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Situational awareness is a critical factor in maintaining the safety of firefighters and can be largely

improved in buildings using distributed sensors that provide real-time data. A two-phase approach is used

to increase situational awareness in aircraft hangars. Phase I consists of modeling a hangar with an open

door in Fire Dynamics Simulator (FDS), with a high density of smoke, temperature, CO and CO2 sensors

located at the ceiling. Fuels of interest including Douglas fir, polyethylene, paper, JP-8, and propane are

modeled in six potential fire locations, with five locations along the centerline of the hangar and one in the

corner of the hangar. Additionally, wind and beams at the ceiling are added to the simulation to determine

the impact on the products of combustion that the sensors pick up.

Phase II uses the data acquired from the FDS simulations to inform and build machine learning models

that utilize supervised learning techniques to identify the location of the fire, the magnitude of the fire

and the composition of the fuel that is burning. It is determined that temperature and smoke are the key

products of combustion needed for these analyses. The location of the fire is identified within a circular area

with a 5 m radius by using temperature measurements, thus reducing the amount of input data needed for

the machine learning models. The magnitude of the fire is predicted using temperature as inputs to a heat
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release rate (HRR) model using a fully connected, three-layer, feed forward neural network. The composition

of the fuel is predicted using a linear support vector machine that supports multi-class classification, using

products of temperature and smoke obscuration as inputs. The location model is 80% accurate, the HRR

model is 85% accurate and the fuel composition model varies between 62% and 91% accuracy depending

on the classification goals. These results prove the feasibility of machine learning applications in an aircraft

hangar setting.
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Chapter 1

Introduction

Aircraft hangars store expensive aircraft, and these valuable planes and corresponding aeronautical equip-

ment need to be protected accordingly. Detection of fires has historically been done with standard, stationary

sensors that do not communicate with one another. Firefighters collect information manually by making

their way around or through the building in order to be able to confidently assess what is burning, the

location and the severity of the fire. This is time consuming and also requires firefighters to enter the area

where the fire is located. Improvements can be made through the use of contemporary stationary sensors

and machine learning (ML).

This report explores the feasibility of coupling contemporary sensors with ML techniques to provide

situational awareness for fires in the space of interest. This report will be divided into two phases. The first

involves simulations of fires in an aircraft hangar using a computational fluid dynamics model to depict the

fire-driven fluid flow and create a set of fire signatures. Simulations will monitor the conditions produced in

the upper smoke layer of the hangar to compile data on temperature, gases, and soot. Fuel type, location,

environmental conditions, and ceiling geometry will differ for the variety of the simulations.

The second phase of this research will conduct an analysis of the array of parameters describing fire

conditions created within the hangar simulations. This analysis will be conducted using ML, to condense

the multitude of data associated with the fire signatures into succinct statements that describe the location

and size of the fire and provide an indication of the commodity involved in the fire.
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1.1 Motivation

In a fire scenario, incident commanders need to know the fire location and severity (determined by conditions

produced by the fire) in order to propose an effective strategy for fire control. A way that this is done in the

field is referred to as “size-up”, which is defined as “the ongoing evaluation of problems confronted with a fire

situation”.[1] This process starts when there is indication of an alarm, by asking fundamental questions such

as, “what is the type of emergency?”, “what’s on fire...?” and “what resources are needed?”[2] and continues

until the fire is under control. Strategic factors like location and extent of the fire in addition to weather

conditions [1] are taken into account, which pertain to the scope of this research. Prior knowledge and

answers to these questions allows for better preparation when responding to a fire scene.

This information can be gathered through real-time data collected from distributed sensors located in

the affected space. Buildings include a wide variety of sensors, however only a marginal amount of sensors

provide information regarding the presence of a fire. The information from contemporary sensors is limited

to determining whether or not a fire is present in the space, but does not provide additional information

as to the conditions produced by the fire. Most fire detectors and sensors are discrete, meaning that they

only operate at a predetermined threshold value, but with modifications these sensors could be adjusted to

collect continuous information from the fire scenario. Data from these sensors can be utilized to understand

the severity of the fire via the products of combustion and conditions produced, thus providing firefighters

with more information on how to best approach the fire scenario.

It is inefficient for firefighters to survey an entire building during the fire incident. This is a time consuming

process that can take away from the ability to quickly identify and put out the fire - assuming intervention

is needed. This is an inherently unsafe process because if there is a large magnitude fire, firefighters could

be unknowingly subjecting themselves to extreme heat and harmful products of combustion. Increasing

situational awareness is one of the critical factors in maintaining the safety of the fire service and anyone

involved in fires, as this was cited as one of the leading factors identified by firefighters in near-miss reports

and is defined as “understanding the current environment and being able to accurately anticipate future

problems to enable effective action”.[3] Additional aspects of situational awareness include the ability to

perceive, process, predict, decide, take action and communicate or coordinate. All of these aspects, aside

from the ability to take action, can be automated and/or simplified through the use of sensor data and

ML.[4]

This integration of technology can be likened to that of smart buildings. Buildings are now utilizing
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information beyond the equipment and sensors present in the space, and are connecting this information in

a way that allows for the building to be responsive and interact with the building operators and occupants

to give practical information.[5]

1.2 Computational Modeling Background

The most recent version of Fire Dynamics Simulator, FDS version 6.7.6, is used for computational modeling

purposes. FDS is developed by the National Institute of Standards and Technology (NIST). Smokeview,

version 6.7.15, which is also developed by NIST, is used for visualization purposes.

FDS is a computational fluid dynamics (CFD) model that decomposes the fire compartment into nu-

merous control volumes and describes fire-driven fluid flow through solving a version of the Navier-Stokes

equations for low-speed, thermally driven flow. FDS is more widely utilized for smoke and heat transfer

from fires. The large eddy simulation (LES) approach is used to describe turbulence, in order to properly

resolve the physics while decreasing computational time. The combustion model utilized by FDS and for

the purpose of this research is a “single step, mixing-controlled chemical reaction which uses three lumped

species.” Air, fuel and products are defined as the lumped species by default.[6] Any additional species or

reactions that are not mixing-controlled will be defined in the input file as needed.

Parallel Processing can be implemented with multiple mesh domains and each mesh is assigned to a

single core processor. In order to benefit from parallel processing, the number of computational cells per

mesh must be distributed relatively equally. For clusters of computers, such as UMD’s high performance

computing cluster, Deepthought2 (https://hpcc.umd.edu/) which is utilized for this project, FDS uses the

Message Passing Interface (MPI), where the flow field in each mesh is computed as a MPI process. [6]

Validation involves comparing model predictions with experimental measurements and quantifying the

differences when uncertainties between model inputs and measurements arise. FDS has been validated for

many purposes, but specific to this research are smoke detection and combustion models. Comparison

of smoke transport with UL 217 test data and further validation with full-scale multi-compartment tests

indicates that FDS is capable of properly predicting smoke detector activation, when coupled with proper

lag corrections. In addition, research from Cleary demonstrated that FDS can predict conditions that a

sensor might experience in a real fire.[7]
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1.3 Machine Learning Background

“Artificial Intelligence” (AI) and ML tend to be used interchangeably, however in a more technical sense, ML

is a branch of AI that allows the machine, which in the scope of this research is a computer, to “automatically

learn” from data without needing to explicitly program the results. AI can be achieved through ML.[8]

ML can be broadly separated into three categories - supervised learning, unsupervised learning and

reinforcement learning. Supervised learning is when data is given to the algorithm with labels and the model

is trained on this labeled data to learn how to predict the label of a sample that has never been seen. An

unsupervised learning approach does not have labeled data, and the model is tasked to identify patterns in

the data based on the tools in the model itself. Lastly, reinforcement learning is given no prior knowledge,

therefore learning and adjusting the policy as the model progresses. Rewards and penalties are received to

allow for the model to adjust towards the path that gives the greatest reward.

Different problems lend themselves better to different categories of ML. Supervised learning will be used

for this research, as the data has known labels, i.e. heat release rate, location and fuel type, which can link

these labels to FDS outputs.

Some types of ML problems can fall under the category of regression (supervised learning), classifica-

tion (supervised learning) and clustering (unsupervised learning). Regression and classification are the most

pertinent for the scope of this research. Regression is defined as technique that helps to identify the rela-

tionship between variables and provides a numeric estimate, whereas classification identifies a category that

an observation fits in. Clustering does not use predefined classes for categorization purposes.

1.4 Scope of Work

This work is focused on modeling a representative array of fuels in various locations for an aircraft hangar.

The information used in the fire simulations is gathered from the scientific literature and adapted to fit the

desired length and criteria outlined in the simulation.

A total of six fuel packages are analyzed at six locations, with these locations being labeled A, B, C, D, E

and F. Locations A through E are along the center line of the hangar and location F is in the corner closest

to the hangar door. Among these locations and fuel types, conditions vary from flaming combustion, flaming

combustion with wind and flaming combustion with beams located at the ceiling. Smoldering fires are not

modeled for this research due to the very specific fuel properties that are not readily available in literature.

These simulations are outlined via the test matrix in Table 1.1 and a corresponding ML algorithm will be
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applied to the simulated data.

Table 1.1: Test Matrix

Flaming Combustion WITHOUT Wind
Fuels A B C D E F
Douglas Fir X X X X

0.5xHRR X
0.25xHRR X

Polyethylene X X X X
2xHRR X
4xHRR X

Propane X X X X
0.5xHRR X

0.25xHRR X
Large Box with Paper X X X X

0.5xHRR X
0.25xHRR X

JP-8 X X X X
0.5xHRR X

0.25xHRR X
Polyurethane Foam GM21 X

Flaming Combustion WITH Wind
Fuels A B C D E F
Douglas Fir X X X X X X
Polyethylene X X X X X X
Propane X X X X X X
Large Box with Paper X X X X X X
JP-8 X X X X X X

Flaming Combustion with Beams
Fuels A B C D E F
Douglas Fir X X X X X X
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Chapter 2

Literature Review

A literature review was conducted to provide an overview of current knowledge and relevant strategies that

incorporate CFD modeling and/or ML in the fire sciences. In addition, background will be discussed that

will allow for an understanding of relevant ML terminology. This is not intended to be an all-encompassing

review.

2.1 Inverse Modeling

Inverse modeling calculates a set of observations from the factors that produced them and can be seen as a

first approach to backing out information from a set of input data. Andrew Neviackas studied this topic in

his Master of Science thesis in 2007 [9]. Fire image technology combined with fire modeling was performed

for real-time analysis, also aiding in the purpose of situational awareness.

An inverse fire modeling algorithm (IFM) uses MATLAB with the objective being to estimate the HRR

from the upper layer temperatures, specifically is the fire in the growth, steady state or decay phase. The

data needed for these calculations is obtained through thermal imaging cameras.

The McCaffrey, Quintiere, and Harklerod (MQH) correlation is a useful way to estimate the relationship

between HRR and temperature, but pertinent information might be unknown for a given scenario, which is

where genetic algorithms (GAs) are utilized. This research uses GAs which work on the principles of Social

Darwinism. The algorithm is seeded with an initial population and the population is made up of parameters

such as mass loss rate (MLR), door width, door height, window width and window height. A measure of

the quality is obtained and a new population is created from the old. The better fitted parameters “survive”
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and “reproduce” until a threshold is reached. Single and multiple compartment tests were examined with

a ceiling height of 3 m and estimation success was obtained when there was only one parameter that was

changing, for example, the vent configuration was known and the MLR was not.

Single compartment tests successfully converge, especially when there is only one unknown parameter.

However, the IFM could not track the jump in fire size that FDS predicted. This methodology is mainly

used for steady state fires and needs to be developed for transient fires. [9]

Overholt and Ezekoye acknowledge Neviackas’ work, while noting that it is limited to a constant time

averaged HRR and is computationally expensive, so they developed a new inverse HRR solution methodology

[10]. The HRR is parametrized using a piecewise linear function, allowing the problem to be treated as a

least-squares problem where error between the measured and predicted values is minimized. The vector of

a single HRR variable is desired and the vector of HRR contains transient HRRs. A predictor-corrector

method was used with input times and the hot gas layer temperatures. Overholt and Ezekoye also used the

MQH correlation, as this is a linear problem that is easy to invert, which was also seen in Neviackas’ work.

The steps for inverse HRR search are described below and seen in Figure 2.1. A zone model approach using

CFAST was used with a methane design fire for data acquisition. Python was used for the implementation

of the model.

1. Predictor step computes a ∆Q̇ for a temperature difference between measured and predicted at every

time by using dT
dQ̇

found from the MQH correlation. The next value is computed using Q̇k+1 = Q̇k+ dT
dQ̇

−1∗∆T .

2. Corrector step is performed by running the CFAST model with HRR values derived from MQH to

find the temperature at the next instance in time.

3. If the error is less than 10−3, then Q̇ is returned. If not, then steps 1 and 2 are repeated.

[10]

Figure 2.1: Flowchart of inverse HRR search procedure as described by Overholt.
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The predictor-corrector method allows the inverse methodology to be used on problems that exceed the

limitations of already existing correlations, however this method still overpredicts when there is a “near

sudden step change” in the HRR.

There is good agreement with this method when there is a complex HRR curve. The results for the

steady state compartment data are close to/within the uncertainty bounds of the experimental data and

experimental data from the University of Texas at Austin on transient compartment fires yields relative

errors between nominal and inverse HRR between 7 % and 19 % [10]. However, the main limitation is that

the inverse HRR solution depends on the boundary conditions, so they must be known and prescribed.

2.2 History of Machine Learning and Fire Detection

ML techniques allow for the ability to determine information about a situation with less explicit inputs, such

as boundary conditions. Okayama et al. were one of the first research groups that used neural networks for

fire detection, using a combination of odor sensors and back propagation neural networks in 1992. They were

able to distinguish between smoldering fires and environmental sources, however this only resulted in limited

success. [11] Other first approaches can be seen in the work of Ishii et al. A time-delay neural network was

used that allowed for a better ability to capture the transient nature of fire. A time delay-neural network

is an extension of a multilayer perceptron (MLP), allowing a neuron to store the history of the input signal

based on time delays. [12] Each neuron can access the input value at T+1 (where T is the number of time

delays ∆t) points in time, allowing for the neuron to detect relationships between current and former input

values, thus being able to adapt to a set and/or sequence of patterns. [13] Temperature, smoke and CO

concentrations were used to calculate inputs to the neural network (such as HRR) and is similar to the

“hybrid first-principles-neural network method”. This method includes available prior knowledge about the

process with a neural network which allows for the ability to interpolate and extrapolate easier and provides

promising methods for fire detection. [14]

This was built upon by Serio et al. in 2000, where actual experiments are performed and coupled with

ML. The tests were conducted in a 600 m3 laboratory combustion facility, with the use of Fourier Transform

Infrared (FT-IR) spectroscopy. It is stated that a typical advanced neural network has three layers of

processing nodes with weighted connections between the layers. A Learning Vector Quantization Network

(LVQ) was utilized with the Kohenon hidden layer to learn and perform classification. The inputs to the

network were the concentrations from the FT-IR measurements and the outputs were the classification of
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the fire type. LVQ has the ability to extrapolate if well trained and this example correctly predicted 96% of

the fires, with the main difficulty being in classifying the transition from smoldering to flaming fires. These

results are promising for the purpose of early fire detection. [15]

There are many different ML algorithms that are utilized in fire science. The most common use of ML

is for detecting the presence of a fire in a space - for example, are there anomalous conditions in the room?

Principal component analysis (PCA) is a useful tool when there are measurements from many sensors at

once, and allows for the ability to determine and use the most influential sensors. A study by McAvoy

et al. explored how PCA could be applied to fire experiments, for the use of fire detection. Three PCA

components were used and allowed for increased detection of smoldering fires and reduced detection time in

both flaming and smoldering fires. [16] PCA is a dimensionality reduction method that seeks to retain the

relevant information of the data set. It projects the data onto a plane and attempts to minimize the distance

of the data points to the line or maximizes the distance from the projected point to the origin. The slope of

the first principal component indicates what variable is more important and this process is repeated until the

data is sufficiently reduced, which can be determined by finding the “explained variance” of each component,

which indicates the value of the information content of each component. When the proportion of explained

variance reaches a predetermined threshold value, the data-set can be said to be sufficiently reduced. This

approach is beneficial for discrimination between flaming fire, smoldering fire and nuisance sources, which is

not of interest for this study. However, the use of PCA is beneficial for a multi-sensor approach and could

be useful in determining what sensor locations are indicative of the fire location and which sensors can be

ignored, and this approach could be taken at a later time.

Most recently, ML has been implemented with visual fire detection mechanisms and coupled with already

existing cameras present in a particular space. For example, algorithms examine specific characteristics such

as color, contrast, brightness variation and movement. The most common use of ML is applied to image

analysis of fire and non fire scenarios, which provides information on if a fire is present in the space and not

an indication of the magnitude of the fire scenario, which does not assist with situational awareness. This

quicker detection clearly provides a benefit in that there is a reduction of the chance of fire spread, but could

be extrapolated for the benefit of identifying fire location.

Another main driving force behind incorporating ML into fire detection is to reduce false alarms and create

a dependable fire detection system with high accuracy and reactivity, which requires the use of a dynamic

threshold for applying rule-based algorithms. The values of ML are fixed after training, so flexibility must

be incorporated in order to resolve this issue by introducing a multi-functional AI framework - essentially
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taking a “learn as you go” approach. When only looking at visual data there is an issue with blind spots, as

the fire could be shielded from the view of the camera, confusing abnormal bright light sources with fire and

detection delay due to the small flame size at the start of the fire that are too sensitive for the cameras to

detect. The proposed system for this research includes Internet of Things (IoT) gateways, a fire detection

server and a software-defined networking controller. The IoT is “a system of interrelated, internet-connected

objects that are able to collect and transfer data over a wireless network without human intervention”[17],

where the IoT gateways send temperature, humidity, gas sensors and camera data to the AI framework.

If forecasting or prediction is the goal, then either recurrent neural network (RNN) or Deep learning (DL)

should be implemented. A RNN takes the outputs of the model and feeds them back in as inputs. Forecasting

future sensor output is a supervised learning technique that utilizes artificial, recurrent or convolutional

neural networks, in addition to DL architecture. Supervised learning is frequently used in ML and it involves

finding the best values of the parameters to minimize the cost function.[18]

Saeed et al. describe convolutional neural network based early fire detection in greater detail [19], but

first discuss wireless sensor networks (WSN) and why this approach is not always ideal. WSN incorporate

spatially dispersed sensors that monitor environmental conditions and forward the data to a central location.

WSN strategies to detect fire need a large amount of data. As for most detection methodologies, lag time

and small fire size should be considered as a hindrance for early fire detection. When utilizing video fire

detection, the whole image is required in addition to an intensely accurate algorithm. The combination of

these two requirements takes time to minimize false alarms, thus making it less ideal for early fire detection.

A way to improve upon this is method uses the first proposed model, Adaptive Boosting (Adaboost) in

combination with many multilayer perceptrons (MLP). The data utilized in this model is from fire sensors.

Adaboost is used to combine many weak classifiers into a single, stronger classifier and this is done by putting

more weight on “difficult to classify” instances and less weight on those that were handled well.[20] A MLP

is a class of feed forward neural network.

A neural network consists of nodes and connections between the nodes. It starts with unknown parameters

that are estimated using back propagation. The inputs, which can be seen as a vector x, are multiplied by

a vector of weights by WTx to get a value. This value is run through the activation function and scaled

by adding a bias term. Each node in the hidden layer uses a different portion of the activation function.

Weights are parameters that are multiplied and biases are parameters that are added. A diagram of a simple

three layer, feed forward neural network can be seen in Figure 2.2. Each circle within the hidden layer hn

represents a node.
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Figure 2.2: Neural network diagram.

A perceptron is similar to a node and consists of input values, weights and biases, a net sum of said

weights and biases, and are passed through an activation function, seen in Figure 2.3. The larger the weight

value, the more importance the model places on the value and the specific activation function determines if

the data will get transferred to the next layer of the network.

[21]

Figure 2.3: Description of how a perceptron works.

The steps for this method include pre-processing the data to get rid of the noise and then using the Ad-
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aboost algorithm. Four different learning algorithms were used - gradient descent with adaptive learning and

backpropagation, gradient descent with momentum and adaptive learning rate backpropagation, conjugate

gradient descent with backpropagation and fletcher reeves, and lastly broaden Fletcher Goldfarb Shannon.

The purpose was to evaluate accuracy against different parameters.

The second model is Adaboost-LBP (local binary patterns) which is also used to assist the deep CNN

(which is the third model). Adaboost LBP is a visual descriptor used for classification that utilizes images and

videos for detection. It was developed in 1994 and has been useful for text data classification. Convolutional

Neural Networks (CNN) divide the problem into sub-parts until the final solution is reached. CNNs are

better for fixed windows of time, as opposed to the usage of RNNs for unknown windows of time. CNNs

have a “sliding window” of weights instead of having weights for each individual time point. Every point in

a convolutional network is a “receptive field which is set of units of previous layers.”[19] Figure 2.4. shows a

representation of a simple CNN when the input is an image. The results of Saeed et als research shows that

boosting yielded better prediction results.

[22]

Figure 2.4: A simple CNN representation.

The research and techniques discussed above show that previous attempts to incorporate ML have been

done experimentally or utilizing video/image analysis. The use of experimental data allows for discrimination

between smoldering and flaming, however the current data in the literature is not detailed or accurate enough

to model the physics of smoldering in the CFD framework.
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2.2.1 Recent Machine Learning Applications in Fire Protection

The following section will discuss the modern applications of ML, specifically the data used for inputs,

techniques, results and what can be built upon.

2.2.1.1 Hierarchical Temporal Memory

Hierarchical temporal memory (HTM) ML algorithms take in real-time data that enables the detection and

modeling of spatial and temporal patterns, making this an unsupervised learning approach. They are based

on memory and are considered a “biological neural network” that can adapt to changing statistics. Ryder

et al. used HTMs for fire state determination, and used experimental data as the inputs. HTMs are an

example of continuous learning and are configured to determine if the system is experiencing anomalous

conditions before the analysis of the next time step. Variations in threshold values may occur for specific

fire scenarios, building environments and sensor locations, which makes it necessary to have an approach

that can deal with real-time data. Learning can be “turned off” which could be beneficial for real world

applications, so the system does not learn abnormal conditions as normal - for example when maintenance

is being performed. Sensor location was determined to be important because the majority of the anomalies

that were not detected were from sensors below the ceiling or on the wall, as they were not able to pick up

changes in temperature and relative humidity as early. This method does best with detecting anomalies in

larger fires. [23]

2.2.1.2 Artificial Neural Networks

ML has allowed for ways to combine the accuracy of CFD with the computational speed of zone models, as

experiments can be difficult and expensive to perform. The following approach explores the ability to use

FDS for inverse problems, determining what simulation inputs produced the outputs.

An artificial neural network (ANN) can be trained to determine transient HRRs from transient thermo-

couple measurements. This training and mapping of FDS outputs to inputs makes the inversion problem

quicker to solve. Buffington et al. created a model of a 6 m by 5 m by 2.6 m compartment, with a door

that was represented by a hole in the wall. This model was used to pretrain the ANNs that eventually

learned to predict FDS results. It is ideal to create “non-parametric” description of HRR curves, therefore

the functional form of the HRR was not specified ahead of time, which allows the design fires to capture the

variability in burn tests. This approach can create unphysical, noisy results, so a Gaussian process is used
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with the goal being to describe a probability distribution of reasonably smooth functions to create a training

set. This results in transient HRRs centered around 150 kW with a standard deviation of 90 kW. The band-

width was set to 30 seconds for smooth HRR curves and 60 seconds for more rapidly changing HRR curves.

Post-processing restrictions were implemented, such as taking the absolute value of the HRR and forcing the

HRR curve to zero after the end time has been reached, indicating extinction. The Python package Scipy

was used to “draw random HRR ramps, write them into FDS or CFAST and run the simulations”

This research predicted both temperature from HRR and HRR from temperature and the process for

both approaches are the same. The neural network architecture that was utilized for this specific problem

incorporates an input and output layer that contains 91 nodes which is the length of the time array. Inputs

and outputs are either time series temperature or HRR data. Four hidden layers were used in this feed

forward neural network, each with 128 perceptrons, with the rectified linear unit (ReLU) being the activation

function of choice. ReLU returns the input if it is positive, and otherwise returns zero and helps to deal

with the “vanishing gradient” problem. This occurs for certain activation functions when applying very large

or small weights, as the derivative is calculated as zero and the network is not able to learn further. [24]

ReLU incorporates a non-linearity and behaves well with extreme weights, as the derivative at any value

larger than zero is the same. This activation can be seen in Figure 2.5. In general, it is beneficial to have

an activation function with a nonzero derivative at large values. Mathematically, δσ
δwT x

> 0 where σ is the

activation function and wTx represents the weights applied to the inputs.

[25]

Figure 2.5: ReLU activation function.

Continuing with the discussion of the work of Buffington et al., the network is trained using Adam

(adaptive moment estimator) as the optimizer, which reduces the time to train the model. This uses a

combination of stochastic gradient descent (SGD) with momentum, accelerating the gradients in the proper
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direction. Additionally, an adaptive step size is used which is helpful for regions with flat gradients. This

allows the optimizer to get out of the “slow regions” by taking larger step sizes, and then changing back to

the previous smaller step sizes for the remainder of the optimization.

The model is trained with a batch size of 31 and the validation split is 20 % of the data. Buffington et al.

discussed the benefits of transfer learning for reducing the required number of iterations through the training

set. This case uses 20,000 CFAST cases for initial training. Without transfer learning, the ANN is initialized

with random weights and biases at the start of training. However, if using transfer learning, once the first

emulator is trained its weights and biases are used to initialize the rest and assumes that “an agent can learn

a task more efficiently if it has already been trained to perform a similar task” [InverseProblemsML] and

can be seen in Figure 2.6.

[InverseProblemsML]

Figure 2.6: Representation of transfer learning. The circles represent outputs from fire simulations, rectangles
represent ANNs, black arrows represent direct training and blue arrows represent knowledge transfer.

ANNs are trained using CFAST predicted upper gas layer temperatures. The mean absolute error (MAE)

is 6 % of the average HRR which could be due to the fact that there is no guarantee that a temperature

output implies a unique temperature input. Additionally, there is difficulty in telling when the HRR goes

to zero since the temperatures in the compartment remain elevated for a while after the fire is extinguished

and most error occurs when slope of HRR curve rapidly changes signs.
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A key takeaway of this study is that HRR inversion appears more accurate for burner fires than pool fires

since FDS is based on burner fires. Further research can be done on the effect of compartment geometry on

the impact of transfer learning, in addition to incorporating fine mesh results. [InverseProblemsML]

2.2.1.3 Support Vector Machines

Another approach to incorporating ML with fire detection is through the use of a support vector machine

with dynamic time warping kernel function (SVM-DTWK). [26] Dynamic time warping (DTW) can deal

with different length sequences that are shifted by time to determine the best relationship between two

elements in a given sequence. A support vector machine (SVM) is a supervised learning algorithm that can

solve classification problems and can overcome “overfitting” and the “curse of dimensionality”. Overfitting

occurs when the model learns the details/noise of the training data so well that it negatively impacts the

performance on unseen data. The “curse of dimensionality” refers to the error increasing with an increasing

number of features.

The basic form of the decision boundary of the SVM is

y(x) = wTx+ b (2.1)

where x is an input vector, w is the coefficients of the input vector and b is the bias. The end goal is to

maximize the margin between unique regions and correctly classify the largest number of points.

Baek et al., consider temporal dynamics in multiple sensors that pick up different fire signals, allowing

for the differentiation between flaming, smoldering and heating fires. Certain sensors react better for certain

fires but the type of fire that can occur in a given setting is not known ahead of time. The use of video

detection can result in late detection time since pixels rely on the fire being highly developed to pick it up.

However, a multi-sensor fire detection approach that combines temperature, CO, CO2 and smoke production

allows for more accurate prediction. For example, flaming fires have a high increase in temperature over a

short amount of time compared to smoldering and heating fires

The training phase of the SVM constructs multiple classifiers for each sensor type and utilizes information

without prior knowledge of the fire type. The level of comparison is fire detection time and false alarm rate.

Experimental data from NIST is used to conduct a description of a real-life fire data set, resulting in the

conclusion that hard SVM-DTWK performs better than thresholding methods utilizing PCA and ANNs,

which have poor fire detection performance, as PCA techniques may lose the temporal dependency since
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each sensor value is considered an independent feature. This approach does not explicitly incorporate the

correlation between time-series data and including the dependency among fire sensor signals might help

increase the accuracy. [26]

There are more approaches that have been taken, such as classification through the use of decision

trees, which involve selecting splitting features and continuing to split until all instances are sorted into the

appropriate class, or attempting a random forest approach, which is a combination of multiple decision trees.

[27] Techniques have been performed to detect, categorize and identify the HRR of a fire, however the room

for improvement such as incorporating temporal dependency has been identified. The utilization of more

comprehensive models such as FDS will be explored for the purpose of training a ML model to determine

the HRR and fuel type of the fire present in the space. The ability to build upon previous research and its

applicability will be further analyzed for large, open spaces, such as a hangar.
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Chapter 3

FDS Models and Validations

The purpose of the following chapter is to validate that the devices used in this analysis are working as

intended and that the geometry is well-resolved.

3.1 NIST Simulation Validation

Proof of concept was required before beginning large scale simulations of the design hangar of interest. The

National Institute of Standards and Technology (NIST) performed an “analysis of high bay hangar facilities

for fire detector sensitivity and placement” in 1997. The purpose of this study was to determine if new

approaches to fire detection and suppression could lead to quicker response, and thus less damage to the

aircraft and equipment present in the hangar. A total of 33 full-scale experiments were conducted using JP-5

and JP-8 (jet propulsion fuel type 5 and type 8) in different geographical locations. The experiments and

location that were of greatest interest were JP-8 fires in Barber’s Point Hawaii, reducing the experiments of

interest to a total of 13. This “warm climate” experiment in a 15m high facility most closely replicates the

environmental conditions of the 12 m tall design hangar of interest.

The hangar dimensions in Hawaii were 97.8 m by 73.8 m by 14.9 m. The roof slopes from 14.9 m at

the center of the hangar to 13.4 m on the east and west walls. The 5 degree slope of the ceiling was found

to exhibit only small effects on the smoke flow down the slope after verification using a CFD model [28].

It should be noted that the design hangar does not have a sloped ceiling. Analog, addressable, spot-type

photoelectric detectors were used and the location of sprinklers were ignored for this validation test. The

sensitivity set for the smoke detectors that triggered activation of the alarm was 8.2 %/m smoke obscuration.
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[6]. Heat detectors were analog spot type and were programmed to operate at an activation threshold of

57.2 ◦C.

Draft curtains were installed to enclose an area of 24.4 m x 18.3 m and were 3.7 m deep. Draft curtains

essentially reduced the ceiling area and trapped in the smoke over a smaller area before the smoke layer

could billow under the draft curtains and begin filling the rest of the hangar ceiling. Detectors installed

within the limits of the draft curtain responded quicker than those outside of the boundaries. Five detector

fire tests were conducted in the facility, with three of the five tests having the draft curtain in place.

These experiments lead to the conclusion that the zone models and simple correlations that are used to

approximate detection response times do not provide good approximations for high bay applications or with

the large jet fuel fires. Most of the models are based on experiments with lower ceiling heights or smaller

fires, which results in a large difference between buoyancy-driven plume entrainment from that in an aircraft

hangar. [28]

3.1.1 Detector Activation Analysis

A diagram of the sensor configuration can be seen below with the addition of the draft curtains can be seen

in Figure 3.1. The labels of the smoke detectors in Table 3.1 correspond to the labels seen in this figure, i.e.

SD11 corresponds to P11.

A Cleary Photoelectric P1 detector was used in FDS with αe = 1.8, βe = −1.0, αc = 1.0, βc = −0.8,

where α and β are used to calculate the characteristic filling or “lag” times. The default activation obscuration

in FDS is 3.24 %/m, however the activation obscuration was input as 8.2 %/m to match the threshold value

used by NIST. Heat detectors were not analyzed because for fire sizes less than 2 MW, none of the heat

detectors responded.

There are a total of 17 smoke detectors placed in the modeled hangar space, located in the corresponding

North, East, South and West locations indicated in the Figure 3.1. To decrease computational time, the only

area of interest that was modeled was the area directly enclosed by the draft curtains. The draft curtains

were treated as a solid obstruction, since heat loss to the boundaries did not matter for smoke detector

activation. The space below the draft curtains was treated as “open” to allow for the smoke to theoretically

escape into the remainder of the larger enclosure, had that been included in the model.

The test of interest is Test 2, which is a 0.6 m x 0.6 m square pan of JP-5 fuel with a HRR of 0.5 MW,

therefore the fire itself was a 0.6 m x 0.6 m square vent with a HRR per unit area applied to the surface

of the vent. The ramp-up time was prescribed according to what was defined in the NIST report. The fire
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[28]

Figure 3.1: Heat (H) and smoke detector (P) locations, plan view 15 m high facility.

was “assumed to grow linearly from zero at the start of each test and reach its steady state value 60 seconds

after full pan involvement”.[28] Full pan involvement for Test 2 was 10 seconds.

There is a 1 m x 1 m x 0.5 m volume encompassing the burner and a region that extends 1.5 m from the

ceiling that is well resolved to properly account for the development of the products of combustion directly

above the fire and at the ceiling, where it matters for precision of detection. The grid resolution inside the

well-resolved regions ranges from 0.05 m above the burner to 0.125 m at the ceiling. The reason for this

jump in grid size was to decrease computational time, while still allowing for the details to be captured. The

grid resolution outside of this region was 0.25 m.

The results for the FDS model versus the experimental NIST results is seen in Table 3.1. The minimum

percent error is 9.4 % and the maximum percent error is 90 %.
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Table 3.1: Comparison Between FDS and NIST Smoke Detector Activation Times

Location Label FDS (s) NIST (s) % Error
North SD11 40.9 27 51.5
- SD12 50.1 44 13.9
- SD13 76.0 40 90.0
East SD6 37.3 23 62.2
- SD7 52.6 35 48.9
- SD8 88.3 - -
- SD9 - 73 -
South SD15 42.3 32 32.2
- SD16 52.7 60 12.2
- SD17 54.5 48 13.5
West SD1 36.5 31 17.7
- SD2 43.8 60 27.0
- SD3 60.5 - -
- SD4 73.4 81 9.4

Draft curtains significantly shifted the center of the plume to the “experimental east”, which was verified

experimentally through the higher temperature reading in the thermocouples [28]. It is assumed that there

is a difference in experimental activation versus CFD activation due to ventilation and weather effects in the

space that could not be accounted for in the simulation. Note, that the doors were closed for Test 2. The

slope in the ceiling was not accounted for in the FDS simulation because the small slope was assumed to be

negligible, however this is not the case for fires, as even a slight slope in the ceiling configuration matters for

smoke movement.

3.2 Grid Size

3.2.1 Critical Length Scale Analysis

This section will now turn to a discussion of the main hangar configuration of interest. Grid size is important

for modeling in FDS, as a grid size that is too large will not resolve the physics of the problem correctly, but

too small of a mesh/grid size will greatly increase computational time. Computational cost scales with grid

size to the fourth power. There are certain areas of the model that require a finer level of resolution, which

requires the identification of relevant length scales.

The relevant length scale, L, for the purposes of this report can be identified as the burner and the door

opening. A rule of thumb to ensure the proper design of the computational grid is L/∆x ≥ 10. L = 1 m

for the burner and L = 7m to represent the height of the hangar door. The most restrictive length scale is
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that of the burner and a grid size of 0.1 m was used to resolve the portions of the hangar that were most

critical to capture the physics. This grid size meets the constraints of the rule of thumb, where 10 = 10.

The portions where the finer grid resolution was needed were identified to be the fire plume and the ceiling

jet since the smoke and products of combustion would be constrained in these regions. The transport of

the smoke and travel across the ceiling is important for detection. Further grid validation was performed in

FDS, comparing a smaller grid size of 0.05 m to 0.1 m to determine if the chosen grid size was sufficient.

The well resolved regions of the hangar are highlighted in yellow in Figure 3.2. The fire plume region is 7 m

x 7 m x 11 m and was designed to have a large enough cross sectional area to capture the entire fire plume

even with the addition of wind that will cause the plume to shift or bend. The ceiling jet extends 1 m below

the ceiling, with total dimensions of 26 m x 26 m x 1 m. The well-resolved region does not have to capture

the entire upper layer of smoke, that will descend and be limited by the height of the door opening.

Figure 3.2: PyroSim visualization of a side view into the hangar. The fire is located in the center of the
hangar and the meshes that correspond to the fire plume and ceiling jet are highlighted in yellow.

The plume and the ceiling jet velocity are shown in Figure 3.3, with a grid size of 0.1 m plotted with a

dashed line and the finer grid size of 0.05 m plotted with a solid line. There is a difference in lag time as

the velocity with the finer mesh is picked up approximately less than two seconds later, but when looking

at the magnitude of the velocities, the grid resolution does not have a strong impact. The oscillations in the

detected velocity for both the plume and ceiling jet are alternating and there does not seem to be the need

for a correction to make these velocities align depending on the grid resolution. The maximum and minimum

velocities are approximately equal for both resolutions, though they do occur at different times. This leads

to the conclusion that the finer grid resolution does not perform better and the maximum grid resolution of
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0.1 m is sufficient for use in this problem. It is recommended to avoid a jump in grid resolution from one

mesh to another by more than a factor of two. A comparison was made between a less resolved region with

a grid size of 0.5 m and 0.2 m to see if this recommendation could be bypassed. Due to the overlap in the

measured quantity in Figure 3.4, it was determined that the grid size in the mesh in the non-plume/ceiling

jet region could be increased from a factor two, to a factor of five. Therefore, a grid size of 0.5 m was used in

all other regions in the hangar to decrease the computational time. The resolution from one mesh to another

increased by a factor of five because the space was very large and the physics outside of the plume and the

ceiling jet were not as sensitive to the model specifics.

(a) Plume Velocity, taken 4 m above the center of the
fire

(b) Ceiling Jet Velocity, taken at the ceiling 6m above
the fire, in line with the perimeter of the burner

Figure 3.3: Comparison of plume and ceiling jet velocity for different grid sizes.

Figure 3.4: Comparison of temperature values when the adjacent mesh is increased from a factor two to five.
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3.3 Hand Calculations

The McCaffrey, Quintiere, Harkleroad correlation, known as the MQH correlation is widely used but has

limited applications. The correlation is limited to temperatures less than 600 ◦C, or pre-flashover conditions.

The correlation is not preferred for use in large enclosures, as the time for the smoke layer to descend to the

opening height needs to be short for the MQH correlation to be applied and be a good fit [29].

However, it was determined to be of value to see if there was any correlation between temperature and

HRR for particularly sooty fuels, and see if there was a way to relate the physics of fire growth in a large

space to this simple equation that relates temperature and HRR,

∆Tg = 6.85(
Q̇2

Ao
√
HohkAT

)1/3 (3.1)

where ∆Tg is the change in temperature of the gas in the upper layer, Q̇ is HRR in kW, Ao is the area of the

ventilation opening in m2, Ho is the height of the ventilation opening in m, hk is the effective heat transfer

coefficient of the boundaries in W
m2K and AT is the solid wall surface area in m2.

The equation was rearranged to solve for Q̇, that way the HRR can be backed out and solved for as a

function of temperature.

The values used in equation 3.2 are Ao = 168m2, Ho = 7m and AT = 2, 432m2.

Q̇ = ((
∆Tg
6.85

)3(Ao
√
HohkAT ))1/2 (3.2)

There is good agreement with the MQH correlation and larger scale fires, such as JP-8, as compared to

the other fuel sources of interest for this report. JP-8 is a sooty fuel so there is a distinct, thick smoke layer

that is created when the fuel burns. Soot drives radiation heat transfer and increases the temperature of the

gas.

3.3.1 Heat Transfer Coefficient

The heat transfer coefficient, h, when used in the MQH correlation is calculated as

h =
√
kρc/t (3.3)

24
DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

AFCEC-20220024, 18 May 2022



where k is the thermal conductivity, ρ is the density and c is the specific heat of the material of interest.

This indicates that h is only a function of the material properties of the walls and/or ceiling of the enclosure.

The rate of heat transfer is limited by the slowest process, which according to the derivation of the MQH

correlation, is conduction inside the solid walls. Gas transfers heat through convection and radiation and

heat is transferred through the solid via conduction. This simplification of the heat transfer coefficient is not

applicable for the intended use of MQH for this research, because convection and radiation play a dominate

role in the heat transfer, and therefore is not calculated using equation 3.3.

Convection and radiation play an important role in the physics of heat transfer and are taken into account

by adding eight heat flux gauges to representative locations across the ceiling in the FDS simulation. They

were not located close to the fire plume, as to not be skewed by the initial rise of hot gases from the fuel

source. Total heat flux gauges were used which captured the following quantities:

q̇′′net = εs(q̇
′′
inc,rad − σT 4

s ) + h(Tgas − Ts) (3.4)

where q̇′′inc,rad is the incident radiative heat flux, εs is the surface emissivity, h is the convective heat transfer

coefficient, Ts is the surface temperature and Tgas is the temperature of the gas near the surface. This

equation incorporates the radiative and convective energy absorbed at the solid surface. The net heat flux

was rearranged to solve for h by dividing q̇′′net by (Tgas − Ts), assuming that the radiative portion of this

equation was negligible. The calculation for h was performed as a function of time, so ∆T was taken at

each time step in the FDS output file. Typical values of h are on the order of magnitude of 0.01kW/m2K

and the derived value of the heat transfer coefficient for a full-scale JP-8 fire reached a steady state value of

approximately 0.01kW/m2K. The values of h, calculated at the 8 locations where the heat flux is measured

is shown in Figure 3.5. The values for h are approximately equivalent regardless of the location at the ceiling.

However, when h was calculated for smaller fires, the value changes, which indicates that MQH might not

be quantitatively accurate for smaller fires that do not produce as much heat or smoke. There is a limiting

case for applicability. This newly derived value of h derived from FDS is then used in equation 3.2 to back

out the HRR.
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Figure 3.5: Heat transfer coefficient from eight locations where the total heat flux was measured. The (x,y)
coordinates in meters for each location are shown in the legend.

Figure 3.6 shows the time variations of the smoke temperature used in the MQH correlation seen in

Figure 3.7. Figure 3.7 shows a graph of the prescribed HRR from FDS seen in black, versus the derived

HRR using the MQH correlation, in gray. There is almost identical agreement between these curves, with

the slight deviation during the initial growth phase.

Figure 3.8 shows the limited applicability of the MQH correlation for backing out the HRR if the HRR

is not large enough to begin with. A JP-8 fire was analyzed to limit the number of changing variables, i.e.

fuel composition. The HRR was scaled down by a factor of four and an identical analysis was performed as

was described above. It can be seen that there is a deviation between the prescribed HRR and the derived

HRR for this lower magnitude. An attempt to correct this and allow for better agreement was made using

the convective heat transfer coefficient calculated from the full scale JP-8 fire. This increased the HRR but

not enough to where it would be considered an acceptable way to estimate this quantity.
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Figure 3.6: Temperature inputs into MQH equation.

Figure 3.7: Comparison of prescribed HRR in FDS for JP-8 versus derived HRR using total heat flux from
FDS in MQH correlation.
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Figure 3.8: Comparison of prescribed HRR (when reduced by a factor of four from the original HRR) in
FDS for JP-8 versus derived HRR using heat transfer coefficient from full scale HRR total heat flux and
reduced HRR in FDS in MQH correlation.
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Chapter 4

Model Inputs

The following section details the model inputs in FDS that will be used for data acquisition for training

machine learning models. All simulations were run in parallel on the UMD High Performance Computing

cluster, Deepthought2, using one node and up to 15 processors. It was designed that an individual mesh

would be assigned to a certain MPI processor. The run time for each simulation varied between 5 and 30

hours.

4.1 Compartment Geometry

The hangar configuration of interest is an F-35 aircraft maintenance hangar. The dimensions are 26 m x

26 m x 12m with a 24 m x 7m opening on one side to represent the door opening. To accurately account

for entrainment effects through the door, and later wind effects, an outdoor mesh of dimensions 26 m x 6

m x 12 m was added, which was extended to 10 m in the y-direction for wind. The visualization of the

hangar configurations are provided in Figure 4.1 and Figure 4.2. Further material properties can be found

in Appendix B.

Note that the hangar is empty and there is no representation of a plane in the hangar space since thermal

insult to the aircraft is not a parameter of interest. The only concern is the measurement of the products of

combustion at the ceiling.

29
DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

AFCEC-20220024, 18 May 2022



Figure 4.1: Smokeview animation of hangar configuration; view from the outside looking into the hangar
through the open door.

Figure 4.2: Smokeview animation of hangar configuration; side view from the hangar with the hangar on
the right and the outdoor space on the left, no wind case.

4.2 Instrumentation Devices and Spacing

The spacing for each device is the same regardless of the type of device, which include smoke detectors

modeled with the Cleary Photoelectric P1 detector, temperature sensors, and CO and CO2 detectors that

measure based on volume fraction. The devices are located at the ceiling and spaced in a grid-like pattern

which results in an eight by eight grid with a total of 64 of each type of sensor located at the ceiling. It is

understood that this is a high density of sensors that is likely not indicative of reality, however, since this is

a feasibility study, the high density is assumed to be appropriate.
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The array of sensors will be located 1.625 m from each wall and subsequently spaced 3.25 m apart in the

x and y direction. The location of the sensors relative to each other and the wall can be seen in Figure 4.3.

Figure 4.3: Sensor locations at the ceiling, relative to the corner of the north and east wall.

4.3 Fuel Model and Design Fires

4.3.1 Combustion and Pyrolysis Model Description

Combustion is a gas phase process that refers to the “reaction of fuel vapor and oxygen”, as opposed to

pyrolysis, which is a solid phase process that refers to the “generation of fuel vapor at a solid or liquid fuel

surface”. In the default simple chemistry, mixing-controlled combustion model, pyrolysis and combustion

can be defined the same way. Only one gaseous fuel can be prescribed at a time, which makes it so there

is a single gas phase combustion reaction that represents all potential fuels. This reaction is infinitely fast,

resulting in the entire chemical reaction taking place instantaneously at the flame sheet [6]. The mixing of

the fuel and the oxygen govern the combustion process.

The lumped species approach reduces the number of transport equations that need to be solved by

combining species into groups that transport and react together. Fuel, air and products are considered the

lumped species. Carbon monoxide and soot yields must be prescribed, otherwise they are zero by default and

assume complete combustion conditions. The yields for CO and soot are defined as yi = mass i in products
mass of fuel reacted .

FDS uses the prescribed information from the REAC line to calculate the stoichiometric coefficients. The

calculated yields are for well-ventilated, post-flame conditions. Further details can be found in the FDS User
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Guide [6] and the Technical Reference Guide [30].

The balanced equation with the proper stoichiometric coefficients for Douglas fir can be seen in Equation

4.1. Details on how to calculate these coefficients can be found in the FDS User Guide [6]

C6H10O5 + 5.78O2 + 3.76N2 → 5.77435CO2 + 4.99H2O + 0.02315CO + 0.225Soot+ 3.76N2 (4.1)

The REAC lines that are used to create the balanced stoichiometric reaction for each fuel are seen below.

These reactions occur at the surface of a 1 m2 burner inline with the floor.

&REAC FUEL = ’Douglas_Fir’,

FORMULA=’C6H10O5’,

HEAT_OF_COMBUSTION=16400,

SOOT_YIELD=0.015,

CO_YIELD=0.004/

&REAC FUEL = ’POLYETHYLENE’,

FORMULA=’C2H4’,

HEAT_OF_COMBUSTION=43400,

SOOT_YIELD=0.06,

CO_YIELD=0.024/

&REAC FUEL = ’Paper_Box’,

FORMULA=’C6H10O5’,

HEAT_OF_COMBUSTION=12500,

SOOT_YIELD=0.002,

CO_YIELD=0.029/

&REAC FUEL = ’JP-8’,

FORMULA=’C11H21’,

HEAT_OF_COMBUSTION=42800,

SOOT_YIELD=0.03,

CO_YIELD=0.01/

&REAC FUEL = ’PROPANE’,
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FORMULA=’C3H8’,

HEAT_OF_COMBUSTION=46300,

SOOT_YIELD=0.024,

CO_YIELD=0.005/

&REAC FUEL = ’POLYURETHANE’,

FORMULA=’CH1.8O0.3N0.05’,

HEAT_OF_COMBUSTION=26200,

SOOT_YIELD=0.131,

CO_YIELD=0.010/

4.3.2 Design Fire

There are five main design fires of interest for this analysis. The sections below will explain why each fire

was chosen and why it is believed to be a fuel of interest for an aircraft hangar. The fuel characteristics will

be described in greater detail in section 4.3.3.

4.3.2.1 Design Fire 1: Douglas Fir

Douglas Fir represents a transient fuel package that could be present in the hangar on any given day.

When receiving large shipments, items will be delivered on wooden pallets and distributed throughout the

hangar. It is assumed that the pallets will likely not be immediately discarded and that stacks of pallets will

accumulate in the hangar for an extended period of time, therefore posing a fire hazard.

4.3.2.2 Design Fire 2: Polyethylene

Electrical fires caused 21.6 % of reported fire incidents that led to a foam discharge suppression effort between

the years of 2004-2019. [31] Electrical cables and cabinets can ignite due to electrical current. There are

electrical cabinets in the hangar, so this fuel/ignition source is present in the space. These electrical cables

are typically covered in either polyvinyl-chloride (PVC) or polyethylene. Polyethylene is chosen as it is less

stable than PVC so it represents a less predictable fire and a greater potential threat.
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4.3.2.3 Design Fire 3: Large Box of Paper

The large box of paper represents another transient fuel type. Paper trash as well as paper files can be

stored in the hangar or moved around, so this is a representative fuel type. There is a high possibility for

multiple items to be present in the trash, however a trash can with multiple fuel types would be beyond the

scope of this research. The type of trash can vary based on the day and it is difficult to discriminate fuel

type if multiple items are burning at once, even though such would be realistic. Assuming that the paper is

the only fuel source present at the time is a conservative approach.

4.3.2.4 Design Fire 4: JP-8

JP-8 is military grade jet propulsion fuel, used in Air Force aircraft, therefore this is an ever-present fuel

source in the hangar and is justified to be a design fire. Additionally, a fire involving JP-8 was a design fire

of concern when selecting extinguishing systems for hangars. [32] A full F-35 fuel tank contains 10,900 L of

fuel. However, the fire will be defined on a heat release rate per unit area (HRRPUA) basis so the driving

factor in this model will be the characteristics as opposed to the quantity of the fuel.

4.3.2.5 Design Fire 5: Propane

Propane heaters are not up to code for use in an aircraft hangar, so it is unlikely that a propane tank would

be found in the hangar space. However, propane is considered a design fire of interest because it has the

same HRR as JP-8, but produces less soot so it provides more of a challenge for the model to discriminate

between the two.

4.3.2.6 Additional Considerations

Polyurethane foam is added as an additional design fire of interest, that will be uses solely as a test fire

to see how well the model learns from the temperature profiles it has seen to extrapolate and predict the

HRR of an untrained fuel. Polyurethane foam GM21 is a fast-growth rate fire, which results in a new design

curve. In addition, polyurethane foam is a typical material of choice for furniture padding, so if there is any

upholstered furniture present in the hangar this fuel would be justifiable.
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4.3.3 Fuel Characteristics

A simple pyrolysis model approach was taken to model all of the fuel sources due to the complex composition

of the fuel sources. This model greatly simplifies the pyrolysis model by neglecting the material properties of

the fuel. This requires an explicit definition of the gas phase reaction. Each fire was specified via a prescribed

HRR, therefore material properties were not needed to be listed in the FDS input file. This treated the model

as an ejection of gaseous products from a solid surface. The units of HRRPUA are kW/m2.

HRR is a time-dependent function and as such, temperature and concentrations are inherently time-

dependent variables because they are influenced by the HRR. When the simulation starts, HRR values are

ramped up to model the natural growth of the fire, as it is not realistic for the fire to instantaneously reach

a steady state value. Typical growth for a fire can be defined as a t2 fire and defined in FDS using TAUQ.

However, the fire growth curves from the literature were more complex than a t2 fire, so a function was

created and prescribed as the input.

RAMPQ is specified since the HRR is what is changing as a function of time. T designates the time and

F indicates the fraction of the HRR that should be applied at that given time, T. The intermediate time

points are accounted for using linear interpolation. Values for F were calculated by taking the HRR at the

time of interest and dividing it by the peak HRR from the simulated burn. When F was equal to 1 it is

assumed to be burning at the peak value. The specific ramp-up values for T and F can be seen in Appendix

B.

4.3.3.1 Douglas Fir

Information on the ramp-up function was extrapolated from Figure 26.73 of the SFPE Handbook which

corresponds to the HRR of a typical wood pallet stack with the dimensions 1.22 m x 1.22 m x 1.22 m high.

The peak HRR was identified as 3700 kW and the times/fractions were obtained via visual inspection of the

HRR curve in the handbook. This method can be deemed appropriate as can be see in a comparison of the

curve from the literature versus the recreated/derived curve in Figure 4.4. There is acceptable agreement

between these two curves.
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(a) From SFPE (b) From Derived

Figure 4.4: Comparison of HRR curve from literature vs. derived HRR curve.

HRR measurements are from Krasner (1968), where he performed multiple tests where the burning rate

of pallets were measured. A relatively constant burning can be seen if the stack is reasonably high, which

is the case for the test pallet that was modeled. When applied to nonstandard pallet sizes, the following

equation for HRR on a per-unit-pallet-floor area basis can be used, q̇′′ = 919(1 + 2.14hp)(1− 1.03M) where

hp is stack height in m and M is moisture content in %. However, if hp is less than 0.5 m this equation will

overpredict the HRR.

The entire duration of burning, including growth, steady state and decay will not be included in the FDS

simulation. The truncated curve is seen in Figure 4.5.

Figure 4.5: Douglas fir HRR curve.
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4.3.3.2 Polyethylene (Electric Cables)

Information for the ramp-up function was obtained from the SP Design Fire report for a vertical configuration

with no ventilation. Vertically versus horizontally positioned material impacts burning because there is

the influence of gravity through melting or “disrupting of the material.” [33] There were three vertical

configurations that were compared - open, half open and closed. The closed vertical situation was chosen

because the HRR for this scenario fell in between the HRR for the open and half open scenario in magnitude.

The HRR reached a steady state value in the configuration of interest once the entire tray was burning, and

the fire is ventilation controlled. Additionally, “flame spread will depend on level of thermal attack” [33]. The

type of cable was chosen because it had the fastest flame spread, and therefore the poorest fire performance.

The HRR curves were obtained from large scale tests and flame spread was observed at 100kW. [33]

The peak HRR for the entire duration of the fire was approximated as 285 kW, however the truncated

curve that was used in the FDS model can be seen in Figure 4.6. The peak HRR for the simulation is on

the order of 50 kW due to the slow growth phase of the electric cable fires.

Figure 4.6: Polyethylene HRR curve.

4.3.3.3 Propane

Propane and JP-8 have similar fuel characteristics and for the purpose of this research, the HRR ramp-up

values for propane are identical to that of JP-8. The goal is to explore the differences between fuels with

identical HRRs and different soot yields.
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The design curve input in FDS is seen in Figure 4.7.

Figure 4.7: Propane HRR curve.

4.3.3.4 Large Box with Paper

Information from the ramp-up values for paper were taken from Test 009 from Nuclear Regulatory Commis-

sion (NRC) and NIST. [34] The ignition source was a heptane wick inside the corner of the box. The wick

was a piece of nylon rope with 5 mL of heptane applied to it and was ignited with the lighter right after

placement in the box. This ignition method is used for items that are easily ignited, but need the ignition

source inside the test item itself. “The most common ignition methods involving transient combustible ma-

terial were welding and cutting, overheated wires and shorts, work lights and smoking materials.” The wick

represents these sources. The 0.227 m3 cardboard box was filled 50% with shredded paper. The peak HRR

was measured as 436 kW and the total heat released was 29.95 MJ. [34]

The truncated curve was recreated via visual inspection from the design curve in the NRC/NIST report

and is seen in Figure 4.8 below.
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Figure 4.8: Large box with paper HRR curve.

4.3.3.5 JP-8

Information for ramp-up values for JP-8 were obtained from the NIST report where the reference for the

smoke detector activation was modeled from. The material properties were obtained from a series of labora-

tory experiments performed at NIST, using a cone calorimeter and NIST large scale calorimeter. It should

be noted that the tests met Military Specifications MIL-T-5624P. [28]

Thirteen fire tests were performed in the NIST large scale calorimeter and HRR as a function of pan-size

was determined. Per table 3 in the NIST report, the HRR for JP-8 in a circular pan with a diameter of 1.2

m is 2200 kW. [28]

The design fire curve that showed the HRR for a 1.2 m diameter pool fire from Figure 3 in the report

was for JP-5 only. Because JP-5 closely mirrors that of JP-8, the JP-5 curve was scaled up to match the

maximum HRR of a 1.2 m diameter JP-8 pool fire. The adjustment was deemed necessary because the

pool fire pan diameter was 1.2 m, whereas the design fire curve for JP-8 was given for a 1 m pool fire.[28]

The larger the diameter of the fuel the larger the HRR.The truncated HRR curve, recreated from visual

inspection, is seen in Figure 4.9.
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Figure 4.9: JP-8 HRR curve.

4.3.3.6 Polyurethane Foam GM21

Information for the ramp-up values for polyurethane foam was obtained from the SFPE Handbook. [35]

Values from Figure 26.114 were visually estimated using curve F21, which is a single upholstered chair

comprised of polyurethane foam. The goal of including this simulation is to compare the results to that of

the Douglas fir pallet because both are characterized as fast growth fires.

The chair used in curve F21 was made of polyurethane foam that complied with the 1975 California TB

117 standard and was covered in polyolefin fabric. Ignition was achieved using a 50 kW burner placed at

the side of the chair which represented a small trashcan fire and provided the smallest time between ignition

and peak HRR. Figure 4.10 shows the design curve.
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Figure 4.10: Polyurethane foam GM21 HRR curve.

4.4 Differing Conditions

Environmental conditions can change depending on the time of day or year, and as a result these changing

conditions needed to be taken into account. They can impact how the fire behaves in a space, which is

imperative for analysis in a hangar. The two factors that will be explored are wind and complex geometry

in the form of a beamed ceiling.

4.4.1 Wind

Wind data for Tyndall Air Force Base from the Handbook of Smoke Control Engineering [36] was given as

8.8 m/s which was the extreme 1 % design value. This wind velocity was tested for Douglas fir fires in four

locations in the hangar. The velocity was too high, disrupting the flames (which could be visually seen in

Smokeview) and fire dynamics to the point where the products of combustion that the sensors picked up

were greatly impacted. Since this wind speed was the extreme design value, a choice was made to reduce it

by a factor of two. The velocity of interest for all flaming combustion simulations with wind was 4.4 m/s,

as this allowed for wind effects to play a role, but didn’t completely disturb the structure of the flame.

There are three methods for adding wind to FDS according to the FDS User Guide. The “wall of wind”

[6] approach was used for adding wind into the hangar. The wind was added on the exterior boundary

of the domain, which is the “outdoor” boundary that runs parallel to the hangar door. Additionally, the
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outdoor region will be moved 10 m from the hangar door to allow for sufficient time for the wind profile to

develop before entering the hangar. The wind will be blowing directly into the hangar using a power law

atmospheric wind profile. The default height above the ground, zo where the wind speed is measured is 10

m and the atmospheric profile power, p is 0.14 for airports, as this environment is roughly open terrain [36].

The equation utilized for the wind velocity using the atmospheric wind profile is

u = uo(
z

zo
)p (4.2)

Construction of an aircraft hangar is assumed to have very loose leakage rates which, according to table

50.2 of the SFPE Handbook, corresponds to an exterior building wall ratio of A/Atot = 0.0012m2/m2. [35]

The total wall area is 312 m2 which corresponds to a leakage area of 0.3744 m2 per wall. The leakage was

added into the FDS simulation in the form of an “open” type vent. The total leakage area per wall was

divided by four and distributed into 4 separate vents. The vents were offset one meter from the top and

bottom edge of the wall and 4 m from the left and right of the wall. Each vent was 0.09 m2 to give a

total leakage area of 0.36m2 which is the most appropriate way to distribute the area and that is closest to

0.3744m2.

Specifics of how the wind was added is provided in the FDS input file in Appendix B.

4.4.2 Complex Geometry

Beams can impact smoke development and movement across the ceiling depending on their depth and

configuration within the space, which can cause a difference in the time that it takes the sensors to pick

up either temperature, smoke obscuration, CO or CO2 production. W16x31 beams (which have a depth of

40.34 cm) were assumed to be present throughout the hangar. The beams were not spaced exactly according

to industry standards and instead were used to divide the ceiling into nine sections. The beams were 9 m

from each wall, which lead to a separation of 8 m between adjacent parallel beams which can be seen in

Figure 4.11.
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Figure 4.11: PyroSim visualization of hangar configuration with beams, with sensor of interest circled in red.

To determine the effect of beams, the development of combustion products will be compared for beam

and no beam cases in Figure 4.12. A Douglas fir fire located in the center of the hangar will be analyzed.

The sensor of interest, circled in red in Figure 11, was located outside of the immediate vicinity of the plume,

in an adjacent “grid” created by the beams to directly analyze if the time it takes the smoke to fill up the

grid directly above the plume and spill into the neighboring grids is impacted.

The trend seen in a single product is representative of the other products of combustion, therefore only

CO concentration is shown and Figure 4.12 shows the twenty-point running average of the FDS sensor data.

The effects of beams were considered negligible because there is oscillations between the concentrations in

the beam and no beam cases. Douglas fir fires were the only simulations that included beams at the ceiling

once the impact of beams was concluded to be negligible.
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Figure 4.12: Comparison of CO concentration with beams at the ceiling versus a flat ceiling.

4.5 Model Limitations

FDS is only as realistic as the inputs to the simulations are. The most important user-imposed limitations

as opposed to inherit model limitations are summarized below.

1. HRRPUA - controlling the burning rate instead of allowing the material to pyrolyze based on the

surrounding environmental conditions. The fuel will not achieve burnout unless specified. [6]

(a) No spread rate was taken into account.

(b) HRR doesn’t change when wind is added; only the temperatures at the ceiling are affected.

2. All critical length scales are not fully resolved and those that are fully resolved are only resolved in

small areas (these areas being the plume and the ceiling jet). As a result, there is some loss of accuracy

with this hybrid grid approach.

3. The description of carbon monoxide in FDS has been overly simplified, but has been validated.

(a) CO and soot have fixed yields, which means that the simulation can only be as good as the value

utilized from the literature

44
DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

AFCEC-20220024, 18 May 2022



Chapter 5

Machine Learning

5.1 Location Identification Methodology

The location methodology is the basis for the ML models used in the fire magnitude and fuel composition

portions of this analysis. Figure 5.1 shows a top-down view of the hangar in PyroSim. The numbered sensors,

with the numbers starting at zero to correspond to the indices used in Python, are represented by yellow

points at the ceiling and possible locations of the 1 m2 burner fires are represented by the white squares,

labeled A through F, in Figure 5.1.

Figure 5.1: Labeled sensor locations.
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Preprocessing of the data was required. This approach began by taking the FDS _devc.csv output

files and extracting the temperature and smoke columns for each simulation, which included different fuels,

locations, wind and beam cases. There are many fluctuations in the raw data, as was seen in chapter 4, so

the data was smoothed using a twenty-point running average, which is beneficial for identifying true trends

in the data, as opposed to instantaneous spikes. This twenty-point running average equates to approximately

6 seconds of simulated time, as the simulation runs for 300 seconds with measurements taken 1000 times

over the course of the run-time, for a measurement frequency of about 3.3 Hz. A comparison can between

the raw data and smoothed data can be seen in Figure 5.2.

Figure 5.2: Raw versus smoothed data for JP-8 gire in location F with wind.

5.1.1 Enclosure Fire Physics

There is background on the physics of fire that guides the approach for identifying location. The sensors are

located at the ceiling because of the buoyancy effects. As the fire burns it entrains air and the temperature

of the air and products of combustion increases due to the heat of the combustion reaction. The density of

the air in the fire plume decreases with the increase in temperature. This buoyant fluid, which contains air,

CO, CO2 and smoke rises vertically to the ceiling. The ceiling jet distributes the smoke across the ceiling,

where it then begins to accumulate, seen in Figure 5.3. The maximum depth of the upper layer is determined

by the hangar door opening.
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Figure 5.3: Stratification of smoke at the ceiling.

There are variations in the products of combustion in the smoke layer as a function of distance from

the point of impact of the fire plume onto the ceiling. This occurs because of the mixing with ambient air,

which “dilutes” the products of combustion whether that be concentration of CO, CO2, smoke concentration

or temperature. The further away from the plume, the more cool, ambient air that can be mixed with the

smoke layer. The relationship between distance from the center of the plume and temperature is seen in

Figure 5.4. This temperature decreases with increasing distance and this trend can be seen in the other

products as well, as mixing with ambient air dilutes the concentration of the products of combustion. This

highlights that sensors at the ceiling can impart information on the fire location due to the effect of buoyancy

and mixing.

Figure 5.4: Temperature versus position, from JP-8 fire at location C, at the end of the simulation.
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5.1.2 Temperature Approach

The temperature along the diagonal of the hangar for a JP-8 fire burning in location C was taken and plotted

in Figure 5.5, where sensor 56 is the top left corner of the hangar and sensor 7 is located at the bottom

right of the hangar. Sensor 35, in yellow and sensor 28, in light blue, are the closest sensors to the fire and

therefore achieve the greatest temperature. As was previously discussed, when the sensor is further away

from the fire, the temperature of the sensor decreases because it gets further away from the plume and the

large development of the products of combustion. These temperature differences are first noted in the initial

growth phases of the fire and remain for the entire duration of the combustion reaction. Figure 5.5 highlights

that these trends hold true for any instance in time, not just the end of the simulation when the products

of combustion have had ample time to develop. The maximum temperature value and the corresponding

sensor that picks this up needs to be identified. It is not important to identify the growth of the fire at

this stage of the project, as the first instance in time where this maximum temperature occurs is of interest,

allowing for the quickest detection time. Heat will be the indicative product that will be used to determine

the range in which the fire is predicted to be located.

Figure 5.5: JP-8 fire at location C, with smoothed temperatures, taken along the diagonal of the hangar.

The time-dependent temperatures were analyzed for each fuel package, resulting in a (64,982) matrix

where there are 64 sensors and 982 instances in time when the measurement is taken. An array was created

to store the maximum temperature value at every instance in time. This paired down the matrix, on a
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simulation basis, from shape (64, 982) to (1, 982), identifying the single sensor at each instance in time that

had the maximum temperature, and storing that temperature value in an array. .

It is necessary to determine if the temperature that the sensor is reading is truly greater than the

ambient temperature, which is 25 ◦C. Therefore, a ±15% uncertainty was applied to both the ambient and

the measured temperature and the temperatures were compared to ensure that there was no overlap. The

justification for the ±15% is based on the methodology that Underwriter’s Laboratory Fire Safety Research

Institute (UL FSRI) uses. Radiation will impact the temperature of the thermocouple readings, as there will

be radiative losses or gains depending on where the thermocouple is located in relation to the flame [37].

The justification continues by stating that expanded uncertainty is approximately ±15% due to the effect

of radiative heat transfer to the thermocouples. Even though there are temperature sensors at the ceiling,

which act more like a typical heat detector instead of thermocouples, the thermocouple uncertainty can be

assumed to be applicable to the temperature sensors. The ambient temperature + 15% was subtracted from

the measured temperature -15% and is referred to as the “overlap” value in the code in Appendix B.

If the comparison of the ambient and measured temperature range results in a positive value, the tem-

perature that the sensor is picking up is confirmed to be from the fire and not random fluctuations in the

space. This means that the lower range of the measured temperature, denoted by T, (T-0.15T) is greater

than the larger ambient temperature (28.75 ◦ C) and the intervals do not overlap. The index of the positive

values of the overlap are stored in an array. The value of interest is the first instance of positive overlap,

which is used get the coordinate location of the sensor that is assumed to be closest to the fire. This sensor

location is stored and plotted in relation to the actual fire location. It is assumed that the fire is located

within a circular area, centered at the first sensor activation with a radius of 5 m. This approach reduces

the amount of sensors of interest from 64 to a maximum of nine, depending on the location of the sensor.

The labels of the sensors that fall within this circular region are stored for use in the subsequent algorithms.

The flow chart that represents this process is seen in Figure 5.6, with the detailed code found in Appendix

B. Results will be discussed in chapter 6.
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Figure 5.6: Flowchart of code breakdown.

5.2 Heat Release Rate and Temperature Algorithm

Several iterations were attempted for the development of the HRR and temperature algorithm to determine

the magnitude of the fire, but they all involve the same preprocessing of the data. The (up to nine) sensors

of interest were stored for the 56 unique simulations. There will be less than nine sensors in the area of

interest if the sensor is located close to the wall of the hangar. If the location was identified, the time-series

temperature data was extracted, averaged and stored in a matrix. The average temperature across the

sensors of interest was taken because it is unknown exactly where the fire falls within this hypothesized

circular region, and a single sensor should not be driving the analysis in one direction over another. If the

sensor location was not identified, then the average temperature across all 64 sensors at the ceiling was taken.

HRR values were needed to train the neural network and were obtained from the _hrr.csv FDS output

files. If the network is given temperature data, the simulation must be trained to map the temperatures to

the known HRR, making this a supervised learning problem. Therefore, a twenty-point running average was

taken over the HRRs, resulting in an array of length 981. The time array had to be shortened from 982 to
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981 to match the size of the smoothed HRR data.

5.2.1 Final Architecture

The overall steps in the neural network are as follows:

1. Give the model inputs, where the inputs are temperature values

2. Give the model targets to map to, where the targets are the HRRs that correspond to the temperature

3. Do a forward pass and make predictions

4. Compute the loss of the function

5. Update the model by

(a) Resetting the optimizer gradients

(b) Computing the gradient of the loss function with back propagation

(c) Taking an optimization step

6. Run through another epoch and repeat until completion

A forward pass refers to calculating the values of the outputs from the inputs. Back propagation can be

described by taking a first guess as to the weights applied to the inputs and initializing the final bias terms to

zero. The loss is calculated and the derivative of the loss with respect to the bias term is found. The weight

and bias terms are continually updated by subtracting the step size (slope multiplied by the learning rate)

from the old bias value. The function continues to calculate until the value where the slope approximately

equals zero is found. Gradient descent is used to optimize the unknown parameters.

Various parameters were explored, such as number of nodes and hidden layers, to determine the best

architecture for the finalized neural network. After trial and error, the optimized architecture was a 3-layer,

fully connected, feed forward neural network with ReLU activation, created using Pytorch,[38] with an input

and output size of 981 that corresponds to the length of the time array, and 400 nodes in each of the hidden

layers. This was determined to be a combination that did not overfit to the training data. Adam optimizer

was used with a learning rate of 1e-5 and a weight decay of 0.01. The learning rate controls the step size at

each iteration in an attempt to minimize the loss function. The smaller the learning rate, the longer it takes

the model to adapt to the problem, but if the learning rate is too high the model could diverge. Weight
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decay prevents the weights from getting too large, additionally preventing overfitting. 20,000 epochs were

used, as this resulted in the ideal tradeoff between computational time and reduced loss. An epoch is “the

number of times the algorithm sees the complete data set”, for example, the model will see all of the fires in

the training set, perform the required calculations, then run through another epoch, seeing the training set

again after performing updates to the model.

Gradient descent refers to the calculation of the slope of the error and then moving in the direction

opposite of the increase, toward the direction of the minimum. The model is trained using stochastic

gradient descent, where the batch size (the number of samples the model needs to work through before

updating the parameters) is equal to one. A sample is equal to one simulated fire scenario, which is why

the input to the neural network is 981, as this equates to the number of measurements in one sample. This

implementation can be specifically seen in the for loop in the training code in Appendix B.

An important parameter for the design of the neural network is the criterion used to train the network,

which specifies the type of loss used when computing the gradients. An L1-norm loss function, which uses

the mean absolute error (MAE), minimizes the sum of the absolute differences between the target and the

estimated value and is typically more resistant to outliers. This results in the model focusing on the bulk of

the training data and ignoring any difficult or noisy data. The mean squared error (MSE) is an L2-norm loss

function and minimizes the sum of the square of the differences between the target and estimated values,

which gives high weight to outliers. The difference between training the model with the specified architecture

on each loss criterion is explored.

The first training criterion that was explored utilized PyTorch’s nn.L1Loss() [38]. This measures the

MAE to compute the gradient of the loss function, and continues to train throughout the remainder of the

epochs. In order to have a direct comparison between the L1 and the L2 losses, the performance when

training with MAE had to be evaluated on the test quantities using both MAE and MSE.

This loss function is calculated using

MAE =
1

n

n∑
j=1

|yj − ŷj | (5.1)

where n is the total number of data points y is the true value and ŷ is the predicted value. Calculating the

loss in this way gives the error in more tangible units of kW, as opposed to the units of MSE, which are kW2.
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The second criterion used to train the network was PyTorch’s nn.MSELoss(), calculated as

MSE =
1

n

n∑
j=1

(yj − ŷj)2 (5.2)

The network was set into testing mode and the MSE performance was evaluated on MAE and MSE. The

performance can be evaluated in Figure 5.7. It is beneficial to plot the loss across epochs because the loss

function is calculated across every data point and will give the “quantitative loss”. The log-loss curve for

MAE is reduced to a lower value when evaluated on both criteria metrics, indicating that the L1-norm loss

function, MAE, is the optimal criterion to train and evaluate this specific subset of fuels on, as the closer

the loss is to zero, the better the model performed. From this point on, when referring to loss, MAE is the

loss function that is used. It is important to note that the optimal parameters that are chosen for the final

architecture are not universal and will not apply to scenarios that contain different data sets. Additionally,

further optimization could continue to be performed.

(a) Evaluation on MAE criterion (b) Evaluation on MSE criterion

Figure 5.7: Performance of L1 (MAE) versus L2 (MSE) loss.

5.2.2 Training on Individual Fuels

In order to get insight into the model performance, the neural network was trained and evaluated on each

fuel individually to see how the results from each fuel perform, compared to when the fuels are combined

into a single feed forward neural network.

The sensors of interest that were identified in the location identification model were also used for this

approach. The temperatures and the HRRs were only scaled relative to the individual fuel of interest, using

Sklearn’s MinMaxScaler(). This translates each feature, for example, the combined temperatures of all of
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the propane fires, individually by identifying the minimum and maximum value within the feature range

and scaling the range from 0 to 1 relative to these values. Further detail on how this scaling is performed

can be found on the Sklearn website. A random 80/20, train/test split was performed using Sklearn’s

train_test_split. [39]

The same neural network architecture and model parameters that were utilized for the entire fuel set

explained above were also utilized for each individual fuel. The test losses were calculated for each fuel and

plotted on the same graph in Figure 5.8 as a function of the number of epochs. The scaled losses were

compared because of the order of magnitude difference of HRR between polyethylene and JP-8, for example.

The asymptotic values of the scaled and unscaled MAE are reported in Table 5.1. Again, the closer the scaled

MAE is to zero, the better the model performed, as the goal is to minimize the loss, which is equivalent to

the derivative of the loss being zero. The unscaled MAE indicates the minimum kW loss, but it needs to be

considered that this value is relative to the peak HRR that this fuel produces. For example, polyethylene

has one of the lowest unscaled MAEs, but the peak value of polyethylene is about 50 kW, so a loss of 26.25

kW out of about 50 kW yields a high error, which is seen in the scaled MAE.

Figure 5.8: Scaled testing MAE when each fuel is trained individually.

Table 5.1: Final Mean Absolute Error for Fuels Trained on an Individual Basis

Fuel Scaled MAE (kW/kW) MAE (kW)
Douglas Fir 0.1701 362.10
Polyethylene 0.4703 26.25
Propane 0.1638 384.07
Paper 0.0379 18.49
JP-8 0.2295 535.17

Every fuel reaches an asymptotic value for loss, indicating that these fuels have been sufficiently trained
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on. The loss for polyethylene is the highest in comparison to the other fuels, indicating that this was the

most difficult for the model to fit, which can be hypothesized to be true when the fuels are combined into a

single, large model. A possibility for this behavior is that the polyethylene has such a low HRR relative to

the other fuels of interest. This hypothesis will be assessed in greater detail in later sections.

5.2.3 Combining Fuels into Single Feed Forward Neural Network

If this model were to be deployed in an actual hangar, the fuel would not be known ahead of time, therefore

all of the potential fuels of interest would need to be trained on at the same time to allow for the variety in

the identification of potential fires.

As was seen in Chapter 4, the HRR of these fuels vary in order of magnitude, with polyethylene having

an order of magnitude of 10 and fuels like JP-8, Douglas fir and propane being on an order of magnitude of

103. The input data (temperature) and the output data (HRR) were scaled using MinMaxScaler() [39]. The

feature range in this scenario is the matrix of average temperatures for the 56 individual fires and the matrix

of HRRs for the 56 fires. The HRRs are scaled from 0 to 1 relative to the entire set and the temperatures

are scaled from 0 to 1 relative to the entire set.

It was important to have an equal distribution of each fuel in the training set. If there is significantly

more of one fuel in the training set than another then the model will overfit to the more frequently seen fuel.

Instead of using the train_test_split from Sklearn [39], the training and testing set were manually created,

with 40 out of the 56 fires going to train and the remaining 16 being used for testing. This resulted in an

approximate 70/30, train/test split. A random subset (based on environmental conditions and location) of

eight of each fuel type were selected to train on. The specific fuels utilized in the training and testing set

are listed in Table 5.2 and 5.3. It should be noted that there is not an equal split of each fuel in the testing

set because there were more Douglas fir simulations that were initially run due to the analysis of the effect

of beams at the ceiling of the hangar. However, the unequal distribution of fuel type in the testing set is not

of concern for the performance of the model. The temperatures and corresponding scaled HRRs were put

into input and output, training and testing matrices and the model was trained.
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Table 5.2: Manual Subset of Fuels for Training

Training Set
Fire Fuel Location Wind Beams
0 Douglas Fir A No No
1 Douglas Fir C No No
2 Douglas Fir E No No
4 Douglas Fir A Yes No
7 Douglas Fir D Yes No
8 Douglas Fir E Yes No
11 Douglas Fir B No Yes
13 Douglas Fir D No Yes
16 Polyethylene A No No
17 Polyethylene C No No
18 Polyethylene E No No
20 Polyethylene A Yes No
21 Polyethylene B Yes No
22 Polyethylene C Yes No
23 Polyethylene D Yes No
25 Polyethylene F Yes No
26 Propane A No No
27 Propane C No No
28 Propane E No No
30 Propane A Yes No
31 Propane B Yes No
32 Propane C Yes No
33 Propane D Yes No
35 Propane F Yes No
36 Paper A No No
37 Paper C No No
38 Paper E No No
40 Paper A Yes No
41 Paper B Yes No
42 Paper C Yes No
43 Paper D Yes No
45 Paper F Yes No
46 JP-8 A No No
47 JP-8 C No No
48 JP-8 E No No
50 JP-8 A Yes No
51 JP-8 B Yes No
52 JP-8 C Yes No
53 JP-8 D Yes No
55 JP-8 F Yes No
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Table 5.3: Manual Subset of Fuels for Testing

Testing Set
Fire Fuel Location Wind Beams
3 Douglas Fir F No No
5 Douglas Fir B Yes No
6 Douglas Fir C Yes No
9 Douglas Fir F Yes No
10 Douglas Fir A No Yes
12 Douglas Fir C No Yes
14 Douglas Fir E No Yes
15 Douglas Fir F No Yes
19 Polyethylene F No No
24 Polyethylene E Yes No
29 Propane F No No
34 Propane E Yes No
39 Paper F No No
44 Paper E Yes No
49 JP-8 F No No
54 JP-8 E Yes No

5.3 Fuel Discrimination Algorithm

Prior to determining what method to use for fuel type classification, a series of visualizations were performed

to determine the ideal trends to focus on. Every product of combustion was compared relative to one another

and for each of the fires at a given time step using a PairPlot from Seaborn implementation in Python,

resulting in a total of 16 plots. These graphs and further detail are in Appendix C.

It was determined that the relationship between smoke and temperature yielded the strongest separability

between different fuel types. This is a beneficial relationship to explore because temperature relates to HRR

and MLR, and smoke production is based on MLR. There are multiple ways to perform classification, but

based on the visualizations it was determined that a support vector machine (SVM) utilized for the supervised

classification of the fuel type would be the best approach. This was implemented using sklearn.svm.SVC

[39].

There are three main approaches that were taken for the training of the SVM, however the parameters

and training set are the same for each approach. The same training and testing set that was created for the

neural network was used for training and testing of the following SVMs. This achieved the same purpose of

making sure that the SVM was not over-trained on certain fuel types. The parameters in the SVM are in

Table 5.4.
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Table 5.4: Parameters in SVM

Kernel C decision_function_shape
Linear 1 ovo

The visualizations indicated that the trends were linearly separable, therefore the kernel was set to

linear. When this kernel is used, the data is not projected to a higher dimension and the following equation

is applied,

K(x, y) = xT y + c (5.3)

where x and y are separate data points.

C is the regularization parameter, and is set to 1 as the default. The strength of the regularization is

inversely proportional to C, which in the case of the default, still remains 1. The penalty applied using this

parameter is a squared L2 penalty. The parameter ’ovo’, which stands for “one versus one” is specified because

this is a multi-class classification approach, since there are five fuels of interest. If binary classification is

intended, this parameter will be ignored and the “one versus rest” approach is taken.

5.3.1 No Time Dependency

The SVM was initially trained on a specific instance in time, that was believed to be a representative segment

in time for training, as this time allowed for sufficient development of the fires and the fuels became more

separable at this instance.

The results were not ideal when testing the accuracy using this methodology, because the products of

combustion (smoke and temperature) are time dependent quantities that scale according to the how the

HRR changes in time. This can be seen in Figure 5.9 which identifies the relationship between temperature

and smoke obscuration at 30 seconds, 150 seconds and 300 seconds which is the end of the simulation.
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(a) Smoke versus temperature at approximately 30
seconds.

(b) Smoke versus temperature at approximately 150
seconds.

(c) Smoke versus temperature at approximately 300
seconds.

Figure 5.9: Smoke versus temperature at various times.

An example of the support vector machine being trained on and applied to the specific times of interest

is shown in Figure 5.10, which shows a visual representation of the separable hyperplanes. Hyperplanes are

considered the decision boundaries between unique groups of data points, essentially drawing a line between

different regions in if the data set is two-dimensional. The colored segments indicate the region of interest in

which the fuel is classified. For example, it is predicted that propane fires fall within the green segment. The

relationship between smoke obscuration and temperature results in relatively linear trends. This indicates

that visually, the regions of the hyperplanes do not need to extend to the area shown in Figure 5.10 and can

be made narrower to allow for more precision and the potential addition of more fuels.
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(a) SVM applied at approximately 30 seconds. (b) SVM applied at approximately 150 seconds.

(c) SVM applied at approximately 300 seconds.

Figure 5.10: SVM applied at various times.

Training on a specific instance in time did well when the SVM was applied to the same subset on which

it was trained on, or a similar time range. However, when trained on a particular time and tested on a

drastically different time, the classification was poor, as it can be seen in Figure 5.10 that the hyperplanes

change over each instance in time. Figure 5.11 shows the SVM being trained on the time 150 seconds and

applied to every instance in time from 0 to 300 seconds. The accuracy has large fluctuations, and only

performs well between 100 and 160 seconds, which is why it was determined that time had to be explicitly

taken into account, as there is not a critical instance in time that represents the entire burning duration of

the fire.
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Figure 5.11: Accuracy when trained on a single instance in time (150 seconds) and tested across the entirety
of the simulation.

5.3.2 Time Dependency with Discrimination of All Fuels

Prior to including time, the input to the SVM appeared as a two-dimensional plot. However, incorporating

time changes this to a three-dimensional visualization, in Figure 5.12. The input to the SVM will now have

three columns as opposed to two. If a “slice” of the graph in Figure 5.12 is taken along the time axis, this

would lead to the “no time dependency” visualization.
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Figure 5.12: Smoke obscuration versus temperature versus time for five main fuels of interest.

Smoke, temperature and time have different numeric values, so they were each scaled using the Min-

MaxScaler() [39]. This scaling was performed to significantly speed up the training of the SVM, as the goal

is to maximize the distances from the hyperplane, in case the data set becomes complex, which is quicker

when the distances range from zero to one instead of, zero to 300 in the case of time. After the scaling was

performed, the smoke, temperature and time columns will be appended and create a (54992,3) matrix. The

matrix will then be split up into a training and a testing set, which is the same set identified for the HRR

model and the corresponding fuel labels will be set as the target value. After the preproccessing of the data,

the SVM will be trained and results will be analyzed in following chapter.

5.3.3 Time Dependency with Binary Discrimination Based on Suppression Agent

The approach for the time binary discrimination of fuel types is determined based on suppression agent,

where foam suppression can be utilized for JP-8 fires. The methodology is similar to that of all fuels, except

the target labels have been adjusted. The labels for Douglas fir, polyethylene, propane and paper have been
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replaced with “other” for the training of the binary SVM. This can be seen in the Figure 5.13, with JP-8 in

purple and “other” fuels in gray.

Figure 5.13: Smoke obscuration versus temperature versus time for binary classification
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Chapter 6

Results

6.1 Location Identification

The training set represents a total of 56 unique fire scenarios. The model identified 45 out of 56 of these

fires correctly, resulting in about 80% accuracy. The results of the location identification are in Figure 6.1.

It is considered a success when the fire falls within or on the perimeter of the gray area of interest. The

numbers in the legends of the graphs indicate the first sensor that activated. Some fires identified the same

first sensor activation, so there will be overlap of the symbols in the graph.

The remaining eleven fires that were not captured with this model were not misidentified, rather they

were not able to be located at all. The location of all ten polyethylene fire scenarios were not able to be

identified. The HRR and subsequent temperature that the sensors pick up for this fuel type are order of

magnitudes smaller than that of the other fuel types, so when the ±15% uncertainty is applied, the measured

and ambient temperatures always overlap. This is shown in Figure 6.2, where the lower bound of maximum

temperatures of the no-wind polyethylene cases are plotted and compared to the upper bound of the ambient

temperature. If the uncertainty threshold was decreased from ±15% then the polyethylene fires without wind

would have been correctly identified, but the presence of wind greatly impacted the location identification

regardless of how low the threshold was set.
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(a) Location A (b) Location B

(c) Location C (d) Location D

(e) Location E (f) Location F

Figure 6.1: Results of location identification model with gray circle representing the 5 m radius of interest;
circles = Douglas fir, triangles = propane, squares = paper, plus sign = JP-8; blue = no wind, green = wind,
red = beams.
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Figure 6.2: Polyethylene temperatures, compared to ambient.

The other fire that could not be identified was the paper fire, with wind, in location F. The paper fire

had a peak HRR that was about a factor of ten less than Douglas Fir, JP-8 and propane. Additionally,

paper has a lower soot yield, at 0.002 g/g. The combination of lower HRR and soot yield made the fire

more susceptible to the impacts of wind, which were uniquely seen in location F. The location in the corner

of the space closest to the hangar door caused entrainment effects from the wind that greatly impacted the

structure of the flame and the distribution of products of combustion to the detectors, which is shown in

Figure 6.3a, where it can be seen that the smoke is being taken out of the hangar through the door. Figure

6.3b illustrates what a vector slice of these entrainment effects look like, with the scale going from -6.0 m/s

to 5.0 m/s. It can be seen that there is outflow at the bottom of the hangar door near the base of the fire.

Figure 6.3c shows the complex flow structure through the hangar door, with velocities ranging from -6.0 m/s

to 5.0 m/s. It is confirmed that there is a strong negative outflow as the wind interacts with the side of the

hangar doors, shown in blue. The stronger positive inflow is seen toward the upper middle portion of the

hangar door. All images were captured at 120 seconds, when the paper fire reached its peak HRR.
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(a) Side Smokeview visualization

(b) Side view, V-Velocity Vector slice at x = 2 m

(c) V-velocity, slice normal to hangar door opening at y =
0 m

Figure 6.3: Paper fire with wind at location F.

6.2 HRR Model

The relative high success of identifying the location of the fire directly impacts the performance of the HRR

model in a positive way. The scaled train and test results are seen in Figure 6.4a, which is plotted on a

log scale to differentiate between the similar train and test final values. The unscaled train and test results

for the combined fuel neural network are seen in Figure 6.4b. The train loss does not appear to reach an
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asymptotic value when plotted on a log y-axis, indicating that the neural network could be trained for more

epochs in order to sufficiently reduce the loss, while the test loss does reach an asymptotic value. However,

the loss curves look as expected, as the model performs better on training than it does testing. The final

loss values at the end of training and testing are in Table 6.1.

(a) Scaled (b) Unscaled

Figure 6.4: Train and test loss curves.

Table 6.1: Final Loss Values

Scaled Train (kW) Test (kW)
Yes 0.0649 0.5513
No 150.45 1278.16

The train loss reaches a small value, but to get a better idea of how well the training did at predicting

the HRR curve, a few representative training graphs are shown in Figure 6.5. The model was used to predict

the HRR curve from the given temperature data and it can be seen that the prediction was able to track the

actual HRR curve with good agreement. The results that best indicate performance, specifically on unseen

data will be seen with the testing data.
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(a) Polyethylene, location B, wind. (b) JP-8, location A, no wind.

Figure 6.5: HRR curve predictions based on training set.

6.2.0.1 Test Results on Different Location and Wind

It can be seen that the model does an overall good job at predicting the magnitude of the fire in Figure 6.6,

which is the main interest to the firefighters responding to the fire.

(a) Douglas fir, location F, no wind. (b) Douglas fir, location F, wind.
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(c) Polyethylene, location F, no wind. (d) Polyethylene, location E, wind.

(e) Propane, location F, no wind. (f) Propane, location E, wind.

(g) Paper, location F, no wind. (h) Paper, location E, wind.
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(i) JP-8, location F, no wind. (j) JP-8, location E, wind.

Figure 6.6: HRR curve predictions.

It is seen that the paper fire in location F predicts a negative HRR starting around 180 seconds. It is

understood that there cannot be negative HRRs, so the fire is assumed to have extinguished at this point.

This predicts early extinction of the paper fire by about two minutes, however the trend in the growth

and initial decay phase is captured well which is of main interest to firefighters. When extrapolating and

analyzing overall trends in the HRR predictions, there are discrepancies specifically with the polyethylene

fire when wind is present. There are difficulties predicting the HRR of polyethylene fires for the same reasons

that the model was unable to predict the location of these fires. The HRR is drastically lower than the other

fuels in the training set, and when wind is added, this significantly drives down the temperature that the

sensors are picking up. As previously mentioned, the HRR was prescribed as a HRRPUA, so the addition

of wind does not impact the HRR of the fire. The addition of wind does impact the temperature and can

be seen to largely impact the temperature of low HRR fires. This causes issues for the model, as it is now

trying to map two different temperature profiles to the same HRR profile, which is why Figure 6.6d does

not follow the trend of the actual HRR curve and predicts extinction of the fire. The relationship between

critical HRR with the addition of wind is of interest for the use of this model.

The critical HRR is explored by increasing the HRR of polyethylene fires by a factor of five and a factor

of ten. The peak HRR for the duration of the simulation is approximately 50 kW, so the scaled up fires will

be considered 250 kW and 500 kW. A total of 12 simulations, all in Location A, were used for this analysis,

as the wind would have a greater effect on the fires closest to the hangar door opening. The combinations

of simulations are seen in Table 6.2. The temperatures of the nine sensors of interest within the 5 m radius

of the fire were averaged and used in the following analysis.
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Table 6.2: Critical HRR Analysis Test Matrix

HRR No Wind 4.4 m/s 2.2 m/s 1.1 m/s
50 kW X X X X
250 kW X X X X
500 kW X X X X

The temperatures were scaled using the MinMaxScaler() [39], in order for the temperatures and calcula-

tions to be directly comparable to each other. Proportional error is calculated using the “no wind” case as

the reference. The difference between the “no wind” case and a wind case for a given HRR is calculated at

each instance in time and then divided by the reference case at that same time. This calculation defines the

error based on the amount the temperature deviates from the no wind case, therefore a smaller proportional

error is better as this indicates wind did not greatly impact the temperature.

Figures 6.7a, 6.7b and 6.7c show the proportional error for each individual wind case. There is overlap

between the 250 and 500 kW curves, indicating that the prescribed wind speeds do not greatly impact the

temperature difference between these two fires. There is a larger deviation in the trends with the 50 kW fire,

as there is a larger error present and less overlap with the other HRR curves. This indicates that the critical

HRR, that works well for this designed model and that does not get largely impacted by the presence of

wind is somewhere between 50 kW and 250 kW.

(a) Quarter wind, 1.1 m/s. (b) Half wind, 2.2 m/s.
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(c) Full wind, 4.4 m/s.

Figure 6.7: Proportional error curves.

6.2.0.2 Test Results on Different HRR and New Fuel

A secondary testing set was used to further validate the model’s performance. The graphs in Figure 6.8

show how well the model did at predicting completely unseen HRRs. The testing above showed how the

model performed when looking at different fires, when the difference was the location and the environmental

conditions. The subset below has scaled the HRR up or down by a factor of two and four to determine if

the model was sufficiently trained in that it could extrapolate a prediction of the HRR curve. The model

did relatively well at predicting similar magnitude HRR curves. These scenarios would be indicative of if a

larger or smaller fuel package was present in the hangar.

(a) DF 0.25xHRR (b) DF 0.5xHRR
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(c) PE 2xHRR (d) PE 4xHRR

(e) Propane 0.25xHRR (f) Propane 0.5xHRR

(g) Paper 0.25xHRR (h) Paper 0.5xHRR
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(i) JP-8 0.25xHRR (j) JP-8 0.5xHRR

Figure 6.8: Scaled HRR curve predictions.

The final test to determine the performance of the model is to see how it predicts on a completely unseen

fuel type, which is polyurethane foam. All fires that were previously trained on were either increasing,

reached a steady state value, or declined (with this fire having a lower peak HRR). Therefore, predicting

on the polyurethane foam fire provides a large challenge. This ultra-fast t2 growth phase of the fire was

able to be captured, but the decay phase was not. The prediction seems to mirror the Douglas fir design

curve, however the model was able to predict the shift in time of the growth phase of the polyurethane foam

fire. A hypothesis as to why the model was not able to predict the decay phase of the fire is because the

temperature in the space was already elevated and that heat remained present in the hangar. The abrupt

decrease in HRR did not correlate to an abrupt decrease in temperature. The HRR that was seen at the end

of the decay phase before the simulation cut off was around 1500 kW which is still quite high compared to

the growth and decay that was captured in the paper fire. This hypothesis has been made by other research

groups when accounting for the prediction of abrupt changes in the HRR of larger fires.
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Figure 6.9: Polyurethane foam fire.

6.2.1 Overall Results

It is promising to see that the overall trends in the growth rate of the fire are captured through the use of

this neural network and that for certain fires, the HRR curve is predicted with almost perfect agreement.

However, for the purpose of situational awareness, the exact value of the HRR to the nearest kW is not of

interest. It is more important to know the magnitude of the fire in a categorical sense, giving the firefighters

a relative idea of the size of fire they need to put out. The categories have been created to quantify the

risk and the equipment needed to extinguish the fire, with the risk increasing with each category. These

categories are:

• Category 1: 0 - 250 kW

• Category 2: 251 - 500 kW

• Category 3: 501 - 1000 kW

• Category 4: > 1000 kW

When looking at the testing results, in Table 6.3, the model was able to correctly identify 85% of the

categories. Meeting the category criteria meant that the predicted peak HRR value fell in the same category

as the actual peak HRR value and did not look at the agreement in the trends throughout the duration of

the fire simulation. This performance can be further analyzed by the confusion matrix shown in Figure 6.10.

This provides detail on where/what type of classification errors are being made, giving insight on how to

better improve the model. The x-axis corresponds to the true category (either 1, 2, 3 or 4) and the y-axis
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corresponds to the predicted category (either 1, 2, 3 or 4). If the classification was performed perfectly, then

the 45 degree diagonal would contain all 100% values. If there is a misclassification of the fire category, it is

better to overpredict than underpredict, as the firefighter can be prepared to take a conservative approach to

fighting the fire. Practically speaking, there is no harm if a firefighter is prepared to fight a larger fire than

what is present in the space, so in this case, predicting a larger fire might not be considered an explicit failure

in the model. However, 50% of the misclassified fires underpredict the magnitude and risk of the fire by

one category, which is a cause for concern and could be detrimental to firefighter safety and the subsequent

protection of the hangar, so this discrepancy needs to be resolved.

Table 6.3: HRR Category Agreement

Fire Predicted Category True Category Correct?
3 4 4 Yes
5 4 4 Yes
6 4 4 Yes
9 4 2 No
10 4 4 Yes
12 4 4 Yes
14 4 4 Yes
15 4 4 Yes
19 1 1 Yes
24 1 1 Yes
29 4 4 Yes
34 4 4 Yes
39 2 2 Yes
44 2 2 Yes
49 4 4 Yes
54 4 4 Yes
Douglas fir 0.25xHRR 3 4 No
Polyethylene 2xHRR 1 1 Yes
Polyethylene 4xHRR 1 2 No
Paper 0.25xHRR 2 2 Yes
Paper 0.5xHRR 3 2 No
Propane 0.25xHRR 3 3 Yes
JP-8 0.25xHRR 3 3 Yes
JP-8 0.5xHRR 4 4 Yes
Douglas fir 0.5xHRR 4 4 Yes
Propane 0.5xHRR 4 4 Yes
Polyurethane foam 4 4 Yes

Fire 9 is a Douglas fir fire with wind, in location F. As previously discussed with the inability to locate the

paper fire in location F, wind plays a greater role in the disturbance of the flame structure and temperature

when the fire is located in the corner of the hangar, near the open hangar door. The corner effects weren’t

large enough to impact the location model, but they were large enough to reduce the temperature in a
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way that the model believes that the HRR associated with this temperature is much lower than the actual

HRR. The polyethylene 4xHRR fire and the Douglas fir 0.25xHRR fire were very close to being correctly

categorized.

Figure 6.10: HRR confusion matrix.

6.3 Fuel Discrimination Model

The two approaches that will be discussed in the following section are the “all fuels” identification and the

binary fuels identification.

6.3.1 All Fuels Approach

The test accuracy is what quantifies how well the SVM did on the classification. This approach resulted in

62% test accuracy. This accuracy can be further analyzed by the confusion matrix shown in Figure 6.11.

The x-axis corresponds to the true fuel, while the y-axis corresponds to the predicted fuel. Douglas fir

is denoted as “DF”, polyethylene is “PE”, propane is “Pr” and paper is “Pa”. Table 6.4 shows how many

instances a certain fuel was tested on. Insight from the matrix shows that the largest misclassification error

is occurring with Douglas fir fires, as 58.8% of these fires are predicted as being polyethylene. This is due

to the slow growth of the HRR in the Douglas fir fire over the course of the simulation. The HRR does

not ramp up until the simulation time is between 125 and 150 seconds. It is understood that the HRR of

the polyethylene is orders of magnitude lower than that of the other fuels, so the SVM gets confused in this
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sense. It has learned that during the 125 seconds of the simulation, polyethylene has a small, close to zero

HRR, therefore the nonexistent HRR of Douglas fir during this time frame poses issues for classification, as

the model thinks that Douglas fir could be polyethylene.

Table 6.4: Total “All Fuels” seen

Fuel Instances
Douglas Fir 7856
Polyethylene 1964
Propane 1964
Paper 1964
JP-8 1964

Figure 6.11: Confusion matrix of classification on all five fuel types.

6.3.2 Binary Fuel Approach

The approach to differentiate fuel type based on suppression agent yielded better result than the all fuels

approach, as there was difficulty in classifying similar fuel sources. There was 91% testing accuracy when

classifying on a binary basis and the details of this model’s performance is seen in Figure 6.12, with the total

number of instances of test cases in Table 6.5.
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Table 6.5: Total Binary Fuels seen

Fuel Instances
Other 13748
JP-8 1964

Figure 6.12: Confusion Matrix of binary classification of JP-8 versus other fuels.

6.3.3 Comparison Between Classification Methods

It is of interest to determine how the accuracy of the model changes as a function of time. This relationship

is explored in Figure 6.13. The accuracy was determined at 30 second intervals in time, starting from 0 to 30

seconds, and ending with 240 to 270 seconds. The corresponding SVM was used to predict the classification

accuracy for each of the nine, 30 second intervals, which were then plotted as a point. The same approach

was taken to predict the classification on a binary set of fuels.

The dashed line represents the average test accuracy on the entire training set. The testing accuracy

on all fuels tended to increase with time, while the accuracy of the binary classification remained relatively

stable, mainly decreasing in the final time frames.
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Figure 6.13: Critical accuracy comparison of all fuels versus binary classification.

The time at which the model is trained and tested yields different results. It was determined that, for

this specific fuel set, that there is better performance once the SVM starts training at later instances in time.

When the SVM started training on all fuels at one minute, there was 71% accuracy, and when it was trained

starting at two minutes, the accuracy increased to 80%. This is because the later in time, the more time the

products have to develop and differentiate from the other fuels, specifically in the initial growth stages.
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Chapter 7

Conclusion and Future Work

The limitations in getting the bulk of the information about the fire scenario upon arrival to the scene and

the manual process of surveying the scene of the fire are addressed with machine learning techniques. This

information is obtained by adjusting the sensors to collect continuous data, that the models can then use to

make predictions. These techniques allow for the size-up process to be automated, providing the firefighter

with pertinent information before getting to the scene of the fire, which allows for quicker intervention and

suppression of the fire.

This research determined that it is feasible to use machine learning techniques to determine where a fire is

located, the size of the fire and the composition of the fuel that is burning. FDS simulations were performed

on a combination of fuels, locations and environmental conditions. The models made use of sensor data from

FDS, specifically temperature and smoke obscuration, as inputs to answer the key questions posed in the

scope of this project, and provide better situational awareness. The location identification method reduced

the amount of data needed for the HRR model, which predicted the design curve and magnitude of the fire

using a three-layer feed forward neural network, and did the same for the fuel discrimination model, which

used a linear support vector machine that considered time dependency.

Increased situational awareness is needed for incident commanders to be better prepared to deal with a

fire scenario, and is especially important for aircraft hangars, where the monetary loss in addition to loss of

productivity is extremely high. The size-up process is performed with sensors and machine learning from the

indication of alarm until firefighters enter the hangar and begin fighting the fire. Each methodology yielded

promising results, with over 60% accuracy for all models.

The location methodology was able to identify all fires with a HRR exceeding a minimum threshold,
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which nominally equates to HRRs larger than 50 kW to 250 kW, as a critical range rather than a specific

critical HRR was identified. There is the exception of the paper fire in location F in the corner, so it is

determined that fires of a certain size can be largely affected by entrainment effects in the corner of the

hangar, which could likely be extended to entrainment effects when the fire is located by the wall. In a large

space like a hangar, it is beneficial to have the location of the fire narrowed down from a large area (such as

676 m2 in the case of the hangar used for the FDS models) to a circular area of approximately 78.5 m2. This

reduces the time it takes the incident commander to survey the building, looking for the fire. If they are

given the coordinates or region of the hangar where the fire is suspected to be, they can go straight there,

reducing the potential time the fire is able to grow and spread. The location method had 80% accuracy,

which means there is an 80% chance that the fire is identified faster, and the time on the scene can be spent

on fighting rather than finding the fire.

It is beneficial from a situational awareness standpoint to know the relative size of the fire that is burning,

as a firefighter is approaching the scene of the fire. As mentioned before, knowing the exact size of the fire,

for example, to the nearest 10 kW, is not important. Knowing a general category (small, medium, large or

extra large) in which the fire size falls in is of interest to determine the plan of attack to extinguish the fire,

and further determine if this is a routine or hazardous fire. The larger the fire, the more equipment and

people will be needed. The HRR model from temperature yields good results because it is now 85% likely

that the firefighters will be better prepared for the severity of the fire they are facing. It is important to

clarify that the model is only able to give real-time updates of the predicted HRR and was not designed to

predict the HRR at future times. Therefore the model is only beneficial for the duration of time it is growing.

However, the simulations demonstrate that the fuels of interest grow and then decay within five minutes, or

grow and reach a steady state value in this time frame. Assuming the fire does not spread to other objects

in the hangar, the incident commander will know the largest size of the fire as they are approaching the

hangar, as they are likely not at the scene of the fire within five minutes.

It is beneficial to identify the individual fuel packages from the lens of academia, and a success rate of

62% is very promising. However, when asking the questions during size-up like “what is burning?” this can

be seen almost as asking “what resources are needed?” because specific fuels require specific suppression

agents. This is why classifying on a binary basis and considering the suppression agent needed is of greater

interest to firefighters, as determining, for example, is the fire paper or Douglas fir is not imperative as both

fires can be fought using water. JP-8 fires are most effectively fought with foam suppression agents, and

91% accuracy of classification when identifying JP-8 versus others answers what resources are needed. This
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combined increased knowledge of the fire scene allows for a better understanding of the current environment

and automates and simplifies the processing of data needed to obtain proper situational awareness.

These models prove successful for the feasibility of coupling sensors with machine learning in a hangar

configuration, however there are limitations to the domain of validity of this model. Future work and further

validation will need to be performed if this model were to be deployed in a hangar, or similar space.

The HRR was defined as HRRPUA and was not impacted by the presence of wind. It would be beneficial

to broaden the scope of applicability and make the model more realistic by defining the combustion reaction

using an evaporation model. Defining the reaction this way becomes more computationally expensive, as

there is a need for better grid resolution to properly account for convection. Heat losses to the system and

the surroundings need to be properly described in order to not over account for the heat feedback present in

the system. On paper, this reaction is possible to define, but in practice may prove difficult which is why it

is recommended to begin this approach with liquid fuels of interest, before extending this to the pyrolysis of

solid fuels. This model accounts for the variation in evaporation in time based on thermal feedback, which

allows for this model to be extended for the consideration of defining the potential fire spread to other objects

as a function of applied heat flux.

This leads to the next area of future work, which is the consideration of how the model will work if

the fire spreads as the simulation progresses. The model is currently designed for a fixed size (1 m2) fire,

which may or may not be realistic depending on the initial size of the fuel package or the other potential

fuel sources in the neighboring area, though it is assumed that items in a hangar are typically well spread

out. It would be of interest to determine how to adjust the location identification model to account for this

growth, as the model would have to pick a different sensor location as a function of time and broaden the

region used for analysis of the HRR as the fire spreads throughout the space. This spread can be defined

through the use of a predefined spread rate or through utilization of the evaporation/pyrolysis model, which

will take into account applied heat flux from the primary to the secondary fuel sources.

Another way to incorporate more data is to expand the SVM to incorporate CO and/or CO2, which results

in a visualization of a potential four or five-dimensional graph. This might allow for greater identification of

trends and more separability when looking at an all fuels approach, as this approach had a greater challenge

for the first half of the simulation, specifically when Douglas fir was still developing. Tracking these additional

products might allow for different trends to be seen and allow for polyethylene to be differentiated from

Douglas fir early on. A version of PCA was performed when using temperature, smoke and time, as these

were manually determined to explain most of the variance within the data set. However it will be beneficial
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to explore the effect of incorporating CO and CO2 as these products could still have some proportion of

explained variance.

A ML model is only as good as the data set that it is trained on. Therefore, it is beneficial to increase

the size of the training set if this model were to be deployed in a hangar, to ensure the confidence in its

performance. Suggestions for an increased data set include exploring other locations within the hangar.

Locations along the centerline of the hangar and the corner closest to the hangar door were explored for this

feasibility study. The model would become more robust if other locations were analyzed and it is believed

that fires closest to the wall and corners will provide the greatest deviation from the fires burning in the

interior of the hangar. It would also be of benefit to adjust the wind velocity to address the variation in wind

patterns as different wind profiles can be simulated. The training set used for this study consisted of fires

when the hangar door was open, so it would be of interest to study the effect of the hangar door being closed.

It is not expected that a fire in the hangar will become underventilated due to the extremely loose leakage

and overall large volume of the space, however the lack of wind or natural airflow from the outside through

the 168 m2 opening could impact the fire. To provide a “safety factor” for this model it would be beneficial

to train on a marginal amount of “unexpected” fuels for the occupancy. This will increase the chances that

the HRR and fuel package will be properly predicted, even on abnormal days. It should be understood that

an infinite number of fuels could be added to the training set, so there needs to be a cut-off at some point,

as a sufficiently large training set, with accepted fuels of interest will allow the model to learn the patterns

in the data and extrapolate easier to unseen fires. Additionally, it is understood that FDS is not a perfect

model and is a qualitative tool, therefore the ML models should be experimentally validated if this were to

be deployed in a hangar. The fuels of interest could be burned in a laboratory setting to provide the most

accurate data, and to allow for the effect of natural environmental factors to be seen, such as variations in

temperature and ventilation conditions in the lab. Experiments could also be performed in a large open

space like a hangar to further confirm the applicability. Using a model to validate another model is a good

first step, and the FDS simulations can be used to narrow down what fuels should be studied experimentally

and would help cut down on associated monetary costs, but this needs to go a step further for this model to

be sufficiently validated and for there to be total confidence in its performance.

The models have been confirmed to work in an open space with a tall ceiling, but they could be expanded

to another type of building. The building can be more compartmentalized, in which case the location search

would be even more helpful. If the space of interest had a taller ceiling height, the models might have to

be adjusted to consider the smoke transport. Additionally, a new building requires a new subset of fuels of
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interest to be identified and modeled, as the fuels used for this research were assumed to be present in a

hangar and will not be applicable to other occupancies.

The last suggestions for future research deal with the structure of the neural network. The first is per-

forming a grid search, which is a systematic method used to analyze combinations of various hyperparameters

to identify the optimal hyperparameters based on the model performance. This could include adjusting the

model architecture, learning rate, number of epochs, the optimizer and more. Grid search can be “auto-

mated” or performed manually, but either way this is a time extensive process when training a deep neural

network. The final suggestion is creating a more complex model like a CNN or RNN that can predict how the

HRR will develop in time and use the outputs of the network to inform the inputs. The feed forward neural

network takes in real-time data and makes predictions at the same time. However, it could be beneficial to

develop this model to be able to predict the HRR a minute or so out, to increase the level of information that

firefighters get, allowing for an increase in situational awareness, specifically when it comes to predicting the

risk associated with the fire.
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Appendix A

FDS Input Files

It is important to note, that the mesh needs to be redefined with the new location to consider the 7 m x 7

m fire plume changing location.

A.1 Locations

The vent and surface IDs for the 6 locations of interest are listed below.

Location A: &VENT XB = 12.5,13.5,3,4,0,0, SURF_ID=’FIRE’/

Location B: &VENT XB = 12.5,13.5,8.5,9.5,0,0, SURF_ID=’FIRE’/

Location C: &VENT XB = 12.5,13.5,12.5,13.5,0,0, SURF_ID=’FIRE’/

Location D: &VENT XB = 12.5,13.5,18,19,0,0, SURF_ID=’FIRE’/

Location E: &VENT XB = 12.5,13.5,22,23,0,0, SURF_ID=’FIRE’/

Location F: &VENT XB = 3,4,3,4,0,0, SURF_ID=’FIRE’/

A.2 No Wind Case (Location B)

/dx =0.1−0.5

&MESH ID=’FirePlume1 ’ , IJK=70 ,70 ,25 , XB=0 ,7 ,0 ,7 ,0 ,2 .5/ dx=0.1

&MESH ID=’FirePlume2 ’ , IJK=70 ,70 ,25 , XB=0 ,7 ,0 ,7 ,2 .5 ,5/ dx=0.1

&MESH ID=’FirePlume3 ’ , IJK=70 ,70 ,25 , XB=0 ,7 ,0 ,7 ,5 ,7 .5/ dx=0.1

&MESH ID=’FirePlume4 ’ , IJK=70 ,70 ,35 , XB=0 ,7 ,0 ,7 ,7 .5 ,11/ dx=0.1
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&MESH ID=’SmokeLayer1 ’ , IJK=130 ,90 ,10 , XB=0 ,13 ,0 ,9 ,11 ,12/ dx=0.1

&MESH ID=’SmokeLayer2 ’ , IJK=130 ,90 ,10 , XB=0 ,13 ,9 ,18 ,11 ,12/ dx=0.1

&MESH ID=’SmokeLayer3 ’ , IJK=130 ,80 ,10 , XB=0 ,13 ,18 ,26 ,11 ,12/ dx=0.1

&MESH ID=’SmokeLayer4 ’ , IJK=130 ,90 ,10 , XB=13 ,26 ,0 ,9 ,11 ,12/ dx=0.1

&MESH ID=’SmokeLayer5 ’ , IJK=130 ,90 ,10 , XB=13 ,26 ,9 ,18 ,11 ,12/ dx=0.1

&MESH ID=’SmokeLayer6 ’ , IJK=130 ,80 ,10 , XB=13 ,26 ,18 ,26 ,11 ,12/ dx=0.1

&MESH ID=’Mesh01 ’ , IJK=38 ,22 ,22 , XB=7 ,26 ,0 ,11 ,0 ,11/ dx=0.5

&MESH ID=’Mesh02 ’ , IJK=14 ,38 ,22 , XB=0 ,7 ,7 ,26 ,0 ,11/dx=0.5

&MESH ID=’Mesh03 ’ , IJK=38 ,30 ,22 , XB=7 ,26 ,11 ,26 ,0 ,11/ dx=0.5

&MESH ID=’Outdoors1 ’ , IJK=52 ,12 ,24 ,XB=0 ,26 , −6 ,0 ,0 .0 ,12.0/ dx = 0 .5

&TIME T_END=300/

&MISC TMPA = 25 , HUMIDITY = 65 /

&MATL ID = ’CONCRETE’ ,

DENSITY = 2200 ,

SPECIFIC_HEAT = 1.04 ,

CONDUCTIVITY = 1.8 /

&SURF ID = ’FLOOR’ ,

MATL_ID = ’CONCRETE’

THICKNESS = 0 .1

COLOR =’BEIGE’ /

&MATL ID = ’CORRUGATED METAL’ ,

CONDUCTIVITY = 52 ,
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SPECIFIC_HEAT = 0.47 ,

DENSITY = 7800 /

&SURF ID = ’WALL’ ,

THICKNESS = 0 . 2 ,

DEFAULT = .TRUE. ,

MATL_ID = ’CORRUGATED METAL’

COLOR =’LAVENDER’/

&MATL ID = ’Carbon Stee l ’ ,

FYI = ’1 . 5 % carbon s t e e l from NCFS database ’ ,

CONDUCTIVITY = 36 ,

SPECIFIC_HEAT = 0.486 ,

DENSITY = 7753 /

&SURF ID = ’ELECTRICAL PANEL’ ,

THICKNESS = 0 .05 ,

MATL_ID = ’Carbon Stee l ’

COLOR=’MELON’/

/ c r e a t e hangar space

&OBST XB = 0 ,26 ,0 , 26 ,0 , 0 , SURF_ID = ’FLOOR’ / main f l o o r

&OBST XB = 0 ,26 , 0 , 0 . 4 , 0 , 12 , SURF_ID = ’WALL’ / f r on t wa l l

&HOLE XB = 1 ,25 , −0 .4 ,0 .8 ,0 ,7/ hangar door

/open outdoor space

&VENT XB = 0 ,26 ,−6 ,−6 ,0 ,12 , SURF_ID = ’OPEN’ /

&VENT XB = 26 ,26 , −6 ,0 ,0 ,12 , SURF_ID = ’OPEN’ /

&VENT XB = 0 ,0 , −6 ,0 ,0 ,12 , SURF_ID = ’OPEN’ /
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&VENT XB = 0 ,26 , −6 ,0 ,0 ,0 , SURF_ID = ’FLOOR’ /

/ e l e c t r i c a l cab ine t ( s )

&OBST XB = 0 , 0 . 6 , 1 2 . 8 , 1 3 . 6 , 1 . 6 , 2 . 4 , SURF_ID = ’ELECTRICAL PANEL’ , COLOR=’BLUE

’/

&OBST XB = 0 , 0 . 6 , 2 3 . 6 , 2 4 . 4 , 1 . 6 , 2 . 4 , SURF_ID = ’ELECTRICAL PANEL’ , COLOR=’BLUE

’/

&OBST XB = 25 . 6 , 2 6 , 1 2 . 8 , 1 3 . 6 , 1 . 6 , 2 . 4 , SURF_ID = ’ELECTRICAL PANEL’ , COLOR=’

BLUE’/

&OBST XB = 25 . 6 , 2 6 , 2 3 . 6 , 2 4 . 4 , 1 . 6 , 2 . 4 , SURF_ID = ’ELECTRICAL PANEL’ , COLOR=’

BLUE’/

/smoke de t e c t o r s c l e a r y model

&DEVC ID =’YZ=1.625 ,12 ’ , XB=1 .625 ,24 .375 ,1 . 625 , 1 . 625 , 12 ,12 , PROP_ID=’Cleary

Pho t o e l e c t r i c P1 ’ , POINTS=8, TIME_HISTORY=T/

&DEVC ID =’YZ=4.875 ,12 ’ , XB=1 .625 ,24 .375 ,4 . 875 , 4 . 875 , 12 ,12 , PROP_ID=’Cleary

Pho t o e l e c t r i c P1 ’ , POINTS=8, TIME_HISTORY=T/

&DEVC ID =’YZ=8.125 ,12 ’ , XB=1 .625 ,24 .375 ,8 . 125 , 8 . 125 , 12 ,12 , PROP_ID=’Cleary

Pho t o e l e c t r i c P1 ’ , POINTS=8, TIME_HISTORY=T/

&DEVC ID =’YZ=11.375 ,12 ’ , XB=1.625 ,24 .375 ,11 .375 ,11 .375 ,12 ,12 , PROP_ID=’Cleary

Pho t o e l e c t r i c P1 ’ , POINTS=8, TIME_HISTORY=T/

&DEVC ID =’YZ=14.625 ,12 ’ , XB=1.625 ,24 .375 ,14 .625 ,14 .625 ,12 ,12 , PROP_ID=’Cleary

Pho t o e l e c t r i c P1 ’ , POINTS=8, TIME_HISTORY=T/

&DEVC ID =’YZ=17.875 ,12 ’ , XB=1.625 ,24 .375 ,17 .875 ,17 .875 ,12 ,12 , PROP_ID=’Cleary

Pho t o e l e c t r i c P1 ’ , POINTS=8, TIME_HISTORY=T/

&DEVC ID =’YZ=21.125 ,12 ’ , XB=1.625 ,24 .375 ,21 .125 ,21 .125 ,12 ,12 , PROP_ID=’Cleary

Pho t o e l e c t r i c P1 ’ , POINTS=8, TIME_HISTORY=T/

&DEVC ID =’YZ=24.375 ,12 ’ , XB=1.625 ,24 .375 ,24 .375 ,24 .375 ,12 ,12 , PROP_ID=’Cleary
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Pho t o e l e c t r i c P1 ’ , POINTS=8, TIME_HISTORY=T/

&PROP ID=’Cleary Pho t o e l e c t r i c P1 ’ , QUANTITY=’CHAMBER OBSCURATION’ , ALPHA_E

=1.8 , BETA_E=−1.0,

ALPHA_C=1.0 , BETA_C=−0.8, ACTIVATION_OBSCURATION=3.24/

/ temperature s en so r s that act as heat d e t e c t o r s

&DEVC ID =’HD YZ=1.625 ,12 ’ , XB=1 .625 ,24 . 375 ,1 . 625 , 1 . 625 , 12 , 12 , QUANTITY=’

TEMPERATURE’ , POINTS=8, TIME_HISTORY=T/

&DEVC ID =’HD YZ=4.875 ,12 ’ , XB=1 .625 ,24 . 375 ,4 . 875 , 4 . 875 , 12 , 12 , QUANTITY=’

TEMPERATURE’ , POINTS=8, TIME_HISTORY=T/

&DEVC ID =’HD YZ=8.125 ,12 ’ , XB=1 .625 ,24 . 375 ,8 . 125 , 8 . 125 , 12 , 12 , QUANTITY=’

TEMPERATURE’ , POINTS=8, TIME_HISTORY=T/

&DEVC ID =’HD YZ=11.375 ,12 ’ , XB=1.625 ,24 .375 ,11 .375 ,11 .375 ,12 ,12 , QUANTITY=’

TEMPERATURE’ , POINTS=8, TIME_HISTORY=T/

&DEVC ID =’HD YZ=14.625 ,12 ’ , XB=1.625 ,24 .375 ,14 .625 ,14 .625 ,12 ,12 , QUANTITY=’

TEMPERATURE’ , POINTS=8, TIME_HISTORY=T/

&DEVC ID =’HD YZ=17.875 ,12 ’ , XB=1.625 ,24 .375 ,17 .875 ,17 .875 ,12 ,12 , QUANTITY=’

TEMPERATURE’ , POINTS=8, TIME_HISTORY=T/

&DEVC ID =’HD YZ=21.125 ,12 ’ , XB=1.625 ,24 .375 ,21 .125 ,21 .125 ,12 ,12 , QUANTITY=’

TEMPERATURE’ , POINTS=8, TIME_HISTORY=T/

&DEVC ID =’HD YZ=24.375 ,12 ’ , XB=1.625 ,24 .375 ,24 .375 ,24 .375 ,12 ,12 , QUANTITY=’

TEMPERATURE’ , POINTS=8, TIME_HISTORY=T/

/CO Detector s

&DEVC ID =’CO YZ=1.625 ’ , XB=1.625 ,24 . 375 ,1 . 625 , 1 . 625 , 12 , 12 , QUANTITY=’VOLUME

FRACTION’ ,SPEC_ID=’CARBON MONOXIDE’ , POINTS=8, TIME_HISTORY=T/

&DEVC ID =’CO YZ=4.875 ’ , XB=1.625 ,24 . 375 ,4 . 875 , 4 . 875 , 12 , 12 , QUANTITY=’VOLUME

FRACTION’ ,SPEC_ID=’CARBON MONOXIDE’ , POINTS=8, TIME_HISTORY=T/

&DEVC ID =’CO YZ=8.125 ’ , XB=1.625 ,24 . 375 ,8 . 125 , 8 . 125 , 12 , 12 , QUANTITY=’VOLUME
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FRACTION’ ,SPEC_ID=’CARBON MONOXIDE’ , POINTS=8, TIME_HISTORY=T/

&DEVC ID =’CO YZ=11.375 ’ , XB=1.625 ,24 .375 ,11 .375 ,11 .375 ,12 ,12 , QUANTITY=’

VOLUME FRACTION’ ,SPEC_ID=’CARBON MONOXIDE’ , POINTS=8, TIME_HISTORY=T/

&DEVC ID =’CO YZ=14.625 ’ , XB=1.625 ,24 .375 ,14 .625 ,14 .625 ,12 ,12 , QUANTITY=’

VOLUME FRACTION’ ,SPEC_ID=’CARBON MONOXIDE’ , POINTS=8, TIME_HISTORY=T/

&DEVC ID =’CO YZ=17.875 ’ , XB=1.625 ,24 .375 ,17 .875 ,17 .875 ,12 ,12 , QUANTITY=’

VOLUME FRACTION’ ,SPEC_ID=’CARBON MONOXIDE’ , POINTS=8, TIME_HISTORY=T/

&DEVC ID =’CO YZ=21.125 ’ , XB=1.625 ,24 .375 ,21 .125 ,21 .125 ,12 ,12 , QUANTITY=’

VOLUME FRACTION’ ,SPEC_ID=’CARBON MONOXIDE’ , POINTS=8, TIME_HISTORY=T/

&DEVC ID =’CO YZ=24.375 ’ , XB=1.625 ,24 .375 ,24 .375 ,24 .375 ,12 ,12 , QUANTITY=’

VOLUME FRACTION’ ,SPEC_ID=’CARBON MONOXIDE’ , POINTS=8, TIME_HISTORY=T/

/CO2 Detector s

&DEVC ID =’CO2 YZ=1.625 ’ , XB=1.625 ,24 . 375 ,1 . 625 , 1 . 625 , 12 , 12 , QUANTITY=’VOLUME

FRACTION’ ,SPEC_ID=’CARBON DIOXIDE’ , POINTS=8, TIME_HISTORY=T/

&DEVC ID =’CO2 YZ=4.875 ’ , XB=1.625 ,24 . 375 ,4 . 875 , 4 . 875 , 12 , 12 , QUANTITY=’VOLUME

FRACTION’ ,SPEC_ID=’CARBON DIOXIDE’ , POINTS=8, TIME_HISTORY=T/

&DEVC ID =’CO2 YZ=8.125 ’ , XB=1.625 ,24 . 375 ,8 . 125 , 8 . 125 , 12 , 12 , QUANTITY=’VOLUME

FRACTION’ ,SPEC_ID=’CARBON DIOXIDE’ , POINTS=8, TIME_HISTORY=T/

&DEVC ID =’CO2 YZ=11.375 ’ , XB=1.625 ,24 .375 ,11 .375 ,11 .375 ,12 ,12 , QUANTITY=’

VOLUME FRACTION’ ,SPEC_ID=’CARBON DIOXIDE’ , POINTS=8, TIME_HISTORY=T/

&DEVC ID =’CO2 YZ=14.625 ’ , XB=1.625 ,24 .375 ,14 .625 ,14 .625 ,12 ,12 , QUANTITY=’

VOLUME FRACTION’ ,SPEC_ID=’CARBON DIOXIDE’ , POINTS=8, TIME_HISTORY=T/

&DEVC ID =’CO2 YZ=17.875 ’ , XB=1.625 ,24 .375 ,17 .875 ,17 .875 ,12 ,12 , QUANTITY=’

VOLUME FRACTION’ ,SPEC_ID=’CARBON DIOXIDE’ , POINTS=8, TIME_HISTORY=T/

&DEVC ID =’CO2 YZ=21.125 ’ , XB=1.625 ,24 .375 ,21 .125 ,21 .125 ,12 ,12 , QUANTITY=’

VOLUME FRACTION’ ,SPEC_ID=’CARBON DIOXIDE’ , POINTS=8, TIME_HISTORY=T/

&DEVC ID =’CO2 YZ=24.375 ’ , XB=1.625 ,24 .375 ,24 .375 ,24 .375 ,12 ,12 , QUANTITY=’

VOLUME FRACTION’ ,SPEC_ID=’CARBON DIOXIDE’ , POINTS=8, TIME_HISTORY=T/
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&REAC FUEL = ’Douglas_Fir ’ ,

FORMULA=’C6H10O5 ’ ,

HEAT_OF_COMBUSTION=16400 ,

SOOT_YIELD=0.015 ,

CO_YIELD=0.004/

&SURF ID=’FIRE ’

HRRPUA=3700 ,

RAMP_Q=’ f ireramp ’/ HRRPUA assuming the area o f the f i r e i s 1m^2

&RAMP ID=’ f i reramp ’ , T=0, F=0/

&RAMP ID=’ f i reramp ’ , T=125 , F=0/

&RAMP ID=’ f i reramp ’ , T=150 , F=0.0338/

&RAMP ID=’ f i reramp ’ , T=200 , F=0.0676/

&RAMP ID=’ f i reramp ’ , T=250 , F=0.216/

&RAMP ID=’ f i reramp ’ , T=300 , F=0.581/

&RAMP ID=’ f i reramp ’ , T=350 , F=0.946/

&RAMP ID=’ f i reramp ’ , T=400 , F=1/

&RAMP ID=’ f i reramp ’ , T=625 , F=1/

&RAMP ID=’ f i reramp ’ , T=680 , F=0.953/

&RAMP ID=’ f i reramp ’ , T=775 , F=0.703/

&VENT XB = 3 ,4 , 3 , 4 , 0 , 0 , SURF_ID=’FIRE’/

&TAIL/

A.3 Wind Case (Location F)

/dx =0.1−0.5

&MESH ID=’FirePlume1 ’ , IJK=70 ,70 ,25 , XB=0 ,7 ,0 ,7 ,0 ,2 .5/ dx=0.1

&MESH ID=’FirePlume2 ’ , IJK=70 ,70 ,25 , XB=0 ,7 ,0 ,7 ,2 .5 ,5/ dx=0.1

&MESH ID=’FirePlume3 ’ , IJK=70 ,70 ,25 , XB=0 ,7 ,0 ,7 ,5 ,7 .5/ dx=0.1
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&MESH ID=’FirePlume4 ’ , IJK=70 ,70 ,35 , XB=0 ,7 ,0 ,7 ,7 .5 ,11/ dx=0.1

&MESH ID=’SmokeLayer1 ’ , IJK=130 ,90 ,10 , XB=0 ,13 ,0 ,9 ,11 ,12/ dx=0.1

&MESH ID=’SmokeLayer2 ’ , IJK=130 ,90 ,10 , XB=0 ,13 ,9 ,18 ,11 ,12/ dx=0.1

&MESH ID=’SmokeLayer3 ’ , IJK=130 ,80 ,10 , XB=0 ,13 ,18 ,26 ,11 ,12/ dx=0.1

&MESH ID=’SmokeLayer4 ’ , IJK=130 ,90 ,10 , XB=13 ,26 ,0 ,9 ,11 ,12/ dx=0.1

&MESH ID=’SmokeLayer5 ’ , IJK=130 ,90 ,10 , XB=13 ,26 ,9 ,18 ,11 ,12/ dx=0.1

&MESH ID=’SmokeLayer6 ’ , IJK=130 ,80 ,10 , XB=13 ,26 ,18 ,26 ,11 ,12/ dx=0.1

&MESH ID=’Mesh01 ’ , IJK=38 ,22 ,22 , XB=7 ,26 ,0 ,11 ,0 ,11/ dx=0.5

&MESH ID=’Mesh02 ’ , IJK=14 ,38 ,22 , XB=0 ,7 ,7 ,26 ,0 ,11/dx=0.5

&MESH ID=’Mesh03 ’ , IJK=38 ,30 ,22 , XB=7 ,26 ,11 ,26 ,0 ,11/ dx=0.5

&MESH ID=’Outdoors1 ’ , IJK=52 ,20 ,24 ,XB=0 ,26 , −10 ,0 ,0 .0 ,12.0/ dx = 0 .5

&TIME T_END=300/

&MISC TMPA = 25 , HUMIDITY = 65 /

&MATL ID = ’CONCRETE’ ,

DENSITY = 2200 ,

SPECIFIC_HEAT = 1.04 ,

CONDUCTIVITY = 1.8 /

&SURF ID = ’FLOOR’ ,

MATL_ID = ’CONCRETE’

THICKNESS = 0 .1

COLOR =’BEIGE’ /

&MATL ID = ’CORRUGATED METAL’ ,
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CONDUCTIVITY = 52 ,

SPECIFIC_HEAT = 0.47 ,

DENSITY = 7800 /

&SURF ID = ’WALL’ ,

THICKNESS = 0 . 2 ,

DEFAULT = .TRUE. ,

MATL_ID = ’CORRUGATED METAL’

COLOR =’LAVENDER’/

&MATL ID = ’Carbon Stee l ’ ,

FYI = ’1 . 5 % carbon s t e e l from NCFS database ’ ,

CONDUCTIVITY = 36 ,

SPECIFIC_HEAT = 0.486 ,

DENSITY = 7753 /

&SURF ID = ’ELECTRICAL PANEL’ ,

THICKNESS = 0 .05 ,

MATL_ID = ’Carbon Stee l ’

COLOR=’MELON’/

/ c r e a t e hangar space

&OBST XB = 0 ,26 ,0 , 26 ,0 , 0 , SURF_ID = ’FLOOR’ / main f l o o r

&OBST XB = 0 ,26 , 0 , 0 . 4 , 0 , 12 , SURF_ID = ’WALL’ / f r on t wa l l

/Leakage on wa l l s and at c e i l i n g

&VENT XB=0 ,0 , 4 , 4 . 3 , 1 , 1 . 3 , SURF_ID=’OPEN’/ l e f t wa l l

&VENT XB=0 ,0 ,21 . 7 , 22 ,1 , 1 . 3 , SURF_ID=’OPEN’/ l e f t wa l l

&VENT XB=0 ,0 ,4 , 4 . 3 , 10 . 7 , 11 , SURF_ID=’OPEN’/ l e f t wa l l

&VENT XB=0 ,0 ,21 .7 , 22 ,10 .7 , 11 , SURF_ID=’OPEN’/ l e f t wa l l
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&VENT XB=4 ,4 .3 , 26 ,26 ,1 , 1 . 3 , SURF_ID=’OPEN’/ back wal l

&VENT XB=21 .7 ,22 ,26 ,26 ,1 ,1 . 3 , SURF_ID=’OPEN’/ back wal l

&VENT XB=4 ,4 .3 , 26 ,26 ,10 .7 , 11 , SURF_ID=’OPEN’/ back wal l

&VENT XB=21 .7 ,22 ,26 ,26 ,10 .7 ,11 , SURF_ID=’OPEN’/ back wal l

&VENT XB=26 ,26 ,4 , 4 . 3 , 1 , 1 . 3 , SURF_ID=’OPEN’/ r i gh t wa l l

&VENT XB=26 ,26 ,21 .7 , 22 ,1 ,1 . 3 , SURF_ID=’OPEN’/ r i gh t wa l l

&VENT XB=26 ,26 ,4 ,4 .3 , 10 .7 , 11 , SURF_ID=’OPEN’/ r i gh t wa l l

&VENT XB=26 ,26 ,21 .7 ,22 ,10 .7 ,11 , SURF_ID=’OPEN’/ r i gh t wa l l

&HOLE XB = 1 ,25 , −0 .4 ,0 .8 ,0 ,7/ hangar door

/OUTDOOR SPACE WITH WIND ( wal l o f wind approach )

&SURF ID=’ i n l e t ’ , VEL=−4.4, PROFILE=’ATMOSPHERIC’ , Z0=10, PLE=0.14/

&VENT XB = 0 ,26 ,−10 ,−10 ,0 ,12 , SURF_ID = ’ i n l e t ’ /

&VENT XB = 26 ,26 , −10 ,0 ,0 ,12 , SURF_ID = ’OPEN’ /

&VENT XB = 0 ,0 , −10 ,0 ,0 ,12 , SURF_ID = ’OPEN’ /

&VENT XB = 0 ,26 , −10 ,0 ,12 ,12 , SURF_ID=’OPEN’/

/ V i s ua l i z e v e l o c i t y

&SLCF PBX=0, QUANTITY=’VELOCITY’ , VECTOR=T/

&SLCF PBX=2, QUANTITY=’VELOCITY’ , VECTOR=T/

&SLCF PBX=9, QUANTITY=’VELOCITY’ , VECTOR=T/

&SLCF PBX=11, QUANTITY=’VELOCITY’ , VECTOR=T/

&SLCF PBX=13, QUANTITY=’VELOCITY’ , VECTOR=T/

&SLCF PBX=15, QUANTITY=’VELOCITY’ , VECTOR=T/

&SLCF PBX=17, QUANTITY=’VELOCITY’ , VECTOR=T/
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&SLCF PBX=24, QUANTITY=’VELOCITY’ , VECTOR=T/

&SLCF PBX=26, QUANTITY=’VELOCITY’ , VECTOR=T/

&SLCF PBY=26, QUANTITY=’VELOCITY’ , VECTOR=T/

/ e l e c t r i c a l cab ine t ( s )

&OBST XB = 0 , 0 . 6 , 1 2 . 8 , 1 3 . 6 , 1 . 6 , 2 . 4 , SURF_ID = ’ELECTRICAL PANEL’ , COLOR=’BLUE

’/

&OBST XB = 0 , 0 . 6 , 2 3 . 6 , 2 4 . 4 , 1 . 6 , 2 . 4 , SURF_ID = ’ELECTRICAL PANEL’ , COLOR=’BLUE

’/

&OBST XB = 25 . 6 , 2 6 , 1 2 . 8 , 1 3 . 6 , 1 . 6 , 2 . 4 , SURF_ID = ’ELECTRICAL PANEL’ , COLOR=’

BLUE’/

&OBST XB = 25 . 6 , 2 6 , 2 3 . 6 , 2 4 . 4 , 1 . 6 , 2 . 4 , SURF_ID = ’ELECTRICAL PANEL’ , COLOR=’

BLUE’/

/smoke de t e c t o r s c l e a r y model

&DEVC ID =’YZ=1.625 ,12 ’ , XB=1 .625 ,24 .375 ,1 . 625 , 1 . 625 , 12 ,12 , PROP_ID=’Cleary

Pho t o e l e c t r i c P1 ’ , POINTS=8, TIME_HISTORY=T/

&DEVC ID =’YZ=4.875 ,12 ’ , XB=1 .625 ,24 .375 ,4 . 875 , 4 . 875 , 12 ,12 , PROP_ID=’Cleary

Pho t o e l e c t r i c P1 ’ , POINTS=8, TIME_HISTORY=T/

&DEVC ID =’YZ=8.125 ,12 ’ , XB=1 .625 ,24 .375 ,8 . 125 , 8 . 125 , 12 ,12 , PROP_ID=’Cleary

Pho t o e l e c t r i c P1 ’ , POINTS=8, TIME_HISTORY=T/

&DEVC ID =’YZ=11.375 ,12 ’ , XB=1.625 ,24 .375 ,11 .375 ,11 .375 ,12 ,12 , PROP_ID=’Cleary

Pho t o e l e c t r i c P1 ’ , POINTS=8, TIME_HISTORY=T/

&DEVC ID =’YZ=14.625 ,12 ’ , XB=1.625 ,24 .375 ,14 .625 ,14 .625 ,12 ,12 , PROP_ID=’Cleary

Pho t o e l e c t r i c P1 ’ , POINTS=8, TIME_HISTORY=T/

&DEVC ID =’YZ=17.875 ,12 ’ , XB=1.625 ,24 .375 ,17 .875 ,17 .875 ,12 ,12 , PROP_ID=’Cleary

Pho t o e l e c t r i c P1 ’ , POINTS=8, TIME_HISTORY=T/
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&DEVC ID =’YZ=21.125 ,12 ’ , XB=1.625 ,24 .375 ,21 .125 ,21 .125 ,12 ,12 , PROP_ID=’Cleary

Pho t o e l e c t r i c P1 ’ , POINTS=8, TIME_HISTORY=T/

&DEVC ID =’YZ=24.375 ,12 ’ , XB=1.625 ,24 .375 ,24 .375 ,24 .375 ,12 ,12 , PROP_ID=’Cleary

Pho t o e l e c t r i c P1 ’ , POINTS=8, TIME_HISTORY=T/

&PROP ID=’Cleary Pho t o e l e c t r i c P1 ’ , QUANTITY=’CHAMBER OBSCURATION’ , ALPHA_E

=1.8 , BETA_E=−1.0,

ALPHA_C=1.0 , BETA_C=−0.8, ACTIVATION_OBSCURATION=3.24/

/ temperature s en so r s that act as heat d e t e c t o r s

&DEVC ID =’HD YZ=1.625 ,12 ’ , XB=1 .625 ,24 . 375 ,1 . 625 , 1 . 625 , 12 , 12 , QUANTITY=’

TEMPERATURE’ , POINTS=8, TIME_HISTORY=T/

&DEVC ID =’HD YZ=4.875 ,12 ’ , XB=1 .625 ,24 . 375 ,4 . 875 , 4 . 875 , 12 , 12 , QUANTITY=’

TEMPERATURE’ , POINTS=8, TIME_HISTORY=T/

&DEVC ID =’HD YZ=8.125 ,12 ’ , XB=1 .625 ,24 . 375 ,8 . 125 , 8 . 125 , 12 , 12 , QUANTITY=’

TEMPERATURE’ , POINTS=8, TIME_HISTORY=T/

&DEVC ID =’HD YZ=11.375 ,12 ’ , XB=1.625 ,24 .375 ,11 .375 ,11 .375 ,12 ,12 , QUANTITY=’

TEMPERATURE’ , POINTS=8, TIME_HISTORY=T/

&DEVC ID =’HD YZ=14.625 ,12 ’ , XB=1.625 ,24 .375 ,14 .625 ,14 .625 ,12 ,12 , QUANTITY=’

TEMPERATURE’ , POINTS=8, TIME_HISTORY=T/

&DEVC ID =’HD YZ=17.875 ,12 ’ , XB=1.625 ,24 .375 ,17 .875 ,17 .875 ,12 ,12 , QUANTITY=’

TEMPERATURE’ , POINTS=8, TIME_HISTORY=T/

&DEVC ID =’HD YZ=21.125 ,12 ’ , XB=1.625 ,24 .375 ,21 .125 ,21 .125 ,12 ,12 , QUANTITY=’

TEMPERATURE’ , POINTS=8, TIME_HISTORY=T/

&DEVC ID =’HD YZ=24.375 ,12 ’ , XB=1.625 ,24 .375 ,24 .375 ,24 .375 ,12 ,12 , QUANTITY=’

TEMPERATURE’ , POINTS=8, TIME_HISTORY=T/

/CO Detector s

&DEVC ID =’CO YZ=1.625 ’ , XB=1.625 ,24 . 375 ,1 . 625 , 1 . 625 , 12 , 12 , QUANTITY=’VOLUME
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FRACTION’ ,SPEC_ID=’CARBON MONOXIDE’ , POINTS=8, TIME_HISTORY=T/

&DEVC ID =’CO YZ=4.875 ’ , XB=1.625 ,24 . 375 ,4 . 875 , 4 . 875 , 12 , 12 , QUANTITY=’VOLUME

FRACTION’ ,SPEC_ID=’CARBON MONOXIDE’ , POINTS=8, TIME_HISTORY=T/

&DEVC ID =’CO YZ=8.125 ’ , XB=1.625 ,24 . 375 ,8 . 125 , 8 . 125 , 12 , 12 , QUANTITY=’VOLUME

FRACTION’ ,SPEC_ID=’CARBON MONOXIDE’ , POINTS=8, TIME_HISTORY=T/

&DEVC ID =’CO YZ=11.375 ’ , XB=1.625 ,24 .375 ,11 .375 ,11 .375 ,12 ,12 , QUANTITY=’

VOLUME FRACTION’ ,SPEC_ID=’CARBON MONOXIDE’ , POINTS=8, TIME_HISTORY=T/

&DEVC ID =’CO YZ=14.625 ’ , XB=1.625 ,24 .375 ,14 .625 ,14 .625 ,12 ,12 , QUANTITY=’

VOLUME FRACTION’ ,SPEC_ID=’CARBON MONOXIDE’ , POINTS=8, TIME_HISTORY=T/

&DEVC ID =’CO YZ=17.875 ’ , XB=1.625 ,24 .375 ,17 .875 ,17 .875 ,12 ,12 , QUANTITY=’

VOLUME FRACTION’ ,SPEC_ID=’CARBON MONOXIDE’ , POINTS=8, TIME_HISTORY=T/

&DEVC ID =’CO YZ=21.125 ’ , XB=1.625 ,24 .375 ,21 .125 ,21 .125 ,12 ,12 , QUANTITY=’

VOLUME FRACTION’ ,SPEC_ID=’CARBON MONOXIDE’ , POINTS=8, TIME_HISTORY=T/

&DEVC ID =’CO YZ=24.375 ’ , XB=1.625 ,24 .375 ,24 .375 ,24 .375 ,12 ,12 , QUANTITY=’

VOLUME FRACTION’ ,SPEC_ID=’CARBON MONOXIDE’ , POINTS=8, TIME_HISTORY=T/

/CO2 Detector s

&DEVC ID =’CO2 YZ=1.625 ’ , XB=1.625 ,24 . 375 ,1 . 625 , 1 . 625 , 12 , 12 , QUANTITY=’VOLUME

FRACTION’ ,SPEC_ID=’CARBON DIOXIDE’ , POINTS=8, TIME_HISTORY=T/

&DEVC ID =’CO2 YZ=4.875 ’ , XB=1.625 ,24 . 375 ,4 . 875 , 4 . 875 , 12 , 12 , QUANTITY=’VOLUME

FRACTION’ ,SPEC_ID=’CARBON DIOXIDE’ , POINTS=8, TIME_HISTORY=T/

&DEVC ID =’CO2 YZ=8.125 ’ , XB=1.625 ,24 . 375 ,8 . 125 , 8 . 125 , 12 , 12 , QUANTITY=’VOLUME

FRACTION’ ,SPEC_ID=’CARBON DIOXIDE’ , POINTS=8, TIME_HISTORY=T/

&DEVC ID =’CO2 YZ=11.375 ’ , XB=1.625 ,24 .375 ,11 .375 ,11 .375 ,12 ,12 , QUANTITY=’

VOLUME FRACTION’ ,SPEC_ID=’CARBON DIOXIDE’ , POINTS=8, TIME_HISTORY=T/

&DEVC ID =’CO2 YZ=14.625 ’ , XB=1.625 ,24 .375 ,14 .625 ,14 .625 ,12 ,12 , QUANTITY=’

VOLUME FRACTION’ ,SPEC_ID=’CARBON DIOXIDE’ , POINTS=8, TIME_HISTORY=T/

&DEVC ID =’CO2 YZ=17.875 ’ , XB=1.625 ,24 .375 ,17 .875 ,17 .875 ,12 ,12 , QUANTITY=’

VOLUME FRACTION’ ,SPEC_ID=’CARBON DIOXIDE’ , POINTS=8, TIME_HISTORY=T/

&DEVC ID =’CO2 YZ=21.125 ’ , XB=1.625 ,24 .375 ,21 .125 ,21 .125 ,12 ,12 , QUANTITY=’
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VOLUME FRACTION’ ,SPEC_ID=’CARBON DIOXIDE’ , POINTS=8, TIME_HISTORY=T/

&DEVC ID =’CO2 YZ=24.375 ’ , XB=1.625 ,24 .375 ,24 .375 ,24 .375 ,12 ,12 , QUANTITY=’

VOLUME FRACTION’ ,SPEC_ID=’CARBON DIOXIDE’ , POINTS=8, TIME_HISTORY=T/

&REAC FUEL = ’Paper_Box ’ ,

FORMULA=’C6H10O5 ’ ,

HEAT_OF_COMBUSTION=12500 ,

SOOT_YIELD=0.002 ,

CO_YIELD=0.029/

&SURF ID=’FIRE ’

HRRPUA=436 ,

RAMP_Q=’ f ireramp ’/ HRRPUA assuming the area o f the f i r e i s 1m^2

&RAMP ID=’ f i reramp ’ , T=0, F=0/

&RAMP ID=’ f i reramp ’ , T=60, F=0.1148/

&RAMP ID=’ f i reramp ’ , T=120 , F=1/

&RAMP ID=’ f i reramp ’ , T=180 , F=0.1147/

&RAMP ID=’ f i reramp ’ , T=300 , F=0.0344/

&RAMP ID=’ f i reramp ’ , T=600 , F=0.01147/

&RAMP ID=’ f i reramp ’ , T=720 , F=0/

&VENT XB = 3 ,4 , 3 , 4 , 0 , 0 , SURF_ID=’FIRE’/

&TAIL/

A.4 Beam Case (Location A)

/dx =0.1−0.5

&MESH ID=’FirePlume1 ’ , IJK=70 ,70 ,25 , XB=9 . 5 , 1 6 . 5 , 9 . 5 , 1 6 . 5 , 0 , 2 . 5 /

&MESH ID=’FirePlume2 ’ , IJK=70 ,70 ,25 , XB=9 . 5 , 1 6 . 5 , 9 . 5 , 1 6 . 5 , 2 . 5 , 5 /

&MESH ID=’FirePlume3 ’ , IJK=70 ,70 ,25 , XB=9 . 5 , 1 6 . 5 , 9 . 5 , 1 6 . 5 , 5 , 7 . 5 /
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&MESH ID=’FirePlume4 ’ , IJK=70 ,70 ,35 , XB=9 . 5 , 1 6 . 5 , 9 . 5 , 1 6 . 5 , 7 . 5 , 1 1/

&MESH ID=’SmokeLayer1 ’ , IJK=130 ,90 ,10 , XB=0 ,13 ,0 ,9 ,11 ,12/

&MESH ID=’SmokeLayer2 ’ , IJK=130 ,90 ,10 , XB=0 ,13 ,9 ,18 ,11 ,12/

&MESH ID=’SmokeLayer3 ’ , IJK=130 ,80 ,10 , XB=0 ,13 ,18 ,26 ,11 ,12/

&MESH ID=’SmokeLayer4 ’ , IJK=130 ,90 ,10 , XB=13 ,26 ,0 ,9 ,11 ,12/

&MESH ID=’SmokeLayer5 ’ , IJK=130 ,90 ,10 , XB=13 ,26 ,9 ,18 ,11 ,12/

&MESH ID=’SmokeLayer6 ’ , IJK=130 ,80 ,10 , XB=13 ,26 ,18 ,26 ,11 ,12/

&MESH ID=’Mesh01 ’ , IJK=19 ,52 ,22 , XB=0 ,9 .5 ,0 ,26 ,0 ,11/ dx=0.5

&MESH ID=’Mesh02 ’ , IJK=33 ,19 ,22 XB=9.5 ,26 ,0 ,9 .5 , 0 ,11/ dx=0.5

&MESH ID=’Mesh03 ’ , IJK=19 ,14 ,22 , XB=16 .5 , 26 , 9 . 5 , 16 . 5 , 0 , 11/ dx=0.5

&MESH ID=’Mesh04 ’ , IJK=33 ,19 ,22 , XB=9.5 ,26 ,16 .5 ,26 ,0 ,11/ dx=0.5

&MESH ID=’Outdoors1 ’ , IJK=52 ,12 ,24 ,XB=0 ,26 , −6 ,0 ,0 .0 ,12.0/ dx = 0 .5

&TIME T_END=300/

&MISC TMPA = 25 , HUMIDITY = 65 /

&MATL ID = ’CONCRETE’ ,

DENSITY = 2200 ,

SPECIFIC_HEAT = 1.04 ,

CONDUCTIVITY = 1.8 /

&SURF ID = ’FLOOR’ ,

MATL_ID = ’CONCRETE’

THICKNESS = 0 .1

COLOR =’BEIGE’ /
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&MATL ID = ’CORRUGATED METAL’ ,

CONDUCTIVITY = 52 ,

SPECIFIC_HEAT = 0.47 ,

DENSITY = 7800 /

&SURF ID = ’WALL’ ,

THICKNESS = 0 . 2 ,

DEFAULT = .TRUE. ,

MATL_ID = ’CORRUGATED METAL’

COLOR =’LAVENDER’/

&MATL ID = ’Carbon Stee l ’ ,

FYI = ’1 . 5 % carbon s t e e l from NCFS database ’ ,

CONDUCTIVITY = 36 ,

SPECIFIC_HEAT = 0.486 ,

DENSITY = 7753 /

&SURF ID = ’ELECTRICAL PANEL’ ,

THICKNESS = 0 .05 ,

MATL_ID = ’Carbon Stee l ’

COLOR=’MELON’/

&MATL ID = ’STEEL SN400 ’ ,

FYI = ’SN400 I n t e r n a t i o n a l Journal o f S t e e l St ructures ’ ,

CONDUCTIVITY_RAMP = ’k ’ ,

SPECIFIC_HEAT_RAMP = ’ c ’ ,

DENSITY = 7851 /

&RAMP ID = ’ c ’ , T = 20 , F = 0.52/

&RAMP ID = ’ c ’ , T = 200 , F = 0.535/
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&RAMP ID = ’ c ’ , T = 500 , F = 0.709/

&RAMP ID = ’k ’ , T = 20 , F = 53.7/

&RAMP ID = ’k ’ , T = 200 , F = 48.3/

&RAMP ID = ’k ’ , T = 500 , F = 42.1/

&SURF ID = ’ S t ru c tu ra l Stee l ’ ,

THICKNESS = 0 .006 ,

MATL_ID = ’STEEL SN400 ’

COLOR=’DIM GRAY’/

/ c r e a t e hangar space

&OBST XB = 0 ,26 ,0 , 26 ,0 , 0 , SURF_ID = ’FLOOR’ / main f l o o r

&OBST XB = 0 ,26 , 0 , 0 . 4 , 0 , 12 , SURF_ID = ’WALL’ / f r on t wa l l

&HOLE XB = 1 ,25 , −0 .4 ,0 .8 ,0 ,7/ hangar door

/ pe rpend i cu la r beams ( to door )

&OBST ID=’web ’ , XB=8 .9965 ,9 . 0035 , 0 . 5587 , 25 . 4413 , 11 . 608 , 11 . 989 , SURF_ID=’

S t ru c tu ra l Stee l ’ /

&OBST ID=’top f l ange ’ , XB = 8 . 9298 , 9 . 0 702 , 0 . 5 587 , 25 . 4 413 , 11 . 9 89 , 12 . 0 , SURF_ID

=’ S t ru c tu ra l Stee l ’ /

&OBST ID=’bottom f lange ’ , XB = 8 .9298 , 9 . 0 702 , 0 . 5587 , 25 . 4413 , 11 . 597 , 11 . 608 ,

SURF_ID=’ S t ruc tu ra l Stee l ’ /

&OBST ID =’web 1 ’ , XB=16 .9965 ,17 . 0035 ,0 . 5587 ,25 . 4413 ,11 . 608 ,11 . 989 , SURF_ID=’

S t ru c tu ra l Stee l ’ /

&OBST ID =’top f l ang e 1 ’ , XB=16 .9298 , 17 . 0702 , 0 . 5587 , 25 . 4413 , 11 . 989 , 12 . 0 ,

SURF_ID=’ S t ruc tu ra l Stee l ’ /

&OBST ID =’bottom f l ang e 1 ’ , XB=16 .9298 ,17 .0702 ,0 . 5587 ,25 .4413 ,11 . 597 ,11 . 608 ,
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SURF_ID=’ S t ruc tu ra l Stee l ’ /

/ p a r a l l e l beams ( to door )

&OBST ID=’par web ’ , XB=0 .5587 ,25 . 4413 , 8 . 9965 , 9 . 0035 , 11 . 608 , 11 . 989 , SURF_ID=’

S t ru c tu ra l Stee l ’ /

&OBST ID=’par top f l ange ’ , XB=0 .5587 , 25 . 4413 , 8 . 9298 , 9 . 0702 , 11 . 989 , 12 . 0 ,

SURF_ID=’ S t ruc tu ra l Stee l ’ /

&OBST ID = ’ par bottom f lange ’ , XB=0 .5587 ,25 . 4413 , 8 . 9298 , 9 . 0702 , 11 . 587 , 11 . 608 ,

SURF_ID=’ S t ruc tu ra l Stee l ’ /

&OBST ID=’par web 1 ’ , XB=0 .5587 ,25 . 4413 ,16 . 9965 ,17 .0035 ,11 . 608 ,11 . 989 , SURF_ID

=’ S t ru c tu ra l Stee l ’ /

&OBST ID=’par top f l ang e 1 ’ , XB=0 .5587 ,25 . 4413 , 16 . 9298 , 17 . 0702 , 11 . 989 , 12 . 0 ,

SURF_ID=’ S t ruc tu ra l Stee l ’ /

&OBST ID=’par bottom f l ang e 1 ’ , XB

=0 .5587 ,25 . 4413 ,16 .9298 ,17 . 0702 ,11 . 587 ,11 . 608 , SURF_ID=’ S t ru c tu ra l Stee l ’ /

/open outdoor space

&VENT XB = 0 ,26 ,−6 ,−6 ,0 ,12 , SURF_ID = ’OPEN’ /

&VENT XB = 26 ,26 , −6 ,0 ,0 ,12 , SURF_ID = ’OPEN’ /

&VENT XB = 0 ,0 , −6 ,0 ,0 ,12 , SURF_ID = ’OPEN’ /

&VENT XB = 0 ,26 , −6 ,0 ,0 ,0 , SURF_ID = ’FLOOR’ /

/ e l e c t r i c a l cab ine t ( s )

&OBST XB = 0 , 0 . 6 , 1 2 . 8 , 1 3 . 6 , 1 . 6 , 2 . 4 , SURF_ID = ’ELECTRICAL PANEL’ , COLOR=’BLUE

’/

&OBST XB = 0 , 0 . 6 , 2 3 . 6 , 2 4 . 4 , 1 . 6 , 2 . 4 , SURF_ID = ’ELECTRICAL PANEL’ , COLOR=’BLUE

’/
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&OBST XB = 25 . 6 , 2 6 , 1 2 . 8 , 1 3 . 6 , 1 . 6 , 2 . 4 , SURF_ID = ’ELECTRICAL PANEL’ , COLOR=’

BLUE’/

&OBST XB = 25 . 6 , 2 6 , 2 3 . 6 , 2 4 . 4 , 1 . 6 , 2 . 4 , SURF_ID = ’ELECTRICAL PANEL’ , COLOR=’

BLUE’/

/smoke de t e c t o r s c l e a r y model

&DEVC ID =’YZ=1.625 ,12 ’ , XB=1 .625 ,24 .375 ,1 . 625 , 1 . 625 , 12 ,12 , PROP_ID=’Cleary

Pho t o e l e c t r i c P1 ’ , POINTS=8, TIME_HISTORY=T/

&DEVC ID =’YZ=4.875 ,12 ’ , XB=1 .625 ,24 .375 ,4 . 875 , 4 . 875 , 12 ,12 , PROP_ID=’Cleary

Pho t o e l e c t r i c P1 ’ , POINTS=8, TIME_HISTORY=T/

&DEVC ID =’YZ=8.125 ,12 ’ , XB=1 .625 ,24 .375 ,8 . 125 , 8 . 125 , 12 ,12 , PROP_ID=’Cleary

Pho t o e l e c t r i c P1 ’ , POINTS=8, TIME_HISTORY=T/

&DEVC ID =’YZ=11.375 ,12 ’ , XB=1.625 ,24 .375 ,11 .375 ,11 .375 ,12 ,12 , PROP_ID=’Cleary

Pho t o e l e c t r i c P1 ’ , POINTS=8, TIME_HISTORY=T/

&DEVC ID =’YZ=14.625 ,12 ’ , XB=1.625 ,24 .375 ,14 .625 ,14 .625 ,12 ,12 , PROP_ID=’Cleary

Pho t o e l e c t r i c P1 ’ , POINTS=8, TIME_HISTORY=T/

&DEVC ID =’YZ=17.875 ,12 ’ , XB=1.625 ,24 .375 ,17 .875 ,17 .875 ,12 ,12 , PROP_ID=’Cleary

Pho t o e l e c t r i c P1 ’ , POINTS=8, TIME_HISTORY=T/

&DEVC ID =’YZ=21.125 ,12 ’ , XB=1.625 ,24 .375 ,21 .125 ,21 .125 ,12 ,12 , PROP_ID=’Cleary

Pho t o e l e c t r i c P1 ’ , POINTS=8, TIME_HISTORY=T/

&DEVC ID =’YZ=24.375 ,12 ’ , XB=1.625 ,24 .375 ,24 .375 ,24 .375 ,12 ,12 , PROP_ID=’Cleary

Pho t o e l e c t r i c P1 ’ , POINTS=8, TIME_HISTORY=T/

&PROP ID=’Cleary Pho t o e l e c t r i c P1 ’ , QUANTITY=’CHAMBER OBSCURATION’ , ALPHA_E

=1.8 , BETA_E=−1.0,

ALPHA_C=1.0 , BETA_C=−0.8, ACTIVATION_OBSCURATION=3.24/

/ temperature s en so r s that act as heat d e t e c t o r s

&DEVC ID =’HD YZ=1.625 ,12 ’ , XB=1 .625 ,24 . 375 ,1 . 625 , 1 . 625 , 12 , 12 , QUANTITY=’

TEMPERATURE’ , POINTS=8, TIME_HISTORY=T/
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&DEVC ID =’HD YZ=4.875 ,12 ’ , XB=1 .625 ,24 . 375 ,4 . 875 , 4 . 875 , 12 , 12 , QUANTITY=’

TEMPERATURE’ , POINTS=8, TIME_HISTORY=T/

&DEVC ID =’HD YZ=8.125 ,12 ’ , XB=1 .625 ,24 . 375 ,8 . 125 , 8 . 125 , 12 , 12 , QUANTITY=’

TEMPERATURE’ , POINTS=8, TIME_HISTORY=T/

&DEVC ID =’HD YZ=11.375 ,12 ’ , XB=1.625 ,24 .375 ,11 .375 ,11 .375 ,12 ,12 , QUANTITY=’

TEMPERATURE’ , POINTS=8, TIME_HISTORY=T/

&DEVC ID =’HD YZ=14.625 ,12 ’ , XB=1.625 ,24 .375 ,14 .625 ,14 .625 ,12 ,12 , QUANTITY=’

TEMPERATURE’ , POINTS=8, TIME_HISTORY=T/

&DEVC ID =’HD YZ=17.875 ,12 ’ , XB=1.625 ,24 .375 ,17 .875 ,17 .875 ,12 ,12 , QUANTITY=’

TEMPERATURE’ , POINTS=8, TIME_HISTORY=T/

&DEVC ID =’HD YZ=21.125 ,12 ’ , XB=1.625 ,24 .375 ,21 .125 ,21 .125 ,12 ,12 , QUANTITY=’

TEMPERATURE’ , POINTS=8, TIME_HISTORY=T/

&DEVC ID =’HD YZ=24.375 ,12 ’ , XB=1.625 ,24 .375 ,24 .375 ,24 .375 ,12 ,12 , QUANTITY=’

TEMPERATURE’ , POINTS=8, TIME_HISTORY=T/

/CO Detector s

&DEVC ID =’CO YZ=1.625 ’ , XB=1.625 ,24 . 375 ,1 . 625 , 1 . 625 , 12 , 12 , QUANTITY=’VOLUME

FRACTION’ ,SPEC_ID=’CARBON MONOXIDE’ , POINTS=8, TIME_HISTORY=T/

&DEVC ID =’CO YZ=4.875 ’ , XB=1.625 ,24 . 375 ,4 . 875 , 4 . 875 , 12 , 12 , QUANTITY=’VOLUME

FRACTION’ ,SPEC_ID=’CARBON MONOXIDE’ , POINTS=8, TIME_HISTORY=T/

&DEVC ID =’CO YZ=8.125 ’ , XB=1.625 ,24 . 375 ,8 . 125 , 8 . 125 , 12 , 12 , QUANTITY=’VOLUME

FRACTION’ ,SPEC_ID=’CARBON MONOXIDE’ , POINTS=8, TIME_HISTORY=T/

&DEVC ID =’CO YZ=11.375 ’ , XB=1.625 ,24 .375 ,11 .375 ,11 .375 ,12 ,12 , QUANTITY=’

VOLUME FRACTION’ ,SPEC_ID=’CARBON MONOXIDE’ , POINTS=8, TIME_HISTORY=T/

&DEVC ID =’CO YZ=14.625 ’ , XB=1.625 ,24 .375 ,14 .625 ,14 .625 ,12 ,12 , QUANTITY=’

VOLUME FRACTION’ ,SPEC_ID=’CARBON MONOXIDE’ , POINTS=8, TIME_HISTORY=T/

&DEVC ID =’CO YZ=17.875 ’ , XB=1.625 ,24 .375 ,17 .875 ,17 .875 ,12 ,12 , QUANTITY=’

VOLUME FRACTION’ ,SPEC_ID=’CARBON MONOXIDE’ , POINTS=8, TIME_HISTORY=T/

&DEVC ID =’CO YZ=21.125 ’ , XB=1.625 ,24 .375 ,21 .125 ,21 .125 ,12 ,12 , QUANTITY=’

VOLUME FRACTION’ ,SPEC_ID=’CARBON MONOXIDE’ , POINTS=8, TIME_HISTORY=T/
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&DEVC ID =’CO YZ=24.375 ’ , XB=1.625 ,24 .375 ,24 .375 ,24 .375 ,12 ,12 , QUANTITY=’

VOLUME FRACTION’ ,SPEC_ID=’CARBON MONOXIDE’ , POINTS=8, TIME_HISTORY=T/

/CO2 Detector s

&DEVC ID =’CO2 YZ=1.625 ’ , XB=1.625 ,24 . 375 ,1 . 625 , 1 . 625 , 12 , 12 , QUANTITY=’VOLUME

FRACTION’ ,SPEC_ID=’CARBON DIOXIDE’ , POINTS=8, TIME_HISTORY=T/

&DEVC ID =’CO2 YZ=4.875 ’ , XB=1.625 ,24 . 375 ,4 . 875 , 4 . 875 , 12 , 12 , QUANTITY=’VOLUME

FRACTION’ ,SPEC_ID=’CARBON DIOXIDE’ , POINTS=8, TIME_HISTORY=T/

&DEVC ID =’CO2 YZ=8.125 ’ , XB=1.625 ,24 . 375 ,8 . 125 , 8 . 125 , 12 , 12 , QUANTITY=’VOLUME

FRACTION’ ,SPEC_ID=’CARBON DIOXIDE’ , POINTS=8, TIME_HISTORY=T/

&DEVC ID =’CO2 YZ=11.375 ’ , XB=1.625 ,24 .375 ,11 .375 ,11 .375 ,12 ,12 , QUANTITY=’

VOLUME FRACTION’ ,SPEC_ID=’CARBON DIOXIDE’ , POINTS=8, TIME_HISTORY=T/

&DEVC ID =’CO2 YZ=14.625 ’ , XB=1.625 ,24 .375 ,14 .625 ,14 .625 ,12 ,12 , QUANTITY=’

VOLUME FRACTION’ ,SPEC_ID=’CARBON DIOXIDE’ , POINTS=8, TIME_HISTORY=T/

&DEVC ID =’CO2 YZ=17.875 ’ , XB=1.625 ,24 .375 ,17 .875 ,17 .875 ,12 ,12 , QUANTITY=’

VOLUME FRACTION’ ,SPEC_ID=’CARBON DIOXIDE’ , POINTS=8, TIME_HISTORY=T/

&DEVC ID =’CO2 YZ=21.125 ’ , XB=1.625 ,24 .375 ,21 .125 ,21 .125 ,12 ,12 , QUANTITY=’

VOLUME FRACTION’ ,SPEC_ID=’CARBON DIOXIDE’ , POINTS=8, TIME_HISTORY=T/

&DEVC ID =’CO2 YZ=24.375 ’ , XB=1.625 ,24 .375 ,24 .375 ,24 .375 ,12 ,12 , QUANTITY=’

VOLUME FRACTION’ ,SPEC_ID=’CARBON DIOXIDE’ , POINTS=8, TIME_HISTORY=T/

&REAC FUEL = ’Douglas_Fir ’ ,

FORMULA=’C6H10O5 ’ ,

HEAT_OF_COMBUSTION=16400 ,

SOOT_YIELD=0.015 ,

CO_YIELD=0.004/

&SURF ID=’FIRE ’

HRRPUA=3700 ,

RAMP_Q=’ f ireramp ’/ HRRPUA assuming the area o f the f i r e i s 1m^2
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&RAMP ID=’ f i reramp ’ , T=0, F=0/

&RAMP ID=’ f i reramp ’ , T=125 , F=0/

&RAMP ID=’ f i reramp ’ , T=150 , F=0.0338/

&RAMP ID=’ f i reramp ’ , T=200 , F=0.0676/

&RAMP ID=’ f i reramp ’ , T=250 , F=0.216/

&RAMP ID=’ f i reramp ’ , T=300 , F=0.581/

&RAMP ID=’ f i reramp ’ , T=350 , F=0.946/

&RAMP ID=’ f i reramp ’ , T=400 , F=1/

&RAMP ID=’ f i reramp ’ , T=625 , F=1/

&RAMP ID=’ f i reramp ’ , T=680 , F=0.953/

&RAMP ID=’ f i reramp ’ , T=775 , F=0.703/

&VENT XB = 12 . 5 , 1 3 . 5 , 1 2 . 5 , 1 3 . 5 , 0 , 0 , SURF_ID=’FIRE’/

&TAIL/

A.5 Design Fire Ramp-Up Values

The entire duration of the ramp function may or may not be taken into account during the simulation, as

the simulation is only 300 seconds long.

A.5.1 Douglas fir

&REAC FUEL = ’Douglas_Fir ’ ,

FORMULA=’C6H10O5 ’ ,

HEAT_OF_COMBUSTION=16400 ,

SOOT_YIELD=0.015 ,

CO_YIELD=0.004/

&SURF ID=’FIRE ’

HRRPUA=3700 ,

RAMP_Q=’ f ireramp ’/ HRRPUA assuming the area o f the f i r e i s 1m^2
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&RAMP ID=’ f i reramp ’ , T=0, F=0/

&RAMP ID=’ f i reramp ’ , T=125 , F=0/

&RAMP ID=’ f i reramp ’ , T=150 , F=0.0338/

&RAMP ID=’ f i reramp ’ , T=200 , F=0.0676/

&RAMP ID=’ f i reramp ’ , T=250 , F=0.216/

&RAMP ID=’ f i reramp ’ , T=300 , F=0.581/

&RAMP ID=’ f i reramp ’ , T=350 , F=0.946/

&RAMP ID=’ f i reramp ’ , T=400 , F=1/

&RAMP ID=’ f i reramp ’ , T=625 , F=1/

&RAMP ID=’ f i reramp ’ , T=680 , F=0.953/

&RAMP ID=’ f i reramp ’ , T=775 , F=0.703/

A.5.2 Polyethylene

&REAC FUEL = ’POLYETHYLENE’ ,

FORMULA=’C2H4 ’ ,

HEAT_OF_COMBUSTION=43400 ,

SOOT_YIELD=0.06 ,

CO_YIELD=0.024/

&SURF ID=’FIRE ’

HRRPUA=285 ,

RAMP_Q=’ f ireramp ’/ HRRPUA assuming the area o f the f i r e i s 1m^2

&RAMP ID=’ f i reramp ’ , T=0, F=0/

&RAMP ID=’ f i reramp ’ , T=150 , F=0.1754/

&RAMP ID=’ f i reramp ’ , T=300 , F=0.193/

A.5.3 Paper

&REAC FUEL = ’Paper_Box ’ ,

FORMULA=’C6H10O5 ’ ,

HEAT_OF_COMBUSTION=12500 ,

SOOT_YIELD=0.002 ,
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CO_YIELD=0.029/

&SURF ID=’FIRE ’

HRRPUA=436 ,

RAMP_Q=’ f ireramp ’/ HRRPUA assuming the area o f the f i r e i s 1m^2

&RAMP ID=’ f i reramp ’ , T=0, F=0/

&RAMP ID=’ f i reramp ’ , T=60, F=0.1148/

&RAMP ID=’ f i reramp ’ , T=120 , F=1/

&RAMP ID=’ f i reramp ’ , T=180 , F=0.1147/

&RAMP ID=’ f i reramp ’ , T=300 , F=0.0344/

&RAMP ID=’ f i reramp ’ , T=600 , F=0.01147/

&RAMP ID=’ f i reramp ’ , T=720 , F=0/

A.5.4 JP-8

&REAC FUEL = ’JP−8 ’ ,

FORMULA=’C11H21 ’ ,

HEAT_OF_COMBUSTION=42800 ,

SOOT_YIELD=0.03 ,

CO_YIELD=0.01/

&SURF ID=’FIRE ’

HRRPUA=2200 ,

RAMP_Q=’ f ireramp ’/ HRRPUA assuming the area o f the f i r e i s 1m^2

&RAMP ID=’ f i reramp ’ , T=0, F=0/

&RAMP ID=’ f i reramp ’ , T=25, F=0.0227/

&RAMP ID=’ f i reramp ’ , T=45, F=0.227/

&RAMP ID=’ f i reramp ’ , T=65, F=0.4545/

&RAMP ID=’ f i reramp ’ , T=75, F=0.568/

&RAMP ID=’ f i reramp ’ , T=85, F=0.682/

&RAMP ID=’ f i reramp ’ , T=115 , F=1/

&RAMP ID=’ f i reramp ’ , T=300 , F=1/
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A.5.5 Propane

&REAC FUEL = ’PROPANE’ ,

FORMULA=’C3H8 ’ ,

HEAT_OF_COMBUSTION=46300 ,

SOOT_YIELD=0.024 ,

CO_YIELD=0.005/

&SURF ID=’FIRE ’

HRRPUA=2200 ,

RAMP_Q=’ f ireramp ’/ HRRPUA assuming the area o f the f i r e i s 1m^2

&RAMP ID=’ f i reramp ’ , T=0, F=0/

&RAMP ID=’ f i reramp ’ , T=25, F=0.0227/

&RAMP ID=’ f i reramp ’ , T=45, F=0.227/

&RAMP ID=’ f i reramp ’ , T=65, F=0.4545/

&RAMP ID=’ f i reramp ’ , T=75, F=0.568/

&RAMP ID=’ f i reramp ’ , T=85, F=0.682/

&RAMP ID=’ f i reramp ’ , T=115 , F=1/

&RAMP ID=’ f i reramp ’ , T=300 , F=1/

A.5.6 Polyurethane Foam

&REAC FUEL = ’POLYURETHANE’ ,

FORMULA=’CH1. 8O0. 3N0 . 0 5 ’ ,

HEAT_OF_COMBUSTION=26200 ,

SOOT_YIELD=0.131 ,

CO_YIELD=0.010/

&SURF ID=’FIRE ’

HRRPUA=2000 ,

RAMP_Q=’ f ireramp ’/ HRRPUA assuming the area o f the f i r e i s 1m^2

&RAMP ID=’ f i reramp ’ , T=0, F=0/
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&RAMP ID=’ f i reramp ’ , T=130 , F=0/

&RAMP ID=’ f i reramp ’ , T=140 , F=0.025/

&RAMP ID=’ f i reramp ’ , T=150 , F=0.05/

&RAMP ID=’ f i reramp ’ , T=200 , F=0.125/

&RAMP ID=’ f i reramp ’ , T=270 , F=1/

&RAMP ID=’ f i reramp ’ , T=280 , F=1/

&RAMP ID=’ f i reramp ’ , T=300 , F=0.675/
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Appendix B

Python Code

The following code has been developed to create the location, HRR and fuel identification models.

import pandas as pd

import matplotlib.pyplot as plt

import numpy as np

from matplotlib.pyplot import figure

from numpy import genfromtxt

import seaborn as sns

from sklearn.preprocessing import MinMaxScaler

from sklearn.model_selection import train_test_split

from sklearn.metrics import mean_squared_error

import torch

import torch.nn as nn

from sklearn import svm

from sklearn.svm import SVC

from sklearn.metrics import classification_report , confusion_matrix ,

accuracy_score

import matplotlib.ticker as tck

from matplotlib.ticker import MultipleLocator
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Import Excel files for temperature here

combine = np.hstack ((DF_A ,DF_C ,DF_E ,DF_F ,DF_A_W ,DF_B_W ,DF_C_W ,DF_D_W ,DF_E_W ,

DF_F_W ,DF_A_Bm ,DF_B_Bm ,DF_C_Bm ,DF_D_Bm ,DF_E_Bm ,DF_F_Bm ,PE_A ,PE_C ,PE_E ,PE_F ,

PE_A_W ,PE_B_W ,

PE_C_W ,PE_D_W ,PE_E_W ,PE_F_W ,Pr_A ,Pr_C ,Pr_E ,Pr_F ,Pr_A_W ,

Pr_B_W , Pr_C_W ,Pr_D_W ,Pr_E_W ,Pr_F_W ,Pa_A ,Pa_C ,Pa_E ,Pa_F ,

Pa_A_W ,Pa_B_W , Pa_C_W ,Pa_D_W ,Pa_E_W ,Pa_F_W ,

JP8_A ,JP8_C ,JP8_E ,JP8_F ,JP8_A_W ,JP8_B_W ,JP8_C_W ,JP8_D_W ,

JP8_E_W ,JP8_F_W))

print(combine.shape)

smokeCols = np.arange (1,65)

tempCols = np.arange (65 ,129)

COCols = np.arange (129 ,193)

CO2Cols = np.arange (193 ,257)

def running_mean(x, N):

cumsum = np.cumsum(np.insert(x, 0, 0))

return (cumsum[N:] - cumsum[:-N]) / float(N)

RAsmoke = np.zeros ((982 ,64))

RAtemp = np.zeros ((982 ,64))

brackets = np.arange (0 ,14649 ,257)

loopRange = np.arange (0 ,55974 ,982)

allTemp = np.zeros ((54992 ,64))

allSmoke = np.zeros ((54992 ,64))

for i in range (56):

getFuel = combine [1:, brackets[i]: brackets[i+1]] # look at each fire

individually

smoke = getFuel [: ,1:65]

temp = getFuel [: ,65:129]

for j in range (64):

RAsmoke[:,j] = running_mean(smoke[:,j],20) # smooth the data for each fire

by taking the running average
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RAtemp[:,j] = running_mean(temp[:,j],20)

allTemp[loopRange[i]: loopRange[i+1],:] = RAtemp # put all of the temperatures

into 1 array

allSmoke[loopRange[i]: loopRange[i+1] ,:] = RAsmoke # put all of the

temperatures into 1 array

# transpose the matrices so it works for later portions

allTemp = allTemp.T

print(allTemp.shape)

allSmoke = allSmoke.T

print(allSmoke.shape)

#account for uncertainty

unc = 25*0.15 # ambient temperature multiplied by 15%

amb = [25-unc ,25+ unc]

tempCols = np.arange (65 ,129)

maximum = np.zeros ((56 ,982))

brackets = np.zeros ((57)) # should be dimension x+1

for i in range (56):

brackets[i+1] = 982 + 982*i #allows for each fuel/condition to be looked at

separately

maxs = np.zeros (54992)

check = np.zeros (54992)

for i in range (56):

x = np.arange(brackets[i],brackets[i+1])

for j in range (982):

temp = allTemp[:,int(x[j])] # gets the temperature at every sensor for a

specific fuel/condition at a single instance in time

maxs[int(x[j])] = np.argmax(temp) # gives the maximum values at every

instance in time

a = maxs[int(x[j])]
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check[int(x[j])] = temp[int(a)] # stores the maximum smoke obscuration

into a large 1D array

# Fires and Corresponding Indices

fireTitle =[’DF_A’,’DF_C’,’DF_E’,’DF_F’,’DF_AW’,’DF_BW ’,’DF_CW’,’DF_DW’,’DF_EW ’,’

DF_FW’,’DF_AB ’,’DF_BB’,’DF_CB’,’DF_DB ’,’DF_EB’,

’DF_FB ’,’PE_A’,’PE_C’,’PE_E’,’PE_F’,’PE_AW ’,’PE_BW ’,’PE_CW’,’

PE_DW’,’PE_EW ’,’PE_FW’,’Pr_A’,’Pr_C’,’Pr_E’,’Pr_F’,

’Pr_AW ’,’Pr_BW’,’Pr_CW ’,’Pr_DW ’,’Pr_EW’,’Pr_FW ’, ’Pa_A’,’Pa_C

’,’Pa_E’,’Pa_F’,’Pa_AW’,’Pa_BW ’,’Pa_CW’,’Pa_DW ’,’Pa_EW’,’

Pa_FW’,

’JP8_A ’,’JP8_C’,’JP8_E ’,’JP8_F ’,’JP8_AW ’,’JP8_BW ’,’JP8_CW ’,’

JP8_DW ’,’JP8_EW ’,’JP8_FW ’]

overlap = np.zeros (54992)

# check to make sure the smoke is above a critical threshold and identify this as

the location - start with something more sensitive so when it picks up a non -

zero smoke obscuration

for i in range(len(maxs)):

CI_temp = check[i]*0.15

temp_range = [check[i]-CI_temp ,check[i]+ CI_temp]

overlap[i] = temp_range [0]-amb[1]

print(overlap.shape)

# Coordinate locations of the sensors in the hangar

X_Loc = np.zeros (8)

Y_Loc = np.zeros (8)

for i in range (0,8):

X_Loc[i] = 1.625 + 3.25*i

Y_Loc[i] = 1.625 + 3.25*i

y1 = np.arange (0,8)

y2 = np.arange (8,16)

y3 = np.arange (16 ,24)

y4 = np.arange (24 ,32)
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y5 = np.arange (32 ,40)

y6 = np.arange (40 ,48)

y7 = np.arange (48 ,56)

y8 = np.arange (56 ,64)

Y_range = np.zeros (64)

for i in range (0,8):

Y_range[y1[i]] = Y_Loc [0] # 0-7

Y_range[y2[i]] = Y_Loc [1] # 8-15

Y_range[y3[i]] = Y_Loc [2] # 16-23

Y_range[y4[i]] = Y_Loc [3] # 24-31

Y_range[y5[i]] = Y_Loc [4] # 32-39

Y_range[y6[i]] = Y_Loc [5] # 40-47

Y_range[y7[i]] = Y_Loc [6] # 48-55

Y_range[y8[i]] = Y_Loc [7] # 56-63

X_range = np.hstack ((X_Loc ,X_Loc ,X_Loc ,X_Loc ,X_Loc ,X_Loc ,X_Loc ,X_Loc))

coord = np.zeros ((64 ,2))

for i in range (64):

coord[i,:] = np.hstack (( X_range[i],Y_range[i]))

#actual fire location coordinates

LocA = [13 ,3.5] # 1,5,11,17,20,26,29,32,35

LocB = [13,9] #6,12,21,36

LocC = [13 ,13] #2,7,13,18,22,27,30,33,37

LocD = [13 ,18.5] #8,14,23,38

LocE = [13 ,22.5] #3,9,15,24,39

LocF = [3.5 ,3.5] #4,10,16,19,25,28,31,34,40

actual = [LocA ,LocC ,LocE ,LocF ,LocA ,LocB ,LocC ,LocD ,LocE ,LocF ,LocA ,LocB ,LocC ,LocD ,

LocE ,LocF ,LocA ,

LocC ,LocE ,LocF ,LocA ,LocB ,LocC ,LocD ,LocE ,LocF ,LocA ,LocC ,LocE ,LocF ,LocA ,

LocB ,LocC ,LocD ,
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LocE ,LocF ,LocA ,LocC ,LocE ,LocF ,LocA ,LocB ,LocC ,LocD ,LocE ,LocF ,LocA ,LocC ,

LocE ,LocF ,LocA ,LocB ,LocC ,LocD ,LocE ,LocF]

sensors = np.zeros ((56 ,9))

valStore = np.zeros ((56 ,2))

for i in range (56):

#look at each fuel/condition at a time

a = int(brackets[i])

b = int(brackets[i+1])

comp = overlap[a:b]

maxrange = maxs[a:b]

if comp[i].all() >0: # only go into this loop if the overlap yields a positive

value

array = np.where(comp >0)

array0 = np.array(array [0])

if len(array0) <10 and len(array0) >0: #when the temperatures are smoothed

out , nothing works for the PE cables ...

idx = array0 [0]

loc = maxrange[idx]

sensors[i,:] = [loc -9,loc -8,loc -7,loc -1, loc , loc+1, loc+7, loc+8, loc

+9]

val = coord[int(loc)]

valStore[i,0] = val[0]

valStore[i,1] = val[1]

interest = actual[i]

fig , ax=plt.subplots ()

ax.tick_params(axis=’both’,which=’both’,direction=’in’)

ax.yaxis.set_minor_locator(tck.AutoMinorLocator ())

ax.set_aspect(’equal’)

label = ((’Fire’,i+1,’Location␣Prediction ’))

plt.title(label)

ax.set_xlim ([0 ,26])

ax.set_ylim ([0 ,26])
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fire = plt.Circle ((val[0],val [1]) ,5,color=’red’,alpha =0.5, label=’

Potential␣Fire␣Location ’) # changed to 5 for testing

ax.add_patch(fire)

plt.scatter(val[0],val[1],color = ’blue’,label=’First␣Sensor␣

Activation ’)

plt.scatter(interest [0], interest [1],color=’black ’,marker=’*’,label=’

Actual␣Location ’)

plt.legend ()

plt.show()

print(’Fire’,i+1,’is␣closest␣to␣sensor ’,loc)

print(’␣␣␣␣␣The␣fire␣is␣assumed␣to␣be␣located␣within␣a␣circular␣region

␣centered␣at␣(’,val[0],’m␣,’,val[1],’m␣)␣with␣a␣radius␣of␣5m’ )

if len(array0) >10:

for j in range(len(array0)):

idx = array0[j]

loc = maxrange[idx]

sensors[i,:] = [loc -9,loc -8,loc -7,loc -1, loc , loc+1, loc+7, loc+8,

loc +9]

val = coord[int(loc)]

valStore[i,0] = val[0]

valStore[i,1] = val[1]

interest = actual[i]

fig , ax=plt.subplots ()

ax.tick_params(axis=’both’,which=’both’,direction=’in’)

ax.yaxis.set_minor_locator(tck.AutoMinorLocator ())

ax.set_aspect(’equal’)

label = ((’Fire’,i+1,’Location␣Prediction ’))

plt.title(label)

ax.set_xlim (0,26)

ax.set_ylim (0,26)

fire = plt.Circle ((val[0],val [1]) ,5,color=’red’,alpha =0.5, label=’

Potential␣Fire␣Location ’) # changed to 5 for testing

ax.add_patch(fire)
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plt.scatter(val[0],val[1],color = ’blue’,label=’First␣Sensor␣

Activation ’)

plt.scatter(interest [0], interest [1],color=’black ’,marker=’*’,label

=’Actual␣Location ’)

plt.legend ()

plt.show()

print(’Fire’,i+1,’is␣closest␣to␣sensor ’,loc)

print(’␣␣␣␣␣The␣fire␣is␣assumed␣to␣be␣located␣within␣a␣circular␣

region␣centered␣at␣(’,val[0],’m␣,’,val[1],’m␣)␣with␣a␣radius␣of

␣5m’ )

break

elif len(array0)==0:

print(’Unable␣to␣identify␣location␣of␣Fire’,i+1)

Get sensors of interest

AVG = np.zeros ((56 ,982))

AVGsmoke = np.zeros ((56 ,982))

e = 9

pos_count , neg_count ,great_count = 0,0,0

for i in range (56):

a = int(brackets[i])

b = int(brackets[i+1])

pos_count , neg_count , great_count = 0,0,0

for j in range (9):

if sensors[i][j] >= 0:

pos_count +=1

e = 9

f_i = sensors[i][0:e]

if sensors[i][j] > 63:

great_count +=1

e = pos_count -great_count

f_i = sensors[i][0:e]

f_i = np.zeros(( pos_count))

s = abs(pos_count -9)
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f_i = sensors[i][s:e]

x = len(f_i)

if all(f_i == 0):

var = allTemp[:,a:b]

varSmoke = allSmoke[:,a:b]

else:

var = np.zeros((x ,982))

varSmoke = np.zeros ((x ,982))

for k in range(x):

var[k,:] = allTemp[:,a:b][int(f_i[k]) ,:]

varSmoke[k,:] = allSmoke[:,a:b][int(f_i[k]) ,:]

avg = np.average(var ,axis =0)

avgSmoke = np.average(varSmoke ,axis =0)

AVG[i,:] = avg # takes the average value of the sensors of interest and puts

them into an array for each fire - the order of the temps are in the order

that the fuels were sampled

AVGsmoke[i,:] = avgSmoke

Import Excel files for HRR here

allHRR = np.hstack ((DF_A_HRR ,DF_C_HRR ,DF_E_HRR ,DF_F_HRR ,DF_A_W_HRR ,DF_B_W_HRR ,

DF_C_W_HRR ,DF_D_W_HRR ,DF_E_W_HRR ,DF_F_W_HRR ,

DF_A_Bm_HRR ,DF_B_Bm_HRR ,DF_C_Bm_HRR ,DF_D_Bm_HRR ,DF_E_Bm_HRR ,

DF_F_Bm_HRR ,PE_A_HRR ,PE_C_HRR ,PE_E_HRR ,PE_F_HRR ,

PE_A_W_HRR ,PE_B_W_HRR ,PE_C_W_HRR ,PE_D_W_HRR ,PE_E_W_HRR ,

PE_F_W_HRR ,Pr_A_HRR ,Pr_C_HRR ,Pr_E_HRR ,Pr_F_HRR ,Pr_A_W_HRR ,

Pr_B_W_HRR ,Pr_C_W_HRR ,Pr_D_W_HRR ,Pr_E_W_HRR ,Pr_F_W_HRR ,

Pa_A_HRR ,Pa_C_HRR ,Pa_E_HRR ,Pa_F_HRR ,Pa_A_W_HRR ,Pa_B_W_HRR ,

Pa_C_W_HRR ,Pa_D_W_HRR ,Pa_E_W_HRR ,Pa_F_W_HRR , JP8_A_HRR ,

JP8_C_HRR ,JP8_E_HRR ,JP8_F_HRR ,JP8_A_W_HRR ,JP8_B_W_HRR ,

JP8_C_W_HRR ,JP8_D_W_HRR ,JP8_E_W_HRR ,JP8_F_W_HRR))

bracketsHRR = np.zeros ((57)) # should be dimension x+1

totalHRR = np.zeros ((56 ,1000))
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for i in range (56):

bracketsHRR[i+1] = 13 + 13*i

c = int(bracketsHRR[i])

d = int(bracketsHRR[i+1])

value = allHRR[:,c:d]

totalHRR[i,:] = value [2:,1]

RAhrr = np.zeros ((56 ,981))

for i in range (56):

RAhrr[i,:] = running_mean(totalHRR[i],20)

scaler = MinMaxScaler ()

scaler.fit(AVG.reshape (-1,1))

print(scaler.data_max_)

print(scaler.data_min_)

xtrans = scaler.transform(AVG.reshape (-1,1))

tempdata = np.zeros ((56 ,981))

r = np.zeros (57)

for i in range (56):

r[i+1] = 981*i +981

tempdata[i,:] = xtrans[int(r[i]):int(r[i+1])]. reshape (1,-1)

scaler2 = MinMaxScaler ()

scaler2.fit(RAhrr.reshape (-1,1))

print(scaler2.data_max_)

print(scaler2.data_min_)

ytrans = scaler2.transform(RAhrr.reshape (-1,1))

hrrdata = np.zeros ((56 ,981))

r = np.zeros (57)

for i in range (56):

r[i+1] = 981*i +981

hrrdata[i,:] = ytrans[int(r[i]):int(r[i+1])]. reshape (1,-1)

want =

[0,1,2,4,7,8,11,13,16,17,18,20,21,22,23,25,26,27,28,30,31,32,33,35,36,37,38,
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40,41,42 ,43 ,45 ,46,47,48,50,51 ,52 ,53 ,55]

wantTest = [3,5,6,9,10,12,14,15,19,24,29,34,39,44,49,54]

xTrainManual = np.zeros ((len(want) ,981))

yTrainManual = np.zeros ((len(want) ,981))

xTestManual = np.zeros((len(wantTest) ,981))

yTestManual = np.zeros((len(wantTest) ,981))

for i in range(len(want)):

xTrainManual[i,:] = tempdata[want[i]]

yTrainManual[i,:] = hrrdata[want[i]]

for i in range(len(wantTest)):

xTestManual[i,:] = tempdata[wantTest[i]]

yTestManual[i,:] = hrrdata[wantTest[i]]

Neural Network Architecture

class Net(nn.Module):

def __init__(self , input_size , hidden_size):

super(Net , self).__init__ ()

self.fc1 = nn.Linear(input_size , hidden_size)

self.ReLU = nn.ReLU()

self.fc2 = nn.Linear(input_size , hidden_size)

self.ReLU2 = nn.ReLU()

self.fc3 = nn.Linear(input_size , hidden_size)

self.ReLU3 = nn.ReLU()

self.fc4 = nn.Linear(hidden_size , input_size)

# Forward pass builds the model prediction from the inputs

def forward(self , x):

################

out = self.fc1(x)
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out = self.ReLU(out)

out = self.fc2(x)

out = self.ReLU2(out)

out = self.fc3(x)

out = self.ReLU3(out)

out = self.fc4(out)

pass

return out

model = Net(input_size =981, hidden_size =400)

criterion = nn.L1Loss ()

learning_rate = 0.00001

optimizer = torch.optim.Adam(model.parameters (), lr=learning_rate , weight_decay

=0.01)

num_epochs = 20000

MAE_train = np.zeros(( num_epochs))

MAE_test = np.zeros(( num_epochs))

MAE_train_us = np.zeros (( num_epochs))

MAE_test_us = np.zeros(( num_epochs))

for epoch in range(num_epochs):

total_loss =0

test_total_loss = 0

for i in range(xTrainManual.shape [0]):

inputs = torch.from_numpy(xTrainManual[i,:]. astype(np.float32))

targets = torch.from_numpy(yTrainManual[i,:]. astype(np.float32))

## Do Forward pass

# Make predictions

outputs = model(inputs)

# Compute the loss function
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loss = criterion(outputs , targets)

total_loss +=loss

# Update the model

# Reset the optimizer gradients

optimizer.zero_grad ()

# Compute the gradient of the loss function

total_loss.backward ()

# Do an optimization step

optimizer.step()

MAE_train[epoch] = total_loss.item()

MAE_train_us[epoch] = scaler2.inverse_transform(MAE_train[epoch ]. reshape (-1,1)

) #unscale the MSE to get an actual idea of the value in kW

# Print the loss

if (epoch +1) % 1000 == 0:

print (’Epoch␣[{:4}/{}] ,␣Loss:␣{:.4f}’.format(epoch+1, num_epochs ,

total_loss.item()))

model.eval()

with torch.no_grad (): # don’t add to the computational graph

for j in range(xTestManual.shape [0]):

test_inputs = torch.from_numpy(xTestManual[j,:]. astype(np.float32))

test_targets = torch.from_numpy(yTestManual[j,:]. astype(np.float32))

test_outputs = model(test_inputs)

test_loss = criterion(test_outputs , test_targets)

test_total_loss += test_loss

MAE_test[epoch] = test_total_loss.item()

MAE_test_us[epoch] = scaler2.inverse_transform(MAE_test[epoch ]. reshape (-1,1))

#unscale the MSE to get an actual idea of the value in kW
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#set the model back into training mode

model.train()

fig , ax = plt.subplots ()

ax.tick_params(axis=’both’,which=’both’,direction=’in’)

ax.yaxis.set_minor_locator(tck.AutoMinorLocator ())

plt.plot(np.arange(num_epochs),MAE_train ,’r’,label=’Train’)

plt.plot(np.arange(num_epochs),MAE_test ,’b’,label=’Test’)

plt.xlabel(’Epochs ’)

plt.ylabel(’log␣Loss’)

plt.yscale(’log’)

plt.xlim (0 ,20000)

plt.legend ()

plt.savefig(’logMAE.png’,bbox_inches=’tight’)

plt.show()

print(’MAE␣Train:’, MAE_train[num_epochs -1])

print(’MAE␣Test:’, MAE_test[num_epochs -1])

fig , ax = plt.subplots ()

ax.tick_params(axis=’both’,which=’both’,direction=’in’)

ax.yaxis.set_minor_locator(tck.AutoMinorLocator ())

print(MAE_train.shape)

plt.plot(np.arange(num_epochs),MAE_train_us ,’r’,label=’Train’)

plt.plot(np.arange(num_epochs),MAE_test_us ,’b’,label=’Test’)

plt.xlabel(’Epochs ’)

plt.ylabel(’Loss␣(kW)’)

plt.ylim (0 ,35000)

plt.xlim (0 ,20000)

plt.legend ()

plt.savefig(’MAE.png’,bbox_inches=’tight’)
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plt.show()

print(’MAE␣Train:’, MAE_train_us[num_epochs -1])

print(’MAE␣Test:’, MAE_test_us[num_epochs -1])

time = DF_A_HRR [10:991 ,0]

print(time.shape)

from sklearn.metrics import mean_absolute_error

for i in range(xTrainManual.shape [0]):

figure ()

fig , ax = plt.subplots ()

ax.tick_params(axis=’both’,which=’both’,direction=’in’)

ax.yaxis.set_minor_locator(tck.AutoMinorLocator ())

train = xTrainManual[i,:]

actual = scaler2.inverse_transform(yTrainManual[i,:]. reshape (-1,1))

pred = model(torch.from_numpy(train.reshape (1,-1).astype(np.float32))).detach

().numpy ()

predScale = scaler2.inverse_transform(pred).reshape (-1,1)

if i<8:

ax.set_ylim (0 ,2500)

ax.set_xlim (0 ,300)

if 7<i<16:

ax.set_ylim (0,70)

ax.set_xlim (0 ,300)

if 15<i<24:

ax.set_ylim (0 ,2500)

ax.set_xlim (0 ,300)

if 23<i<32:

ax.set_ylim (0 ,500)

ax.set_xlim (0 ,300)

if i>32:

ax.set_ylim (0 ,2500)

ax.set_xlim (0 ,300)
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plt.plot(time ,actual ,linewidth =2,label = ’Actual ’)

plt.plot(time ,predScale ,linewidth =1,label = ’Prediction ’)

plt.xlabel(’Time␣(s)’)

plt.ylabel(’HRR␣(kW)’)

plt.legend(loc=’upper␣left’)

# plt.title(want[i])

plt.savefig("Fire"+str(want[i])+"Prediction"+".png",format="PNG")

plt.show()

# find the individual MAEs

train_mae = mean_absolute_error(pred ,yTrainManual[i,:]. reshape (1,-1))

us_train_mae = mean_absolute_error(predScale ,actual)

print(’Fire’, want[i],’Individual␣SCALED␣Training␣MSE:’, train_mae)

print(’Fire’, want[i],’Individual␣UNSCALED␣Training␣MSE:’, us_train_mae)

for i in range(xTestManual.shape [0]):

figure ()

fig , ax = plt.subplots ()

ax.tick_params(axis=’both’,which=’both’,direction=’in’)

ax.yaxis.set_minor_locator(tck.AutoMinorLocator ())

test = xTestManual[i,:]

actualtest = scaler2.inverse_transform(yTestManual[i,:]. reshape (-1,1))

predtest = model(torch.from_numpy(test.reshape (1,-1).astype(np.float32))).

detach ().numpy()

predScaletest = scaler2.inverse_transform(predtest).reshape (-1,1)

if i<8:

ax.set_ylim (0 ,3000)

ax.set_xlim (0 ,300)

if 7<i<10:

ax.set_ylim (0,80)

ax.set_xlim (0 ,300)

if 9<i<12:

ax.set_ylim (0 ,3000)
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ax.set_xlim (0 ,300)

if 11<i<14:

ax.set_ylim (0 ,500)

ax.set_xlim (0 ,300)

if i>13:

ax.set_ylim (0 ,3000)

ax.set_xlim (0 ,300)

plt.plot(time ,actualtest ,linewidth =2,label = ’Actual ’)

plt.plot(time ,predScaletest ,linewidth=1,label = ’Prediction ’)

plt.xlabel(’Time␣(s)’)

plt.ylabel(’HRR␣(kW)’)

plt.legend(loc=’upper␣left’)

plt.savefig("Fire"+str(wantTest[i])+"TestPrediction"+".png",format="PNG")

plt.show()

figure ()

test_mae = mean_absolute_error(predtest ,yTestManual[i,:]. reshape (1,-1))

us_test_mae = mean_absolute_error(predScaletest ,actualtest)

print(’Fire’, wantTest[i],’Individual␣SCALED␣Testing␣MAE:’, test_mae)

print(’Fire’, wantTest[i],’Individual␣UNSCALED␣Testing␣MAE:’,us_test_mae)

Fuel classification portion

# Make 3d graph

stack = np.zeros ((54992 ,3))

timeClass = DF_A_HRR [10:992 ,0]

plt.rcParams.update(plt.rcParamsDefault)

for i in range (56):

a = 982*i

b = 982*(i+1)

fuelSmoke = AVGsmoke[i,:]. reshape (-1,1)

fuelTemp = AVG[i,:]. reshape (-1,1)
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fuelTime = timeClass.reshape (-1,1)

stack[a:b,:] = np.hstack ((fuelSmoke ,fuelTemp ,fuelTime))

DFstack = stack [0:15712 ,:]

PEstack = stack [15712:25532 ,:]

Prstack = stack [25532:35352 ,:]

Pastack = stack [35352:45172 ,:]

Jp8stack = stack [45172:54992 ,:]

print(stack [: ,0]. shape)

fireTitleNumeric =

[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,

3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4]

fireTitleNumeric = np.array(fireTitleNumeric).reshape (-1,1)

labels = np.zeros ((54992))

labels_w_time = np.array(fireTitleNumeric).reshape (-1,1)

for i in range (56):

for j in range (982):

a = 982*i

b = 982*(i+1)

labels[a:b] = labels_w_time[i]

labels = [int(i) for i in labels]

labels = np.array(labels)

fig = plt.figure(figsize =(15 ,15))

ax = fig.add_subplot(projection=’3d’)

y = labels

print(labels.shape)
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ax.scatter(DFstack [:,0], DFstack [:,2], DFstack [:,1],alpha =0.5, label=’Douglas␣Fir’)

ax.scatter(PEstack [:,0], PEstack [:,2], PEstack [:,1],alpha =0.5, label=’Polyethylene ’)

ax.scatter(Prstack [:,0], Prstack [:,2], Prstack [:,1],alpha =0.5, label=’Propane ’)

ax.scatter(Pastack [:,0], Pastack [:,2], Pastack [:,1],alpha =0.5, label=’Paper’)

ax.scatter(Jp8stack [:,0], Jp8stack [:,2], Jp8stack [:,1], alpha =0.5, label=’JP -8’)

ax.set_xlabel(’Smoke␣Obscuration␣(%/m)’)

ax.set_zlabel(’Temperature␣(C)’)

ax.set_ylabel(’Time␣(s)’)

ax.legend(markerscale =4, fontsize =20)

plt.savefig(’3dPlot.png’,bbox_inches=’tight’)

plt.show()

# already scaled the temperature so just need to scale the smoke and the time

scalerSmoke = MinMaxScaler ()

scalerSmoke.fit(AVGsmoke.reshape (-1,1))

smoketrans = scalerSmoke.transform(AVGsmoke.reshape (-1,1))

scalerTime = MinMaxScaler ()

scalerTime.fit(stack [:,2]. reshape (-1,1))

timetrans = scalerTime.transform(stack [:,2]. reshape (-1,1))

#put these scaled values into an array

scaled = np.hstack ((smoketrans ,xtrans.reshape (-1,1),timetrans))

fireRanges = np.arange (0 ,55974 ,982)

xManUS = np.zeros ((39280 ,3))

yManUS = np.zeros ((39280)) # this should be the labels for the fires (0 to 4)

for i in range(len(want)):
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instance = want[i]

c = fireRanges[instance]

d = fireRanges[instance +1]

group = scaled[c:d,:]

xManUS[fireRanges[i]: fireRanges[i+1],:] = group

yManUS[fireRanges[i]: fireRanges[i+1]] = fireTitleNumeric[instance]

xManUSTest = np.zeros ((15712 ,3))

yManUSTest = np.zeros ((15712))

for i in range(len(wantTest)):

instanceTest = wantTest[i]

cTest = fireRanges[instanceTest]

dTest = fireRanges[instanceTest +1]

groupTest = scaled[cTest:dTest ,:]

xManUSTest[fireRanges[i]: fireRanges[i+1],:] = groupTest

yManUSTest[fireRanges[i]: fireRanges[i+1]] = fireTitleNumeric[instanceTest]

linear = svm.SVC(kernel=’linear ’,C=1, decision_function_shape=’ovo’).fit(xManUS ,

yManUS)

predTrain = linear.predict(xManUS)

print(’Training␣Accuracy ’, accuracy_score(yManUS ,predTrain)*100)

predTest = linear.predict(xManUSTest)

accTest = accuracy_score(yManUSTest ,predTest)

print(’Testing␣Accuracy ’, accuracy_score(yManUSTest ,predTest)*100)

# Confusion Matrix to see what was misclassified

results = confusion_matrix(yManUSTest ,predTest)

categories =[’DF’,’PE’,’Pr’,’Pa’,’JP8’]

percent = np.zeros(( results.shape[0], results.shape [0]))

for i in range(results.shape [0]):

for j in range(results.shape [0]):
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percent[i,j]= results[i,j]/sum(results[i,:])

print(results)

sns.set()

fig , ax0 = plt.subplots (1,1)

categories =[’DF’,’PE’,’Pr’,’Pa’,’JP8’]

ax = sns.heatmap(percent *100, annot=True , fmt = ’.1f’,xticklabels=categories ,

yticklabels=categories , square=1,cmap=’binary ’)

for t in ax.texts: t.set_text(t.get_text () + "␣%")

# plt.title(’All Fuels Classification ’)

plt.xlabel(’Predicted␣Fuel’)

plt.ylabel(’True␣Fuel’)

plt.savefig(’AllFuelsConfusion.png’,bbox_inches=’tight ’)

plt.show()

Find critical instance in time for accuracy

# get chunks of 30 seconds which corresponds to approximately 100 instances

a = np.zeros ((9 ,16))

b = np.zeros ((9 ,16))

test = np.zeros ((1600 ,3))

acc = np.zeros (9)

testii_ranges = np.arange (0 ,1700 ,100)

yTestii = np.zeros ((1600))

for i in range (9):

for j in range (16):

a[i,j] = 982*j+100*i

b[i,j] = a[i,j]+100

test[(j)*100:(j+1) *100 ,:] = xManUSTest[int(a[i,j]):int(b[i,j]) ,:]

instanceTest = wantTest[j]

yTestii[testii_ranges[j]: testii_ranges[j+1]] = fireTitleNumeric[

instanceTest]

pred = linear.predict(test)

acc[i] = accuracy_score(yTestii ,pred)
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Binary classification on JP-8

# Make 3d graph

plt.rcParams.update(plt.rcParamsDefault)

Otherstack = stack [0:45172 ,:]

palette = sns.color_palette ()

fig = plt.figure(figsize =(15 ,15))

ax = fig.add_subplot(projection=’3d’)

ax.scatter(Otherstack [:,0], Otherstack [:,2], Otherstack [:,1], color=’gray’,alpha =0.5,

label=’Other ’)

ax.scatter(Jp8stack [:,0], Jp8stack [:,2], Jp8stack [:,1], color=palette [4],alpha =0.5,

label=’JP -8’)

ax.set_xlabel(’Smoke␣Obscuration␣(%/m)’)

ax.set_zlabel(’Temperature␣(C)’)

ax.set_ylabel(’Time␣(s)’)

ax.legend(markerscale =4, fontsize =20)

plt.savefig(’Binary3dPlot.png’,bbox_inches=’tight ’)

plt.show()

# create the proper labels

yManBiTrain = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

1,1,1,1,1,1,1,1]

yManBiTest = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1]

labelsBiTrain = np.zeros ((39280))

for i in range (40):

for j in range (982):

a = 982*i

b = 982*(i+1)

labelsBiTrain[a:b] = yManBiTrain[i]
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labelsBiTest = np.zeros ((15712))

for i in range (16):

for j in range (982):

a = 982*i

b = 982*(i+1)

labelsBiTest[a:b] = yManBiTest[i]

linear_binary = svm.SVC(kernel=’linear ’,C=1, decision_function_shape=’ovo’).fit(

xManUS ,labelsBiTrain)

predTrainBi = linear_binary.predict(xManUS)

print(’Training␣Accuracy␣Manual␣Binary ’, accuracy_score(labelsBiTrain ,predTrainBi)

*100)

predTestBi = linear_binary.predict(xManUSTest)

accTestBi = accuracy_score(labelsBiTest ,predTestBi)

print(’Testing␣Accuracy␣Manual ’, accuracy_score(labelsBiTest ,predTestBi)*100)

# Confusion Matrix to see what was misclassified

resultsbi = confusion_matrix(labelsBiTest ,predTestBi)

categoriesbi = [’Other ’,’JP8’]

percentBi = np.zeros(( resultsbi.shape [0], resultsbi.shape [0]))

for i in range(resultsbi.shape [0]):

for j in range(resultsbi.shape [0]):

percentBi[i,j]= resultsbi[i,j]/sum(resultsbi[i,:])

sns.set()

fig , ax0 = plt.subplots (1,1)

categories =[’DF’,’PE’,’Pr’,’Pa’,’JP8’]

ax = sns.heatmap(percentBi *100, annot=True , fmt = ’.1f’,xticklabels=categoriesbi ,

yticklabels=categoriesbi , square=1,cmap=’binary ’,vmin=0, vmax =100)

for t in ax.texts: t.set_text(t.get_text () + "␣%")

# plt.title(’Binary Fuel Classification ’)
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plt.xlabel(’Predicted␣Fuel’)

plt.ylabel(’True␣Fuel’)

plt.savefig(’BinaryConfusion.png’,bbox_inches=’tight ’)

plt.show()

print(resultsbi)

# get chunks of 30 seconds which corresponds to approximately 100 instances

aBi= np.zeros ((9 ,16))

bBi = np.zeros ((9 ,16))

testBi = np.zeros ((1600 ,3))

accBi = np.zeros (9)

yTestiiBi = np.zeros ((1600))

for i in range (9):

for j in range (16):

aBi[i,j] = 982*j+100*i

bBi[i,j] = aBi[i,j]+100

testBi [(j)*100:(j+1) *100 ,:] = xManUSTest[int(aBi[i,j]):int(bBi[i,j]) ,:]

yTestiiBi[testii_ranges[j]: testii_ranges[j+1]] = yManBiTest[j] # takes the

numeric label and appends it 100 times for that chunk of time and

moves to the rest

predBi = linear_binary.predict(testBi)

accBi[i] = accuracy_score(yTestiiBi ,predBi)

Put both critical accuracies on same plot and compare

figure ()

plt.rcParams.update(plt.rcParamsDefault)

fig , ax = plt.subplots ()

ax.tick_params(axis=’both’,which=’both’,direction=’in’)

ax.yaxis.set_minor_locator(tck.AutoMinorLocator ())

plt.title(’Comparison␣of␣Critical␣Accuracies ’)

plt.xlabel(’Time ,␣s’)

plt.ylabel(’Accuracy ’)

xTime = np.arange (30 ,300 ,30)
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plt.plot(xTime ,acc ,color = ’g’, marker=’o’,label=’Classification ’)

plt.axhline(y=accTest , color=’g’, linestyle=’--’,label=’Average␣test␣accuracy ’)

plt.plot(xTime ,accBi ,color=’b’,marker=’o’,label=’Binary␣Classification ’)

plt.axhline(y=accTestBi , color=’b’, linestyle=’--’,label=’Average␣binary␣test␣

accuracy ’)

plt.xlim (0 ,300)

plt.ylim (0 ,1.1)

plt.legend(loc=’upper␣center ’,bbox_to_anchor =(0.5 , -0.1),ncol =5)

# plt.legend(loc=’center left ’,bbox_to_anchor =(1 ,0.5))

plt.savefig(’critAccuracy.png’,bbox_inches=’tight ’)

plt.show()

Start training at one minute and see accuracy for all 5 fuels

newRanges = np.zeros (114)

arrayRange = np.arange (0 ,32062 ,782)

for i in range (57):

j = 2*i

newRanges[j] =200+(982*i)

newRanges[j+1] = newRanges[j]+782

xOne = np.zeros ((31280 ,3))

yOne = np.zeros ((31280)) # this should be the labels for the fires (0 to 4)

for i in range(len(want)):

ins1 = want[i]

c1 = newRanges[ins1 *2]

d1 = newRanges [(2* ins1)+1]

group1 = scaled[int(c1):int(d1) ,:]

xOne[arrayRange[i]: arrayRange[i+1],:] = group1

yOne[arrayRange[i]: arrayRange[i+1]]= fireTitleNumeric[ins1]

xOneTest = np.zeros ((12512 ,3))

yOneTest = np.zeros ((12512)) # this should be the labels for the fires (0 to 4)
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for i in range(len(wantTest)):

ins1T = wantTest[i]

c1T = newRanges[ins1T *2]

d1T = newRanges [(2* ins1T)+1]

group1T = scaled[int(c1T):int(d1T) ,:]

xOneTest[arrayRange[i]: arrayRange[i+1] ,:] = group1T

yOneTest[arrayRange[i]: arrayRange[i+1]]= fireTitleNumeric[ins1T]

linear_one_min = svm.SVC(kernel=’linear ’,C=1, decision_function_shape=’ovo’).fit(

xOne ,yOne)

predTrainOne = linear_one_min.predict(xOne)

print(’Training␣Accuracy ’, accuracy_score(yOne ,predTrainOne)*100)

predTestOne = linear_one_min.predict(xOneTest)

print(’Testing␣Accuracy ’, accuracy_score(yOneTest ,predTestOne)*100)

resultsOne = confusion_matrix(yOneTest ,predTestOne)

percentOne = np.zeros(( resultsOne.shape[0], resultsOne.shape [0]))

for i in range(resultsOne.shape [0]):

for j in range(resultsOne.shape [0]):

percentOne[i,j]= resultsOne[i,j]/sum(resultsOne[i,:])

print(percentOne *100)

Start training at two minutes

# starts at 400 for this portion

newRanges2 = np.zeros (114)

arrayRange2 = np.arange (0 ,23862 ,582)

for i in range (57):

j = 2*i

newRanges2[j] =400+(982*i)

newRanges2[j+1] = newRanges2[j]+582

xTwo = np.zeros ((23280 ,3))

yTwo = np.zeros ((23280)) # this should be the labels for the fires (0 to 4)
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for i in range(len(want)):

ins2 = want[i]

c2 = newRanges2[ins2 *2]

d2 = newRanges2 [(2* ins2)+1]

group2 = scaled[int(c2):int(d2) ,:]

xTwo[arrayRange2[i]: arrayRange2[i+1],:] = group2

yTwo[arrayRange2[i]: arrayRange2[i+1]]= fireTitleNumeric[ins2]

xTwoTest = np.zeros ((9312 ,3))

yTwoTest = np.zeros ((9312)) # this should be the labels for the fires (0 to 4)

for i in range(len(wantTest)):

ins2T = wantTest[i]

c2T = newRanges2[ins2T *2]

d2T = newRanges2 [(2* ins2T)+1]

group2T = scaled[int(c2T):int(d2T) ,:]

xTwoTest[arrayRange2[i]: arrayRange2[i+1],:] = group2T

yTwoTest[arrayRange2[i]: arrayRange2[i+1]]= fireTitleNumeric[ins2T]

linear_two_min = svm.SVC(kernel=’linear ’,C=1, decision_function_shape=’ovo’).fit(

xTwo ,yTwo)

predTrainTwo = linear_two_min.predict(xTwo)

print(’Training␣Accuracy ’, accuracy_score(yTwo ,predTrainTwo)*100)

predTestTwo = linear_two_min.predict(xTwoTest)

print(’Testing␣Accuracy ’, accuracy_score(yTwoTest ,predTestTwo)*100)
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Appendix C

Graphs

This section shows the pair plots (Seaborn implementation) that were used to determine what two products

of combustion had the strongest relationship and should be used for fuel identification. The diagonal shows

the distribution of a single variable and the scatter plots show the potential relationship between variables.

The four products of combustion are plotted on the x and y axes, for a combination of 16 plots.

The axes bounds are fixed across each pair plot in time.
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Figure C.1: Pairplot at 30 seconds.
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Figure C.2: Pairplot at 150 seconds.
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Figure C.3: Pairplot at 300 seconds.
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