TECHNICAL
RESEARCH
REPORT

SYSTE M S
RESEARCH
C E N T E K

Supported by the
National Science Foundation
Engineering Research Center

Program (NSFD CD 8803012),
Industry and the University

Complexity, Decidability and Undecidability
Results for Rule-Based Expert Systems

by S. Blanksteen, |. Hendler, and D.S. Nau

TR 92-117

Complexity, Decidability and Undecidability Results
for Rule-Based Expert Systems*

Scott Blanksteen' Jim Hendler? Dana S. Nau?

Institute for Advanced Computer Studies
University of Maryland

Abstract

We prove the equivalence of domain-independent'planning ~ystems and rule-
based expert systems. \Ve use this equivalence to examine how the complexity
of deriving conclusions in rule-based expert systems depends on the nature of
the rules. We show conditions under which conclusion derivation is decidable
and undecidable. For those cases where the problem is decidable, we show how
the time complexity varies depending on a wide variety of conditions: whether
or not function symbols are allowed; whether or not rules may retract facts;
whether or not negative conditions are allowed; whether or not the rules are
allowed to take arguments; and whether the rules are given as part of the input

to the expert system, or instead are fixed in advance.

*This work supported in part by NSF Grant IRI-8907890 to the Institute for Systems Research,
and a grant from Westinghouse Corp. to the Institute for Systems Research.

TComputer Science Dept. and Institute for Systems Research. (301) 405-7027, sib@cs.umd.edu.

YComputer Science Dept., Institute for Systems Research, and Institute for Advanced Computer
Studies. (301) 405-2696, hendler@cs.umd.edu.

$Computer Science Dept., Institute for Systems Research, and Institute for Advanced Computer
Studies. (301) 405-2684, nau@cs.umd.edu.

Table 1:

Complexity of Verifying Rule-Based Expert Systems.

Lang. How Allow | Allow Telling if Telling if
restric- | rules | retrac- | negated | a conclusion | thereis a
tions are tion of | con- can be derivation

given | facts? | ditions? || derived of length < k
none either | yes/no | yes/no/ | semidecidable | semidecidable

way no®

yes yes/no EXPSPACE- NEXPTIME-
no given complete complete
func- n yes NEXPTIME- NEXPTIME-
tion the complete complete
symbols | input | no no EXPTIME- NEXPTIME-
and complete complete
finitely no® PSPACE-comp. | PSPACE-comp.
many fixed yes yes/no PSPACE P PSPACE 7
constant | (in ad- yes Np P NP P
symbols Vance) no no p Np P
no® NLOGSPACE NP

all pre- yes yes/no PSPACE-comp. | PSPACE-comp.
dicates | given yes NP-complete | NP-complete
are in the | no no P NP-complete
0-ary input no%/no” || NLOGSPACE- | NP-complete
(propo- complete
sitions) | fixed | yes/no | yes/no || constant time | constant time
“No rule has more than one condition.

AWith PSPACE- or NP-completeness for some sets of rules.
YEvery rule with > 1 condition is the composition of other rules.

1 Introduction

In the current paper, we examine how the complexity of verifying rule-based expert
systems, that is, determining whether or not a given conclusion can be derived, de-
pends on the nature of the rules presented to the expert system. We consider expert
systems consisting of a working memory, the blackboard, and a collection of OPS5-style

rules, consisting of lists of conditions and actions. Our results can be summarized as

follows:

e If function symbols are allowed or if the language contains infinitely many con-
stant symbols, then determining whether a specific conclusion can be derived is
undecidable (more specifically, semidecidable). This is true even if we restrict
the rules so that (1) they may not retract facts and (2) the condition list of

each rule contains at most one (non-negated) atomic formula.

o If no function symbols are allowed and only finitely many constant symbols are
allowed, then conclusion derivation is decidable, regardless of whether or not
rules are allowed to retract facts. In this case, the computational complexity
varies from constant time to EXPSPACE-complete, depending on whether or not
we allow rules to retract facts or to have negative conditions, whether or not we
restrict the predicates to be propositional (i.e., 0-ary), and whether we fix the

rules in advance or give them as part of the input. The results are summarized

in Table 1.

This paper is organized as follows. Section 2 contains the basic definitions. Sec-
tions 3 and 4 prove all of the basic equivalences we need. Section 5 contains the
decidability and undecidability results, and Section 6 presents the complexity results.
Section 7 contains a discussion of the complexity results. Section 8 contains conclud-

ing remarks. The proofs of the theorems and lemmas appear in the appendix.

2 Preliminaries

In this section, we give a precise definition of a rule-based expert system domain, as

discussed in this paper.

Definition 2.1 We will assume that the language of an expert system is any first-
order language L. generated by a finite number of function, predicate, and constant
symbols. An atom in L.; is a predicate symbol together with its arguments. The
atom is ground if it contains no variable symbols. A literal is either an atom (in
which case we say the literal is positive) or the negation of an atom (in which case we

say the literal is negative).

Definition 2.2 The state of the working memory (blackboard) is a set of ground

atoms in the language of the expert system.

The working memory is the set of facts which are known to the expert system at
a specific point when a rule is not firing. In a logic interpretation, those facts on
the blackboard are true, those not on the blackboard are not true. We consider rule
firings to be primitive, indivisible operations; that is, there is no state between the
start of a rule firing and the end of the rule firing. We also assume for simplicity that,

within a given rule, all retractions occur before any assertions occur.

Definition 2.3 A rule o is a 5-tuple (Name(a), Vars(a), Pre(a), Asrt(a), Ret(«)),

where
1. Name(«) is simply o;
2. Vars(a) is the set of all variables mentioned in Pre(e);
3. Pre(a) is a finite set of literals, called the condition list of ¢;

4. Asrt(a) and Ret(a) are both finite sets of atoms (possibly non-ground). Asrt(«)

is called the assert list of o, and Ret(a) is called the retraction list of o.

Note that both positive and negative literals may appear in Pre(«), but negative
literals may not appear in either Asrt(a) or Ret(a). We will assume for simplicity
that all of the input to the expert system for a given trial is provided before any rules

are fired.

Definition 2.4 A rule-based expert system domain is a pair Des = (Bo, R), where
By is a blackboard containing the inputs to the expert system and R is a finite set

of rules.

Definition 2.5 A conclusion set is a set D of formulas of L, such that each formula
d € D is an existentially closed conjunct of literals (i.e., the variables, if any, are

existentially quantified).

Informally, the conclusion set D 1s the set of all possible outputs that the expert
system might provide that the user is willing to consider to be answers to problems
in the expert system domain. For example, if we are discussing a diagnostic expert

system, D is the set of all diagnoses the system is capable of making.

Definition 2.6 An ezpert system problem is a triple Pes = (Bo, R, D)
An expert system problem is a set of rules, inputs and a list of possible outputs.

Definition 2.7 Let Des = (Bp, R) be an expert system domain, o be an rule in R,
and 0 be a substitution that assigns ground terms to each X;,1 <4 <n € Vars(«).
Suppose that the following conditions hold:

{Af0|A is an atom in Pre(a)} C B;
{CO|-C is a ncgated literal in Pre(a)} N B = 0;
B' = (B — (Ret()0)) U Asrt(a)b.

Then we say that « is f-ezecutable from blackboard B, resulting in blackboard B3’

This is denoted symbolically as B 2L p.

§-executability captures the idea of which rules are executable, given the black-
board state. The notion can be extended to handle varying conflict resolution strate-

gies that may be used.

Definition 2.8 Suppose Pes = (Bo, R, D) is an expert system problem and d € D

is a conclusion. A derwation that concludes d is a sequence By,..., B,, B,11 of

blackboards, a sequence «y, ..., a, of rules, and a sequence by, . .., 0, of substitutions
On,ln

79 76 . . - -
such that By =2 B; 253 B, ... 250 B, 11 and d is satisfied by B,y1, i.e. there exists

a ground instance of d that is true in B, 41. The length of the above derivation is n.

A derivation is simply a sequence of rule instantiations leading from the initial state
of the blackboard to one satisfying some state in D. Note that each @, must have

been 0-executable at blackboard B,.

Definition 2.9 Let Des = (Bg, R) be an expert system domain, and let L., be the
language of Des. Let @ € R be a rule. Then

1. « is positive if Pre(a) is a finite set of atoms, i.e., negations are not present in

Pre(a)).

2. o is retraction-free if Ret(a) = 0.

3. a is contezt-free |Pre(a)| < 1, i.e., Pre(a) contains at most one atom. .
4. ais side-effect-free if |Asrt(a) U Ret(a)| < 1, i.e., @ has at most one action.
5. «ais function-free if o contains no function symbols.

6. « is propositional if every predicate P in « is a propositional symbol, i.c., a

predicate symbol of arity 0.

If every rule @ € R is positive (or retraction-free or context-free or side-effect-
free) then we call Deg positive (or retraction-free or context-free or side-effect-free,
respectively). If every rule o € R is function-free (or propositional) then we call L,
and Des function-free (or propositional, respectively).

Note that if Deg is propositional then in effect it is also function-free, for even if

L., contains function symbols, no rule will ever use them.

In order to verify the correctness of an expert system, we need to show that it
can produce all of the conclusions given in the specification, as well as showing that
it does so for the proper inputs, and does not produce these conclusions for other
outputs. However, it is typical that expert systems lack complete specifications of
input-output behavior; if such a specification existed, it would probably be casier to
write a procedural program to perform the task. In light of this, we concentrate here
on the question of whether or not the expert system can at least produce all of the

desired outputs, as this will be a lower bound on the full verification problem.

Definition 2.10 CONCLUSION EXISTENCE is the following problem:

Given an expert system problem Pes = (Bg, R, D) and a specific conclu-

sion d € D, does there exist a derivation in Peg that concludes d7

Definition 2.11 CONCLUSION DERIVATION is the following problem:

Given a expert system problem Pes = (Bo, R, D), a specific conclusion
d € D, and an integer k encoded in binary, tell whether or not there is a

diagnosis in Pes of length k or less that concludes d.

3 Basic Equivalences

In this paper, our methodology in this paper is to transform the planning problems
discussed in [1, 2, 6] into rule-based expert system problems. This allows us to derive
results about expert system problems which meet the same criteria as the planning

problems to which we are comparing them.

3.1 Planning Definitions

The following definitions are {rom [1, 2].

Definition 3.1 A state is a set of ground atoms.

A state tells us which ground atoms are currently true.

Definition 3.2 A planning operator o is a 4-tuple (Name(a'), Pre(e’), Add(¢),
Del(a’)), where

1. Name(c') is a syntactic expression of the form o/(Xy,. .., X,) where each X; is

a variable symbol of £;

Lo

Pre(a') is a finite set of literals, called the precondition list of o, whose variables
are all from the set {X;,..., X, };

3. Add(¢/) and Del(¢') are both finite sets of atoms (possibly non-ground) whose
variables are taken from the set {X7,..., X,,}. Add(c’) is called the add list of
o', and Del(¢) is called the delete list of o'.

Observe that atoms and negated atoms may occur in the precondition list, but negated

atoms may not occur in either the add list or the delete list.

Definition 3.3 A first-order planning domain (or simply a planning domain) is a
pair Dp = (5o, 0), where Sy 1s a state called the initial state, and O is a finite set of

planning operators.
Definition 3.4 A goal is an existentially closed conjunction of atoms.

Definition 3.5 A planning problem is a triple Pp = (So, O, G), where (S, 0) i3 a

planning domain and G is a goal.

3.2 Translation Definitions

Definition 3.6 Let a € R be any expert system rule, and let Name(a) = « and
Vars(a) = (Xy,...,X,). Then the rule-to-operator translation function Fr, : a €
R - €0 is

¢ Name(d') = a(Xy, ..., Xn)
e Pre(d) = Pre(a)
o Add(e’) = Asrt(a)
e Del(a/) = Ret(a)
Note that for each rule in R, there is exactly one corresponding operator in O.

Definition 3.7 The planning domain translation of an expert system domain Des =

(Bo, R), denoted P(Des), is (5o, O), where Sy = By and O is the set of formulae

O = U Fro(a).

x€R

Definition 3.8 The planning problem translation of an expert system problem Peg =
(Bo, R, D), denoted P(Pes), is (So, O,), where Sq and O are derived from P(By, R)
and G =D. L, = L.

As we shall show later in Theorem 4.2, the previous two definitions allow us to
translate any expert system domain or problem into an equivalent planning domain
or problem; the next two definitions, along with Theorem 4.1 allow us to do the

converse.

Definition 3.9 Let o € O be any planning éperator, and let Name(a) = a(Xy, ..., X,).

Then the operator-to-rule translation function Fo,: @ € O — o' € R is:
e Name(d') = o
o Vars(e') = (Xy,...,X,)

o Pre(a’) = Pre(a)

-~3

o Asrt(a’) = Add(«)
o Ret(a') = Del(a)
Note that for each operator in O, there is exactly one corresponding rule in R.

Definition 3.10 The expert system domain translation of a planning domain Dp =
(S0, O), denoted ES(Dp), is (Bo, R), where By = Sy and R is the set of formulae
R = U For(a).

€0

Definition 3.11 The expert system problem translation of a planning problem Pp, =
(S0, 0, G), denoted ES(Pyp), is (Bo, R, D), where By and R are derived from ES(S,, O)
and D =G. L. = L,.

4 Equivalence Results

In this section, we show that planning is essentially the same as expert system conclu-
sion derivation. We establish this by transforming a planning problem into a expert
systern domain such that for all goals g € G, the goal g can be achieved by the planner

iff there is a derivation for the conclusion ¢ in the expert system.

Theorem 4.1 (Equivalence Theorem 1) Suppose Dy = (Sp, O) is a planning do-
main and g € G is a goal. Then there is a plan to achieve g from Dp, iff there exists
a derivation of ¢ in ES(Dp).

Theorem 4.2 (Equivalence Theorem 2) Suppose Des = (Bo,R) is an expert
system domain and d € D is a goal. Then there exists a derivation to conclude

d from Des iff there exists a plan to achieve d in P(Des).

See the appendix for the proofs of the above theorems.
Theorems 4.3 through 4.6 below show that the translation discussed in Theo-
rems 4.1 and 4.2 preserve a number of important properties. The proofs follow directly

from the definitions in Section 3.2.

Theorem 4.3 (Preservation of Positivity) If Dy, is a planning domain, and ES(Dy,)

is its expert system domain translation, then Dp, is positive iff ES(Dy,) is positive.

8

Theorem 4.4 (Preservation of Retraction-freeness) If Dy, is a planning domain,
and ES(Dp) is its expert system domain translation, then Dy is retraction-free iff
ES(Dp) is retraction-free.

Theorem 4.5 (Preservation of Function-freeness) If Dy, is a planning domain,
and ES(Dp) is its expert system domain translation, then Dy is function-free iff
ES(Dp) 1s function-free.

Theorem 4.6 (Preservation of Propositionality) If D, is a planning domain,
and ES(Dp) is its expert system domain translation, then Dy is propositional iff

ES(Dp) is propositional.

5 Decidability and Undecidability

[3] presents a number of decidability and undecidability results for planning systems.
Using the equivalences between planning domains and expert system domains that
we established in Section 4, we now transport these results over to expert system

domains.

Theorem 5.1 (Semi-Decidability Results)

1. {d|d is a conclusion such that there is a deduction to conclude d from Des =

(Bo,R)} is a recursively enumerable subset of the set of all conclusions.

2. given any recursively enumerable collection X of ground atoms (which, of
course, are conclusions), there is a positive deletion-free expert system domain
Des = (Bo, R) such that {A| A is a ground atom such that there is a derivation
to conclude A from Des} = X

Theorem 5.2 The problem “given a positive deletion-free expert system domain
Des = (Bo,R), is the set of conclusions diagnosible from Des decidable?” is 13-

complete.

Theorem 5.3 If we restrict Deg to be positive, deletion-free, and context-free, then

CONCLUSION EXISTENCE is still strictly semi-decidable.

Theorem 5.4 Suppose Des = (By, R) is a fixed positive, deletion-free expert system
domain. Then the problem: “given a conclusion d, does there exist a derivation to
conclude d?” is decidable iff the set of goals achievable from P(Des) is decidable.

From these results, it is clear that even under severe restrictions, CONCLUSION
EXISTENCE is not decidable. In fact, if we allow function symbols, the problem is

undecidable, regardless of any other restrictions discussed here.

6 Complexity Results

[2] presents a large number of complexity results for planning systems. Using the
equivalences between planning domains and expert system domains that we estab-
lished in Section 4, we now transport these results over to expert system domains.
These results describe how the complexity of determining whether or not a derivation

exists for a given conclusion depends on the following conditions::
e whether or not rules may retract facts;
e whether or not negative conditions are allowed;
e whether or not the predicates are restricted to be propositional (i.e., 0-ary);

o whether the rules are given as part of the input to the expert system, or instead

are fixed in advance.

As shown in Section 5, if L.s contains any function symbols, or, equivalently, an
infinite number of ground atoms, then CONCLUSION EXISTENCE and CONCLUSION
DERIVATION are both semidecidable, so, in this section, we assume that L. contains

no function symbols and only a finite number of ground atoms.

6.1 The Function-Free Case

6.1.1 Rules given in the Input

Theorem 6.1 If Pes is restricted to be function-free, retraction-free, positive, and
context-free, then CONCLUSION EXISTENCE and CONCLUSION DERIVATION are PSPACE-

complete.

10

Theorem 6.2 If Pee 1s restricted to be function-free retraction-free and positive,
then CONCLUSION EXISTENCE is EXPTIME-complete and CONCLUSION DERIVATION
1s NEXPTIME-complete.

Theorem 6.3 If P is restricted to be function-free and retraction-free, then CON-
CLUSION EXISTENCE and CONCLUSION DERIVATION are NEXPTIME-complete.

If rules may retract facts, then whether or not negated conditions are allowed has
no effect on the complexity of CONCLUSION EXISTENCE and CONCLUSION DERIVA-
TION.

Theorem 6.4 If Peg is restricted to be function-free, then CONCLUSION EXISTENCE
18 EXPSPACE-complete and CONCLUSION DERIVATION is NEXPTIME-complete.

6.1.2 Rules fixed in advance

Theorem 6.5 If we restrict Pes to be function-free, retraction-free, positive, and
context-free and R to be a fixed set, then CONCLUSION EXISTENCE is in NLOGSPACE
and CONCLUSION DERIVATION is in NP.

Theorem 6.6 If we restrict Pes to be function-free, retraction-free, and positive,
and R to be a fixed set, then CONCLUSION EXISTENCE is in P and CONCLUSION
DERIVATION is in NP (with NP-completeness for some sets of rules).

Theorem 6.7 If we restrict Peg to be function-free and retraction-free, and R to be
a fixed set, then CONCLUSION EXISTENCE and CONCLUSION DERIVATION are both in

NP (with NP-completeness for some sets of rules).

If rules may retract facts, then whether or not negated conditions are allowed has
no effect on the complexity of CONCLUSION EXISTENCE and CONCLUSION DERIVA-
TION.

Theorem 6.8 If we restrict Peg to be function-free and R to be a fixed set, then
CONCLUSION EXISTENCE and CONCLUSION DERIVATION are both in PSPACE, with

PSPACE-completeness for some sets of rules.

11

6.2 The Propositional Case
6.2.1 Rules given in the Input

Theorem 6.9 If we restrict Peg to be function-free, retraction-free, positive, propo-
sitional, and restrict each rule to be either context-free or to be a composition of
other rules, then CONCLUSION EXISTENCE is NLOGSPACE-complete and CONCLUSION
DERIVATION is NP-complete.

Theorem 6.10 If we restrict Peg to be function-free, retraction-free, positive, propo-
sitional, then CONCLUSION EXISTENCE is in P and CONCLUSION DERIVATION is NP-

complete.

Theorem 6.11 If we restrict Peg to be function-free, retraction-free, and proposi-
tional, then CONCLUSION EXISTENCE and CONCLUSION DERIVATION are both NP-
complete.

If rules may retract facts, then whether or not negated conditions are allowed has
no effect on the complexity of CONCLUSION EXISTENCE and CONCLUSION DERIVA-
TION.

Theorem 6.12 If we restrict Pes to be function-free and propositional, then CON-
CLUSION EXISTENCE and CONCLUSION DERIVATION are both PSPACE-complete.

6.2.2 Rules Fixed in Advance

If Pes is an expert system problem where the rules are fixed, then neither the
retraction-freeness of the rule nor the existence of negated conditions has any effect

on the complexity of CONCLUSION EXISTENCE and CONCLUSION DERIVATION.

Theorem 6.13 If we restrict Pes to be function-free and propositional and R to be
a fixed set, then CONCLUSION EXISTENCE and CONCLUSION DERIVATION both take

constant time.

7 Discussion of Complexity Results

Here we discuss the results described in section 6, and give intuition for the effects
of the various conditions on the complexity results for CONCLUSION EXISTENCE for
both propositional and non-propositional rule bases. Similar analysis holds for the
results about CONCLUSION DERIVATION.

7.1 Propositional Rules
7.1.1 Rules Given in Input

If the rules must be propositional, but are otherwise unrestricted, then a given rule
may have to be applied repeatedly during one derivation. There are a polynomial
number of rule instantiations, and each blackboard is polynomial in size, so the com-
plexity of CONCLUSION EXISTENCE is PSPACE-complete.

If the rules must be retraction-free, then the set of facts in the working memory
continually grows — every fact that appears in the working memory will remain
there. This means that any rule instantiation needs to appear only once in a plan,
and since there are only a polynomial number of rule instantiations, the complexity
is NP-complete.

If we additionally restrict the rules to be positive, then once a rule bhecomes 6-
executable, 1t will continue to be #-executable, since no rule can disable another rule
by posting a fact to the blackboard. Therefore, the rule firing order no longer affects
the conclusions that can be derived. This means there will only be a polynomial

number of meaningfully different derviations, so the complexity is in P.

7.1.2 Rules Fixed in Advance

If the rules are fixed and propositional, then we can preprocess the rule base to
determine exactly which conclusions can be derived, and how long it will take to
derive them, regardless of whether or not the rules may retract facts or whether or
not negated conditions are allowed. Therefore, it takes constant time to check whether

or not the rule base can derive any given conclusion.

13

7.2 Non-Propositional Rules

Here we assume that there are no function symbols and only finitely many constants.

7.2.1 Rules Given in Input

With no restrictions on the rules, other than that they have no function symbols,
we may need to fire a given rule numerous times to achieve a given conclusion. This
forces us to search through all blackboards, which may be doubly exponential in
number. Fach blackboard is at most exponential in size, so CONCLUSION EXISTENCE
1s in EXPSPACE.

If we restrict the rules to be retraction-free, then the set of facts on the blackboard
after any rule fires is always a superset of the facts on the blackboard before the rule
fired. This means that any rule instantiation needs to be fired at most once, and since
there are an exponential number of rule instantiations, the complexity is NEXPTIME.

If the rules are now restricted to having no negated conditions, then once a rule
becomes §-executable, it will continue to be #-executable. Therefore, the order of the
rule firings is no longer significant, and the complexity is reduced to EXPTIME.

If we restrict rules to have at most one condition, then backward chaining becomes
efficient, as the number of choices at each step remains constant or decreases, and the

complexity drops to PSPACE-complete.

7.2.2 Rules Fixed in Advance

If rules are non-propositional and fixed, we may translate them into a set of equivalent
rules that are propositional, and otherwise satisly the same restrictions. That is, if the
original rules were retraction-free (positive), the new rules will also be retraction-free
(positive). Thus the complexity of CONCLUSION EXISTENCE in the non-propositional,
fixed-rules case is approximately the same as in the propositional case with rules as

part of the input.

8 Conclusion

We have performed an exhaustive analysis of the complexity of rule-based expert

systems derivation. A primary result is that if function symbols are allowed in the

14

language of the expert system, or if infinitely many constant symbols are defined,
than the problem is undecidable. The problem remains extremely complex even

under fairly severe restrictions on the rules given to the expert system.

References

[1] K. Erol, D. Nau, and V. S. Subrahmanian. Complexity, decidability and undecid-
ability results for domain-independent planning. 1991. Submitted for publication.

(2] K. Erol, D. Nau, and V. S. Subrahmanian. On the complexity of domain-
independent planning. In Proc. AAAI-92, pages 381-386, July 1992.

[3] K. Erol, D. Nau, and V. S. Subrahmanian. When is planning decidable? In Proc.
First Internat. Conf. Al Planning Systems, pages 222-227, June 1992.

[4] C. L. Forgy. The OPS5 user’s manual. Technical Report CMU-CS-81-135, Com-
puter Sci. Dept., Carnegie-Mellon University, 1980.

[5] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman and Company, New York,
1979.

[6] Nils Nilsson. Principles of Artificial Intelligence. Morgan Kaufmann, 1980.

[7] D. A. Waterman. A Guide to Expert Systems. Addison-Wesley, Reading MA,
1986.

Appendix

Lemma A.1 Suppose that Des = (Bo, R) is any positive, deletion-free expert system

domain, and
ao,f o1,6 o8
B0:>B1:>B2---:>71Bn+1

is a derivation that derives some conclusion d (we really don’t care what d is as far

as this lemma is concerned). Then

15

1. Bo gBl ng an+1, and
2. il a rule « is f-executable in state B;, then a is f-executable in state Bj for all
k>j.
Proof of Lemma A.1.

L. Immediate consequence of the fact that Vo € RRet(a) = §. Hence, for all
0 <1<,
Biy1 = B; U Asrt(a;)8;.

2. Suppose a is f-executable in state B;.Then Pre(a)d C B; C By is true. As
Pre(a) is negation free, the condition that {Bf | —B is a negated atom in
Pre(a)} N By = § is immediately satisfied and hence « is executable in state

By. This completes the proof.

Proof of Theorem 4.1 (Equivalence Theorem 1)
(—) : Suppose P(Des) can achieve Gy. Then there is a plan
af,0 ol 6 al bn
Sp 2 g A g, b g

that achieves G;. Then every literal in Gy must be true in state Spi1. We

proceed by induction on n.

Base Case 1 (Goal Immediately Achieved). If Gy is achieved in state S,
then it must be the case that all literals in Gy are true in state So. Since, by

Definition 3.7, Sy = By, the expert system would immediately conclude d.

Base Case 2 (n =0). If n =0, then there is a plan
ol ,90
So == 5

that achieves the goal. That is, G4 C SoJAdd(a}). Since, by Definition 3.7,

Add{ap) = Asrt(e) for some o € R, the expert system would conclude d via

,0
By 222 B,

16

3

Inductive Case. If P(Des) can achieve G in n steps, then there is a plan
.8 ol b, ol 0,
Sogg—-gsl —1—_?1 52 > Sn+1

that achieves G4. If this is the case, then every literal in G4 is true in state
Spt1- Since Deg is positive and deletion-free, it is either the case that every
literal in Gy is true in state S,, or that (G4 — S,) € Add(a,). By the inductive

hypothesis, there exists an expert system derivation
¢4 n— ygﬂ— E
B, 2 g, ul g, 2 g (1)

such that everything true in state S, is true in state B,. By Lemma A.l,
everything true in state B, is also true in state B,41. So, in the first case, the
expert system would conclude d via (1). In the second case, there exists a rule o,
whose planning translation is o,. Since by Definition 3.9, Asrt(a,) = Add(c,),

there exists an expert system derivation
@p,f ay,f Op—1,0n-1 on,0n
BogBlz{—_—;\;BQ"' = Bnn:>Bn+1

in which ag ... an_1, 0g...0,_1, and, therefore, By. .. B, are the same as in (1),

and all literals true in d are true in blackboard By 4.

(«=) : The proof in this direction is the mirror image of the other direction. The

details are omitted for brevity. [|

Proof of Theorem 4.2 (Equivalence Theorem 2). The proof is similar to the

proof of Theorem 4.1. The details are omitted for brevity. |

Proof of Theorem 6.1. From Theorems 4.1,4.3,4.4 and 4.5 CONCLUSION EXIS-
TENCE with the restrictions that Pes be function-free, retraction-free, positive, and
context-free reduces to PLAN EXISTENCE with these same restrictions. From Theo-
rems 4.2,4.3,4.4 and 4.5, PLAN EXISTENCE with these restrictions reduces to CON-
CLUSION EXISTENCE with these restrictions. But from Theorem 10 of [2], PLAN
EXISTENCE with these restrictions is PSPACE-complete. Thus, so 1s CONCLUSION EX-
ISTENCE with these restrictions. The proof for CONCLUSION DERIVATION is similar
(by reduction to PLAN LENGTH). ||

The proofs of Theorems 6.2-6.13 are similar.

17

