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Abstract

The evaluation of sums (matrix-vector products) of the solutions of the three-dimensional
biharmonic equation can be accelerated using the fast multipole method, while memory require-
ments can also be significantly reduced. We develop a complete translation theory for these
equations. It is shown that translations of elementary solutions of the biharmonic equation
can be achieved by considering the translation of a pair of elementary solutions of the Laplace
equations. The extension of the theory to the case of polyharmonic equations in R3 is also
discussed. An efficient way of performing the FMM for biharmonic equations using the solu-
tion of a complex valued FMM for the Laplace equation is presented. Compared to previous
methods presented for the biharmonic equation our method appears more efficient. The theory
is implemented and numerical tests presented that demonstrate the performance of the method
for varying problem sizes and accuracy requirements. In our implementation, the FMM for the
biharmonic equation is faster than direct matrix vector product for a matrix size of 550 for a
relative L2 accuracy ²2 = 10−4, and N = 3550 for ²2 = 10−12.

1 Introduction

Many problems in fluid mechanics, elasticity, and in function fitting via radial-basis functions, at
their core, require repeated evaluation of the sum

v (yj) =
NX
i=1

uiΦ (yj − xi) , j = 1, ...,M (1)

where Φ (y− xi) : R3 → R is a solution of the three-dimensional biharmonic equation (e.g., the
Green’s function or a multipole solution) centered at xi.This sum must be evaluated at locations
yj , and ui are some coefficients. Straightforward computation of these sums, which also can be
considered to be multiplication of a M ×N matrix with elements Φji = Φ (yj − xi) by a N vector
with components ui to obtain aM vector with components vj = v (yj) , obviously requires O (MN)
operations and O(MN) memory locations to store the matrix. The point sets yj (the target set)
and xi (the source set) in these problems may be different, or the same. If the points yj and xi
coincide, the evaluation of Φ may have to be appropriately regularized in case Φ is singular (e.g.,
in a boundary element application, quadrature over the element will regularize the function). In
the sequel we assume that this issue, if it arises, is dealt with, and not concern ourselves with it.

In its original form, the Fast Multipole Method, introduced by Greengard and Rokhlin [1], is an
algorithm for speeding up such sums, for the case that the function Φ is a multipole of the Laplace
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equation. FMM inspired algorithms have since appeared for the solution of various problems of both
matrices associated with the Laplace potential, and with those of other equations (the biharmonic,
Helmholtz, Maxwell) and in unrelated areas (for general radial basis functions).

Previous work related to the FMM for the biharmonic equations has usually appeared in the
context of Stokes flow or linear elastostatics. A description of this work may be found in the
comprehensive review paper of Nishimura [2]. One approach to the FMM for sums of the biharmonic
Green’s function and its derivatives, avoids the problem of building a translation theory for this
equation. These Green’s functions are represented as sums of Laplace solutions [3]. Another
approach is based on expanding the biharmonic functions in Taylor series [4, 5]. Other related
FMMs are those that treat the problem of Stokes flow or linear elastostatics, but not directly
applicable to the biharmonic translation, have appeared in the context of Stokes flow or elasticity.
These may not have the efficiency of an FMM derived from a consideration of the elementary
solutions of the biharmonic equation. Also we can mention publication [6], where kernel independent
FMM is developed and applied to solution of Stokes and other equations. We elaborate on these
comments in the section below.

1.1 Comparison with other FMMs for the biharmonic and related equations

Perhaps the first to apply the FMM to problems related to the three dimensional biharmonic
equation was the paper by Sangani and Mo [7], who considered Stokes flow around particles. The
method relied on expansions suggested by Lamb [8], and translation formulae, that are O

¡
p4
¢
when

there are O
¡
p2
¢
terms in the Lamb expansion. A version of the FMM for 2D elasticity/Stokes flow

that employs complex analysis was presented in Greengard et al. [9], and is thus difficult to extend
to R3. Popov and Power [5] used Taylor series representations to develop a multipole translation
theory for linear elasticity problems. Their results show a cross-over (when the FMM algorithm is
faster than the direct approach) for 1.1×104 unknowns, though the error that is incurred is hard
to establish, as they used an iteration error criterion, which does not have a corresponding value
here. They mention that the largest order of Taylor series considered is 5 in their paper. Fu et al.
[3], made the observation that the biharmonic Green’s function, and its other derivatives could, via
elementary manipulations, be written as sums of Laplace multipoles multiplied by source or target
dependent coefficients. For example the biharmonic Green’s function, can be written as

|x− y| =

q
(x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2

=
|x|2 + |y|2

|x− y| − 2x1
1

|x− y|y1 − 2x2
1

|x− y|y2 − 2x3
1

|x− y|y3.

This allowed them to use an existing Laplace multipole method software and achieve an FMM for
the elastostatics problem. This approach requires more Laplace solutions to represent higher order
derivatives. The use of this technique for the solution of Stokes problems was presented in [10]. In
these papers no explicit “break-even” data was presented.

Nishimura presents a review of the FMM work in this area (and several others) in the compre-
hensive review paper [2]. Yoshida et al. improved on the economy with which elasticity problem
solutions were represented via Laplace solutions. They built a solution of the problem based on
the Neuber-Papkovich representation of the displacement field, which can be expressed in terms
of four harmonic functions. The formulation includes functions of the type φ(r) and rφ(r), where
φ is harmonic. The translation method presented in this case by Yoshida [11, 12] shows that the
complexity of solution of the elastostatic problem using the FMM in these papers is equivalent
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to solution of four independent 3D Laplace equations. Fast translation methods for the Laplace
equation presented in [13, 14] where also employed by these authors.

Another field that has seen the use of the FMM for sums of biharmonic and polyharmonic
Green’s functions is radial-basis interpolation. The biharmonic function is an optimal radial basis
function in a certain sense [15], and scattered data interpolation using these in R3 has been pursued
by many authors. Chen and Suter [4] used a Taylor series based FMM to speed the evaluation of
spline interpolated 3D data. From their results a cross-over point of 13000 for p = 3 and of 18000
for p = 4 can be inferred. Carr et al. [16] report on the application of the FMM to a problem
of interpolation with biharmonic splines. They do not present any details of how their FMM is
developed and refer to some unpublished work. Published work of these authors for the case of
the multiquadric function, which arises from regularizing the biharmonic Green’s function, is given
in [17]. Here, the authors employ special polynomial expansions for translation and polynomial
convolution for fast translation. It reports a cross-over point for the R3 multiquadric of between
2000 and 4000 for an accuracy of 10−6.

1.2 Contributions of this paper

The work presented in this paper thus appears to differ substantially from those in the literature.
It presents a complete multipole translation theory for the biharmonic and polyharmonic equations
in R3, which is of utility in its own right. Further, we present an efficient way of dealing with
translations and the FMM and present cross-over results which appear to be significantly faster.

Translation Theory for the Biharmonic Equation: We develop a translation theory
for the solutions of the biharmonic (and polyharmonic) equation from first principles. As is well
known, solutions to the biharmonic equation Φ can be expressed as a pair of solutions to the Laplace
equation (φ,ψ) so that

Φ (r) = φ (r) + (r · r)ψ (r) .

Our translation theory maintains this form of the solution so that, the translated representation
of a solution Φ (r) in a new coordinate system, Φ̂ (r̂) can be represented as

Φ̂ (r̂) = φ̂ (r̂) + (r̂ · r̂)ψ (r̂) .

We note that the representation in terms of the solutions of the Laplace equations applies for
any biharmonic functions (e.g., the Green’s function, its derivatives), and the number of Laplace
equation solutions in the representation is always two. A complete error analysis of the translation
is provided, and efficient methods for translation using a rotation, coaxial-translation, rotation
scheme similar to that presented in [18] for the Laplace equation, and elaborated in [19] is described.
Explicit expressions for the translation operator are derived, as these are useful in their own right,
such as for the solution of boundary value problems (see e.g., [20, 21]). We also discuss the extension
of this method to the solutions of the polyharmonic equation.

Efficient Implementation and Testing in a Complex Laplace FMM Code: We present
a method to implement the FMM for the real biharmonic equation as a single complex FMM for
the Laplace equation. This observation allows us to use a very efficient Laplace FMM software we
have developed [19]. We present a complete testing of the algorithm for various problem sizes and
imposed accuracy requirements. We first show that our algorithm obeys the derived error bounds
well. The FMM for the biharmonic equation is found to require about 50 percent more time than
the corresponding case for the Laplace equation. We observe a crossover (i.e., when the FMM is
faster than direct multiplication that is given in the table below.
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Relative L2 error imposed p Cross over N biharmonic Cross over N Laplace for same p
10−4 4 550 320
10−7 9 1350 900
10−12 19 3400 2500

2 Factored solutions of the biharmonic equation

2.1 Spherical basis functions

We consider the biharmonic equation in 3-D satisfied by a function ψ (r), and given by

∇4ψ = 0, (2)

where ∇2 is the Laplace operator ∇ · (∇). The transformation between spherical coordinates and
Cartesian coordinates with a common origin (x, y, z)→ (r, θ,ϕ) is given by

x = r sin θ cosϕ, y = r sin θ sinϕ, z = r cos θ. (3)

The gradient and Laplacian of a function ψ in spherical coordinates are

∇ψ = ir
∂ψ

∂r
+ iθ

1

r

∂ψ

∂θ
+ iϕ

1

r sin θ

∂ψ

∂ϕ
, (4)

∇ · (∇ψ) = ∇2ψ = 1

r2
∂

∂r

µ
r2
∂ψ

∂r

¶
+

1

r2 sin θ

∂

∂θ

µ
sin θ

∂ψ

∂θ

¶
+

1

r2 sin2 θ

∂2ψ

∂ϕ2
.

where (ir, iθ , iϕ ) is a right-handed orthonormal basis in spherical coordinates.
Solutions of the biharmonic equation in spherical coordinates can be expressed in the factored

form (“separation of variables”)

ψmn (r, θ,ϕ) = Πn(r)Θ
m
n (θ)Φ

m(ϕ), (5)

where the function Θmn is periodic with period π and Φm is periodic with period 2π. The spherical
harmonics provide such a periodic basis

Y mn (θ,ϕ) = Θmn (θ)Φ
m(ϕ) = Nm

n P
|m|
n (µ)eimϕ, µ = cos θ, (6)

Nm
n = (−1)m

s
2n+ 1

4π

(n− |m|)!
(n+ |m|)! , n = 0, 1, 2, ...; m = −n, ..., n,

where P |m|n (µ) are the associated Legendre functions [22]. The spherical harmonics are also some-
times called surface harmonics of the first kind, tesseral for m < n and sectorial for m = n.We will
use the definition of the associated Legendre function Pmn (µ) that is consistent with the value on
the cut (−1, 1) of the hypergeometric function Pmn (z) (see Abramowitz and Stegun, [22]). These
functions can be obtained from the Legendre polynomials Pn (µ) via the Rodrigues’ formula

Pmn (µ) = (−1)m
¡
1− µ2

¢m/2 dm
dµm

Pn (µ) , Pn (µ) =
1

2nn!

dn

dµn
¡
µ2 − 1

¢n
. (7)

Our definition of spherical harmonics coincides with that of Epton and Dembart [23], except for a
factor

p
(2n+ 1)/4π, which we include to make them an orthonormal basis over the sphere.
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The dependence of the function Πn on the radial coordinate, in Eq. (5), is described by∙
d

dr

µ
r2
d

dr

¶
− n(n+ 1)

¸2
Πn = 0. (8)

This equation has four linearly independent solutions of type Πn = rα for α = n+2, n,−n+1, and
−n− 1. So we the biharmonic equation has the following elementary solutions:

Rmn (r) = αmn r
nY mn (θ,ϕ), Rm(2)n (r) = r

2Rmn (r) , (9)

Smn (r) = βmn r
−n−1Y mn (θ,ϕ), Sm(2)n (r) = r

2Smn (r),

n = 0, 1, 2, ...; m = −n, ..., n.

where αmn and βmn are some normalization constants, which can be set to the unity or selected by
special way to simplify recursion and other functional relations between the elementary solutions.
We note that the R-solutions are regular inside any finite domain, while the S-solutions have a
singularity at r = 0. Function S0(2)0 (r) ∼ r is finite at r = 0, while its derivatives are singular at
this point. This function is proportional to the whole-space Green’s function for the biharmonic
operator, G (r, r0) = |r− r0|, which satisfies

∇4G (r, r0) = ∇4 |r− r0| = −8πδ (r− r0) , (10)

where δ is the Dirac delta-function. We also note that solutions Rmn (r) and S
m
n (r) are solutions

of the Laplace equation, ∇2ψ = 0, in finite and infinite domains (in the later case the origin is
excluded) and function S0(1)0 (r) ∼ r−1 is proportional to the whole-space Green’s function for the
Laplace operator, |r− r0|−1.

2.2 Factorization of the Green’s function

Let us start by considering factorization of the biharmonic Green’s function G (r, r0) = |r− r0|,
where r0 can be thought as the location of source, and r as the field point. Due to the symmetry
the role of these points can be exchanged. Assuming r0 = |r0| > 0 consider the field of the source
in the vicinity of the origin for r = |r| < r0. The Green’s function can be written as

G (r, r0) = [(r− r0, r− r0)]1/2 =
¡
r2 − 2rr0 cos γ + r20

¢1/2
=

r2 − 2rr0 cos γ + r20¡
r2 − 2rr0 cos γ + r20

¢1/2 (11)
=

¡
r2 − 2rr0 cos γ + r20

¢ 1
r0

∞X
n=0

µ
r

r0

¶n
Pn(cos γ), r < r0,

where γ is the angle between vectors r and r0 and we used the generating function for the Legen-
dre polynomials. Using the recurrence relation for the Legendre polynomials (2n+ 1)µPn (µ) =
nPn−1 (µ) + (n+ 1)Pn+1 (µ) this can be rewritten in the form

G (r, r0) =
∞X
n=0

µ
r−n−10 rn+2

2n+ 3
− r

−n+1
0 rn

2n− 1

¶
Pn (cos γ) , r < r0, (12)

Further we will use the addition theorem for spherical harmonics in the form

Pn (cos γ) =
4π

2n+ 1

nX
m=−n

Y −mn (θ0,ϕ0)Y
m
n (θ,ϕ), (13)
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where (θ0,ϕ0) and (θ,ϕ) are spherical polar angles of r0 and r, respectively. Substituting this into
Eq. (12) and using definitions (9), we obtain the following factorization of the Green’s function for
the biharmonic equation

G (r, r0) = 4π
∞X
n=0

nX
m=−n

1

αmn β
−m
n (2n+ 1)

"
S−mn (r0)R

m
(2)n (r)

2n+ 3
−
S−m(2)n (r0)R

m
n (r)

2n− 1

#
, r < r0. (14)

Note that factorization of the Green’s function for the Laplace equation can be written in the
form

|r− r0|−1 =
1

r0

∞X
n=0

µ
r

r0

¶n
Pn(cos γ) = 4π

∞X
n=0

nX
m=−n

S−mn (r0)R
m
n (r)

αmn β
−m
n (2n+ 1)

, r < r0. (15)

2.3 Reduction of the solution of biharmonic equation to solution of two har-
monic equations

There are several ways how to deal with factored solutions of the harmonic and biharmonic equa-
tions. The first way is to develop a translation theory for the biharmonic equation, similarly to
the available theories for the Laplace equation (e.g., [1, 24, 14, 23]). We developed all necessary
formulae to proceed in this way. However, in our study we found a second way, which simply re-
duces solution of the biharmonic equation to two harmonic equations with some modification of the
translation operators. Computationally both methods have about the same complexity, and since
the latter method seems simpler in terms of presentation and background theory, we will proceed
in this paper with it.

The method is based on the observation that any solution of the biharmonic equation ψ (r) can
be expressed via two independent solutions of the Laplace equation, φ (r) and ω (r):

ψ (r) = φ (r) + r2ω (r) , ∇2φ (r) = 0, ∇2ω (r) = 0, ∇4ψ (r) = 0, r2 = r · r. (16)

Therefore if we be able to perform operations required for the FMM for the harmonic functions
and then modify them for compositions of type (16) we can solve the biharmonic equation with the
same method.

2.4 Function representations and translations

One of the key parts of the FMM is the translation theory. Let ψ (r) be an arbitrary scalar function,
ψ : Ω (r)→ C, where Ω (r) ⊂ R3. For a given vector t ∈R3 We define a new function bψ : bΩ (r)→ C,bΩ (r) ⊂ R3 such that in bΩ (r) = Ω (r+ t) the values of bψ (r) coincide with the values of ψ (r+ t)
and treat bψ (r) as a result of action of translation operator T (t) on ψ (r):bψ = T (t) [ψ] , bψ (r) = ψ (r+ t) , r ∈bΩ (r) ⊂ R3. (17)

A function can be represented by an infinite set of coefficients derived by taking its scalar
product with basis functions. For example, let φ (r) be a regular solution of the Laplace equation
inside a sphere Ωa of radius a, that includes the origin of the reference frame. Then it can be
represented in the form

φ (r) =
∞X
n=0

nX
m=−n

φmn R
m
n (r) , (18)
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where φmn are the expansion coefficients over the basis {Rmn (r)}. Similarly we can consider a
solution of the Laplace equation φ (r) which is regular outside the sphere Ωa in which case it can
be expanded over the basis functions {Smn (r)}. The translated function bφ (r) can also be expanded
over bases {Rmn (r)} or {Smn (r)} with expansion coefficients bφmn . Due to linearity of the translation
operator the sets

nbφmn o and {φmn } are related by a linear operator, which can be represented as
a translation matrix, which is a representation of the translation operator in the respective bases.
The entries of the translation matrix can be found by reexpansion of the elementary solutions,
which can be written in the form of addition theorems

Rmn (r+ t) =
∞X
n0=0

n0X
m0=−n0

(R|R)m0m
n0n (t)Rm

0
n0 (r) , (19)

Smn (r+ t) =
∞X
n0=0

n0X
m0=−n0

(S|R)m0m
n0n (t)Rm

0
n0 (r) , |r| < |t| ,

Smn (r+ t) =
∞X
n0=0

n0X
m0=−n0

(S|S)m0m
n0n (t)Sm

0
n0 (r) , |r| > |t| ,

where t is the translation vector, and (R|R)m0m
n0n , (S|R)m0m

n0n , and (S|S)
m0m
n0n are the four index regular-

to-regular, singular-to-regular, and singular-to-singular reexpansion coefficients (sometimes called
also local-to-local, multipole-to-local, and multipole-to-multipole translation coefficients). Explicit
expressions for these coefficients for the Laplace equation can be found elsewhere (see e.g., [23, 19]).
For example, if we have two expansions, one as in (18), and the other as

bφ (r) = ∞X
n=0

nX
m=−n

bφmn Rmn (r) , (20)

over the same basis, then we also can write

∞X
n=0

nX
m=−n

bφmn Rmn (r) = bφ (r) = φ (r+ t) =
∞X
n0=0

n0X
m0=−n0

φm
0

n0 R
m0
n0 (r+ t) (21)

=
∞X
n=0

nX
m=−n

" ∞X
n0=0

n0X
m0=−n0

(R|R)mm0
nn0 (t)φ

m0
n0

#
Rmn (r) ,

which shows that

bφmn = ∞X
n0=0

n0X
m0=−n0

(R|R)mm0
nn0 (t)φ

m0
n0 , (22)

assuming that all the series converge absolutely and uniformly.
Consider now translation of solution of the biharmonic equation represented in form (16). We

have bψ (r) = T (t) [ψ (r)] = T (t) [φ (r) + (r · r)ω (r)] = φ (r+ t) + [(r+ t) · (r+ t)]ω (r+ t)(23)
= bφ (r) + £r2 + 2 (r · t) + t2¤ bω (r) .

If we want now to represent the translated solution in the form (16), i.e.bψ (r) = eφ (r) + r2eω (r) , (24)
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then we need to relate the expansion coefficients of functions eφ (r) and eω (r) and bφ (r) and bω (r).
Assuming that all these harmonic functions are represented in the same basis, e.g. {Rmn (r)} and
noting that eω (r) depends on bω (r) only (bφ (r) does not contribute to the non-harmonic function
r2eω (r)), we can write taking into account the linearity of all operations considered:

eφmn = ∞X
n0=0

n0X
m0=−n0

bφm0

n0 +
∞X
n0=0

n0X
m0=−n0

Cmm
0

(1)nn0 (t) bωm0
n0 , eωmn = ∞X

n0=0

n0X
m0=−n0

Cmm
0

(2)nn0 (t) bωm0
n0 , (25)

where Cmm
0

(1)nn0 and C
mm0
(2)nn0 are the entries of the matrices, which we can call “conversion” matrices,

once they convert solution from the form (23) to a standard form (24). These matrices depend in
which basis {Rmn (r)} or {Smn (r)} the conversion is performed. As follows from the consideration
below these matrices are sparse and the conversion operation is computationally cheap compared
to the translation operation.

Finally we note that in the FMM we do not translate the function, but rather change the center
of expansion. For example, by local-to-local translation from center r∗1 to center r∗2 we mean
representation of the same function in the regular bases centered at these point respectively. Since
for representations of the same function we have

∞X
n=0

nX
m=−n

φmn R
m
n (r− r∗1) =

∞X
n=0

nX
m=−n

bφmn Rmn (r− r∗2) , (26)

it is not difficult to see that the expansion coefficients are related by Eq. (22), where the translation
vector is t = r∗2−r∗1.The same relates to the multipole-to-local and multipole-to-multipole trans-
lations, where we use the S|R and S|S matrices instead of the R|R translation matrix. Normalized
elementary solutions of the Laplace equation

Normalization factors αmn and βmn in Eq. (9) can be selected arbitrarily. For example, all of
these coefficients can be set to be equal 1. However, we can choose these coefficients in a way that
differential and translation relations take some simple, or convenient for operation form, as will be
done below. This follows Epton and Dembart [23] who used the following normalization for the
spherical basis functions for the Laplace equation:

αmn = (−1)n i−|m|
s

4π

(2n+ 1) (n−m)!(n+m)! , βmn = i
|m|
r
4π (n−m)!(n+m)!

2n+ 1
, (27)

n = 0, 1, ...., m = −n, ..., n.

2.4.1 Differential relations

Let us introduce new independent variables ξ and η instead of Cartesian coordinates x and y
according to

ξ =
x+ iy

2
, η =

x− iy
2

; x = ξ + η, y = −i (ξ − η) . (28)

We can then consider the following differential operators

∂z =
∂

∂z
, ∂η =

∂

∂x
+ i

∂

∂y
, ∂ξ ≡

∂

∂x
− i ∂

∂y
. (29)
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It is shown in Ref. [23] that the differentiation relations for normalized elementary solutions of the
Laplace equation can be written as

∂zR
m
n (r) = −Rmn−1 (r) , ∂zS

m
n (r) = −Smn+1 (r) , (30)

∂ηR
m
n (r) = iRm+1n−1 (r) , ∂ηS

m
n (r) = iS

m+1
n+1 (r) ,

∂ξR
m
n (r) = iRm−1n−1 (r) , ∂ξS

m
n (r) = iS

m−1
n+1 (r) .

2.4.2 Polynomial representations

It is noticeable, that functions Rmn (r) are polynomials of variables (ξ, η, z). This fact is well-known
as the regular solutions of the Laplace equation can be expressed via the polynomial basis. For
particular normalization (27) the explicit expressions are the following

Rmn (r) =

n−|m|X
l=0

(−1)l in−lσmn−l
ξ(n+m−l)/2η(n−m−l)/2zl¡

n+m−l
2

¢
!
¡
n−m−l

2

¢
!l!

, (31)

σmn =

½
1, n+m = 2k

0, n+m = 2k + 1
, k = 0,±1, ... ,

where we introduced symbol σmn which is 1 for even n +m and zero otherwise. This expression
can be derived by considering differential relations (30) recursively, and taking into account that
R00 (r) = 1, or can be proved using induction and the same differential relations. Note that according
Eqs. (9) and (27) we have

Smn (r) =
βmn
αmn
r−2n−1Rmn (r) = (−1)n+m (n−m)!(n+m)!r−2n−1Rmn (r) . (32)

So Eqs. (28) and (31) yield the following expression for these functions

Smn (r)=
(−1)n+m (n−m)!(n+m)!

r2n+1

n−|m|X
l=0

(−1)l in−lσmn−lξ(n+m−l)/2η(n−m−l)/2zl¡
n+m−l

2

¢
!
¡
n−m−l
2

¢
!l!

, r2 = 4ξη+z2. (33)

2.4.3 Reexpansion coefficients

The use of the normalized basis functions yields extremely simple expressions for the reexpansion
coefficients entering Eq. (19) [23]:

(R|R)m0m
n0n (t) = Rm−m

0
n−n0 (t),

¯̄
m0
¯̄
6 n0, (34)

(S|R)m0m
n0n (t) = Sm−m

0
n+n0 (t),

¯̄
m0¯̄ 6 n0, |m| 6 n,

(S|S)m0m
n0n (t) = Rm−m

0
n0−n (t), |m| 6 n.

2.4.4 Factorization of the Green’s function

For the Green’s function for the Laplace equation we can rewrite Eq. (15) using the normalized
basis functions

|r− r0|−1 = 4π
∞X
n=0

nX
m=−n

(−1)nS−mn (r0)R
m
n (r) , r < r0. (35)

9



Factorization of the Green’s function for the biharmonic equation (14) can be written as

G (r, r0) = r
2
∞X
n=0

nX
m=−n

(−1)nS−mn (r0)R
m
n (r)

2n+ 3
−r20

∞X
n=0

nX
m=−n

(−1)nS−mn (r0)R
m
n (r)

2n− 1 , r < r0. (36)

This is consistent with decomposition of an arbitrary solution in form (16).

2.5 Rotational-coaxial translation decomposition

If the infinite series over the basis functions of type (18) are truncated with p terms with respect
to degree n (n = 0, ..., p − 1) the total number of expansion coefficients for basis functions of the
first kind will be p2. Translations using the dense truncated reexpansion matrices of size p2 × p2
performed by straightforward way will require then O(p4) operations. This cost can be reduced
to O(p3) using the rotational-coaxial translational decomposition (or “point-and-shoot” method
in Rokhlin’s terminology) (e.g. see [18, 19]), since the rotations and coaxial translations can be
performed at a cost of O(p3) operations. We also note that at the rotation transforms solution of
the biharmonic equation given in form (16) remains in the same form, since the rotation transform
preserves r2. This method was described first in Ref. [18].

2.5.1 Coaxial translations

A coaxial translation is translation along the polar axis or the z-coordinate axis, i.e. this is the case
when the translation vector t =tiz, where iz is the basis unit vector for the z-axis. The peculiarity
of the coaxial translation is that it does not change the order m of the translated coefficients, and
so translation can be performed for each order independently. For example, Eq. (22) for the coaxial
local-to-local translation will be reduced to

bφmn = ∞X
n0=|m|

(R|R)mnn0 (t)φmn0 , m = 0,±1, ..., n = |m| , |m|+ 1, .... (37)

The three index coaxial reexpansion coefficients (F |E)mnn0 (F,E = S,R; m = 0,±1,±2, ..., n, n0 =
|m| , |m|+1, ...) are functions of the translation distance t only and can be expressed via the general
reexpansion coefficients as

(F |E)mnn0 (t) = (F |E)
mm
nn0 (tiz), F,E = S,R; t > 0. (38)

Using Eq. (34) we have for normalized basis functions with αmn and βmn from (27):

(R|R)mnn0 (t) = rn0−n (t) , n0 > |m| , (39)

(S|R)mnn0 (t) = sn+n0(t), n, n0 > |m| ,
(S|S)mnn0 (t) = rn−n0(t), n > |m| ,

where the functions rn (t) and sn (t) are

rn (t) =
(−t)n

n!
, sn (t) =

n!

tn+1
n = 0, 1, ..., t > 0, (40)

and zero for n < 0. This show that for given m matrices {(R|R)mnn0 (t)} are upper triangular,
{(S|S)mnn0 (t)} are lower triangular, and {(S|R)

m
nn0 (t)} is a fully populated matrix. The latter

matrix is symmetric, while {(S|S)mnn0 (t)} = {(R|R)mn0n (t)}, i.e. these matrices are transposes of
each other. It is also important to note that the coaxial translation matrices are real.
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2.5.2 Rotations

To perform translation with an arbitrary vector t using the computationally cheap coaxial trans-
lation operators, we first must rotate the original reference frame to align the z-axis of the rotated
reference frame with t, translate and then perform an inverse rotation.
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ŷ̂y
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ŷ̂y
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Figure 1: The figure on the left shows the transformed axes (x̂, ŷ, ẑ) in the original reference frame
(x, y, z) . The spherical polar coordinates of the point Â lying on the ẑ axis on the unit sphere are
(β,α) . The figure on the right shows the original axes (x, y, z) in the transformed reference frame
(x̂, ŷ, ẑ) . The coordinates of the point A lying on the z axis on the unit sphere are (β, γ) . The
points O, A, and Â are the same in both figures. All rotation matrices can be derived in terms of
these three angles α, β, γ.

An arbitrary rotation in three dimensions can be characterized by three Euler angles, or angles
α,β, and γ that are simply related to them. For the forward rotation, when (θ,ϕ) are the spherical
polar angles of the rotated z-axis in the original reference frame, then β = θ, α = ϕ; for the inverse
rotation with

³bθ, bϕ´ the spherical polar angles of the original z-axis in the rotated reference frame,
β = bθ, γ = bϕ (see Fig. 1). An important property of the spherical harmonics is that their degree
n does not change on rotation, i.e.

Y mn (θ,ϕ) =
nX

m0=−n
Tm

0m
n (α,β, γ)Y m

0
n

³bθ, bϕ´ , n = 0, 1, 2, ..., m = −n, ..., n, (41)

where (θ,ϕ) and
³bθ, bϕ´ are spherical polar angles of the same point on the unit sphere in the

original and the rotated reference frames, and Tm
0m

n (α,β, γ) are the rotation coefficients.
Rotation transform for solution of the Laplace equation factorized over the regular spherical
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basis functions (9) can be performed as

φ (r) =
∞X
n=0

nX
m=−n

φmn R
m
n (r) =

∞X
n=0

rn
nX

m=−n
φmn α

m
n Y

m
n (θ,ϕ) (42)

=
∞X
n=0

nX
m0=−n

"
nX

m=−n
Tm

0m
n (α,β, γ)αmn φ

m
n

#
rnY m

0
n

³bθ, bϕ´ = ∞X
n=0

nX
m=−n

bφmn Rmn (br) ,
where r and br are coordinates of the same field point in the original and rotated frames, while φmn
and bφmn are the respective expansion coefficients related as

bφmn = nX
m0=−n

Tmm
0

n (α,β, γ)αm
0

n

αmn
φm

0
n . (43)

The same holds for the multipole expansions where in Eq. (43) we replace the normalization
constants αmn and αm

0
n with βmn and βm

0
n , respectively. In case α

m
n = βmn the rotation coefficients

for the regular and singular basis functions are the same.
The rotation coefficients Tm

0m
n (α,β, γ) can be decomposed as

Tm
0m

n (α,β, γ) = eimαe−im
0γHm0m

n (β) , (44)

where
n
Hm0m
n (β)

o
is a dense real symmetric matrix. Its entries can be computed using an analytical

expression, or by a fast recursive procedure (see [19]), which starts with the initial value

Hm00
n (β) = (−1)m0

s
(n− |m0|)!
(n+ |m0|)!P

|m0|
n (cosβ), n = 0, 1, ..., m0 = −n, ..., n, (45)

and further propagates for positive m:

Hm0,m+1
n−1 =

1

bmn

½
1

2

h
b−m

0−1
n (1− cosβ)Hm0+1,m

n − bm0−1
n (1 + cosβ)Hm0−1,m

n

i
− am0

n−1 sinβH
m0m
n

¾
,

(46)

where n = 2, 3, ..., m0 = −n+ 1, ..., n− 1, m = 0, ..., n− 2, and amn = bmn = 0 for n < |m| , and

amn = a−mn =

s
(n+ 1 +m)(n+ 1−m)

(2n+ 1) (2n+ 3)
, for n > |m| , (47)

bmn =

⎧⎨⎩
q
(n−m−1)(n−m)
(2n−1)(2n+1) , 06m6n,

−
q

(n−m−1)(n−m)
(2n−1)(2n+1) , −n6 m <0.

.

For negative m coefficients Hm0m
n (β) can be found using symmetry H−m

0,−m
n (β) = Hm0m

n (β).

We note that inverse rotation can be performed using the matrix
n¡
T−1

¢m0m
n

(α,β, γ)
o
, which

is the complex conjugate transposed of
n
Tm

0m
n (α,β, γ)

o
and can be simplified using Eq. (44):¡

T−1
¢m0m
n

(α,β, γ) = Tmm0
n (α,β, γ) = e−im

0αeimγHmm0
n (β) (48)

= e−im
0αeimγHm0m

n (β) = Tm
0m

n (γ,β,α) .
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In the “point-and-shoot” method the angle γ can be selected arbitrarily, since the direction of the
translation vector t is characterized only by the two angles, α and β. For example, one could
simply set γ = 0. We found however, that setting γ = α can be computationally cheaper for small
truncation numbers p (p < 7), since in this case the forward and inverse translation operators

coincide,
n¡
T−1

¢m0m
n

(α,β,α)
o
=
n
Tm

0m
n (α,β,α)

o
(for the normalization αmn = βmn = 1).

3 Matrices for conversion to harmonic form

In this section we derive explicit expressions for the conversion matrices (25) in the regular and
singular bases of normalized solutions of the Laplace equation. For this purpose let us consider
expansion of functions (r · t)Rmn (r) and (r · t)Smn (r) over the bases of functions {Rmn (r)} and©
r2Rmn (r)

ª
and {Smn (r)} and

©
r2Smn (r)

ª
, respectively. We present the result in the form of a few

lemmas.

Lemma 1 (1) Let Rmn (r) be a normalized regular elementary solution of the Laplace equation (31).
Then

ξRmn (r) = −i
n+m+ 2

2
Rm+1n+1 (r)−

i

2
zRm+1n (r) , n = 0, 1, ..., m = −n, ..., n. (49)

Proof. Using the polynomial representations (31) we have

ξRmn (r) =

n−|m|X
l=0

(−1)l in−lσmn−lξ(n+m−l+2)/2η(n−m−l)/2zl¡
n+m−l
2

¢
!
¡
n−m−l
2

¢
!l!

=

n−|m|X
l=0

(−1)l in−lσmn−lξ((n+1)+(m+1)−l)/2η((n+1)−(m+1)−l)/2zl³
(n+1)+(m+1)−l

2 − 1
´
!
³
(n+1)−(m+1)−l

2

´
!l!

= −i
n+1−|m+1|X

l=0

(−1)l in+1−lσm+1n+1−lξ
((n+1)+(m+1)−l)/2η((n+1)−(m+1)−l)/2zl³

(n+1)+(m+1)−l
2 − 1

´
!
³
(n+1)−(m+1)−l

2

´
!l!

+

n−|m|X
l=n+1−|m+1|+1

(−1)l in−lσmn−lξ((n+1)+(m+1)−l)/2η((n+1)−(m+1)−l)/2zl³
(n+1)+(m+1)−l

2 − 1
´
!
³
(n+1)−(m+1)−l

2

´
!l!

= −i
n+1−|m+1|X

l=0

(n+ 1) + (m+ 1)− l
2

(−1)l in+1−lσm+1n+1−lξ
((n+1)+(m+1)−l)/2η((n+1)−(m+1)−l)/2zl³

(n+1)+(m+1)−l
2

´
!
³
(n+1)−(m+1)−l

2

´
!l!

= −in+m+ 2
2

Rm+1n+1 (r) +
i

2

n+1−|m+1|X
l=0

(−1)l in+1−lσm+1n+1−lξ
((n+1)+(m+1)−l)/2η((n+1)−(m+1)−l)/2zl³

(n+1)+(m+1)−l
2

´
!
³
(n+1)−(m+1)−l

2

´
! (l − 1)!

= −in+m+ 2
2

Rm+1n+1 (r)−
i

2

n−|m+1|X
l=0

(−1)l in−lσm+1n−l ξ
(n+(m+1)−l)/2η(n−(m+1)−l)/2zl+1³

n+(m+1)−l
2

´
!
³
n−(m+1)−l

2

´
!l!

= −in+m+ 2
2

Rm+1n+1 (r)−
i

2
zRm+1n (r) .

13



Corollary 2 Let Rmn (r) be a normalized regular elementary solution of the Laplace equation (31).
Then

ηRmn (r) = −i
n−m+ 2

2
Rm−1n+1 (r)−

i

2
zRm−1n (r) , n = 0, 1, ..., m = −n, ..., n. (50)

Proof. According Eqs. (9) and (27) we have for complex conjugate

Rmn (r) = (−1)mR−mn (r) . (51)

Since η = ξ (see Eq. (28)) we obtain using Lemma 1:

ηRmn (r) = ηRmn (r) = (−1)mξR−mn (r) = (−1)m
∙
−in−m+ 2

2
R−m+1n+1 (r)− i

2
zR−m+1n (r)

¸
= (−1)m

∙
i
n−m+ 2

2
(−1)m−1Rm−1n+1 (r) +

i

2
z (−1)m−1Rm−1n (r)

¸
= −in−m+ 2

2
Rm−1n+1 (r)−

i

2
zRm−1n (r) .

Lemma 3 (2) Let Rmn (r) be a normalized regular elementary solution of the Laplace equation (31).
Then

zRmn (r) = −
1

2n+ 1

£
(n+m+ 1) (n−m+ 1)Rmn+1 (r) + r2Rmn−1 (r)

¤
, n = 0, 1, ..., m = −n, ..., n.

(52)

Proof. Using the following identity for the associated Legendre functions

µPmn (µ) =
n+m

2n+ 1
Pmn−1 (µ) +

n−m+ 1
2n+ 1

Pmn+1 (µ) , (53)

and definition of the basis functions (9) we can find

zRmn (r) = αmn N
m
n e

imϕrn+1µP |m|n (µ) (54)

= αmn N
m
n e

imϕrn+1
∙
n+ |m|
2n+ 1

P
|m|
n−1 (µ) +

n− |m|+ 1
2n+ 1

P
|m|
n+1 (µ)

¸
=

1

2n+ 1

"
(n+ |m|) αmn N

m
n

αmn−1Nm
n−1

r2Rmn−1 (r) + (n− |m|+ 1)
αm(1)nN

m
n

αmn+1N
m
n+1

Rmn+1 (r)

#
.

Since

αmn N
m
n =

(−1)n+m i−|m|
(n+ |m|)! , (55)

we obtain the statement of the lemma.

Lemma 4 (3) Let Rmn (r) be a normalized regular elementary solution of the Laplace equation (31).
Then

(r · t)Rmn (r) = −
(itx + ty) (n+m+ 2) (n+m+ 1)R

m+1
n+1 (r)

2 (2n+ 1)
(56)

−
(itx − ty) (n−m+ 2) (n−m+ 1)Rm−1n+1 (r) + 2tz(n+m+ 1) (n−m+ 1)Rmn+1 (r)

2 (2n+ 1)

+
r2
£
(itx + ty)R

m+1
n−1 (r) + (itx − ty)Rm−1n−1 (r)− 2tzRmn−1 (r)

¤
2 (2n+ 1)

.
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Proof. Follows from Eqs. (49)-(52) and

(r · t)Rmn (r) = (xtx + yty + ztz)Rmn (r) = [(tx − ity) ξ + (tx + ity) η + tzz]Rmn (r) . (57)

Lemma 5 (4) Let Smn (r) be a normalized singular elementary solution of the Laplace equation
(31). Then

(r · t)Smn (r) =
(itx + ty) (n−m− 1) (n−m)Sm+1n−1 (r)

2 (2n+ 1)
(58)

+
(itx − ty) (n+m− 1) (n+m)Sm−1n−1 (r) + 2tz (n−m) (n+m)Smn−1 (r)

2 (2n+ 1)

−
r2
£
(itx + ty)S

m+1
n+1 (r) + (itx − ty)Sm−1n+1 (r)− 2tzSmn+1 (r)

¤
2 (2n+ 1)

.

Proof. Follows from Eqs. (32) and (56).

Lemma 6 (5) Let bφmn , bωmn , eφmn , and eωmn be coefficients of expansions of harmonic functions bφ (r),bω (r), eφ (r), and eω (r) over the normalized regular basis {Rmn (r)} that satisfy relationeφ (r) + r2eω (r) = bφ (r) + £r2 + 2 (r · t) + t2¤ bω (r) . (59)

Then

eφmn = bφmn + t2bωmn − (itx + ty) (n+m) (n+m− 1)bωm−1n−1
2n− 1 (60)

−
(itx − ty) (n−m) (n−m− 1)bωm+1n−1 + 2tz(n+m) (n−m) bωmn−1

2n− 1eωmn = bωmn + 1

2n+ 3

£
(itx + ty) bωm−1n+1 + (itx − ty) bωm+1n+1 − 2tzbωmn+1¤ .

Proof. Follows from Eqs. (56) and (59) by grouping the terms multiplying functions Rmn (r)
and r2Rmn (r) and comparing coefficients.

Lemma 7 (6) Let bφmn , bωmn , eφmn , and eωmn be coefficients of expansions of harmonic functions bφ (r),bω (r), eφ (r), and eω (r) over the normalized singular basis {Smn (r)} that satisfy relation (59). Then
eφmn = bφmn + t2bωmn + (itx + ty) (n−m+ 1) (n−m+ 2)bωm−1n+1

2n+ 3
(61)

+
(itx − ty) (n+m+ 1) (n+m+ 2)bωm+1n+1 + 2tz(n−m+ 1) (n+m+ 1) bωmn+1

2n+ 3eωmn = bωmn − 1

2n− 1
£
(itx + ty) bωm−1n−1 + (itx − ty) bωm+1n−1 − 2tzbωmn−1¤ .

Proof. Follows from Eqs. (58) and (59) by grouping the coefficients of the functions Smn (r)
and r2Smn (r) and comparison of the coefficients.

Relations (60) and (61) in fact determine the entries of the conversion matrices (25). These
matrices are sparse, since only 4 elements bωmn are needed to determine eωmn and eφmn . Note that in
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the FMM where the translation is decomposed into rotation and coaxial translation operations, the
conversion operation can be performed for a lower cost after the coaxial translation. Conversion
formulae for coaxial translation can be obtained easily from Eqs. (60) and (61) by setting tx =
ty = 0, tz = t. So we have for expansions over the regular basis {Rmn (r)} :

eφmn = bφmn + t2bωmn − 2t(n+m) (n−m)2n− 1 bωmn−1, (62)

eωmn = bωmn − 2t

2n+ 3
bωmn+1.

For expansion over the singular basis {Smn (r)} we have:

eφmn = bφmn + t2bωmn + 2t(n+m+ 1) (n−m+ 1)2n+ 3
bωmn+1, (63)

eωmn = bωmn + 2t

2n− 1bωmn−1.
4 Polyharmonic equations

While we will not pursue this here, the method presented above can be easily extended to solution
of polyharmonic equations of type

∇2kψ = 0, k = 3, 4, ... (64)

The Green’s functions of these functions are often used in radial basis function interpolation. In
this case solution in spherical coordinates can be represented in the form

ψ (r) = φ1(r)+r
2φ2(r)+r

4φ3(r) + ...+r
2k−2φk(r) =

kX
j=1

r2j−2φj(r), (65)

where φj(r), j = 1, ..., k. The translation operator acts on this solution as follows

bψ (r) = T (t) [ψ (r)] = T (t)

⎡⎣ kX
j=1

(r · r)2j−2 φj(r)

⎤⎦ = kX
j=1

[(r+ t) · (r+ t)]2j−2 bφj(r) (66)

=
kX
j=1

£
r2 + 2 (r · t) + t2

¤j−1 bφj(r),
where we used the binomial expansion. As shown above the conversion operator provides a trans-
form, which can be written as£

r2 + 2 (r · t) + t2
¤ bφj (r) = Φ

(1,1)
j (r) + r2Φ

(1,2)
j (r), (67)£

r2 + 2 (r · t) + t2
¤2 bφj (r) =

£
r2 + 2 (r · t) + t2

¤
Φ
(1,1)
j (r) + r2

£
r2 + 2 (r · t) + t2

¤
Φ
(1,2)
j (r)

= Φ
(2,1)
j (r) + r2Φ

(2,2)
j (r) + r4Φ

(2,2)
j (r), ...

£
r2 + 2 (r · t) + t2

¤j−1 bφj (r) =

jX
l=1

r2l−2Φ(j−1,l)j (r) .
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where Φ(j−1,l)j (r) are harmonic functions. So we can rewrite Eq. (66) as

bψ (r) = kX
j=1

jX
l=1

r2l−2Φ(j−1,l)j (r) =
kX
l=1

r2l−2
kX
j=l

Φ
(j−1,l)
j (r) =

kX
l=1

r2l−2eφl(r), (68)

where

eφl(r) = kX
j=l

Φ
(j−1,l)
j (r) . (69)

Eq. (68) represents the translated solution in the same form as the original solution (compare with
Eq. (65)). Therefore, solution of k-harmonic equation can be reduced to solution of k Laplace
equations (e.g. the triharmonic equation solution can be expressed in terms of three harmonic
functions), with modification of the translation operators, which include multiplications by sparse
conversion matrices. Such multiplications can be greatly simplified using the rotational-coaxial
translation decompositions.

5 Fast multipole method

5.1 Mapping a real biharmonic function to a complex harmonic function

A nice property of the harmonic and biharmonic equations is that they can be solved for both real
and complex-valued functions. If the function is complex valued one can simply solve the problem
for real and imaginary parts. In this case one can rewrite the equations in terms of real spherical
harmonics and translation operators, which, however, makes the formulae more involved. So it is
preferable to operate with complex functions. In terms of the use of the FMM we found that it only
needs to be slightly modified, so an FMM matrix vector product routine for the complex Laplace
equation can be used for the biharmonic equation for real valued functions, which is the practical
case typically encountered.

To show how this works, let us first consider solution of the Laplace equation for real valued
function φ (r). Assume that this function is expanded over the regular basis according Eq. (18).
Then due to the property (51) of normalized spherical basis functions we have

φ (r) =
∞X
n=0

nX
m=−n

φmn R
m
n (r) =

∞X
n=0

nX
m=−n

(−1)mφmn R−mn (r) =
∞X
n=0

nX
m=−n

(−1)mφ−mn Rmn (r) . (70)

Since φ (r) = φ (r), comparing this with Eq. (18) and taking into account uniqueness of the
expansion over the basis, we can find that expansion coefficients of real functions satisfy relation

φmn = (−1)mφ−mn , n = 0, 1, ..., m = −n, ..., n. (71)

Now, let us consider a complex valued harmonic function

Ψ (r) = φ (r) + iω (r) , Ψmn = φmn + iω
m
n , (72)

where φ and ω are real, and functions Ψ,φ, and ω can be expanded over basis {Rmn (r)} with
coefficients Ψmn ,φ

m
n , and ωmn . We have then relation (71), which is valid for coefficients of real
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functions φmn and ωmn :

Ψmn − iωmn = φmn = (−1)mφ−mn = (−1)m
³
Ψ−mn + iω−mn

´
= (−1)mΨ−mn + iωmn , (73)

Ψmn − φmn = iωmn = −(−1)m
¡
iω−mn

¢
= −(−1)m

³
Ψ−mn − φ−mn

´
= −(−1)mΨ−mn + φmn .

This yields

φmn =
1

2

h
Ψmn + (−1)mΨ−mn

i
, ωmn =

1

2i

h
Ψmn − (−1)mΨ−mn

i
. (74)

It is not difficult to check that this relation holds also if Ψmn ,φ
m
n , and ω

m
n are expansion coefficients

of Ψ,φ, and ω over basis {Smn (r)}. Thus, if harmonic function Ψ (r) is known via its expansion
coefficients, then expansion coefficients of its real and imaginary parts can be easily retrieved. This
maps harmonic function Ψ (r) to biharmonic function ψ (r) represented as Eq. (16).

As the translation process of biharmonic function is concerned, we, first, perform translation of
coefficients Ψmn to bΨmn using translation operators for the Laplace equation, second, we determinebφmn and bωmn from bΨmn according to Eq. (74), third, we convert bφmn and bωmn to eφmn and eωmn according
Eqs. (60) and (61), and, finally, we form eΨmn = eφmn +ieωmn , which is a representation of the translated
biharmonic function. This is shown on a flow chart in Fig. 2.

1. Translate coefficients 
of complex

harmonic function

2. Decompose coefficients 
of complex function 3. Convert coefficients 4. Compose coefficients of

complex harmonic function

Complex harmonic 
representation

Complex harmonic 
representation

1. Translate coefficients 
of complex

harmonic function

2. Decompose coefficients 
of complex function 3. Convert coefficients 4. Compose coefficients of

complex harmonic function

Complex harmonic 
representation

Complex harmonic 
representation

Figure 2: A flow chart for translation of solutions of the biharmonic equation using complex
harmonic representation.

As we mentioned above the conversion operator can be simplified in the case of coaxial trans-
lation. The flow chart corresponding to this case is shown in Fig. 3.

5.2 Basic FMM algorithm

In the Introduction we mentioned several different approaches for fast solution of the Laplace
equation, including various modifications of the FMM. Generally speaking any solver for Laplace
equation can be adjusted to solve the biharmonic equation, as soon as translation operators are
modified according the scheme on Fig. 2. We will not present details of the basic FMM algorithm,
which are well described in the original papers of Greengard, Rokhlin, and others [1, 24]. Our
implementation of the Laplace solvers is described in a recent publication [19], where we also
provided operational and memory complexity, error analysis, and comparison of two fastest versions
of the FMM currently available.

The algorithm is designed to provide fast summation (or matrix-vector multiplication)

ψ(ρj) =
NX
i=1

Φ(ρj , ri)qi, j = 1, ...,M, (75)
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Figure 3: A flow chart for translation of solutions of the biharmonic equation using complex
harmonic representation and rotation-coaxial translation decomposition.

where qi are intensities of the sources located at ri, Φ(ρj , ri) source function (in the present paper
we use the Green’s function for the biharmonic equation (14), Φ(ρj , ri) = G

¡
ρj , ri

¢
), and ψ(ρj)

is the solution evaluated at ρj . This problem appears, e.g. in 3D interpolation, or in solution of
equations using the boundary element method, where the boundary of the domain is discretized, so
ri and qi are the nodes and weights of the respective quadratures. Solution of the problems involving
derivatives (e.g. normal to the surface) can be easily reduced to summations of type (75), where
one can use differential properties of the basis function (30). A methodology for differentiation of
functions represented by their expansions (differential operators in the space of coefficients) can be
found in Ref. [25].

The algorithm consists of two main parts: the preset step, which includes setting the data
structure (building and storage of the neighbor lists, etc.) and precomputation and storage of all
translation data. The data structure is generated using the bit interleaving technique described in
[25], which enables spatial ordering, sorting, and bookmarking. While the algorithm is designed
for two independent data sets (N arbitrary located sources and M arbitrary evaluation points),
for the current tests we used the same source and evaluation sets of length N , which is also called
the problem size. For a problem size N, the cost of building the data structure based on spatial
ordering is O(N logN), where the asymptotic constant is much smaller than the constants in the
O(N) asymptotics of the main algorithm. The number of levels could be arbitrarily set by the user
or found automatically based on the clustering parameter (the maximum number of sources in the
smallest box) for optimization of computations of problems of different size.

Figure 4 shows the main steps of the standard FMM, assuming that the preset part is performed
initially. Here Steps 1 and 2 constitute the upward pass in the box hierarchy, Steps 3,4, and 5 form
the downward pass and Steps 6 and 7 relate to final summation. The upward pass is performed for
boxes in the source hierarchy, while the downward pass and final summation are performed for the
evaluation hierarchy. By “near neighborhood” we mean the box itself and its immediate neighbors,
which consists of 27 boxes for a box not adjacent to the boundary, and the “far neighbors”, are
boxes from the parent near neighborhood (of the size of the given box), which do not belong to the
close neighborhood. The number of such boxes is 189 in case the box is sufficiently separated from
the boundary of the domain.

For solution of the biharmonic equation translation operators shown in Fig. 4 should be ex-
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Figure 4: A flow chart of the standard FMM.

panded according to Fig. 2 in general case, and according to Fig. 2 if translations are decomposed
to rotations and coaxial translations. In the numerical examples shown below we used such decom-
position.

5.3 Numerical tests

To validate the theory and conduct some performance tests we developed software for the FMM
for solutions of the biharmonic equation. The code was realized in Fortran 95 and compiled using
the Compaq 6.5 Fortran compiler. All computations were performed in double precision. The CPU
time measurements were conducted on a 3.2 GHz dual Intel Xeon processor with 3.5 GB RAM. In
the tests we studied a benchmark case where N sources are uniformly randomly distributed inside
a unit cube. The intensities of the sources generally were assigned randomly, while for consistency
of error measurements we often used sources of the same intensity.

5.3.1 Computation of errors

To validate accuracy of the FMM we measured the relative error in the L2 norm evaluated over M
random points in the domain:

²2 =

"PM
j=1

¯̄
ψexact (rj)− ψapprox (rj)

¯̄2PM
j=1 |ψexact (rj)|

2

#1/2
, (76)

where ψexact (r) and ψapprox (r) are the exact and approximate solutions of the problem.
The exact solution was computed by straightforward summation of the source potentials (27).

This method is acceptable for relatively low M , while for larger M the computations become
unacceptably slow, and the error can be measured by evaluation of the errors at smaller number
of the evaluation points. We found experimentally that the relative L2-norm error evaluated over
100 points is quite close to the error evaluated over the full set for N < 100000. So we used this
partial error measure to evaluate the computation error.

The error of the FMM depends on several factors. It is mainly influenced by the truncation
number, p, which is the number of terms in the outer summation (n = 0, ..., p − 1). We note that
the total number of expansion coefficients for a single harmonic function for a truncation number p
is p2, since the order changes as m = −n, ..., n, in the truncated series representation of a harmonic
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Figure 5: A dependence of the relative FMM error in the L2 norm (²2) computed over 100 random
points on the truncation number p for N = 217 = 131072 sources of equal intencity distributed
uniformly randomly inside a unit cube. The maximum level of space subdivision lmax = 4. For
p > 6 the error can be approximated by dependence ²2 = ab−p.

function. We used this truncation for representation of harmonic functions φ (r) and ω (r) in
decomposition of the biharmonic function ψ (r) (see Eq. (16)), and accordingly we truncated all
translation operators to matrices, where the maximum order m and degree n are p− 1.

Figure 5 shows the dependence of the relative L2 error evaluated over M = 100 points on p for
fixed N . It is seen that for larger p this error decays exponentially. However even p ∼ 4 provide
a reasonably small error, which might be sufficient for computation of some practical problems. It
is noticeable that ²2 almost does not depend on N . This is shown in Figure 5. This is due to the
growth of the norm of function ψ (r) (see Eq. 75) with N . If one is interested with absolute error
in L∞ norm, then to keep it constant for increasing N we should increase p ∼ logN . We conducted
corresponding numerical experiments for harmonic functions, which are reported in [19].

5.3.2 Performance

Once some truncation number providing sufficient accuracy is selected, the FMM should be opti-
mized in terms of selection of optimum maximum level of space subdivision, lmax. As is discussed
in [19], for the Laplace equation lmax is proportional to logN and, in fact, for fixed p theoretically
should depend only on the clustering parameter s, which is the maximum number of sources in the
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Figure 6: Dependences of the relative error ²2 on the size of the problem for different truncation
numbers. Computations made for settings described in Fig. 5 and 7. lmax was selected for the
optimum CPU time of the algorithm.

smallest box of space subdivision. This is also true for the biharmonic equation. Accordingly, we
varied this parameter to achieve the minimum CPU time for each case reported.

Figure 7 shows the dependences of the CPU time required for the “run” part of the FMM
algorithm. It is seen that independently on p the complexity of the FMM is linear with respect
to N , which is consistent with the theory. The direct summation method scaled as O(N2). We
note that the break-even points, N = N∗, (the points at which the CPU time of the direct method
coincides with the CPU time of the FMM) depend on the truncation number (or on the accuracy
of computations) and on the implementation of the algorithm. In our implementation of the 3D
biharmonic solver we obtained N∗ = 550 for p = 4, N∗ = 1350 for p = 9, and N∗ = 3550 for p = 19.
Note that we obtained the break-even numbers N∗ = 320, 900, and 2500 for p = 4, 9, and 19 using
the same “point-and-shoot” method for the Laplace equation for real functions [19].

Figure 8 shows the CPU times required for the “run” parts of the FMM algorithm for the
Laplace and biharmonic equations (both for real functions). It is seen that, in fact solution of
the biharmonic equation is faster than just sum of two Laplace equations. There are a couple of
reasons for that. First, in both cases we use the same data structure and the translation operators
for a single Laplace equation can be used for the biharmonic equation. Second, even though the
translation for the biharmonic equation more costly than for the Laplace equation, the direct
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Figure 7: Dependences of the CPU (run) time, measured on Intel Xeon 3.2 GHz processor (3.5
GB RAM) on the size of the problem. Computations performed using the direct summation and
the FMM with different truncation numbers shown near the curves. Sources (Green’s function for
biharmonic equation) of equal intencities are distributed uniformly randomly inside a cube. The
series of the FMM data are connected with the solid lines. The dashed lines show asymptotic
complexities of the algorithms at large N .

summation in the neighborhoods of the evaluation points for the both equations have the same
cost. Therefore translations take not 100% of the CPU time, but just a part . Moreover, the
optimization of the algorithm leads to balancing of the costs of translations and direct summations.
So, theoretically, one can expect only 50% (not 100%) CPU time increase for solution of the
biharmonic equation compared to the Laplace equation. These numbers are close to that we
observed in actual computations for the maximum difference in the CPU times, e.g. for N = 219

the increase of the CPU time was 59% , and for N = 220 we had 36% increase (note that the ratio of
the CPU times varies, due to the discrete change of the maximum level of space subdivision, which
means that the translations may constitute not exactly 50% of the run time of the algorithm).

Figure 8 also shows the time needed to preset the FMM. As we mentioned above this step
should be performed only once for a given set of source and evaluation points and includes setting
of the data structure and precomputation of the translation operators. Even if it performed every
time when the FMM run routine is called, it does not substantially affect the execution time, since
it may contribute only 10% or so to the total computation time (so the FMM can be used for
computation of dynamic system with moving sources). The graph of the preset time shows jumps,
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Figure 8: A comparison of the CPU times for the direct summation (the dark rhombs), the “run”
parts of the FMM algorithms for the Laplace (the triangles) and the biharmonic (the squares)
equations, and the “preset” step of the FMM algorithm (the dark discs). The FMM for the
Laplace and biharmonic equation was employed with p = 9 and the same data structure. Other
settings are the same as in Fig. 7.

which are related to the change of the maximum level of space subdivision. Almost the same CPU
time is required to preset the FMM for different number of data points and the same lmax.

6 Conclusions

We developed a fast method to solve a biharmonic equation in three dimensions based on the FMM
for the Laplace equation. The method modifies translation operators and such modifications can
be used with any solver of the Laplace equation employing translations or reexpansions including
tree codes and various version of the FMM. Numerical tests show good performance in terms of
accuracy and speed.
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