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Traditional methods for evaluating contingency table models based on chi square 

statistics or quantities derived from them are not attractive in many applied research 

settings. The two-point mixture index of fit, *π , introduced by Rudas, Clogg and 

Lindsay (RCL: 1994) provides a new way to represent goodness-of-fit for contingency 

tables. This study: (a) evaluated several techniques for dealing with sampling zeros when 

computing *π in contingency tables when the independence assumption holds; (b) 

investigated the performance of the estimate, *π̂ , in various combinations of conditions, 

as a function of different sizes of tables, different marginal distributions and different 

sample sizes; and (c) compared the standard error of π̂ ∗ and confidence interval 

estimated by using a method proposed by RCL, with the “true” standard error based on 

empirical simulations in various scenarios especially when encountering small sample 

sizes and π ∗ close to zero. The goals of this study were achieved by Monte Carlo 

simulation methods and then were applied to two real data examples. The first is a 6×3

cross-classification of fatal crashes by speed limit and land use with 37,295 cases based 
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on 2004 USDOT traffic data and the second 4×4 cross-classification of eye color and 

hair color with 592 cases reported in RCL. 

 Results suggest that: π̂ ∗ is positively biased from zero in a range from 2.98% to 

40.86% in the conditions studied when the independence assumption holds. Replacing 

zero with larger flattening values results in smaller π̂ ∗ . For each table size, π̂ ∗ is 

smallest for all extremely dispersed row and column marginal distributions. For all 

extremely and most slightly dispersed marginal distributions tables with small sample 

size and small table size, using structural zero technique is superior to other sampling 

zero techniques. The lower bound for π̂ ∗ using the RCL method is generally close to the 

"true" estimate based on empirical parametric simulation. However, under some 

circumstances, RCL method underestimates the lower bound value even though the 

magnitude is relatively small and the difference shrinks as the sample size increases. This 

study will provide guidance for researchers in the use of this important method for 

interpreting models fit to contingency tables. 
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CHAPTER I 
PURPOSE AND RATIONALE 

 
Background 

Traditional methods for evaluating contingency table models based on chi square 

statistics or quantities derived from them are not attractive in many applied research 

settings. According to Rudas (1998), “First, when the model is not true, a comparison of 

the data to what could only be expected if it were is of very little meaning; second, the 

actual distribution of the statistic may be very different from the reference distribution if 

some of the underlying assumptions are violated.” In addition, conventional methods are 

sensitive to sample size; often a model is rejected when fitted to a large data set even 

though the model may represent a reasonable summary of the data for practical purposes. 

In sharp contrast to chi-squared tests of fit methods, which rely heavily on size of the 

table, sample size and actual true probabilities, the mixture index of fit proposed by 

Rudas, Clogg and Lindsay (RCL: 1994), provides a novel way to represent 

goodness-of-fit for contingency tables. It has an intuitive rationale that does not assume a 

simple model that describes the entire population in contrast to the underlying idea of 

classical significance tests. Also, the new index is not sensitive to sample size in the way 

in which chi-square-related quantities are. More specifically, it is assumed that there are 

two components (subgroups) in the population. One of them, of size 1-π , where model H 

holds true, describes the fraction of population consistent with model H (e.g., 

independence); the other one, of size π , which is completely unrestricted, represents the 

part of the population that is outside of model H. Moreover, RCL introduced an 

expectation-maximization (EM) algorithm to obtain maximum likelihood estimates of 

*π and derived a way to construct a lower-bound estimate of π̂ ∗ . As summarized by 
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Dayton (2003), π̂ ∗ possesses the following appealing properties: 1. π̂ ∗ is always 

located on the 0, 1 interval; 2. π̂ ∗ is unique; 3. π̂ ∗ is invariant when frequencies in a 

contingency table are increased or decreased by a multiplicative constant. Properties and 

applications of the mixture index of fit are further explored in Clogg, Rudas and Xi 

(1995), Xi (1996), Clogg, Rudas and Matthews (1997). Furthermore, the two-point 

mixture index, *π can be applied when models are fitted to virtually any contingency 

table (RCL). It also has been applied in differential item functioning (Rudas & Zwick, 

1997), latent class analysis (Dayton, 1999), regression models with normal and uniform 

error structures (Rudas, 1999) and logistic regression model (Verdes & Rudas, 2002). 

Purpose of Study

As noted by RCL, there are issues that require further examination and have not 

been studied in RCL or any other related research. In particular:  

(1) π̂ ∗ is positively biased in finite samples; that is, even if H holds so that, in theory, 

π ∗ = 0, π̂ ∗ will have expectation greater than zero for finite samples. 

(2) Sampling 0’s can greatly affect estimation so it is useful to study the effect of using 

flattening constants or redefining model H by regarding the sampling zeros as structural 

zeros.  

(3) Although the estimated lower confidence bound of π̂ ∗ introduced by RCL gives 

inferential information that free of bias, it tends to be problematic when *π is close to 

zero or sample size is small; thus a parametric simulation seems to be necessary to 

examine this measure of precision for π̂ ∗ . As an aside, SAS code written for this study 

makes these analyses more accessible to researchers in various disciplines. 
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Significance of Study

The current study has described the work on the evaluation of the mixture index of fit 

for contingency tables. It assesses the performance of *π in various scenarios including 

sampling zeros and structural zero effects on *π , the bias of *π in various 

combinations of conditions such as different sizes of tables, different marginal 

distributions and different sample sizes when the independence assumption holds, and the 

accuracy of the measure of precision for *π . This study will provide guidance for 

researchers in the use of this important method for interpreting models fit to contingency 

tables. 
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CHAPTER II 
REVIEW OF LITERATURE 

Mixture index of fit

Following Rudas and Zwick (1997), suppose H is a hypothesized probabilistic 

model for a contingency table and P represent the true. The two-point mixture model is: 

P= (1- πψπ +Φ) (2.1) 

where Φ is the probability distribution comes from H, and ψ is an unspecified 

probability distribution. The mixture parameter, π , defined on the 0, 1 interval, 

represents the proportion of the population that does not belong to model H. The model in 

equation 2.1 is not unique and is true for any model based on any contingency table. The 

index of fit, *π , however, is defined as the smallest possible fraction, π for which H 

holds: { }HP ∈+−== φπψφπππ ,)1(|inf* .

Consequently, as shown by RCL, *π is unique and it describes the minimum 

fraction of frequencies that must be excluded from the contingency table in order that P 

be fitted exactly by the model for the rest of the cases. It also indicates the residuals 

associated with the mixture index of fit which are quite different from conventional 

residuals in chi-squared analyses.  

As summarized by Dayton (2003), π̂ ∗ possesses the following appealing properties: 

1. π̂ ∗ is always located on the 0, 1 interval; 2. π̂ ∗ is unique; 3. π̂ ∗ is invariant when 

frequencies in a frequency table are increased or decreased by any multiplicative constant. 

Properties and applications of the mixture index of fit are further explored in Clogg, 

Rudas and Xi (1995), Xi (1996), Clogg, Rudas and Matthews (1997). Furthermore, the 

two-point mixture index, *π can be applied when models are fitted to virtually any 
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contingency table (RCL). It also has been applied in differential item functioning (Rudas 

& Zwick, 1997), latent class analysis (Dayton, 1999), regression models with normal and 

uniform error structures (Rudas, 1999) and logistic regression model (Verdes & Rudas, 

2002). 

EM algorithm for calculating the mixture index of fit

RCL suggested a procedure that involved repeated application of an EM algorithm 

(Dempster, Laird, and Rubin, 1977) to compute maximum likelihood estimates for 

mixture models. Based on RCL, the observed data matrix is I×J contingency table while 

the complete (unobserved) table is an I×J×2. As above, Φ is defined for the probability 

distribution designated by H in the first component whereas in the second component it is 

unspecified (ψ ). The two components have distribution 1-π and π , which are assumed 

fixed for the each EM cycle. Let Qijk, i=1,…, I, j=1,…, J, k=1, 2, denotes the cell 

probabilities in the complete data matrix. Note only the marginal Qij+ can be observed: i.e. 

Qij+=fij/n=Pij .

Step 1: Let )0(
ijkQ represent initial estimates i.e., π=++

)0(
2Q and π−=++ 1)0(

1Q .

Step 2: For the first componentΦ , set (0) ( )
1

ˆ(1 ) H
ij ijQ Pπ= − ,

where ( )ˆ H
ijP represents the maximum likelihood estimate of Pij under model H (here H is 

a row-column independence model, ( )ˆ H
ijP = fi+f+j/n2).   

For the second component, set (0) 1
2 ( )ijQ IJπ −= , π−=++ 1)0(

1Q and (0)
2Q π++ = , meet the 

requirement for this choice of starting values.  

Step 3: At cycle s, the E (expectation) step of the algorithm is defined by 

( ) ( ) ( )/s s s
ijk ij ijk ijg p Q Q += , for all i, j and k.  
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Step 4: The M (maximization) step is ( 1) ( )
1 |1(1 )s s

ij ijQ Qπ+ = − , where ( )
|1
s

ijQ is the maximum 

likelihood estimate of Φ in cell (i, j) under hypothesis H, i.e. ( )
|1
s

ijQ = ( ) ( )
|1 |1

s s
i jQ Q+ + , where 

( ) ( )
|1 1 /(1 )s s

i iQ g π+ += − and ( ) ( )
|1 1 /(1 )s s

j jQ g π+ += − . For the second component, it turns out to be 

( 1) ( ) ( )
2 2 2( / )s s s

ij ijQ g gπ+
++= .

Step 5: Repeat cycling between the E- and M-steps until a certain predefined criterion 

attained. For example, the criterion might be that the difference between Qij+ for two 

successive cycle less than 10-5 .

The overall procedure to get estimate π̂ ∗ is as follows: (1.) Set the initial estimate, 

π̂ ∗ to zero; (2.) Obtain maximum likelihood estimates of the parameters in the 

components of the two-point mixture using an expectation-maximization (EM) algorithm 

as above, and, (3.) Successively increase π̂ ∗ by some small increment (e.g., .01was used 

in the example below) with re-estimation of the parameters at each step. The value of the 

likelihood ratio chi-square fit statistic, G2, becomes zero (approximately, if the 

convergence criterion is set to <10-5) and the step at which this first happens yields the 

final estimate of the lack of fit index, π̂ ∗ (Dayton, 2003; RCL). In addition, RCL 

implemented this approach in their FORTRAN program, Mixit, and also it was described 

in detail by Xi (1994). 

To exemplify this procedure, we consider a fictional 4×4 frequency table with a 

total sample size of 489: 
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Table 1. Fictional 4×4 frequency table 

Col/Row 1 2 3 4 Sum
1 10 20 40 80 150
2 5 10 20 40 75
3 15 30 69 120 234
4 2 4 8 16 30

Sum 32 64 137 256 489

When π̂ ∗ =0, which, in effect, represents the original frequency table, there is no 

evidence for lack of independence (G2=0.4811, Chi-Square=0.4813, degrees of 

freedom=9, P value >0.05) and  

 

( )ˆ H
ijP = fi+f+j/n2 =

0.020074 0.040147 0.085940 0.160588
0.010037 0.020074 0.042970 0.080294
0.031315 0.062629 0.134066 0.250518
0.004015 0.008029 0.017188 0.032118

 
 
 
 
 
  

At Step 2, when π̂
∗

is increased to 0.01,  
 

(0)
1ijQ =

0.019873 0.039746 0.08508 0.158982
0.009936 0.019873 0.04254 0.079491
0.031002 0.062003 0.132725 0.248012
0.003975 0.007949 0.017016 0.031797

 
 
 
 
 
  

(0) 1
2 ( )ijQ IJπ −= =

0.000625 0.000625 0.000625 0.000625
0.000625 0.000625 0.000625 0.000625
0.000625 0.000625 0.000625 0.000625
0.000625 0.000625 0.000625 0.000625

 
 
 
 
 
  

At Step 3, (0)
1ijg =

0.020455 0.040910 0.081819 0.163634
0.010227 0.020453 0.040907 0.081813
0.030680 0.061359 0.130879 0.245428
0.004090 0.008181 0.016361 0.032723

 
 
 
 
 
  
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And (0)
2ijg =

9.64E-08 1.51E-07 7.87E-17 2.73E-07
5.84E-08 9.83E-08 1.43E-16 2.53E-07
3.06E-12 1.80E-12 0.010243 7.89E-13
3.15E-08 5.64E-08 4.73E-16 1.85E-07

 
 
 
 
 
  

After EM iteration, Step 3 and Step 4, the algorithm attains the convergence 

criterion and results in  

 

1ijQ =

0.020290 0.040576 0.083681 0.162299
0.010143 0.020287 0.041838 0.081145
0.030969 0.061937 0.127736 0.247743
0.004057 0.008114 0.016734 0.032455

 
 
 
 
 
  

2ijQ =

9.41E-08 1.47E-07 7.68E-17 2.66E-07
5.70E-08 9.59E-08 1.39E-16 2.47E-07
2.99E-12 1.76E-12 0.009999 7.70E-13
3.07E-08 5.51E-08 4.62E-16 1.81E-07

 
 
 
 
 
  

Since G2=0.1022, which is much greater than zero when π̂ ∗ =. 01, we need to 

increase π̂ ∗ to 0.02 and repeat the above EM cycle. Then, G2= 7.435E-8 when π̂ ∗ =. 02 

and thus, .02 is the estimated mixture index of fit for this table with 

 

1ijQ =

0.020310 0.040657 0.081802 0.162668
0.010157 0.020328 0.040899 0.08133
0.030646 0.061334 0.123404 0.245397
0.004061 0.008128 0.016354 0.032521

 
 
 
 
 
  
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2ijQ =

0.000140 0.000242 7.60E-08 0.00093
6.83E-05 0.000123 5.01E-07 0.00047
0.000029 1.54E-05 0.017699 3.54E-06
2.87E-05 5.18E-05 5.30E-06 0.000199

 
 
 
 
 
  

As a matter of fact, the independence for row and column would be true if the 

frequency in cell (3, 3) were 60 instead of 69; thus, π̂ ∗ =9/489=. 0184. Note that the 

algorithm used to find π̂ ∗ was rounded to .01, so the value of π̂ ∗ =. 02 calculated above 

is correct within rounding. 

This stepwise computational approach for two-way tables can be applied to virtually 

any frequency tables (RCL). Also they suggested a 10% value of π̂ ∗ , as representing 

“reasonable” fit for an exemplary 4×4 contingency table in their original paper. However, 

as noted by Dayton (2003), there is no absolute standard for the index that represents 

suitable fit in real data settings.  

In addition to the above-mentioned procedure that involved repeated application of 

the EM algorithm proposed by RCL, Xi (1994) and Xi and Lindsay (1996) employed 

nonlinear programming (NLP) techniques to solve the estimation problem for π̂ ∗ with 

respect to optimization. Dayton (2003) further extensively discussed this NLP for 

calculating π̂ ∗ .

Lower Bound and Standard error estimation for two-point mixture index 

Generally speaking, π̂ ∗ may overestimate lack of fit due to random fluctuation of 

sample data. Therefore, RCL proposed an appropriate lower 95% confidence bound, ˆLπ ,

based on a G2 fit statistic equal to 2.70, the 90th percentage point of the 

one-degree-of-freedom chi-square distribution. Their method is capable of finding the 

lower bound using the same iterative procedure to compute π̂ ∗ . (Mixit, the 
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above-mentioned FORTRAN program in RCL can also be used to find a lower-bound 

estimate of π̂ ∗ ). Furthermore, based on the definition of π ∗ , the confidence interval is 

one-sided due to the fact that all values of π̂ greater than π̂ ∗ would result in models 

that perfectly fit the observed frequencies (i.e., G2 =0 if π̂ > π̂ ∗ ) (RCL, Dayton 2003). 

Also, the standard error of π ∗ can be estimated using re-sampling techniques such as 

the jackknife (Dayton, 1999, Dayton, 2003). Clogg, Rudas and Xi (1995) advised that the 

difference of π ∗ and its lower bound ˆLπ provides a measure of the effect of sample 

size on π̂ ∗ which means although the point estimator of π ∗ does not depend on sample 

size, the confidence interval of π ∗ , on the contrary, will be shorter for the larger sample 

than for the smaller sample which seems actually very attractive. (Clogg, Rudas, and 

Xi ,1995) 

In practice we must be careful about using ˆLπ when π ∗ close to zero and when the 

sample size is small. In such cases, they suggested using one of the two methods (RCL): 

1. Replace the critical value of the 2χ statistics with DF degrees of freedom with the 

original critical value 2.70, or  

2. Simulate the null distribution. 

The standard error could be derived based on lower 95% confidence bound of a 

standard normal distribution, i.e. se= ( π̂ ∗ - ˆLπ )/1.645.   

Sampling zeros and Structural zeros

According to RCL, the effect of sampling zeros on π̂ ∗ will rely on the structure of 

the data and the suitability of the model, H, for the data. The occurrence of a sampling 

zero will force the estimate of the row or the column total in Φ to zero under the 
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assumption of an independence model. Typically, π̂ ∗ will tend to be overestimated by a 

fraction that is directly related to the smaller of the observed row marginal proportion and 

the observed column marginal proportion related to the cell with a sampling zero. The 

sampling zero is an indication of the possibility of an extreme departure from 

row-column independence in case of relatively large marginal probabilities, and therefore 

π̂ ∗ would be expected to be comparatively large. Rudas and Zwick (1997) replaced zero 

frequencies with small positive flattening constants in data from a study by Zwick, 

Thayer and Wingersky (1994) to investigate the sampling zero effect on the performance 

of *π . The analysis was conducted with various choices of flattening constants (0.0001, 

0.001, 0.01, 0.1 and 0.5). Although they concluded that increases in the flattening values 

result in decreases in the estimates for *π , the effect was very small in their example. 

Structural zeros, also called logical zeros (Knoke and Burke, 1980), arise when it is 

logically impossible to observe positive cell counts for particular combinations of row 

and column variables. To demonstrate structural zeros, a typical example of the logical 

impossibility of observing male obstetrical patients was presented by Fienberg (1980).  

In practice, researchers could evaluate the variation in *π by setting some to-be-ignored 

cells to structural zeros. Generally, sampling zeros refer to table cells for which the 

observed frequency is equal to zero but the expected frequency is greater than zero while 

the expected value is equal to zero in the case of structural zeros. The impact of sampling 

zeros and structural zeros on *π can be, under certain circumstances, very large and 

thus, is worthy of additional study. 
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CHAPTER III 
METHODS 

Research Design

This study: (a) evaluated several competing techniques for dealing with sampling 

zeros for the two-point mixture model index, *π , in contingency tables when the 

independence assumption holds; (b) investigated the performance of the estimate, *π̂ , in 

various combinations of conditions, as a function of different sizes of tables, different 

marginal distributions and different sample sizes; and (c) compared the standard error of 

π̂ ∗ and confidence interval estimated by use of a method proposed by RCL with the 

“true” standard error based on empirical simulations in various scenarios especially when 

encountering small sample sizes and π ∗ close to zero. These goals were achieved by 

Monte Carlo methods that simulated a variety of scenarios.  

The following aspects of the simulation were implemented:  

1. Size of two-way contingency table: 2×2, 2×3, 2×4, 2×6, 3×3, 4×4 and 6×6. These 

table sizes were chosen because they provided a reasonable range of contingency 

table sizes in real data settings and are typical of what is found in practice. 

2. Marginal distribution: evenly distributed, slightly and extremely dispersed 

distribution for each different size of tables. Row and column total proportion for 

2×2 table:  

{P1+=. 5, P2+=. 5, P+1=. 5, P+2=. 5},  

{P1+=. 9, P2+=. 1, P+1=. 9, P+2=. 1},  

{P1+=. 5, P2+=. 5, P+1=. 9, P+2=. 1}. 

2×3 table: 

{P1+=. 5, P2+=. 5, P+1=. 8, P+2=. 1, P+3=. 1},  
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{P1+=. 5, P2+=. 5, P+1=. 33, P+2=. 33, P+3=. 33},  

{P1+=. 9, P2+=. 1, P+1=. 8, P+2=. 1, P+3=. 1},  

{P1+=. 9, P2+=. 1, P+1=. 33, P+2=. 33, P+3=. 33}. 

2×4 table:  

{P1+=. 5, P2+=. 5, P+1=. 25, P+2=. 25, P+3=. 25, P+4=. 25},  

{P1+=. 5, P2+=. 5, P+1=. 4 P+2=. 4, P+3=. 1, P+4=. 1},  

{P1+=. 9, P2+=. 1, P+1=. 25, P+2=. 25, P+3=. 25, P+4=. 25}, 

{P1+=. 9, P2+=. 1, P+1=. 4, P+2=. 4, P+3=. 1, P+4=. 1}. 

2×6 table: 

{P1+=. 5, P2+=. 5, P+1=. 167, P+2=. 167, P+3=. 167, P+4=. 167, P+5=. 167, P+6=. 167},  

{P1+=. 5, P2+=. 5, P+1=. 3, P+2=. 3, P+3=. 1, P+4=. 1, P+5=. 1, P+6=. 1},  

{P1+=. 9, P2+=. 1, P+1=. 167, P+2=. 167, P+3=. 167, P+4=. 167, P+5=. 167, P+6=. 167},  

{P1+=. 9, P2+=. 1, P+1=. 3, P+2=. 3, P+3=. 1, P+4=. 1, P+5=. 1, P+6=. 1}. 

3×3 table:  

{P1+=. 4, P2+=. 4, P3+=. 2, P+1=. 4, P+2=. 4, P+3=. 2},  

{P1+=. 33, P2+=. 33, P3+=. 33, P+1=. 33, P+2=. 33, P+3=. 33},  

{P1+=. 33, P2+=. 33, P3+=. 33, P+1=. 4, P+2=. 4, P+3=. 2}. 

4×4 table: 

{P1+=. 25, P2+=. 25, P3+=. 25, P4+=. 25, P+1=. 25, P+2=. 25, P+3=. 25, P+4=. 25},  

{P1+=. 4, P2+=. 4, P3+=. 1, P4+=. 1, P+1=. 4, P+2=. 4, P+3=. 1, P+4=. 1},  

{P1+=. 25, P2+=. 25, P3+=. 25, P4+=. 25, P+1=. 4, P+2=. 4, P+3=. 1, P+4=. 1}. 

6×6 table: 

{P1+=. 167, P2+=. 167, P3+=. 167, P4+=. 167, P5+=. 167, P6+=. 167, P+1=. 167,  
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P+2=. 167, P+3=. 167, P+4=. 167, P+5=. 167, P+6=. 167},  

{P1+=. 3, P2+=. 3, P3+=. 1, P4+=. 1, P5+=. 1, P6+=. 1, P+1=. 3, P+2=. 3, P+3=. 1, P+4=. 1, 

P+5=. 1, P+6=. 1},  

{P1+=. 167, P2+=. 167, P3+=. 167, P4+=. 167, P5+=. 167, P6+=. 167, P+1=. 3, P+2=. 3, 

P+3=. 1, P+4=. 1, P+5=. 1, P+6=. 1}. 

 These marginal distributions were chosen because they represented a reasonable 

range of different values. Also, the extreme marginal values were used to ensure zero cell 

frequencies in the observed tables. 

3. Sample size for simulated contingency table: 5 per cell, 10 per cell, 20 per cell and 30 

per cell. They were chosen because they entailed a practical variety of sample sizes and 

were large enough to demonstrate a sample size effect on the mixture index of fit. 

4. Techniques for zeros cells: treating as sampling zeros, replacing with different small 

flattening constants (here we used .1, .5 and 1 to represent extremely small, moderately 

small and small flattening constants range), and redefining model H by regarding the 

sampling zero as structural zero.  

5. In each of the above scenarios, a 95% lower confidence limit based on empirically 

simulated π̂ ∗ s was calculated and compared with the limit derived following RCL. 

The complete procedure to estimate π̂ ∗ is as follows: (1.) Set the initial estimate, 

π̂ ∗ to, zero; (2.) Obtain maximum likelihood estimates of the parameters in the 

components of the two-point mixture using an expectation-maximization (EM) algorithm, 

and (3.) Successively increase π̂ ∗ by some small increment (e.g., .01 has been used in 

this study) with re-estimation of the parameters at each step. The value of the likelihood 

ratio chi-square fit statistic, G2, becomes zero (approximately, since the convergence 
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criterion was set to 10-5) and the step at which this first happens yields the final estimate, 

π̂ ∗ . (RCL, Dayton 2003) 

 For each table size, sample size and marginal distribution, 1000 frequency tables, 

were randomly generated based on the specified cumulative distribution to estimate π̂ ∗

and the 95% lower bound ˆLπ . For example, for a 2×2 table with sample size of 10 per 

cell and marginal distribution {P1+=. 9, P2+=. 1, P+1=. 9, P+2=. 1}, the consequent 

cumulative distribution is {0.81, 0.90, 0.99, 1}. To generate each of the 1000 simulated 

data tables, SAS (SAS institute, 2005) generated 40 uniform random numbers on scale 0, 

1 and locate them into appropriate cumulative categories according to their positions. (e. 

g., numbers less than or equal .81 were placed in cell 1, .81; numbers between .81 and .9 

in cell 2; numbers between .90 and .99 in cell 3 and the rest in cell 4.) The value of π̂ ∗

and associated 95% lower bound ˆLπ following RCL were obtained for each generated 

data table, thus for each scenario, 1000 π̂ ∗ and 1000 95% lower bound ˆLπ using RCL 

method were generated. This was repeated for each of the 96 scenarios. Also for each 

scenario, four techniques for sampling zeros cells were compared including treating zero 

cells as sampling zeros, replacing with different small flattening constant (here we 

used .1, .5 and 1), and redefining model H by regarding a sampling zero as a structural 

zero.  

The mean of the 1000 π̂ ∗ values for each scenario was calculated and served as the 

final parameter estimate; the mean of the 1000 ˆLπ values was also computed to be the 

estimate 95% ˆLπ using RCL method. Since the empirical distribution of π̂ ∗ is notably 

skewed for the generated sets of 1000 π̂ ∗ values (see Figure 1 for a histogram for a case 
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with relatively small bias which shows extreme skewness and for a case relatively large 

bias for which skewness is still somewhat apparent), we cannot use the regular normal 

assumption to compute the standard error and confidence interval for π̂ ∗ . Instead, 50th 

π̂ ∗ value among the 1000 values (i.e., 5th percentage point) was adopted and treated as 

“true” 95% lower bound based on empirical simulations. 

Figure 1: Histograms for π̂ ∗ with small parameter bias (left) and large parameter bias 

(right). 

Typically, π̂ ∗ will tend to be overestimated by a fraction that is directly related to 

the smaller of the observed row marginal proportion and the observed column marginal 

proportion related to the cell with a sampling zero (RCL). As noted above, in practice, 

researchers could test the π ∗ variation by setting some to-be-ignored cells to structural 

zeros to resolve. In this study we focused this issue on any frequency tables with only one 

structural zero and the procedure using EM based methodology to obtain π̂ ∗ . The 

two-point mixture using an expectation-maximization (EM) algorithm which RCL 

proposed could still be applied to structural zero condition with minor modification.  

Step 1: obtain π̂ ∗ treating zero cell as sampling zero. In this step the entire row or 

column with which smaller of observed row marginal proportion and the observed 
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column marginal proportion would result in zero in the first component, Φ , which is 

defined as the probability distribution designated by H.  

Step 2: pull the proportion back from the second component,ψ , an unspecified 

probability distribution outside of model H for the entire row or column with zeros in 

component Φ at step 1.  

Step 3: temporally cross out the other column or row that contains the zero cell but not 

been forced zero at step 1.  

Step 4: apply the same EM based procedure in the remaining contingency table while 

fixing all cell proportions in component 1, Φ and component 2, ψ except the row or 

column has frequency pulled back in step 2.  

Step 5: after iteration converges, subtract original π̂ ∗ at step 1 with the sum of the 

proportion pulled back in Φ and the final value is the estimate of π̂ ∗ using structural 

zero technique. 

For the other sampling zero techniques, procedures are same as sampling zeros, just 

replacing the zero cell with different small flattening constant (.1, .5 and 1) and recall 

associated π̂ ∗ .

Simulation Details

The simulation code was written in SAS/IML version 9.1 (SAS institute, 2005). The 

EM algorithm was used to calculate the mixture index of fit. Each simulation consisted of 

1,000 replications with convergence criterion set to 10-5. Data were randomly generated 

according to cumulative proportion resulted from the different combination scenarios.  

The method proceeded in the following manner:  

(1) A sample contingency table was randomly generated based on cumulative proportion 
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resulted from different factors combinations. (table size, sample size and marginal 

distribution).  

(2). EM algorithm based method for mixture index of fit (RCL) was implemented. π̂ ∗

and 95% lower bound ˆLπ were generated and saved in a matrix.  

(3). Replicate step 1 and step 2 for 1000 times therefore 1000 π̂ ∗ and ˆLπ were 

obtained and exported into an external file.  

Additionally, if any of 1000 generated contingency tables contains zero cell(s), 

Replacing with different small flattening constants 0.1, 0.5 and 1 respectively when 

evaluating performance of π̂ ∗ using replacing flattening constants techniques. 

The only difference between structural zero and other sampling zero technique 

procedure is in the above-mentioned step 1. If frequency tables generated by SAS 

UNIFORM contains 1 or less than 1 frequency zero, it would proceed to step 2 otherwise 

it would regenerate table until meets the requirement.  

Results of the discrepancy measure of π̂ ∗ were tabulated, plotted and presented for 

various combinations of conditions, as a function of different sizes of tables, different 

marginal distributions and different sample sizes in Appendix A. Comparison outcomes 

of each competing techniques for the sampling zeros and structural zero effects on π ∗

were plotted and presented and the standard error differences of π̂ ∗ between the method 

proposed by RCL, and the “true standard error” which based on empirical parametric 

simulation in various scenarios were also presented in the appendix A.  

Fatal crashes by speed limit and land use frequency table  

Table 2 presents fatal crashes by speed limit and land use in the United States in 

2004 from Traffic Safety Facts 2004: A compilation of Motor Vehicle Crash Data from 
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the Fatality Analysis Reporting System and the General Estimates System. The National 

Highway Traffic Safety Administration (NHTSA) provides descriptive statistics about 

traffic crashes of all severities, from those that result in property damage to those that 

result in the loss of human life. The Fatality Analysis Reporting System (FARS) became 

operational in 1975; it keeps track of data on a census of fatal traffic crashes within the 50 

states, the District of Columbia, and Puerto Rico. According to NHTSA, a crash must 

involve a motor vehicle traveling on a traffic way customarily open to the public, and 

must result in the death of an occupant of a vehicle or nonmotorist within 30 days of 

crash in order to be included in FARS. The fatal crashes by speed limit and land use table 

contains 37,295 cases (omitting 958 cases for the unknown speed limit category). There 

are three categories (Rural, Urban and Unknown) in Land Use variable, and six 

categories in Speed limit variable (30 mph or less, 35 or 40 mph, 45 or 50 mph, 55mph, 

60 mph or higher and no statutory limit). Urban and rural are defined as  “an urban area 

is an area whose boundaries shall be those fixed by responsible state and local officials in 

cooperation with each other and approved by the Federal Highway Administrations, U. S. 

Department of Transportation. Such boundaries are established in accordance with the 

provisions of Title 23 of the United States Code. Urban area boundary information is 

available from state highway or transportation departments. In the event that boundaries 

have not been fixed as above for any urban place designated by the Bureau of the Census 

having a population of 5000 or more, the area within boundaries fixed by the Bureau of 

the Census shall be an urban area. A rural area is any area which is not within urban 

areas” (NHTSA). 

This data table is used to compare the conclusion using traditional chi-square and 
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related model fit methods and the mixture index of fit introduced by RCL. More 

specifically, compare different sampling zero techniques impact on π̂ ∗ since there is one 

zero cell in the contingency table. 

Table 2. Fatal crashes by speed limit and land use 
 

Land Use  

Speed Limit Rural Urban Unknown
30 mph or less 944 2929 27
35 or 40 mph 1951 4463 41
45 or 50 mph 3496 3559 46
55 mph 9646 2121 91
60 mph or higher 5484 2347 27
No statutory limit 92 31 0

 
Source: USDOT Traffic Safety Facts 2004 (Fatality Analysis Reporting System). 
Note: Omit 958 cases for the Unknown Speed Limit category. 

Cross-classifying eye color and hair color contingency table 

The second example is a cross-classification of eye color and hair color table (Snee, 

1974), a 4×4 table with sample size of 592. 

Table 3. Cross-classification of eye color and hair color 

Hair color Eye color 
Black Brunette Red Blonde

Brown 68 119 26 7
Blue 20 84 17 94
Hazel 15 54 14 10
Green 5 29 14 16

Source, Snee (1974) and Diaconis and Efron (1985). 
 

RCL utilized this data example in their paper to study the properties of mixture 

index of fit. In this study, this example was used to compare the difference between 

sampling zero and structural zero. The 16 cells were force to be zero one-by-one in turn 

to study the relationship of data structure and suitability on π̂ ∗ as well as the impact of 
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sampling zero and structural zero on π̂ ∗ .

Statistical Analysis

In order to effectively compare π̂ ∗ and ˆLπ across difference combinations of 

scenario, confidence intervals and conventional z test tests for a single proportion, two 

proportions were adopted (Fleiss, Joseph L., 1981). If a 95% lower confidence bound 

does not contain zero; we can conclude that there is evidence for some lack of fit of the 

null model which means two proportions P1 and P2 are significantly differently from 

each other at significance level .05. 
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CHAPTER IV 
RESULTS 

 

Parameter Estimates and Bias

The parameter estimates π̂ ∗ from the various simulations are presented in 

Appendix A where tables are appropriately prefixed along with the estimates under 

different sampling zero techniques denoted by the column headings.  

The convergence of the repeated EM algorithm for estimating the mixture index of 

fit π̂ ∗ works smoothly for the step of each EM cycle at which π is assumed fixed with 

the criterion for the difference between the maximum likelihood estimates for two 

successive cycle being 10-5, (here the criterion of 10-5 is precise and provides the same 

results as using a criterion of 10-10). Also, the convergence at the step of the likelihood 

ratio chi-square fit statistic, G2, becoming zero (approximately, if the convergence 

criterion is set to <10-5) by successively increasing π̂ ∗ by small increment (e.g., .01) 

works satisfactorily except that in 6 cells out of total 480 (96 scenarios times 5 sampling 

zero techniques) did not converge at 10-5 but only converged at 10-2). 

π̂ ∗ is significantly positively (p<.05, using conventional z test for proportions) 

biased from zero by .02298 (2×2 table, slightly dispersed row and column marginals with 

sample size equals to 30 per cell) to .4086 (6×6 table, evenly dispersed row and column 

marginals with sample size equals to 5 per cell) for the conditions studied (all table sizes, 

marginal distributions, and sample sizes) when the independence assumption holds. The 

magnitude of bias, however, varies across situations. As shown in Figures 2 and 3, for 

2×2, 2×3, 2×4, 2×6 tables, when table size increases, π̂ ∗ consistently increases for 

constant sample size (5, 10, 20 and 30 per cell) and marginal distribution (evenly, slightly 
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and extremely dispersed) with the exceptions of 2×4 extremely dispersed table with 

sample size 20 and 30 per cell. The same conclusion applies to symmetric tables of sizes 

2×2, 3×3, 4×4, 6×6. In particular, for sample size 5, 10, 20 and 30 per cell evenly 

dispersed table, π̂ ∗ increases from .1252 to .4086; .096 to .3031; .0775 to .2242 

and .0668 to .1867 for 2×2 to 6×6 table, respectively. For sample size 5, 10, 20 and 30 

per cell extremely dispersed table marginals, π̂ ∗ increases from .0598 to .3629; .0568 

to.2593; .0476 to .1942 and .0396 to .1626 for a 2×2 table to a 6×6 table, respectively. 

Moreover, with few exceptions, for each frequency table, as sample size increases, π̂ ∗

significantly decreases (p< .05, conventional z test for proportions). For each size of 

contingency table, π̂ ∗ is smallest for extremely dispersed row and column marginal 

distributions while largest for evenly distributed row and column table. The only 

exception is 2×2 table where a slightly dispersed table contains slightly smaller π̂ ∗

values on average than extremely dispersed frequency table, partly due to a convergence 

problem (used less than .001 instead of otherwise .00001) as shown in Appendix A. 

For all two-way tables, replacing zero with larger flattening values results in 

smaller π̂ ∗ . For all extremely dispersed and most slightly dispersed (4 out of  6 

scenarios) row and column marginal distributions with small sample size (5 per cell) and 

small table size (2×2, 2×3, 2×4, 3×3) tables, the value of π̂ ∗ is smaller using structural 

zero compared to using sampling zero or any other replacing with positive flattening 

constants techniques.  

Also, Figures 4, 5, and 6 show that for all sample size in 2×2, 2×4 table, 5, 10, 20 

per cell for 2×3 table and 10 per cell for 2×6 tables with extremely dispersed row and 

column marginal distributions, π̂ ∗ is significantly smaller (p< .05, conventional z test 
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for proportions) using structural zero technique compared with sampling zero. However, 

π̂ ∗ values for the different techniques become closer to each other when sample size 

becomes moderately large (30 per cell) using all the various sampling zero techniques 

(including structural zero). Note that the techniques of replacing zero cell with flattening 

constants include virtually any number of simulated zero cells for each table while the 

structural zero technique used in this study can only accommodate one zero cell per 

frequency table. Because the number of zero counts and patterns are somewhat different 

among these techniques, especially when encountering small sample sizes such as 5 per 

cell and 10 per cell with extremely dispersed marginal distributions for which the 

percentage of number of two or above sampling zero cells could go up to 86.2% (2×6

small sample size with extremely dispersed marginal table), it might influence the 

comparison results between structural zero and using sampling zero or any other 

replacing with small positive flattening constants techniques. However, for comparatively 

large sample size (20 per cell and 30 per cell) tables with any marginal distributions or 

evenly dispersed tables with any sample size, the comparison results remain valid. 

 Notable difference for average π̂ ∗ values between sampling zero and structural 

zero techniques appears for different marginals when sample size is small (5 per cell). 

Figures 7 to 9 display the structural zero technique influence on π̂ ∗ for different 

marginal distributions with 2×3, 2×4 and 6×6 table. Again, π̂ ∗ is lowest for extremely 

dispersed marginal distribution, followed by slightly dispersed table and biggest for 

evenly distributed table and π̂ ∗ is consistently smaller when adopting structural zero 

technique compared to sampling zero. The magnitude of difference, however only 

significantly smaller (p< .05, conventional z test for proportions; sample size equals to 5 
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per cell) using structural zero for extremely dispersed 2×3 table, slightly dispersed 

({P1+=.5, P2+=.5, P+1=.8, P+2=.1, P+3=.1}) 2×3 table; extremely dispersed 2×4 table, 

slightly dispersed ({P1+=.9, P2+=.1, P+1=.25, P+2=.25, P+3=.25, P+4=.25}) 2×4 table and 

extremely dispersed 6×6 table. 

 Averaging over results, of the sampling zero techniques that were compared, 

replacing with larger flattening constants such as 1 and structural zero technique appear 

to be more superior to the others in the sense that π̂ ∗ is consistently smaller. Between 

these two methods, structural zero technique performs better for all extremely and most 

slightly dispersed row and column marginal distributions tables with small sample size 

and small table size while in most other cases replacing with larger flattening constant 

(i.e., 1) appears to be more superior in relation to parameter bias. 
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Lower Bound Comparisons of RCL and “True” Estimates

The 95% lower bound of π̂ ∗ using RCL method and empirical based “true” 

estimates from various simulations are listed in Appendix A where tables are 

appropriately prefixed along with the estimates under different sampling zero techniques 

denoted by the column headings.  

As shown in Appendix A25 – A48, the 95% lower bound for π̂ ∗ using RCL 

method is generally close to the "true" estimate based on empirical parametric simulation. 

However, under some circumstances (marked in red in Appendix A, most of them from 

symmetric frequency tables and any difference of “true” lower bound - RCL method 

lower bound < .01 is due to rounding error), RCL method underestimates the lower 

bound value even though the magnitude is relatively small and the difference from the 

“true estimate” decreases as the sample size increases.  

Similar to parameter estimators for π̂ ∗ , the “true” estimates of 95% lower bound of 

π̂ ∗ as shown in Figures 10 and 11, for 2×2, 2×3, 2×4, 2×6 tables, when table size 

increases, the lower bound of π̂ ∗ consistently increases within the same sample size (5, 

10, 20 and 30 per cell) and marginal distribution (evenly, slightly and extremely dispersed) 

with exceptions for 2×3 and 2×4 extremely dispersed tables with sample size 5 (remain 

nearly unchanged). This conclusion also applies to 2×2, 3×3, 4×4, 6×6 symmetric 

tables. Additionally, with few exceptions, for each frequency table, as sample size 

increases, the 95% lower bound decreases.  

As displayed in Figures 12 and 13, for each size of contingency table, lower bound 

π̂ ∗ is generally smallest for extremely dispersed row and column marginal distributions, 

followed by slightly dispersed row and column marginal distributions; while largest for 
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evenly distributed row and column tables. Different techniques for dealing with sampling 

zero seem to have no effect on the lower bound of π̂ ∗ on either the method following 

RCL or the “true” lower bound based on empirical simulations. 

Confidence Interval and Standard Errors

From Figures 14 and 15, we can see that given the same table size, extremely 

dispersed row and column marginal distributions consistently provide narrower 

confidence intervals ( π̂ ∗ - ˆLπ ) than evenly dispersed row and column tables using both 

RCL method and empirical based “true” estimates. Also, when sample size increases, 

confidence intervals become narrower for each table size and roughly shrinks to same 

confidence intervals for different marginal distribution with same table size using both 

estimation methods. 

Standard errors of π̂ ∗ in different combination of scenarios are also tabulated in 

Appendix A. It is apparent that since RCL method underestimates the lower bound of π̂ ∗

in many cases and, thus, leads to a higher standard error compared with empirical based 

“true” lower bound estimates.  
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Figure 12. ˆLπ Comparison between RCL method and Empirical Simulation method 
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Figure 14. Confidence Interval of π̂ ∗ following empirical simulation method 
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Examples

The first example is a 6×3 cross-classification of fatal crashes by speed limit and 

land use with 37,295 cases based on a 2004 USDOT traffic database. This data table is 

used to compare the results using traditional chi-square and related model fit methods 

with the mixture index of fit introduced by RCL. More specially, we compare different 

sampling zero techniques impacts on π̂ ∗ since there is a zero cell in the contingency 

table. 

The value of the Pearson Chi-Square statistic is 7200.090, and the likelihood ratio, 

G2 statistic is 7600.540 both with degrees of freedom equal to 10 (P<. 01). Thus, an 

independence model is not tenable based on these chi-squared tests of fit. As displayed in 

Table 4, the mixture index of fit π̂ ∗ is .294, which means about 29.4% of the total of 

37,295 cases (or, 10, 965 cases) have to be removed in order to attain perfect model fit. 

The mixture index of fit provides an interpretation that is consistent with traditional 

Chi-Square analyses. Furthermore, π̂ ∗ only decreases to .293 when replacing sample 

zero with the flattening constant 0.1 and further reduces to .291 when replacing with .5 

and 1 as well as using the structural zero method. The amount of change in π̂ ∗ , as well 

as its 95% lower bound using different sampling zero techniques, is extremely small in 

this example. This occurs due to the very small percentage (0.62%) of Unknown land. In 

fact, it would not substantially effect π̂ ∗ , even if the whole column were zeros.  

The second example is a cross-classification eye color and hair color in a 4×4 table 

with sample size of 592 presented by Snee (1974). RCL utilized this data example to 

study the properties of the mixture index of fit. In this paper, this example is used to 

compare the difference between sampling zero and structural zero. The 16 cells were set 
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to zero one-by-one and the results are presented in Table 5. The percentage differences 

between use of the sampling zero and structural zero techniques range from 5.00% to 

40.00%, (note that six of these differences are statistically significant (p<0.05) using 

conventional z tests for proportions.) The largest percentage reduce in π̂ ∗ using 

structural zero occurs when Hair black and eye color Hazel is set to zero.  
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CHAPTER V 
CONCLUSIONS AND DISCUSSION 

 This study was primarily focused on three areas. The first, the performance of the 

estimate, *π̂ , in various combinations of conditions, as a function of different sizes of 

tables, different marginal distributions and different sample sizes. The second area 

encompassed evaluating several techniques for dealing with sampling zeros when 

computing *π in contingency tables when the independence assumption holds. The 

third was comparing the standard error of π̂ ∗ and confidence interval estimated by use 

of a method proposed by RCL, with the “true” standard error based on empirical 

simulations in various scenarios especially when encountering small sample sizes and 

π ∗ close to zero. 

Parameter Estimates and Bias

In general, when table size increases, π̂ ∗ consistently increases for constant 

sample size and marginal distribution with few exceptions for both symmetric and 

non-symmetric tables. For each frequency table, as sample size increases, with few 

exceptions, π̂ ∗ decreases as well as its lower bound. For each size of contingency table, 

π̂ ∗ is smallest for extremely dispersed row and column marginal distributions while 

largest for evenly distributed marginal tables. 

π̂ ∗ is positively biased from zero by 2.98% to 40.86% in the designs studied (all 

table sizes, marginal distributions, and sample sizes) when the independence assumption 

holds. The magnitude of bias, however, varied across different situations. Large table 

sizes with small sample sizes were heavily biased, 40.86% of π̂ ∗ biased from zero 

when table size is 6×6 with evenly dispersed row and column marginals and small 
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sample size. However, π̂ ∗ is still a reasonable descriptive index for model goodness of 

fit of contingency tables when independence assumption holds for small table size (2×2, 

2×3, 2×4, 3×3 2×6) tables with moderately large (or above) sample size (the largest 

π̂ ∗ in such cases was no greater than .1). 

Sampling Zero Techniques

As expected, for all two-way contingency tables, replacing zero with a larger 

flattening values resulted in smaller π̂ ∗ as well as its lower bound. For extremely and 

most slightly dispersed row and column marginal distributions tables with small sample 

sizes and small table sizes, the value of π̂ ∗ is substantially smaller using structural zero 

compared to using other techniques. Note that the techniques of replacing zero cell with 

flattening constants include virtually any number of simulated zero cells for each table 

while structural zero technique using here was based on only one zero cell per table. 

Because the number of zero counts and patterns are somewhat different between these 

techniques especially when encountering small sample size, it might affect the 

comparison between structural zero and using sampling zero or any other replacing with 

small positive flattening constants techniques. 

Different techniques for dealing with sampling zero seem to have no effect on the 

lower bound of π̂ ∗ on either the method following RCL or the “true” lower bound 

based on empirical simulations. 

Confidence Interval and Standard Error

As hypothesized, similar to parameter estimators for π̂ ∗ , when table size increases, 

the “true” estimates of 95% lower bound of π̂ ∗ consistently increases within the same 

sample size and marginal distribution for both symmetric and non-symmetric tables 
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with few exceptions Additionally, with few exceptions, for each frequency table, as 

sample size increases, the 95% lower bound decreases. Lower bound of π̂ ∗ is 

generally smallest for extremely dispersed row and column marginal distributions, 

followed by slightly dispersed row and column marginal distributions; while largest for 

evenly distributed row and column tables. As a result, given the same table size, 

extremely dispersed row and column marginal distributions consistently provide 

narrower confidence interval than evenly dispersed row and column tables. 

The 95% lower bound for π̂ ∗ using the RCL method is generally close to the 

"true" estimate based on empirical parametric simulation. However, under many 

circumstances, the RCL method underestimates the lower bound value although the 

magnitude is relatively small and the difference from the “true estimate” decreases as 

the sample size increases.  

Recommendations

Among all the sampling zero techniques that were compared in terms of 

parameter bias, replacing with larger flattening constants such as 1 and structural zero 

technique appear to perform better in the sense that π̂ ∗ is consistently smaller. 

Between these two techniques, structural zero technique is generally recommended for 

extremely and slightly dispersed row and column marginal distributions tables with 

small sample sizes and small table sizes while in other cases replacing with larger 

flattening constant (i.e., 1) is preferred. 

Based on the current findings, RCL standard error estimates were comparatively 

conservative. In general, it is preferable in practice to use variance estimates that tend to 

be conservative (i.e., large) rather than liberal (i.e., small). However, it would be 
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valuable to investigate the standard error of π̂ ∗ using re-sampling methods to provide 

better guidance for users. 

Implications for Future Research

1. Evenly distributed, slightly and extremely dispersed marginal distributions for 

each different size of tables were manipulated in the current study. It would be valuable 

to investigate more diversified marginal distribution in future studies. 

2. As noted, the limitation of structural zero technique with number of zero cells 

might affect the results when compared with other sampling zero techniques. It would 

be of interest to investigate structural zero technique applied in two-point mixture index 

model in contingency tables with more than one zero when the independence 

assumption holds. 

3.  In order to attain reasonable execution times for the simulation, in this study, 

an increment of .01 was adopted to successively increase π̂ ∗ when estimating π̂ ∗

using an EM algorithm. For very small true values of *π , it would be necessary to use a 

value of .001 or even .0001 in order to obtain a more detailed picture, especially for the 

lower bound of π̂ ∗ .

4.  In future study, it would be beneficial to investigate the standard error of π̂ ∗

using other re-sampling methods (e.g., jackknife) and compare with RCL to provide a 

more concrete guide. 

5.  The larger value of flattening constants (e.g., 1) might affect the original data 

structure when sample size of a contingency table is small (e.g., 5 per cell) and thus the 

results could be slightly influenced. Alternative ways to define the flattening constants 

such as a percentage to total sample size is of interest in future study. 
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6.  Finally, it would be valuable to evaluate the performance of *π under 

conditions where the independence assumption does not hold. 
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MARGINAL DISTRIBUTION LEGEND FOR APPENDIX A 
 

Case 1: {P1+=. 5, P2+=. 5, P+1=. 8, P+2=. 1, P+3=. 1} 

Case 2: {P1+=. 5, P2+=. 5, P+1=. 33, P+2=. 33, P+3=. 33} 

Case 3: {P1+=. 9, P2+=. 1, P+1=. 33, P+2=. 33, P+3=. 33} 

Case 4: {P1+=. 9, P2+=. 1, P+1=. 8, P+2=. 1, P+3=. 1} 

Case 5: {P1+=. 5, P2+=. 5, P+1=. 25, P+2=. 25, P+3=. 25, P+4=. 25} 

Case 6: {P1+=. 5, P2+=. 5, P+1=. 4 P+2=. 4, P+3=. 1, P+4=. 1} 

Case 7: {P1+=. 9, P2+=. 1, P+1=. 25, P+2=. 25, P+3=. 25, P+4=. 25} 

Case 8: {P1+=. 9, P2+=. 1, P+1=. 4, P+2=. 4, P+3=. 1, P+4=. 1} 

Case 9: {P1+=. 5, P2+=. 5, P+1=. 167, P+2=. 167, P+3=. 167, P+4=. 167, P+5=. 167, 

 P+6=. 167} 

Case 10: {P1+=. 9, P2+=. 1, P+1=. 167, P+2=. 167, P+3=. 167, P+4=. 167, P+5=. 167,  

 P+6=. 167} 

Case 11: {P1+=. 5, P2+=. 5, P+1=. 3, P+2=. 3, P+3=. 1, P+4=. 1, P+5=. 1, P+6=. 1} 

Case 12: {P1+=. 9, P2+=. 1, P+1=. 3, P+2=. 3, P+3=. 1, P+4=. 1, P+5=. 1, P+6=. 1} 

Case 13: {P1+=. 5, P2+=. 5, P+1=. 5, P+2=. 5} 

Case 14: {P1+=. 9, P2+=. 1, P+1=. 9, P+2=. 1} 

Case 15: {P1+=. 5, P2+=. 5, P+1=. 9, P+2=. 1} 

Case 16: {P1+=. 4, P2+=. 4, P3+=. 2, P+1=. 4, P+2=. 4, P+3=. 2} 

Case 17: {P1+=. 33, P2+=. 33, P3+=. 33, P+1=. 33, P+2=. 33, P+3=. 33} 

Case 18: {P1+=. 33, P2+=. 33, P3+=. 33, P+1=. 4, P+2=. 4, P+3=. 2} 

Case 19: {P1+=. 25, P2+=. 25, P3+=. 25, P4+=. 25, P+1=. 25, P+2=. 25, P+3=. 25,  
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P+4=. 25} 

Case 20: {P1+=. 4, P2+=. 4, P3+=. 1, P4+=. 1, P+1=. 4, P+2=. 4, P+3=. 1, P+4=. 1} 

Case 21: {P1+=. 25, P2+=. 25, P3+=. 25, P4+=. 25, P+1=. 4, P+2=. 4, P+3=. 1, 

 P+4=. 1} 

Case 22: {P1+=. 167, P2+=. 167, P3+=. 167, P4+=. 167, P5+=. 167, 

 P6+=. 167, P+1=. 3, P+2=. 3, P+3=. 1, P+4=. 1, P+5=. 1, P+6=. 1}. 

Case 23: {P1+=. 167, P2+=. 167, P3+=. 167, P4+=. 167, P5+=. 167, P6+=. 167,  

 P+1=. 167, P+2=. 167, P+3=. 167, P+4=. 167, P+5=. 167, P+6=. 167} 

Case 24: {P1+=. 3, P2+=. 3, P3+=. 1, P4+=. 1, P5+=. 1, P6+=. 1,  

 P+1=. 3, P+2=. 3, P+3=. 1, P+4=. 1, P+5=. 1, P+6=. 1},  

 



53

APPENDIX A: RESULTS TABLES 
 

Table A1: π̂ ∗ and π̂ ∗ Using Sampling Zero Techniques – Case 1 
 

{P1+=.5, P2+=.5, 
P+1=.8, P+2=.1, 
P+3=.1} 

5 per cell 10 per cell 20 per cell 30 per cell 

Pi Star No of 
Zeros Pi Star No of 

Zeros Pi Star No of 
Zeros Pi Star No of 

Zeros 
Sampling zero 0.0974 598 0.0700 136 0.0533 4 0.0443 0 
Replace with .1 0.0951 598 0.0698 136 0.0533 4 0.0443 0 
Replace with .5 0.0851 598 0.0688 136 0.0533 4 0.0443 0 
Replace with 1 0.0757 598 0.0677 136 0.0533 4 0.0443 0 
Structural zero* 0.0658 522 0.0645 130 0.0542 4 0.0451 0 
 
NOTE: 1. * denotes accommodate only one zero cell each simulated frequency table for structural zero technique. 

Table A2: π̂ ∗ and π̂ ∗ Using Sampling Zero Techniques – Case 2 
 

{P1+=.5, P2+=.5, 
P+1=.33, P+2=.33, 
P+3=.33} 

5 per cell 10 per cell 20 per cell 30 per cell 

Pi Star No of 
Zeros Pi Star No of 

Zeros Pi Star No of 
Zeros Pi Star No of 

Zeros 
Sampling zero 0.1698 28 0.1256 0 0.0921 0 0.0766 0 
Replace with .1 0.1697 28 0.1256 0 0.0921 0 0.0766 0 
Replace with .5 0.1691 28 0.1256 0 0.0921 0 0.0766 0 
Replace with 1 0.1683 28 0.1256 0 0.0921 0 0.0766 0 
Structural zero* 0.1700 28 0.1294 0 0.0946 0 0.0786 0 

NOTE: 1. * denotes accommodate only one zero cell each simulated frequency table for structural zero technique. 
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Table A3: π̂ ∗ and π̂ ∗ Using Sampling Zero Techniques – Case 3 
 

{P1+=.9, P2+=.1, 
P+1=.33, 
P+2=.33, 
P+3=.33} 

5 per cell 10 per cell 20 per cell 30 per cell 

Pi Star No of 
Zeros Pi Star No of 

Zeros Pi Star No of 
Zeros Pi Star No of 

Zeros 
Sampling zero 0.0800 746 0.0600 311 0.0462 36 0.0390 8
Replace with .1 0.0771 746 0.0594 311 0.0461 36 0.0390 8
Replace with .5 0.0605 746 0.0552 311 0.0459 36 0.0389 8
Replace with 1 0.0502 746 0.0512 311 0.0456 36 0.0389 8
Structural zero* 0.0481 656 0.0481 286 0.0455 36 0.0393 8

NOTE: 1. * denotes accommodate only one zero cell each simulated frequency table for structural zero technique. 

Table A4: π̂ ∗ and π̂ ∗ Using Sampling Zero Techniques – Case 4 
 

{P1+=.9, P2+=.1, 
P+1=.8, P+2=.1, 
P+3=.1} 

5 per cell 10 per cell 20 per cell 30 per cell 

Pi Star No of 
Zeros Pi Star No of 

Zeros Pi Star No of 
Zeros Pi Star No of 

Zeros 
Sampling zero 0.0844# 960 0.0745# 804 0.0604# 507 0.0520# 308 
Replace with .1 0.0673 960 0.0660 804 0.0590 507 0.0520 308 
Replace with .5 0.0416 960 0.0375 804 0.0441 507 0.0454 308 
Replace with 1 0.0517 960 0.0295 804 0.0328 507 0.0391 308 
Structural zero* 0.0440 849 0.0321 653 0.0330 424 0.0388 257 

NOTE: 1. * denotes accommodate only one zero cell each simulated frequency table for structural zero technique. 
 NOTE: 2. # denotes convergence criteria G-Square<.01 instead of .00001. 
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Table A5: π̂ ∗ and π̂ ∗ Using Sampling Zero Techniques – Case 5 
 

{P1+=.5, P2+=.5, 
P+1=.25, P+2=.25, 
P+3=.25, P+4=.25} 

5 per cell 10 per cell 20 per cell 30 per cell 

π̂ ∗ No of 
Zeros π̂ ∗ No of 

Zeros π̂ ∗ No of 
Zeros π̂ ∗ No of 

Zeros 
Sampling zero 0.1873 44 0.1414 1 0.1031 0 0.0858 0 
Replace with .1 0.1871 44 0.1414 1 0.1031 0 0.0858 0 
Replace with .5 0.1865 44 0.1414 1 0.1031 0 0.0858 0 
Replace with 1 0.1857 44 0.1412 1 0.1031 0 0.0858 0 
Structural zero* 0.1869 44 0.1450 1 0.1060 0 0.0879 0 
 
NOTE: 1. * denotes accommodate only one zero cell each simulated frequency table for structural zero technique. 

Table A6: π̂ ∗ and π̂ ∗ Using Sampling Zero Techniques – Case 6

{P1+=.5, P2+=.5, 
P+1=.4, P+2=.4, 
P+3=.1, P+4=.1} 

5 per cell 10 per cell 20 per cell 30 per cell 

π̂ ∗ No of 
Zeros π̂ ∗ No of 

Zeros π̂ ∗ No of 
Zeros π̂ ∗ No of 

Zeros 
Sampling zero 0.1673 406 0.1255 49 0.0940 0 0.0782 0 
Replace with .1 0.1654 406 0.1255 49 0.0940 0 0.0782 0 
Replace with .5 0.1594 406 0.1251 49 0.0940 0 0.0782 0 
Replace with 1 0.1543 406 0.1248 49 0.0940 0 0.0782 0 
Structural zero* 0.1505 352 0.1272 48 0.0974 0 0.0811 0 

NOTE: 1. * denotes accommodate only one zero cell each simulated frequency table for structural zero technique. 
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Table A7: π̂ ∗ and π̂ ∗ Using Sampling Zero Techniques – Case 7 
 

{P1+=.9, P2+=.1, 
P+1=.25, P+2=.25, 
P+3=.25, P+4=.25} 

5 per cell 10 per cell 20 per cell 30 per cell 

π̂ ∗ No of 
Zeros π̂ ∗ No of 

Zeros π̂ ∗ No of 
Zeros π̂ ∗ No of 

Zeros 
Sampling zero 0.0908 851 0.0711 441 0.0541 72 0.0460 11 
Replace with .1 0.0877 851 0.0705 441 0.0540 72 0.0460 11 
Replace with .5 0.0697 851 0.0635 441 0.0534 72 0.0459 11 
Replace with 1 0.0582 851 0.0577 441 0.0528 72 0.0458 11 
Structural zero* 0.0615 702 0.0570 383 0.0523 71 0.0465 11 
 
NOTE: 1. * denotes accommodate only one zero cell each simulated frequency table for structural zero technique. 

Table A8: π̂ ∗ and π̂ ∗ Using Sampling Zero Techniques – Case 8 
 

{P1+=.9, P2+=.1, 
P+1=.4, P+2=.4, 
P+3=.1, P+4=.1} 

5 per cell 10 per cell 20 per cell 30 per cell 

π̂ ∗ No of 
Zeros π̂ ∗ No of 

Zeros π̂ ∗ No of 
Zeros π̂ ∗ No of 

Zeros 
Sampling zero 0.0942 942 0.0822 722 0.0732 370 0.0730 177 
Replace with .1 0.0849 942 0.0762 722 0.0629 370 0.0544 177 
Replace with .5 0.0660 942 0.0567 722 0.0545 370 0.0517 177 
Replace with 1 0.0703 942 0.0510 722 0.0480 370 0.0487 177 
Structural zero* 0.0675 800 0.0530 560 0.0488 281 0.0490 146 

NOTE: 1. * denotes accommodate only one zero cell each simulated frequency table for structural zero technique. 
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Table A9: π̂ ∗ and π̂ ∗ Using Sampling Zero Techniques –Case 9 
 

{P1+=.5, P2+=.5, 
P+1=.167, P+2=.167, 
P+3=.167, P+4=.167, 
P+5=.167, 
P+6=.167} 

5 per cell 10 per cell 20 per cell 30 per cell 

π̂ ∗ No of 
Zeros π̂ ∗ No of 

Zeros π̂ ∗ No of 
Zeros π̂ ∗ No of 

Zeros 
Sampling zero 0.2123 64 0.1552 0 0.1138 0 0.0937 0 
Replace with .1 0.2122 64 0.1552 0 0.1138 0 0.0937 0 
Replace with .5 0.2114 64 0.1552 0 0.1138 0 0.0937 0 
Replace with 1 0.2106 64 0.1552 0 0.1138 0 0.0937 0 
Structural zero* 0.2108 63 0.1582 0 0.1161 0 0.0957 0 
 
NOTE: 1. * denotes accommodate only one zero cell each simulated frequency table for structural zero 
technique. 

Table A10: π̂ ∗ and π̂ ∗ Using Sampling Zero Techniques – Case 10 
 

{P1+=.9, P2+=.1, 
P+1=.167, P+2=.167, 
P+3=.167, P+4=.167, 
P+5=.167, 
P+6=.167} 

5 per cell 10 per cell 20 per cell 30 per cell 

π̂ ∗ No of 
Zeros π̂ ∗ No of 

Zeros π̂ ∗ No of 
Zeros π̂ ∗ No of 

Zeros 
Sampling zero 0.0968 938 0.0818 579 0.0628 91 0.0544 13 
Replace with .1 0.0951 938 0.0842 579 0.0634 91 0.0544 13 
Replace with .5 0.0749 938 0.0709 579 0.0618 91 0.0543 13 
Replace with 1 0.0630 938 0.0630 579 0.0609 91 0.0542 13 
Structural zero* 0.0744 790 0.0649 484 0.0617 87 0.0553 13 

NOTE: 1. * denotes accommodate only one zero cell each simulated frequency table for structural zero technique. 
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Table A11: π̂ ∗ and π̂ ∗ Using Sampling Zero Techniques –Case 11 
 

{P1+=.5, P2+=.5, 
P+1=.3, P+2=.3, 
P+3=.1, P+4=.1, 
P+5=.1, P+6=.1} 

5 per cell 10 per cell 20 per cell 30 per cell 

π̂ ∗ No of 
Zeros π̂ ∗ No of 

Zeros π̂ ∗ No of 
Zeros π̂ ∗ No of 

Zeros 
Sampling zero 0.1975 278 0.1432 11 0.1029 0 0.0871 0 
Replace with .1 0.1968 278 0.1432 11 0.1029 0 0.0871 0 
Replace with .5 0.1941 278 0.1432 11 0.1029 0 0.0871 0 
Replace with 1 0.1911 278 0.1431 11 0.1029 0 0.0871 0 
Structural zero* 0.1872 255 0.1462 11 0.1050 0 0.0890 0 
 
NOTE: 1. * denotes accommodate only one zero cell each simulated frequency table for structural zero 
technique. 

Table A12: π̂ ∗ and π̂ ∗ Using Sampling Zero Techniques – Case 12 
 

{P1+=.9, P2+=.1, 
P+1=.3, P+2=.3, 
P+3=.1, P+4=.1, 
P+5=.1, P+6=.1} 

5 per cell 10 per cell 20 per cell 30 per cell 

π̂ ∗ No of 
Zeros π̂ ∗ No of 

Zeros π̂ ∗ No of 
Zeros π̂ ∗ No of 

Zeros 
Sampling zero 0.0995 980 0.0907 783 0.0712 328 0.0614 126 
Replace with .1 0.0941 980 0.0888 783 0.0716 328 0.0614 126 
Replace with .5 0.0732 980 0.0680 783 0.0652 328 0.0599 126 
Replace with 1 0.0736 980 0.0588 783 0.0604 328 0.0584 126 
Structural zero* 0.0809 837 0.0641 582 0.0628 259 0.0599 105 

NOTE: 1. * denotes accommodate only one zero cell each simulated frequency table for structural zero technique. 
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Table A13: π̂ ∗ and π̂ ∗ Using Sampling Zero Techniques – Case 13 
 

{P1+=.5, P2+=.5, 
P+1=.5, P+2=.5} 5 per cell 10 per cell 20 per cell 30 per cell 

π̂ ∗ No of 
Zeros π̂ ∗ No of 

Zeros π̂ ∗ No of 
Zeros π̂ ∗ No of 

Zeros 
Sampling zero 0.1252 17 0.0960 0 0.0775 0 0.0668 0 
Replace with .1 0.1252 17 0.0960 0 0.0775 0 0.0668 0 
Replace with .5 0.1248 17 0.0960 0 0.0775 0 0.0668 0 
Replace with 1 0.1243 17 0.0960 0 0.0775 0 0.0668 0 
Structural zero* 0.1260 17 0.1015 0 0.0820 0 0.0712 0 
 
NOTE: 1. * denotes accommodate only one zero cell each simulated frequency table for structural zero technique. 

Table A14: π̂ ∗ and π̂ ∗ Using Sampling Zero Techniques – Case 14 
 

{P1+=.9, P2+=.1, 
P+1=.9, P+2=.1} 5 per cell 10 per cell 20 per cell 30 per cell 

π̂ ∗ No of 
Zeros π̂ ∗ No of 

Zeros π̂ ∗ No of 
Zeros π̂ ∗ No of 

Zeros 
Sampling zero 0.0598# 877 0.0568# 701 0.0476# 489 0.0396# 322 
Replace with .1 0.0413 877 0.0463 701 0.0434 489 0.0383 322 
Replace with .5 0.0285 877 0.0231 701 0.0272 489 0.0302 322 
Replace with 1 0.0420 877 0.0230 701 0.0182 489 0.0223 322 
Structural zero* 0.0262 695 0.0235 546 0.0185 356 0.0215 276 

NOTE: 1. * denotes accommodate only one zero cell each simulated frequency table for structural zero technique. 
 NOTE: 2. # denotes convergence criteria G-Square<.01 instead of .00001. 
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Table A15: π̂ ∗ and π̂ ∗ Using Sampling Zero Techniques – Case 15 
 

{P1+=.5, P2+=.5, 
P+1=.9, P+2=.1} 5 per cell 10 per cell 20 per cell 30 per cell 

π̂ ∗ No of 
Zeros π̂ ∗ No of 

Zeros π̂ ∗ No of 
Zeros π̂ ∗ No of 

Zeros 
Sampling zero 0.0559 602 0.0445 239 0.0343 27 0.0298 3 
Replace with .1 0.0555 602 0.0444 239 0.0343 27 0.0298 3 
Replace with .5 0.0451 602 0.0418 239 0.0342 27 0.0298 3 
Replace with 1 0.0385 602 0.0392 239 0.0340 27 0.0298 3 
Structural zero* 0.0310 561 0.0351 228 0.0321 28 0.0296 2 
 
NOTE: 1. * denotes accommodate only one zero cell each simulated frequency table for structural zero technique. 

Table A16: π̂ ∗ and π̂ ∗ Using Sampling Zero Techniques – Case 16 
 

{P1+=.4, P2+=.4, 
P3+=.2,                           
P+1=.4, P+2=.4, 
P+3=.2} 

5 per cell 10 per cell 20 per cell 30 per cell 

π̂ ∗ No of 
Zeros π̂ ∗ No of 

Zeros π̂ ∗ No of 
Zeros π̂ ∗ No of 

Zeros 
Sampling zero 0.2162 242 0.1619 24 0.1163 0 0.0983 0 
Replace with .1 0.2140 242 0.1618 24 0.1163 0 0.0983 0 
Replace with .5 0.2075 242 0.1614 24 0.1163 0 0.0983 0 
Replace with 1 0.2022 242 0.1608 24 0.1163 0 0.0983 0 
Structural zero* 0.2015 230 0.1650 24 0.1204 0 0.1023 0 

NOTE: 1. * denotes accommodate only one zero cell each simulated frequency table for structural zero technique. 
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Table A17: π̂ ∗ and π̂ ∗ Using Sampling Zero Techniques – Case 17 
 

{P1+=.33, P2+=.33, 
P3+=.33,                           
P+1=.33, P+2=.33, 
P+3=.33} 

5 per cell 10 per cell 20 per cell 30 per cell 

π̂ ∗ No of 
Zeros π̂ ∗ No of 

Zeros π̂ ∗ No of 
Zeros π̂ ∗ No of 

Zeros 
Sampling zero 0.2338 50 0.1747 0 0.1277 0 0.1079 0 
Replace with .1 0.2336 50 0.1747 0 0.1277 0 0.1079 0 
Replace with .5 0.2323 50 0.1747 0 0.1277 0 0.1079 0 
Replace with 1 0.2312 50 0.1747 0 0.1277 0 0.1079 0 
Structural zero* 0.2347 49 0.1820 0 0.1353 0 0.1145 0 
 
NOTE: 1. * denotes accommodate only one zero cell each simulated frequency table for structural zero technique. 

Table A18: π̂ ∗ and π̂ ∗ Using Sampling Zero Techniques – Case 18 
 

{P1+=.33, P2+=.33, 
P3+=.33,                 
P+1=.4, P+2=.4, 
P+3=.2} 

5 per cell 10 per cell 20 per cell 30 per cell 

π̂ ∗ No of 
Zeros π̂ ∗ No of 

Zeros π̂ ∗ No of 
Zeros π̂ ∗ No of 

Zeros 
Sampling zero 0.2267 165 0.1645 4 0.1187 0 0.0993 0 
Replace with .1 0.2258 165 0.1645 4 0.1187 0 0.0993 0 
Replace with .5 0.2217 165 0.1645 4 0.1187 0 0.0993 0 
Replace with 1 0.2180 165 0.1644 4 0.1187 0 0.0993 0 
Structural zero* 0.2190 165 0.1696 5 0.1228 0 0.1030 0 

NOTE: 1. * denotes accommodate only one zero cell each simulated frequency table for structural zero technique. 
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Table A19: π̂ ∗ and π̂ ∗ Using Sampling Zero Techniques – Case 19 
 

{P1+=.25, P2+=.25, 
P3+=.25, P4+=.25                 
P+1=.25, P+2=.25, 
P+3=.25, P+4=.25} 

5 per cell 10 per cell 20 per cell 30 per cell 

π̂ ∗ No of 
Zeros π̂ ∗ No of 

Zeros π̂ ∗ No of 
Zeros π̂ ∗ No of 

Zeros 
Sampling zero 0.3060 70 0.2280 0 0.1684 0 0.1422 0 
Replace with .1 0.3046 70 0.2280 0 0.1684 0 0.1422 0 
Replace with .5 0.3032 70 0.2280 0 0.1684 0 0.1422 0 
Replace with 1 0.2280 70 0.1684 0 0.1422 0 0.1422 0 
Structural zero* 0.3092 65 0.2374 0 0.1771 0 0.1493 0 
 
NOTE: 1. * denotes accommodate only one zero cell each simulated frequency table for structural zero technique. 

Table A20: π̂ ∗ and π̂ ∗ Using Sampling Zero Techniques – Case 20 
 

{P1+=.4, P2+=.4, 
P3+=.1, P4+=.1                 
P+1=.4, P+2=.4, 
P+3=.1, P+4=.1} 

5 per cell 10 per cell 20 per cell 30 per cell 

π̂ ∗ No of 
Zeros π̂ ∗ No of 

Zeros π̂ ∗ No of 
Zeros π̂ ∗ No of 

Zeros 
Sampling zero 0.2350 937 0.1873 620 0.1402 161 0.1178 38 
Replace with .1 0.2052 937 0.1715 620 0.1378 161 0.1174 38 
Replace with .5 0.1996 937 0.1607 620 0.1354 161 0.1171 38 
Replace with 1 0.1919 937 0.1408 620 0.1178 161 0.1171 38 
Structural zero* 0.2027 779 0.1642 529 0.1377 154 0.1207 38 

NOTE: 1. * denotes accommodate only one zero cell each simulated frequency table for structural zero technique. 
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Table A21: π̂ ∗ and π̂ ∗ Using Sampling Zero Techniques – Case 21 
 

{P1+=.25, P2+=.25, 
P3+=.25, P4+=.25                 
P+1=.4, P+2=.4, 
P+3=.1, P+4=.1} 

5 per cell 10 per cell 20 per cell 30 per cell 

π̂ ∗ No of 
Zeros π̂ ∗ No of 

Zeros π̂ ∗ No of 
Zeros π̂ ∗ No of 

Zeros 
Sampling zero 0.2587 707 0.1909 140 0.1391 0 0.1145 0 
Replace with .1 0.2442 707 0.1897 140 0.1391 0 0.1145 0 
Replace with .5 0.2330 707 0.1882 140 0.1391 0 0.1145 0 
Replace with 1 0.1912 707 0.1391 140 0.1145 0 0.1145 0 
Structural zero* 0.2375 562 0.1888 136 0.1419 0 0.1166 0 
 
NOTE: 1. * denotes accommodate only one zero cell each simulated frequency table for structural zero technique. 

Table A22: π̂ ∗ and π̂ ∗ Using Sampling Zero Techniques –Case 22 
 

{P1+=.167, P2+=.167, 
P3+=.167, P4+=.167, 
P5+=.167, P6+=.167. 
P+1=.3, P+2=.3, 
P+3=.1, P+4=.1. 
P+5=.1, P+6=.1} 

5 per cell 10 per cell 20 per cell 30 per cell 

π̂ ∗ No of 
Zeros π̂ ∗ No of 

Zeros π̂ ∗ No of 
Zeros π̂ ∗ No of 

Zeros 
Sampling zero 0.3680 709 0.2710 52 0.0940 0 0.0782 0 
Replace with .1 0.3645 709 0.2710 52 0.0940 0 0.0782 0 
Replace with .5 0.3512 709 0.2707 52 0.0940 0 0.0782 0 
Replace with 1 0.3399 709 0.2702 52 0.0940 0 0.0782 0 
Structural zero* 0.3404 573 0.2741 52 0.0974 0 0.0811 0 

NOTE: 1. * denotes accommodate only one zero cell each simulated frequency table for structural zero technique. 
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Table A23: π̂ ∗ and π̂ ∗ Using Sampling Zero Techniques – Case 23 
 

{P1+=.167, P2+=.167, 
P3+=.167, P4+=.167, 
P5+=.167, P6+=.167. 
P+1=.167, P+2=.167, 
P+3=.167, P+4=.167, 
P+5=.167, P+6=.167} 

5 per cell 10 per cell 20 per cell 30 per cell 

π̂ ∗ No of 
Zeros π̂ ∗ No of 

Zeros π̂ ∗ No of 
Zeros π̂ ∗ No of 

Zeros 
Sampling zero 0.4086 183 0.3031 0 0.2242 0 0.1867 0 
Replace with .1 0.4079 183 0.3031 0 0.2242 0 0.1867 0 
Replace with .5 0.4054 183 0.3031 0 0.2242 0 0.1867 0 
Replace with 1 0.4028 183 0.3031 0 0.2242 0 0.1867 0 
Structural zero* 0.4088 173 0.3146 0 0.2337 0 0.1940 0 
 
NOTE: 1. * denotes accommodate only one zero cell each simulated frequency table for structural zero technique. 

Table A24: π̂ ∗ and π̂ ∗ Using Sampling Zero Techniques – Case 24 
 

{P1+=.3, P2+=.3, 
P3+=.1, P4+=.1, 
P5+=.1, P6+=.1. 
P+1=.3, P+2=.3, 
P+3=.1, P+4=.1. 
P+5=.1, P+6=.1} 

5 per cell 10 per cell 20 per cell 30 per cell 

π̂ ∗ No of 
Zeros π̂ ∗ No of 

Zeros π̂ ∗ No of 
Zeros π̂ ∗ No of 

Zeros 
Sampling zero 0.3629 953 0.2693 359 0.1942 15 0.1626 0 
Replace with .1 0.3536 953 0.2681 359 0.1942 15 0.1626 0 
Replace with .5 0.3175 953 0.2629 359 0.1941 15 0.1626 0 
Replace with 1 0.2933 953 0.2579 359 0.1940 15 0.1626 0 
Structural zero* 0.3020 752 0.2605 314 0.2001 15 0.1684 0 

NOTE: 1. * denotes accommodate only one zero cell each simulated frequency table for structural zero technique. 
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Table A25: 95% Lower Bound- ˆLπ - Case 1 

 
NOTE: 1. Highlighted color denotes ˆLπ difference between RCL method and empirical simulation method. 

 

{P1+=.5, P2+=.5, 
P+1=.8, P+2=.1, 
P+3=.1} 

5 per cell 10 per cell 20 per cell 30 per cell 

RCL Empirical RCL Empirical RCL Empirical RCL Empirical 
Sampling zero 0.021 0.0300 0.0154 0.0200 0.0136 0.0200 0.0124 0.0200 
Replace with .1 0.017 0.0300 0.0149 0.0200 0.0136 0.0200 0.0124 0.0200 
Replace with .5 0.013 0.0200 0.0139 0.0200 0.0135 0.0200 0.0124 0.0200 
Replace with 1 0.011 0.0200 0.0132 0.0200 0.0135 0.0200 0.0124 0.0200 
Structural zero 0.016 0.0173 0.0146 0.0200 0.0136 0.0200 0.0124 0.0200 

NOTE: 1. Highlighted color denotes ˆLπ difference between RCL method and empirical simulation method. 

 

Table A26: 95% Lower Bound- ˆLπ - Case 2 
 

{P1+=.5, P2+=.5, 
P+1=.33, P+2=.33, 
P+3=.33} 

5 per cell 10 per cell 20 per cell 30 per cell 

RCL Empirical RCL Empirical RCL Empirical RCL Empirical 
Sampling zero 0.026 0.0500 0.020 0.0400 0.017 0.0300 0.0156 0.0200 
Replace with .1 0.026 0.0500 0.020 0.0400 0.017 0.0300 0.0156 0.0200 
Replace with .5 0.025 0.0500 0.020 0.0400 0.017 0.0300 0.0156 0.0200 
Replace with 1 0.024 0.0500 0.020 0.0400 0.017 0.0300 0.0156 0.0200 
Structural zero 0.025 0.0600 0.020 0.0400 0.017 0.0300 0.0156 0.0200 
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Table A27: 95% Lower Bound- ˆLπ - Case 3 

 

NOTE: 1. Highlighted color denotes ˆLπ difference between RCL method and empirical simulation method. 

 

{P1+=.9, P2+=.1, 
P+1=.33, P+2=.33, 
P+3=.33} 

5 per cell 10 per cell 20 per cell 30 per cell 

RCL Empirical RCL Empirical RCL Empirical RCL Empirical 
Sampling zero 0.0153 0.0200 0.0155 0.0200 0.0129 0.0100 0.0120 0.0100 
Replace with .1 0.0127 0.0200 0.0139 0.0200 0.0127 0.0100 0.0120 0.0100 
Replace with .5 0.0106 0.0200 0.0117 0.0200 0.0123 0.0100 0.0119 0.0100 
Replace with 1 0.0101 0.0100 0.0110 0.0200 0.0120 0.0100 0.0119 0.0100 
Structural zero 0.0111 0.0100 0.0115 0.0131 0.0119 0.0165 0.0118 0.0100 

NOTE: 1. Highlighted color denotes ˆLπ difference between RCL method and empirical simulation method. 

 

Table A28: 95% Lower Bound- ˆLπ - Case 4 
 

{P1+=.9, P2+=.1, 
P+1=.8, P+2=.1, 
P+3=.1} 

5 per cell 10 per cell 20 per cell 30 per cell 

RCL Empirical RCL Empirical RCL Empirical RCL Empirical 
Sampling zero 0.0110 0.0300 0.0121 0.0200 0.0141 0.0100 0.0148 0.0100 
Replace with .1 0.0105 0.0100 0.0107 0.0200 0.0127 0.0100 0.0108 0.0100 
Replace with .5 0.0105 0.0200 0.0102 0.0100 0.0102 0.0100 0.0101 0.0100 
Replace with 1 0.0107 0.0300 0.0103 0.0100 0.0100 0.0100 0.0101 0.0100 
Structural zero 0.0111 0.0217 0.0107 0.0125 0.0110 0.0100 0.0114 0.0100 
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Table A29: 95% Lower Bound- ˆLπ - Case 5 

 

NOTE: 1. Highlighted color denotes ˆLπ difference between RCL method and empirical simulation method. 

 

.

{P1+=.5, P2+=.5, 
P+1=.25, P+2=.25, 
P+3=.25, P+4=.25} 

5 per cell 10 per cell 20 per cell 30 per cell 

RCL Empirical RCL Empirical RCL Empirical RCL Empirical 
Sampling zero 0.0348 0.0800 0.0277 0.0600 0.0218 0.0400 0.0189 0.0400 
Replace with .1 0.0345 0.0800 0.0275 0.0600 0.0218 0.0400 0.0189 0.0400 
Replace with .5 0.0336 0.0800 0.0276 0.0600 0.0218 0.0400 0.0189 0.0400 
Replace with 1 0.0328 0.0800 0.0276 0.0600 0.0218 0.0400 0.0189 0.0400 
Structural zero 0.0335 0.0700 0.0276 0.0600 0.0218 0.0400 0.0189 0.0400 

NOTE: 1. Highlighted color denotes ˆLπ difference between RCL method and empirical simulation method. 

 

Table A30: 95% Lower Bound- ˆLπ - Case 6 
 

{P1+=.5, P2+=.5, 
P+1=.4, P+2=.4, 
P+3=.1, P+4=.1} 

5 per cell 10 per cell 20 per cell 30 per cell 

RCL Empirical RCL Empirical RCL Empirical RCL Empirical 
Sampling zero 0.0326 0.0600 0.0246 0.0500 0.0201 0.0400 0.0177 0.0300 
Replace with .1 0.0303 0.0600 0.0245 0.0500 0.0201 0.0400 0.0177 0.0300 
Replace with .5 0.0260 0.0600 0.0241 0.0500 0.0201 0.0400 0.0177 0.0300 
Replace with 1 0.0236 0.0500 0.0238 0.0500 0.0201 0.0400 0.0177 0.0300 
Structural zero 0.0307 0.0580 0.0245 0.0500 0.0201 0.0400 0.0177 0.0300 
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Table A31: 95% Lower Bound- ˆLπ - Case 7 

 

NOTE: 1. Highlighted color denotes ˆLπ difference between RCL method and empirical simulation method. 

 

.

{P1+=.9, P2+=.1, 
P+1=.25, P+2=.25, 
P+3=.25, P+4=.25} 

5 per cell 10 per cell 20 per cell 30 per cell 

RCL Empirical RCL Empirical RCL Empirical RCL Empirical 
Sampling zero 0.0223 0.0300 0.0195 0.0300 0.0157 0.0200 0.0139 0.0200 
Replace with .1 0.0165 0.0300 0.0167 0.0300 0.0153 0.0200 0.0139 0.0200 
Replace with .5 0.0117 0.0200 0.0129 0.0300 0.0143 0.0200 0.0138 0.0200 
Replace with 1 0.0107 0.0200 0.0117 0.0200 0.0137 0.0200 0.0136 0.0200 
Structural zero 0.0126 0.0200 0.0122 0.0200 0.0134 0.0200 0.0133 0.0200 

NOTE: 1. Highlighted color denotes ˆLπ difference between RCL method and empirical simulation method. 

 

Table A32: 95% Lower Bound- ˆLπ - Case 8 
 

{P1+=.9, P2+=.1, 
P+1=.4, P+2=.4, 
P+3=.1, P+4=.1} 

5 per cell 10 per cell 20 per cell 30 per cell 

RCL Empirical RCL Empirical RCL Empirical RCL Empirical 
Sampling zero 0.0182 0.0300 0.0175 0.0300 0.0172 0.0200 0.0165 0.0200 
Replace with .1 0.0147 0.0300 0.0144 0.0300 0.0146 0.0200 0.0147 0.0200 
Replace with .5 0.0119 0.0200 0.0122 0.0200 0.0124 0.0200 0.0125 0.0200 
Replace with 1 0.0114 0.0400 0.0118 0.0200 0.0120 0.0200 0.0118 0.0200 
Structural zero 0.0123 0.0286 0.0125 0.0200 0.0130 0.0200 0.0122 0.0200 
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Table A33: 95% Lower Bound- ˆLπ - Case 9 

 

NOTE: 1. Highlighted color denotes ˆLπ difference between RCL method and empirical simulation method. 

 

{P1+=.5, P2+=.5, 
P+1=.167, 
P+2=.167, 
P+3=.167, 
P+4=.167, 
P+5=.167, 
P+6=.167} 

5 per cell 10 per cell 20 per cell 30 per cell 

RCL Empirical RCL Empirical RCL Empirical RCL Empirical 
Sampling zero 0.0580 0.1100 0.0416 0.0800 0.0325 0.0600 0.0275 0.0500 
Replace with .1 0.0578 0.1100 0.0416 0.0800 0.0325 0.0600 0.0275 0.0500 
Replace with .5 0.0570 0.1100 0.0416 0.0800 0.0325 0.0600 0.0275 0.0500 
Replace with 1 0.0562 0.1100 0.0416 0.0800 0.0325 0.0600 0.0275 0.0500 
Structural zero 0.0578 0.1100 0.0416 0.0800 0.0325 0.0600 0.0275 0.0500 

NOTE: 1. Highlighted color denotes ˆLπ difference between RCL method and empirical simulation method. 

 

Table A34: 95% Lower Bound- ˆLπ - Case 10 
 
{P1+=.9, P2+=.1, 
P+1=.167, 
P+2=.167, 
P+3=.167, 
P+4=.167, 
P+5=.167, 
P+6=.167} 

5 per cell 10 per cell 20 per cell 30 per cell 

RCL Empirical RCL Empirical RCL Empirical RCL Empirical 
Sampling zero 0.0330 0.0400 0.0287 0.0400 0.0201 0.0300 0.0176 0.0300 
Replace with .1 0.0230 0.0400 0.0235 0.0400 0.0195 0.0300 0.0176 0.0300 
Replace with .5 0.0132 0.0300 0.0165 0.0400 0.0182 0.0300 0.0174 0.0300 
Replace with 1 0.0114 0.0300 0.0138 0.0300 0.0174 0.0300 0.0173 0.0300 
Structural zero 0.0136 0.0326 0.0146 0.0300 0.0167 0.0300 0.0169 0.0300 
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Table A35: 95% Lower Bound- ˆLπ - Case 11 

 

NOTE: 1. Highlighted color denotes ˆLπ difference between RCL method and empirical simulation method. 

 

{P1+=.5, P2+=.5, 
P+1=.3, P+2=.3, 
P+3=.1, P+4=.1, 
P+5=.1, P+6=.1} 

5 per cell 10 per cell 20 per cell 30 per cell 

RCL Empirical RCL Empirical RCL Empirical RCL Empirical 
Sampling zero 0.0530 0.1000 0.0379 0.0700 0.0284 0.0500 0.0253 0.0400 
Replace with .1 0.0519 0.1000 0.0379 0.0700 0.0284 0.0500 0.0253 0.0400 
Replace with .5 0.0490 0.1000 0.0378 0.0700 0.0284 0.0500 0.0253 0.0400 
Replace with 1 0.0462 0.0900 0.0378 0.0700 0.0284 0.0500 0.0253 0.0400 
Structural zero 0.0508 0.0900 0.0379 0.0700 0.0284 0.0500 0.0253 0.0400 

NOTE: 1. Highlighted color denotes ˆLπ difference between RCL method and empirical simulation method. 

 

Table A36: 95% Lower Bound- ˆLπ - Case 12 
 

{P1+=.9, P2+=.1, 
P+1=.3, P+2=.3, 
P+3=.1, P+4=.1, 
P+5=.1, P+6=.1} 

5 per cell 10 per cell 20 per cell 30 per cell 

RCL Empirical RCL Empirical RCL Empirical RCL Empirical 
Sampling zero 0.0299 0.0400 0.0286 0.0500 0.0237 0.0300 0.0202 0.0300 
Replace with .1 0.0199 0.0400 0.0216 0.0500 0.0207 0.0300 0.0192 0.0300 
Replace with .5 0.0130 0.0300 0.0143 0.0300 0.0162 0.0300 0.0171 0.0300 
Replace with 1 0.0121 0.0400 0.0128 0.0300 0.0143 0.0300 0.0158 0.0300 
Structural zero 0.0152 0.0400 0.0141 0.0300 0.0144 0.0300 0.0150 0.0300 
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Table A37: 95% Lower Bound- ˆLπ - Case 13 

 

NOTE: 1. Highlighted color denotes ˆLπ difference between RCL method and empirical simulation method. 

 

{P1+=.5, P2+=.5, 
P+1=.5, P+2=.5} 5 per cell 10 per cell 20 per cell 30 per cell 

RCL Empirical RCL Empirical RCL Empirical RCL Empirical 
Sampling zero 0.0186 0.0100 0.0152 0.0100 0.0138 0.0100 0.0131 0.0100 
Replace with .1 0.0183 0.0100 0.0152 0.0100 0.0138 0.0100 0.0131 0.0100 
Replace with .5 0.0177 0.0100 0.0152 0.0100 0.0138 0.0100 0.0131 0.0100 
Replace with 1 0.0172 0.0100 0.0152 0.0100 0.0138 0.0100 0.0131 0.0100 
Structural zero 0.0167 0.0160 0.0152 0.0100 0.0138 0.0100 0.0131 0.0100 

NOTE: 1. Highlighted color denotes ˆLπ difference between RCL method and empirical simulation method. 

 

Table A38: 95% Lower Bound- ˆLπ - Case 14 
 

{P1+=.9, P2+=.1, 
P+1=.9, P+2=.1} 5 per cell 10 per cell 20 per cell 30 per cell 

RCL Empirical RCL Empirical RCL Empirical RCL Empirical 
Sampling zero 0.0102 0.0100 0.0102 0.0100 0.0105 0.0100 0.0113 0.0100 
Replace with .1 0.0102 0.0100 0.0101 0.0100 0.0102 0.0100 0.0106 0.0100 
Replace with .5 0.0101 0.0100 0.0101 0.0100 0.0100 0.0100 0.0101 0.0100 
Replace with 1 0.0101 0.0200 0.0101 0.0100 0.0100 0.0100 0.0100 0.0100 
Structural zero 0.0102 0.0115 0.0100 0.0100 0.0101 0.0100 0.0103 0.0100 
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Table A39: 95% Lower Bound- ˆLπ - Case 15 

 

NOTE: 1. Highlighted color denotes ˆLπ difference between RCL method and empirical simulation method. 

 

{P1+=.5, P2+=.5, 
P+1=.9, P+2=.1} 5 per cell 10 per cell 20 per cell 30 per cell 

RCL Empirical RCL Empirical RCL Empirical RCL Empirical 
Sampling zero 0.0126 0.0100 0.0124 0.0100 0.0114 0.0100 0.0111 0.0100 
Replace with .1 0.0114 0.0100 0.0117 0.0100 0.0114 0.0100 0.0111 0.0100 
Replace with .5 0.0102 0.0100 0.0109 0.0100 0.0112 0.0100 0.0111 0.0100 
Replace with 1 0.0100 0.0100 0.0106 0.0100 0.0111 0.0100 0.0111 0.0100 
Structural zero 0.0106 0.0100 0.0105 0.0100 0.0109 0.0100 0.0108 0.0100 

NOTE: 1. Highlighted color denotes ˆLπ difference between RCL method and empirical simulation method. 

 

Table A40: 95% Lower Bound- ˆLπ - Case 16 
 

{P1+=.4, P2+=.4, 
P3+=.2,                           
P+1=.4, P+2=.4, 
P+3=.2} 

5 per cell 10 per cell 20 per cell 30 per cell 

RCL Empirical RCL Empirical RCL Empirical RCL Empirical 
Sampling zero 0.0518 0.1000 0.0370 0.0700 0.0256 0.0500 0.0227 0.0500 
Replace with .1 0.0485 0.1000 0.0367 0.0700 0.0256 0.0500 0.0227 0.0500 
Replace with .5 0.0430 0.1000 0.0360 0.0700 0.0256 0.0500 0.0227 0.0500 
Replace with 1 0.0400 0.0900 0.0355 0.0700 0.0256 0.0500 0.0227 0.0500 
Structural zero 0.0494 0.1000 0.0367 0.0700 0.0256 0.0600 0.0227 0.0500 
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Table A41: 95% Lower Bound- ˆLπ - Case 17 

 

NOTE: 1. Highlighted color denotes ˆLπ difference between RCL method and empirical simulation method. 

 

{P1+=.33, P2+=.33, 
P3+=.33,                 
P+1=.33, P+2=.33, 
P+3=.33} 

5 per cell 10 per cell 20 per cell 30 per cell 

RCL Empirical RCL Empirical RCL Empirical RCL Empirical 
Sampling zero 0.0543 0.1100 0.0385 0.0800 0.0269 0.0600 0.0242 0.0500 
Replace with .1 0.0536 0.1100 0.0385 0.0800 0.0269 0.0600 0.0242 0.0500 
Replace with .5 0.0521 0.1100 0.0385 0.0800 0.0269 0.0600 0.0242 0.0500 
Replace with 1 0.0507 0.1100 0.0385 0.0800 0.0269 0.0600 0.0242 0.0500 
Structural zero 0.0526 0.1100 0.0385 0.0800 0.0269 0.0600 0.0242 0.0500 

NOTE: 1. Highlighted color denotes ˆLπ difference between RCL method and empirical simulation method. 

 

Table A42: 95% Lower Bound- ˆLπ - Case 18 
 

{P1+=.33, P2+=.33, 
P3+=.33,   
P+1=.4, P+2=.4, 
P+3=.2} 

5 per cell 10 per cell 20 per cell 30 per cell 

RCL Empirical RCL Empirical RCL Empirical RCL Empirical 
Sampling zero 0.0547 0.1100 0.0373 0.0800 0.0270 0.0600 0.0229 0.0500 
Replace with .1 0.0525 0.1100 0.0372 0.0800 0.0270 0.0600 0.0229 0.0500 
Replace with .5 0.0479 0.1000 0.0372 0.0800 0.0270 0.0600 0.0229 0.0500 
Replace with 1 0.0451 0.1000 0.0371 0.0800 0.0270 0.0600 0.0229 0.0500 
Structural zero 0.0535 0.1031 0.0372 0.0800 0.0270 0.0600 0.0229 0.0500 
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Table A43: 95% Lower Bound- ˆLπ - Case 19 

 

NOTE: 1. Highlighted color denotes ˆLπ difference between RCL method and empirical simulation method. 

 

{P1+=.25, P2+=.25, 
P3+=.25, P4+=.25                 
P+1=.25, P+2=.25, 
P+3=.25, P+4=.25} 

5 per cell 10 per cell 20 per cell 30 per cell 

RCL Empiric
al RCL Empirical RCL Empirical RCL Empirical 

Sampling zero 0.1192 0.2000 0.0862 0.1400 0.0626 0.1000 0.0529 0.0900 
Replace with .1 0.1174 0.2000 0.0862 0.1400 0.0626 0.1000 0.0529 0.0900 
Replace with .5 0.1158 0.2000 0.0862 0.1400 0.0626 0.1000 0.0529 0.0900 
Replace with 1 0.0862 0.1400 0.0626 0.1000 0.0529 0.0900 0.0529 0.0900 
Structural zero 0.1184 0.2000 0.0863 0.1500 0.0626 0.1100 0.0529 0.0900 

NOTE: 1. Highlighted color denotes ˆLπ difference between RCL method and empirical simulation method. 

 
Table A44: 95% Lower Bound- ˆLπ - Case 20 

 

{P1+=.4, P2+=.4, 
P3+=.1, P4+=.1                
P+1=.4, P+2=.4, 
P+3=.1, P+4=.1} 

5 per cell 10 per cell 20 per cell 30 per cell 

RCL Empiric
al RCL Empirical RCL Empirical RCL Empirical 

Sampling zero 0.0806 0.1400 0.0687 0.1100 0.0511 0.0900 0.0428 0.0700 
Replace with .1 0.0622 0.1200 0.0552 0.1000 0.0478 0.0900 0.0423 0.0700 
Replace with .5 0.0599 0.1100 0.0501 0.0900 0.0457 0.0900 0.0417 0.0700 
Replace with 1 0.0774 0.1100 0.0525 0.0900 0.0430 0.0700 0.0417 0.0700 
Structural zero 0.0776 0.1140 0.0690 0.0950 0.0516 0.0800 0.0426 0.0700 
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Table A45: 95% Lower Bound- ˆLπ - Case 21 

 

NOTE: 1. Highlighted color denotes ˆLπ difference between RCL method and empirical simulation method. 

 

{P1+=.25, P2+=.25, 
P3+=.25, P4+=.25                 
P+1=.4, P+2=.4, 
P+3=.1, P+4=.1} 

5 per cell 10 per cell 20 per cell 30 per cell 

RCL Empirical RCL Empirical RCL Empirical RCL Empirical 
Sampling zero 0.1005 0.1600 0.0729 0.1200 0.0522 0.0900 0.0430 0.0700 
Replace with .1 0.0833 0.1500 0.0711 0.1200 0.0522 0.0900 0.0430 0.0700 
Replace with .5 0.0729 0.1400 0.0693 0.1200 0.0522 0.0900 0.0430 0.0700 
Replace with 1 0.0735 0.1200 0.0522 0.0900 0.0430 0.0700 0.0430 0.0700 
Structural zero 0.0971 0.1457 0.0728 0.1200 0.0522 0.0900 0.0430 0.0700 

NOTE: 1. Highlighted color denotes ˆLπ difference between RCL method and empirical simulation method. 

 

Table A46: 95% Lower Bound- ˆLπ -Case 22 
 
{P1+=.167, 
P2+=.167, 
P3+=.167, 
P4+=.167, 
P5+=.167, 
P6+=.167. P+1=.3, 
P+2=.3, P+3=.1, 
P+4=.1. P+5=.1, 
P+6=.1} 

5 per cell 10 per cell 20 per cell 30 per cell 

RCL Empirical RCL Empirical RCL Empirical RCL Empirical 
Sampling zero 0.2306 0.2800 0.1615 0.2100 0.1145 0.1500 0.0939 0.1200 
Replace with .1 0.2247 0.2800 0.1615 0.2100 0.1145 0.1500 0.0939 0.1200 
Replace with .5 0.2080 0.2700 0.1610 0.2100 0.1145 0.1500 0.0939 0.1200 
Replace with 1 0.1956 0.2600 0.1605 0.2100 0.1145 0.1500 0.0939 0.1200 
Structural zero 0.2121 0.2610 0.1615 0.2100 0.1145 0.1500 0.0939 0.1200 
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Table A47: 95% Lower Bound- ˆLπ - Case 23 

 

NOTE: 1. Highlighted color denotes ˆLπ difference between RCL method and empirical simulation method. 

 

{P1+=.167, P2+=.167, 
P3+=.167, P4+=.167, 
P5+=.167, P6+=.167. 
P+1=.167, P+2=.167, 
P+3=.167, P+4=.167. 
P+5=.167, P+6=.167} 

5 per cell 10 per cell 20 per cell 30 per cell 

RCL Empirical RCL Empirical RCL Empirical RCL Empirical 
Sampling zero 0.2490 0.3200 0.1782 0.2300 0.1293 0.1700 0.1068 0.1400 
Replace with .1 0.2481 0.3200 0.1782 0.2300 0.1293 0.1700 0.1068 0.1400 
Replace with .5 0.2451 0.3200 0.1782 0.2300 0.1293 0.1700 0.1068 0.1400 
Replace with 1 0.2422 0.3200 0.1782 0.2300 0.1293 0.1700 0.1068 0.1400 
Structural zero 0.2476 0.3200 0.1782 0.2400 0.1293 0.1800 0.1068 0.1400 

NOTE: 1. Highlighted color denotes ˆLπ difference between RCL method and empirical simulation method. 

 

Table A48: 95% Lower Bound- ˆLπ - Case 24 
 
{P1+=.3, P2+=.3, 
P3+=.1, P4+=.1, 
P5+=.1, P6+=.1. 
P+1=.3, P+2=.3, 
P+3=.1, P+4=.1. 
P+5=.1, P+6=.1} 

5 per cell 10 per cell 20 per cell 30 per cell 

RCL Empirical RCL Empirical RCL Empirical RCL Empirical 
Sampling zero 0.2309 0.2900 0.1594 0.2000 0.1097 0.1400 0.0916 0.1200 
Replace with .1 0.2121 0.2800 0.1573 0.2000 0.1096 0.1400 0.0916 0.1200 
Replace with .5 0.1727 0.2500 0.1509 0.2000 0.1095 0.1400 0.0916 0.1200 
Replace with 1 0.1535 0.2300 0.1455 0.2000 0.1094 0.1400 0.0916 0.1200 
Structural zero 0.1843 0.2300 0.1547 0.2000 0.1097 0.1500 0.0916 0.1200 
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APPENDIX B: SAS PROGRAMS 
 
/* Structural zero scenario*/ 
/* This program performs mixture index of fit and 95% lower bound when 
encountering zero cell in data table using structural zero technique*/ 
 
filename junk dummy; 
proc printto  log=junk; run; 
dm 'log;clear;out;clear;'; 
options ps=50 nodate nonumber formdlim=' '; 
proc iml; 
%let rr=6; %let cc=6;  /* set table size*/ 
%let n=180;      /*set total sample size=table size* x per cell*/ 
%let iter=1000;  /*number of iterations*/ 
savepi=J(&iter,4,9);  /*matrix to save all 1000 mixture index of fit and 
95% lower bound, before and after implementing of structural zero 
technique*/ 
rsum={.3, 

.3, 

.1, 

.1, 

.1, 

.1}; 
csum={.3 .3 .1 .1 .1 .1};     /* set row and column marginal distributions*/ 
actual1=rsum*csum; 
*print actual1; 
/*cum=j(&rr, &cc, 0)*/; 
cum=cusum(actual1);   /* calculate cumulative proportions */ 
*print cum; 
COUNT0=0; 
count1zero=0; 
do ii=1 to &iter;   /* number of iterations to simulate*/ 
SKIP: 
COUNT0=0; 
count=j(&rr, &cc, 0); 
cum=cusum(actual1); 
do m=1 to &n;   

random=round(uniform(1000), .001); /* Generate n=sample size Uniform 
distributed proportions between 0 and 1, rounded to .001*/ 

do i=1 to &rr; 
do j=1 to &cc; 
if random<cum[i,j] then 
do; 

count[i, j]=count[i, j]+1;  
/* Allocate cell proportions to associated categories according to 
cumulative distributions*/ 

j=&cc; 
i=&rr; 

end; 
end; 
end; 

end; 
*print count; 
do i=1 to &rr; 

do j=1 to &cc; 
if count[i, j]=0 then do; 
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/*print ii; 
print "Count contains 0";*/ 
COUNT0=COUNT0+1; 
*PRINT II; 
if COUNT0>=2 then do; 
ii=ii; 
GOTO SKIP;      

/* if table contains more than 1 zero cell, than discard the table and simulate 
a new one */ 

end; 
/*j=&cc; 
i=&rr;*/ 
end; 

end; 
end; 

actual=count/sum(count); 
/*print actual;*/ 
rowsum=actual[,+];    /*calculate row totals*/ 
coloumsum=actual[+,]; /*calculate column totals*/ 
e=(actual[,+]*actual[+,]);   /*calculated expected proportions*/ 
 

do i=1 to 100;     /* increment =.01 each iteration */ 
Pi=i/100; 

Q2=j(&rr,&cc,i/(&rr*&cc*100));   /* initial Q2 matrix */ 
Q1=e*(1-i/100);                     /* initial Q1 matrix */ 
QQ2=j(&rr,&cc,i/(&rr*&cc*100));  
g1=j(&rr,&cc,0); 
g2=j(&rr,&cc,0); 
d=j(1,1,1); 

do while (sum(d)>.0001);       /* convergence criteria **/ 
do k=1 to &rr by 1; 

do j=1 to &cc by 1; 
g1[k, j]= actual[k,j]*Q1[k, j]/(Q1[k,j]+Q2[k, j]); 
g2[k, j]= actual[k,j]*Q2[k, j]/(Q1[k,j]+Q2[k, j]); 

end; 
end; 

do k=1 to &rr; 
do j=1 to &cc; 
g1[k, j]=(1-i/100)*g1[k, j]/sum(g1); 
QQ2[k, j]=i/100*g2[k, j]/sum(g2); 
end; 

end; 
QQ1=(g1[,+]*g1[+,])/(1-i/100);   /*QQ1 after EM algorithm**/ 
QQ1=(1-i/100)*QQ1/sum(QQ1); 

 
d=sum(abs((abs(QQ1+QQ2)*sum(count)-abs(Q2+Q1)*sum(count)))); 
/*print d;*/ 
Q1=QQ1; 
Q2=QQ2; 
/*PRINT Q1; 
PRINT actual;*/ 

end; 
/*print Q1; 
print Q2;*/ 
ff=(Q1+Q2)*sum(count);   /* expected frequencies*/ 
/*print ff;*/ 
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dd=sum(abs(actual*sum(count)-ff))/2/sum(count); 
chinew=sum((ff-actual*sum(count))##2/ff);    /*calculate 

chi-square*/ 
do m=1 to &rr; 

do n=1 to &cc; 
if count[m,n]=0 | ff[m,n]=0 then G2[m,n]=0; 
else G2[m,n]=(count[m,n])*(LOG(count[m,n])-LOG(ff[m,n])); 

end; 
end; 

Gsqu=2*sum(G2);   /* calculate G-square value */ 
chinew=sum((ff-count)##2/ff); 

/*PRINT PI; 
PRINT GSQU; 
PRINT CHINEW;*/ 
 
If Gsqu< 2.71& pi<savepi[ii,2]then savepi[ii,2]=pi;    
/*Save lower bound of mixture index of fit into second column of savepi 
matrix*/ If Gsqu<.00001 then 
do; 
if pi=1 then GOTO SKIP; X=SUM(COUNT); 
/*PRINT X;*/ 
QQ1=QQ1*sum(count); 
** * print QQ1; 
QQ2=QQ2*sum(count); 
*PRINT QQ2; 
savepi[ii,1]=pi;    /*save mixture index of fit into first column of savepi 
matrix*/ 
*print ii; 
savepi[ii,3]=savepi[ii,1]; 
savepi[ii,4]=savepi[ii,2]; 
/*print chinew;*/ 
i=100; 
end; 
end; 
*print savepi; 
*PRINT COUNT0; 
p=0; 
q=0; 
do a=1 to &rr; 

do b=1 to &cc; 
if count[a,b]=0 then do;   /* check if any zero cell in data table*/ 
count1zero=count1zero+1; 
p=a; 
q=b; 

end; 
end; 
end; 
 
if p^=0 then do; CC=QQ1[P,+]; 
if QQ1[+,q]<=.01 then do;    
/* if the column of first component QQ1 sums less than .01 then follow the 
below procedure to compute new mixture index of fit and lower bound using 
structural zero technique and save in third and fourth column of matrix 
savepi*/ 
CC=QQ1[P,+]; 
QQ1sum=sum(QQ1); 
QQ1[,q]=QQ1[,q]+QQ2[,q];  /*pull the column frequency back from QQ2 for 
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column of first component QQ1 adds less than .01*/ 
if p=1 then count=QQ1[2:&rr,]; 
else if p=&rr then count=QQ1[1:&rr-1,]; 
else count=QQ1[1:p-1,]//QQ1[p+1:&rr,]; 
*PRINT COUNT; 
sum=sum(count); 
*PRINT SUM; 
rowsum=count[,+]; 
coloumsum=count[+,]; 
*print sum, rowsum, coloumsum; 
expt=rowsum*coloumsum; 
e=expt/sum**2; 
f=sum(e); 
*print f; 
*print e; 
actual=count/sum; 
do i=1 to 100; 
Pi=i/100; 
*print pi; 

Q2=j(&rr-1,&cc,i/((&rr-1)*&cc*100)); 
Q1=e*(1-i/100); 
QQ2=j(&rr-1,&cc,i/((&rr-1)*&cc*100)); 
g1=j(&rr-1,&cc,0); 
g2=j(&rr-1,&cc,0); 
d=j(&rr-1,&cc,1); 

do while (sum(d)>.00001); 
do k=1 to &rr-1 by 1; 

do j=1 to &cc by 1; 
g1[k, j]= actual[k,j]*Q1[k, j]/(Q1[k,j]+Q2[k, j]); 
g2[k, j]= actual[k,j]*Q2[k, j]/(Q1[k,j]+Q2[k, j]); 

end; 
end; 

do k=1 to &rr-1; 
do j=1 to &cc; 
g1[k, j]=(1-i/100)*g1[k, j]/sum(g1); 
QQ2[k, j]=i/100*g2[k, j]/sum(g2); 
end; 

end; 
if q=1 then do; 

do k=1 to &rr-1; 
do j=2 to &cc; 
QQ2[k, j]=0; 

end; 
end; 

end; 
if q=&cc then do; 
do k=1 to &rr-1; 
do j=1 to &cc-1; 
QQ2[k, j]=0; 
end; 
end; 

end; 
else do; 

do k=1 to &rr-1; 
do j=1 to q-1; 

 
QQ2[k, j]=0; 
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end; 
do j=q+1 to &cc; 
QQ2[k, j]=0; 
end; 

end; 
end; 
QQ1=(g1[,+]*g1[+,])/(1-i/100); 
QQ1=(1-i/100)*QQ1/sum(QQ1); 
d=sum(abs((abs(QQ1+QQ2)*sum-abs(Q2+Q1)*sum))); 
ff=(QQ1+QQ2)*sum; 
Q1=QQ1; 
Q2=QQ2; 

end; 
 

do m=1 to nrow(QQ2); 
do n=1 to ncol(QQ2); 
G2=j(nrow(QQ2),ncol(QQ2),0); 
if count[m,n]=0 then G2[m,n]=0; 
else G2[m,n]=(count[m,n])*(LOG(count[m,n])-LOG(ff[m,n])); 

/*compuate new G-square using structural zero technique*/ 
end; 

end; 
Gsqu=2*sum(G2);       /*calculate new G-square statistic*/ 
chinew=sum((ff-count)##2/ff);   /*calcualate new chi-square 

statistic*/ 
/* print QQ1;*/ 

If Gsqu< 2.71 then do; 
QQ1=QQ1*sum; 
pinew=1-(CC+sum(QQ1))/X;    
if pinew<savepi[ii,4] then savepi[ii,4]=pinew; /*input new lower 

bound of mixture index of fit into fourth column of matrix savepi*/ 
if savepi[ii,4]<0 then savepi[ii,4]=0; 

end; 
If Gsqu<.00001 & chinew<.00001 then do; 
pinew=1-(CC+sum(QQ1))/X;  /*save new mixture index of fit into third 

column of matrix savepi*/ 
savepi[ii,3]=pinew; 
i=100; 
end; 

*end; 
end; 

end; 
 

else if QQ1[P,+]<=.01 then do; CC=QQ1[+,Q]; 
/* if the row of first component QQ1 sums less than .01 then follow the 
below procedure to compute new mixture index of fit and lower bound using 
structural zero technique and save in third and fourth column of matrix 
savepi*/ 
QQ1sum=sum(QQ1); 
QQ1[P,]=QQ1[P,]+QQ2[P,]; /*pull the row frequency back from QQ2 for column 
of first component QQ1 adds less than .01*/ 
*print QQ1; 
if q=1 then count=QQ1[,2:&cc]; 
else if q=&cc then count=QQ1[, 1:&cc-1]; 
else count=QQ1[,1:q-1]||QQ1[, q+1:&cc]; 
sum=sum(count); 
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*PRINT SUM; 
rowsum=count[,+]; 
coloumsum=count[+,]; 
*print sum, rowsum, coloumsum; 
expt=rowsum*coloumsum; 
e=expt/sum**2; 
f=sum(e); 
*print f; 
*print e; 
actual=count/sum; 
do i=1 to 100; 
Pi=i/100; 
*print pi; 

Q2=j(&rr,&cc-1,i/(&rr*(&cc-1)*100)); 
Q1=e*(1-i/100); 
QQ2=j(&rr,&cc-1,i/(&rr*(&cc-1)*100)); 
g1=j(&rr,&cc-1,0); 
g2=j(&rr,&cc-1,0); 
d=j(&rr,&cc-1,1); 

do while (sum(d)>.00001); 
do k=1 to &rr by 1; 

do j=1 to &cc-1 by 1; 
g1[k, j]= actual[k,j]*Q1[k, j]/(Q1[k,j]+Q2[k, j]); 
g2[k, j]= actual[k,j]*Q2[k, j]/(Q1[k,j]+Q2[k, j]); 

end; 
end; 

do k=1 to &rr; 
do j=1 to &cc-1; 
g1[k, j]=(1-i/100)*g1[k, j]/sum(g1); 
QQ2[k, j]=i/100*g2[k, j]/sum(g2); 
end; 

end; 
 

if p=1 then do; 
do k=2 to &rr; 

do j=1 to &cc-1; 
QQ2[k, j]=0; 

end; 
end; 

end; 
if p=&rr then do; 
do k=1 to &rr-1; 
do j=1 to &cc-1; 
QQ2[k, j]=0; 
end; 
end; 

end; 
else do; 

do j=1 to &cc-1; 
do k=1 to p-1; 
QQ2[k, j]=0; 
end; 
do k=p+1 to &rr; 
QQ2[k, j]=0; 
end; 

end; 
end; 
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*end; 
QQ1=(g1[,+]*g1[+,])/(1-i/100); 
QQ1=(1-i/100)*QQ1/sum(QQ1); 
d=sum(abs((abs(QQ1+QQ2)*sum-abs(Q2+Q1)*sum))); 
ff=(QQ1+QQ2)*SUM; 
Q1=QQ1; 
Q2=QQ2; 

end; 
do m=1 to nrow(QQ1); 
do n=1 to ncol(QQ1); 
G2=j(nrow(QQ1),ncol(QQ1),0); 
if count[m,n]=0 then G2[m,n]=0; 
else G2[m,n]=(count[m,n])*(LOG(count[m,n])-LOG(ff[m,n])); 

end; 
end; 
*print G2; 

Gsqu=(2*sum(G2)); /*compuate new G-square using structural zero 
technique*/ 

chinew=sum((ff-count)##2/ff); /*compuate new chi-square using 
structural zero technique*/ 

If Gsqu< 2.71 then do;  
QQ1=QQ1*sum; 
pinew=1-(CC+sum(QQ1))/X; 
if pinew<savepi[ii,4] then savepi[ii,4]=pinew; /*input new lower 

bound of mixture index of fit into fourth column of matrix savepi*/ 
if savepi[ii,4]<0 then savepi[ii,4]=0; 

end; 
If chinew<.00001 & chinew<.00001 then do; 
pinew=1-(CC+sum(QQ1))/X; 

savepi[ii,3]=pinew; /*save new mixture index of fit into third 
column of matrix savepi*/ 

i=100; 
end; 
end; 

end; 
end; 
end; 
pistar=savepi[+,3]/&iter;       /*new pi star is the average is 1000 
iterations*/ 
pistarL=savepi[+,4]/&iter;   /*new lower bound of pi star is the average 
of 1000 iterations*/ 
b=j(&iter,1,0); 
empirank=j(&iter,1,0); 
b=savepi[,3]; 
empirank=b; 
b[rank(b),]=empirank; 
piempiL=b[50,1]; /*find the 5th percentage number from the 1000 sorted new 
pi start array*/ 
title "SZ rr.3.3.1.1.1.1 cc .3.3.1.1.1.1 &n"; 
print pistar; 
print pistarL; 
print piempiL; 
print count1zero; 
*print count1zero; 
filename out 'C:\SAS\SZ\SZ rr.3.3.1.1.1.1 cc .3.3.1.1.1.1  n equal 180'; 
file out; 

do i=1 to nrow(savepi); 
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do j=1 to ncol(savepi); 
put (savepi[i, j]) 6.3 +4 @;   /*output savepi matrix to an external 

file*/ 
end; 
put; 
end; 

*close file out; 

quit; 
run; 
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/* Sampling zero and replacing with different flattening constants 
scenario*/ 
/* This program performs mixture index of fit and 95% lower bound when 
encountering zero cell in data table using different sampling zero 
techniques*/ 
 
filename junk dummy; 
proc printto  log=junk; run; 
dm 'log;clear;out;clear;'; 
options ps=50 nodate nonumber formdlim=' '; 
 
%macro Rudas1(nopercell,replwith, rr, cc, iter); 
proc printto  log=junk; run; 
proc iml;count0=0;noofzero=0;noof1zero=0; 
savepi=J(&iter,2,9); 
rsum={.3, 

.3, 

.1, 

.1, 

.1, 

.1}; 
csum={.3 .3 .1 .1 .1 .1}; /* set row and column marginal distributions*/ 
actual1=rsum*csum; 
do ii=1 to &iter; 
count=j(&rr, &cc, 0); 
n=&nopercell*&rr*&cc; 
cum=cusum(actual1); count0=0; /*calculate cumulative proportions*/ 
do m=1 to n; 

random=round(uniform(1000), .001); /* Generate n=sample size Uniform 
distributed proportions between 0 and 1, rounded to .001*/ 

do i=1 to &rr; 
do j=1 to &cc; 

/* Allocate cell proportions to associated categories according to 
cumulative distributions*/ 

if random<cum[i,j] then 
do; 

count[i, j]=count[i, j]+1; 
j=&cc; 
i=&rr; 

end; 
end; 
end; 

end; 
do i=1 to &rr; 

do j=1 to &cc; 
if count[i, j]=0 then do; 

count[i, j]=&replwith; /*if zero, then replace with designated 
flattening constants*/ 

count0=count0+1; /*count number of zeros*/ 
*j=&cc; 
*i=&rr; 
end; 

end; 
end; 
if count0>0 then noofzero=noofzero+1; 
if count0=1 then noof1zero=noof1zero+1; 

actual=count/sum(count); 
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*print count; 
/*print actual;*/ 
rowsum=count[,+]; 
coloumsum=count[+,]; 
e=(rowsum*coloumsum)/sum(count)**2; 
do i=1 to 100; /* increment =.01 each iteration */ 
Pi=i/100; 

Q2=j(&rr,&cc,i/(&rr*&cc*100));  /*initial Q1*/ 
Q1=e*(1-i/100);                    /*initial Q1*/ 
QQ2=j(&rr,&cc,i/(&rr*&cc*100));  /*initial QQ2*/ 
g1=j(&rr,&cc,0); 
g2=j(&rr,&cc,0); 
d=j(1,1,1); 

do while (sum(d)>.00001);   /*convergence criteria*/ 
do k=1 to &rr by 1; 

do j=1 to &cc by 1; 
g1[k, j]= actual[k,j]*Q1[k, j]/(Q1[k,j]+Q2[k, j]); 
g2[k, j]= actual[k,j]*Q2[k, j]/(Q1[k,j]+Q2[k, j]); 

end; 
end; 

do k=1 to &rr; 
do j=1 to &cc; 
g1[k, j]=(1-i/100)*g1[k, j]/sum(g1); 
QQ2[k, j]=i/100*g2[k, j]/sum(g2); 
end; 

end; 
QQ1=(g1[,+]*g1[+,])/(1-i/100); 
QQ1=(1-i/100)*QQ1/sum(QQ1); 
d=sum(abs((abs(QQ1+QQ2)*sum(count)-abs(Q2+Q1)*sum(count)))); 
ff=(Q1+Q2)*sum(count); /*expected frequency*/ 
/*print d;*/ 
Q1=QQ1; 
Q2=QQ2; 
/*PRINT Q1; 
PRINT actual;*/ 

end; 
/*print Q1; 
print Q2;*/ 
/*print ff;*/ 
dd=sum(abs(count-ff))/2/sum(count); 
do m=1 to &rr; 

do n=1 to &cc; 
if count[m,n]=0 | ff[m,n]=0 then G2[m,n]=0; 
else G2[m,n]=(count[m,n])*(LOG(count[m,n])-LOG(ff[m,n])); 

/*calculate G-square statistic*/ 
end; 

end; 
Gsqu=2*sum(G2); 
chinew=sum((ff-count)##2/ff); /*calculate chi-square statistic*/ 

 
If Gsqu< 2.71& pi<savepi[ii,2]then savepi[ii,2]=pi; /*generate 95% 

lower bound of mixture index of fit and save into second column of matrix 
savepi*/ 

If Gsqu<.00001 then 
do; 
savepi[ii,1]=pi;  /* generate mixture index of fit and save into first column 
of matrix savepi*/ 
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/*print chinew;*/ 
i=100; 
end; 

end; 
end; 

*print savepi; 
pistar=savepi[+,1]/&iter; /*pi star is the average is 1000 iterations*/ 
 
pistarL=savepi[+,2]/&iter; /*pi star lower bound is the average is 1000 
iterations*/ 
b=j(&iter,1,0); 
empirank=j(&iter,1,0); 
b=savepi[,1]; 
empirank=b; 
b[rank(b),]=empirank; 
title "rr.3.3.1.1.1.1 cc.3.3.1.1.1.1 nopercell &nopercell repl withh 
&replwith iter &iter"; 
piempiL=b[50,1]; /*find the 5th percentage number from the 1000 sorted new 
pi start array*/ 
print pistar; 
print pistarL; 
print piempiL;print noofzero;print noof1zero; 
*print count0; 
 
filename out "C:\sas\sz\sz rr.3.3.1.1.1.1 cc.3.3.1.1.1.1 nopercell 
&nopercell rep &replwith iter &iter";  
file out; 

do i=1 to nrow(savepi); 
do j=1 to ncol(savepi); 

put (savepi[i, j]) 6.2 +3 @; /*output savepi matrix to an external 
file*/ 

end; 
put; 
end; 

*close file out; 
quit; 
run; 
proc printto;run; 
 
%mend Rudas1; 
%Rudas1(5, 0, 6, 6, 1000) 
%Rudas1(5, 0.1, 6, 6, 1000) 
%Rudas1(5, 0.5, 6, 6, 1000) 
%Rudas1(5, 1, 6, 6, 1000) 
%Rudas1(10, 0, 6, 6, 1000) 
%Rudas1(10, 0.1, 6, 6, 1000) 
%Rudas1(10, 0.5, 6, 6, 1000) 
%Rudas1(10, 1, 6, 6, 1000) 
%Rudas1(20, 0, 6, 6, 1000) 
%Rudas1(20, 0.1, 6, 6, 1000) 
%Rudas1(20, 0.5, 6, 6, 1000) 
%Rudas1(20, 1, 6, 6, 1000) 
%Rudas1(30, 0, 6, 6, 1000) 
%Rudas1(30, 0.1, 6, 6, 1000) 
%Rudas1(30, 0.5, 6, 6, 1000) 
%Rudas1(30, 1, 6, 6, 1000) 
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