLz 40 SOLz 40 SOLz 40 SOLz 40

30 TRNx 80 SOLz 80 SOLz 80 SOLz 80 SOLz 80

31 TRNx 120 SOLy 160 SOLy 160 SOLy 160 SOLy 160

32 TRNx 160 SOLz 120 SOLz 120 SOLz 120 SOLz 120  

 (A) 450 ppmv target                                    (B) 550 ppmv target 

Table 4.6: Comparison of optimal funding orders for single-period model (SDP1) and 

two-period model (SDP2). 
 

 

However, if the optimal budget balance between the present and the future is the issue, a 

formal modeling of delayed technology development is still required.  

Second, there still remain some changes in the rank order. For example, in the 450 

ppmv target case, the first unit of CCSy investment moves behind the TRNx investments. 

Also, the last unit of SOLx investment moves ahead of CCSx investments. Similar 

movements are observed for the 550 ppmv target case, with TRNy and SOLy being the 

beneficiaries.  

No simple rule-of-thumb is observed from the changes in the rank-order. 

Basically, the major determinants of the ranking are still the probability of success and 
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the potential impact. In many cases, the combined magnitude of these two factors is 

sufficiently different, such that additional factors do not change the rank order. For 

example, the top ranking CCSz show high impact measured in maximum stabilization 

reduction potential and high probability of success at a given funding level. On the other 

hand, the bottom ranking SOLz has low impact and low probability. These technologies 

are unlikely to change their rankings. Similar statements can be made for frequent high 

rankers SOLx (low-impact high-probability), NUCx (high-impact low-probability), and 

TRNy (medium-impact medium-probability). 

However, some local observations could be made where the combined effects of 

probability and impact of multiple technologies are within a comparable range. Take 

SOLx for example. SOLx shows a textbook example of diminishing returns; while the 

potential impact remains the same, the probability exhibits diminishing returns with 

respect to R&D investment. As a result, SOLx investment units are spread widely across 

high-medium-low rankings.  

In the 450 ppmv target, the last unit of SOLx-120 investment moves up in ranking 

because CCSx is more vulnerable to the wait-and-see option, as the success in a more 

advanced CCSz or CCSy would “mute” the success in CCSx. If any of the two leading 

CCS succeeds in the first period, it would be meaningless to have invested in low-

performance CCSx. On the other hand, SOLx-120 benefits from being the leading 

technology in its group, such that it is not subject to the risk of being muted by a success 

in another technology in its group. As a result, SOLx-120 moves ahead of CCSx 

investments in the first-period investment, and CCSx is better suited for wait-and-see 

option.  
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More generally, having the second-period adjustment option forces the portfolio 

towards diversification across different technology groups, such that at least one 

technology from each group gets a chance to succeed. A low-ranking technology within a 

technology group is the most vulnerable to the wait-and-see option, when the technology 

is highly substitutable because the technologies are otherwise highly homogenous, or 

when the high-ranking substitute has high probability of success. 

In contrast, some high-ranking technologies within a homogenous group benefit 

from a concentration of R&D investment. Consider the two TRN technologies. TRNy 

exhibits larger impact and higher marginal probability for the funding level up to $80 mil. 

compared to TRNx. However, the higher funding levels for TRNy exhibit diminishing 

marginal probability of success. Hence, a simple product of maximum impact and 

marginal probability results in high rank orders for TRNy-40 and TRNy-80, medium rank 

orders for all TRNx units, and low rank orders for TRNy-120 and TRNy-160. However, 

when assessed through a full stochastic optimization, all funding levels for TRNy move 

ahead of TRNx. 

The reason can be explained in a simple single period example. Suppose the first 

two units of TRNy have 50% chance of success. For simplicity, assume the impact is 

identical for TRNy and TRNx. Next two units of TRNy have 20% marginal probability 

of success, while the first two units of TRNx have 30% marginal probability of success. 

If all four units are invested in TRNy the overall probability of success is [70% = 50% + 

20%]. On the other hand, if we diversify and invest two units to TRNy and two units to 

TRNx, the overall probability of success is [65% = 50% + 30% − (50% * 30%)]. The last 

term is adjusting for overlapping success, in which case the inferior technology becomes 
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obsolete.  Clearly, investing all four units in TRNy is more efficient choice. This dynamic 

applies to any homogenous technology group with heavily overlapping applications.  

In summary, multi-period optimization fully utilizing the probabilities of success 

data and all combinations of the impact data pushes the optimal R&D investment 

portfolio towards more diversification across different types of technologies, but more 

concentration among technologies within a homogenous technology group. 

 

4.5. Conclusion and Discussion 

In the last few years, we have been getting an influx of high quality data from the 

two frontiers of low-carbon energy technology research: one on the probabilities of 

technology success data (Baker et al., 2008c, 2009a, 2009b, 2010), and the other on the 

estimated cost of atmospheric CO2 stabilization from technologically detailed models 

(Clarke et al., 2008; McJeon et al., 2010). A natural integration of these datasets could be 

done with a number of different methods. In this essay, I chose stochastic dynamic 

programming as a decision-making tool incorporating the datasets in order to determine 

the optimal R&D investment portfolio under specified climate stabilization targets. Using 

expert elicitation results for four technology groups (carbon capture and storage, 

photovoltaic cells, nuclear electricity, and transportation batteries) and abatement cost 

estimates from the GCAM integrated assessment model, this analysis identified which 

technologies should be given R&D funding priorities in order to achieve the 450 ppmv or 

the 550 ppmv stabilization target at the lowest possible cost. In this exercise, the results 

generally point to R&D portfolios that are diversified across considered technology 

groups, with a relatively strong emphasis on CCS.  
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The significance of the specific results notwithstanding, they must be treated with 

caution, considering the caveats and the restrictive assumptions surrounding the analysis. 

First of all, this analysis takes the expert elicitation results at their face value. There could 

easily be a shared bias among specific technology experts that pushes the elicitation 

results up or down. A cross validation of the independent probability assessments could 

enhance future analysis. 

Second, this analysis limited its scope to the 9 technologies that have shared range 

of elicited R&D funding. The technologies and funding levels that require investment an 

order of magnitude higher than the maximum specified amount were excluded from the 

analysis. An additional analysis involving the technologies with higher investment 

requirements may reveal additional insights not available from this analysis. 

Third, the analysis exclusively focused on technology uncertainty, particularly in 

the economic aspect of the technologies. Non-economic aspects of a technology – such as 

social acceptance of a new technology – as well as the socioeconomic development in the 

pattern of energy use are key factors in the climate stabilization cost uncertainty. While 

focusing only on one aspect of uncertainty enhances clarity of the issue, it could also 

make the results less robust. 

This analysis is only a first step in developing an internally consistent method of 

identifying the R&D investment priorities across energy technologies in order to 

minimize the cost of climate stabilization. Further extensions in the following areas 

would enhance the quality of the analysis. First, a broader set of technologies, particularly 

end-use efficiency technologies, could be added to the portfolio. It has been noted that the 

demand-side technologies, such as fuel efficient vehicles or appliances, have a very 
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different effect on abatement costs as compared to the supply-side technologies, which 

constituted the majority of technologies analyzed here. 

Second, the representation of uncertainty resolution could be made more realistic. 

One way to do this is instead of using a binary success or failure representation of a 

technology, a partial success could be included as feasible state level. In this formulation, 

the decision maker would be allowed to observe the progress of a technology’s 

development, and then either to continue the funding if the progress is promising, or to 

stop the funding if the progress is unlikely to bear fruit in the following periods. 

Moreover, a technology-specific “learning from failure” effect could also be 

better represented. For example, with failure in some technology development, we may 

exhaust the investment option and hence lower the probability of success in the next 

period. For example, a solar PV cell may use a very specific material, and if initial R&D 

revealed that the material was insufficiently durable in high temperature conditions, this 

failure may once and for all exhaust the original probability of success. In contrast, with 

some failures, scientists may learn more about the process and get that much closer to a 

successful development in the next period. For example, the initial R&D may succeed in 

enhancing safety of a Li-ion battery, but fail to sufficiently reduce the cost. The next 

period R&D may piggyback on the safety mechanism developed beforehand, and 

exclusively focus on the cost reduction, raising the probability of success. Better 

understanding the differences in the “learning from failure” effect could help better 

represent the second period probability of success matrix. 

Climate change and technology development are both highly uncertain 

phenomena. But a good combination of technology development strategy and climate 



142 
 

stabilization policy would be highly beneficial in terms of optimizing the timing and the 

magnitude of climate change mitigation. Obtaining high quality information on both 

fronts and developing sophisticated analytic tools are crucial for effective R&D strategy. 

This paper is an attempt to move progress on this issue forward by one more step. From 

this analysis we learned that the likely contributions of this line of research are to provide 

insights into the balance of current and future R&D budgets, and to reveal the 

technologies best suited for the wait-and-see strategy. Extensions of the analysis could 

help making better-informed decisions for technology development under uncertainties 

regarding the extent of climate change damage and successful technology development. 
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Chapter 5. Synthesis and Conclusion 

 

5.1. Contextual Summary of the Three Essays 

Climate change is one of the greatest challenges facing humanity. If not 

effectively mitigated and adapted to, the future generations would suffer the 

unnecessarily severe damages. Technology is one critical pillar of climate change 

mitigation. Mitigation of climate change through a reduction in CO2 emissions would 

require the energy system to shift away from the conventional use of fossil fuels, but such 

a shift may impose a high cost on society. Advancements in alternative energy 

technologies could alleviate the economic burden of this shift by reducing the cost of CO2 

abatement.  

This dissertation examines the role that technology plays in mitigating climate 

change. The three essays contained in this dissertation each focus on different aspect of 

the process in which advancements in low-carbon energy technologies impact the cost of 

carbon dioxide (CO2) abatement.  The three essays collectively serve to demonstrate the 

importance of clearly understanding the differences among low-carbon technologies. 

They also provide the methodological foundations upon which such technologies can be 

assessed and compared.  Combining these methods with an enhanced understanding of 

the technologies will contribute to the body of research aimed at minimizing the cost of 

mitigating climate change. In conjunction with impacts research and adaptation research, 

this mitigation research can help design an effective climate change policy. This chapter 

reviews the major insights gained from each of the three essays and discusses their 

contribution in a broader technology and climate change policy context. 
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5.1.1. Marginal Cost of Abatement 

The first essay focused on the extent to which different individual technologies 

affect the cost of abatement differently. By building a simple analytical model of energy 

technologies and CO2 emissions, I derived sets of conditions under which different types 

of advanced technologies can be evaluated for their respective strengths in reducing 

abatement costs at alternate levels of abatement. This exercise is a step forward from the 

conventional analysis of a single point estimation of the impact of a technology, and it 

clearly demonstrates the importance of understanding the pattern of abatement cost 

reductions throughout the potential level of abatement. The conclusions were simple: 

some technologies are stronger in achieving low levels of abatement, while others are 

stronger in high levels of abatement. This essay also clearly outlined the conditions that 

induce such differences and established the basic analytical groundwork for interpreting 

the numerical analysis examples in the last part of the essay as well as the other analyses 

contained in the subsequent chapters.  

The numerical examples reiterated the findings of the analytical model, 

demonstrating that the impact of technological change on marginal abatement cost is not 

uniform across abatement levels; it depends on the characteristics of a particular 

technology. Different types of technological changes show distinct patterns of the impact 

on the cost curve, with relative strengths and weaknesses under different abatement levels. 

The examples also emphasized that merely analyzing either the aggregate marginal 

abatement cost or the reduction in the cost of energy production cannot provide 

sufficiently nuanced understanding of the value of technology under emission constraints. 
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The dynamic interactions in the market matter. It is important to look at the 

characteristics of each technology to fully explain the interactions and resulting 

equilibrium.  

The relevant characteristics include the magnitude of the reduction in the cost of 

energy production, the size of the resource base, the rate at which the marginal cost of 

production increases with scale, and the limiting factor of deployment expansion – such 

as intermittency of the resource for solar or social opposition to the expansion of nuclear 

power. In the best case example, a substantial cost reduction in a technology with large 

resource base or a relaxation of expansion constraints in a low-cost technology could 

induce a large reduction in the cost of abatement over a wide range of abatement levels. 

Furthermore, the magnitude of the reduction would be amplified if other low-carbon 

energy sources are near their respective capacity limits, beyond which the production cost 

rises rapidly due to the additional efforts required to extract inferior quality resources. 

If the socially optimal level of abatement is known, an effective strategy of 

technology development would be to focus on technologies that exhibit highest strength 

at the given level of abatement. For the low levels of abatement, the most effective ones 

could be cost reduction technologies for existing technologies (such as Light Water 

Reactors). On the other hand, for the high levels of abatement, the most effective ones 

could be novel technologies that could utilize the existing large resource base (such as 

Carbon Capture and Storage). The R&D portfolio focusing on the most effective 

technologies for the chosen abatement level could help minimize the abatement cost 

under constrained R&D budget.  
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5.1.2. Technology Interactions 

As an extension of the first essay, the second essay focused on how technology 

interactions in the market affect abatement cost. For this analysis, I first built a dataset of 

abatement costs and energy consumption for the 768 combinations of technology levels 

and CO2 stabilization levels. Two or more levels of technology development were 

obtained from Clarke et al. (2008) for each of the four major supply technologies (solar, 

wind, nuclear, and carbon capture and storage) and three major end-use efficiency 

technologies (buildings, industry, and transportation). The final dataset was generated by 

processing all permutations of the technology levels at two stabilization targets: 450 

ppmv and 550 ppmv.  

This dataset was then analyzed from three different perspectives: (1) a broad 

assessment of the degree of variation in the energy consumption and stabilization costs 

across all the scenarios in the dataset, to highlight general characteristics of the 

technology space; (2) an assessment of the ranges of stabilization costs associated with 

each technology development level, which provided insights into issues of risk 

management; and (3) an assessment of the reduction in stabilization cost associated with 

improvements in individual technologies, which provided information for optimal R&D 

portfolio analysis.     

The insights from the analyses are in agreement with those of the representative 

scenario analyses upon which they are based. Technological advancements have a 

substantial impact on stabilization costs, and the impact is larger under more stringent 

conditions such as a lower stabilization targets or the lack of advancements in other 

technologies. Improvements in a few particular technologies, most notably CCS, have a 
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larger impact on stabilization costs than improvements in others. More generally, 

removing the quantity constraint from a technology, and hence increasing the diversity of 

available technologies in the market, has a larger impact on stabilization costs than 

incremental reductions in the production costs of existing technologies.  

This effect is best exemplified by the comparison of the two different types of 

advancements considered for nuclear technology. Consider one type of advancement that 

allows expansion of nuclear power beyond the current levels of deployment – this could 

be a technology that minimizes the radioactive waste or one that removes the security 

threat arising from mismanagement of spent fuel. Even without reduction in production 

cost, this advancement would allow larger deployment with respect to abatement level, 

and hence become increasingly effective in reducing stabilization costs under stringent 

targets. In contrast, the other type of advancement that merely lowers the capital cost 

below the current level is shown to have relatively smaller reduction potential in 

stabilization costs, especially for stringent targets. 

Furthermore, the analysis also provided more clarity regarding insights not easily 

demonstrated through representative scenario analyses. One immediate result in this 

regard was the clear differences in the distribution of the stabilization cost reduction 

potential between supply technologies and end-use technologies. Generally speaking, 

advanced supply technologies have their strengths in truncating the high-cost tail of the 

stabilization cost distribution, which arises with otherwise pessimistic technology 

outcomes in conjunction with more aggressive climate targets. The flipside is that 

individual supply technologies yield low value under more relaxed climate targets and 

under technology-rich conditions, in large part because the advanced supply technologies 
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are close substitutes of one another. In the presence of multiple advanced supply 

technologies that can provide sufficient energy at low cost, the value of one additional 

advanced technology is significantly diminished. On the other hand, advanced end-use 

technologies are shown to yield relatively consistent value across the full space, in part 

because they are by their nature contained in a particular sector.  

The analysis emphasizes how understanding the interactions between these 

technologies and their impacts on the cost of abatement can help better inform energy 

policy decisions, suggesting that an evaluation of R&D investments in an advanced 

technology should correspond to the policy goal one is trying to achieve. For example, if 

minimizing the chance of very high stabilization costs is the major goal, one should place 

additional weight on the supply technologies with high-cost truncation potential. In 

contrast, if a stable return to R&D investment is the goal, more weight should be placed 

on aggregate end-use efficiency improvements, compared to the value the conventional 

representative scenario analysis would suggest. 

The dataset and its extensions are of value to the climate change mitigation 

research community because they provide a rich set of information upon which various 

uncertainty analyses can be performed. A scenario discovery analysis using the dataset 

with a goal of identifying technology combinations that are crucial in avoiding high 

stabilization costs is briefly discussed in the essay. Also, an expanded dataset is under 

development to be used in an analysis comparing the relative importance of different 

uncertainties of the climate change problem.  
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5.1.3. R&D Investment Strategy 

The dataset of technology combinations and their impacts on the cost of 

abatement can be combined with probability of technology success data to generate 

optimal R&D portfolios under uncertainty. The third essay in this dissertation is one 

demonstration of such an exercise. In this essay, I took an expanded technology 

combination dataset, and collected the data points that were compatible with the 

probabilities of technology success data obtained from the expert elicitations conducted 

by Baker et al. (2008c, 2009a, 2009b, 2010). The two compatible datasets were integrated 

into a stochastic dynamic programming framework to generate an optimal R&D portfolio 

that minimizes the expected cost of abatement given an R&D budget constraint. This 

analysis identified which technologies should be given R&D funding priorities in order to 

achieve an atmospheric CO2 stabilization target at the lowest cost. A multi-period 

extension of the model allowed intertemporal dynamic optimization where the policy-

maker can select the technologies to be invested in immediately as well as the 

technologies to be invested in later. The analysis emphasized the benefit of having a wait-

and-see option that lets the policy-maker further optimize upon the observation of 

successes and failures of prior investments.  

The overall results pointed to R&D portfolios that are diversified across 

considered technology groups, with a relatively strong emphasis on CCS. However, the 

technologies considered in this initial analysis may be too limited to be used immediately 

for policy recommendations. Rather, it is the enhanced understanding obtained from 

these analyses of the technology space, and the technology interactions within this space 

that provide more valuable insights. 
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First of all, the comparison of rank-orders of the technology R&D investment 

options between the stochastic dynamic programming model and other back-of-the-

envelope metrics indicates that a simple product of the probability of success and the 

maximum abatement cost reduction potential works reasonably well as a rule-of-thumb 

for ranking the technology R&D priorities. The relative strengths of considered 

technologies are vastly different, such that no reasonable method of ranking them would 

substantially alter the order. If plausible, a simple product of the probability of success 

and the average impact would work better. However, this assumes knowledge of the 

distribution of the potential impact, in which case there is no reason to forego the full 

stochastic analysis. 

A more careful look into the results reveals the subtle differences between an 

ordering derived by a formal stochastic dynamic programming model and one derived by 

a simple back-of-the-envelope calculation– such as a simple product of the probability of 

success and the maximum abatement cost reduction potential of an advanced technology. 

One immediate difference is the upward movement of end-use technologies in their 

rankings. This observation is consistent with the results from the second essay that 

showed that the maximum abatement cost reduction potential metric systematically 

underestimates the strengths of end-use technologies. The maximum abatement cost 

reduction potential – often measured by the difference between a baseline scenario and a 

scenario with one advanced technology – is a commonly used, simple metric in 

technology evaluation. This result should serves as a caution for such practice in R&D 

portfolio development. 
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Furthermore, the results point to a R&D investment strategy of concentrating 

funds within a homogeneous technology group and diversifying funds across 

heterogeneous technology groups. Here, a homogeneous technology group is defined by 

shared resource base and shared applications – for example, the PV technology group that 

includes many different types of organic and inorganic PV technologies, all of which 

produce electricity using solar radiation. Different technology groups are defined to be 

heterogeneous, if the two groups use different resources or have different applications – 

for example, the PV technology group is categorized to be heterogeneous from the 

electric vehicle technology group. 

Intuitively, multiple successes in a homogeneous technology group result in the 

inferior technology being effectively wasted. Within a homogeneous technology group, 

this effect leads to a concentration of funding in the most promising technology to avoid 

such multiple successes. At the same time, this effect makes lower ranking technology 

within a group relatively vulnerable to a wait-and-see strategy, where the decision maker 

observes the progress of a higher-ranking technology before investing in the lower-

ranking technology in the same group. This wait-and-see strategy is designed to avoid a 

situation where both of the technologies succeed and the investment in the inferior 

technology effectively provides no additional benefit. This relative vulnerability to the 

wait-and-see strategy leads to a diversification of the R&D portfolio across 

heterogeneous technology groups. Although the differences observed from these 

strategies are small, these insights are the additional value provided by conducting a 

formal analysis of the stochastic technology space. 
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5.2. Other Aspects of the Policy Process 

Throughout the dissertation I have reduced the R&D process to a simple input-

output process, as if it were a stochastic vending machine. That is, the R&D funding goes 

in at one end and advanced technology comes out from the other with a fixed probability, 

and the policy maker decides which button to press solely to minimize the cost. Given the 

limitations of this simplification, how widely applicable are these insights in different 

policy settings? Three aspects of policy process could shed light on this issue. 

The first aspect is the nature of the technology R&D process itself. From the most 

top-down perspective this process may appear like a vending machine, but upon closer 

examination, it would be more accurately described as a living creature with its own – 

and sometimes conflicting – objectives. For one thing, technology research labs interact 

with one another, resulting in a spillover and cross-fertilization across different 

technologies. These effects would be more prevalent among the research labs specializing 

in the same type of technology, but certain fields of research – such as basic materials 

science – may influence many heterogeneous technologies. On the other hand, the 

spillover effects could be weakened by patents and other intellectual property protection 

measures, particularly among the private research firms. If such effects are sufficiently 

strong, an optimal strategy could be to actively form clusters of research to benefit from 

the effect. This would serve as an opposing force to the “concentration within a 

homogeneous group” strategy. Future research into the spillover effect either through 

expert elicitations or through empirical research into the history of technology 

development could provide valuable information to be used in further refining the R&D 

portfolio. 
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There is also the path-dependence aspect in the R&D policy process. An optimal 

R&D portfolio that minimizes the expected cost of abatement for a given stabilization 

target may call for a concentration of funding into the most promising technology, while 

utilizing a wait-and-see strategy for other technologies in the same group. However, upon 

the initial failure of the first-funded technology, switching to the next promising 

technology may not be as simple as pressing another button. Once a research apparatus 

has been established and operated for many years, the natural tendency for it to grow 

larger and larger. This may happen in the form of formal industry group lobbying or in 

the form of biased influence toward a policy making individuals. The end result may not 

be as optimal as what the “vending machine” model has designed for the R&D portfolio 

solution. The path-dependence effects, if predicted to have substantial impact on the 

policy, could be added to the model to better represent the suboptimal behavior of the 

system.  

The second aspect of the R&D process to consider is the infrastructure the 

technologies operate within. The analyses in this dissertation assumed a successfully 

developed technology is automatically deployed in the energy market on a large-scale, 

but this is a simplistic abstraction of reality. For one thing, a large-scale deployment in 

the market generally requires a co-evolution of the infrastructure that supports the new 

technology. Consider the mass-deployment of personal electric vehicles. This would 

require a high-voltage charging system to be deployed in a large share of residential 

buildings, and also possibly in commercial buildings. The electricity supply mix in the 

grid may need to be adjusted to supply the nighttime charging demand. Furthermore, 

evolution in the infrastructure may further enhance the attractiveness of the technology. 
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For instance, if houses were equipped with a smart-metering system, such that an electric 

vehicle could be charged during the low-demand hours and the peak-demand hours could 

be supplemented with the batteries, this could reduce the lifetime net ownership cost of 

the vehicle. 

The infrastructure sector has its own policy decisions to make, and such decisions 

may result in the success or the failure, contingent upon the outcome of the energy 

technology R&D. Under a stringent climate target that requires advanced energy 

technologies to be deployed as soon as they become available, it may be necessary for the 

infrastructure sector to preemptively establish the necessary infrastructure for the rapid 

deployment of the impending advanced energy technology. But such preemptive action 

risks cascading failure from the failure of the technology development to the wasted 

resources in the infrastructure development. To minimize such risk, the infrastructure 

development could focus on the flexible part of the structure that could be useful either 

under success or failure, for the reasons similar to the consistent benefit provided by the 

end-use efficiency technologies. Furthermore, active coordination between the energy 

technology R&D policy and the infrastructure development policy could maximize the 

benefit of advanced technology developments.  

Future research explicitly representing the co-evolution of the infrastructure the 

technologies operate within may reveal additional dynamics not observed from the 

simple “vending machine” treatment I’ve used. More comprehensive estimates of the 

broader social cost of abatement could be provided by explicit accounting of additional 

costs and benefits to consumers and firms associated with the infrastructure – e.g. the 

establishment of infrastructure, the impeded deployment of new technology due to 
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delayed infrastructure, and the infrastructure made obsolete due to the failure in the co-

evolution of the energy sector. 

The last aspect of the R&D process to consider is the perspective of the policy 

maker. While the analyses in this dissertation assumed a single global policy optimizer 

with the sole objective of minimizing the abatement cost, the empirical policy 

recommendation requires to be evaluated from the perspective of a specific policy maker. 

Consider the U.S. Department of Energy (DOE), for example. Being a major player in the 

world energy R&D field, the interests of the DOE may be the most closely aligned with 

the idealized one-world policy maker perspective used throughout this dissertation. The 

technologies that minimize the abatement cost for the world are generally the same ones 

that minimize the costs for the U.S. However, the proportion of benefit generated by the 

advanced technologies could diminish over time. This may push the R&D portfolio 

toward a focus on more immediate benefits, when compared to the one-world case. The 

opposite could be true for a rapidly growing economy such as China. Furthermore, with 

other major players in the field, it may be strategically beneficial for the U.S. to either 

compete for dominance in a particular technology group or to collaborate to minimize 

redundant R&D expenditures. An extension of this analysis using game theory could 

shed more light on the issue. 

The domestic climate policy structure is also important to the perspective of the 

DOE. Throughout this dissertation, I have assumed an idealized global carbon market 

that optimally equalizes the carbon price of all countries and of all sectors. However, 

since the international community has so far failed to agree on a comprehensive 

successor to the Kyoto Protocol, it is likely that such an idealized market will not be 
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established in the near future. Instead, the near-future climate policy will likely be 

dominated by a multitude of region-specific and sector-specific policies that are prone to 

price distortions and emissions leakage.  

If such suboptimal climate policies are applied for a prolonged period of time, the 

R&D portfolio may also diverge from the globally optimal case. Assuming the long-term 

climate target remains the same, the relative importance of the technologies is unlikely to 

change dramatically. However, among the similar-strength technologies, more immediate 

focus may be given to the end-use technologies. As observed throughout the analyses, 

end-use efficiency technologies show relatively consistent performance under different 

situations. The suboptimal policy environment would be no exception. An increase in 

end-use efficiency would shrink the size of the pie that the energy supply technologies 

must fill. The impacts would be two-fold: one, this would reduce emissions during the 

suboptimal policy regime by reducing the amount of energy consumed, and two, this 

would set the stage for the future advanced low-carbon supply technologies to more 

rapidly saturate the energy system once the optimal climate policy comes into effect.  

In contrast, an early development of an advanced CCS technology would sit idle 

during the suboptimal policy regime, until the start of more aggressive climate policy. 

This dynamic would be more pronounced if the future prospect of the optimal climate 

policy itself is uncertain, and there is a significant chance that such climate policy will 

never be established. In such a case, advanced CCS may never be utilized on a large scale. 

Overall, the prospect of a prolonged suboptimal policy regime would push the R&D 

portfolio toward an “end-use efficiency now, supply technology later” design.  
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On the opposite spectrum of the climate policy regime is the sub-2°C target. For 

years, scientific discourse centered around the 2°C target, roughly corresponding to the 

450 ppmv case in my analyses. Recently, there have been more discussions about the 

climate target below the benchmark 2°C. If the climate science research supports a 

climate target as low as 1.5°C or even 1°C in the long run, it could change the optimal 

R&D portfolio. Such stringent targets would likely require a portfolio beyond the 

conventional energy R&D portfolio, and would likely include technologies to control 

other greenhouse gases and climate forcing agents as well as active scrubbing of CO2 

from the atmosphere. Since CO2 has an atmospheric lifetime of a century or so, even with 

a rapid phase-out of fossil fuels, the previously emitted CO2 will stay in the atmosphere 

and continue to warm the Earth. Reversing the warming trend early enough to avoid 

overshooting a sub-2°C target would require reductions in all applicable greenhouse 

gases. In order to have immediate reduction in the rate of warming until the effect of CO2 

reduction starts to prevail, it would be particularly effective to reduce the short-lived and 

highly-potent greenhouse gases and forcing agents, such as methane and black carbon. 

Furthermore, achieving a very low climate target within a short time frame may require 

aggressive utilization of negative emission technologies that can scrub CO2 or other 

greenhouse gases from the atmosphere. Thus, investments in the technologies for 

abatements in the other greenhouse gases and forcing agents and for active scrubbing of 

the gases should be considered alongside with the advanced low-carbon energy 

technologies. 

Within the energy sector, low climate targets would push the optimal R&D 

portfolio further toward the one technology that could produce carbon-negative energy: a 
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biomass-fired powerplant with CCS. Among other energy technologies, an extrapolation 

of the changes from 550 ppmv to 450 ppmv indicates that the change in priority ranking 

would not be too dramatic, but technologies that allow decarbonization of the 

transportation sector would also receive additional favor. This is because, with the set of 

technologies that are currently available, the transportation sector is the most difficult to 

decarbonize. A very low climate target would require decarbonization of all sectors, 

along with the implementation of carbon-negative technologies in the sectors that are 

capable. A technology that could ease the transition of the transportation sector away 

from liquid hydrocarbon fuel would be highly beneficial under these stringent targets.  

 

5.3. Critical Assumptions and Sensitivities 

Finally, the sensitivities of the conclusions merit discussion. Before discussing the 

list of sensitivities, it must be reiterated that the analyses included in this dissertation are 

primarily geared toward a demonstration of the stochastic modeling capability to generate 

an optimal R&D portfolio; the specific composition of the generated portfolio is the 

secondary outcome of the exercise. Beyond that, of course, the findings do point towards 

general insights for technology dynamics and climate change policy design.   

Development of an optimal technology R&D portfolio is based on a specific set 

of assumptions that are taken to be exogenous. Therefore, the specific composition of the 

portfolio hinges on the critical assumptions discussed below, and should be treated with 

caution. 

First, the analysis takes the expert elicitation results as given. Ideally, the selected 

groups of experts should present impartial judgments about the future prospects of the 
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technologies, and the elicitation results should closely reflect the true probability of 

success. However, the elicitation process could be distorted by several factors, including 

unfamiliarity with the cost metrics, overconfidence, shared bias among experts, missing 

observations, and so on. Some elicitation data used in this dissertation are originally 

obtained from as many as seven experts, such that the impact of one imprecise 

measurement on the overall results would be dampened by the averaging process. 

However, some early experimental elicitations data are based on as few as three experts, 

in which case one imprecise measurement could dramatically change the resulting 

portfolio. The effect of biased estimates on the average value decreases by half for every 

doubling of experts. For example, suppose the true value is 0.2. If one expert was doubly 

overconfident at 0.4 and all others were symmetrically distributed around the true value, 

the average value would be 0.3 for three experts – an overall overestimation of 33%. For 

six experts, the average value would be 0.23 – an overall overestimation of 17%. It is not 

until the number of experts reaches 20, the averaged bias is reduced below 5%. The 

number of experts necessary to contain the effect of a bias within a fixed margin linearly 

increases with respect to the magnitude of the bias. Considering the small number of 

experts elicited for the probabilities data used here, the analyses contained in this 

dissertation should be treated as “what if” exercises where the elicitations had been the 

best available data. 

Expert elicitation, and more generally a probability estimation approach to the 

future prospects of R&D, is a relatively new addition to the field of low-carbon energy 

research. A few large-scale expert elicitation projects are currently under way, and further 
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refined data obtained from these exercises could provide valuable data upon which the 

stochastic analysis can be performed to generate new sets of optimal R&D portfolios. 

Second, the analysis uses a stochastic approach to the four technology groups 

considered, but a deterministic approach to every other parameter. The analysis hinges on 

a deterministic baseline scenario developed by the GCAM development team for the 

report submitted to the Climate Change Technology Program. While GCAM is one of the 

most widely used models in the field, and its baseline scenario is the result of rigorous 

research and cross-validation, it is still subject to the same risk of imprecise measurement 

as the expert elicitations process. While the independent review process for the 

development of GCAM’s baseline scenario may reduce the magnitude of any bias, the 

effect of a biased parameter in the baseline scenario could be exacerbated in the analyses, 

because the impacts of the technological changes are measured relative to this single 

deterministic baseline.  

There are two possible ways in which an imprecise representation in the baseline 

could affect the outcome. One case is consistently optimistic or pessimistic assumptions 

across all of the technologies considered. In such a case, all impacts of technological 

changes would be biased in the same direction, and would have minimal impact on the 

final composition of the portfolio. On the other hand, it could be the case that the baseline 

scenario could be optimistic for a specific technology, but pessimistic for other 

technologies. Consider the recent experience with high nuclear capital costs and low 

natural gas costs. From the perspective of a long-run equilibrium model like GCAM, 

price spikes at the length of a few years are merely temporary fluctuations that will 

eventually converge toward a long-run equilibrium. However, if future trends prove that 
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this recent experience is indeed a permanent one, an analysis with a revised baseline 

reflecting the change may result in a different portfolio solution. This solution may place 

a stronger emphasis on the gas powerplant CCS technologies, as well as a specific type of 

nuclear reactor technology that could effectively offset the main culprit of the high 

capital cost – be it added passive safety measures, environmental regulations, unexpected 

delays in licensing, and so on. A stochastic approach to the baseline assumptions could be 

used in future analyses in order to moderate the impact of biased baseline parameters.  

Third, the analysis uses particular representations of uncertainty resolution and 

delayed technology development. To make the analysis transparent, tractable, and 

computationally manageable, the time-dimension of the stochastic optimization problem 

has been reduced to two decision periods along with the final uncertainty resolution 

period. The two decision periods are the minimum number needed to capture the 

dynamics associated with the wait-and-see strategy. While there is a case to be made that 

the second decision period conceptually represents a normalized aggregation of all the 

future decision periods that follow, there may be some unforeseen dynamics that could be 

missed by this minimal number of decision periods. Generally speaking, each additional 

decision period will further enforce the wait-and-see strategy, and the diversified 

portfolio that results from it.  

In addition, the uncertainty of technology success is assumed to be fully resolved 

within the 10-year gap between the first and the second decision periods. This is a rather 

simplistic abstraction of the real-world R&D process, where the decisions may be 

continuously updated upon partial resolution of technology uncertainty. Computational 

resources permitting, it would be a valuable extension of the model to explicitly represent 
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a partial resolution of technology uncertainty. Considering the minimal difference 

observed between the first period portfolio of the dynamic model and the portfolio 

resulting from the single-period model – which effectively represents the other extreme 

case of a zero uncertainty resolution, it would be unlikely that the partial-resolution 

model would yield a first period portfolio that is substantially different from the two 

cases. We could conjecture that the partial resolution model solution would lie 

somewhere between the two models presented here.  

However, if combined with a more refined representation of the “learning from 

failure” effect, the partial resolution model could show additional dynamics not observed 

from the two extreme cases of the model. For instance, if there are clear differences in the 

speed and the level of uncertainty resolution among technologies, there may be additional 

dynamics utilizing the value of information that pushes the first period portfolio toward 

the technologies that provide better uncertainty resolution, such that the problem of 

overlapping multiple successes in the same group could be reduced. 

Considering the simplifying assumptions made in the model, the insights gained 

from the analysis may need to be utilized in a less restrictive form in the practical 

applications where the decision periods are continuous and the uncertainty resolution is 

not instantaneous. The “diversify across and concentrate within” strategy deduced from 

the abstract model would in practice mean focusing on a smaller subset of technologies in 

a homogeneous group, while broadly covering the range of heterogeneous technology 

groups. This insight would be practically useful if facing a decision on whether to fund an 

otherwise inferior technology when there exists a technology with superior performance 
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with high probability of success, which could potentially make the inferior technology 

obsolete upon successful development. 

Related to the intertemporal dynamics, the sensitivity to the discount rate should 

also be noted. Throughout the dissertation a single real discount rate of 5% is used. The 

choice of discount rate affects both the benefit of wait-and-see in the form of interest 

accumulation, as well as the cost of wait-and-see in the form of delayed impact on the 

abatement cost. The impact of a high or low discount rate across technologies would be 

in the same direction, and the relative magnitude is unlikely to be substantially different. 

All considered technologies show incremental improvement in the baseline case and 

rapid improvement early on in the advanced case. The shared shape of the intertemporal 

technology development trajectory would lead to a shared direction and relative 

magnitude of impact associated with the discount rate choice. Considering the robustness 

of the R&D rank-order observed across different models and constraints, the choice of a 

different discount rate is unlikely to make a substantial difference in an optimal R&D 

portfolio choice among the considered technologies. 

In contrast, what is likely to be highly sensitive to the choice of discount rate is 

the share of the current and future R&D budget. Consider the extremes. A zero discount 

rate would push most of the R&D investment toward the first investment periods; only 

the most extreme wait-and-see strategy would sacrifice the first few years of abatement 

cost reduction in order to gain from the uncertainty resolution. On the other hand, a high 

discount rate would likely push the budget toward the second period. A high enough 

discount rate could allow for the saving of one unit investment in the first period in 

exchange for two or more units of investment in the second period. The magnitude of the 
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benefit of such an exchange would be partially offset by the potential loss in abatement 

costs in the early periods, which now constitute a larger proportion of the total net present 

value of the abatement cost due to the same high discount rate. The combined effect 

would be a moderate change toward a larger share of total budget for the future period.    

All these sensitivities to critical assumptions collectively reiterate caution on 

using research based on narrow ranges of assumptions for immediate policy action. 

While using the stochastic approach to the technology space is a step forward from the 

conventional deterministic scenario analysis, other uncertain aspects of the model have 

not been subject to the same level of rigor in this dissertation. These other sensitivities 

should serve as a guidance for future improvement of the model. Any immediately 

actionable R&D policy recommendations should be robust across reasonable ranges of 

the assumptions.  

There are several general insights distilled from the analyses that are likely robust 

across the various assumptions. One robust insight is the R&D investment strategy of 

concentrating funds within a technology group with homogeneous applications and 

diversifying funds across heterogeneous technology groups. The degree to which this 

strategy affects the final R&D portfolio may change with respect to discount rate or the 

way uncertainty resolution is formulated. However, this strategy remains a useful 

guideline for R&D portfolio design, as it helps minimize the loss due to multiple 

successes within the same technology group. 

Another robust observation is the relatively narrow variance in end-use efficiency 

technologies. This effect led to a systematic underestimation of their strength in the 

commonly used metric of maximum abatement cost reduction potential. Explicitly 
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considering probabilities of multiple technology successes provides a balanced 

perspective for both supply technologies and the end-use technologies. 

 

5.4. Synthesis 

This dissertation includes three essays, each attempting to further advance understanding 

of the technology space in the context of climate change mitigation. Collectively, they 

form a sequential set of research, where the analytical foundation is first developed for 

understanding how low-carbon energy technologies induce differential impacts on the 

abatement cost, the dataset of the full technology combinations is built and analyzed to 

enhance the understanding of the technology interactions, and a stochastic optimization 

model is applied to the dataset to generate an optimal R&D portfolio under uncertainty. 

Each step in this line of research adds one more dimension in analyzing the impact of 

technology on the mitigation cost. Considering the limited scope of the research and the 

sensitivities to the critical assumptions, several additional refining studies will be needed 

before this line of research can produce an immediately applicable R&D portfolio. 

However, it is the incrementally richer understanding gained from each step taken in the 

three essays that provides the value-added to the field. The richer the understanding of 

the technology dynamics for climate change mitigation, the stronger the foundation upon 

which the next stage of research can be conducted. 
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Appendix 1: Total abatement cost with delayed technology development (in trillions of 2005 constant 

dollars). 

 
(A)  450 ppmv target 

TRNr0 TRNa0 TRNa1 TRNb0 TRNb1 TRNc0 TRNc1 TRNd0 TRNd1

CCSr0 12.27 11.90    11.98    11.66    11.78    11.75    11.85    11.25    11.50    

CCSa0 11.15 10.79    10.87    10.57    10.68    10.65    10.75    10.16    10.40    

CCSa1 11.33 10.97    11.04    10.74    10.85    10.82    10.92    10.33    10.57    

CCSb0 10.25 9.90      9.98      9.67      9.78      9.75      9.85      9.28      9.50      

CCSb1 10.64 10.28    10.36    10.05    10.16    10.13    10.23    9.65      9.88      

CCSc0 9.51   9.16      9.24      8.93      9.04      9.02      9.11      8.54      8.77      

CCSc1 10.00 9.64      9.72      9.42      9.53      9.50      9.60      9.02      9.25      

CCSr0 11.87 11.50    11.59    11.26    11.38    11.35    11.46    10.87    11.10    

CCSa0 10.90 10.53    10.62    10.30    10.42    10.38    10.49    9.90      10.14    

CCSa1 11.05 10.69    10.77    10.46    10.57    10.54    10.64    10.05    10.29    

CCSb0 10.07 9.71      9.79      9.48      9.60      9.57      9.67      9.08      9.32      

CCSb1 10.40 10.04    10.13    9.82      9.93      9.90      10.00    9.42      9.66      

CCSc0 9.37   9.02      9.10      8.79      8.90      8.87      8.97      8.39      8.63      

CCSc1 9.80   9.45      9.53      9.22      9.33      9.30      9.40      8.82      9.05      

CCSr0 12.04 11.68    11.76    11.44    11.56    11.52    11.63    11.03    11.27    

CCSa0 11.04 10.67    10.75    10.44    10.56    10.52    10.62    10.03    10.27    

CCSa1 11.20 10.83    10.91    10.60    10.72    10.69    10.79    10.19    10.43    

CCSb0 10.18 9.82      9.91      9.59      9.71      9.68      9.78      9.19      9.43      

CCSb1 10.54 10.18    10.26    9.94      10.06    10.03    10.13    9.54      9.78      

CCSc0 9.46   9.11      9.18      8.88      8.99      8.96      9.06      8.48      8.71      

CCSc1 9.92   9.56      9.64      9.33      9.45      9.42      9.52      8.93      9.17      

CCSr0 9.73   9.41      9.48      9.20      9.32      9.28      9.38      8.85      9.07      

Transportation

NUCr0

SOLr0

SOLa0

SOLa1
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CCSr0 9.73   9.41      9.48      9.20      9.32      9.28      9.38      8.85      9.07      

CCSa0 9.07   8.75      8.83      8.56      8.66      8.63      8.72      8.21      8.41      

CCSa1 9.20   8.89      8.96      8.69      8.78      8.76      8.85      8.34      8.54      

CCSb0 8.53   8.23      8.29      8.03      8.12      8.10      8.19      7.67      7.88      

CCSb1 8.82   8.51      8.58      8.31      8.41      8.39      8.47      7.96      8.17      

CCSc0 8.05   7.74      7.80      7.53      7.63      7.61      7.69      7.18      7.39      

CCSc1 8.43   8.12      8.20      7.92      8.02      7.99      8.08      7.57      7.77      

CCSr0 9.53   9.21      9.28      9.01      9.11      9.08      9.17      8.64      8.86      

CCSa0 8.92   8.61      8.68      8.40      8.50      8.47      8.56      8.04      8.26      

CCSa1 9.04   8.73      8.80      8.52      8.62      8.60      8.69      8.16      8.37      

CCSb0 8.42   8.11      8.18      7.91      8.01      7.98      8.07      7.55      7.76      

CCSb1 8.68   8.37      8.44      8.17      8.27      8.24      8.33      7.81      8.02      

CCSc0 7.96   7.65      7.72      7.45      7.55      7.52      7.60      7.09      7.29      

CCSc1 8.32   8.00      8.07      7.80      7.90      7.88      7.97      7.44      7.65      

CCSr0 9.64   9.32      9.39      9.11      9.22      9.18      9.28      8.74      8.97      

CCSa0 9.01   8.70      8.77      8.49      8.60      8.57      8.66      8.14      8.35      

CCSa1 9.14   8.83      8.90      8.62      8.73      8.69      8.79      8.26      8.47      

CCSb0 8.50   8.20      8.26      7.99      8.09      8.07      8.15      7.63      7.84      

CCSb1 8.78   8.47      8.54      8.26      8.36      8.34      8.43      7.91      8.11      

CCSc0 8.04   7.72      7.79      7.52      7.62      7.59      7.68      7.16      7.37      

CCSc1 8.40   8.10      8.16      7.89      7.99      7.96      8.05      7.53      7.73      

CCSr0 10.37 10.04    10.12    9.83      9.94      9.90      10.00    9.47      9.70      

CCSa0 9.55   9.24      9.31      9.03      9.14      9.11      9.20      8.68      8.89      

CCSa1 9.71   9.38      9.47      9.18      9.29      9.25      9.36      8.82      9.04      

CCSb0 8.94   8.63      8.70      8.42      8.53      8.50      8.59      8.07      8.28      

CCSb1 9.27   8.94      9.02      8.74      8.85      8.82      8.91      8.38      8.59      

CCSc0 8.40   8.08      8.15      7.88      7.98      7.95      8.04      7.52      7.73      

CCSc1 8.82   8.51      8.58      8.30      8.40      8.37      8.47      7.94      8.16      

CCSr0 10.10 9.77      9.86      9.57      9.68      9.64      9.74      9.21      9.43      

CCSa0 9.37   9.05      9.12      8.84      8.95      8.92      9.01      8.49      8.70      

CCSa1 9.51   9.18      9.26      8.98      9.09      9.05      9.15      8.61      8.83      

CCSb0 8.81   8.48      8.56      8.28      8.38      8.35      8.45      7.92      8.13      

CCSb1 9.09   8.77      8.85      8.56      8.67      8.64      8.74      8.20      8.42      

CCSc0 8.29   7.98      8.05      7.77      7.87      7.84      7.93      7.40      7.62      

CCSc1 8.68   8.36      8.43      8.15      8.25      8.23      8.32      7.79      8.01      

CCSr0 10.24 9.91      9.99      9.70      9.81      9.78      9.88      9.33      9.56      

CCSa0 9.48   9.16      9.23      8.95      9.05      9.02      9.12      8.59      8.80      

CCSa1 9.62   9.30      9.38      9.09      9.20      9.16      9.26      8.63      8.94      

CCSb0 8.90   8.58      8.65      8.37      8.48      8.45      8.54      8.01      8.22      

CCSb1 9.20   8.88      8.95      8.67      8.78      8.74      8.84      8.30      8.52      

CCSc0 8.37   8.05      8.12      7.85      7.95      7.92      8.01      7.48      7.70      

CCSc1 8.78   8.46      8.53      8.25      8.35      8.33      8.42      7.88      8.10      

SOLr0

SOLa0

SOLa1

NUCb0

NUCb1

SOLr0

SOLa0

SOLa1
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(B)  550 ppmv target 

TRNr0 TRNa0 TRNa1 TRNb0 TRNb1 TRNc0 TRNc1 TRNd0 TRNd1

CCSr0 2.90   2.78      2.80      2.71      2.73      2.73      2.75      2.57      2.62      

CCSa0 2.70   2.59      2.60      2.51      2.53      2.54      2.56      2.39      2.42      

CCSa1 2.71   2.60      2.61      2.53      2.54      2.55      2.57      2.40      2.43      

CCSb0 2.41   2.30      2.31      2.23      2.25      2.26      2.27      2.11      2.14      

CCSb1 2.46   2.35      2.37      2.28      2.30      2.31      2.32      2.16      2.19      

CCSc0 2.16   2.05      2.06      1.99      2.00      2.01      2.02      1.87      1.90      

CCSc1 2.24   2.13      2.14      2.06      2.08      2.09      2.10      1.94      1.97      

CCSr0 2.66   2.54      2.56      2.47      2.49      2.50      2.52      2.35      2.38      

CCSa0 2.49   2.38      2.39      2.31      2.33      2.33      2.35      2.19      2.22      

CCSa1 2.50   2.39      2.40      2.32      2.34      2.34      2.36      2.20      2.23      

CCSb0 2.24   2.13      2.14      2.06      2.08      2.09      2.10      1.95      1.98      

CCSb1 2.28   2.17      2.18      2.10      2.12      2.13      2.14      1.99      2.02      

CCSc0 2.02   1.92      1.93      1.85      1.86      1.87      1.89      1.73      1.76      

CCSc1 2.08   1.98      1.99      1.91      1.93      1.93      1.95      1.79      1.82      

CCSr0 2.71   2.60      2.61      2.52      2.55      2.55      2.57      2.40      2.44      

CCSa0 2.54   2.43      2.44      2.36      2.38      2.38      2.40      2.24      2.27      

CCSa1 2.55   2.44      2.45      2.37      2.39      2.39      2.41      2.24      2.28      

CCSb0 2.29   2.18      2.19      2.11      2.13      2.14      2.15      1.99      2.02      

CCSb1 2.33   2.22      2.24      2.16      2.17      2.18      2.20      2.03      2.07      

CCSc0 2.06   1.96      1.97      1.89      1.91      1.92      1.93      1.77      1.80      

CCSc1 2.13   2.03      2.04      1.96      1.97      1.98      2.00      1.84      1.87      

CCSr0 2.11   2.01      2.02      1.94      1.96      1.97      1.98      1.83      1.86      

Transportation

NUCr0

SOLr0

SOLa0

SOLa1
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CCSr0 2.11   2.01      2.02      1.94      1.96      1.97      1.98      1.83      1.86      

CCSa0 2.02   1.92      1.93      1.85      1.87      1.87      1.89      1.73      1.77      

CCSa1 2.02   1.92      1.94      1.86      1.87      1.88      1.90      1.74      1.77      

CCSb0 1.85   1.76      1.77      1.69      1.71      1.72      1.73      1.58      1.61      

CCSb1 1.89   1.80      1.81      1.73      1.75      1.75      1.77      1.62      1.65      

CCSc0 1.69   1.60      1.61      1.53      1.55      1.56      1.57      1.43      1.45      

CCSc1 1.76   1.66      1.67      1.60      1.61      1.62      1.63      1.49      1.52      

CCSr0 1.98   1.88      1.90      1.82      1.83      1.84      1.85      1.70      1.73      

CCSa0 1.90   1.80      1.81      1.73      1.75      1.76      1.77      1.62      1.65      

CCSa1 1.90   1.80      1.82      1.74      1.76      1.76      1.78      1.63      1.66      

CCSb0 1.75   1.65      1.66      1.59      1.61      1.61      1.63      1.48      1.51      

CCSb1 1.78   1.69      1.70      1.62      1.64      1.65      1.66      1.51      1.54      

CCSc0 1.60   1.51      1.52      1.45      1.46      1.47      1.48      1.34      1.37      

CCSc1 1.66   1.57      1.58      1.50      1.52      1.53      1.54      1.40      1.42      

CCSr0 2.03   1.92      1.94      1.86      1.87      1.88      1.90      1.74      1.77      

CCSa0 1.94   1.84      1.85      1.77      1.79      1.80      1.81      1.66      1.69      

CCSa1 1.94   1.85      1.86      1.78      1.80      1.80      1.82      1.66      1.69      

CCSb0 1.79   1.69      1.70      1.63      1.64      1.65      1.67      1.52      1.55      

CCSb1 1.82   1.73      1.74      1.66      1.68      1.69      1.70      1.55      1.58      

CCSc0 1.64   1.55      1.56      1.48      1.50      1.51      1.52      1.37      1.40      

CCSc1 1.70   1.61      1.62      1.54      1.56      1.57      1.58      1.43      1.46      

CCSr0 2.22   2.12      2.13      2.05      2.06      2.07      2.09      1.93      1.96      

CCSa0 2.11   2.01      2.02      1.94      1.96      1.97      1.98      1.83      1.86      

CCSa1 2.12   2.02      2.03      1.95      1.97      1.98      1.99      1.84      1.87      

CCSb0 1.93   1.83      1.84      1.77      1.78      1.79      1.80      1.66      1.69      

CCSb1 1.97   1.88      1.89      1.81      1.83      1.83      1.85      1.70      1.73      

CCSc0 1.75   1.66      1.67      1.60      1.61      1.62      1.63      1.49      1.52      

CCSc1 1.82   1.73      1.74      1.66      1.68      1.69      1.70      1.56      1.58      

CCSr0 2.07   1.97      1.98      1.90      1.92      1.93      1.94      1.79      1.82      

CCSa0 1.97   1.87      1.88      1.81      1.82      1.83      1.85      1.70      1.73      

CCSa1 1.98   1.88      1.89      1.81      1.83      1.84      1.85      1.70      1.73      

CCSb0 1.81   1.71      1.72      1.65      1.67      1.67      1.69      1.54      1.57      

CCSb1 1.85   1.75      1.76      1.69      1.70      1.71      1.72      1.58      1.61      

CCSc0 1.65   1.56      1.57      1.50      1.51      1.52      1.53      1.39      1.42      

CCSc1 1.71   1.62      1.63      1.55      1.57      1.58      1.59      1.45      1.47      

CCSr0 2.11   2.01      2.03      1.95      1.96      1.97      1.99      1.83      1.86      

CCSa0 2.02   1.92      1.93      1.85      1.87      1.88      1.89      1.74      1.77      

CCSa1 2.02   1.92      1.94      1.86      1.87      1.88      1.90      1.75      1.78      

CCSb0 1.85   1.76      1.77      1.69      1.71      1.72      1.73      1.58      1.61      

CCSb1 1.89   1.79      1.81      1.73      1.75      1.75      1.77      1.62      1.65      

CCSc0 1.69   1.60      1.61      1.54      1.55      1.56      1.57      1.43      1.45      

CCSc1 1.75   1.66      1.67      1.60      1.61      1.62      1.63      1.49      1.51      

SOLr0

SOLa0

SOLa1

NUCb0

NUCb1

SOLr0

SOLa0

SOLa1
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