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 Advances in computing hardware and algorithms have led to molecular 

dynamical models being able to model more realist cases.  In this paper, we focus on 

a special case of molecular dynamics as a starting example.  The molecular dynamical 

simulations that model slip-stick friction are often very large and complex, requiring 

a great deal of computational resources and time to run.  In this paper, proper 

orthogonal decomposition (POD), a model reduction technique that has been 

successfully applied to a number of different application areas, is applied to the 

nanoscale slip-stick friction problem.  The standard POD approach, and a modified 

version of the POD technique that is particularly aimed at the stick-slip problem, are 

presented. 
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Chapter 1: Introduction 

In classic physics, the experiment of sliding a block across a flat surface is 

often used to demonstrate the principles of friction.  Leonardo da Vinci used a similar 

experiment to develop his theories on friction, theories which were later validated by 

Amontoms and Coulomb. (Gao, Luedtke, Gourdon, Ruths, Israelachvili and 

Landman, 3410-3411).  As a result of the work of da Vinci, Amontoms, and Coulumb 

three laws of macroscopic friction were introduced: the frictional force is proportional 

to compression force, the frictional force is independent of the surface area between 

the two objects, and the friction force is independent of velocity at normal speeds. 

(Krim).  “These classical laws of friction hold for a remarkably wide range of 

materials, but they are equally remarkable in terms of how difficult it is to derive 

them from fundamental atomic or molecular principles” (Krim).  A great deal of 

research has focused on the basic physics at the small-scale level to better understand 

friction.(Singer)   Advances in technology such as the atomic force microscope have 

allowed for friction at the microscopic level to be observed and have led to the 

discovery of the slip-stick phenomenon. (Shimizu, Eda, Yoritsune, and Ohmura, 118).  

“Studies of friction between atomically mica surfaces separated by an ultra thin layer 

of lubricant have revealed a striking phenomenon: in certain range of experimental 

parameters the fluid exhibits solid like properties, in particular, a critical yield stress 

leading to slip-stick similar to that in solid-on-solid dry friction processes” (Aranson, 

Tsimring, and Vinokur, 1).  Molecular dynamic simulations have been very valuable 

in helping to understand this slip-stick behavior.  These simulations often model 

hundreds of thousands of atoms and as a result any simulation can take a great deal of 
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time and computational resources to run.  This paper presents two approaches for 

creating a reduced-order model capable of capturing the slip-stick behavior resulting 

from molecular friction at drastically reduced computational cost.  This will allow 

such simulations to be included in device scale models for engineering analysis and 

design. 

 Proper Orthogonal Decomposition (POD), a technique that has been 

successfully applied to a number of different application areas (Rowley; Ly and Tran; 

Ravindran; Rowley, Colonius, and Murray), is applied here to the nanoscale slip-stick 

friction problem.  This technique uses data from the full-scale model to construct a 

low-dimensional subspace.  The POD approach is then coupled with a Galerkin 

Projection to produce a reduced-order model by projecting the dynamics of the 

original system onto the low-dimensional subspace.(Prajna, 2)  In addition to the 

standard POD method, we developed a modified version that is particularly aimed at 

the stick-slip problem.  This method attempts to correct one of the limitations of the 

standard POD technique that is an issue for us here: important dynamics may be 

under-represented in the dataset used in determining a low-dimensional subspace.  

For the nanoscale slip-stick problem, the dynamics of interest, the slip behavior, 

occurs very quickly and thus is only accounted for in a small percent of the collected 

data points.  Our modified version of the standard POD involves dividing the data 

points into two separate sets based on whether the system is sticking or slipping at the 

data point and then using the standard POD method on the two subsets of data.   The 

Galerkin Projection technique is then used with the combination of the results from 

the separate POD calculations to produce a reduced-order model.    
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 This paper is organized as follows:  Chapter 2 presents the simulation setup 

and describes the model used for this research.  Chapter 3 presents the full model 

results.  Chapter 4 outlines the Proper Orthogonal Decomposition technique along 

with the Galerkin Projection method that is combined with the POD to produce the 

reduced-order model.  Chapter 5 then discusses how the standard POD approach was 

applied to the nanoscale slip-stick friction problem and presents results from this 

approach.  The modified POD technique, along with its results, is presented in 

Chapter 6.  Finally, Chapter 7 highlights some conclusions of this research and 

suggests areas where further research may be valuable. A nomenclature table is 

included in the Appendix for reference. 
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Chapter 2: Nanoscale Stick-Slip Friction Model 
 

The model used for this paper is a very simple model, similar to the setup for 

a number of friction experiments (Aranson, Tsimring, and Vinokur, 1; Rozman, 

Urbakh, and Klafter, 683).  In this simple, 2-dimensional model, a thin layer of 

lubricant atoms separates two crystal blocks with the top crystal attached to a spring 

that is pulled at a constant velocity.  The crystal atoms are fixed in the crystal.  For 

simplicity, the crystal blocks are only a single layer of equally-spaced atoms and all 

the atoms, lubricant and crystal, are assumed to be the same. 

 

 
Figure 1: Model setup 

 
The motion of each lubricant and crystal atom is restricted to the two-

dimensional space (X,Y).  The location of the ith lubricant atom is represented by 

(xi,yi) and the location of the ith crystal atom is represented by (αi,βi).  Let the number 

of lubricant atoms be N and the number of crystal atoms by M.  Furthermore, let M1 

be the number of fixed crystal atoms at the bottom of the model and M2 be the 

number of crystal atoms making up the top, sliding crystal block.  Then M = M1 + M2.  
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Also, assume that the top crystal block moves in the (X,Y) plane so that it stays 

horizontal; that is, there is no rotation.  We let ∆α and ∆β be the displacement of the 

top crystal block in the X and Y directions, respectively, and thus the motion of each 

crystal atom in the top block is αi = αi0 + ∆α and βi = βi0 + ∆β where αi0 and βi0 is the 

location of atoms in the starting equilibrium state.  By using miLA to represent the 

mass of the ith lubricant atom and miCA to represent the mass of the ith crystal atom, 

the kinetic energy of the system is 
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For this model, the Lennard-Jones potential is used to representing the 

interaction of atoms.  In general, atoms in close proximity to one another demonstrate 

a strong repulsive force on each other.  As the atoms move further apart, the repulsive 

force becomes less and gradually turns into an attractive force. (Shapiro and Qian, 

552)  The Lennard-Jones (LJ) potential is an often used formula for calculating the 

potential energy between atoms or molecules (Robbins and Müser, 3).  The potential 

is calculated by 
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where 

22 )()( jiji yyxxr −+−=   (4) 

 is the distance between atoms and ε and σ represent parameters describing the 

interaction between the atoms.  The LJ potential, as shown in Figure 2 for ε = 1 and σ 

= 1, captures the repulsive force for atoms spaced less than r* and attractive force for 

atoms spaced greater than r* where r* is the equilibrium point of the LJ potential. 

 

Figure 2: LJ potential for ε = 1 and σ = 1 
 

As a result of using the Lenard-Jones potential, the potential energy of the system due 

to the interaction between atoms is 
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For this simplified model, a spring, pulled at a constant velocity, is attached to 

the top crystal.  The basic spring dynamics, governed by Hooke’s Law, are used:   

 

δkF =  (6) 

 

where k is the spring constant and δ is the displacement from the equilibrium position.  

In this experiment, our spring is being pulled at a constant velocity with the resulting 

force restricted to only the horizontal direction. The potential energy due to the 

external forces of the top crystal block is 
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where C is the compression force of the top crystal block, k is the spring constant, v is 

the velocity at which the top is being pulled at, and t is time.   So, the total potential 

energy of the system is given by  

BA PEPEPE +=   (8) 
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The equations of motion for the system based on a standard Lagrange 

derivation (Wells) are: 
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where i=1,…,N and j=1,…,M1.  Therefore, the equation of motion for the ith lubricant 

atom in the x-direction is 
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Likewise the equation of motion for the ith lubricant atom in the y-direction is 
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The equation of motion for the jth crystal atom in the top crystal block in the x-

direction is 
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and in the y-direction is 
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Summing all of the αj equations together results in:  
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Now assume the masses of all crystal atoms are the same; mCA=mjCA for all j.  As 

defined earlier, αj = αj0 + ∆α for all j.  Then,  

αααα ∆=∆+= &&&&&&&& 0jj       

for all j.  From this, it follows that 
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Similarly, summing all of the βj equations results in 

[ ] [[ ]∑∑
= =

−−
−+−−−−+−−+∆

2

1 1

422672212
2 )()()(6)()()(124

M

j

N

i
jijijijijijiCA yxyyxymM βαβσβαβσεβ&& ]

]

 

[ ] [[ ]∑∑
=

≠
=

−−
−+−−−−+−−+

2

1 1

422672212 )()()(6)()()(124
M

j

M

ji
i

jijijijijiji ββααββσββααββσε

02 =+ CM                 (19) 

Lastly, we assume that the masses of all atoms, both crystal and lubricant, are 

the same; miLA = mLA for all i=1,…,N and  the mCA=mLA=mA. 

   

Nondimensionalization of the Model 

Nondimensionalization is a technique used to reduce the number of 

parameters in the system and to produce result independent of the units used.  For the 

nondimensionalization of our model, we followed the approach used by Shapiro and 

Qian (553-554).  In order to nondimensionalize the system, let 
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The equation for the ith free lubricant atom in the x-direction becomes 
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Letting εστ Am=  be the temporal unit results in   
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Repeating this procedure with the equation for the ith free lubricant atom in the y-

direction yields 
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The ∆α and ∆β equations are nondimensionalized by using  
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Adding Dissipation to the Model 

“In an experiment, heat flows away from the sliding interface into the 

surrounding solid.  In simulations, the effects of the surrounding solid must be 

mimicked by coupling the particles to a heat bath” (Robbins and Müser, 3).  A 

number of different techniques are often used in simulation to keep the temperature 

constant such as the Hoover-Nose’ thermostat (Schall, Padgett, and Brenner, 283).  

Another method is the Langevin thermostat consists of a constant damping term and a 

randomly distributed force. (He and Robbins, 3).  For this very simple model, just a 

constant damping term is used to remove energy from the system.  This damping term 

is applied only to the lubricant atoms in both the x and y directions.   The resulting 

equations of motion for the free lubricant atoms are: 
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where d is the damping coefficient. 

 Thus, the final non-dimensional equations describing the model are: 
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Applying Periodic Boundary Conditions 

By applying periodic boundary conditions to our model, we are able to focus 

on the behavior of the lubricant atoms as a result of the top crystal motion and avoid 

special considerations needed for border atoms.  In this way, the model behaves as if 

of infinite length (Harrison, White, Colton, and Brenner, 46).  The periodic boundary 

conditions are accomplished by adding a replication of the crystal and lubricant atoms 

to the left and to the right of the atoms of interest as shown in figure 3. 

 

Figure 3: Periodic boundary conditions 
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Model Parameters 

For this simulation, the damping coefficient was set to d=0.4 as was used by 

He and Robbins(3).  With the damping coefficient set, we choose an arbitrary spring 

constant K~  = 20 and an arbitrary compression force C~  = 10.  Once these values were 

set, a variety of different values were tried for velocity until a velocity was found that 

caused the top crystal to illustrate the stick-slip-stick behavior. The velocity value 

used in these simulations is v~ = 0.3. 

 

Limitations of Model 

 As the goal of this paper is to demonstrate that Proper Orthogonal 

Decomposition is capable of producing a low-dimensional model for a large system 

where the top crystal demonstrates the stick-slip-stick behavior, our model is very 

simple.  In simplifying the model, we assumed that all atoms were the same.  In 

addition, this model consists of very few atoms compared to a realistic MD 

simulation.  The crystal atoms were also only one layer of atoms thick.  Lastly, we 

used a very crude damping to model heat dissipation.  As a result, this model will not 

be accurate over an extended period of time. 
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Chapter 3: Full Model Results 

 

Equilibrium 

At the start of these experiments, all atoms are assumed to be at rest.  A 

standard Newton’s Method was implemented in Matlab to determine the equilibrium 

positions of the system.  We used a variety of different starting configurations and 

found two different equilibrium positions.  Figure 4 shows an equilibrium position 

where all of the atoms are arranged in vertical lines. 

 

 
Figure 4: An Equilibrium configuration 
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Figure 5 shows the other equilibrium position where the atoms are arranged in a 

lattice formation. 

 

 

Figure 5: Another Equilibrium configuration 
 

Stability 

 In order to determine the stability of a particular configuration, we focus on 

the curvature of the potential energy function in equation 5 describing the atomic 

interactions.  The Hessian matrix, the square matrix of second partial derivative, 

describes the curvature of the potential energy function for a given arrangement of 

lubricant and crystal atoms.  The eigenvalues of the Hessian matrix, H, can be used to 

determine the stability of a configuration.  If the eigenvalues are all greater than zero, 
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the equilibrium position is stable and unstable if there exists an eigenvalue less than 

zero (Brakke, 3).   Based on the calculations of eigenvalues for the Hessian matrices 

for each equilibrium configuration, the equilibrium position shown in Figure 4 is 

found to be unstable while the configuration shown in Figure 5 is found to be stable. 

Simulation 

Based on the equations of motion presented in Chapter 2, a simulation was set 

up by using Matlab.  This model consisted of 4 variables ( yxyx ′′ ~,~,~,~ ) for each 

lubricant atom and for 4 variables ( βαβα ′′ ~,~,~,~ ) for each crystal atom.   For this 

simple simulation, there were 30 free lubricant atoms and 20 crystal atoms, 10 of 

which were stationary.    Thus, 160 variables would describe the position and velocity 

of each atom in the model.  Representing the top crystal atom as a single unit reduced 

the system to 124 variables.     

For this simple experiment, the time was set such that one full slip-stick cycle 

was captured ( 10~ =t ).  Figure 6 shows the trajectories of free atoms for the full-scale 

model simulation. 
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Figure 6: Atom trajectories for full-scale simulation 
 

The stick-slip behavior can be seen by looking at the movement of the top crystal.  

Figure 7 is a plot of the x-position of the top crystal as a function of time. 

 

 

Figure 7: Movement of the top crystal 

 19 
 



 

 

The crystal is sticking when the x-position of the crystal moves very slowly.  Slip 

begins happening around 7~ =t  when the x-position of the crystal changes very 

rapidly.  The top crystal sticks starts to stick again around 9~ =t . 

Another way to view the stick-slip motion is by looking at the force exerted 

by the spring as a function of time.  Figure 8 shows a steady increase in force until 

some critical force is achieved.   

 

Figure 8: Spring force vs time 
 

The top crystal sticks until the critical force is exceeded.  The crystal then slips 

allowing the spring to compress.  As the spring quickly compresses, the force exerted 

by the spring drastically decreases.  Once the spring is compressed, the crystal starts 

to stick again and the force of the spring begins to increase again. 
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Chapter 4: Proper Orthogonal Decomposition 

 
Proper Orthogonal Decomposition (POD) also referred to as Karhunen-Loève 

Decomposition, Principal Component Analysis, or Hotelling Transform, is often 

combined with a Galerkin projection to generate reduced-order models for large, 

complex systems (Lall, Marsden, and Glavaški; Prajna; Rowley).  This powerful 

technique has been applied to a number of different areas of analysis including 

turbulent flows, image processing, data compression, human speech, and human 

faces. (Rowley; Ly and Tran; Ravindran; Rowley, Colonius, and Murray)  The goal 

with POD is to determine the optimal subspace capable of capturing the dynamics of 

a high dimensional system.  The dynamics of the high-dimensional system is then 

projected onto the subspace by using a Galerkin projection, thus producing a reduced-

order model.   The discussion of POD presented here is based on details provided in 

[Lall, Marsden, and Glavaški; Prajna; Rowley]. 

For a nonlinear, autonomous system described by 

))(( twfw =&  for    (32) nw ℜ∈

the goal is to find a reduced-order model 

))(( taga =&  for , m << n.  (33)   ma ℜ∈

The POD technique determines a subspace, S, based on data from experiments or 

computer simulations.   From the data, a set of data points or “snapshots”, {w1, w2, 

…, wn} are extracted.  Given a set of data points, the POD approach aims to find a 

projection operator P that minimizes the square of the errors where the error is 
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calculated as the perpendicular distance from the original data point and the projected 

point in S as calculated by 

∑
=

−
n

m

mm Pww
1

.     (34) 

To determine the projection operator, P, the data points are then used to construct a 

correlation matrix 

∑
=

=
n

i
ii wwR

1
*))((       (35) 

 

with λ1 ≥ λ2 ≥ … λn  the ordered eigenvalues of R and  φ1, φ2, … φn  the orthonormal 

eigenvectors of R.    Here, the symbol * represents the transpose function.  Then the 

minimum of (34) “over all projections of rank m is given by  
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and in the original coordinates the projection matrix that achieves this is given by P = 

Q*Q where 
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“ (Prajna, 2).    The eigenvectors mφφφ ,,, 21 K  are referred to as the POD modes. 

 In order to determine the appropriate number of modes to use in the reduced-

order system, the percent of total energy captured in the first m modes is calculated 

by 
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The goal is to find a small value for m such that the percent of total energy is close to 

100% (Lall, Marsden, and Glavaški, 3).  The subspace constructed using the 

corresponding m eigenvectors is optimal in approximating the data set in that it 

maxizes the energy captured over all m-dimensional subspaces (Ravindran, 5).  

 Once the modes are calculated and the number of modes to be used is 

determined, the dynamics of the original system is projected onto the subspace using 

the Galerkin Projection method.  If the reduced-order system described in equation 

(32) is of the form 

))(( taga =&  for ,   (38) ma ℜ∈

then 

)()(*)( trtaQtw +=    (39) 

where Q is the matrix calculated earlier in equation 36.  Following this, 

.
.

))()(*()()(* trtaQftrtaQ +=+ && .  (40)  

The residual,  is forced to be orthogonal to the subspace so that  (Lall, 

Marsden, and Glavaški, 3).   Thus 

)(tr& 0)Pr( =t

.
.

))()(*()(* trtaQftaQ +=& .      (41) 

Pre-multiplying both sides by Q results in 

.
.

))()(*()( trtaQQfta +=&    (42) 
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“This describes the exact dynamics of the system on S.  The final step in the model 

reduction is to assume that the projection has been chosen in such a way that r(t) is 

small” (Prajna, 2).  The end result is a reduced-order system with 

.
.

))(*()( taQQfta =&    (43) 
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Chapter 5: Basic POD Applied to Model 

 Using this simulation from Chapter 3, data points were collected every 

005.0~ =t , producing 2000 data points or “snapshots”.  These snapshots consisted of 

the position and velocity of each lubricant atoms ( yxyx ′′ ~,~,~,~ ) as well as the position 

and velocity of the top crystal ( βαβα ′∆′∆∆∆
~,~,,~ ). 

The POD approach begins by constructing the correlation matrix, R, of these 

snapshots.  The ordered eigenvalues are then used to determine the POD modes.  

Figure 9 shows a plot of the eigenvalues of R versus their index in the ordered 

sequence.  Given how the largest eigenvalue is much larger than the rest, the 

magnitude of the eigenvalues compared to each other can better be seen in Figure 10 

which shows a plot of the log of the eigenvalues of R versus their index in the ordered 

sequence.     
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Figure 9: Eigenvalues versus index for correlation matrix of standard POD 
 

 

Figure 10: Log of Eigenvalues vs index for correlation matrix of standard POD 
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The difficulty with using POD to produce a reduced-order model is knowing how 

many modes are needed for a reduced order model.  Looking at the plots in Figures 9 

and 10 can help in determining an appropriate number of modes to use for 

constructing a subspace.   For the largest 13 eigenvalues, the percent of total energy is 

over 99.99%, which is a good sign that the model reduction will be able to closely 

capture the dynamics of the original model.   Using the eigenvectors associated with 

the largest 13 eigenvalues as the POD modes, a projection matrix is constructed and a 

Galerkin method is applied to produce a reduced-order model of the full-scale system.  

The simulation of this low-dimensional system is done in Matlab using the same 

“ode15s” function and parameters as were used with the full-scale model.  The 

resulting trajectories can be seen in Figure 11(b). 

 

 

Figure 11: Lubricant atom trajectories for reduced order model using standard POD with 13 
modes 

 

In addition, Figure 12 shows the movement of the top crystal for the reduced-order 

model. 
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Figure 12: Movement of top crystal for reduced order model using standard POD with 13 modes 
 

An RMS (Root Mean Square) error is calculated for the difference between 

the trajectories of the original system and the trajectories of the reduced-order system.  

In addition, an RMS error is calculated for the difference between the movement of 

the top crystal in the original system and the movement of the top crystal in the 

reduced-order system.  The RMS errors for the reduced-order model using 13 modes 

are 6.3593e-4 for the error in the lubricant atoms and 3.4666e-4 for the error in the 

top crystal.  The number of modes used in the reduced-order model was varied 

slightly with the results presented in Table 1.      

Number of 
Modes 

% Total Energy RMS Error for 
Lubricant Atoms 

RMS Error for Top 
Crystal Position 

8 99.9011 0.1459 0.4380 
9 99.9888 0.1261 0.2903 
11 99.9998 0.0431 0.0237 
13 99.9999 6.3593e-4 3.4666e-4 
15 99.9999 5.8051e-4 4.0854e-4 

Table 1: Results for reduced-order model with varying number of modes 
 

 28 
 



 

 

Figure 13: RMS Error vs Number of Modes for Standard POD Approach 
 

 As can be seen by these results, the straightforward application of the POD 

technique applied to the nanoscale slip-stick friction problem is able to yield a 

reduced-order model that closely captures the dynamics of the original model.  In this 

case, 13 modes are able to create a reduce-order system that accurately models the 

original system  
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Chapter 6: Modified POD Approach Applied to Model 
 

 While for this simple simulation, the standard POD approach clearly was able 

to produce an accurate reduced-order model, the standard POD approach is known to 

have its limitations.  “Though POD modes are very effective (indeed optimal) at 

approximating a given dataset, they are not necessarily the best modes for describing 

the dynamics that generate a particular dataset, since low-energy features may be 

critically important to the dynamics” (Rowley, 5).  For the nanoscale friction problem 

the dynamics of interest, the time when the top crystal is slipping, occurs very quickly 

and is thus underrepresented in the snapshot collection.  In particular, of the 2000 

snapshots used for constructing a reduced-order model, 1459 were for stick and 541 

were for slip – only 27% of the snapshots captured the slip dynamics.   

In hopes of finding a better reduced-order model, the standard POD approach 

was modified to make sure that the slip dynamics get significant weight in the 

subspace construction.  This modified approach consists of determining a set of 

“stick” modes and a set of “slip” modes that are used in combination for determining 

the reduced-order model.  In particular, since the free-atom configuration is stable 

during “stick” and unstable during “slip”, each data point that was collected was 

evaluated to determine its stability.  The stability of each snapshot was determined 

using the Hessian matrix for the potential energy described in Chapter 3.  Then the 

standard POD technique was applied separately to the set of stable data points and to 

the set of unstable data points.  The results of the stable modes and unstable modes 

were combined for the Galerkin projection. 
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We use the same simulation that we used with the standard POD approach.  

Snapshots are collected that consisted of the position and velocity of each lubricant 

atoms ( ) as well as the position and velocity of the top crystal 

(

yxyx ′′ ~,~,~,~

βαβα ′∆′∆∆∆
~,~,,~ ).  For each snapshot, the Hessian matrix for the potential energy is 

calculated as in Chapter 3 and the eigenvalues are evaluated to determine the stability 

of the data point.  A subset of the snapshots is constructed that consists of the stable 

data points and another subset is constructed that consists of the unstable data points. 

  These two subsets of snapshots are then used with the standard POD 

technique to produce two sets of POD modes.    A correlation matrix, Rstable, is 

constructed for the stable data points and a separate correlation matrix, Runstable, is 

constructed for the unstable data points.  The ordered eigenvalues of each correlation 

matrix are then used independently to determine the POD modes.  Figure 14 shows a 

plot of the eigenvalues of Rstable versus their index in the ordered sequence.  Given 

how the largest eigenvalue is much larger than the rest, the magnitude of the 

eigenvalues compared to each other can better be seen in Figure 15 which shows a 

plot of the log of the eigenvalues of Rstable versus their index in the ordered sequence.     
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Figure 14: Eigenvalues versus Index for the Correlations Matrix of Stable Snapshots 
 

 

Figure 15: Top Eigenvalues, Except Largest versus Index for Correlation Matrix of Stable 
Snapshots 
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 Likewise, Figure 16 shows a plot of the eigenvalues of Runstable versus their 

index in the ordered sequence.  Given how again the largest eigenvalue is much larger 

than the rest, the magnitude of the eigenvalues compared to each other can better be 

seen in Figure 17 which shows a plot of the log of the eigenvalues of Runstable versus 

their index in the ordered sequence.     

 

 

Figure 16: Eigenvalues versus Index for Correlation Matrix of Unstable Snapshots 
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Figure 17: Top Eigenvalues, except Largest versus Index for Correlation Matrix of Unstable 
Snapshots 

 

The difficult in choosing the number of modes to use for the reduced-order 

model becomes even more difficult with this modified approach.  Now, we need to 

determine both the number of stable modes and the number of unstable modes to use.  

The plots in Figures 14 through 17 are examined to try and determine an appropriate 

number of stable modes and an appropriate number of unstable modes to use for 

constructing a subspace.     

 With the largest 8 eigenvalues from the stable correlation matrix, the percent 

of total “stick” energy represented is 99.9971% and with the largest 5 eigenvalues 

from the unstable correlation matrix, the percent of total “slip” energy represented is 

99.9343%.  As was states in chapter 4, for POD we aim to find the smallest number 

of modes where the percent of total energy is close to 100% (Lall, Marsden, and 
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Glavaški, 3).  Thus, using 8 stable modes and 5 unstable modes we should expect to 

be able to accurately approximate the original model. 

The POD modes for the reduced-order model are the combination of the stable 

modes based on the eigenvectors associated with the largest 8 eigenvalues from the 

stable correlation matrix and the unstable modes based on the eigenvectors associated 

with the largest 8 eigenvalues from the unstable correlation matrix.  A projection 

matrix is constructed from these modes and a Galerkin method is applied to produce a 

reduced-order model of the full-scale system.  The resulting trajectories for the 

reduced-ordered model constructed from the modified POD approach can be seen in 

Figure 18. 

 

 

Figure 18: Lubricant Atom Trajectories for Reduced Order Model Using 8 Stable Modes and 5 
Unstable Modes for Modified POD 

 

In addition, Figure 19 shows the movement of the top crystal for the reduced-order 

model. 
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Figure 19: Movement of the Top Crystal for Reduce Order Model Using 8 Stable Modes and 5 
Unstable Modes for Modified POD 

 

Again, the RMS error is calculated for the difference between the trajectories of the 

original system and the trajectories of the lubricant atoms of the reduced-order system 

and for the difference between the movement of the top crystal in the original system 

and the movement of the top crystal in the reduced-order system.  The RMS error for 

the reduced-order model using 8 stable modes and 5 unstable modes is 4.5898e-4 for 

the lubricant atoms and 2.1859e-4 for the top crystal.  The number of modes used in 

the reduced-order model was varied slightly with the results presented in Table 2.      

Number 
of Stable 
Modes 

Number 
of 
Unstable 
Modes 

% of Total 
“Stick” 
Energy 

% of Total 
“Slip” Energy 

RMS Error 
of Lubricant 
Atoms 

RMS Error 
of Top 
Crystal 
Position 

5 3 99.9300 99.8823 0.1201 0.2449 
5 8 99.9300 99.9989 0.0045 0.0053 
6 3 99.9884 99.8823 0.0652 0.0530 
6 5 99.9884 99.9343 0.0430 0.0231 
6 7 99.9884 99.9703 0.0016 0.0011 
8 5 99.9971 99.9343 4.5898e-4 2.1859e-4 
8 7 99.9971 99.9703 3.7901e-4 1.2795e-4 

Table 2: Results for Reduced-Order Model Using Modified POD Technique 
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Figure 20: RMS vs Total Number of Modes for Modified POD 
 

As can be seen by these results, the modified version of the POD technique 

applied to the nanoscale slip-stick friction problem is also able to yield a reduced-

order model that closely captures the dynamics of the original model.  For a given 

number of modes, using the modified POD approach, there exists a combination of 

stable and unstable modes that is able to more accurately describe the system than the 

reduced-order system constructed using a standard POD approach with the same 

number of modes.  It should be noted, that while there exists a combination of stable 

and unstable modes that produces better results than the standard approach, there also 

exists one or more combinations of stable and unstable modes that actually produce 

worse results. 
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Figure 21: RMS Error vs Total Number of Modes for POD 
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Chapter 7:  Conclusions and Suggestions for Future Research 
  
 In comparing the results from the standard POD approach and the modified 

POD approach, it is clear that the modified POD approach is able to more accurately 

approximates the full-scale system than the standard POD approach for the same 

number of modes.  For example, in this case, the standard POD method produced 

good results with 13 modes while the modified POD technique produced better 

results with 13 modes (8 stable and 5 unstable).  The original model consisted of 4 

variables (x,y,x., y.) for each atom.   For this experiment, there were 30 free lubricant 

atoms and 20 crystal atoms, 10 of which were stationary.    Thus, 160 variables would 

describe the position and velocity of each atom in the model.  Representing the top 

crystal atom as a single unit reduced the system to 124 variables.  Using either the 

standard POD or modified POD approach with 13 modes, the original model can be 

accurately reduced to a system of 17 variables. Thus, either method of model 

reduction reduced the dimensions of the model by almost 90% while closely 

capturing the dynamics of the full-scale model.   

 While the modified POD approach shows promise at producing a more 

accurate, lower-dimensional system, there is a computation trade-off of this method.  

The modified technique requires the calculation of eigenvalues for two large matrices 

(each 120x120 in this experiment).  So, the modified POD requires more 

computations for the model reduction than the standard POD but the modified POD 

can more effectively capture the dynamics of the original system with the same 

number of modes as the standard POD approach.   In addition, additional computation 

is needed to determine the appropriate combination of stable and unstable modes for 
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the modified POD approach.  Further research should be done to explore how to 

determine the best combination of stable and unstable modes for the modified 

approach and how the number of modes needed for an accurate model reduction with 

both the standard POD and the modified POD grows with the size of the system.   

 The experiment presented in the paper is a simple experiment.  There are a 

number of variations of this experiment that can be used to evaluate how the modified 

POD method compares with the standard POD such as the lubricant made up of 

molecules rather than single atoms and imperfect crystal surfaces.  In addition to 

determining how well the standard and modified POD methods hold up under varying 

experiments, these methods should also be compared against other model reduction 

techniques such as Balanced Truncation.  In particular, the methods presented here 

should be compared against the Proper Orthogonal Decomposition using neural 

networks approach that was used by Y. C. Liang, W. Z. Lin, H. P. Lee, S. P. Lim, K. 

H. Lee, and H. Sun for a different type of experiment (515-532).  Lastly, the model 

reductions constructed for this experiment were based off of data from computer 

simulations.  Both the standard and modified POD approaches should be evaluated 

using real data. 
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Appendix 
 

Nomenclature – Presented in order of appearance in paper. 

C Compression force 

v Velocity 

M1 Number of atoms in the top crystal 

M2 Number of atoms in the bottom crystal 

M Total number of crystal atoms 

N Number of lubricant atoms 

xi X-position of the ith lubricant atom 

yi Y-position of the ith lubricant atom 

αi X-position of the ith crystal atom 

βi Y-position of the ith crystal atom 

∆α Change in the X-position of the top crystal 

∆β Change in the Y-position of the top crystal 

αi0 Starting X-position of the ith crystal atom 

βi0 Starting Y-position for the ith crystal atom 

miLA Mass of the ith lubricant atom 

miCA Mass of the ith crystal atom 

KE Kinetic energy of the system 

u() Lennard Jones Potential 

r Distance between two atoms 
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r* Equilibrium distance for the Lennard Jones Potential 

ε,σ  Lennard Jones Potential parameters 

PEA Potential energy due to atomic interaction 

F Spring force 

K Spring constant 

∆ Displacement of top crystal from equilibrium position 

PEB Potential energy due to external forces on top crystal 

t Time 

PE Total potential energy of the system 

mCA Mass of crystal atoms 

mLA Mass of lubricant atoms 

mA Mass of atoms 

ix~  Nondimensionalized X-position of the ith lubricant atom 

L0 Nondimensionalized reference length 

iy~  Nondimensionalized Y-position of the ith lubricant atom 

iα~  Nondimensionalized X-position of the ith crystal atom 

iβ
~  Nondimensionalized Y-position of the ith crystal atom 

α∆~  Nondimensionalized change in X-position of the top crystal  

β∆~  Nondimensionalized change in Y-position of the top crystal 

t~  Nondimensionalized time 

τ  Nondimensionalized temporal unit 
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K~  Nondimensionalized spring constant 

C~  Nondimensionalized compression force 

v~  Nondimensionalized velocity 

d Damping coefficient 

H Hessian matrix of the potential energy function 

R Correlation matrix for standard POD 

P Projection matrix for standard POD 

S  POD subspace 

wi The ith POD snapshot 

Λi The ith ordered eigenvalue of the correlation matrix R 

n Order of full-scale system 

m Order of the reduced system 

Φi The ith orthonormal eigenvector of the correlation matrix R 

P* Transpose of the projection matrix P 

a Variable for reduced order system 

Rstable Correlation matrix of the stable data points 

Runstable Correlation matrix of the unstable data points 
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