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 Aquaculture as a global industry is at a crossroad; increased production cannot rely 

on the unsustainable harvest of forage fish for feed production. The use of fishmeal and 

fish oil as components in feeds for aquaculture, most notably for high value marine 

carnivores must be reduced or eliminated. The most promising and sustainable sources of 

replacement feed must be plant derived, such as soybean meal, wheat flour, and corn gluten 

along with dozens of other plant derived sources. Likewise for fish oil the most promising 

sources are plant oils such as soybean and canola oil supplemented with necessary omega-

3 fatty acids. 

 This work was undertaken to examine the effects of switching marine carnivores 

from fishmeal-based feeds to fishmeal-free, plant-based diets. The majority of this research 

has been conducted with cobia, Rachycentron canadum, a promising species for intensive 

aquaculture due to its rapid growth rates, high disease resistance, and lack of a major 



  

commercial fishery as competition. A variety of plant proteins, plant protein blends and 

alternative lipid sources were examined for digestibility and efficacy as fishmeal 

replacement sources in regards to their effects on growth rates, feed conversion, and a range 

of physiological characteristics.  

 This work has explored the hypothesis that marine carnivores have lost the ability 

to synthesize taurine, a non-protein amino acid, in sufficient quantities and must therefore 

be supplied through the diet, and should be considered essential for all marine carnivores. 

By measurement of gene expression of the genes in taurine biosynthesis, this work shows 

that cobia do not possess the ability to regulate taurine biosynthesis confirming taurine 

must be supplied through the diet. 

 Overall, this work has developed multiple plant protein-based feeds that perform 

equivalently or better than commercial and commercial-like diets. Taurine has been shown 

to be an essential ingredient when seeking to reduce or preferably, eliminate fishmeal and 

thereby making aquaculture sustainable in providing protein to meet the world’s growing 

population. 
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Preface 

 I want to preface this dissertation with a brief explanation of its structure. Following 

the general introduction and up to the concluding chapter, the chapters and sub-chapters 

are written in manuscript format for the various journals they have been submitted to for 

publication where possible. Where a section represents a published manuscript, the citation 

follows the title of that section. Although references, subsections, tables, and figures have 

been reformatted to be consistent within this dissertation, there are acknowledgements at 

the end of the majority of sections. These are specific to each section as they would be for 

individual manuscripts and denote the specific people whose assistance was vital for that 

study as well as the funding sources for each, as appropriate. Contribution numbers have 

been removed from these acknowledgement sections to be consistent within the 

dissertation format. 
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Chapter 1: General Introduction 

World population and capture fisheries 

The greatest problem facing the world over the next century will be how humanity 

adapts to global population increase. Everything from energy, water, and food shortages to 

environmental degradation and climate change are all directly rooted simply to the number 

of people inhabiting the planet. One of the most challenging aspects of this concerns the 

worlds growing population and that the majority of the increase is going to come from 

developing nations (Figure 1.1.1; United Nations, 2009), nations with poor infrastructures 

and poor technologies to cope with increasing demands. Food concerns will highlight the 

problems in many of these countries, where much of the current population still relies on 

capture fisheries for the bulk of their animal protein. Fish accounted for 16.6 % of the world 

population’s intake of animal protein and 6.5 % of all protein consumed with roughly 4.3 

billion of the world’s people relying on fish for at least 15 % of their protein intake (FAO, 

2012). 

 
Figure 1.1.1. Expected global population increase through 
2050, divided by developed (dark gray) or less developed (light 
gray) nations; from United Nations (2009). 
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However, worldwide landings from commercial fisheries have either declined or 

leveled off for virtually every species in every region of the world. Total global landings 

have leveled off between 90-95 million tons per year and have been at this level for close 

to two decades (Figure 1.1.2.; FAO, 2012, 2010). Even at these consistent levels, many of 

the commercial fisheries still in operation are not doing so under sustainable practices, with 

many regularly undergoing periodic closures or continuing restraints. Public concern has 

only continued to increase over issues such as habitat degradation, over-fishing dwindling 

stocks, and special concern has been paid to increasing contamination levels in many wild 

caught species (Brar et al., 2010; Burger and Gochfeld, 2013; Du et al., 2012; Hayward et 

al., 2007; Kim et al., 2012; Mita et al., 2011; Stewart et al., 2011).  

Overfishing of stocks has always been the biggest factor in declining wild stocks, 

with habitat degradation due to poor fishing practices being another strong factor. Since 

none of the increase in supply can be expected to come from wild fish populations that are 

already beyond their sustainability levels, aquaculture must step in to help increase global 

seafood production and act as an aid in easing over-fishing and habitat degradation. 
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Figure 1.1.2. World capture fisheries production from inland 
waters (top) and marine waters (bottom), from FAO (2012). 

 

Aquaculture 

Aquaculture is one of the oldest forms of agriculture, with roots dating back as far 

as 5,000 years (Nash, 2011). Aquaculture production has increased from roughly 1 million 

tons per year in the early 1950's to 63.6 million tons per year as of 2011, increasing roughly 
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7 % annually and representing a global value of approximately $119.4 billion in 2010 

(FAO, 2012). However, in terms of being developed into a worldwide high intensity 

practice, aquaculture is significantly behind its terrestrial counterparts of animal husbandry 

and crop farming. With the attempt to rapidly develop aquaculture and aquaculture stocks 

to have a similar status with terrestrial livestock production densities and technologies, 

many issues are being encountered. Fishing is the oldest form of hunting/gathering that is 

still being practiced on a large scale. The belief that the world’s oceans can never be “out-

fished” has only fairly recently been tossed aside. The technical issues encountered, 

coupled with the reluctance to accept that our current rate of capture fishing is 

unsustainable, has produced difficulties in developing aquaculture into a sustainable, high 

intensity practice that can meet global seafood demands. One of these major stumbling 

blocks for the advancement of aquaculture, both politically and socially, are the industry’s 

real and perceived negative environmental impacts. 

Eutrophication, the increased concentrations of chemicals, most notably nitrogen 

and phosphorous, has been an issue associated with agriculture and urbanization for 

decades. Runoff from agricultural land where excess fertilizers are used and runoff from 

cities and industrialized areas are often rich in nutrients. These nutrients can lead to the 

rapid degradation of local water quality, as well as increased algal production, which turns 

into bacterial blooms that can consume virtually all usable oxygen, driving these local 

systems into periods of hypoxia or anoxia. Even shortened periods of anoxia or hypoxia 

can have negative health effects such as lowered growth, delayed or stunted sexual 

development, or can become fatal to the majority of prey species and higher life such as 

fish and other vertebrates, with sessile organisms being the most at risk. Every summer 
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there is an anoxic zone, roughly the size of New Jersey, that grows and shrinks in the Gulf 

of Mexico in correspondence to the outflow rate of the Mississippi River, a direct result of 

the increased nutrients flowing down the river (Dagg and Breed, 2003). There have been 

dozens of documented water bodies such as this around the world that undergo either 

seasonal anoxia, or have become permanently anoxic due to eutrophication and other 

anthropogenic causes (Zhao et al., 2012). Although this problem is exacerbated in fresh 

water systems that tend to be more closed than ocean systems, coastlines and estuaries are 

not immune to these effects and there are fears that large scale open ocean aquaculture pens 

could easily lead to similar problems in a variety of ecosystems worldwide, or fall victim 

to seasonal episodes.  

Outside of possible eutrophication there are other issues that have plagued 

traditional aquaculture in terms of its public perception and application. Escapes from 

aquaculture pens, although rare, have made national and world headlines in the past (Elvira 

and Almodovar, 2001; Jensen et al., 2010; Volpe et al., 2013). Invasive species have the 

potential to be spread rapidly from large or small-scale escapes from aquaculture 

operations. A good example is in the salmon industry, where genetic populations from the 

two sides of the Atlantic basin and the Pacific are very distinct. Escapes of Atlantic salmon 

in the natural environments of the other have taken place to the extent there is fear of feral 

populations of Atlantic salmon developing on the Pacific coast (Volpe et al., 2013). Even 

in the ornamental culture industry, which is often thought of on a miniscule scale in 

comparison to food-grade fish culture, populations of invasive lionfish have been 

documented and monitored in the Caribbean and Atlantic (Johnston and Purkis, 2011). The 

northern snakehead, Channa argus, is an invasive species in North America that is 
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decimating local fish populations and is believed to have been released from pet owners 

and small-scale aquaculture operations (Lapointe et al., 2010) The negative potentials for 

this type of problem are felt and understood by a wide range of communities throughout 

the world due to the fact that invasive species have been a major problem in terrestrial 

ecosystems for much longer than aquatic ecosystems and the large majority of communities 

are very familiar with their implications. Although to date this has been much more of a 

potential and publically feared problem than an actual one, with a few major exceptions 

(e.g. Asian carp in the Mississippi river (Sampson et al., 2008)), it has greatly hindered and 

prevented the expansion of intensive aquaculture for certain species and in certain regions.  

An emerging issue with aquaculture and one that will only continue to undergo 

heated debate is the use of genetically modified organisms (GMO's). Historically this has 

only been thought of in terms of the organism that is raised or released and genetic 

modification has been thought of as the genes that have been manipulated, inserted, or 

selected for in selective breeding programs. The definition of genetic modification is 

widening to include things such as DNA vaccines and the genetically modified feedstuffs 

that go into the diet formulation of farmed fish. The answers to questions, such as whether 

or not horizontal gene transfer can or will occur from genetically modified feedstuffs or 

DNA vaccines, have not been answered so the moral and ethical stumbling blocks of 

allowing these practices in intensive aquaculture have also not been explored fully. As one 

of the major challenges in aquaculture, the reduction in the use of fishmeal and fish oil in 

diets is being explored, to increase the variety of alternate feedstuffs for use in diets. Many 

issues will arise in the future in relation to GMO's and their use in aquaculture, especially 
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their use in traditional cage and pen culture operations where excess feed and or escapes 

are issues (Myhr and Dalmo, 2005).  

One of the most promising alternatives to traditional aquaculture practices that can 

alleviate many of the current and future concerns within aquaculture is the use of 

recirculating aquaculture systems (RAS). Recirculating systems are self-contained systems 

that include tanks for the target species, biological and mechanical filtration, as well as all 

necessary monitoring apparatus (Figure 1.1.3) such as temperature, salinity, and pH control 

as well as ozone or UV irradiation to control bacterial levels. 

 

Figure 1.1.3. A schematic drawing of the experimental Baltimore Recirculating 
Mariculture System. Numbered system components are: (1) fish tank, (2) particle removal, 
(3) sump [left] and pump [right], (4) pH doser, (5) temperature control; (6) biofiltration, 
(7) protein skimmer, (8) oxygen delivery. From (Zohar et al., 2005). 
 

Most recirculating systems do just what their name suggests, recirculate the water, 

relying on the biological and mechanical filtration units to maintain high water quality. 

This greatly reduces waste and can disconnect the system from possible impacts to the local 
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environment, providing them with the capability of raising non-native species and GMOs, 

as well as the ability to be placed virtually anywhere having the required infrastructure. 

This benefit of RASs also gives them the ability to maintain proper spawning conditions 

for broodstock such as temperature and photoperiod, as well as conditions for maximal 

growth throughout the year, regardless of the external environment they are situated in. 

RASs also have the potential for year-round production of eggs, currently one of the 

significant bottlenecks for successful aquaculture, and final products that traditional 

aquaculture simply cannot match.  

There is a high cost associated with recirculating systems that has greatly limited 

their use and expansion on a large scale, both freshwater and marine, in the past decades 

(Zohar et al., 2005). However, with decreasing fish stocks and increasing demand, 

alternatives to traditional aquaculture, such as RASs need to expand to fill the void. On-

going research has the potential to continually improve systems, increase fish densities and 

increase our ability to raise high-value species anywhere. 

Aquafeeds 

Besides the decimation of natural populations and ecosystems, another major issue 

with aquaculture is its feed source. Aquaculture, unlike its terrestrial counterparts, relies 

heavily on species that are carnivorous or omnivorous in the wild. Cows, pigs, sheep, and 

chickens, some of the highest production terrestrial animals can all subsist on grain crops 

or wastes from human food production without much modification to their diets. Many fish 

species on the other hand, especially high-value marine species, rely heavily upon meat 

sources for nutrition, particularly for protein. This can result in feed costs comprising more 
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than 50 % of the total budget for raising fish to market size, which means even small 

fluctuations in ingredient costs can make the difference between profit and failure. Fish are 

much better converters of food into mass than any terrestrial species, reflecting their high 

protein diets. Most fish species can convert 1-2 kilograms of dry food into one kilogram of 

wet flesh while terrestrial animals have much higher conversion ratios with poultry in the 

range of 3-5:1, pork at about 8:1 and beef ranging from 5-20:1 (NOAA/USDA 2011). This 

significant difference results from the fact that fish are cold-blooded, which reduces the 

amount of calories required for respiration and total metabolism. Also, by living in water, 

fish do not require energy to support their body weight, which also frees up more consumed 

energy to be utilized for growth as opposed to maintenance.  

Currently and historically, a major source of the protein and lipid used as feed 

components in aquaculture comes from marine derived fishmeal and fish oil. This is mainly 

due to the high digestibility of these ingredients along with their appropriate amino and 

fatty acid compositions for most fish species, especially marine species. Until recently, 

with the increasing production of aquaculture, these ingredients were in ready supply at 

manageable prices. Fishmeal production, both from the reduction of wild-caught stocks 

and offal from the processing of fish for human consumption, peaked in 1994 at roughly 

30.2 million tonnes, and has dropped dramatically to 15.0 million tonnes in 2010 (FAO, 

2012), with 36 % of 2010 production coming from offal. The price of fishmeal over that 

period increased by approximately 400 % from ~$300 per tonne to ~$1,200 per tonne in 

early 2012. Of this global fishmeal production, aquaculture consumes roughly 60.8 %, with 

the remainder going to non-human consumption industries such as the pet-food industry. 
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Fish oil resources have seen similar declines in production coupled with increasing 

costs. Global fish oil production peaked in 1986 at 1.67 million tonnes, but has declined at 

a steady rate of 2.6 % annually since, with global production in 2009 at 1.07 million tonnes. 

This decrease in availability has seen prices rise to roughly $1,500 per tonne in early 2012 

(FAO, 2012). Aquaculture is the largest consumer of global fish oil resources, utilizing 

73.8 % of global fish oil produced annually. 

Not only are these trends alarming from economic and ecological perspectives, they 

become a major problem when considering that in order for aquaculture to continue to 

expand, fishmeal and fish oil production would also need to increase. As previously 

discussed however, wild fisheries production has been at a consistent or declining level for 

years. Fishmeal and fish oil production are also at the mercy of weather patterns such as El 

Nino that can greatly affect the quantity of fish produced for reduction. The time of year 

that fish are harvested can also affect the amino and fatty acid profiles of the meal and oil, 

leading to inconsistent quality. 

An underlying issue with the whole concept of fishmeal and fish oil use in 

aquaculture is the concept of using fish to feed fish, which in no way increases the 

sustainability or productivity of the industry. All this practice is doing is using wild fish 

that are not suitable for human consumption as a resource in producing species that are 

viable for sale or consumption. The species caught for reduction to fishmeal and fish oil 

are often critical components or keystone species in their natural environments. 

Significantly reducing their numbers has negative impacts on local ecosystems such as 

reduced water quality when removing filter feeders as well as reducing the natural prey 

populations of species that are fished for human consumption. This causes further dietary 
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shifts in other species resulting in cascading negative effects throughout local and large-

scale ecosystems. This results in unfavorable ratios of the amount of fish products used to 

create new fish products, or a “fish in: fish out” ratio. Currently, trends for these ratios for 

production of high-value marine fish can be as high as 4.5-6, meaning it takes 4.5-6 kg of 

wild caught fish to produce 1 kg of aquacultured fish. This is not a sustainable or beneficial 

type of production, and industry goals are to dramatically reduce this ratio by replacing 

fishmeal and fish oil with alternative, more sustainable sources. For aquaculture to 

successfully expand, these ratios need to be reduced to at least 1:1, with the preference to 

reach below 1, a situation which would actually result in a net production of fish protein 

from non-fish sources. Reaching these goals would allow the aquaculture industry to 

expand at much more sustainable levels, which would not only aid in meeting global 

protein demands, but could potentially aid in reducing the anthropogenic impacts on the 

environment due to over-fishing and reduction fisheries. Reduction fisheries also rely on 

the feed sources of many species fished for human consumption. Lessening the impact on 

these forage fish species would also further enable recovery of these populations. 

Besides the ecological and economic challenges the industry faces, another 

important issues involved with aquaculture and fisheries recognized by the public and 

consumers is contamination. Polychlorinated biphenyls (PCB's) and mercury 

concentrations receive ever increasing scrutiny and publicity. There are already limits to 

the amounts of wild-caught fish humans should consume from the high trophic level, apex 

predators such as tuna and swordfish, as these compounds are known to undergo 

biomagnification, increasing in concentration in tissues up the food-chain. It has been 

shown that many environmental contaminants, especially those that accumulate in lipids, 
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are found in higher concentrations in farm-raised animals than in wild animals (Hites et 

al., 2004). This is due to the fact that these contaminants are greatly concentrated and 

increased relative to ration size during the production and inclusion of fishmeal and fish 

oil into diets used for aquaculture. Taken as a whole, not only are fishmeal and fish oil 

unsustainable, they should also be considered unsafe. 

Food sources for fish grown in aquaculture is not a new or recently emerged 

problem and a great deal of research over the past few decades has been conducted on 

alternative protein and lipid sources in a variety of species with a wide range of success 

and failure. The greatest success seen in fishmeal replacement has been with animal source 

proteins, such as chicken, pork, and beef by-product meals, or with fish processing waste 

such as carcass and visceral meal for shrimp. Many of these meals naturally meet 

requirements in terms of protein and lipid and have appropriate amino acid profiles to serve 

as excellent replacement sources for most species. Besides meat meals, many other protein 

sources have been utilized as potential fishmeal replacements including plants, algal meals, 

yeast meals, and microbial products. 

Generally speaking, freshwater omnivorous species, such as tilapia and catfish, 

have been the easiest to convert to low or no fishmeal diets and marine carnivorous species 

have been the most challenging. This may be due in part to the omnivorous nature of many 

freshwater species that are cultured, generally giving them the ability to digest a wider 

range of protein sources. Omnivores potentially maintain the ability to synthesize more of 

the needed essential and semi-essential components than their marine counterparts since 

their diets can be varied and unpredictable, reducing their dietary demands. 
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Fishmeal and fish oil replacement 

A great deal of research has concentrated on the topics of replacing fishmeal and 

fish oil with a variety of alternative sources. Although animal by-product meals are readily 

available in consistent quantities in many parts of the world and tend to be highly digestible, 

public concern and outcry over their use has led them to being banned in European and 

other markets, and lessened their use in much of the rest of the world (Tomas et al., 2005). 

Plants, on the other hand, are a readily available source of proteins and lipids and already 

represent 94 % of global protein production and 86 % of the total edible oil production 

(NOAA/USDA 2011). Proteins such as wheat flour, wheat gluten, soy protein concentrate, 

soybean meal, barley meal, corn gluten, flax, pea protein concentrate, castor bean meal, 

and even yeast extracts, have all been studied as possible fishmeal replacements (Gaylord 

et al., 2007; Gomes et al., 1995; Lunger et al., 2007; Luo et al., 2006; Tomas et al., 2005; 

Xie et al., 1998; Zhou et al., 2005; Zhou et al., 2004).  

Plant proteins have their own range of advantages and disadvantages just as any 

other feedstuff. Advantages to the use of plant proteins include the reduced reliance on a 

limited resource that itself is reliant upon environmental conditions, reduced fluctuations 

in quality and quantity produced annually, lowered mineral content giving the user more 

control over environmental enrichment, and lowered fears of disease transfer via animal 

based ingredients such as that seen with "mad-cow" disease. The biggest advantage though 

is the increased degree of sustainability that plants provide when compared to animal based 

products, especially fishmeal and fish oil. Along with sustainability comes the possibility 

of having aquaculture products deemed "organic" or “green”, which alone would allow 

these products into a niche market that already demands higher prices from informed and 
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demanding consumers, greatly offsetting the current increased production costs of both 

RAS's and the use of some alternative feedstuffs. However, the use of plant proteins has 

several disadvantages, including high fiber and carbohydrate levels, unfamiliar to many 

marine species that can cause significant health problems such as intestinal enteritis. Anti-

nutritional factors (ANFs) such as the toxic chemicals gossypol, ricin, and erucic acid, as 

well as hormonal and protein breakdown inhibitors such as trypsinase are common in 

plants. Some of the negative characteristics of plant proteins are alleviated and some are 

exacerbated by the industrial processes required for their preparation and inclusion in diets 

for aquaculture. Taken as a whole, these factors have historically led to low overall 

digestibility and availability of proteins and other nutrients for fish from plant sources. 

Plants such as soybeans, corn, rapeseed, and wheat are renewable, sustainable 

sources of terrestrial protein that have been cultivated and bred for many reasons that 

increase their nutritive value to humans. Size, protein quantity, amino acid profiles, annual 

yield, and reduced anti-nutritional components are all characters that have been selected 

for (both in GM and non-GM strains) in almost all species and strains of domesticated 

crops. Many of these beneficial traits extend to the use of these products as feed ingredients 

for aquaculture. Although there are many alternative protein sources available besides crop 

plants such as animal by-product meals, algal biomass as a by-product of biofuels 

production, algal meals, insect products, and aquaculture and fisheries by-products; 

terrestrial plant proteins provide one of the most readily available and applicable protein 

sources for use in the United States and globally. Plants are however, naturally low in some 

of the beneficial long chain polyunsaturated fatty acids (n3 LC-PUFAs). In addition, 

processing to remove some forms of anti-nutritional factors is expensive and can strip the 
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proteins of some beneficial vitamins and minerals (NOAA/USDA 2011). Plants also 

exhibit different amino acid profiles than the natural diet and requirements of most fish, 

especially marine carnivores. Supplementing dietary formulations with vitamins, minerals, 

amino acids, and other components known to be lacking in plant protein sources is a 

solution to this problem but requires a species by species knowledge of minimal and 

optimal requirement levels for the optimization of dietary formulations and productivity. 

Amino acid profiles that are unbalanced can be detrimental in terms of optimizing growth 

potential, and these issues can very challenging to address when using alternative protein 

sources, especially plants (Van Nguyen et al., 2013).  

Partial and complete replacement of fishmeal in diets for rainbow trout, 

Oncorhynchus mykiss, have been successful with plant protein sources such as soybean 

meal, lupin flour, corn gluten meal, rapeseed meal, and cottonseed meal (Maria N. Alexis 

et al., 1985; Burel et al., 1998; Gomes et al., 1995; Hughes, 1991; Luo et al., 2006; Refstie 

et al., 1998; Vielma et al., 2002). Tomas et al. (2005) found increased FCR and lowered 

growth rates with inclusion of soybean meal above 30% in diets for Mediterranean 

yellowtail, Seriola dumerili, and cited varying levels of success other researchers had had 

with soybean meal inclusion with other species of yellowtail, most notably Japanese 

yellowtail. China, which houses one of the largest and most rapidly growing sectors of the 

aquaculture industry, has been very involved in alternate feedstuffs for fish culture. Cai et 

al. (2005) explored the effects of detoxified castor bean meal as a possible fishmeal 

replacement for juvenile grass carp, Ctenopharyngodon idellus. Castor beans contain high 

concentrations of the anti-nutritional factors and toxins ricin, lectin, and ricinine, which 

can be highly toxic to fish and higher vertebrates. However, upon detoxification processes, 
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caster bean meal was shown to be an effective fishmeal replacement with no detrimental 

effects on growth and feed utilization up to about a 40% replacement level. Xie et al. (1998) 

found that increasing levels of soybean cake as a fishmeal replacement led to decreased 

growth rate and feed utilization and deemed soybean cake an unsuitable replacement 

candidate for Chinese longsnout catfish, Leiocassis longirostris. Borgeson et al. (2006) 

were successful in replacing up to 67% of fishmeal in Nile tilapia, Oreochromis niloticus. 

This was a significant study, although not the first, because it focused on comparing diets 

that utilized a variety of plant proteins as replacements as opposed to simply replacing 

fishmeal with one plant protein ingredient. Comparisons were made between simple 

replacement diets, diets using only one replacement source, and complex diets, diets using 

blends of replacement sources. The results showed that fish fed the complex diets had 

higher growth rates, protein efficiency ratios, and feed utilization than fish fed the simple 

replacement diets. However growth rates and feed efficiencies dropped when 100% of 

fishmeal was replaced either in the simple or complex diets.  

These studies have encountered varying degrees of success, rarely matching growth 

rates, feed conversion ratios and survival rates when compared to typical fishmeal-based 

diets. Several of the possible explanations for this have been uncovered and corrected. It is 

known that many plant sources lack several essential amino acids such as lysine and 

methionine as well as many vitamins and minerals that are needed in micro quantities. It 

has become common practice to supplement alternate protein source diets as well as even 

fishmeal-based diets with these types of additives to ensure that amino acid, vitamin, and 

mineral requirements are met. Barrows et al. (2010) reported positive effects on weight 

gain, FCR, feed intake, hepatosomatic index (HSI), and nutrient retention when 
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supplementing plant-based diets for rainbow trout with macro-minerals sodium chloride, 

potassium chloride, and magnesium oxide as well as inositol. It is important to note that 

very few species specific requirement levels have been identified for more than a handful 

of individual ingredients and many researchers and diet manufacturers work from the same 

nutritional guidelines regardless of the species for which a particular diet is being 

formulated  (NRC, 1993). 

Taurine 

Taurine is a sulfur containing beta-amino acid found in high concentrations in a 

variety of tissues in vertebrates. Taurine is not incorporated into any known proteins and 

is therefore only considered semi-essential in most species and essential in a few strict 

carnivores, most notably felines. The various roles of taurine in the eye, heart, liver, 

kidneys, and leukocytes have received the most attention (Schaffer et al., 2010). These 

include conjugation to bile salts, cell differentiation, photoreceptor protection, regulation 

of neural transmission in the retina, hemolytic suppression, osmoregulation, and as a 

powerful anti-oxidant (Schuller-Levis and Park, 2003). Growing evidence also supports 

beneficial effects on improved paternal reproductive quality in the form of improved 

spermatogenesis (Higuchi et al., 2012b). Taurine is considered to be a conditionally 

indispensable amino acid for humans and non-human primates (Schuller-Levis and Park, 

2003), however little attention has been paid to requirement levels of this amino acid and 

its roles in fish. The primary roles of taurine in teleosts are shown in Figure 1.1.4. Taurine 

is found in appreciable concentrations in the natural diet of marine carnivores and the 

fishmeal component of traditional feeds (Satake et al., 1988). All terrestrial plant protein 
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sources are devoid of taurine however, yet it is rarely supplemented in aquaculture diets, 

and may be the biggest contributing factor to the drop-off in production characteristics 

described previously when fishmeal levels in feeds are reduced. 

Figure 1.1.4. Primary functions and organs with high concentrations of taurine in a marine 
teleost. Cobia, Rachycentron canadum, figure modified by Alexandra Casmer. 

 

Taurine deficiencies in some species have been described and include symptoms 

such as green liver syndrome and blindness (Goto et al., 2001b; Maita et al., 1997; Takagi 

et al., 2011, 2006, 2005). The positive effects of taurine supplementation to fish diets 

(Gaylord et al., 2007; Lunger et al., 2007b; Pinto et al., 2010; Takagi et al., 2008) has led 

to the hypothesis that marine carnivores have a dietary requirement for taurine. This 

hypothesis is supported by the high levels of taurine observed in the natural diet of marine 

carnivores and thus the ability to synthesize sufficient quantities of taurine has been lost or 

down regulated. Taurine must therefore be considered an essential amino acid and its 

dietary requirement for each species must be identified and met either through inclusion of 

meat meals containing appreciable quantities of taurine or through direct supplementation 

of taurine to the feeds. Examining the species-specific capacity for taurine biosynthesis 
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will not only help establish minimal and optimal taurine requirement levels, but will also 

enable the feeds industry to replace higher and higher quantities of fishmeal with plant-

based proteins without losing production efficiencies or using ingredients such as by-

product meals from animal processing that are banned in some countries (Tomas et al., 

2005) and carry significant public concern (e.g. prions, heavy metal accumulation). 

Synthesis of taurine can occur in two ways (Figure 1.1.5,  Stipanuk et al., 2009, 

2011) with both pathways relying on cysteine, a semi-essential amino acid biosynthesized 

from the essential amino acid methionine. Synthesis occurs mainly in the liver (Tappaz, 

2004), after which taurine is taken up by other tissues through plasma circulation and a 

taurine transporter (TauT).  

 

 
Figure 1.1.5. Taurine biosynthesis pathway (left) modified from Stipanuk et al. (2011) 
with the chemical structure of taurine. 
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Cysteine dioxygenase (CDO, EC 1.13.11.20) 

 Much of the work that has been performed on the individual enzymes of the taurine 

synthesis pathway have been conducted in vivo with mice or rats or in vitro with cell lines 

derived from mice, rats or humans. Very little work has been conducted in teleost species, 

however, many parallels can be drawn between the mammalian work that has been 

conducted and teleost systems, as both groups of vertebrates rely on many of the same 

cellular mechanisms and transcription/translational control machinery. 

 
Figure 1.1.6. Cysteine dioxygenase converts cysteine to cysteinesulfinic acid. 

Cysteine dioxygenase (CDO) is a non-heme containing, mononuclear iron enzyme 

(Simmons et al., 2006) that catalyzes the first of two reactions (Figures 1.1.6 and 1.1.7) 

required to produce taurine from cysteine (Figure 1.1.5). In this reaction molecular oxygen 

is added to the sulfur of cysteine, creating cysteinesulfinic acid (McCoy et al., 2006). CDO 

activity reflects the balance between cellular cysteine levels and the presence of a thioether 

bond between a cysteine (Cys93) and a tyrosine (Tyr157) within the protein that acts as a 

cofactor. Although basal catalytic activity is present without the thioether bond, as 

evidenced by mutated CDO expressed in cell lines, the presence or absence of the thioether 

bond is responsible for a 10-fold potential difference in activity (Dominy et al., 2008). The 

mature, thioether bond-containing, isoform of CDO is dependent on the presence of 

cellular cysteine, a metal cofactor (Fe2+) and oxygen (Stipanuk et al., 2009).  
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Figure 1.1.7. Phylogenetic relationships for cysteine dioxygenase (CDO) and cysteine 
sulfinic acid decarboxylase (CSD). Protein sequences, all except for R. canadum obtained 
from published sequences in NCBI database. R. canadum sequence translated from 
sequenced cDNA. Bold species represent those discussed in detail in subsequent sections. 
Numbers are bootstrap values (<70 considered not significant and are not shown). 
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Figure 1.1.8. Phylogenetic relationships for cysteamine dioxygenase (ADO) and the 
taurine transporter (TauT). Protein sequences, all except for R. canadum obtained from 
published sequences in NCBI database. R. canadum sequence translated from sequenced 
cDNA. Bold species represent those discussed in detail in subsequent sections. Numbers 
are bootstrap values (<70 considered not significant and are not shown). 
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Cellular CDO concentrations are tightly regulated by the rate of proteasomal 

degradation as controlled by polyubiquitination (Stipanuk et al., 2004). CDO 

concentrations can change up to 45-fold (Lee et al., 2004), multiplied by the potential 10-

fold difference in catalytic efficiency (Dominy et al., 2008), for a total potential change in 

CDO activity of up to 450-fold. This change in activity occurs within minutes and stabilizes 

within hours after the introduction of either high protein or high sulfur amino acid diets or 

cell media. This is one of the fastest and broadest ranges of activity of any metabolic 

enzyme that responds to dietary input (Stipanuk et al., 2009). Interestingly, the rapid 

increase in cellular concentration of CDO does not appear to be the result of increased 

transcript levels. Instead, the prevention of proteasomal degradation results in more active 

CDO remaining in cells. Low cellular cysteine concentrations result in the 

polyubiquitination of both the immature and mature isoforms of CDO, which are then 

rapidly degraded. The introduction of higher cellular cysteine concentrations either through 

high protein or high sulfur amino acid containing diets results not only in an increase in the 

Cys-Tyr thioether bond formation, but also in a decrease in the ubiquitination of CDO and 

its subsequent proteasomal degradation, allowing for the rapid increases in CDO activity 

(Dominy et al., 2006; Stipanuk et al., 2004). It has been hypothesized that cysteine itself, 

when bound by CDO, initiates a conformational change that prevents subsequent 

polyubiquitination and degradation (Lee et al., 2004; Stipanuk et al., 2004). 

The tight regulation of this step of the pathway is not to ensure the synthesis of 

sufficient taurine, instead is a mechanism to reduce cellular cysteine which can rapidly 

become toxic at high concentrations (Stipanuk et al., 2006). Although cysteine toxicity can 

occur in any cell type, it is a serious concern in brain and neuronal tissues. The mechanisms 
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of cysteine toxicity result from the L-cysteine enantiomer, which can form a variety of 

excitotoxins, which can lead to cell death at high concentrations due to over-excitation. 

Cysteine α-carbamate (a toxic analog of N-methyl-D-aspartate, NMDA), S-nitrosocysteine 

(a potential nitric oxide surrogate), catecholamine derivatives, and other toxic oxidized 

cysteine derivatives can be formed from excess cysteine. Cysteine can also interrupt the 

NMDA receptor redox sites and chelate Zn2+ and other metals which can result in blocking 

of receptor sites (Janáky et al., 2000). S-nitrosocysteine other S-conjugates of cysteine, and 

the closely related 4-thiaalkanoates are all nephrotoxic and hepatotoxic in rats. Their main 

effects are in the mitochondria and result in decreased cellular respiration, decreased ATP, 

depletion of glutathione, and damage to the mitochondrial genome (Anders, 1995), each 

which can lead to reduced performance of the mitochondria and may contribute to several 

known mitochondrial disorders. 

Loss of, or insufficient, CDO activity can lead to the same negative effects as 

exhibited by high cellular cysteine levels. Ueki et al. (2011) developed a CDO-/- knockout 

mice to explore the effects of a reduced capacity for regulating cysteine metabolism and 

taurine synthesis. The authors found that the knockout mice had extremely low taurine 

levels and elevated cysteine levels along with postnatal mortality, growth impairment, and 

connective tissue pathology. Supplementation of these knockout mice with taurine 

improved survival, but did not otherwise affect the knockout phenotype (Ueki et al., 2011). 

This is consistent with the hypothesis that CDO is critical in both the synthesis of taurine 

and the reduction of cellular cysteine to prevent toxicity. The mouse CDO gene contains 

multiple 5´ upstream promoter elements (HNF-3β, HFH-1, HFH-2, HFH-3, C/EBP, 

C/EBPβ) that are consistent with tissue specific expression. Both mRNA and protein levels 
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are consistent with activity measurements in varying tissues, with the liver having the 

highest, but with detectible expression in kidney, lung, brain, adipose tissue and small 

intestine (Hirschberger et al., 2001). These other tissues have been shown to compensate 

for the loss of liver CDO activity in liver-specific knockout mice (Ueki et al., 2012). This 

compensation not only results in lowered concentrations of cysteine in these tissues, but 

also an increase in the concentrations of hypotaurine and taurine. 

 

Cysteine sulfinic acid decarboxylase (CSD, EC 4.1.1.29) 

 Cysteinesulfinic acid decarboxylase (CSD) converts cysteinesulfinate, the product 

of CDO, to hypotaurine (Figures 1.1.7 and 1.1.9). CSD is also referred to as cysteine 

sulfinic acid decarboxylase (CSAD), especially in the zebrafish literature, but for simplicity 

and continuity will only be referred to as CSD throughout this dissertation. CSD is a 

pyridoxal phosphate requiring enzyme (Kaisaki et al., 1995) that decarboxylates 

cysteinesulfinate to yield hypotaurine, which spontaneously devolves into taurine (De La 

Rosa and Stipanuk, 1985). This is the rate-limiting step in the synthesis of taurine from 

cysteine, and appears to be the reason that many species, such as cats, do not appear to 

have the ability to synthesize enough taurine in vivo (Worden and Stipanuk, 1985). 

Cysteinesulfinate can also be transaminated to form pyruvate and sulfate as part of the 

shunt to relieve excess cellular cysteine levels.  
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Figure 1.1.9. Cysteinesulfinic acid decarboxylase (CDO) converts cysteinesulfinic acid to 
hypotaurine. 

 
In rats, two distinct mRNAs have been identified encoding identical CSD proteins. 

These transcripts differ only in their 5´-untranslated region. This difference is most likely 

due to alternative splicing, but may be a regulatory element for the expression of CSD in 

different tissues (Tappaz et al., 1999). Phosphorylation of the α-subunit of eukaryotic 

initiation factor 2, and the subsequent downstream effects, is a common response to stress 

in many animals, with several eIF2α kinases responding specifically to nutritional stress. 

The main kinase that responds to amino acid nutritional stress is GCN2, which responds to 

unbound tRNAs involved in protein synthesis, resulting from a deficiency in either 

essential amino acids in the diet or amino acid metabolism from supplied precursors. 

Activation of GCN2 has the general effect of down-regulating protein synthesis and can be 

involved in the downstream pathway of protein catabolism during periods of prolonged 

amino acid starvation (Sikalidis and Stipanuk, 2010). Since taurine is derived from the 

sulfur amino acids methionine and cysteine, it is important to understand whether or not 

there is a different stress response induced from sulfur amino acid deficient diets compared 

to diets deficient in non-sulfur amino acids. Sikalidis and Stipanuk (2010) fed rats diets 

deficient in methionine and observed prolonged phosphorylation of eIF2α and an increased 

translation of activating transcription factor 4 (ATF4) that stimulates the integrated stress 

response. However, since taurine does not have a corresponding tRNA, it seems unlikely 
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that taurine deficiency would activate GCN2 directly. However, it is possible that ATF4 

could increase transcription of CSD or that eIF2α phosphorylation could increase CSD 

translation. However, it is equally likely that taurine synthesis is regulated by a different 

pathway(s). Similar to other stress responses, CSD activity is regulated by phosphorylation. 

CSD is active when phosphorylated by protein kinase C and inhibited when 

dephosphorylated by protein phosphatase 2C (Tang et al., 1997). 

The activity of CSD has been assayed in an array of mammals and some teleost 

species and a variety of tissue types. Postnatal male and female rats displayed high levels 

of hepatic CSD activity (3.4-5.6 mmol CO2 min-1 mg protein-1), which declined in females 

during development to adulthood, to the point where adult male rats had 16-fold higher 

activity than did adult females. Mice, on the other hand maintained fairly consistent levels 

of hepatic CSD activity through 16 weeks of age (10.7-23.2 mmol CO2 min-1 mg protein-

1). Cats and kittens had the lowest levels of CSD activity compared to all other animals in 

the study, with hepatic CSD activity at 0.61-0.63 mmol CO2 min-1 mg protein-1 in five-six 

week-old kittens which declined rapidly, with 15 month-old cats having activity 73 times 

lower than kittens (0.008 mmol CO2 min-1 mg protein-1). CSD activity in guinea pig liver 

was significantly lower than rats or mice in the same study (Worden and Stipanuk, 1985). 

Similar trends were observed in brain CSD activity for all species examined, although at 

much lower rates than those observed in the liver. Overall taurine concentration in these 

tissues mimicked CSD activity, decreasing with age and activity level. Eppler and Dawson 

(1999) observed similar reductions in CSD and CDO activity in aged rats resulting in 

reduced tissue taurine concentrations, however the decline is strain-specific, with Fischer 

 
 

27 
 



 

344 rats showing the decline with age, but not Sprague-Dawley or F344/Brown-Norway 

hybrids. 

CSD has also been shown to be highly expressed, at both the protein and transcript 

level, in the outer medulla of rat kidneys, supporting a role for taurine as an osmolyte 

(Reymond et al., 2000). CSD activity has been confirmed in the astrocytes of the 

cerebellum and hippocampus of adult rats, supporting the importance of taurine in the 

brain, although which of its myriad functions is a priority in the brain has yet to be 

confirmed (Reymond et al., 1996). Hepatic CSD activity can be inhibited in rats by the 

administration of thyroid hormone, however the same administration results in an increase 

in renal CSD activity (Jerkins and Steele, 1991).  Adrenalectomy, also results in reduced 

CSD activity (Jerkins and Steele, 1992). 

Although there have been fewer studies on hepatic CSD, this also declines in 

activity in animals fed high protein or high sulfur amino acid diets (Jerkins and Steele, 

1992; Tappaz, 2004). Goto et al. (2001) measured hepatic CSD activity in livers of several 

teleost species, although source and diet of fish prior to sampling was not specified. Three 

freshwater species had hepatic CSD activity of 0.3 (carp), 2.33 (rainbow trout) and 15.8 

(bluegill) nmol taurine produced mg protein-1 min-1. Five marine species measured ranged 

from 0.00 to 0.24 nmol taurine produced mg protein-1 min-1. Although this study was 

measuring CSD activity through the measurement of synthesized taurine, rates for CSD 

activity were much lower in these teleost species than the previously discussed CSD 

activities described for mammalian species.  

Taurine is such an important contributor to osmoregulation, lipid metabolism and 

oxidative stress reduction that maternally deposited mRNA transcripts for CSD have been 
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detected in the embryos and developing stages of zebrafish, alongside embryonic derived 

transcripts. Knockdown of CSD in zebrafish embryos significantly reduces taurine level 

and results in increased mortality and cardiac abnormalities. Injection of mRNA and 

supplementation with taurine can rescue the abnormal cardiac phenotypes (Chang et al., 

2013) indicating not only how critical taurine is to embryonic development, but how 

critical the CSD pathway is in the synthesis of taurine in zebrafish.  

 

Cysteamine dioxygenase (ADO, EC 1.13.11.19) 

 In comparison to CDO and CSD, much less is known about cysteamine 

dioxygenase (ADO), the enzyme responsible for the reaction that produces hypotaurine 

from cysteamine (Figures 1.1.8 and 1.1.10). Although the existence of the enzyme has been 

known for some time, it was only recently identified and characterized at the gene level 

through bio-informatic genome analyses (Buongiorno and Straganz, 2013). Similar to 

CDO, ADO is in the cupin superfamily of enzymes and also requires a metal cofactor, 

almost exclusively iron. CDO and ADO however, do not show any cross-reactivity of 

substrates, as CDO will not use cysteamine and ADO will not use cysteine (Dominy et al., 

2007). Although cysteine and cysteamine are very similar thiol compounds, the fact that 

there is no cross-reactivity between the two enzymes indicates that, at least in mammals, 

these two pathways are very tightly and independently regulated. Cysteamine is produced 

in cells as a by-product of the degradation of coenzyme A (Besouw et al., 2013). Due to 

the low activities of CSD observed in many mammalian and teleost species, there has been 

a renewed interest in the potential of cysteamine and ADO in the synthesis of taurine 

(Coloso et al., 2006).  
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Figure 1.1.10. Cysteamine dioxygenase (ADO) converts cysteamine to hypotaurine. 

 

Rats have been shown to have a high capacity for taurine synthesis in adipose 

tissues through both the CDO/CSD and ADO pathways (Ueki and Stipanuk, 2009) 

resulting from an increase in both mRNA and protein abundances for the enzymes of each 

pathway. 

 Goto et al. (2001a) measured the ADO activity in the livers of several species of 

fish. Source and dietary input of the fish was not specified, but the activity of ADO ranged 

from 0.09-3.06 nmol hypotaurine + taurine produced min-1 mg protein-1 with no significant 

difference between marine and freshwater species. Combined with the studies of the Goto 

laboratory on CSD, the authors concluded that the low activity levels were not consistent 

with with the overall levels of taurine detected in the fish. This led to the conclusion that 

most of the species assayed, most notably the marine species, although possessing the 

ability to synthesize taurine to some degree do not synthesize sufficient taurine to meet 

their needs. 

Taurine transporter (TauT) 

 In addition to the enzymes responsible for the synthesis of taurine, a highly 

conserved membrane bound transporter is critical in the transport and recycling of taurine 

(Figure 1.1.8). The taurine transporter (TauT) is a sodium chloride dependent transporter 

which exchanges two Na+ ions and one Cl- ion for each molecule of taurine transported 

across the membrane. The transporter is highly expressed in the apical membrane of 
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intestinal cells as well as kidney cells (Bröer 2008). The transporter contains at least two 

intracellular phosphorylation sites for some degree of regulation. The taurine transporter is 

a substrate for both PKC and PKA and there is evidence that they are responsible for 

inhibiting or increasing the rate of taurine transfer, respectively. However, there appear to 

be differences between tissue types and species as to the specific effects of each kinase 

(Tappaz, 2004). 

In general, an animal’s body taurine levels are regulated by the circulating plasma 

taurine levels and an increase or decrease in renal TauT expression and activity. TauT 

activity is up-regulated when circulating taurine levels are low to increase the reabsorption 

and recycling of existing taurine levels, and down-regulated when plasma taurine levels 

are high to allow for excretion and maintenance of appropriate concentrations. The 

majority of circulating taurine is derived from dietary intake since, as previously discussed, 

many animals do not have the ability to synthesize sufficient taurine. This has been 

confirmed through TauT activity of animals fed high protein or high taurine diets relative 

to those fed low protein or low taurine diets (Tappaz, 2004). Animals that are capable of 

regulating TauT expression and activity do so rapidly after dietary intake or changes in 

dietary protein or taurine content.  

 Besides dietary protein and taurine input, there are many factors that can affect 

TauT expression and activity. Hypertonicity can induce an increase in TauT expression in 

many cell types, and the 5´-flanking region of the gene upstream of the transcription start 

site contains a sequence that is consistent with osmotic response elements (Tappaz, 2004). 

Rat TauT expression has also been shown to increase in vivo during induced antidiureses 

in the renal papilla, in the outer renal medulla under high salt conditions, and in the brain 
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and retina under hypertonic conditions (Bitoun and Tappaz, 2000; Bitoun et al., 2001). 

Similar results were obtained from a carp cell line (Takeuchi et al., 2000) and up and down-

regulation of the taurine transporter in canine kidney cells also responded to the taurine 

concentration of the media (Han et al., 1997). Human intestinal epithelial cells, Caco-2, 

also respond to hypertonicity by increasing TauT expression and increased taurine uptake 

(Satsu et al., 1999). Caco-2 cells also respond to specific cytokines, such as TNF-α, with 

an increase in TauT expression and activity (Mochizuki et al., 2002). This serves to mediate 

the typical inflammatory response of cytokines in intestinal cells. TNF-α did not have 

similar effects in kidney, liver, or macrophage cells however, and the uptake of other 

osmolytes such as glycine, L-leucine, and L-glutamic acid were not affected by TNF-α 

(Mochizuki et al., 2002). This response could explain why fish fed diets high in plant 

protein ingredients not supplemented with taurine can develop intestinal enteritis. TauT 

expression in human embryonic kidney 293 cells can be significantly up-regulated by the 

WT1 gene (Han and Chesney, 2003), and TauT is a target of the tumor suppressor protein 

p53, which results in a down-regulation of TauT expression in the developing kidney (Han 

et al., 2000). These studies have led to the conclusion that TauT is critical in the proper 

development of the kidneys in mammals. TauT is also present in murine neuronal precursor 

cells and addition of taurine to cell media increases cell proliferation (Hernandez-Benitez 

et al., 2010). 

 TauT knockouts have been developed for the mouse model. Mice with no taurine 

transporter have significantly reduced taurine concentrations in skeletal and cardiac 

muscles (Warskulat et al., 2004) as well as changes in GABAA, kainite, and AMPA 

receptor densities in the brain (Oermann et al., 2005). Exercise capacity was also 
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significantly reduced in TauT knockout mice which accompanied a 28% reduction in 

conduction velocity in muscle tissue. Interestingly cardiac function was not affected by 

knocking out the taurine transporter. Instead there was an up-regulation of the cytosolic 

concentrations of several other organic solutes in heart tissues to compensate for the loss 

of taurine availability (Warskulat et al., 2004). This compensation was not observed in the 

muscle cells however. Contrasting results were found by Ito et al. (2010, 2008) who 

observed significant negative effects in cardiac structure and function in TauT knockout 

mice. The differences between the Warskulat and Ito studies have been attributed to the 

genetic background of the strains of mice used. TauT knockout mice showed retinal 

degeneration at a significantly younger age than control mice. Retinal cells in mice have 

been shown to lack CSD activity and are therefore reliant upon the taurine transporter to 

maintain high taurine concentrations needed for its anti-oxidant properties to protect 

photoreceptors and aid in their recovery from bright light. Even mice kept in total darkness 

suffer this rapid degeneration when compared to control mice, and the use of standard 

day/night light cycles accelerates this process. Since cell differentiation is not affected by 

TauT knockout, this is likely to reflect the inability of mature photoreceptor cells to survive 

without a functional taurine transporter, (Rascher et al., 2004). TauT knockout mice also 

suffer from hepatitis and liver fibrosis with over 80% of mice over age 1 developing these 

symptoms compared to only ~20% in wild type mice (Warskulat et al., 2006). Interestingly, 

many of the pathologies observed in homozygous knockout mice are also observed in the 

heterozygous knockouts, although at intermediate levels between the homozygous 

knockouts and wild type mice (Warskulat et al., 2007). 
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 It is thought that the taurine transporter may also play a role in sulfide detoxification 

in organisms adapted to deep-sea hydrothermal vents. The deep-sea mussel Bathymodiolus 

septemdierum has a high concentration of TauT mRNA in its gills and gonads, and the 

transporter has been shown to function under a wide range of salinities with affinity for 

thiotaurine and hypotaurine. Similar results were found in another deep-sea mussel, 

Bathymodiolus platifrons (Koito et al., 2010), where long-term exposure to sulfides also 

resulted in a maintenance of high TauT mRNA in gill tissue. Thiotaurine is a derivative of 

taurine with two sulfurs instead one just one, and has been found in high concentrations in 

the tissues of many vent and seep invertebrates, and is believed to be involved in sulfide 

detoxification (Inoue et al., 2008). Two other bivalves, although shallow water molluscs 

as opposed to deep-sea molluscs, have also been shown to maintain high transcript levels 

and activity of TauT in gill tissues. Both the Mediterranean blue mussel, Mytilus 

galloprovincialis, and the giant Pacific oyster, Crassostrea gigas, rely heavily upon the 

taurine transporter to aid in maintaining osmotic balance in the face of changing salinities 

that can be experienced in shallow coastal areas (Hosoi et al., 2007; Toyohara et al., 2005). 

 In fish, TauT is only known for its role in osmoreguletion. The starry flounder, 

Platichthys stellatus, Japanese eel, Anguilla japonica, Senegalese sole, Solea senegalensis, 

and tilapia, Oreochromis mossambicus, have all been shown to up-regulate TauT 

expression or activity in response to high-salinity in a variety of tissues (Fincham et al., 

1987; Pinto et al., 2012; Takeuchi et al., 2001). Dogfish, Squalus acanthais, and the little 

skate, Raja erinacea, both excrete taurine through the kidneys when adjusted to lower than 

full strength seawater (Schrock et al., 1982). This is the opposite effect observed of 

previously discussed species being acclimated to higher salt concentrations, but fits with 
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the hypothesis that lower salt concentrations would lead to lower TauT expression and 

activity resulting in increased excretion of plasma taurine, further evidence of the role of 

taurine as an osmolyte. Expression of TauT in the Senegalese sole also indicated a potential 

mechanism for taurine uptake in the stomach for use in bile salt conjugation, and taurine 

recycling with high levels of TauT expression in the hindgut to prevent loss (Pinto et al., 

2012). Mechanisms such as this may be critical not only in maintaining the existing taurine 

pool within the animal, but also in the dietary importance, of taurine, since a recycling loop 

would not be necessary if the species had the capacity for sufficient synthesis. Zebrafish 

embryos in early cleavage stages contain taurine (~192 pmol embryo-1) and TauT mRNA, 

indicating as with CSD that these are maternally derived transcripts and critical to normal 

development (Kozlowski et al., 2008). During later stages of development, zygotic 

expression of TauT is found in the retina, brain, heart, kidney, and blood vessels. Not only 

does the zebrafish TauT expressed in mammalian cells transport taurine with similar 

kinetics, but knockdown of TauT in developing zebrafish embryos by antisense 

morpholino oligonucleotides results in CNS cell death and significantly increased 

mortality, indicating the importance of taurine in development (Kozlowski et al., 2008). 

 Overall, a great deal of work has been done on the individual components of the 

taurine synthesis and transport pathways in a variety of species, with relatively little work 

done encompassing the whole pathway at once. Also, little work has been done on the 

ability of teleosts to synthesize taurine, although its physiological importance in 

development, osmoregulation, and digestion has been well established for an array of 

species. Assessing the ability of any species to synthesize taurine, and other critical dietary 

components, will be paramount in designing species specific diets that can maximize 
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growth while reducing redundant or excessive input that could result in undue metabolic 

stress or excretion of expensive or eutrophying compounds. 

 

Hypotheses 

This work sets out to test several hypotheses. The primary hypothesis is that taurine 

in an essential, rather than semi-essential amino acid for marine carnivores. The premise 

for this hypothesis comes from the finding of high taurine levels in the natural prey of these 

species. This is similar to the need for omega-3 fatty acids in marine carnivores where high 

natural abundance in their prey has resulted in down regulation of biosynthesis. This 

taurine requirement has only recently been recognized when fishmeal began being replaced 

with plant proteins, as plants are naturally devoid of taurine. In order to test this hypothesis 

we had to first develop an LC-MS method to rapidly and efficiently measure taurine in a 

variety of sample types (Chapter 2). Chapter 3 discusses the taurine biosynthesis potential 

of several teleosts using RT-qPCR methods to quantify transcript abundance for genes 

required for taurine synthesis. Chapter 4 examines the utilization of taurine as a dietary 

supplement in efforts to reduce and eliminate fishmeal and the effects of no and low taurine 

feeds to illustrate the essential nature of taurine. Chapter 5 examines the effects of total fish 

product (fishmeal and fish oil) replacement with taurine supplemented feeds for two marine 

carnivores with two alternative lipid sources to replace fish oil. Finally, Chapter 6 addresses 

potential consumer concerns that exist for aquaculture and how the replacement of fishmeal 

with plant proteins. PCB and mercury concentrations were measured in fillets of fish raised 

on plant based feeds compared to commercial feeds and taste-testing panels analyzed the 

same fillets to determine potential differences consumers may expect in the marketplace. 
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Chapter 2: Measuring Taurine 
 
 Chapter 2 begins with a description of a newly developed LC-MS method for 

rapidly quantifying taurine that subsequent work was reliant upon. The second section of 

this chapter discusses the utilization of this method to determine taurine content in striped 

bass, Morone saxatilis, eggs and common prey items of marine carnivores. Overall, this 

chapter describes the method used to measure taurine throughout this dissertation and the 

establishment of the argument that marine carnivores consume substantial quantities of 

taurine in their natural diets. 
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Leaching of taurine from commercial type aquaculture feeds 

Abstract 

 Leaching of soluble compounds from pelleted feeds is an issue for the aquaculture 

industry which can increase environmental impact and reduce the ingested quantity of 

essential components. This study was undertaken to examine the leaching rates of taurine, 

a non-protein amino acid with critical physiological roles in teleosts. To this end we 

adapted a new liquid chromatography mass spectrometry (LC-MS) method for quantifying 

taurine. Twelve different feeds (3-4 mm dia.), varying in protein source and taurine 

supplementation, were examined. Fishmeal ranged from 0.0% to 45.5% with taurine 

supplementation ranging from 0.0% to 5.0%. Taurine was extracted and quantified from 

individual pellets in triplicate at 6 time points (0, 1, 5, 10, 20, 40 min). Leaching rates 

ranged from 0.026 ± 0.005 to 0.826 ± 0.121 mg min-1 over 40 min at 27°C and were 

strongly correlated to initial taurine content of the feeds (for distilled water n=12, p<0.001, 

R2=0.91 for artificial seawater, 25 ppt, n=4, p=0.020, R2=0.96). Loss of taurine from feeds 

was 59.48 ± 16.49% after 40 min. This study shows that taurine supplementation should 

exceed requirement level for slow consumers or feed being delivered in multiple additions, 

as a significant amount of taurine is lost over time. 

 

Introduction 

 Leaching of essential nutrients such as vitamins, minerals and amino acids can lead 

to inadequate nutrition and further environmental pollution for intensive aquaculture 

operations (Gadient et al., 1992; Goldblatt et al., 1979; Marchetti et al., 1999). This issue 

is especially problematic with microdiets for larval fish (Kvåle et al., 2006; Yufera et al., 
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2002) and with feeds for species such as shrimp and crabs who macerate their diet prior to 

ingestion often after extended immersion times (Obaldo et al., 2002).   

Taurine, a non-protein amino acid, found in the natural prey for many species of 

commercial interest in aquaculture (Satake et al., 1988), is a recent addition to pelleted 

diets for marine species (Gaylord et al., 2007; Lunger et al., 2007; Matsunari et al., 2008; 

Qi et al., 2012; Takagi et al., 2008). Plant protein sources such as soybeans, wheat, and 

corn are devoid of taurine. Although taurine requirements have not been explicitly 

identified for many species, it is considered a semi-essential amino acid in mammals since 

it can be synthesized from the essential amino acid, methionine (Pinto et al., 2013). In 

marine fish however, the synthesis of taurine has been shown to be highly variable between 

species, and in many cases fish fed diets devoid of taurine have low feed consumption, 

growth and survival (Kim et al., 2007, 2005b; Watson et al., 2012). However, the FDA has 

yet to approve taurine as an additive for fish feeds in the United States, and it does not 

appear on the FDA’s Generally Recognized as Safe (GRAS) database. 

 The aim of the current study was to determine the leaching rates of taurine from 

several different experimental feeds used in trials with juvenile cobia Rachycentron 

canadum using a simple extraction protocol and novel LC-MS detection and quantification 

method. Taurine supplementation to low fishmeal and fishmeal-free feeds has been the key 

to the palatability, consumption, survival, and growth of juvenile cobia (Watson et al., 

2012). Due to the important physiological roles that taurine plays in marine carnivores 

(Kader et al., 2012; Schuller-Levis and Park, 2003), it is critical to ensure adequate 

quantities are being delivered with the feed and not leached too rapidly. Accordingly, we 

measured taurine pellet levels after immersion in distilled water and tank water for various 
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aquaculture feeds to obtain the first reported leaching rates for this highly water soluble 

dietary supplement.   

 

Methods and Materials 

Diet Preparation 

 All diets tested in the leaching study were used in two separate trials involving 

juvenile cobia, Rachycentron canadum, to be reported elsewhere. Dietary formulations and 

proximate compositions are presented in Table 2.1.1. For all diets, dry ingredients were 

ground using an air-swept pulverizer (Model 18H, Jacobsen, Minneapolis, MN) to a 

particle size of <200 μm. For four of the diets tested, all ingredients including oil were 

mixed prior to extrusion. Pellets were prepared with a twin-screw cooking extruder 

(DNDL-44, Buhler AG, Uzwil, Switzerland). The pellets were dried using a pulse bed drier 

(Buhler AG, Uzwil, Switzerland). Eight of the diets tested were top coated with the oil 

ingredient after extrusion. Final moisture levels were less than 10% for each diet. Diets 

were stored in plastic lined paper bags at room temperature, and were fed within six months 

of manufacture. Pellet sizes for all twelve diets tested in the leaching trial were 3-4 mm in 

diameter and proximate compositions of each diet were determined by New Jersey Feed 

Labs, Inc. (Trenton, NJ, USA). 

 

Leaching Trials 

 Five grams of feed pellets (approximately 50 pellets) were placed into 200 ml of 

water in 250 ml beakers. Water was circulated by elevated magnetic stir bars at 

approximately 200 rpm (BellStir Multistir 4, Bellco Biotechnology, NJ, USA) to simulate 
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water movement within a tank environment and avoid grinding of the pellets. Three feed 

pellets were individually removed with a large bore transfer pipette from each beaker 

immediately upon starting each trial (0 min) and placed individually into pre-weighed test 

tubes. Three additional pellets were individually removed at each subsequent time point 

(1, 5, 10, 20, and 40 min). Excess water was removed from all pellet samples in test tubes; 

pellets were frozen and lyophilized prior to taurine extraction. 

 A total of 12 different diets were tested throughout the study. Eight extruded and 

top coated feeds with varying taurine levels based on dietary fishmeal inclusion level in 

D.I. water, and four extruded not top coated feeds with different taurine supplementation 

levels in both D.I. water and the artificial seawater (25 ppt) utilized at the Institute of 

Marine and Environmental Technology’s Aquaculture Research Center (ARC), for a total 

of 16 leaching trials. 

 

Taurine Extraction and Quantification 

 Following removal of bound water by lyophilization, taurine was extracted from 

individual pellets in 2 ml cold 70% ethanol using 20 min sonication in a 4°C cold-room. 

Extracts were then dried completely overnight at 70°C, re-suspended in 1 ml HPLC grade 

water, and filtered (GF/F) prior to LC-MS analysis (modified from Chaimbault et al. 2004). 

LC–MS was performed using an Agilent 1100 Series LCMSD system, comprising binary 

pump system, autosampler and diode array detector (DAD) with a micro high-pressure 

flow cell (6 mm pathlength, 1.7 ml volume), fraction collector and quadrupole mass 

spectrometer (G1956A SL) equipped with an electrospray ionization (ESI) interface. 

Extracted samples in H2O were injected onto a PGC column, Hypercarb (100 X 3.0mm 
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i.d., particle size 5 µm) from Thermo Scientific subjected to a 0.2 ml min-1 isocratic elution 

for 12 min at 30°C using 10 mM ammonium acetate buffer adjusted to pH 9.3. The eluate 

from the column was subjected to MS analysis under the following spray chamber 

conditions: drying gas (N2) flow rate 12 L min-1, pressure 35 psi, temperature 250 °C, 

fragmentor voltage 70 V, capillary voltage 4000 V. Isopropanol (0.01 ml min-1) was added 

post-column via a T-connector to provide enhanced sensitivity for negative mode 

ionization for taurine (Chaimbault et al., 2004). Selected ion monitoring (SIM) was used 

for quantification (124 for taurine at RT = 3.64 ± 0.2 min. and 109 for hypotaurine at RT 

= 4.12 ± 0.1 min). By using a single MS detection mode, the limits of detection (signal-to-

noise (S/N) ratio 3) were 10 µg L-1 for hypotaurine (Sigma-Aldrich Co., St. Louis, MO, 

USA) and taurine (Sigma-Aldrich Co., St. Louis, MO, USA). Calibration curves were 

performed between 0.1 and 10 mg L-1 (using fourteen standard calibration levels in 

triplicate: 0.1, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, and 10 mg L-1). This 

concentration range was selected according to the sulfur amino acid content of the diets. 

Coefficients of correlation were found to be greater than 0.998 for hypotaurine and taurine 

using a second order polynomial model. 

 In order to the verify the LC-MS method, eight diet samples (including the EPP and 

REF 2 diets used in this leaching study) from a previous growth study were ground up 

(approximately 2 g), and three replicates of ~50 mg were extracted as described previously, 

with results being compared to taurine content determined by AOAC method 994.12 (New 

Jersey Feed Labs, Inc. Trenton, NJ, USA) on the same eight dietary samples. Further 

validation for the method was performed using a NIST standard reference material (SRM) 

 
 

42 
 



 

1849a (Infant/Adult Nutritional Formula) at three different quantities (50, 100, and 250 

mg). 

 

Statistics 

 All statistics were run using Aabel 3.0.6 (Gigawiz, OK, USA). Linear regression 

analysis was used to determine leaching rate for each trial and ANCOVA was used to 

assess the relationship between leaching rates between the two water types and between 

top coated or not top coated feeds. 
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Table 2.1.1. Simplified dietary component formulations and proximate compositions of the twelve diets used for leaching 
trials.

Ingredient (g Kg-1) FM 1 
(NONE)3

FM 1 
(HIGH)3

FM 2 
(MED)3

PP 1 
(LOW)3

PP  1 
(HIGH)3

PP 2 
(MED)3

PP 3 
(MED)3

PP 4 
(MED)3

PP 5 
(MED)3

PP 6 
(MED)3

PP 7 
(MED)3

PP 8 
(MED)3

Menhaden Meal 345 345 455 0.0 0.0 229 180 134 274 235 184 0.0
Poultry Meal 118 118 75 0.0 0.0 38 30 23 45 38 30 0.0

Total Plant Ingredients 377 327 405 745 700 634 681 712 586 639 695 806

Taurine 0.0 50 15 5 50 15 15 15 15 15 15 15

Proximate Composition (%)
Water1 2.15 2.43 4.41 1.73 2.13 4.87 4.77 4.53 4.74 4.78 5.19 6.56
Protein1 49.2 51.4 47.7 48.5 50.3 45.6 44.5 45.5 46.1 45.4 44.9 46.4

Fat1 12.28 12.66 8.02 11.73 11.91 9.92 10.12 9.99 9.54 9.85 9.90 7.92

Fiber1 0.54 0.53 1.64 1.09 1.21 1.19 1.32 1.30 1.42 1.27 1.48 2.39

Ash1 10.62 10.51 9.51 7.84 7.77 9.41 8.20 7.49 7.29 8.33 7.72 8.13

Carbohydrate2 27.36 24.9 28.72 30.84 28.81 29.01 31.09 31.19 30.91 30.37 30.81 28.6

Energy (MJ Kg-1) 19.58 19.64 18.65 20.23 19.91 18.97 19.22 19.29 19.19 19.19 19.29 19.04
Top-coated (Y or N) N N Y N N Y Y Y Y Y Y Y
1 New Jersey Feeds Labs analysis.
2 Calculated by difference (100-Water-Protein-Ash-Fat-Fiber).
3 Value in parentheses is supplemental taurine level.

44



 

Results 

 Comparison of the LC-MS extraction and taurine quantification method for the 

pelleted diets to the AOAC method 994.12 (New Jersey Feed Labs, Inc. Trenton, NJ, USA) 

on the samples is presented in Figure 2.1.1. Essentially identical taurine levels are obtained 

(R2 = 0.98) for both methods. Moreover, the taurine level using the LC-MS method for 

NIST SRM 1849a found 0.033 ± 0.007 percent (n=12), well within the certificate of 

analysis (certificate issue date: 8/7/2012) of 0.0366 ± 0.0018 percent by mass of taurine. It 

is important to note that new taurine and hypotaurine standards must be made fresh and 

standard curves run with each set of samples, as the standards gradually lose accuracy, 

presumably due to the loss of the sulfonate group over time. 

 
Figure 2.1.1. Linear regression comparing LC-MS method (% of diet) of taurine 
quantification to amino acid determination method AOAC 994.12 (% of diet, New Jersey 
Feed Labs, Inc.). 
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The results of the eight leaching trials conducted on the four non top coated feeds 

are shown in Table 2.1.2. Rates of taurine loss due to leaching ranged from 0.026 ± 0.005 

to 0.051 ± 0.008 mg min-1 for the two diets with low or no taurine supplementation, PP 1 

(LOW) and FM 1 (NONE). The diets with higher taurine supplementation, PP 1 (HIGH) 

and FM 1 (HIGH) had higher leaching rates ranging from 0.747 ± 0.072 to 0.826 ± 0.121 

mg min-1. For these eight trials, pellets placed into D.I. water resulted in a percent loss of 

taurine of 63.97 ± 23.7 compared to a percent loss in artificial seawater of 55.69 ± 5.6, with 

all but PP 1 (LOW) diet resulting in higher rate of leaching and total percent loss of taurine 

in D.I. water compared to artificial seawater.  

Results of the eight leaching trials with top coated feeds are shown in Table 2.1.3. 

Although all diets were supplemented with 1.5 % taurine, varying levels of fishmeal and 

poultry meal in seven of the eight feeds resulted in different initial concentrations of 

taurine. Rates of taurine loss ranged from 0.111 ± 0.012 to 0.576 ± 0.090 mg min-1 with an 

average percent taurine loss of 59.13 ± 17.54 over 40 min. One of the diets, PP 4 (MED), 

completely dissolved by the 40 min time point, so all analyses were conducted from the 20 

min time point. All other diets and trials maintained enough pellet integrity to remove 

whole, individual pellets at each time point.  
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        Table 2.1.2. Taurine concentrations and leaching data for the four non top 
coated feeds. 

Diet1 Water 
Type 

Initial Taurine 
Content (mg g-1) 

Rate of Taurine 
Loss (mg min-1) R2(n)2 

PP1 (LOW) D.I. 2.38 ± 0.15 0.026 ± 0.005 0.82 (18) 
PP1 (LOW) ARC 3.01 ± 0.10 0.039 ± 0.003 0.90 (18) 
FM 1 (NONE) D.I. 2.33 ± 0.64 0.051 ± 0.008 0.73 (18) 
FM 1 (NONE) ARC 3.07 ± 0.66 0.039 ± 0.006 0.72 (18) 
PP 1 (HIGH) D.I. 46.50 ± 6.28 0.766 ± 0.081 0.85 (18) 
PP 1 (HIGH) ARC 47.69 ± 11.22 0.826 ± 0.121 0.74 (18) 
FM 1 (HIGH) D.I. 45.16 ± 6.89 0.747 ± 0.072 0.87 (18) 
FM 1 (HIGH) ARC 56.93 ± 3.75 0.751 ± 0.075 0.86 (18) 
1 Value in parentheses represents supplemental taurine level. 
2 R2 value for linear regression of taurine content by immersion time, n (number of data 
points for each regression). 
 
 

            Table 2.1.3. Taurine concentrations and leaching data for the eight top 
coated feeds. 

Diet1 Water 
Type 

Initial Taurine 
Content (mg g-1) 

Rate of Taurine 
Loss (mg min-1) R2(n)2 

FM 2 (MED) D.I. 26.30 ± 1.98 0.576 ± 0.090 0.76 (18) 
PP 2 (MED) D.I. 20.77 ± 0.78 0.304 ± 0.034 0.83 (18) 
PP 3 (MED) D.I. 23.70 ± 3.07 0.231 ± 0.045 0.78 (18) 
PP 4 (MED)3 D.I. 14.29 ± 0.91 0.221 ± 0.029 0.78 (15) 
PP 5 (MED) D.I. 20.38 ± 2.12 0.367 ± 0.059 0.83 (18) 
PP 6 (MED) D.I. 22.41 ± 2.12 0.474 ± 0.049 0.85 (18) 
PP 7 (MED) D.I. 10.99 ± 1.19 0.111 ± 0.012 0.85 (18) 
PP 8 (MED) D.I. 10.57 ± 0.65 0.167 ± 0.015 0.87 (18) 

1 Value in parentheses represents supplemental taurine level. 
2 R2 value for linear regression of taurine content by immersion time, n (number of data 
points for each regression). 
3 All pellets were completely dissolved by 40min, analyses performed on 20 min 
values. 

 

Leaching rate was strongly correlated to initial taurine content regardless of top 

coating (F = 12.3, p = 0.013) or not (F = 214.8, p <0.001, Figure 2.1.2), or water type (D.I. 

F = 102.08, p < 0.001; Artificial Seawater, F = 47.45, p = 0.020, Figure 2.1.3). ANCOVA 

between D.I. water and artificial seawater leaching rates as a function of initial taurine 
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content showed no significant effect of water type (F = 0.56, p = 0.465). ANCOVA 

between the leaching rates resulting from top coated or not top coated feeds as a function 

of initial taurine content showed no significant effect of top coating or not (F = 0.11, p > 

0.5). Overall, for all 16 leaching trials, leaching rate of taurine was linearly correlated to 

initial taurine content by the following equation (R2=0.93):  

Leaching rate = initial taurine content * (0.015732 ± 0.001) +  

(-0.0054338 ± 0.0338); 

Initial taurine concentrations for the non top coated EPP feeds gives estimates of 

the taurine lost during the mixing and manufacturing processes without top coating. 

Supplementation levels of 0.5 % of the diet resulted in initial taurine concentrations in the 

pellets of approximately 2.69 mg g-1, indicating a loss of 2.31 mg g-1 of taurine during 

manufacturing. Supplementation levels of 5.0 % of the diet resulted in initial taurine 

concentrations in the pellets of approximately 47.09 mg g-1, a loss of 2.91 mg g-1 of taurine 

during manufacturing. EPP3 from the top coated diet trials also gives an estimate of taurine 

lost during manufacturing with top coating since it is another fishmeal-free, all plant 

protein-based feed. Supplementation of taurine in this diet at 1.5% resulted in an initial 

taurine concentration of 10.57 mg g-1, indicating a loss of 4.43 mg g-1 during the mixing 

and manufacturing of this diet. 
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Figure 2.1.2. Initial taurine content (mg g-1) as a function of leaching rate (mg min-1) for 
all 16 leaching trials comparing the top coated feeds with not top coated feeds. Lines are 
linear regressions with the solid line corresponding to the not top-coated feeds (open 
squares) and the dashed line corresponding to the top-coated feeds (solid diamonds). 
 

 
Figure 2.1.3. Initial taurine content (mg g-1) as a function of leaching rate (mg min-1) for 
all 16 leaching trials comparing the trials run in D.I. water compared to ARC water. Lines 
are linear regressions with the solid line corresponding to the trials run in D.I. water (solid 
diamonds) and the dashed line corresponding to trials run in ARC water (open squares). 
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Discussion 

 To our knowledge this is the first study to examine the leaching rates of taurine 

from pelleted fish feeds designed for juvenile grow-out phases. Among 12 different feeds, 

16 feed trials, and 285 individually extracted pellet samples, this study found no difference 

in leaching rate between trials conducted in D.I. water (12) or artificial seawater (4), or 

between feeds that were top coated (8) during manufacturing and those that were not (8). 

There was a strong linear correlation between increasing initial taurine content and 

subsequent leaching rate across the 16 trials, which makes it possible to predict the amount 

of taurine remaining in feed pellets over time. This study also confirms the use of a simple 

extraction protocol and LC-MS method for detection and quantification of taurine from 

feed samples with 98 % similarity to AOAC method 994.12 performed by New Jersey Feed 

Labs, Inc and 98 % similarity to NIST standard material 1849a (Infant/Adult Nutritional 

Formula) performed with the LC-MS protocol in this study. 

 For all feeds, the average percent loss of taurine after 40 min immersion was 59.48 

± 16.49%, which is a much higher percent loss than Marchetti et al. (1999) found for 

crystalline vitamins leaching from pelleted or extruded feeds after 60 min, but is roughly 

similar to percent loss after 120 min. Yufera et al. (2002) found similar leaching rates after 

approximately 40 min for other free amino acids; alanine, glycine, and lysine from a gelatin 

microbound diet for larval fish. Kvåle et al. (2006) also found similar leaching rates of free 

serine from microparticulate diets.  

 Cobia are voracious feeders, often consuming full rations within seconds or minutes 

of feed being delivered to tanks, so significant loss of taurine or other soluble compounds 

due to leaching prior to consumption is usually not a concern with this species. However, 
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when we fed cobia a fishmeal-free, plant protein diet with no addition of taurine, the feed 

was poorly consumed (Watson et al., 2012). Tulli et al. (2007) found a significant increase 

in the length of time it took sea bass, Dicentrarchus labrax, to finish individual meals as 

the fishmeal content of feeds was reduced and the amount of vegetable protein in the feed 

was increased with diets not supplemented with taurine. Fish that are not as voracious 

feeders or consume their feed over longer periods of time may not be receiving the 

necessary amounts of taurine due to this leaching; however they may benefit from some 

initial leaching since taurine has been shown to act as a feed attractant (Martinez et al., 

2004; Qi et al., 2012) and possible palatability enhancer due to its small, nitrogenous 

structure. We also noticed loss of taurine, from 5-47%, in the feeds tested between the 

mixing of ingredients through the completion of the pelleting process. These are all factors 

that should be considered when tailoring feeds for individual species or groups of species, 

to ensure leaching does not affect adequate nutrition, and in understanding potential effects 

that leaching may have on aquaculture systems and surrounding ecosystems. 
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Taurine in prey items and fish eggs 

Introduction 

 One of the most important aspects of designing species specific diet formulations 

for aquaculture is determining the minimum and optimal inclusion levels for every 

ingredient. The ability or inability to synthesize amino and fatty acids from precursor 

molecules can be used to determine when nutrients are considered essential or semi-

essential. The protein and lipid content in the diet often varies between species, and the 

specific requirements for the different amino and fatty acids can vary substantial between 

species (Carter et al., 2003; Glencross et al., 2007; Sales, 2008; Zhou et al., 2007). All of 

these must meet minimum requirements for each species, but maximizing growth while 

reducing waste and redundancy of components that can be biosynthesized requires the 

specific knowledge of inclusion levels of many components, especially those that are or 

should be considered essential. 

In an effort to better understand dietary requirements, researchers often analyze the 

prey items or eggs of a species. Understanding the natural diet of species targeted for 

aquaculture can give researchers a better idea of amino and fatty acid requirements. 

Analyzing wild spawned eggs of a species targeted for aquaculture reveals the maternally 

derived nutrition that eggs and non-feeding larvae begin with. This can be incredibly 

helpful in designing diets for larvae and juveniles as well as designing enrichment 

procedures for the live feeds fed to larvae in aquaculture. Another step that is often taken 

is to catch and analyze the tissues of wild individuals of the species of interest. This can be 

difficult however as dietary patterns can change throughout the year, or as with cobia, there 
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may not be a commercial fishery to acquire specimens from when they are needed. The 

analysis of a variety of prey items however, also gives a much better picture of what is 

being consumed, as opposed to just what is in the tissues. Any components that are 

routinely used and depleted, or chemically altered prior to deposition in tissues, will 

produce discrepancies if only the species of interest is analyzed. 

 Assessing potential prey items also has multiple applications for assessing wild 

populations and in fisheries management. Understanding what the nutritional sources in 

prey are and being able to assess prey populations can give researchers and fisheries 

managers better predictions of how certain year classes will perform and can give insight 

into how particular years may develop in terms of recruitment of juveniles or spawning 

production. 

 In collaboration with Dr. Jessica Miller’s lab at Oregon State University and Adam 

Peer, an UMCES graduate student, we have endeavored to begin analyzing prey items from 

the Pacific Northwest and striped bass, Morone saxatilis, eggs from the Chesapeake Bay, 

respectively. Analysis of these potential prey items and eggs for taurine content will help 

determine the natural dietary intake of taurine of the animals consuming these prey items 

and eggs, and for the eggs it will also determine the amount of taurine that is maternally 

deposited for early growth and development.  

 

Methods and Materials 

 Striped bass eggs were collected from the Roanoke and Patuxent River tributaries 

to the Chesapeake Bay as well as the Chesapeake Bay proper. The two spawning sites are 

different in temperature, salinity, and local prey sources for the adult fish. Eggs were 
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collected and stored in 70% EtOH in 20ml glass jars. Due to the eggs being stored in the 

same solvent used for extraction, preparation of samples was altered from the typical 

procedures described earlier in chapter 2.1. Six jars were selected from each treatment 

group and treated as individual replicates. Samples were left uncovered in a fume hood 

until all solvent had evaporated. Once dry, samples were homogenized and weighed prior 

to lyophilization. Once lyophilized samples were treated as described in chapter 2.1, with 

taurine quantified based on a dry weight of eggs. 

 Samples of potential prey items from the Pacific Northwest were collected by Dr. 

Jessica Miller’s lab and shipped frozen to IMET. Upon arrival, three individuals of each 

species were individually weighed, homogenized and lyophilized prior to taurine 

extraction. 

 

Results 

 Taurine content of the wild striped bass eggs are shown in Table 2.2.1. Taurine was 

significantly higher (t-test) in eggs from the Roanoke River tributary (51.96 ± 15.56 mg 

100g -1) than from the main Chesapeake Bay (22.27 ± 2.43 mg 100g-1).  

Table 2.2.1. Taurine content of wild striped bass eggs. 
Sample Group Taurine (mg 100g-1) Number of samples (n) 

KQF (Chesapeake) 22.27 ± 2.43 19 
F (Roanoke) 51.96 ± 15.56 15 

 

 Taurine content of the prey items are shown in Table 2.2.2. Since taurine was 

measured from dry samples after lyophilization, yet these are consumed while alive and 
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containing water, the taurine content was also estimated with the assumption that when 

alive, these organisms would contain ~75% water. 

 
Table 2.2.2. Taurine content (dry and wet weight estimate) of various prey items 
from the Pacific Northwest. 

Prey Item Dry Weight Wet Weight Estimate (75% water) 
Taurine (mg 100g-1) Taurine (mg 100g-1) 

Squid 5724.3 ± 306.6 1340.6 ± 79.4 
Rockfish 1204.2 ± 69.6 301.0 ± 17.4 
Osmeridae 120.7 ± 6.1 30.2 ± 1.5 
C. magister 1428.3 ± 175.8 357.1 ± 44.0 
Anchovy 721.1 ± 23.3 180.3 ± 5.8 
Seabaste 702.4 ± 47.6 175.6 ± 11.9 
Euphasid 950.0 ± 48.1 237.7 ± 12.0 

 

Discussion 

 The taurine content of the various prey items examined ranged widely from 30.2 – 

1340.6 mg 100g-1, as a wet weight estimate. Overall, the invertebrates tended to have 

higher taurine concentrations (237.7-1340.6) than vertebrates (30.2-301.0). Both of these 

ranges are similar to those obtained by Satake et al. (1988) for prey items collected in the 

Western Pacific Ocean near Japan. In that study invertebrates ranged from 166.9-657.4 mg 

100g-1 and vertebrates ranged from 20.7-983.2 mg 100g-1. 

 All of the prey items measured in this study, with the exception of the Osmeridae, 

represent substantial taurine sources for juvenile fish relying on these prey items. The 

invertebrate and many of the vertebrate values also relate to substantially higher taurine 

values than those found in larger fish species, fish meal, and pelleted feeds. This could be 

due to invertebrates requiring more taurine themselves than vertebrates, or more likely, a 

higher synthesis capacity in the lower invertebrates resulting in higher concentrations in 

their tissues. Further work is continuing in examining taurine concentration in a wider 
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variety of prey items, and will hopefully extent to the larvae and juvenile fish species that 

utilizes these prey sources in an effort to determine dietary requirements. 

Taurine content of striped bass eggs differed between the two spawning sites where 

they were collected. However, whether this is due to differences in local salinity (0.0 vs. 

0.8 ppt), maternal deposition, or maternal nutrition prior to spawning is unclear. Analyses 

to determine if the differences in taurine in eggs between the two sites is also correlated 

with other potential differences in egg size, yolk quantity, etc. are underway as a portion 

of Adam Peer’s research. Correlating the taurine content in eggs to subsequent growth and 

survival of the larvae would extend this research and reveal whether or not this maternally 

derived taurine significant enhances the probability of survival. As important as taurine has 

been shown to be, it is not often looked at as a component of eggs or larval nutrition as it 

may relate to growth and survival. Maternal nutrition is critical for proper growth and 

survival of larvae and juveniles, both in the wild and in aquaculture settings. As shown in 

chapter 2.1, taurine is often lacking in commercially prepared feeds, many of which are 

utilized for broodstock diets. Many aquaculture facilities also utilize more “natural” diets 

of fish and squid leading up to and during spawning season. However these sources may 

not be providing enough taurine during critical spawning periods if the broodstock have 

been receiving inadequate taurine levels the remainder of the year. As an example of this, 

Lanes et al. (2012) examined the biochemical composition and subsequent performance of 

batches of eggs from farmed and wild broodstock Atlantic cod, Gadus morhua. Wild 

broodtsock eggs contained significantly more taurine, among many components, and 

performed significantly better than their farm broodstock counterparts. The authors argue 
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that parameters such as these can be used, as discussed here, in determining minimum and 

optimal dietary requirements for larvae. 
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Chapter 3: Taurine Biosynthesis in Teleosts 
 
 Chapter 3 is a discussion of the synthetic capacity for taurine that a variety of teleost 

species possess to begin testing whether or not taurine is an essential amino acid. The first 

section of this chapter deals with several species raised in our facility and the development 

of a method (RT-qPCR) to measure transcript abundance of the genes in taurine synthesis. 

The second and third sections utilize RT-qPCR methods to measure the synthetic capacity 

for taurine in zebrafish, Danio rerio, and sablefish, Anoplopoma fimbria, respectively. The 

objective of this chapter in relation to the hypotheses of this dissertation is to determine 

which, if any, species may be capable of synthesizing sufficient taurine. 
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Taurine biosynthesis in species fed commercial aquaculture feeds 

Initial attempts to assay the taurine biosynthetic capacity of marine species began 

with a variety of species reared in the Aquaculture Research Center (ARC) at IMET. This 

first approach was a “shotgun” approach attempting to design primers that would work on 

multiple species, under the assumption that many marine species would have closely 

related mRNA sequences for the genes of interest. Cysteine dioxygenase was not included 

initially due to its primary role in regulating cellular cysteine levels, discussed previously, 

as it would be expected to be expressed to some degree in all species. Alignments from 

available teleost species in the NCBI database were generated, and Primer3 (Rozen and 

Skaletsky, 2000) was used to design primers for RT-qPCR based on the consensus 

sequence established by the alignment.  

All fish sampled for this trial were adult fish maintained in the recirculating systems 

in ARC at species specific temperatures and salinities. No dietary manipulation was 

undertaken prior to this sampling, with all fish maintained on various commercial feeds for 

marine fish, with varying levels of fishmeal and taurine. Brain and liver tissues were 

extracted from three individuals of each species: cobia, Rachycentron canadum, gilthead 

sea bream, Sparus aurata, European seabass, Dicentrarchus labrax, and striped bass, 

Morone saxatilis. Primers for CSD, ADO, TauT, and beta actin were generated (Table 

3.1.1) and tested on each of the species to verify accuracy. 
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Table 3.1.1. Primers used for genes of interest in taurine metabolism designed from 
consensus teleost sequences. 

Target Gene Primer Sequence Tm 

Cysteamine dioxygenase (ADO) Forward 5'-AGTGGCCCTTGTGTTTTGAG-3' 55.8 
Cysteamine dioxygenase (ADO) Reverse 5'-AGCTTCATCATCACCGCTCT-3' 56.3 
Cysteinesulfinate decarboxylase (CSD) Forward 5'-GCACCACGGATGGCTATATT-3' 55.0 
Cysteinesulfinate decarboxylase (CSD) Reverse 5'-AACAGCGTCTTGGGATTTTG-3' 53.7 
Taurine transporter (TauT) Forward 5'-CAAGAACAAGGGGTGGACAT-3' 55.1 
Taurine transporter (TauT) Reverse 5'-CCAGAAGCAGCAGCATGATA-3' 55.1 
Beta Actin Forward 5'-GCTACAGCTTCACCACCACA-3' 57.5 
Beta Actin Reverse 5'-CACCGATCCAGACGGAGTAT-3' 56.0 

 

Approximately 50 mg samples of liver as well as whole brain samples were 

homogenized, total RNA was extracted using tri-reagent, and RNA was quantified on a 

Nanodrop nd1000 spectrophotometer (Thermo Scientific, Wilmington, DE). 1000 ng total 

RNA was used for reverse transcription using Superscript II Reverse Transcriptase 

(Invitrogen, Life Technologies, Grand Island, NY) and the resultant cDNA was diluted to 

10 ng µl-1 for and quantitative RT-PCR (RT-qPCR) assays. RT-qPCR was performed in 

triplicate per sample and tissue type for each gene of interest (n=3 for all tissues) alongside 

the reference gene on an ABI 7500 Fast Real-Time PCR System (Applied Biosystems, Life 

Technologies, Grand Island, NY). Cycling parameters for the assays were as follows: initial 

denaturation at 95 ºC for 2 min, followed by 40 cycles of denaturing (95 ºC for 10 s), 

annealing (56 ºC for 30 s), and extension (72 ºC for 30 s) with a melting curve to determine 

presence of spurious products. Expression relative to the expression of the beta actin 

reference gene was determined by the following equation: 

Relative expression of target gene= �
(target gene PE)(35-target gene avg. Ct)

(beta actin PE)(35-beta actin avg. Ct) � *100 
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A Ct value of 35 was used as the cut-off to eliminate any weak products that may have 

been produced by contamination or fluorescence artifacts (Caraguel et al., 2011), and the 

primer efficiency (PE) was assumed to be 1.8 for these preliminary measurements. Results 

of the RT-qPCR measurements are shown in Figure 3.1.1. CSD was only detected in the 

brains of European seabass at minimal levels compared to beta actin. TauT was detected 

in both tissue types for all species as expected for diets containing taurine. ADO was also 

detected in both tissue types in all species, although at much lower levels than the 

transporter.  

 

Figure 3.1.1. Relative transcript abundance of ADO, CSD, and TauT as a percentage of 
beta actin transcript level. Equivalent cDNA input (10 ng) for triplicate samples of each 
tissue with three fish sampled per tissue type.  
 

This initial trial indicated that marine species express at least one of the genes, 

ADO, that can aid in taurine synthesis. These species also express appreciable levels of the 

taurine transporter, required for absorption, recycling, and transport of taurine into tissues 
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unable to synthesis taurine themselves. The anadromous striped bass has the highest 

transcript abundances for the transporter, possibly indicating a reliance on taurine as an 

osmolyte as this species moves between fresh and salt water. These preliminary 

measurements also indicate that CSD is minimally expressed, if it is detectable at all. 

Assuming this is directly correlated to protein abundance for these enzymes, this means 

these species are critically low in the rate-limiting step for taurine synthesis and may be 

unable to synthesize sufficient quantities. These results indicate the importance of taurine 

to these species in particular, and affirmed our ability to measure transcript expression 

levels of the genes responsible. 
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Zebrafish, Danio rerio, as a freshwater, omnivorous model species 

Introduction 

 One of the main hypotheses of the work in this dissertation is that marine carnivores 

do not possess the ability to synthesize sufficient quantities of taurine to meet their 

physiological requirements. As a comparison to marine carnivores, we have used zebrafish, 

Danio rerio, as a freshwater omnivore example. The hypothesis for marine carnivores is 

that due to the high quantities of taurine in their prey, and the fact they rely on a fairly 

limited prey diversity, the need to synthesize taurine has been eliminated or diminished. 

The hypothesis for zebrafish on the other hand, is that due to the wide and varying nature 

of their diet, they have had to maintain the ability to synthesize sufficient quantities of 

taurine, since it may often be lacking in their diet. This hypothesis extends to all omnivores 

and herbivores, which are well represented among freshwater taxa. As mentioned 

previously, freshwater species have generally been the easiest to switch from fishmeal and 

meat based diets to plant-based feeds. This may potentially be due in part to the intact 

nature of synthesis pathways required by the varied and often deficient natural diets of 

these species, but it may also be due to a potentially higher ability to digest a wider range 

of ingredients due to the varied nature of their natural diets. This study was undertaken to 

examine the biosynthetic capacity for taurine in zebrafish and to assess the effects of 

feeding zebrafish diets containing no and high quantities of dietary taurine. 

 

Methods 

 To examine the biosynthetic capacity of zebrafish for taurine, primers for RT-qPCR 

were developed from cDNA sequences of all four genes involved in taurine synthesis and 
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transport. These primers were designed and tested on a zebrafish liver cell line by Travonya 

Kenly, as a part of the LMRCSC summer intern program, working with Aaron Watson. 

The reference gene utilized for this study was a ribosomal protein, L13A, and primers for 

this gene were obtained from Tang et al. (2007). For sample acquisition for primers, adult 

zebrafish were sacrificed with an overdose of MS-222 and approximately 50 mg samples 

of liver tissue was homogenized, total RNA was extracted using tri-reagent, and RNA was 

quantified on a Nanodrop nd1000 spectrophotometer (Thermo Scientific, Wilmington, 

DE). 1000 ng total RNA was used for reverse transcription using Superscript II Reverse 

Transcriptase (Invitrogen, Life Technologies, Grand Island, NY) and the resultant cDNA 

was diluted to 10 ng µl-1 for PCR and RT-qPCR assays. Using the deposited and BLAST 

verified, sequences for cysteine dioxygenase (CDO), cysteinesulfinate decarboxylase 

(CSD), cysteamine dioxygenase (ADO), taurine transporter (TauT), and the reference gene 

L13A; primers for RT-qPCR (Table 3.2.1) were designed with the use of Primer3 (Rozen 

and Skaletsky, 2000). Verification that primers were indeed amplifying only a single 

product, and that the product was the desired target, end-point PCR was performed on 

limited samples in 10 µl reactions with 10 ng cDNA using Promega 2x Mastermix 

(Promega, Madison, WI) using the following parameters: initial denaturation (95 ºC for 2 

min) followed by 35 cycles of denaturation (95 ºC for 30 s), annealing (56 ºC for 30 s), 

extension (72 ºC for 45 s), and a final polishing step (72 ºC for 5 min). Two µl of the end-

point PCR products were used for gel electrophoresis to assess product size and number 

with the remaining 8 ul purified and sequenced to determine accuracy of selected primers. 
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Table 3.2.1. Primers used for RT-qPCR in this study. Designed and tested in a zebrafish 
liver cell line by Travonya Kenly. 

Target Gene Primer Sequence Tm 
Cysteamine dioxygenase (ADO) Forward 5'-TTACAGACTGCTGGGAAAAA-3' 51.8 
Cysteamine dioxygenase (ADO) Reverse 5'-GGCTTGAAACAAGCAAATAA-3' 49.4 
Cysteine dioxygenase (CDO) Forward 5'-GAACCTGATGGAGTCCTACC-3' 54.3 
Cysteine dioxygenase (CDO) Reverse 5'-AACTTTCCGTTTCCTTCATC-3' 50.6 
Cysteinesulfinate decarboxylase (CSD) Forward 5'-AGCTGAGATCTCTCCTGGAC-3' 55.5 
Cysteinesulfinate decarboxylase (CSD) Reverse 5'-TGGTATTGAGGGTTTCAGTG-3' 52.1 
Taurine transporter (TauT) Forward 5'-ATCACCTGTTGGGAGAAACT-3' 53.7 
Taurine transporter (TauT) Reverse 5'-CAGGTAGTACAAGCCACAGG-3' 55.0 
Ribosomal protein L13A (L13A) Forwarda 5'-TCTGGACTGTAAGAGGTATGC-3' 57.6 
Ribosomal protein L13A (L13A) Reversea 5'-AGACGCACAATCTTGAGAGCAG-3' 57.3 
a From (Tang et al., 2007).   

 

Upon selection of appropriate primer pairs for each gene of interest, primer 

efficiencies were determined with cDNA from zfl cells, a zebrafish fetal liver cell line 

(provided by Jerren Liu) and consisted of triplicate measurements made at five different 

dilutions of cDNA (40, 20, 10, 5, and 2.5 ng cDNA per reaction) based on the following 

equation:  

Primer efficiency (PE)=10- 1
slope, 

with slope determined from the plot of cDNA content (ng) vs. average Ct for each dilution. 

RT-qPCR was performed in triplicate per sample and tissue type for each gene of interest 

(n=5 for all tissues) alongside the reference gene on an ABI 7500 Fast Real-Time System 

(Applied Biosystems, Life Technologies, Grand Island, NY). Cycling parameters for the 

assays were as follows: initial denaturation at 95ºC for 2 min, followed by 40 cycles of 

denaturing (95 ºC for 10 s), annealing (56 ºC for 30 s), and extension (72 ºC for 30 s) with 

a melting curve to determine presence of spurious products. Expression relative to that of 

the L13A reference gene was determined by the following equation: 

 
 

65 
 



 

Relative expression of target gene=�
(target gene PE)(38-target gene avg. Ct)

(L13A PE)(38-L13A avg. Ct) � *100 

 A cut-off Ct of 38 was used to eliminate any weak products that could potentially 

result from contamination or fluorescence artifacts (Caraguel et al., 2011). Following the 

transcript measurements made by Travonya Kenly in zfl cells, which are maintained in 

medium containg taurine, we endeavored to determine if juvenile zebrafish can utilize this 

pathway to synthesize sufficient taurine.  

 For this phase of the study, roughly 20 juvenile zebrafish were placed into each of 

eight tanks in the zebrafish facility of ARC once they were fully weaned onto a dry feed. 

Four of these tanks were fed a plant-based flake diet with zero supplemented taurine with 

the other four tanks being fed the same diet but with a 5% supplementation of taurine. 

Formulations of these two diets can be seen in Table 3.2.2. These diets are identical in 

formulation to those used in later chapters, however they were produced as a flake version 

as opposed to the pelleted feeds produced for trials of the larger marine species. Zebrafish 

were fed to satiation twice daily for eight weeks prior to sampling. Three individual fish 

from each tank (n=12) were flash-frozen on dry ice, and whole livers and brains were 

extracted from each fish. Sample processing to acquire cDNA for RT-qPCR, and the RT-

qPCR proceeded as previously described with primer efficiencies were determined on liver 

tissue as opposed to using efficiencies determined on the cell line due to the significant 

difference in sample types. Dietary and whole body taurine of zebrafish at the conclusion 

of the trial were also measured. 
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Table 3.2.2. Dietary formulations for the four plant-based 
diets with graded levels of taurine used in this study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

1Contributed per kg diet; vitamin A, 9650 IU; vitamin D, 
6.6 IU; vitamin E, 132 IU; menadione sodium bisulfite, 
4.7 mg; thiamine mononitrate, 9.1 mg; riboflavin, 9.6 mg; 
pyridoxine hydrochloride, 13.7 mg; pantothenate, DL-
calcium, 101.1 mg; cyanocobalamine, 0.03 mg; nictonic 
acid, 21.8 mg; biotin, 0.33 mg; folic acid, 2.5 mg. 
2Contributed in mg kg-¹ of diet; zinc 37; manganese, 10; 
iodine, 5; copper, 1. 

 
 
 
 
 
 
 
 
 

Ingredient (g kg-1) PP1 PP4 
Soy Protein Concentrate 269 269 
Soy Protein Concentrate HP300 0.0 0.0 
Corn Protein Concentrate 193.4 193.4 
Wheat Flour 175.5 125.5 
Soybean meal, solvent extracted 90 90 
Wheat Gluten meal 22 22 
Menhaden Fish Oil 120 120 
Mono-Dical Phosphate 42.5 42.5 
Vitamin Pre-mix1 20 20 
Lecithin 20 20 
L-Lysine 19.9 19.9 
Choline CL 6 6 
Potassium Chloride 5.6 5.6 
DL-Methionine 5 5 
Threonine 2.8 2.8 
Sodium Chloride 2.8 2.8 
Stay-C 2 2 
Trace mineral pre-mix2 1 1 
Magnesium Oxide 0.5 0.5 
Mycozorb 2 2 
Taurine 0 50 
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Results 

 Dietary taurine and whole body taurine of the zebrafish are shown in Table 3.2.3. 

There was a significant difference (t-test, p<0.05) between the whole body taurine contents 

of fish fed the PP1 diet compared to fish fed the PP4 diet, with higher dietary taurine 

resulting in higher whole body taurine. 

Table 3.2.3. Dietary and whole body taurine concentrations from this 
study. Values with different superscripts within a column are 
significantly different (p<0.05). 

Diet Dietary Taurine (%) Whole Body Taurine (%) 
PP1 0.02 ± 0.001 1.37 ± 0.03 
PP4 4.08 ± 0.21a 2.04 ± 0.28a 

 

Initial transcript measurements made in the zebrafish liver cell line indicate the 

presence of transcripts for all four genes of interest (Figure 3.2.1). Not only are all four 

genes expressed at the transcript level, but they are at appreciable amounts in comparison 

to the reference gene transcript expression. 

 
Figure 3.2.1. Transcript expression as a percentage of L13A transcript abundance in a 
zebrafish cell line. Values represent mean ± S.D. for three replicates with identical cDNA 
input (10ng) per gene. Measurements made by Travonya Kenly, LMRCSC summer intern 
2012. 
 

0

0.1

0.2

0.3

0.4

0.5

TauT CDO ADO CSD

Pe
rc

en
t e

xp
re

ss
io

n 
co

m
pa

re
d 

to
 L

13
A

 
 

68 
 



 

 Survival and growth of the juvenile zebrafish fed diets PP1 and PP4 were 

equivalent, although due to multiple infections in the zebrafish facility unrelated to these 

tanks or dietary treatments, these specific data are unreliable. Expression data for the genes 

of interest from this trial in liver and brain of juvenile zebrafish is shown in Figure 3.2.2. 

There was no significant difference in the measured Ct values of the L13A reference gene 

between the two dietary treatments (Table 3.2.4, t-test, p>0.05). There were no significant 

differences (t-test, p>0.05) between the dietary treatments in brain or liver tissue for the 

transcript levels TauT. ADO was significantly up-regulated in both the livers and brains of 

fish fed the PP1 diet. CDO was up-regulated in the brains but not the livers of fish fed the 

PP1 diet. CSD was up-regulated in the livers of fish fed the PP1 diet compared to fish fed 

the PP4 diet. 

 

 Table 3.2.4. L13A reference gene Ct values 
(average ± S.D.) for liver and brain tissue 
from each treatment. No significant 
differences between treatments for each 
tissue type (t-test, p>0.05). 

 PP1 PP4 
Liver 23.70 ± 2.08 22.73 ± 2.39 
Brain 25.20 ± 1.57 23.84 ± 1.70 
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Figure 3.2.2. Relative transcript expression of cysteamine dioxygenase (ADO), cysteine 
dioxygenase (CDO), cysteinesulfinate decarboxylase/cysteine sulfinic acid decarboxylase 
(CSD/CSAD), and the taurine transporter (TauT) in the liver and brain of zebrafish, Danio 
rerio fed either a 0 % taurine or 5 % taurine supplemented flake diet for 6 weeks. Shown 
as percent expression (mean ± S.D.) compared to the reference gene L13A. Equivalent 
cDNA input (10ng) run in triplicate per sample with three individual fish sampled per tank 
with four tanks per dietary treatment (n=12 for each measurement). 
  

Discussion 

 Zebrafish can clearly synthesize sufficient quantities of taurine to meet 

physiological requirements (Table 3.2.3). Despite being on a taurine free diet for 8 weeks, 

whole body taurine levels still average greater than 1 %. This is clear due to the presence 

and expression of all four genes required for synthesis in an isolated cell line, as well as 

the brains and livers of juveniles. Whole body taurine concentrations in fish fed the PP1 

diet were substantially higher than that of the diet, although still significantly lower than 

the whole body concentrations of fish fed the PP4 diet. There is potential for some of this 

taurine to have been the result of the pool available prior to the switch to the no taurine 
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diet, however the lack of differences in appearance, growth, and survival between the 

treatments seems to indicate that the fish are not deficient in taurine. The flake feed used 

for these fish from the time of weaning until the start of these trials contains only 0.22 ± 

0.07 % taurine, so the possibility of a large enough taurine pool to last for the entirety of 

the 8 week trial is unlikely. 

Not only are zebrafish able to synthesize taurine but they are able to up-regulate 

expression of the genes involved in its synthesis and transport when dietary taurine levels 

are not adequate. Interestingly, the increase in transcripts, and assumedly the increase in 

synthesis, follows separate pathways in the brain compared to the liver in fish fed the PP1 

diet. In the liver, CSD and ADO are both significantly increased, whereas CDO is not. In 

the brain however ADO is increased, CDO is increased at an even greater percentage, and 

CSD is not when compared to the PP4 fish. This is most likely due to other uses of cysteine 

and cysteamine, the precursors for the CDO-CSD and ADO pathways to taurine, 

respectively. Cysteamine has been shown to play multiple roles in signaling pathways in 

the brain of mammals (Figueiredo et al., 2009; Gibrat and Cicchetti, 2011; Rech et al., 

2008; Sun et al., 2010), so animals may actively avoid using this compound for other 

synthesis pathways, which could explain why cysteine appears to be the preferred substrate 

for taurine production in the brain. 

Fish fed the PP1 diet exhibited similar growth and survival as those fed the PP4 

diet and did not exhibit any signs or symptoms of taurine deficiency (Kim et al., 2005b; 

Maita et al., 1997; Takagi et al., 2011). Whether all of the synthetic capacity, or its increase, 

is due to an increase in transcript abundance alone is not clear. Both CDO and CSD in 

mammals can be regulated post-transcriptionally, so increases at the mRNA level are not 
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often observed at significant levels. Although the same mechanisms have not been 

identified specifically in any teleosts, this may certainly also be the case, however the 

results here indicate that at least to some degree zebrafish rely on an increase in transcripts 

in order to increase synthesis. 
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Sablefish, Anoplopoma fimbria, as a cold water carnivore model species 

Introduction 

Sablefish, Anoplopoma fimbria, is a slow growing marine carnivore native to the 

Pacific Northwest whose late maturity (~5 years) and relatively low fecundity (~200K-

1000K eggs female-1 season-1) puts them at risk for overfishing (King et al., 2001). 

Sablefish do however have long lifespans (55-100 years) so lifetime fecundity is quite high, 

although juvenile sablefish serve an important trophic function as food for several species 

of halibut (Trumble et al., 1993). Juvenile sablefish, prior to sexual maturity, display rapid 

growth rates and are found in shallow, warmer, prey-rich waters while adults are adapted 

to cold temperatures, low oxygen levels, and limited food availability and are often found 

at depths >200 m (Sullivan and Smith Jr., 1982). There is an economically important 

fishery off the west coast of Canada and the United States for sablefish, valued at ~$41 

million with approximately ~8 million tons landed in 1998 in Canada (King et al., 2001) 

and 42.8 million pounds worth approximately $128.6 million in the United States. In 

Canada, individual vessel quotas have been put in place since 1990, and poor year-classes 

have been experienced from 1989-1997 indicating that the current and future outlook for 

the fishery is poor (King et al., 2001).  

Due to the high demand for sablefish and marine protein sources in general, and 

the potential advantages to developing an aquaculture industry for sablefish, NOAA-

Northwest Fisheries Science Center (NWFSC) researchers and others have undertaken a 

variety of studies aimed at improving all aspects of sablefish aquaculture (Hannah et al., 

2013; Smith et al., 2013; Sumaila et al., 2007). From a dietary perspective, as with many 

species either anticipated or currently utilized for intensive large scale production, there 
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exists the desire to identify alternative protein sources for this species. Dr. Ron Johnson 

(NOAA-NWFSC) leads a NOAA funded project to determine to what extent fishmeal can 

be replaced for sablefish, utilizing taurine supplemented plant protein-based feeds. An 

initial trial was planned with a low fishmeal (~9 %) diet and approximately 1500 juvenile 

sablefish (~5 g) hatched at the NOAA Manchester Laboratory, Port Orchard, WA were 

transported to the indoor recirculation system (12.5 ºC) at the NOAA Montlake Laboratory, 

Seattle, WA in late August 2011. Fish growth in the first month after transport was slow 

and at ~10 g, fish were transitioned to a “zero” taurine conditioning feed (Table 3.3.1) for 

a twelve week pre-trial wash-out phase.  

Table 3.3.1. Dietary formulation of “zero” 
taurine, plant-based feed utilized in juvenile 
sablefish growth study. 

Ingredient g kg-1 
Taurine 0 
Soy protein concentrate 300 
Corn protein concentrate 260 
Wheat flour 155 
Fishmeal, anchovy 90 
Fish oil 127 
Fish gelatin (cod) 20 
Trace minerals 1 
Vitamin premix 15 
Vitamin C 1 
Choline 5 
Betaine 2.5 
L-methionine 1.6 
L-lysine 2 
Dicalcium phosphate 20 
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At the conclusion of the pre-trial wash-out phase conducted at NOAA-NWFSC, 

attempting to wash-out the juveniles of any existing taurine pool prior to the initiation of a 

graded dietary taurine study, it was apparent the fish were not performing well. Low feed 

consumption, low growth, and a general unhealthy appearance were recorded in fish being 

fed the plant-based feed with no supplemental taurine when compared to con-specifics 

being reared on a standard, commercial trout diet. The full-scale trial on the plant-based 

diet with graded levels of taurine was subsequently postponed due to the effects observed 

during this pre-trial wash-out phase.  

To explore whether a lack of taurine due to limited dietary input coupled with poor 

synthesis was the cause, as opposed to otherwise poor acceptance or performance of the 

feed itself, this study aimed to assist NOAA-NWFSC researchers by assessing the 

biosynthetic capacity for taurine in sablefish resulting from being fed the low fishmeal, un-

supplemented diet in comparison to fish fed the commercial trout diet in an effort to help 

identify minimal and optimal dietary taurine supplementation levels. 

 

Methods and Materials 

Liver and muscle tissue samples (~100mg) along with whole brains were taken 

from five individuals from both the trout diet and plant protein-based diet. Samples were 

flash frozen in liquid nitrogen and stored at -80 ºC prior to shipping on dry ice to the 

Institute of Marine and Environmental Technology (IMET) in Baltimore, MD. 

Approximately 50 mg samples of liver and muscle, as well as whole brain samples were 

homogenized, total RNA was extracted using tri-reagent, and RNA was quantified on a 

Nanodrop nd1000 spectrophotometer (Thermo Scientific, Wilmington, DE). 1000 ng total 
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RNA was used for reverse transcription using Superscript II Reverse Transcriptase 

(Invitrogen, Life Technologies, Grand Island, NY) and the resultant cDNA was diluted to 

10 ng µl-1 for PCR and RT-qPCR assays. As of this work, three of the four genes involved 

in the synthesis and transport of taurine had been identified and deposited into the Genbank 

database at NCBI along with a commonly used reference gene for RT-qPCR, L13A, a 

ribosomal protein encoding gene. Using these deposited and BLAST verified sequences 

for cysteine dioxygenase (CDO), cysteinesulfinate decarboxylase (CSD), taurine 

transporter (TauT), and the reference gene L13A for sablefish; primersfor RT-qPCR (Table 

3.3.2) were designed with the use of Primer3 (Rozen and Skaletsky, 2000). Verification 

that primers were indeed amplifying only a single product, and that the product was the 

desired target, end-point PCR was performed on limited samples in 10 µl reactions with 10 

ng cDNA using Promega 2x Mastermix (Promega, Madison, WI) using the following 

parameters: initial denaturation (95ºC for 2 min) followed by 35 cycles of denaturation (95 

ºC for 30 s), annealing (56 ºC for 30 s), extension (72 ºC for 45 s), and a final polishing 

step (72 ºC for 5 min). Two µl of the end-point PCR products were used for gel 

electrophoresis to assess product size and number with the remaining 8 µl purified and 

sequenced to determine accuracy of selected primers.  

Table 3.3.2. Primers used for RT-qPCR in this study. 
Target Gene Primer Sequence Tm PE 

Cysteine dioxygenase (CDO) F 5´-AAGTCTTCGAGAGCGACAGC-3´ 57.1  
Cysteine dioxygenase (CDO) R 5´-CAATGGCAGTCTGTGTGGTC-3´ 56.3 1.74 
Cysteinesulfinate decarboxylase (CSD) F 5´-CAGAGGGCCAACTCTTCTTG-3´ 55.6  
Cysteinesulfinate decarboxylase (CSD) R 5´-TTGACGCTGTACTTCGCAAC-3´ 55.8 1.74 
Taurine transporter (TauT) F 5´-GGACACTCTGAAGCCGTCTC-3´ 57.5  
Taurine transporter (TauT) R 5´-CCAGACGTTCCCTAAACCAA-3´ 54.7 1.74 
Ribosomal protein L13A (L13A) F 5´-ACAGCCACTCTGGAGGAGAA-3´ 57.9  
Ribosomal protein L13A (L13A) R 5´-TTATTGGCCACAGACAACCA-3´ 54.5 1.67 
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Upon selection of appropriate primer pairs for each gene of interest, primer 

efficiencies were determined with cDNA from a single liver tissue sample from a control, 

trout diet fed individual and consisted of triplicate measurements made at five different 

dilutions of cDNA (20, 10, 5, 2.5, and 1.25 ng cDNA per reaction) based on the following 

equation:  

Primer efficiency (PE)=10- 1
slope, 

with slope determined from the plot of cDNA content (ng) vs. average Ct for each dilution. 

RT-qPCR was performed in triplicate per sample and tissue type for each gene of interest 

(n=5 for all tissues) alongside the reference gene on an ABI 7500 Fast Real-Time RT-rPCR 

System (Applied Biosystems, Life Technologies, Grand Island, NY). Cycling parameters 

for the assays were as follows: initial denaturation at 95 ºC for 2 min, followed by 40 cycles 

of denaturing (95 ºC for 10 s), annealing (56 ºC for 30 s), and extension (72 ºC for 30 s) 

with a melting curve to determine presence of spurious products. Expression relative to the 

expression of the L13A reference gene was determined by the following equation: 

Relative expression of target gene= �
(target gene PE)(38-target gene avg. Ct)

(L13A PE)(38-L13A avg. Ct) � *100 

Paired t-tests (p=0.05) were used to assess the differences in relative expression of the 

target genes in tissues from fish fed the plant-based diet compared to fish fed the 

commercial trout diet. Taurine was also measured directly from the diets, livers, and 

muscle tissues of fish from both treatments using the LC-MS method described in Chapter 

2.1. Water content was determined for liver and muscle tissues from five individual fish 

from each dietary treatment by lyophilization to constant weight. 
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Results 

Results of the taurine measurements and water content are shown in Table 3.3.3. 

Livers from fish fed the commercial trout diet had significantly higher liver taurine 

concentrations (13.36 ± 1.46 µmol g-1) and significantly lower liver water content (65.23 

± 1.20 %) than livers from fish fed the plant-based diet (6.36 ±  1.26 µmol g-1 liver taurine 

and 73.26 ±  1.37 % liver water content; t-test, p<0.05). There were no significant 

differences in muscle taurine or water content between the two dietary treatments. 

Table 3.3.3. Diet, liver, and muscle taurine and water content. Mean ± S.D. of five 
sampled individuals for liver and muscle tissues. Values with different superscripts (liver 
or muscle) indicate significant difference within the tissue type (t-test, p<0.05). 

Diet Tissue Taurine Content Water Content (% dw) 
Trout diet Diet 0.46 (g 100g-1) ~7% 
Plant-based diet Diet 0.16 (g 100g-1) ~1.4% 
Trout diet Liver 13.36 ± 1.46 (µmol g-1)a 65.23 ± 1.20a 
Plant-based diet Liver 6.36 ± 1.26 (µmol g-1) 73.26 ± 1.37 
Trout diet Muscle 4.32 ± 1.58 (µmol g-1) 72.79 ± 4.33 
Plant-based diet Muscle 3.32 ± 0.80 (µmol g-1) 76.62 ± 1.02 

 

Results of the RT-qPCR assays are displayed as mean percent expression (± s.e.) 

compared to the mean expression level of the L13A reference gene (Figure 3.3.1) for the 

five individuals measured in triplicate per tissue and treatment. There were no significant 

differences in L13A Ct values between treatment types within each tissue type (Table 3.3.4, 

t-test, p>0.05). There were no significant differences in relative expression of CDO, CSD, 

or TauT in the brains or muscles of fish fed either diet (t-test, p>0.05). There were 

significant differences in the relative expression of all three genes in the livers however, 

with fish fed the plant-based diet consistently displaying higher transcript expression than 

that of fish fed the trout diet (Figure 3.3.1; t-test, p<0.05). CDO had the highest transcript 
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expression difference between the two diets with fish fed the plant diet displaying transcript 

levels ~281% times higher than that of L13A while fish fed the trout diet had transcript 

levels ~ 41% of L13A expression. The taurine transporter (TauT) had transcript levels 

~219% of L13A expression in fish fed the plant diet, while fish fed the trout diet had TauT 

transcript levels ~83% of L13A levels. CSD, the rate limiting step of the synthesis pathway 

from cysteine to hypotaurine and taurine had transcript levels that were 58% of that of 

L13A in fish fed the plant diet compared to transcript levels that were ~28% of L13A in 

fish fed the trout diet. 

 

 

 

Table 3.3.4. L13A reference gene Ct values (average 
± S.D.) for each dietary and tissue type. No significant 
difference within each tissue type between dietary 
treatments (t-test, p>0.05). 

  Trout Diet Zero Taurine Diet 
Liver 25.13 ± 1.59 25.04 ± 2.25 
Brain 26.06 ± 4.28 24.43 ± 4.79 
Muscle 24.64 ± 2.25 25.15 ± 3.69 
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Figure 3.3.1. Relative transcript expression of genes involved in taurine synthesis and 
transport in juvenile sablefish, Anoplopoma fimbria, as a percent expression compared to 
reference gene L13A expression. Equivalent cDNA input (10 ng) for triplicate samples of 
each tissue and five fish sampled per treatment group and tissue (n=5 per data point). 
 
 
Discussion 

 The RT-qPCR results of this study indicate that sablefish have an ability to respond 

to insufficient dietary taurine and increase the transcripts of genes involved in taurine 

synthesis. The major site of synthesis in juvenile sablefish is clearly the liver (Figure 3.3.1), 

and an increase in the transporter for taurine (TauT) was also observed in this tissue for 

fish fed the plant-based diet. Although transcript levels were higher in the livers of sablefish 

fed the plant-based diet in this study, their poor performance on the diet indicates that there 

may still not be sufficient taurine synthesis to meet physiological needs. Taurine has been 
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shown to play multiple important physiological roles in teleosts (Schuller-Levis and Park, 

2003), although dietary requirements are often poorly understood even in species that have 

established aquaculture industries (Goto et al., 2001b). 

The plant-based diet used in this study still maintained a 9% fishmeal inclusion, 

although this clearly did not provide the needed quantities of taurine. Subsequent trials 

with juvenile sablefish at NOAA-NWFSC have been conducted with a shortened wash-out 

period that resulted in much better acceptance and performance on the zero taurine added 

plant-based diet, although transcript levels from that study have yet to be analyzed. It was 

concluded by NOAA-NWFSC researchers that the initial trial’s wash-out period was too 

long, and that the fish subsequently fed the low taurine plant-based diets had had their 

taurine pool reduced too significantly to recover from, regardless of the switch to higher 

taurine diets or the ability to potentially synthesize sufficient taurine. 

 Overall it is clear that unlike cobia, Rachycentron canadum discussed in subsequent 

chapters, sablefish have an ability to respond to low dietary taurine, although it may not be 

a sufficient enough response to actually result in an adequate increase in taurine 

availability. There are several potential explanations for this difference between these two 

marine carnivores. Cobia are a much faster growing species than sablefish even though 

they are at fairly similar positions in their respective food webs and with similar diets 

consisting of smaller fish, crabs, and squid. This could lead to cobia depleting their taurine 

pools much faster than sablefish, subsequently resulting in higher taurine requirements that 

have been evolutionarily satisfied by their diets, leading to a loss of synthesis capacity that 

was not fatal. Another, and more plausible explanation may be the change in life history 

strategy that sablefish undergo as they mature into adults and move to colder, deeper waters 
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that are much more scarce in food availability than the shallower, warmer waters that 

juveniles inhabit (King et al., 2001). This life history change could result in adults 

maintaining the ability to synthesize taurine due to low prey availability and being adapted 

to long periods of starvation. 

 In future studies of plant-based diets utilizing graded levels of taurine 

supplementation and low or no fishmeal, methods like the ones employed in this study will 

be utilized to help determine minimum and optimal dietary taurine requirements. Finding 

a balance in fast growth, low feed conversion ratio, and minimal need to expend energy in 

the expression of taurine synthesis genes will aid the development of optimal diets for 

sablefish aquaculture. 
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Chapter 4: Utilizing Taurine Supplementation with Plant Protein 
Sources to Replace Fishmeal 

 
 
 Chapter 4 combines methods developed in the previous two chapters to develop a 

fishmeal free, plant protein-based diet for cobia, Rachycentron canadum. The first two 

sections of this chapter examine the utilization of graded levels of taurine in a traditional, 

fishmeal-based formulation and the utilization of high inclusion levels of non-GM soybean 

strains in reduced fishmeal formulations. The third section discusses the digestibility of 

plant proteins and the development of the first fishmeal free, all plant protein-based diet. 

Finally, the fourth section of the chapter discusses two additional fishmeal free, plant-based 

formulations with graded levels of taurine inclusion. This chapter provides evidence that 

completely replacing fishmeal with plant proteins is not only a possibility, but can result in 

improved production in cobia as long as taurine is supplemented. 
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Effects of graded taurine on juvenile cobia, Rachycentron canadum, growth 

Abstract 

 Taurine has been shown to have multiple important physiological roles in teleosts 

and mammals and is an amino acid not found in many of the alternative protein sources 

that are not derived from animals. Although taurine is found in fishmeal-based feeds, its 

high water solubility leads to lower taurine levels in reduction process based feeds than 

marine carnivores such as cobia, Rachycentron canadum, are adapted to in their natural 

diets. Graded taurine supplementation (0, 0.5, 1.5, and 5.0 %) to a traditional fishmeal-

based formulation was examined in two trials, one initiated with 10g individuals and the 

second initiated with 120 g individuals. Growth during the first trial ranged from 1,313 % 

to 1,514 % with increasing dietary taurine along with a decrease in feed conversion ratio 

from 1.04 to 0.99. During the second trial, growth ranged from 220 % to 243 % with fish 

fed the diet with 1.5 % supplement of taurine having the best growth, although there were 

no significant differences in these performance characteristics during either trial between 

dietary treatments. Transcript levels for two of the genes involved in taurine synthesis, 

CDO and ADO, as well as the membrane bound transporter of taurine, TauT, did not vary 

in response to dietary taurine levels. Increasing dietary taurine resulted in increased 

production characteristics and significantly increased fillet, liver, and plasma taurine 

levels.  
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Introduction 

 Taurine is a free amino acid found in high concentrations in the natural prey of 

many marine species that are cultured (Satake et al., 1988). However, the high water 

solubility of taurine can lead to losses during processing of fishmeal and other by-product 

meals used in feed formulation (Kousoulaki et al., 2009). Unlike lysine, threonine and 

methionine, which are supplemented in diets to balance amino acid requirements; taurine 

is often not supplemented in dietary formulations, and it is not yet approved as an additive 

for fish feeds in the United States. However, multiple important physiological roles for 

taurine in fish have been identified such as its strong antioxidant properties, conjugation to 

bile salts, photoreceptor protection, cardiac function, and as an intracellular osmolyte in 

many species, including humans (Schuller-Levis and Park, 2003). Taurine supplementation 

to diets for a variety of species have been conducted, with the general conclusion that 

increased levels of taurine result in increased growth, improved feed conversion, and 

normal behavior when compared to no or low taurine control diets (Kim et al., 2005a, 

2005b; Park et al., 2002; Takagi et al., 2008). 

Cobia, Rachycentron canadum, is a fast growing marine carnivore that is highly 

fecund, amenable to intensive tank, pond and cage culture, is naturally highly disease 

resistant, and found tropically and sub-tropically around the world except the Eastern 

Pacific (Holt et al. 2007). These traits along with a lack of major commercial fisheries and 

their high quality flesh make them an ideal candidate for further marine aquaculture 

development, especially in recirculating systems. 

 The objective of the current study was to examine the effects of graded levels of 

supplemented taurine (0.0, 0.5, 1.5, and 5.0 %) to a defined commercial-like fishmeal-
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based diet to assess the effects of increasing taurine levels on cobia growth performance. 

Our hypothesis is that marine carnivores, such as cobia, have either lost or have a greatly 

diminished capacity for the biosynthesis of taurine due to high concentrations in their 

natural prey (Satake et al., 1988). Therefore, increasing levels of taurine in the diet should 

result in improved growth and feed conversion ratios. Also, expression of genes potentially 

involved in the taurine biosynthesis were measured to assess the results of dietary taurine 

modulation on their expression. Cysteine dioxygenase (CDO), cysteamine dioxygenase 

(ADO), and the taurine transporter (TauT) are all involved in either the synthesis or 

transport of taurine in vertebrates. CDO has been shown in mammals to be regulated post-

transcriptionally (Dominy et al., 2006), but little work has been done assessing the 

transcript regulation, if any, in this pathway in teleosts under varying dietary taurine inputs. 

Increases in transporter transcripts may also be expected after prolonged periods of feeding 

sub-optimal taurine levels if this species maintains the ability to regulate transport at the 

transcript level. ADO has been shown to be important in reducing cysteamine in the 

mammalian brain, where it can inhibit multiple pathways (Figueiredo et al., 2009; Jiang et 

al., 2004; Rech et al., 2008; Sun et al., 2010), which if  allowed to reach high levels could 

become detrimental or toxic. The terminal step in taurine biosynthesis catalyzed by 

cysteinesulfinate decarboxylase (CSAD), has proved to be difficult to amplify in cobia and 

will be the subject of a future manuscript. 
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Methods 

Diet preparation 

Formulations of the experimental diets are shown in Table 4.1.1 with amino acid 

profiles and proximate compositions of the diets shown in Tables 4.2.2 and 4.2.3, 

respectively. For all diets, ingredients were ground using an air-swept pulverizer (Model 

18H, Jacobsen, Minneapolis, MN) to a particle size of <200 μm. All ingredients were 

mixed prior to extrusion. Pellets were prepared with a twin-screw cooking extruder 

(DNDL-44, Buhler AG, Uzwil, Switzerland) with an 18 second exposure to 127 °C in the 

extruder barrel. Pressure at the diet head was approximately 26 bar, and a die head 

temperature of 71 °C was used. The pellets were dried for approximately 15 min to a final 

exit air temperature of 102 ºC using a pulse bed drier (Buhler AG, Uzwil, Switzerland) 

followed by a 30 min cooling period to product temperature less than 25 °C. Final moisture 

levels were less than 10 % for each diet. Diets were stored in plastic lined paper bags at 

room temperature, and were fed within six months of manufacture. Portions of each diet 

were analyzed by New Jersey Feed Labs, Inc. (Trenton, NJ) for proximate and amino acid 

composition. 

 

Experimental fish and systems 

This study was carried out in accordance with the guidelines of the International 

Animal Care and Use Committee of the University of Maryland Medical School (IACUC 

protocol # 0610015). Approximately 500 juvenile (~2 g) cobia, Rachycentron canadum, 

were obtained from the Virginia Agricultural Experiment Station, Virginia Tech, Hampton, 

VA. Juveniles were housed at the Institute of Marine and Environmental Technology's 

 
 

87 
 



 

Aquaculture Research Center, Baltimore, MD. Fish were fed the FM2 diet until they 

reached an average weight of ~10 g at which point 18 fish were stocked into each of 12 

identical tanks and randomly assigned one of the four experimental diets for three replicate 

tanks per dietary treatment.  

Table 4.1.1. Dietary formulations for the diets with graded 
levels of taurine used in this study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 Contributed per kg diet; vitamin A, 9650 IU; vitamin D, 6.6 IU; 
vitamin E, 132 IU; menadione sodium bisulfite, 4.7 mg; thiamine 
mononitrate, 9.1 mg; riboflavin, 9.6 mg; pyridoxine 
hydrochloride, 13.7 mg; pantothenate, DL-calcium, 101.1 mg; 
cyanocobalamine, 0.03 mg; nictonic acid, 21.8 mg; biotin, 0.33 
mg; folic acid, 2.5 mg. 
2 Contributed in mg kg-¹ of diet; zinc 37; manganese, 10; iodine, 
5; copper, 1. 

 
The first trial was conducted for 8 weeks, with tank weights recorded and feeding 

rates adjusted weekly to 5 % body weight (bw) day-1. At the conclusion of the first trial, 

fish being fed diets FM1 and FM2 as well as those unused in the first trial were re-pooled, 

fed the FM2 diet for one week, and subsequently restocked at 5 fish per tank at 

Ingredient (g kg-1) FM1 FM2 FM3 FM4 

Menhaden Fish Meal 345 345 345 345 
Corn Protein concentrate 44.3 44.3 44.3 44.3 
Poultry by-product meal 118 118 118 118 
Wheat Flour 242.7 237.7 227.7 192.7 
Soybean meal, solvent 
extracted 90 90 90 90 

Blood meal, spray 
dehydrated 39 39 39 39 

Menhaden Fish Oil 90 90 90 90 
Vitamin Pre-mix1 20 20 20 20 
Choline CL 6 6 6 6 
Stay-C 2 2 2 2 
Trace mineral pre-mix2 1 1 1 1 
Mycozorb 2 2 2 2 
Taurine 0 5 15 50 
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approximately 120 g average weight for a second trial. The second trial was also conducted 

for 8 weeks, with tank weights recorded weekly and feeding rates adjusted from 3.5 % bw 

day-1 to 2.5 % bw day-1, with a bi-weekly 0.25 % bw day-1 reduction throughout the trial. 

 
Table 4.1.2. Amino acid profiles of the diets 
used in this study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 New Jersey Feed Labs analysis. 
 

 Six, 340-liter tanks connected to bubble-bead and biological filtration as well as 

protein skimmers constituted the recirculating systems used with four replicate systems 

occupied simultaneously during the trials with a photoperiod maintained at 14L:10D 

throughout. There were no significant differences in water quality parameters between the 

four systems used in either trial. During the first trial water quality parameters (mean ± SD) 

Amino Acid1 FM1 FM2 FM3 FM4 

Methionine 1.06 1.01 1.05 1.03 
Cysteine 0.50 0.49 0.50 0.48 
Lysine 2.98 3.21 3.27 3.10 
Phenylalanine 2.13 2.16 2.16 2.10 
Leucine 3.82 3.94 4.00 3.85 
Isoleucine 1.31 1.45 1.52 1.39 
Threonine 1.59 1.67 1.65 1.69 
Valine 1.87 2.05 2.11 2.00 
Histidine 1.28 1.43 1.66 1.31 
Arginine 2.72 2.85 2.94 2.85 
Glycine 2.80 2.87 2.94 2.94 
Aspartic Acid 4.04 4.03 4.24 4.19 
Serine 1.76 1.69 1.81 1.93 
Glutamic Acid 7.26 7.30 7.27 7.10 
Proline 3.00 3.31 3.28 3.23 
Hydroxyproline 0.50 0.54 0.58 0.54 
Alanine 2.70 2.71 2.78 2.76 
Tyrosine 1.34 1.43 1.44 1.42 
Taurine 0.24 0.44 1.41 4.55 
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were: temperature, 26.58 ± 1.06 °C; salinity, 25.55 ± 1.40 ppt; pH, 8.15 ± 0.19; total 

ammonia nitrogen, 0.07 ± 0.11 mg l-1; nitrite, 0.15 ± 0.20 mg l-1; nitrate, 24.95 ± 11.32 mg 

l-1; and alkalinity, 121.31 ± 19.75 mEq l-1. During the second trial mean ± SD water quality 

parameters were: temperature, 25.72 ± 1.15 °C; salinity, 24.97 ± 2.44 ppt; pH, 7.98 ± 0.17; 

total ammonia nitrogen, 0.23 ± 0.12 mg l-1; nitrite, 0.46 ± 0.36 mg l-1; nitrate, 29.83 ± 4.41 

mg l-1;  and alkalinity, 116.34 ± 22.65 mEq l-1. 

 

Table 4.1.3. Proximate compositions and measured taurine 
values of the diets used in this study. 

 

 

 

 

 

 

 

 

 

 

1 New Jersey Feed Labs analysis. 
 

Analytical procedures 

At the conclusion of the first trial two individual fish from each tank were sacrificed 

for analysis. Bile was removed aseptically directly from the gall bladder using a tuberculin 

syringe with a 27 gauge x 1/2'' needle. The bile volume was measured and diluted 1:1 (v/v) 

with methanol, centrifuged to remove biliary proteins, and kept frozen at -20°C until HPLC 

analysis. The sodium salts of glycocholic acid (GCA), glycochenodeoxycholic acid 

(GCDA), glycodeoxycholic acid (GDCA), taurocholic acid (TCA), 

taurochenodeoxycholate (TCDC), and tauro-deoxycholic acid (TDCA) were supplied by 

Proximate Composition1 FM1 FM2 FM3 FM4 
Protein (% DM) 49.2 48.9 49.5 51.4 
Lipid (% DM) 12.28 12.11 12.29 12.66 
Fiber (% DM) 0.54 0.61 0.42 0.53 
Carbohydrate,  
       (% DM by difference) 27.36 28.01 27.24 24.9 

Moisture (%) 2.15 2.76 3.38 2.43 
Ash (% DM) 10.62 10.37 10.55 10.51 
Taurine (%) 0.24 0.44 1.41 4.55 
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SIGMA (St. Louis MO, USA). Water was purified with an EASY System and a 

NANOpure® Diamond Life Science (UV/UF) ultrapure water system from 

Barnstead/Thermoline (Dubuque, IA, USA). Methanol was HPLC grade from Burdick and 

Jackson (Honeywell, Morristown, NJ, USA). All other chemicals were of analytical grade. 

LC-MS was performed using an Agilent 1100 Series LC-MSD system, consisting of a 

binary pump system, autosampler and diode array detector (DAD) with a micro high-

pressure flow cell (6 mm path length, 1.7 μl volume), fraction collector, and a quadrupole 

mass spectrometer (G1956A SL) equipped with an electrospray ionization (ESI) interface. 

The HPLC method was performed under isocratic conditions at room temperature. 

Analyses were performed on a reversed-phase C-18 column: LiChrosorb RP-18, 5 µm, 250 

x 4.6 mm from HiChrom (Novato, CA, USA). Acetate buffer was prepared daily with 0.5 

M sodium acetate, adjusted to pH 4.3 with o-phosphoric acid, and filtered through a 0.22 

µm filter (Whatman R, England). The flow rate was 1.0 ml min-1 and the detection was 

performed at 205 nm. The injection loop was set to 20 µl. The eluate from the DAD was 

split (1/3 to 1/6) using a graduated micro-splitter valve (Upchurch Scientific). The major 

portion of the eluate was collected in multiple fractions while the remaining portion was 

subjected to MS analysis under the following spray chamber conditions: drying gas (N2) 

flow rate 10 l min-1, pressure 60 psi, temperature 350 °C, fragmentor voltage 350 V, 

capillary voltage 4000 V. A 5 mM ammonium acetate solution in water (0.1 ml min-1) was 

added post-column via a T-connector to provide higher pH conditions for enhanced 

negative mode ionization. Total ion chromatograms for ions in the mass range from 300 to 

600 were collected.  Total bile salts were assayed with 3 α-hydroxysteroid dehydrogenase 

(Coleman et al. 1979). Blood samples were taken from the caudal vein with heparinized 
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needles, plasma was separated by centrifugation (16,000 RCF for 20 min) and total plasma 

protein was quantified after 1:600 dilution utilizing a Micro BCA™ Protein Assay Kit 

(Product# 23235, Thermo Scientific, Rockford, IL). 

 At the conclusion of the second trial two fish from each tank, six per dietary 

treatment, were randomly selected for sampling. Fish were anesthetized with tricaine 

methanosulfonate (MS-222, 70 mg l-1, Finquel, Redmond, WA), blood samples were taken 

from the caudal vein with heparinized needles, after which fish were euthanized with MS-

222 (150 mg l-1) and gall bladders removed with bile analyzed as in Trial 1. Liver and fillet 

samples were also taken. Blood plasma was separated by centrifugation (16,000 RCF for 

20 min) and plasma osmolality measured in triplicate (10 μl) on a Vapro™ Model 5520 

vapor pressure osmometer (Wescor, Logan, UT). Plasma samples from three fish per 

dietary treatment were sent to the Pathology and Laboratory Medicine Services department 

at the University of California at Los Angeles for constituent analysis. Remaining plasma, 

fillet and liver samples were frozen and stored at -80 °C and portions of each were 

lyophilized to constant weight for water and taurine content analyses. Triplicate samples 

each of liver (~10 mg), fillet (~50 mg), plasma (~10 μL), and diet (~50 mg) sample were 

used for taurine extractions based on Chaimbault et al. (2004), with samples being 

homogenized in cold 70 % EtOH, sonicated for 20 min, dried, and re-suspended in 1 ml 

H2O prior to injection into the LC-MS. Taurine was quantified in all samples based on the 

methods described in Chapter 2. 
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Production characteristics were determined as follows: 

Weight gain (%) = 100 ∗  (
final wieght (g) − initial weight(g)

initial wieght (g)
) 

Feed conversion ratio (FCR) = (
food fed (g)

weight gained (g)
) 

Specific growth rate (SGR) = 100 ∗ (
ln final weight (g) − ln initial weight(g)

days of trial
) 

Protein efficiency ratio (PER) = (
weight gained (g)

protein fed (g)
) 

Hepatosomatic index (HSI) = 100 ∗ (
liver weight (g)
body weight (g)

) 

Primers for RT-qPCR (Table 4.1.4) were designed for each of the genes of interest; 

CDO, ADO, and TauT based on consensus sequences of alignments derived from teleost 

species in the NCBI Genbank database. Liver, brain, and muscle tissue from each fish 

sampled (6 per dietary treatment) were used for q-PCR assays. Primer3 was used for primer 

design (Rozen and Skaletsky, 2000). To verify that primers were indeed amplifying only a 

single product, and that the product was the desired target, end-point PCR was performed 

on limited samples in 10 µl reactions with 10 ng cDNA using Promega 2x Mastermix 

(Promega, Madison, WI) using the following parameters: initial denaturation (95ºC for 2 

min) followed by 35 cycles of denaturation (95 ºC for 30 s), annealing (56 ºC for 30 s), 

extension (72 ºC for 45 s), and a final polishing step (72 ºC for 5 min). Two µl of the end-

point PCR products were used for gel electrophoresis to assess product size and number of 

products with the remaining 8 ul purified and sequenced to determine accuracy of selected 

primers.  

 
 

93 
 



 

Upon selection of appropriate primer pairs for each gene of interest, primer 

efficiencies were determined with cDNA from a single liver tissue sample and consisted 

of triplicate measurements made at five different dilutions of cDNA (20, 10, 5, 2.5, and 

1.25 ng cDNA per reaction) based on the following equation:  

Primer efficiency (PE)=10- 1
slope, 

with slope determined from the plot of cDNA content (ng) vs. average Ct for each dilution.  

Table 4.1.4. Primers used for genes of interest in taurine metabolism. 

 

RT-qPCR was performed in triplicate per sample and tissue type for each gene of 

interest (n = 6 for all tissues) alongside the reference gene on an ABI 7500 Fast Real-Time 

PCR System (Applied Biosystems, Life Technologies, Grand Island, NY). Cycling 

parameters for the assays were as follows: initial denaturation at 95 ºC for 2 min, followed 

by 35 cycles of denaturing (95 ºC for 10 s), annealing (56 ºC for 30 s), and extension (72 

ºC for 30 s) with a melting curve to determine presence of spurious products. A cut-off Ct 

value of 38 was used to eliminate weak products potentially resulting from contamination 

or fluorescence artifacts (Caraguel et al., 2011) and samples run in triplicate with 

subsequent Ct values that had deviations >0.8 were re-analyzed. Expression of target genes 

Gene Name Primer Sequence Tm 
Cysteamine dioxygenase (ADO) Forward 5'-AGACCTCGCTCATCCAGAAA-3' 55.7 
Cysteamine dioxygenase (ADO) Reverse 5'-AGGGGAGGATGTGGAGACTT-3' 57.5 
Cysteine dioxygenase (CDO) Forward 5'-AGGGTCAGCTGAAGGAGACA-3' 57.9 
Cysteine dioxygenase (CDO) Reverse 5'-GCACCCTCTGTGTGGCTATT-3' 57.4 
Taurine transporter (TauT) Forward 5'-GCTTCATGGCACAAGAACAA-3' 54.0 
Taurine transporter (TauT) Reverse 5'-TCAACAAACTGGCTGTCGAG-3' 55.3 
Beta Actin Forward 5'-TGCGTGACATCAAGGAGAAG-3' 54.9 
Beta Actin Reverse 5'-AGGAAGGAAGGCTGGAAGAG-3' 56.4 
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relative to expression of beta actin, reference gene, was determined by the following 

equation: 

Relative expression of target gene=�
(target gene PE)(38-target gene avg. Ct)

(beta actin PE)(38-beta actin avg. Ct) � *100 

 

Statistics 

All statistical tests were run using Aabel v.3.0.6 (Gigawiz Ltd., OK, USA) with 

significance values of p <0.05. ANOVA with Tukey's HSD post-hoc analyses were used 

to determine differences between dietary treatments. Q-PCR expression data were square 

root transformed prior to homogeneity of variance (Bartlett’s test) and ANOVA analyses. 

A Mann-Whitney U test was used when expression values failed homogeneity of variance. 

 

Results 

 Weight gain during the first trial ranged from 1,313 % to 1,514 % with a gradual, 

but not significant increase as dietary taurine increased (10g initial weight). Feed 

conversion ratio, FCR, was approximately 1 for fish fed each of the four diets. Specific 

growth rate (SGR) ranged from 4.72 to 4.97, again increasing with the increase in dietary 

taurine, although not significantly (Table 4.1.5). There were no significant differences in 

total plasma protein (ANOVA, F=0.18, P>0.5) or total bile salts (ANOVA, F=2.46, 

P=0.092) among the fish in dietary treatments during the first trial. 

  During the second trial there were no significant differences in weight gain, FCR, 

SGR, or total bile salt concentrations among the fish (120g initial weight) in the dietary 

treatments (Table 4.1.6, ANOVA, P>0.05). Consistent with other analyses for carnivorous 
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fish bile (Une et al., 1991), cobia bile salts were predominantly taurine conjugates of the 

primary bile salts cholic (133 ± 39 mM) and chenodeoxycholic acids (97.1 ± 52 mM). No 

secondary bile salts (e.g. deoxycholic acid) or glycine conjugates were observed. Small 

quantities (3.58 ± 1.8 mM) of N-cholyl-D-cysteinolic acid were detected as had been 

observed by Une et al. (1991). No differences in bile salt composition or concentration 

were observed in fish fed the different diets. There were several trends within each 

parameter with FM2 and FM3 slightly outperforming FM1 and FM4. Weight gain, mean 

± SD, was highest for cobia fed FM2 (242.35 ± 6.91 %) and FM3 (243.03 ± 28.24 %) 

compared to fish fed FM1 (220.48 ± 20.49 %) and FM 4 (227.93 ± 15.78 %). FCR and 

SGR had similar trends with cobia fed FM2 and FM3 having slightly lower FCR’s (1.42, 

1.43) and slightly higher SGR’s (2.20, 2.19) than cobia fed FM1 (FCR 1.52, SGR 2.07) 

and FM4 (FCR 1.51, SGR 2.12). 

Table 4.1.5. Performance characteristics of cobia in the first trial (9.12 g initial weight). 
Within a row, means with different letters are significantly different (P<0.05). 

 1 Total plasma protein. 
 

 There were several significant differences observed in the second trial with regards 

to fillet and liver characteristics. Feeding FM4 resulted in significantly higher fillet taurine 

content (65.58 ± 19.69 µmol g-1), higher liver water content (50.37 ± 0.77 %), and higher 

liver taurine content (20.81 ± 2.89 µmol g-1) than FM1 (Table 4.1.7, ANOVA, P<0.05) 

Diet (Taurine %) FM1  FM2  FM3  FM4  
Survival (%) 100 ± 0.00 100 ± 0.00 98.03 ± 1.97 98.03 ± 1.97 
Weight Gain (%) 1313.31 ± 95.24 1467.23 ± 64.11 1514.73 ± 105.16 1514.98 ± 55.33 
FCR 1.04 ± 0.02 0.97 ± 0.02 0.97 ± 0.01 0.99 ± 0.03 
SGR 4.72 ± 0.12 4.91 ± 0.07 4.96 ± 0.12 4.97 ± 0.06 
PER 2.03 ± 0.01 z 2.04 ± 0.01 z 2.02 ± 0.01 z 1.95 ± 0.01 y 
TPP1 (g dL-1) 3.41 ± 0.23 3.52 ± 0.16 3.38 ± 0.17 3.33 ± 0.08 
Bile Salts (mM) 43.48 ± 0.62 42.44 ± 0.11 42.44 ± 0.16 42.29 ± 0.10 
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with tissue taurine increasing with dietary taurine (Figure 4.1.1). There were no significant 

differences between the diets in fillet water content, fillet yield, fillet lipid, or 

hepatosomatic index (Table 4.1.7, ANOVA, P>0.05). 

 

Figure 4.1.1. Liver (µmol g-1), fillet (µmol g-1), and plasma taurine (mg DL-1) 
increase with increasing dietary taurine (g 100g-1). 

 
 
Table 4.1.6. Performance characteristics of cobia in the second trial (127 g initial 
weight). Within a row, means with different letters are significantly different (P<0.05). 

 
 
 
 
 
 
 
 
 

 
 
 
 
 

Diet (Taurine %) FM1  FM2  FM3  FM4  
Survival (%) 100 100 100 100 
Weight Gain (%) 220.48 ± 20.49 242.35 ± 6.91 243.03 ± 28.24 227.93 ± 15.78 
FCR 1.52 ± 0.10 1.42 ± 0.02 1.43 ± 0.11 1.51 ± 0.05 
SGR 2.07 ± 0.12 2.20 ± 0.04 2.19 ± 0.14 2.12 ± 0.09 
PER 1.35 ± 0.15 1.44 ± 0.04 1.26 ± 0.43 1.29 ± 0.07 
HSI 3.14 ± 0.14 2.99 ± 0.18 2.78 ± 0.45 2.72 ± 0.19 
Total Bile Salts (mM) 28.48 ± 4.79 32.69 ± 6.04 30.02 ± 4.34 29.59 ± 2.32 
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Table 4.1.7. Fillet and liver characteristics from the second trial. Values represent the 
mean ± standard error for six fish per dietary treatment. Within a row, means with 
different letters are significantly different (P<0.05). 

1Fillet yield = fillet weight (g)*100/body weight(g). 
  

Analysis of plasma (Table 4.1.8) from fish in the second trial revealed a significant 

difference in plasma taurine among the fish (ANOVA, F=0.26, P=0.018), with fish fed 

FM4 (969.13 ± 120.96 nmol ml-1) having significantly higher plasma taurine than fish fed 

FM1 (641.59 ± 56.86 nmol ml-1). Significant differences were also observed in many other 

constituents including plasma cholesterol (ANOVA, F=7.15, P=0.012), glucose (ANOVA, 

F=5.87, P=0.02), magnesium (ANOVA, F=4.32, P=0.043), sodium (ANOVA, F=7.75, 

P=0.009), and potassium (ANOVA, F=5.23, P=0.027). Trends within these parameters 

appear to either be related directly or inversely to dietary taurine level, or to the overall 

production characteristic with fish fed the FM3 and FM2 diets having improved production 

characteristics than fish fed FM4. 

At the conclusion of the first trial, there were no significant differences in final fish 

weight or bile salt concentration between the dietary treatments (ANOVA, F=2.46, 

P=0.092), with an overall mean weight ± SD of 140.70 ± 6.72 g and bile salt concentration 

± SD of 42.66 ± 0.55 mM. The concentration of bile slats was lower for the larger fish at 

the conclusion of the second trial to 30.20 ± 1.79 mM when the overall average of fish was 

Diet (Taurine %) FM1  FM2  FM3 FM4  
Fillet Water Content (%) 73.73 ± 0.23 72.79 ± 0.45 72.74 ± 0.23 73.09 ± 0.36 
Fillet Taurine (μmol g-1) 13.94 ± 5.07 z 20.31 ± 3.73 z 29.32 ± 3.02 zy 65.58 ± 19.69 y 
Fillet Yield (%)1 25.75 ± 0.83 26.63 ± 1.22 27.22 ± 1.63 27.07 ± 1.19 
Fillet Lipid (% dw) 19.07 ± 0.33 19.32 ± 1.07 19.21 ± 1.46 17.73 ± 2.14 
Liver Water Content (%) 42.32 ± 0.58 z 45.08 ± 0.87 z 43.96 ± 1.20 z 50.37 ± 0.77 y 
Liver Taurine (μmol g-1) 4.36 ± 1.11 z 6.79 ± 0.87 z 10.02 ± 1.74 z 20.81 ± 2.89 y 

Hepatosomatic Index 3.13 ± 0.06 2.98 ± 0.07 2.79 ± 0.18 2.71 ± 0.08 
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421.78 ± 16.25 g, with no significant differences in weight or bile salt concentration among 

the dietary treatments (ANOVA, F=1.09, P=0.373). 

Results of the quantitative PCR (q-PCR) analyses of liver, brain, and muscle tissues 

of fish from the second trial are shown in Figure 4.1.2A-C, respectively. High variance 

among measured expression values was due to high inter-animal variability (biological 

variability), not high variability in q-PCR measurements between triplicates (technical 

variability). There were no significant differences in expression among dietary treatments 

for CDO and TauT in any of the three tissues (ANOVA, P>0.05), and there was no 

significant difference in expression of ADO in the liver or muscle tissues among dietary 

treatments (ANOVA, P>0.05). Only ADO expression in the brain failed homogeneity of 

variance analysis between the dietary treatments and was analyzed with the non-parametric 

Mann-Whitney U test, which found no significance among the treatments (P=0.063). 
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Table 4.1.8. Plasma analysis from fish from the second trial. Values represent the mean ± SD for three fish 
per dietary treatment. Within a row, means with different letters are significantly different (P<0.05).

1 UCLA DLAM analysis.

Diet (Taurine %) FM1 FM2 FM3 FM4 
Water Content (%) 94.49 ± 0.13 94.42 ± 0.11 94.48 ± 0.06 93.96 ± 0.05
Osmolality (Osm L-1) 314.50 ± 23.03 336.33 ± 4.54 337.33 ± 2.78 341.17 ± 9.08
Taurine (nmol ml-1) 641.59 ± 56.86 z 684.42 ± 97.57 z 675.91 ± 19.80 z 969.13 ± 120.96 y
Albumin (g dL-1)1 0.90 ± 0.00 0.87 ± 0.03 0.87 ± 0.03 0.96 ± 0.03
Total Bilirubin (mg dL-1)1 0.30 ± 0.00 0.30 ± 0.06 0.37 ± 0.03 0.27 ± 0.03
Calcium (mg dL-1)1 11.56 ± 0.22 11.00 ± 0.23 10.97 ± 0.09 11.30 ± 0.21
Cholesterol (mg dL-1)1 88.33 ± 2.91 z 92.00 ± 2.64 z 94.00 ± 0.58 zy 104.00 ± 3.06 y
Creatine Kinase (U L-1)1 510.33 ± 92.89 177.00 ± 67.08 304.00 ± 97.39 279.33 ± 28.75
Creatinine (mg dL-1)1 0.23 ± 0.03 0.20 ± 0.00 0.20 ± 0.00 0.20 ± 0.00
Glucose (mg dL-1)1 49.33 ± 1.45 z 46.67 ± 1.33 zy 43.00 ± 0.58 y 45.67 ± 0.67 zy
Phosphorous (mg dL-1)1 10.13 ± 0.22 9.13 ± 0.23 9.70 ± 0.31 9.50 ± 0.45
Magnesium (mg dL-1)1 2.10 ± 0.06 zy 1.90 ± 0.10 z 2.30 ± 0.06 y 2.27 ± 0.12 zy
Triglycerides (mg dL-1)1 143.00 ± 11.59 121.67 ± 15.39 147.67 ± 17.02 134.67 ± 11.39
Sodium (mmol L-1)1 176.43 ± 0.74 z 174.00 ± 0.17 zy 172.17 ± 0.95 y 176.90 ± 1.01 y
Potassium (mmol L-1)1 10.11 ± 0.18 z 9.23 ± 0.19 zy 10.09 ± 0.67 z 8.28 ± 0.23 y
Chloride (mmol L-1)1 169.83 ± 1.29 168.03 ± 0.62 165.10 ± 1.49 169.03 ± 3.07

100



 

Discussion 

 Overall, growth and feed conversion of the cobia were excellent when fed any of 

the four diets during both trials. Although not statistically significant, there were 

improvement trends in all production characteristics with taurine supplemented diets when 

compared to FM1, a diet containing 0.24 % taurine from the fishmeal component. 

However, significant increases were observed in fillet taurine content as dietary taurine 

increased. This represents a potential added human health benefit for taurine supplemented 

feeds. A consumer would be ingesting higher levels of a semi-essential nutrient similar to 

the benefits of n3 and n6 polyunsaturated fatty acids that marine fish are known to provide 

(Herold and Kinsella, 1986).  

Work with plasma constituents in marine fish has focused on levels of sodium, 

potassium, osmolarity (Nordlie, 2009), glucose, and stress responses. Normal versus 

abnormal ranges for many species have not been established for many other components 

such as cholesterol, creatinine, albumin, etc. It is our hope that plasma values measured in 

this study will help in establishing normal ranges for some of the constituents measured, 

as fish in this study performed very well on all four diets and overall were healthy 

individuals. 

Besides the significant increase in plasma taurine as dietary taurine increased, 

cholesterol also increased significantly as dietary taurine increased, which may be related 

to the role of taurine as a bile salt conjugate. This is different from what is seen in mammals 

however, where increasing plasma taurine is correlated with decreasing cholesterol levels 

(Militante and Lombardini, 2004). Plasma glucose, sodium, and potassium were 

significantly lower in fish with higher growth rates, which may be due to increasing taurine 
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transport utilizing sodium and chloride as chloride levels were also lower in high 

performers, although not significantly. Magnesium was significantly higher in FM3 than 

FM2, and was the only component with significant differences that did not relate to dietary 

taurine or production characteristics, so although significant, all values may fall within 

normal ranges. The lack of significant differences in total bile salts, of which taurine is a 

main component in teleosts, and no significant decrease in growth and production 

characteristics indicates that at a minimum, the 0.0 % addition of taurine, which contained 

~0.24 % taurine from other dietary components, met requirements during the length of this 

study. The slight increases in production with increasing dietary taurine however, indicate 

that some supplementation may be beneficial for optimal growth and performance. 

Cobia juveniles do not appear to regulate CDO, ADO, or TauT transcript levels in 

response to dietary input of taurine above that provided by fishmeal (~0.24 %) as no 

significant differences in the transcript levels for these three genes were observed in liver, 

brain, or muscle. There were no significant differences in the levels of beta actin expression 

in any of the three tissues examined between dietary treatments (Table 4.1.9, ANOVA, 

p>0.05). 

 

Table 4.1.9. Reference gene beta actin Ct values (average ± S.D.). No 
significant differences between dietary treatments within each tissue type 
(ANOVA, p>0.05). 

  FM1 FM2 FM3 FM4 
Liver 24.66 ± 1.32 25.26 ± 3.82 23.35 ± 4.71 23.76 ± 5.27 
Muscle 11.19 ± 1.01 12.03 ± 0.93 12.48 ± 0.80 13.56 ± 2.32 
Brain 16.36 ± 1.61 16.58 ± 6.33 17.18 ± 0.36 18.89 ± 3.52 
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Figure 4.1.2. Relative transcript expression of genes involved in taurine synthesis and 
transport in juvenile cobia, Rachycentron canadum, as a percent expression compared to 
reference gene beta actin for each diet (% taurine) in liver (A), brain (B), and muscle (C). 
Equivalent cDNA input (10 ng) for triplicate samples of each tissue and six fish sampled 
per treatment group and tissue (n = 6 per data point). Numbers in parenthesis indicate 
measured taurine in each diet. 
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 Although CDO has been shown to be regulated post transcriptionally in mammals 

(Dominy et al., 2006), TauT has been shown to be regulated at the transcript level as well 

as the protein level based on taurine availability in mammals and zebrafish embryos 

(Bitoun and Tappaz, 2000; Han and Chesney, 2003; Kozlowski et al., 2008). Expression 

levels in comparison to beta actin were also found to be very low, with the highest 

expression of any of the genes of interest in any tissues being ~15 % in the liver for CDO, 

where the majority of synthesis would be expected. CDO is also responsible for reducing 

high cysteine levels and has two resultant pathways, only one of which leads to taurine, so 

this result is not necessarily indicative of potential taurine synthesis. It is possible that 

synthesis is taking place in other tissues, or that the transporter may be up-regulated in 

other tissues to facilitate the recycling of taurine at the lower levels of dietary input, and 

these possibilities deserve more attention in order to continue to optimize diets for 

performance. Cysteine sulfinic acid decarboxylase is another enzyme in the taurine 

synthesis pathway that is responsible for the conversion of the product of CDO, cysteine 

sulfinic acid, to hypotaurine, which devolves to taurine. Multiple attempts to design 

primers for this enzyme were unsuccessful for cobia tissues, and enzymatic assays in other 

marine species have shown no or minimal activity of this enzyme (Goto et al., 2001). 

Results from this study and attempts to detect mRNA for this enzyme appear to indicate 

that cobia do not express it in appreciable amounts in the tissues examined here, which 

would significantly impact the ability of this species to synthesize taurine. Overall, the 

slight increases in production characteristics with 0.5 and 1.5% additions of taurine seem 

to indicate that adequate dietary input is available, as minimal increases in dietary input 

result in subsequent increases in production; increases that would not be anticipated if cobia 
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maintained the ability to synthesize even small quantities of taurine. The drop in production 

at the 5 % addition level may indicate that some other limiting amino acid is being spared 

with that level of taurine inclusion. Although, the continued increase in plasma, liver, and 

fillet taurine levels indicate that this dietary input level does not negatively impact 

physiology, as multiple routes exist to remove excess taurine through urinary or bile salt 

excretion. Taurine was the only conjugate of bile salts observed, consistent with other 

studies of teleost bile (Une et al., 1991) and confirming another critical role for this amino 

acid in cobia. The ability of cobia to thrive on low lipid diets may be due to this role of 

taurine. High protein (49-51 % CP) and low lipid (12 % CL) diets in both eight week trials 

of this study (9.12 g initial weight in trial 1, 127 g initial weight in trial 2) resulted in 

excellent feed conversion (≤ 1.04 in trial 1, ≤1.52 in trial 2), growth rates (≥ 4.72 in trial 1, 

≥ 2.07 in trial 2), and high survival (≥ 98 % in trial 1, 100 % in trial 2) expected of fully 

developed juvenile cobia on appropriate dietary formulations. Closed formulation 

commercial feeds have not performed as well in recirculating aquaculture systems with 

larger (26.7 g initial weight) juvenile cobia (Wills et al., 2013) generally resulting in lower 

survival (56-80 %) and growth rates (≤ 3.6 SGR) when compared to the diets in this study. 

Although utilizing a larger initial weight (29.2 g), Weirich et al. (2010) reported similar 

growth rates (4.23 % d-1) and survival (97.9%) on their lowest lipid commercial diet (9.9% 

CL) when compared to those observed in this study. The previous study also utilized two 

higher lipid diets (13.8% and 16.4% CL) that did not perform as well as the 9.9% CL diet. 

Cobia clearly have different dietary requirements for optimal growth and feed efficiencies 

than other marine species, which explains the poor performance of cobia when fed 

commercial feeds developed for freshwater or anadromous species. 
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In conclusion, increased dietary taurine input slightly increased production 

characteristics as has been observed previously in cobia and other species (Gaylord et al., 

2007; Lunger et al., 2007; Pinto et al., 2010) but resulted in a significant increase in tissue 

taurine levels, a potential added human health benefit of such dietary supplementation for 

aquaculture species.  
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Analysis of Schillinger Genetics, Inc. non-genetically modified (non-GM) cultivars 3010 

and 3032 as fishmeal replacements for cobia, Rachycentron canadum 

 

Abstract  

 Two non-genetically modified cultivars of soybeans developed by Schillinger 

Genetics, Inc. were examined as potential fishmeal replacement candidates for juvenile 

cobia, Rachycentron canandum. Cultivars 3010 and 3032 were used to replace either 50, 

60, or 70 % or 40, 50, or 60 %, respectively, of protein supplied by fishmeal compared to 

a commercial-like reference diet during a twelve week trial. 50 % replacement of fishmeal 

with 3010 performed significantly better than the 50 or 60 % replacements with 3032 in 

terms of weight gain and feed conversion, with none of the experimental diets performing 

significantly different than the reference. There was however a trend within each meal type 

of decreasing performance as inclusion level increased, although not significant. Despite 

the reduction of the anti-nutritional factors known to be present in soy meals through the 

marker assisted selection techniques utilized by Schillinger Genetics, this trend potentially 

indicates a negative effect of utilizing too high a quantity of these individual soy 

ingredients. Organoleptic analysis of fillets from all seven diets revealed no significant 

differences in major flavor or aromatic groups. Taken together, these results indicate that 

both the 3010 and 3032 cultivars are acceptable fishmeal replacements alone at relatively 

high inclusion levels without significant impact on performance characteristics or fillet 

quality. 
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Introduction 

 As the world’s population and protein demands continue to increase, more pressure 

is put on the aquaculture industry to supply safe, sustainable seafood. However, with catch 

fisheries at their maximum potential yield, or with declining yields, fishmeal and fish oil 

production has remained static over much of the last decade (Tacon and Metian, 2009). 

Without increasing production of fishmeal and fish oil, the use of these ingredients as the 

staple protein and lipid sources in diets for aquaculture indicates that the aquaculture 

industry will be unable to expand to meet current and anticipated global needs. 

 The solution to this issue is to reduce the use of fishmeal and fish oil in feeds by 

replacing them with suitable alternatives. There are many potential protein replacements 

that can be derived from marine and terrestrial sources such as by-product meals from 

animal production, by-product meals from other seafood processing, algal meals, and algal 

biomass as a by-product from the growing biofuels industries (FAO, 2012). The most 

abundant, accessible, and sustainable source of proteins however are derived from 

terrestrial plants. Several issues arise with replacing fishmeal with any alternative protein 

source. Amino acid profile in comparison to fishmeal, crude protein and lipid levels, and 

potential negative effects of anti-nutritional factors are a few of the challenges that must 

be addressed when utilizing high percentages of certain plant proteins. 

 Protease inhibitors such as those of trypsin, chemotrypsin and elastase, hormonal 

inhibitors like glucosinolates, unavailable phosphorous complexed as phytic acid, high 

fiber levels, and complex carbohydrates can all have negative effects on palatability, 

digestibility, and growth in fish. This is especially true of the high-value marine carnivores 

targeted by aquaculture that may not possess the required digestive capabilities to handle 
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these otherwise foreign protein sources. Several of the effects of anti-nutritional factors can 

be eliminated or mediated during processing, or with extra processing steps while 

producing feed grade meals from various plant sources. However, in deactivating or 

eliminating anti-nutrients additional processing steps such as steaming, roasting, and acid 

or alcohol percolation also damage nutrients that otherwise could contribute to the final 

formulation.  

 Another route to producing feed grade meals from plant sources that are suitable for 

fishmeal replacement has been through genetic modification (GM). Most GM in soy have 

focused on increasing agronomic yield and indeed have succeeded in bringing the 

bushels/acre from 28 in 1984 to ~44 in 2010. The dominating GM variety is Roundup 

Ready® soy, which is modified to be tolerant to the herbicide glyphosate (Padgette et al., 

1995). Many of the modifications introduced into different crop strains have aimed at 

achieving the same objective, making the plants resistant to certain herbicides, insecticides 

and fungicides. This significantly reduces observed mortality in crop fields, but may have 

many unintended negative effects on surrounding plant and animal life. However, a few 

genetic modifications have not been designed for resistance but instead have been aimed 

at increasing the nutritional value on the crop itself through increased amino acid 

production, reduction in anti-nutritional factors, or increased production of fatty acids. 

However, the potential occurrence of unintended effects of GM is one issue that remains 

to be adequately addressed from a safety perspective in plants and animals intended as feed 

ingredients or directly as food (Kuiper and Kleter, 2003; Kuiper et al., 2002). Today, 

transgene insertion is an imprecise and poorly understood event, and introduction of 

superfluous DNA, as well as deletions and rearrangements of host DNA at the insertion 
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site, are common occurrences (Latham et al., 2006; Somers and Makarevitch, 2004). An 

insertion might disrupt transcription of endogenous genes, resulting in unintended changes 

in levels of macro/micronutrients, anti-nutritional factors or production of toxic 

compounds (Cellini et al., 2004). 

 Although GM technology can currently help produce suitable, sustainable protein 

sources, political and economic considerations prevent its global use as many GM 

organisms are tightly regulated in many countries and are prohibited in some depending on 

the source of the modification and its objectives. The research, development, and approval 

process for GM products can also be lengthy and very costly, reducing the economic 

suitability of GM seeds for many crops.  Also, due to patent and proprietary reasons, many 

GM seeds are designed to produce sterile adult plants, requiring farmers to purchase new 

seeds every year. For these reasons, GM crops may not be viable options in many 

developing parts of the world where utilizing GM plants in feed production as opposed to 

direct human consumption is potentially cost prohibitive, or in many developed countries 

with strict regulations.  

 Selective breeding techniques of only selecting individuals for propagation that 

exhibit high levels of targeted traits has been the traditional method of increasing 

production in the majority of agricultural fields. Increasing yield, disease and pathogen 

resistance, enhancing flavors, and many other traits have been modified in current strains 

of cultured plants and animals. This process is a much slower one than genetically 

modifying an organism with specific target genes, however, when coupling the traditional 

selection method with genetic marker assisted selection the length of time needed to 

develop strains with target traits can be greatly reduced. This marker assisted selection is 
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the process Schillinger Genetics, Inc. has used to develop multiple cultivars of soybean 

strains with potential as fishmeal replacements in diets for aquaculture. The biggest impact 

these selections have had in terms of developing strains suitable as feed ingredients has 

been the reduction of the anti-nutritional factors raffinose, stachyose, and trypsin inhibitors.  

Even with reduced anti-nutritional factors, species specific determination of 

digestibility and acceptability of these ingredients at increasing levels is needed to 

maximize protein and amino acid utilization and determine the extent to which an 

individual ingredient can be utilized to replace fishmeal. To this end, this study was 

undertaken to examine the effects of utilizing non-GM soybeans at high fishmeal protein 

replacement levels (40-70%) in juvenile cobia, Rachycentron canadum. Cobia are a 

naturally carnivorous, hardy species with great aquaculture potential, and have shown the 

ability to thrive on many types of fishmeal replacement sources (Chou et al., 2004; Craig 

et al., 2006; Lunger et al., 2006; Salze et al., 2010; Watson et al., 2012; Zhou et al., 2005). 

 

Methods and Materials 

Diet Preparation 

 Formulations of the seven experimental diets are shown in Table 4.2.1. Due to 

differences in total protein and lipid content, diets were formulated to replace 50, 60, or 70 

% of protein supplied by fishmeal with SG’s 3010 (referred to as 3010 50%, 3010 60%, 

and 3010 70%) or 40, 50, or 60 % of fishmeal protein with SG’s 3032 (referred to as 3032 

40%, 3032 50%, and 3032 60%). 3010 is a cooked, solvent-extracted meal containing 0.07 

% raffinose, 0.50 % stachyose, and ~1,700 TIU (trypsin inhibitor units) while the 3032 

ingredient is a full fat, cold pressed cake product containing <0.05 % raffinose, 1.31 % 
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stachyose, and ~3,300 TIU. Amino acid profiles of the 3010, 3032, and typical menhaden 

fishmeal are shown in Table 4.2.2. Diets were formulated to be isonitrogenous, isocaloric, 

and contain similar amino acid profiles. For all diets, ingredients were ground using an air-

swept pulverizer (Model 18H, Jacobsen, Minneapolis, MN) to a particle size of <200μm. 

All dry ingredients were mixed prior to extrusion. Pellets were prepared using a twin-screw 

cooking extruder (DNDL-44, Buhler AG, Uzwil, Switzerland) with an 18 second exposure 

to 127°C in the extruder barrel. Pressure at the diet head was approximately 26 bar, and a 

die head temperature of 71 °C was used. The pellets were dried for approximately 15 min 

to a final exit air temperature of 102 ºC using a pulse bed drier (Buhler AG, Uzwil, 

Switzerland) followed by a 30 min cooling period to product temperature less than 25 °C 

before top coating the oil component. Final moisture levels were less than 10 % for each 

diet. Diets were stored in plastic lined paper bags at room temperature, and were fed within 

six months of manufacture. Portions of each diet were analyzed by New Jersey Feed Labs, 

Inc. (Trenton, NJ) for proximate composition (Table 4.2.1). 
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Table 4.2.1. Diet formulations and proximate compositions of the seven experimental 
feeds. 

1 New Jersey Feeds Labs analysis. 
2 Calculated by difference (100-Water-Protein-Ash-Fat-Fiber). 

 

 

 

 

 

 

Ingredient (g 100g-1) Reference 3010 
50 

3010 
60 

3010 
70 

3032 
40 

3032 
50 

3032 
60 

Menhaden Meal 45.5 22.9 18.0 13.4 27.4 23.5 18.4 
Poultry meal 7.5 3.8 3.0 2.3 4.5 3.8 3 
Wheat Flour 16 15.0 14.0 9.9 15.0 15 14 
Soy Protein Concentrate 7.5 3.8 3.0 2.3 4.5 3.8 3 
SG-3010 -- 35.1 42.5 50.7 -- -- -- 
SG-3032 -- -- -- -- 31.2 39 48 
Corn 17 9.4 8.6 8.4 8.0 6.1 4.5 
Menhaden Oil 3.9 6.4 7.3 9.2 6.2 5.6 5.8 
Vitamin pre-mix 1 1.0 1.0 1.0 1.0 1 1 
Trace mineral pre-mix 0.1 0.1 0.1 0.1 0.1 0.1 0.1 
Taurine 1.5 1.5 1.5 1.5 1.5 1.5 1.5 
Lysine HCL -- 0.1 0.1 0.3 0.1 0.1 0.1 
DL-Methionine -- 0.8 0.9 1.1 0.5 0.5 0.6 
        
Proximate Composition        
Water (g 100g-1) 4.41 4.87 4.77 4.53 4.74 4.78 5.19 
Protein (g 100g-1 dm)1 47.7 45.6 44.5 45.5 46.1 45.4 44.9 
Fat (g 100g-1 dm)1 8.02 9.92 10.12 9.99 9.54 9.85 9.90 
Fiber (g 100g-1 dm)1 1.64 1.19 1.32 1.30 1.42 1.27 1.48 
Ash (g 100g-1 dm)1 9.51 9.41 8.20 7.49 7.29 8.33 7.72 
Carbohydrate (g 100g-1 
dm)2 28.72 29.01 31.09 31.19 30.91 30.37 30.81 

Energy (MJ Kg-1) 18.65 18.97 19.22 19.29 19.19 19.19 19.29 
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Table 4.2.2. Amino acid profiles of main protein ingredients utilized. 
Amino Acid SG 3010 SG 3032 Fish Meal1 
Arginine* 4.26 3.64 4.05 
Glycine 2.29 2.03 3.87 
Histidine* 1.45 1.28 2.03 
Isoleucine* 2.52 2.14 3.20 
Leucine* 4.19 3.71 5.51 
Lysine* 3.60 3.21 5.73 
Methionine* 0.73 0.69 1.95 
Cysteine 0.76 0.74 0.53 
Phenylalanine* 2.82 2.42 3.27 
Tyrosine 1.82 1.58 2.58 
Serine 2.96 2.60 1.95 
Threonine* 2.07 1.79 2.97 
Tryptophan* 0.70 0.75 0.54 
Valine* 2.59 2.25 3.68 
Aspartic Acid 6.31 5.60 6.22 
Glutamic Acid 10.34 9.12 9.04 
Proline 2.83 2.46 - 
Alanine 2.33 2.09 - 
* Essential amino acid.   
1 Menhaden, Omega Protein.   

 

Experimental Fish and Systems 

This study was carried out in accordance with the guidelines of the International 

Animal Care and Use Committee of the University of Maryland Medical School (IACUC 

protocol # 0610015). Approximately 500 juvenile (~2 g) cobia were obtained from the 

University of Miami, Miami, FL. Juveniles were housed at the Institute of Marine and 

Environmental Technology's Aquaculture Research Center, Baltimore, MD. Fish were 

“cold-banked”; maintained at 20 °C and fed a maintenance ration 5 days a week at 1.5 % 

bw daily for 6 weeks prior to acclimation, with cold-banking parameters based on Schwarz 

et al. (2007). Acclimation to study conditions at 27 °C and 5 % bw feeding daily occurred 
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over the course of two weeks, increasing 1 °C  per day and 0.5 % bw per day for one week, 

followed by maintenance at 27 °C for one week prior to grading and stocking. Fish were 

maintained on the reference diet until they reached an average weight of ~18 g at which 

point 12 fish were stocked into each of 21 identical tanks and randomly assigned one of 

the seven experimental diets in three replicate tanks per dietary treatment.  

 Six, 340-liter tanks connected to bubble-bead and biological filtration constituted 

the recirculating systems used, with four replicate systems occupied simultaneously during 

the trial on a photoperiod of 14L:10D. During the trial water quality parameters were: 

temperature, 26.88 ± 1.06 °C; salinity, 26.78 ± 1.81 ppt; pH, 7.77 ± 0.22; total ammonia 

nitrogen, 0.23 ± 0.24 mg l-1; nitrite, 0.39 ± 0.21 mg l-1; and alkalinity, 139.75 ± 48.10 mEq 

l-1, with no significant differences in water quality parameters between systems utilized (p 

> 0.05). 

 The trial was conducted for 12 weeks, with tank weights recorded and feeding rates 

adjusted weekly to 5 % bw day-1 for the first 6 weeks, reduced to 3.5 % from 6 weeks 

through 10 weeks, and 3.0 % for the final 2 weeks of the trial as feed conversion ratio 

gradually increased. Fish were fed by hand four times daily to maintain apparent satiation 

and avoid overfeeding. 

 

Sampling 

 Three fish from each tank were removed, bled and euthanized 8 weeks into the trial. 

The blood samples were immediately centrifuged (10,000 x g for 15 min) to separate 

plasma, which was stored at 4°C prior to shipping to NOAA-NWFSC, Seattle, WA. Two 

plasma samples from each tank (6 samples per dietary treatment) were analyzed on an 
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IDEXX VetTest Chemistry Analyzer (model 8008, software version 8.33A, IDEXX Labs, 

Westbrook, Maine, U.S.A.) at NOAA-NWFSC within 48 hours of shipping.  

 At the conclusion of the 12 week trial, six fish from each tank were weighed (g), 

measured (cm), bled, euthanized, and dissected for target tissues. Fish were fed to apparent 

satiation approximately 3 hr prior to sampling to ensure the presence of gut contents. Blood 

was centrifuged (10,000 x g for 15 min) to separate plasma and both plasma and blood 

pellet samples were shipped to Texas A&M University (TAMU). Kidneys from 3 fish from 

each tank were removed and placed in L15 media prior to shipping to TAMU. Intestines 

were extracted and delineated from the pyloric caeca to the anus. Three sets of intestines 

from each tank were immediately placed into Davidson’s fixative and transferred to 70 % 

EtOH after 15 h prior to shipping to TAMU. The other three sets of intestines had their 

contents gently squeezed into micro-centrifuge tubes and were immediately frozen in liquid 

nitrogen prior to shipping to TAMU for denaturing gradient gel electrophoresis (DGGE) 

analysis. Three fillets for organoleptic analysis were taken from each tank along with three 

whole bodies for proximate composition and stored at -20 °C prior to shipping to the 

University of Arkansas and TAMU, respectively. Blind organoleptic analysis was 

performed by a panel of ten spectrum method trained panelists, with randomized sample 

presentation and fillets cooked to a consistent white, flaky state. 
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Production characteristics were determined as follows: 

Weight gain (%) = 100 ∗  (
final wieght (g) − initial weight(g)

initial wieght (g)
) 

Feed conversion ratio (FCR) = (
food fed (g)

weight gained (g)
) 

Feed efficiency (FE) = (
weight gained(g)

food fed (g) ) 

Specific growth rate (SGR) = 100 ∗ (
ln final weight (g) − ln initial weight(g)

days of trial
) 

Protein efficiency ratio (PER) = (
weight gained (g)

protein fed (g)
) 

Condition factor (CF) = (
weight (g) ∗ 100

 length3
) 

 

Statistics 

All statistical tests were run using Aabel v.3.0.6 (Gigawiz Ltd., OK, USA) with 

significance values of p <0.05. ANOVA with Tukey's HSD post-hoc analyses were used 

to determine differences between dietary treatments. 

 

Results 

Production Characteristics 

 No negative effects of the “cold-banking” were observed as growth rates from all 

seven diets fell within previously observed ranges for these size ranges and rearing 

conditions at IMET (Watson et al., 2012). At the conclusion of the 12 week trial, weight 

gain as a percent increase from initial weight was 1,491 % for the reference diet, which 

 
 

117 
 



 

was not significantly different from any of the six experimental feeds with varying levels 

of SG soy protein ingredients. Inclusion of the 3010 ingredient at levels of 50, 60, and 70 

% resulted in weight gains of 1,723 %, 1,517 %, and 1,459 %, respectively. Inclusion of 

the 3032 ingredient at levels of 40, 50 and 60% resulted in weight gains of 1,446 %, 1,296 

%, and 1,279 %, respectively. Only the 3010 50% resulted in significantly higher weight 

gain than 3032 50% and 3032 60%, no other significant differences in weight gain between 

diets was observed (Table 4.2.3). The general trend within both sets of diets (3010 and 

3032) was a decrease in weight gain as inclusion level increased. 

 Feed efficiency (FE) and feed conversion ratio (FCR) are the inverse of one 

another, although different groups within aquaculture prefer one over the other, so both are 

reported here (Table 4.2.3). FE values ranged from a high of 0.83 from the reference diet 

to 0.65 from the 3032 60% diet. FCR ranged from a low of 1.20 in the reference diet to 

1.53 in the 3032 60%. There were varying significant differences between the diets in both 

FE and FCR with the general trend of increasing performance within each diet type (3010 

and 3032) with the 3010 diets outperforming the 3032 diets. 

 Specific growth rate (SGR) for the 12 week trial ranged from 3.12 in the 3032 60% 

diet to 3.45 in the 3010 50% diet. Only the 3010 50% diet was significantly higher than the 

3032 50% and 3032 60% diets, with no other significant differences between diets or when 

compared to the reference diet (Table 4.2.3). Again, the general trend within each diet type 

(3010 and 3032) was an increase in SGR as inclusion level decreased, although there were 

no significant differences in SGR within each diet type.  
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Table 4.2.3. Production Characteristics (mean ± S.D.). Values with different superscript letters 
are significantly different from one another (p<0.05).
Diet Weight Gain (%) SGR FE PER FCR CF

Reference 1491.25 ± 107.41a,b 3.29 ± 0.08a,b 0.83 ± 0.02a 1.74 ± 0.04a,b 1.20 ± 0.03a 0.637 ± 0.05a

3010 50% 1723.13 ± 130.03a 3.45 ± 0.08a 0.82 ± 0.03a,b 1.79 ± 0.07a 1.23 ± 0.05a 0.715 ± 0.04b

3010 60% 1517.50 ± 112.71a,b 3.31 ± 0.08a,b 0.75 ± 0.03b,c 1.69 ± 0.08a,b 1.33 ± 0.06a,b 0.688 ± 0.06a,b

3010 70% 1459.63 ± 147.63a,b 3.27 ± 0.11a,b 0.76 ± 0.02a,c 1.68 ± 0.05a,b 1.31 ± 0.04a,b 0.702 ± 0.06a,b

3032 40% 1446.73 ± 23.77a,b 3.26 ± 0.02a,b 0.73 ± 0.02c,d 1.58 ± 0.05b,c 1.37 ± 0.04b,c 0.688 ± 0.05a,b

3032 50% 1296.63 ± 85.32b 3.14 ± 0.07b 0.68 ± 0.03d 1.49 ± 0.07c 1.48 ± 0.07c,d 0.711 ± 0.06a,b

3032 60% 1279.18 ± 84.62b 3.12 ± 0.07b 0.65 ± 0.02d 1.46 ± 0.05c 1.53 ± 0.05d 0.704 ± 0.05a,b

Pooled SE 60.93 0.46 0.02 0.03 0.03 0.02
P>F 0.003 0.003 <0.001 <0.001 <0.001 0.046

Table 4.2.4. Whole body proximate compositions from 
experimental fish (average ± S.D. for 6 fish per diet). Values with 
different superscript letters are significantly different from one 
another (p<0.05).
Diet Moisture Protein Lipid Ash

Reference 71.63 ± 0.42a 59.48 ± 1.26 8.20 ± 0.34a 2.39 ± 0.19
3010 50% 70.46 ± 0.72a,b 57.09 ± 1.47 8.97 ± 0.30a,b 2.48 ± 0.20
3010 60% 69.06 ± 0.46b 55.49 ± 0.58 10.07 ± 0.22b 2.91 ± 0.07
3010 70% 70.96 ± 0.20a,b 57.20 ± 0.97 9.28 ± 0.24a,b 2.86 ± 0.10
3032 40% 70.42 ± 0.23a,b 56.29 ± 0.66 8.83 ± 0.37a 2.97 ± 0.09
3032 50% 70.11 ± 0.42a,b 56.21 ± 0.64 9.27 ± 0.15a,b 2.92 ± 0.18
3032 60% 70.95 ± 0.36a,b 57.35 ± 0.59 8.68 ± 0.16a 2.78 ± 0.05
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 Protein efficiency ratio (PER) for the 12 week trial ranged from 1.46 in the 3032 

60% diet to 1.79 in the 3010 50% diet. The reference diet produced a PER of 1.74, which 

was significantly higher than the 3032 50% and 3032 60% diets (Table 4.2.3). There were 

no significant differences within each diet type (3010 and 3032) when comparing inclusion 

rates of each protein, although in both diet types PER increased as inclusion level 

decreased. 

 Condition factor (CF) for the 12 week trial ranged from 0.637 for the reference diet 

to 0.715 for the 3010 50% diet. This was the only significant difference observed (Table 

4.2.3) with no other diets being different from each other, the reference, or within each diet 

type (3010 or 3032). CF did not follow the pattern of the other production characteristics 

in that there was no general trend within each diet type with respect to inclusion level. 

 Whole body proximate compositions are presented in Table 4.2.4. There were no 

significant differences between the seven diets in whole body protein or ash content 

(ANOVA p>0.05). The 3010 60% diet was significantly lower in whole body moisture 

percent (69.06 ± 0.46) than the reference diet (71.63 ± 0.42), though no other significant 

differences were observed in moisture content. The 3010 60% diet was also significantly 

higher in whole body lipid content (10.07 ± 0.22) when compared to the reference diet 

(8.20 ± 0.34) and the 3032 diets at the 40 % (8.83 ± 0.37) and 50 % (8.68 ± 0.16) inclusion 

levels. 
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Plasma Analysis 

The results of the plasma analysis performed after 8 weeks of the trial are in Table 

4.2.5. Of the 13 analytes measured, the only analyte that differed significantly between any 

of the diets was glucose, which ranged from 3.24 mM in the 3032 50% diet to 6.25 mM in 

the reference diet. The reference diet was significantly higher than all other diets except 

the 3010 60% and 3032 60% diets. No other significant differences were found between 

diets. Urea (mM) and phosphorous (mM) were the only two analytes where slight trends 

were observed within each diet type (3010 and 3032) with urea increasing and phosphorous 

decreasing within each diet type as inclusion of the target soy ingredient increased. 

 

Organoleptic Analysis 

Results of the organoleptic analysis can be seen in Figure 4.2.1. Panel A presents 

the basic taste parameters reported by the testers with panel B showing the aromatics. No 

significant differences were detected between any of the seven diets in regards to basic 

tastes or aromatics (ANOVA, p>0.05). 

 
Figure 4.2.1. Results of blind organoleptic analysis of seven diets used in a trial with 
juvenile cobia. No significant differences were determined between any of the diets in 
terms of basic tastes or aromatics (ANOVA, p>0.05). 
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Table 4.2.5. Plasma analysis performed at NOAA-NWFSC. Values with different superscript letters are significantly different 
from one another (p<0.05).

Reference 3010 50% 3010 60% 3010 70% 3032 40% 3032 50% 3032 60%

Albumin (g L-1) 5.67 ± 0.23 6.17 ± 0.19 6.50 ± 0.17 5.67 ± 0.17 5.83 ± 0.19 5.17 ± 0.19 6.00 ± 0.24

Alkaline Phosphatase (U L-1) 18.67 ± 0.90 21.67 ± 1.20 20.33 ± 0.51 25.50 ± 2.28 22.17 ± 0.81 22.00 ± 1.09 18.80 ± 0.70

Amylase (U L-1) 103.33 ± 3.31 105.17 ± 1.91 112.00 ± 3.18 102.83 ± 1.88 110.33 ± 1.50 92.50 ± 2.63 107.80 ± 5.05

Urea (mM) 1.67 ± 0.10 1.28 ± 0.05 1.50 ± 0.06 1.67 ± 0.09 1.33 ± 0.03 1.48 ± 0.11 1.74 ± 0.05

Ca (mM) 2.92 ± 0.02 3.04 ± 0.03 3.05 ± 0.01 3.08 ± 0.03 2.99 ± 0.02 2.92 ± 0.03 3.02 ± 0.01

Cholesterol (mM) 1.23 ± 0.05 1.34 ± 0.02 1.43 ± 0.01 1.31 ± 0.04 1.41 ± 0.02 1.41 ± 0.04 1.39 ± 0.04

Globulin (mM) 27.50 ± 0.27 28.50 ± 0.23 29.67 ± 0.17 28.17 ± 0.27 28.80 ± 0.18 28.17 ± 0.25 28.20 ± 0.30

Glucose (mM) 6.25 ± 0.33a 3.48 ± 0.15b 4.78 ± 0.19a,b 3.97 ± 0.17b 3.30 ± 0.19b 3.24 ± 0.13b 4.18 ± 0.23a,b

Mg (mM) 1.06 ± 0.02 1.01 ± 0.01 1.08 ± 0.03 1.10 ± 0.03 1.02 ± 0.02 1.04 ± 0.03 1.03 ± 0.02

Phosphorous (mM) 4.38 ± 0.09 4.58 ± 0.07 4.48 ± 0.09 4.30 ± 0.06 4.71 ± 0.06 4.39 ± 0.10 4.24 ± 0.09

Total Bilirubin (umol L-1) 2.17 ± 0.07 2.00 ± 0.00 2.00 ± 0.00 2.00 ± 0.00 2.33 ± 0.14 2.00 ± 0.00 2.00 ± 0.00

Total Protein (g L-1) 33.00 ± 0.49 34.67 ± 0.43 36.33 ± 0.34 33.83 ± 0.37 34.60 ± 0.38 33.17 ± 0.44 34.20 ± 0.41

Triglycerides (mM) 0.68 ± 0.03 0.60 ± 0.02 0.56 ± 0.01 0.64 ± 0.02 0.70 ± 0.01 0.71 ± 0.03 0.68 ± 0.04
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Discussion 

 This feeding trial was undertaken to investigate the effects of different inclusion 

levels of two non-GM soy protein products from Schillinger Genetics, Inc. as fishmeal 

replacement sources. The 3010 and 3032 ingredients were included in dietary formulations 

to replace 50, 60, 70% or 40, 50, 60% of fishmeal protein, respectively. A reference diet 

was formulated containing 45.5% fishmeal, and fishmeal inclusion varied in the 

experimental diets from 13.4% to 27.4%. Poultry meal, wheat flour, soy protein 

concentrate, corn, and fish oil were all varied between diets to maintain isonitrogenous, 

isolipidic, and isocaloric qualities. There was a difference in total lipid content with the 

3010 60% diet having slightly higher lipid than the other six diets, a difference that 

translated to a significantly higher whole body lipid content in fish fed this diet when 

compared to the reference diet and the 3032 40% and 50% diets (Table 4.2.4). 

Few difficulties were encountered during the feeding trial, but it is important to 

note that with the rapid growth and high feeding rates for all diets, densities within the four 

systems approached 10kg m3, which is a significant accomplishment for these systems 

considering their lack of drum filtration, protein skimming, ozone or UV systems. This 

speaks to the high tolerance cobia have over a wide range of conditions. The cobia were 

very tolerant to the subsequent high turbidity that occasionally occurred in the tanks, and 

flow rate was partially hindered by the build-up of irremovable solids and the “sticky” 

nature of the waste and solids that result from diets high in plant ingredients, especially soy 

ingredients. Although water quality parameters (ammonia, nitrite, pH, and alkalinity) in all 

four systems were maintained at levels significantly lower than hazardous, low dissolved 

oxygen levels were occasionally encountered due to the biomass load on the systems, the 
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slowing of flow, and the buildup of an organic biofilm on the air stones. All of these system 

issues were easily remedied by regular maintenance but it is important to note the issue of 

solids building up in the plumbing of recirculating systems when using diets with such high 

soy inclusion levels without the use of powerful mechanical filtration such as drum filters. 

 Overall, the diets utilizing the 3010 outperformed the diets utilizing the 3032 

ingredient in terms of weight gain (%), specific growth rate (SGR), feed efficiency (FE) 

and protein efficiency ratio (PER) with no overlap. Although not significant within each 

diet type (3010 or 3032) there was a trend for each production characteristic to improve as 

inclusion level of the soy protein of interest decreased. Other than the 3010 50% diet 

significantly outperforming the 3032 50% and 3032 60% diets in all characteristics 

measured, there were few significant differences between diet types or comparing 

individual dietary performance to the reference diet.  

The 3010 50% and 3010 60% diets were the only two to outperform the reference 

diet in weight gain and SGR, although FE, FCR, and PER were not improved compared to 

the reference. 

Condition factor was the only index measured that did not show a trend within or 

between diet types, with the only significant difference being between the reference diet 

(0.637) and the 3010 50% diet (0.715) which were the minimum and maximum CF’s 

during the trial. It is noteworthy that the reference diet with 45.5% fishmeal resulted in the 

lowest CF and all diets with high soy inclusion levels had CF’s above 0.688. These 

relatively low CF values compared to other species are not unusual for juvenile cobia, as 

this species is long and lean until reaching larger sizes (800+g). 

 
 

124 
 



 

The plasma analysis during this trial was conducted at NOAA-NWFSC in Seattle, 

WA. Although there is not a wealth of data on the plasma parameters measured in this 

study for a wide range of teleost species, the data collected in this trial agree with 

previously analyzed cobia plasma samples from our lab (UCLA analysis; unpublished data) 

and will help in the validation of using this particular analyzer for future studies. Only 

glucose showed a significant difference in any of the experimental diets when compared to 

the reference diet, potentially due to the increased digestibility of fishmeal when compared 

to plant proteins utilized in the experimental feeds, although this did not appear to affect 

growth. The significant inclusion of single soy ingredients in the experimental diets also 

did not have a significant impact on the majority of plasma components analyzed, 

potentially indicating no negative kidney function effects of the high inclusions, as many 

of the components measured are directly correlated to kidney function in higher vertebrates 

and mammals that the analysis panels are designed for. 

In summary, none of the experimental diets performed significantly differently than 

the reference diet in terms of weight gain or SGR, however the higher inclusion levels (50 

and 60%) of 3032 resulted in significantly poorer performance in FE, FCR, and PER. 

Organoleptic analysis also failed to discern differences between the fillets from fish fed 

any of the experimental diets when compared to each other or the reference diet, indicating 

no negative effects on flavor or aromatics to the consumers of fish fed these high non-GM 

soy ingredient diets. Although not significantly, the 3010 diets outperformed the reference 

diet in most characteristics at the 50 and 60% inclusion levels before seeing a drop-off in 

performance at the highest inclusion level (70%). These results indicate that the 3010 

cultivar may be a more promising ingredient than 3032 for high levels of fishmeal and total 
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protein replacement for juvenile cobia. Both of these ingredients are ideal candidates for 

use in plant protein blends utilizing multiple sources of protein ingredients where no single 

ingredient is included at levels higher than 30% of the total diet to minimize potential 

negative impacts of specific anti-nutritional factors. 
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Developing a plant-based diet for cobia, Rachycentron canadum 

Watson, A.M., Kissil, G. Wm., Barrows, F.T., Place, A.R. 2012. Developing a plant-based 
diet for cobia Rachycentron canadum. International Aquafeed. 15:1, 34-38. 
 
 
 Aquaculture reached a landmark in 2009, supplying greater than half of the total 

fish and shellfish for human consumption (Naylor et al., 2009). With global fisheries in 

decline and human population increasing, the gap between protein supply and protein 

demand is widening. Aquaculture must continue to expand to meet these growing needs, 

and it must do so in a safe, sustainable manner that decreases the world's reliance on 

harvesting fish for fishmeal while still producing a high quality product. There are several 

difficult hurdles the aquaculture industry now faces if this needed growth is to occur. These 

include, but are not limited to; the continued heavy reliance upon capture and reduction 

fisheries to supply fishmeal and fish oil as the major base components for aquatic feeds, 

build-up of contaminants from these wild caught ingredients in the final products, and 

public perception that aquaculture in its current state is not sustainable and is a detriment 

to local ecosystems (Naylor et al., 2009). Tacon and Metian (2008) reported that 36.2 % 

of total worldwide catch in 2006 was destined for non-human consumption, meaning the 

reduction to fishmeal and fish oil for aquaculture diet formulation, the pet food industry, 

or as bait. The aquaculture industry currently consumes roughly 68.2 % of global fishmeal 

production and 88.5 % of global fish oil production (Tacon and Metian, 2008). These trends 

are not sustainable given the state of the world’s fisheries and alternatives to fishmeal and 

fish oil must be found to ensure the sustainability and expansion of the industry as well as 

the conservation of wild populations and ecosystems. 
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 Replacement of fishmeal and fish oil in aquaculture diets has been a goal for several 

decades but has met with limited success often due simply to the cost and inconsistency in 

the quality and quantity of the product produced. Replacing fishmeal and fish oil for 

freshwater species without loss in production is easier to accomplish than it is with marine 

species. This may be due in part to the fact that many freshwater fish are extensively 

cultured and enjoy a much deeper knowledge and experience base than their marine 

counterparts, but it may also be a result of most freshwater species in culture being 

herbivores, omnivores, or scavengers in their natural systems. Most marine species that are 

sought for intensive culture on the other hand, are carnivorous, which precludes different 

dietary habits and requirements.  

 Our research has centered on replacing fishmeal with a blend of plant protein 

sources to completely eliminate the need for fishmeal in diets for cobia, Rachycentron 

canadum, and other high-value marine carnivores. Cobia are a highly carnivorous species 

(Franks et al., 1996; Arendt et al., 2001)  found tropically and sub-tropically around the 

world except for the eastern Pacific, are highly fecund and can be spawned both naturally 

and through artificial induction in captivity, display rapid growth rates and high natural 

disease resistance, and are adaptable to a variety of culture and tank conditions (Holt et al., 

2007). This species is a prime target in the need to increase aquaculture production and 

serves as an excellent model species due to its rapid growth and limited competition from 

a wild fishery.  

 Several physiological issues are presented however, with the use of plant proteins 

as opposed to other alternative protein sources such as animal meals. Digestibility of plant 

proteins, possible anti-nutritional factors present, palatability, and lack of essential amino 
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acids all must be solved to successfully replace fishmeal with plant proteins. Digestibility 

can be examined on a species specific basis, one protein source at a time as we have done 

with juvenile cobia utilizing an inert marker such as chromium oxide (Table 4.3.1). This 

process involves feeding experimental diets containing a fishmeal base along with each 

individual protein source, gently stripping feces and analyzing them for protein, lipid, and 

energy content in relation to the concentration of the inert marker, and comparing results 

to those obtained from diets only containing the fishmeal base (Lupatsch et al., 1997). 

Through this process, digestible protein, lipid, and overall energy can be determined for 

the test ingredient. It is important to note however, that the ability to digest plant proteins 

may be different at different developmental stages depending upon the species' 

complement of digestive enzymes and intestinal flora.  

In our examination of six plant proteins (wheat gluten, barley meal, soy protein 

concentrate, corn gluten, soybean meal, and wheat flour) with juvenile cobia (400-700g), 

only one plant source (barley meal) was deemed to have too low a digestibility to be 

considered a viable replacement candidate, with the rest of the plant proteins having 

digestibility's similar to fishmeal sources (Table 4.3.2), indicating that for the most part, 

digestibility itself is not a primary obstacle. The lack of known essential amino acids from 

plant protein sources can easily be remedied by their addition during the formulation and 

manufacture of the diet, a common practice in the industry already for lysine, methionine, 

and threonine, along with other components known to be lacking in fishmeal replacement 

sources, or as additives simply to enhance growth, health, and palatability. The biggest 

issues have arisen when attempting complete fishmeal replacement as opposed to simply 

reducing the amount of fishmeal utilized in favor of plant proteins. Many researchers and 
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growers have encountered lower growth and survival rates when reducing the percentage 

of fishmeal inclusion in diets for marine fish below 10-20%, depending on the species. 

There appears to be at least one essential component found in fishmeal and other animal 

meals that is lacking in plant sources that is responsible for the inability to formulate plant-

based diets with complete fishmeal replacement. 

 

Table 4.3.1. Composition of diets used for determination of individual ingredient 
digestibility. 
         Diet       
  FM1 FM2 WG BM CG SPC SM WF 
Component (g  kg-¹)         
     Fish Meal 1 978  678 678 678 678   
     Fish Meal 2  978     678 678 
     Wheat Gluten   300      
     Barley Meal    300     
     Corn Gluten     300    
     Soy Protein Concentrate      300   
     Soybean Meal       300  
     Wheat Flour        300 
     Algal Meal         
     Vitamin Pre-Mixa 14 14 14 14 14 14 14 14 
     Chromium Oxide 8 8 8 8 8 8 8 8 
         
Proximate Analysis (g  kg -¹ DM)         
     Crude Protein 593 656 647 456 642 599 611 515 
     Crude Lipid 165 95 191 103 75 77 73 73 
     Ash 200 160 130 148 130 135 157 152 
     Gross Energy (MJ kg-¹) 20.27 19.38 19.17 20.05 20.92 19.1 13.61 13.95 
aContributed per kg diet; vitamin A, 13510 IU; vitamin D, 9.2 IU; vitamin E, 184.4 IU; menadione sodium 
bisulfite, 6.6 mg; thiamine mononitrate, 12.7 mg; riboflavin, 13.4 mg; pyridoxine hydrochloride, 19.2 mg; 
pantothenate, DL-calcium, 141.5 mg; cyanocobalamine, 0.04 mg; nictonic acid, 30.5 mg; biotin, 0.46 mg; 
folic acid, 3.5 mg. 
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Table 4.3.2.  Apparent digestibility coefficients (ADC) of individual ingredients. 
Apparent Digestibility (%)         Ingredient     
  FM1 FM2 WG BM CG SPC SM WF 
Crude Protein 91 84 83 53 92 85 76 89 
Crude Lipid 97 91 52 16 37 25 29 32 
Gross Energy 90 84 62 27 86 43 38 37 
         
DCPa (g kg-¹) 540 567 685 96 736 558 387 152 
DLb (g kg-¹) 155 85 24 5 19 5 6 6 
DEc (MJ kg-¹) 18 15 13 5 19 9 7 6 
aDigestible crude protein 
bDigestible lipid. 
cDigestible energy. 
 

 Taurine, an amino acid that is not incorporated into any proteins but plays critical 

roles in lipid metabolism, oxidative stress responses, muscle activity, and photoreceptor 

protection (Schuller-Levis and Park, 2003) is found in high concentrations in many tissue 

types in carnivorous fish and their prey (Satake et al., 1988), as well as fishmeal (Kim et 

al., 2005). Taurine is not found in high concentrations however, in many fishmeal 

replacement sources, most notably plant protein sources such as wheat flour, soy protein 

concentrate, and corn gluten. Due to its water solubility, taurine is also often found in low 

concentrations even in fishmeal-based diets and other fishmeal replacement sources, as 

large quantities of taurine are often lost in the processing of these ingredients. The re-

addition of the stickwater by-product, which is high in taurine and other free amino acids, 

back to the manufacturing of diets has been shown to increase growth in Atlantic salmon 

(Kousoulaki et al., 2009). Several researchers have noted increased feeding and growth 

rates in marine fish fed diets supplemented with taurine, especially when attempting to 

replace fishmeal either partially or completely (Martinez et al., 2004; Lunger et al., 2007; 

Gaylord et al., 2007; Matsunari et al., 2008).  
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 Based on the digestibility of the individual ingredients examined, two experimental 

plant protein-based diets (EPP1 and EPP2) were formulated (Table 4.3.3) with equivalent 

protein (~45%) and energy (~20Mj Kg-1) digestibility to commercially available feeds. 

Grow-out trials were conducted at the Institute of Marine and Environmental Technology 

(IMET) in eight foot diameter, four cubic meter, recirculating systems sharing mechanical 

and bio-filtration as well as life support systems. Both trials were conducted at 27°C and 

25 ppt, with 120 fish per tank in the first trial and 60 fish per tank in the second. The results 

of the first trial with EPP1 resulted in poor feed conversion, poor percent weight gain, and 

poor specific growth rate (4.66, 199%, 1.09; respectively, Table 4.3.3). Top coating EPP1 

pellets with attractants did not improve acceptance. Fish being fed the commercial feed 

had normal performance indices (FCR 1.32, % weight gain 900, and SGR 3.65) that 

indicated that this batch was healthy and grew at similar rates as other batches of cobia  
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Table 4.3.3. Diet formulations and performance indices for plant-based diets. 
  Diet 

Ingredient (g kg-¹) EPP1a EPP2b 

Soy Protein Concentrate 364.3 269.3 
Corn Gluten 201.0 211.0 
Wheat Flour - 226.5 
Barley Meal 104.5 - 
Soybean Meal, Solvent Extracted - 121.0 
Wheat Gluten 82.3 - 
Menhaden Oil 146.0 84.0 
Di-calcium Phosphate 40.7 23.7 
Vitamin Pre-mixc 10.0 10.0 
Lysine-HCL 21.5 15.5 
Choline CL 6.0 6.0 
Trace Mineral Pre-mixd 1.0 1.0 
Magnesium Oxide 0.5 0.5 
Stay-C 3.0 3.0 
DL-Methionine 3.4 5.8 
Threonine 2.1 2.1 
Potassium Chloride 5.6 5.6 
Taurine - 15.0 

Proximate Compositione Calculated Measured 

Lipid, % dm 15.1 7.87 ± 1.07  
Ash, % dm 4.5 4.98 ± 0.03 (5.15) 
Protein, % dm 47.4 49.50 (47.3) 
Carbohydrate, % dm by difference 32.67 35.14 
Fiber, % dm (0.33) (2.51) 
Moisture, % 5.3 7.14 (9.96) 
Energy Content, MJ Kg-1 20.7 19.30 ± 0.77 

Performance Indices EPP1i EPP2j 

FCRf 4.66 1.35 
Weight Gain (%) 199 379 
Hepatosomatic indexg nt 2.34 ± 0.001 

Specific Growth Rateh 1.09 2.36 
Survival 95% 98% 

a Experimental Plant Protein 1 
b Experimental Plant Protein 2 

c Contributed per kg diet; vitamin A, 9650 IU; vitamin D, 6.6 IU; vitamin E, 132 IU; 
menadione sodium bisulfite, 4.7 mg; thiamine mononitrate, 9.1 mg; riboflavin, 9.6 mg; 
pyridoxine hydrochloride, 13.7 mg; pantothenate, DL-calcium, 101.1 mg; 
cyanocobalamine, 0.03 mg; nictonic acid, 21.8 mg; biotin, 0.33 mg; folic acid, 2.5 mg. 
d Contributed in mg kg-¹ of diet; zinc 37; manganese, 10;  iodine, 5; copper, 1. 
e Values in parentheses were determined by New Jersey Feed Labs, Inc. 
f Feed conversion ratio (g fed/g gained). 
g Liver weight/body weight*100 ± standard deviation 
h SGR=specific growth rate= ((lnBW2-lnBW1)*(days of trial-1))*100. 
i Initial Weight 30 g, final weight 62 g, 27 °C, 25 ppt, 8 week trial. 
j Initial Weight 120 g, final weight 572 g, 27 °C, 25 ppt, 8 week trial. 
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Figure 4.3.1 Growth of juvenile cobia (30 g initial weight) during 9 week trial. 120 fish 
per tank, 27 °C, 25 ppt salinity. Average weight ± S.D. 
 

raised in our facility, and were larger upon completion of the trial (ANCOVA, p <0.001, 

with diet as covariate, Figure 4.3.1) than fish fed EPP1. 

 In the second trial with EPP2, a plant-based trout diet (Gaylord et al., 2007) was 

modified for use with marine species. The changes in formulation between EPP1 and EPP2 

include reducing the lipid content from 15 % to 8 %, replacing barley meal with wheat 

flour because of the low digestibility of barley meal, and replacing wheat gluten with 

solvent extracted soybean meal. Taurine was absent in the formulation of EPP1, and due 

to taurine's known physiological roles and that it has been shown to increase growth in a 

variety fish species (Kim et al., 2005; Gaylord et al., 2007; Takagi et al. 2008), including 

cobia (Lunger et al., 2007), it was included in the formulation of EPP2 at 1.5 %. Fish fed 

EPP2 performed better than fish fed EPP1, with better feed conversion, higher percent 
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weight gain, and higher specific growth rates (1.35, 379 %, 2.36 respectively for the EPP2; 

Table 4.3.3), even given the larger starting size of individuals in the second trial. Fish fed 

the commercial diet during the second trial had significantly lower growth (FCR 1.85, % 

weight gain 255, and SGR 1.93) and were smaller upon completion of the trial compared 

to those from EPP2 (ANCOVA, p=0.018, with diet as covariate, Figure 4.3.2).  

 
Figure 4.3.2. Growth of juvenile cobia (120 g initial weight) during 8 week trial. 60 fish 
per tank, 27 °C, 25 ppt salinity. Average weight ± S.D. 
 

 During the first trial with diet EPP1 fish grew very poorly as evidenced by the slow 

growth rate and high feed conversion. This poor performance clearly suggests an issue 

outside of protein digestibility since several highly digestible protein sources are included 

in the blend. Although poor palatability is another possibility, the addition of feeding 

stimulants to EPP1 did not alter feeding behavior. 

 Growth on EPP2 resulted in much higher feeding rates and greatly increased 

performance characteristics such as fillet yield and lower feed conversion ratios (Table 
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4.3.3). Fish in the other tank of the paired system being fed the in-house, commercially 

available feed had slightly and significantly lower FCR, SGR, and percent weight gain 

from 120 g to 355 g during the trial. Growth and FCR observed on EPP2 are equivalent to 

results found by other researchers with various sizes of juvenile cobia, using diets based 

on fishmeal as well as several fishmeal replacement trials (Lunger et al., 2007; Salze et al., 

2010). 

 Although there were several differences in the plant protein blends used for the two 

experimental diets in the current study (barley meal and wheat gluten in EPP1 replaced by 

wheat flour and soybean meal in EPP2) other differences in the two formulations include 

the addition of taurine and reduced lipid content of EPP2. Due to the roles that taurine has 

been shown to play, such as a possible feed attractant (Brotons Martinez et al., 2004) and 

its involvement in bile salt conjugation (Kim et al., 2007), it is our opinion that the most 

important difference in the formulations of the diets in this study is the addition of taurine 

to EPP2. Taurine is not incorporated into any known proteins and therefore is only 

considered semi-essential in most species but is considered essential for at least one strict 

carnivore, felines.  

 The findings from the digestibility portion of our study demonstrate that several 

plant protein sources are highly digestible and suitable fishmeal replacements for cobia, 

which are strict carnivores. The results of the grow out trials present evidence that taurine 

needs to be added to diets for carnivorous marine fishes, especially when attempting to 

completely replace fishmeal with alternate sources that may be naturally devoid of taurine. 

In addition, the growth rates observed with EPP2, an 8 % lipid diet, were equivalent to 

growth seen on the commercial diet, a 15 % lipid diet, indicating that cobia may be able to 
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utilize lower lipid diets, helping to reduce the overall cost of feed required to reach market 

size. Interestingly, regardless of lipid content of the diet, fillets from fish fed either EPP2 

or the commercial diet maintained equivalent lipid levels within their fillets (~12-13 % dry 

weight). 

 Upon completion of these pilot-scale trials, several more questions involving the 

use of plant proteins and taurine have arisen that are currently being examined in our lab 

with juvenile cobia as well as other high-value species such as gilthead seabream and 

striped bass. The next hurdles are to determine what the effects may be on the final fillet 

in terms of taste and texture when eliminating fishmeal in favor of plant proteins. Can the 

fish oil component of the diet also be replaced without detrimental effects to production 

characteristics or final fillet quality? Will raising farmed fish on plant-based diets reduce 

contaminants such as mercury and PCBs that are known to accumulate in fish raised on 

traditional, fishmeal-based diets as well as found in wild-caught fish brought to market? Is 

taurine an essential amino acid for marine carnivores? 

 Although our research is now focused primarily on taurine and its biosynthesis 

pathway in an effort to establish taurine as an essential amino acid for marine carnivores, 

encouraging results to all of these questions have been obtained in our work so far. This 

work, and that of many others in the field is indicating that complete fishmeal replacement 

is possible with marine carnivores in intensive aquaculture systems. Reducing the 

industry's reliance upon the reduction fisheries to supply fishmeal and fish oil for diets will 

not only allow the needed expansion of aquaculture to supply the world's growing protein 

demands, but will also immensely benefit the recovery and sustainability of the oceans 
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forage and food fishes and the ecosystems that have decimated by decades of over fishing 

and poor fishing practices. 
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Effects of graded taurine supplementation in plant-based diets on juvenile cobia, 

Rachycentron canadum 

Abstract 

 Three separate trials were undertaken with two different plant protein diets, one 

with four graded levels of taurine (0, 0.5, 1.5, and 5%) and the other with a single 1.5% 

taurine level. The first two trials were conducted with 8g and 120g initial weight juvenile 

cobia, Rachycentron canadum. The third trial utilized a different plant protein blend 

lacking wheat gluten, an ingredient found to impose negative effects in the graded taurine 

formulation used in the first two trials. At the conclusion of the second trial, RT-qPCR 

measurements were made to assess the transcript abundance of three genes, cysteine 

dioxygenase (CDO), cysteamine dioxygenase (ADO), taurine transporter (TauT), involved 

in taurine synthesis and transport in the brain, liver, and muscle tissue of individuals from 

all four dietary treatments. Vision tests on live individuals from the lowest and highest 

taurine supplementation treatments revealed potential differences in vision capabilities. 

Taurine appears to be an essential amino acid for juvenile cobia as fish fed low and zero 

taurine supplemented diets exhibited significantly lower growth and survival than fish fed 

high taurine feeds. There is also no evidence at the transcript level that juvenile cobia 

possess the ability to synthesize taurine as there is no up or down regulation of relevant 

gene transcripts regardless of dietary taurine level. Overall, it is evident that taurine 

supplementation is required for juvenile cobia for maximum growth and survival on plant 

protein diets, and that not all plant protein blends perform provide adequate nutrition for 

cobia. 
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Introduction 

  Replacing fishmeal with plant proteins is a high priority for the aquaculture 

industry and the development of optimized diets is underway for species in intensive 

culture (Rust et al., 2011). Plant protein concentrates provide high protein and low fat 

content when seeking to spare fishmeal as a protein source (Hardy, 2000). However, 

commercial feed formulations often vary based on the availability and cost of ingredients, 

with different batches containing significantly different proportions or levels of quality of 

ingredients, or different ingredients all together. For this reason, the assessment of multiple 

ingredients and ingredient combinations is necessary. In light of this we formulated a diet 

based on available and cost effective plant ingredients, all of which have previously been 

shown to be highly digestible by cobia (Rachycentron canadum) (Watson et al., 2012) and 

to be effective fishmeal replacements in rainbow trout (Oncorhyncus mykiss) (Barrows et 

al., 2010; Palti et al., 2006). However, supplementation of essential amino acids lacking in 

plant proteins is required such as lysine, methionine, threonine and many vitamins and 

minerals are also routinely supplemented to plant-based diets for this reason (Barrows et 

al., 2008; Gaylord et al., 2007; Zhou et al., 2007). Taurine is a component in fishmeal that 

is totally lacking in plant protein sources and has been shown to play multiple important 

physiological roles (Schuller-Levis and Park, 2003). Supplementation of taurine has also 

previously been shown to increase growth in fishmeal-free diets for cobia (Lunger et al., 

2007b; Watson et al., 2012).  

We initially examined a plant protein-based diet with four levels of taurine 

supplementation (0, 0.5, 1.5, and 5.0 %) to examine growth, feed conversion, and 

physiological effects of increasing dietary taurine. We also measured transcript abundance 
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for two of the genes involved in taurine synthesis and the taurine transporter to help in 

determining whether this species is capable of synthesizing sufficient quantities of taurine 

and if these pathways are regulated at the transcript level based on dietary input. Effects on 

vision in the highest and lowest levels of taurine supplementation were also examined. 

However, after observing sub-optimal results from the plant protein formulation in 

comparison to previously successful formulations, we formulated a similar plant protein 

diet lacking wheat gluten, the major difference in the poor performing diets, which resulted 

in significantly increased performance. 

 

Materials and Methods 

Diet preparation 

 Formulations of the five experimental diets used between the three trials are shown 

in Table 4.4.1. For all diets, ingredients were ground using an air-swept pulverizer (Model 

18H, Jacobsen, Minneapolis, MN) to a particle size of <200 μm. All ingredients for diets 

PP1, PP2, PP3, and PP4 were mixed prior to extrusion; while EPP3 was top-coated with 

the oil ingredient after extrusion. Pellets were prepared with a twin-screw cooking extruder 

(DNDL-44, Buhler AG, Uzwil, Switzerland) with an 18 second exposure to 127 °C in the 

extruder barrel. Pressure at the diet head was approximately 26 bar, and a die head 

temperature of 71 °C was used. The pellets were dried for approximately 15 min to a final 

exit air temperature of 102 ºC using a pulse bed drier (Buhler AG, Uzwil, Switzerland) 

followed by a 30 min cooling period to product temperature less than 25°C. Final moisture 

levels were less than 10% for each diet. Diets were stored in plastic lined paper bags at 

room temperature, and were fed within six months of manufacture. Portions of each diet 
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were analyzed by New Jersey Feed Labs, Inc. (Trenton, NJ) for proximate and amino acid 

composition. 

 

Table 4.4.1. Dietary formulations for the four plant-based diets with graded levels of 
taurine used in this study. 

 

1Contributed per kg diet; vitamin A, 9650 IU; vitamin D, 6.6 IU; vitamin E, 132 IU; 
menadione sodium bisulfite, 4.7 mg; thiamine mononitrate, 9.1 mg; riboflavin, 9.6 
mg; pyridoxine hydrochloride, 13.7 mg; pantothenate, DL-calcium, 101.1 mg; 
cyanocobalamine, 0.03 mg; nictonic acid, 21.8 mg; biotin, 0.33 mg; folic acid, 2.5 
mg. 
2Contributed in mg kg-¹ of diet; zinc 37; manganese, 10; iodine, 5; copper, 1. 
 

 

 

Ingredient (g kg-1) PP1 PP2 PP3 PP4 EPP3 
Soy Protein Concentrate 269 269 269 269 269 
Soy Protein Concentrate HP300 0.0 0.0 0.0 0.0 233.3 
Corn Protein Concentrate 193.4 193.4 193.4 193.4 153.4 
Wheat Flour 175.5 170.5 160.5 125.5 150.4 
Soybean meal, solvent extracted 90 90 90 90 0.0 
Wheat Gluten meal 22 22 22 22 0.0 
Menhaden Fish Oil 120 120 120 120 59.5 
Mono-Dical Phosphate 42.5 42.5 42.5 42.5 39.5 
Vitamin Pre-mix1 20 20 20 20 20 
Lecithin 20 20 20 20 30 
L-Lysine 19.9 19.9 19.9 19.9 7.5 
Choline CL 6 6 6 6 6 
Potassium Chloride 5.6 5.6 5.6 5.6 5.6 
DL-Methionine 5 5 5 5 4.5 
Threonine 2.8 2.8 2.8 2.8 0.0 
Sodium Chloride 2.8 2.8 2.8 2.8 2.8 
Stay-C 2 2 2 2 2 
Trace mineral pre-mix2 1 1 1 1 1 
Magnesium Oxide 0.5 0.5 0.5 0.5 0.5 
Mycozorb 2 2 2 2 0.0 
Taurine 0 5 15 50 15 
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Experimental fish, systems and trials 

 This study was carried out in accordance with the guidelines of the International 

Animal Care and Use Committee of the University of Maryland Medical School (IACUC 

protocol # 0610015). Approximately 500 juvenile (~2 g) cobia were obtained from the 

Virginia Agricultural Experiment Station, Virginia Tech, Hampton, VA for the first and 

second trials Approximately 500 juveniles (~2 g) were obtained from the University of 

Miami, Miami, FL for the third trial. Juveniles were housed at the Institute of Marine and 

Environmental Technology's Aquaculture Research Center, Baltimore, MD. Fish for the 

first and second trials were maintained on the FM2 diet until they reached an average 

weight of ~10 g at which point 18 fish were stocked into each of 12 identical tanks and 

randomly assigned one of the four experimental diets using three replicate tanks per dietary 

treatment.  

 Six, 340 liter tanks connected to bubble-bead and biological filtration as well as 

protein skimmers constituted the recirculating systems used with four replicate systems 

occupied simultaneously during trials with photoperiod maintained at 14L:10D throughout 

the trials. The first trial was conducted for 8 weeks, with tank weights recorded and feeding 

rates adjusted weekly to 5 % bw day-1. At the conclusion of the first trial, fish being fed 

diets FM1 and FM2 as well as those unused in the first trial were re-pooled, maintained on 

FM2 for one week, and subsequently restocked at 5 fish per tank and approximately 120 g 

average weight for the second trial. The second trial was conducted for 8 weeks, with tank 

weights recorded weekly and feeding rates adjusted from 3.5 % bw day-1 to 2.5 % bw day-

1, with a bi-weekly 0.25 % bw day-1 reduction throughout the trial. The third trial was 

initiated with 18 g average weight individuals, with 12 fish stocked per tank. The third trial 
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was conducted for 12 weeks, with tank weights recorded and feeding rates adjusted weekly 

to 5 % bw day-1 for the first 6 weeks, reduced to 3.5 % from 6 weeks through 10 weeks, 

and 3.0 % for the final 2 weeks of the trial as feed conversion ratio gradually increased. 

Fish for all trials were fed by hand four times daily to maintain apparent satiation and avoid 

overfeeding. 

Production characteristics were determined as follows: 

Weight gain (%) = 100 ∗  (
final wieght (g) − initial weight(g)

initial wieght (g)
) 

Feed conversion ratio (FCR) = (
food fed (g)

weight gained (g)
) 

Specific growth rate (SGR) = 100 ∗ (
ln final weight (g) − ln initial weight(g)

days of trial
) 

Hepatosomatic index (HSI) = 100 ∗ (
liver weight (g)
body weight (g)

) 

 

Analytical procedures 

 At the conclusion of the first trial two individuals from each tank were sacrificed 

for intestinal analysis. Portions of the anterior intestine were preserved in 4% 

paraformaldehyde and dehydrated from 70 % to 90 % EtOH in 10 % increments over eight 

hours. Dehydrated samples were sent to AML Laboratories (Baltimore, MD) for 

sectioning, mounting and H&E staining. Slides were analyzed for pathologies and 

abnormalities with the aid of the acknowledged pathologist, Dr. Renate Reimschuessel 

(FDA/CVM/Vet-LRN, Laurel, MD). Gall bladders were removed and bile was extracted 

and stored at -20 °C prior to bile salt analysis. Total bile salts were assayed with 3 α-
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hydroxysteroid dehydrogenase (Coleman et al., 1979). Blood samples were taken from the 

caudal vein with heparinized needles, plasma was separated by centrifugation (16,000 RCF 

for 20 min), and total plasma protein was quantified after a 1:600 dilution utilizing a Micro 

BCA™ Protein Assay Kit (Product# 23235, Thermo Scientific, Rockford, IL). 

 At the conclusion of the second trial two fish from each tank, six per dietary 

treatment, were randomly selected for sampling. Fish were anesthetized with Tricaine 

methanosulfonate (MS-222, 70 mg l-1, Finquel, Redmond, WA), blood samples were taken 

from the caudal vein with heparinized needles, after which fish were euthanized with MS-

222 (150 mg l-1) and gall bladders removed with bile analyzed as in trial 1. Liver and fillet 

samples were also taken. Blood plasma was separated by centrifugation (16,000 RCF for 

20 min) and plasma osmolality measured in triplicate (10 μl) on a Vapro™ Model 5520 

vapor pressure osmometer (Wescor, Logan, UT). Plasma samples from three fish per 

dietary treatment were sent to the Pathology and Laboratory Medicine Services department 

at the University of California at Los Angeles for constituent analysis. Remaining plasma, 

fillet and liver samples were frozen and stored at -80 °C and portions of each were 

lyophilized to constant weight for water and taurine content analysis. Triplicate samples of 

each liver (~10 mg), fillet (~50 mg), plasma (~10 μL), and diet (~50 mg) sample were used 

for taurine extractions based on Chaimbault et al. (2004), with samples being homogenized 

in cold 70 % EtOH, sonicated for 20min, dried, and re-suspended in 1 ml H2O prior to 

injection into the LC-MS. Taurine was quantified in all samples based on methods 

described in Chapter 2. 

Methods for the vision assays are from Horodysky et al. (2010, 2008). Briefly, 

whole-animal corneal electroretinography (ERG) was conducted to assess the absolute 
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sensitivities, temporal properties, and spectral sensitivities of cobia visual systems. Teflon-

coated, chlorided 0.5 mm silver wire (Ag–AgCl2) electrodes were used to measure and 

record ERG potentials: the active electrode was placed on the corneal surface and a 

reference electrode was placed subdermally in the dorsal musculature. ERG recordings and 

stimulus presentations were controlled using software written in LabVIEW (National 

Instruments, Austin, TX, USA). All subjects were dark-adapted for a minimum of 30min 

prior to stimulus exposure. 

Absolute sensitivity of cobia visual systems was assessed by intensity–response (V 

logI-1) experiments. Six orders of magnitude of stimulus intensity were presented to 

subjects. V logI-1 experiments progressed from subthreshold to saturation intensity levels 

in 0.2 log unit steps. At each intensity step, ERG b-waves were recorded from a train of 

five 200 ms flashes, each separated by 200 ms rest periods. This process was repeated three 

times. ERG responses of the final averaged flashes (Vresponse) were recorded at each 

intensity step and subsequently normalized to the maximum voltage response (Vmax). 

Mean V logI-1 curves were created by averaging the V logI-1 curves of all individuals from 

each treatment. Dynamic ranges, defined as the log irradiance range between the limits of 

5–95 % Vmax, were also calculated (Frank, 2003). 

The temporal resolution of cobia visual systems was assessed via flicker fusion 

frequency (FFF) experiments using methods developed elsewhere (Fritsches et al., 2005). 

FFF experiments monitored the ability of a visual system to track light flickering in 

logarithmically increasing frequencies. Sinusoidally modulated white light stimuli ranging 

in frequency from 1 Hz (0 log units) to 100 Hz (2.0 log units) were presented to subjects 

in 0.2log unit frequency steps. The voltage offset and the amplitude of the sinusoidal light 
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stimulus signal were always equal (contrast=1). At each frequency step, light stimuli were 

presented for 5 s, followed by 5 s of darkness (i.e. rest). This stimulus train was repeated 

three times at each frequency, and b-wave responses were averaged for each subject. For 

each subject, seven total FFF experiments were conducted: one at 25% (I25) of maximum 

stimulus intensity (Imax) from the V logI-1 curve, and one in each of log10 step intervals 

over six orders of magnitude of light intensity. A subject’s FFF threshold at a given 

intensity increment was determined by analyzing the power spectrum of the averaged 

responses from 1–100 Hz and comparing the power of the subject’s response frequency 

(signal) to the power of a neighboring range of frequencies (noise). FFF was therefore 

defined as the frequency at which the power of the response signal fell below the power of 

the noise, as determined by graphical analysis of normalized power amplitudes as a 

function of frequency. We considered the FFF at Imax as the probable maximum flicker 

fusion frequency attainable by the visual system, and FFF at I25 to be a proxy for ambient 

environmental light intensity. 

Spectral sensitivity experiments were conducted to assess the ability of cobia visual 

systems to respond to colored light stimuli. The output of a Cermax Xenon fiberoptic light 

source (ILC Technology, Sunnydale, CA, USA) was controlled by a CM110 

monochromator, collimated, and passed through each of two AB301 filter wheels 

containing quartz neutral density filters (CVI Laser Spectral Products, Albuquerque, NM, 

USA). The first wheel allowed light attenuation from 0 to 1 log units of light intensity in 

0.2 log unit steps, the second from 0 to 4log units in 1log unit steps. In concert, the two 

wheels allowed the attenuation of light from 0 to 5 log units in 0.2 log unit steps. Stimuli 

were delivered by a LabVIEW program that controlled a Uniblitz LS6 electronic shutter 
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(Vincent Associates, Rochester, NY, USA) using the analog and digital output of the DAQ 

card and the computer’s serial RS232 interface. A cylindrical lens focused the attenuated 

light beam onto the entrance slit of the monochromator to produce colored light. The 1cm 

diameter quartz light guide was placed within 10mm of a subject’s eye. Approximately 

isoquantal spectral stimuli were presented to subjects via the selective use of neutral density 

filters. Light stimuli covering the spectral range from UV (300 nm) to the near infrared 

(800 nm) were presented sequentially in 10 nm steps during spectral response experiments. 

Subjects were presented with five single 40ms stimulus flashes at each experimental 

wavelength, each followed by 6 s rest. The amplitudes of ERG b-wave responses were 

recorded and averaged to form raw spectral response curves for each individual. A spectral 

V logI-1 recording was then conducted for each subject at the wavelength (λmax) that 

generated its maximum ERG response (Vmax). This allowed the subsequent calculation of 

the subject’s spectral sensitivity curve. V logI-1 experiments exposed the subject to five 

individual monochromatic 200 ms flashes at each intensity. Intensities increased in 0.2 log 

unit increments over five orders of magnitude. The amplitudes of these flashes were 

recorded and averaged to create each subject’s spectral V logI-1 curve. To transform 

spectral response voltages to spectral sensitivities for each subject, the former were 

converted to equivalent intensities through the V logI-1 curve using the following equation: 

S = 100 ∗ 10−[Imax−IN] 

where S is the sensitivity, Imax is the intensity at maximum response voltage and IN is the 

intensity at response voltage. Spectral sensitivity curves for each individual were expressed 

on a percentage scale, with 100 % indicating maximum sensitivity. To obtain the final 

spectral sensitivity curve for each species, we averaged the sensitivity curves of all subjects 
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and normalized to the maximum resulting value such that maximum sensitivity equaled 

100 %. 

V logI-1 and FFF data were analyzed separately using two-way repeated measures 

ANOVAs with Tukey’s post-hoc comparisons to assess whether ERG responses varied 

between treatments. All statistical analyses were conducted using SAS v 9.1 (SAS Institute, 

Cary, NC, USA).   

Quantitative PCR primers (Table 4.4.2) were designed for each of the genes of 

interest: CDO, ADO, and TauT based on consensus sequences from alignments derived 

from teleost species in the NCBI database. Primr3 was used for primer design (Rozen and 

Skaletsky, 2000). To verify that primers were indeed amplifying only a single product, and 

that the product was the desired target, end-point PCR was performed on limited samples 

in 10 µl reactions with 10 ng cDNA using Promega 2x Mastermix (Promega, Madison, 

WI) using the following parameters: initial denaturation (95 ºC for 2 min) followed by 35 

cycles of denaturation (95 ºC for 30 s), annealing (56 ºC for 30 s), extension (72 ºC for 45 

s), and a final polishing step (72 ºC for 5 min). Two µl of the end-point PCR products were 

used for gel electrophoresis to assess product size and number with the remaining 8 ul 

purified and sequenced to determine accuracy of selected primers.  

Upon selection of appropriate primer pairs for each gene of interest, primer 

efficiencies were determined using cDNA from a single liver tissue sample and consisted 

of triplicate measurements made at five different dilutions of cDNA (20, 10, 5, 2.5, and 

1.25 ng cDNA per reaction) based on the following equation:  

Primer efficiency (PE) = 10- 1
slope, 
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where slope was determined from the plot of cDNA content (ng) vs. average Ct for each 

dilution. RT-qPCR was performed in triplicate per sample and tissue type for each gene of 

interest (n=5 for all tissues) alongside the reference gene on an ABI 7500 Fast Real-Time 

PCR System (Applied Biosystems, Life Technologies, Grand Island, NY). Cycling 

parameters for the assays were as follows: initial denaturation at 95ºC for 2 min, followed 

by 35 cycles of denaturing (95 ºC for 10 s), annealing (56 ºC for 30 s), and extension (72 

ºC for 30 s) with a melting curve to determine the presence of spurious products. 

Expression relative to the expression of the beta actin reference gene was determined by 

the following equation: 

Relative expression of target gene = �
(target gene PE)(38-target gene avg. Ct)

(beta actin PE)(38-beta actin avg. Ct) � *100 

 

Table 4.4.2. Primers used for genes of interest in taurine metabolism. 

 

 

 

 

 

 

Statistics 

 All statistical tests were run using Aabel v.3.0.6 (Gigawiz Ltd., OK, USA) with 

significance values of p <0.05. ANOVA with Tukey's HSD post-hoc analyses were  

Gene Name Primer Sequence Tm 
Cysteamine dioxygenase (ADO) Forward 5'-AGACCTCGCTCATCCAGAAA-3' 55.7 
Cysteamine dioxygenase (ADO) Reverse 5'-AGGGGAGGATGTGGAGACTT-3' 57.5 
Cysteine dioxygenase (CDO) Forward 5'-AGGGTCAGCTGAAGGAGACA-3' 57.9 
Cysteine dioxygenase (CDO) Reverse 5'-GCACCCTCTGTGTGGCTATT-3' 57.4 
Taurine transporter (TauT) Forward 5'-GCTTCATGGCACAAGAACAA-3' 54.0 
Taurine transporter (TauT) Reverse 5'-TCAACAAACTGGCTGTCGAG-3' 55.3 
Beta Actin Forward 5'-TGCGTGACATCAAGGAGAAG-3' 54.9 
Beta Actin Reverse 5'-AGGAAGGAAGGCTGGAAGAG-3' 56.4 
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used to determine differences between dietary treatments. RT-qPCR expression data were 

square root transformed prior to homogeneity of variance (Bartlett’s test) and ANOVA 

analyses. 

 

Results 

Proximate compositions of the diets are presented in Table 4.4.3. Performance 

characteristics for the first grow out (initial weight 10 g) as well as the total biliary protein 

concentration are shown in Table 4.4.4. Due to low survival in several replicates of PP1 

and PP2 resulting in 0 individuals in some tanks, these diets were not included in statistical 

analyses other than survival for the first grow out. Survival curves from the first grow out 

are shown in Figure 4.4.1, with all four diet displaying type III survival curves. Growth 

curves are shown in Figure 4.4.2. There were no significant differences among surviving 

individuals in percent weight gain, feed conversion ratio (FCR), specific growth rate 

(SGR), total plasma protein concentration, or total bile salt concentration (ANOVA, 

p>0.05). Cannibalism was not observed to be a contributing factor to the low survival and 

dead individuals were promptly removed from the tanks so as to not be a nutritional/taurine 

source for remaining fish. 
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Table 4.4.3. Proximate compositions and measured taurine values of the 
diets used in the three trials. 

 

 

 

 

 

 

 

 

 

 

 1 New Jersey Feed Labs analysis. 
 

 

Table 4.4.4. Performance characteristics from the first trial (8.86 g initial weight). Within 
a row, values that share common superscripts are not significantly different from one 
another (P >0.05). 

1Not included in statistical analyses due to lack of replicates due to survival. 
 
 
 
Table 4.4.5. Performance characteristics from the second trial (128.37 g initial weight). 
Within a row, values that share common superscripts are not significantly different from 
one another (P >0.05). 

 

 

Proximate Composition1 PP1 PP2 PP3 PP4 EPP3 
Protein (% DM) 47.6 48.5 48.6 50.3 46.4 
Lipid (% DM) 12.16 11.73 12.06 11.91 7.92 
Fiber (% DM) 1.25 1.09 1.28 1.21 2.39 
Carbohydrate (% DM by 
difference) 30.82 30.84 30.04 28.81 35.16 

Moisture (%) 2.14 1.73 2.15 2.13 6.56 
Ash (% DM) 8.17 7.84 8.02 7.77 8.13 
Taurine (%) 0.02 0.39 1.35 4.08 1.05 

Diet (Taurine %) PP1 (0.02) PP2 (0.39) PP3 (1.35) PP4 (4.08) 
Weight Gain (%) 23.35 ± 22.82a 80.57 ± 60.24a 130.87 ± 25.20b 133.82 ± 10.83b 
FCR 6.38 ± 1.49a 2.97 ± 1.17b 1.98 ± 0.19b 2.12 ± 0.23b 
SGR 0.57 ± 0.12a 1.31 ± 0.26b 1.47 ± 0.19b 1.51 ± 0.09b 
Total Bile Salts (mM) 38.76 ± 7.40 28.37 ± 1.94 36.30 ± 5.69 28.75 ± 3.22 

Diet (Taurine %) PP1 (0.02) PP2 (0.39) PP3 (1.35) PP4 (4.08) 
Survival (%) 1.96 ± 1.96a 9.80 ± 5.18a,b 9.83 ± 1.97a,b 19.6 ± 7.06b 
Weight Gain (%) 315.551 1194.73 ± 21.221 1155.92 ± 410.70 1200.68 ± 214.22 
FCR 1.931 0.96 ± 0.02 1 1.17 ± 0.44 0.95 ± 0.11 
SGR 2.541 4.57 ± 0.03 1 4.26 ± 0.72 4.53 ± 0.31 
Total Plasma Protein  
     (g dL-1) 3.491 3.40 ± 0.171 3.35 ± 0.17 3.48 ± 0.23 

Total Bile Salts (mM) 40.841 42.17 ± 0.461 41.37 ± 1.99 41.50 ± 1.36 
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Performance characteristics from the second trial (120 g initial weight) are shown 

in Table 4.4.5 and growth curves are shown in Figure 4.4.3. Survival during the second 

trial was 100% in all dietary treatments. Percent weight gain was significantly lower in 

diets PP1 and PP2 than the other four fishmeal-based diets (p<0.05), but not significantly 

different than diets PP3 and PP4 (p>0.05). Diet PP1 resulted in significantly lower FCR 

and SGR than the other diets (p<0.05). Diets PP2, PP3, and PP4 did not result in 

significantly different SGRs than one another (p>0.05). Total bile salt concentration was 

not significantly different between any of the 4 dietary treatments (p>0.05). Table 4.4.6 

shows the performance characteristics of the third trial. Although only one diet was run in 

the third trial, weight gain, FCR, and SGR were much improved from the first two trials, 

and were an improvement over all previous plant protein diets tested in our laboratory. 

 
Table 4.4.6. Performance characteristics 
from the third trial (17.95 g initial weight). 

 

 

 

Diet (Taurine %) EPP3 
Weight Gain (%) 1673.52 ± 192.75 
FCR 1.22 ± 0.04 
SGR 3.42 ± 0.13 
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Figure 4.4.1. Survival analysis of juvenile cobia trial #1. Ten-g initial weight, 8 week 
trial, 25 ppt, 27 °C. Number in parentheses indicates measured dietary taurine level. 
 
 

 

 
Figure 4.4.2. Growth of juvenile cobia (10 g initial weight) during first 8 week trial. 
Systems maintained at 25 ppt and 27 °C. 
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Figure 4.4.3. Growth of juvenile cobia (120 g initial weight) during second 8 week trial. 
Systems maintained at 25 ppt and 27 °C. 

 

RT-qPCR results are shown in Figure 4.4.4 (A-C). There were no significant 

differences in beta actin expression between dietary treatments within each of the three 

tissue types examined (Table 4.4.7, ANOVA, p>0.05). There were no significant 

differences in transcript expression levels in liver (A), brain (B), or muscle (C) for CDO, 

ADO, or TauT (ANOVA, p>0.05). Expression of all three genes in comparison to beta 

actin transcript levels was highest in the liver and lowest in the muscle, with the general 

trend of CDO>TauT>ADO within each tissue. The only exception to this was ADO 

expression levels in the brain. This data set did not pass the homogeneity of variance test, 

so was analyzed with the non-parametric Mann Whitney U test, where no significant 

difference in expression between dietary treatments was observed (p>0.05).  
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Table 4.4.7. Reference gene beta actin Ct values (average ± S.D.). No 
significant differences between dietary treatments within each tissue type 
(ANOVA, p>0.05). 

  PP1 PP2 PP3 PP4 
Liver 22.31 ± 2.64 24.98 ± 2.83 24.88 ± 3.35 22.13 ± 2.65 
Muscle 13.05 ± 2.07 14.20 ± 1.67 11.61 ± 0.92 12.99 ± 1.45 
Brain 13.75 ± 2.39 16.20 ± 1.58 14.58 ± 0.90 15.04 ± 3.43 

 

Fillet and liver characteristics from the second and third trials are shown in Table 

4.4.8. Fillet water content was highest in fish from PP1 with a gradual reduction in fillet 

water content as dietary taurine level increased. Hepatosomatic index showed a similar 

trend of reduction as dietary taurine level increased. Fillet yield, liver water, fillet taurine, 

and liver taurine contents all showed increasing trends with increasing dietary taurine level. 

Results of the plasma analysis are shown in Table 4.4.9. Plasma water content significantly 

decreased as dietary taurine level increased (p<0.05). Plasma taurine levels were 

significantly lower in diets PP1 and PP2 than the other diets (p<0.05), plasma cholesterol, 

phosphorous, and albumin all showed similar trends of significantly increasing with dietary 

taurine level (p<0.05) 

Vision analysis on living animals from the PP1 and PP4 dietary treatments is shown 

in Figure 4.4.5. There were no significant differences in the response of cobia to bright 

light (A) with animals fed the high taurine diet (PP4) responding with a higher percentage 

of photoreceptors than fish fed the zero taurine supplemented diet (PP1) after bright light 

stimulus. There was no significant difference in flicker fusion frequency between the two 

dietary treatments (B). Response to colored light was significantly lower in fish fed PP1 in 

terms of percent response of photoreceptors in the range of ~500-570 nm (C). Figure 4.4.6 

is a microscope image of a preserved retina from the PP4 treatment. The important layers 
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and components of the retina are labeled and Table 4.4.10 shows the measurements of 

individual layers and important ratios of layers to one another for six individuals from each 

dietary treatment. Although there were no significant differences in the thicknesses of any 

of the individual layers between the treatments, there were significant differences in several 

of the ratios. The outer nuclear layer: cone layer (ON:C), cone layer: outer photoreceptor 

layer (C:OS), and total retinal thickness: cone layer (T:C) with the high taurine diet 

resulting in higher ratios for the ON:C and T:C comparisons and the zero taurine diet 

resulting in a higher C:OS ratio. 
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Figure 4.4.4. Relative transcript expression of genes involved in taurine synthesis and 
transport in juvenile cobia, Rachycentron canadum, as a percent expression compared to 
reference gene beta actin for each diet (% taurine) in liver (A), brain (B), and muscle (C). 
Equivalent cDNA input (10 ng) for triplicate samples of each tissue and six fish sampled 
per treatment group and tissue (n = 6 per data point). Numbers in parenthesis indicate 
measured taurine in each diet. 
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Figure 4.4.5. Response to bright light stimulus (A), flicker fusion frequency (B), and 
response to color light stimulus (C) of juvenile cobia fed either PP1 or PP4 diets for 8 
weeks. Measurements made on living animals. 
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Figure 4.4.6. Retinal layers in juvenile cobia. G – Ganglion cell layer; IP – inner 
plexiform layer; IN – inner nuclear layer; OP – outer plexiform layer; ON – outer nuclear 
layer; IS – inner segments of photoreceptor layer; OS – outer segments of photoreceptor 
layer; C – Cone photoreceptors; PE – pigment epithelium; CC – choriocapillaries; CAP 
– choroid capillaries. 
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Table 4.4.8. Fillet and liver characteristics from the second and third trials. Values represent the mean ± standard 
error for six fish per dietary treatment. Within a row, values that share common superscripts are not significantly 
different from one another (P >0.05).

1Fillet Yield = fillet weight (g)*100/body weight(g).

Diet (Taurine %) PP1 (0.02) PP2 (0.39) PP3 (1.35) PP4 (4.08) EPP3
Fillet Water Content (%) 79.21 ± 2.46 75.34 ± 0.29 74.19 ±0.17 75.16 ± 0.67 76.30 ± 0.19
Fillet Taurine (μmol g-1) 2.14 ± 0.46a 5.65 ± 0.90a,b 19.55 ± 11.32b 67.29 ± 18.15c 9.25 ± 0.62b

Fillet Yield (%)1 19.86 ± 1.84 23.54 ± 0.87 25.07 ± 2.18 23.79 ± 0.43 nd
Fillet Lipid (% dw) 14.57 ± 3.33 16.04 ± 0.86 15.83 ± 1.18 12.93 ± 3.48 nd
Liver Water Content (%) 55.97 ± 7.81 48.54 ± 3.79 53.46 ± 1.80 61.40 ± 1.57 51.89 ± 4.67
Liver Taurine (μmol g-1) 2.03 ± 0.99a 10.62 ± 1.13b 20.36 ± 2.78c 42.21 ± 5.02d 11.06 ± 4.17b

Hepatosomatic Index 2.29 ± 0.41 2.23 ± 0.16 2.23 ± 0.21 2.05 ± 0.19 2.20 ± 0.36
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Table 4.4.9. Plasma analysis from fish from the second and third trials. Values represent the mean ± standard error for 
three fish per dietary treatment. Within a row, values that share common superscripts are not significantly different from 
one another (P >0.05).

1 UCLA DLAM analysis.
2 NOAA-NWFSC analysis by A.W. (excluding water content, osmolality, and taurine).

Diet (Taurine %) PP1 (0.02)1 PP2 (0.39)1 PP3 (1.35)1 PP4 (4.08)1 EPP32

Water Content (%) 96.75 ± 0.19a 94.75 ± 0.21b 95.19 ± 0.29a,b 94.73 ± 0.13b 94.94 ± 1.21a,b

Osmolality (Osm L-1) 329.17 ± 5.57 343.00 ± 5.57 325.17 ± 18.94 336.33 ± 4.60 332.84 ± 9.65
Taurine (nmol ml-1) 421.25 ± 41.03a 565.79 ± 17.91a 658.47 ± 50.92b 723.86 ± 89.62b 601. 29 ± 47.97a,b

Albumin (g dL-1) 0.53 ± 0.12a 0.70 ± 0.06a,b 0.80 ± 0.00a,b 0.87 ± 0.03b 0.52 ± 0.07a

Total Bilirubin (mg dL-1) 0.40 ± 0.10a 0.30 ± 0.00a 0.23 ± 0.03a 0.23 ± 0.03a 0.12 ± 0.00b

Calcium (mg dL-1) 9.70 ± 0.88 10.90 ± 0.61 11.10 ± 0.10 11.37 ± 0.27 11.69 ± 0.30
Cholesterol (mg dL-1) 49.33 ± 12.17a 68.33 ± 1.20a,b 80.33 ± 3.18b 79.33 ± 4.26a,b 46.59 ± 11.43a

Creatine Kinase (U L-1) 96.67 ± 46.77 386.67 ± 276.01 301.33 ± 81.63 552.00 ± 113.15 nd
Creatinine (mg dL-1) 0.17 ± 0.03 0.20 ± 0.00 0.17 ± 0.03 0.17 ± 0.03 nd
Glucose (mg dL-1) 48.00 ± 4.36a 51.33 ± 3.48a 48.33 ± 3.92a 41.67 ± 3.93a 109.13 ± 19.13b

Phosphorous (mg dL-1) 7.13 ± 1.34a 8.37 ± 0.69a 8.87 ± 0.38a 9.33 ± 0.23a 13.82 ± 1.78b

Magnesium (mg dL-1) 2.37 ± 0.22 1.97 ± 0.07 2.13 ± 0.03 2.23 ± 0.08 2.77 ± 0.18
Triglycerides (mg dL-1) 66.67 ± 27.43 112.00 ± 19.67 91.00 ± 36.12 109.67 ± 20.96 75.73 ± 17.35
Sodium (mmol L-1) 169.10 ± 3.56 178.67 ± 2.89 177.33 ± 2.32 174.83 ± 3.89 nd
Potassium (mmol L-1) 8.78 ± 1.09 8.07 ± 0.36 8.92 ± 0.53 9.35 ± 0.23 nd
Chloride (mmol L-1) 169.97 ± 1.93 173.97 ± 2.08 168.83 ± 0.88 169.43 ± 3.85 nd
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Table 4.4.10. Retinal thickness measurements for juvenile cobia from 
vision analyses. Values are mean ± S.E. for six individuals per treatment. 
Values with different superscripts are significantly different from one 
another (t-test, P<0.05). 

 

Discussion 

Negative effects observed with the first trial; low growth, poor survival, and high 

feed conversion ratios may have been due to the size of the fish utilized, the specific cohort 

used, or the dietary formulation itself. Fish from the same cohort were used for a separate 

study involving fishmeal-based formulations and did not grow any different than other 

cohorts of cobia grown at the IMET facility on commercial feeds, so a poor cohort is not 

suspected in this study. The formulation utilized in this study, outside of the differing 

taurine levels, is different than previously successful formulations. The possibility exists 

that an ingredient utilized in the formulations of the first two trials of this study was having 

a negative impact on palatability or digestibility on either these size fish or cobia in general. 

Regardless of the poor performance overall, diets PP2, PP3, and PP4 performed 

Retinal Layer PP1 (0.02) PP4 (4.08) 
Total Retina Thickness, T (µm) 140.72 ± 1.32 145.75 ± 2.6 
Outer Nuclear Layer, ON (µm) 50.92 ± 0.49 52.61 ± 1.04 
Cone Layer, C (µm) 36.31 ± 0.73 32.36 ± 0.58 
Outer Photoreceptor Layer, OS (µm) 54.24 ± 0.63 60.61 ± 1.34 
Photoreceptor Layer, P (µm) 91.42 ± 1.37 93.49 ± 1.69 
Ratios   
     ON:C 1.42 ± 0.03a 1.63 ± 0.01b 

     ON:P 0.56 ± 0.01 0.56 ± 0.01 
     ON:OS 0.94 ± 0.01 0.87 ± 0.02 
     C:OS 0.67 ± 0.01a 0.54 ± 0.01b 
     T:ON 2.77 ± 0.02 2.78 ± 0.03 
     T:C 3.91 ± 0.06a 4.51 ± 0.04b 
     T:OS 2.59 ± 0.02 2.42 ± 0.03 
     T:P 1.54 ± 0.01 1.56 ± 0.01 
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significantly better than PP1 in the first study. The increasing dietary taurine partially 

remediated the negative overall impacts of this particular formulation in terms of growth 

and survival. Palatability issues with plant protein diets have been well described for many 

species (Glencross et al., 2007; Gómez-Requeni et al., 2004), and taurine has the potential 

to serve as a feed attractant due to its small nitrogenous structure. Increased feed 

palatability may be the sole explanation for the increase in growth and survival during the 

first trial, although the cause of the poor palatability and performance in these small fish is 

still elusive. For this reason and the concern over the formulation itself, the second trial 

was initiated with an initial size that has readily accepted and performed well on plant 

protein formulations. Although growth and feed conversion in the second trial were lower 

than previously observed with plant protein formulations, survival was 100 % in all 

treatments, a significant improvement over the first trial. As with the first trial, there was a 

significant increase in performance with increasing dietary taurine, clearly indicating that 

taurine is at least partially remediating the negative impacts of this formulation, which were 

extended to these larger fish. Feed consumption was not an issue during the second trial, 

indicating palatability of this diet was no longer an issue with this size fish. The mechanism 

of taurine remediating the negative impacts of this diet are not clear, however several 

potentials exist. Taurine has been shown to be a powerful antioxidant, and if some form of 

intestinal enteritis is occurring due to the wheat gluten inclusion, free radical production 

during inflammation would be expected. Intestinal enteritis has been observed in several 

species with specific plant protein inclusion such as soy ingredients in salmon and carp 

(Romarheim et al., 2011; Urán et al., 2008). Taurine’s most important role may be that of 

an antioxidant, especially in mitochondria where it has been shown to prevent the diversion 
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of electrons into superoxide generation by improving the function of the electron transport 

chain (Jong et al., 2012). Reducing energy spent in recovery from free radical damage 

allows for more energy for growth. 

Wheat gluten has been shown to have negative impacts on humans, a result of celiac 

disease, and other mammalian models (Briani et al., 2008; Kuiper and Kleter, 2003; 

Penttila et al., 1991; Rivabene et al., 1999). We have previously shown wheat gluten to 

have relatively high digestibility in cobia  with an apparent digestibility coefficient of 0.83, 

roughly equivalent to other plant ingredients which are major constituents in fishmeal 

replacement: soy protein concentrate (0.85), wheat flour (0.89) and soybean meal (0.76) 

(Watson et al., 2012). However, due to the relatively high stress to the animals involved in 

a digestibility study (regular handling, anesthetizing, and stripping of feces) growth and 

other physiological parameters on these individual plant protein diets was not tracked. 

Wheat gluten has been used successfully as a fishmeal replacement in several species 

without negative impact when compared to control fishmeal formulations (Glencross et al., 

2011; Helland and Grisdale-Helland, 2006), however species specific effects of wheat 

gluten with many species, including cobia have not been examined. 

 Based on the RT-qPCR results measuring the transcript levels of ADO, CDO, and 

TauT it is apparent that cobia do not possess the capacity to regulate this synthesis pathway 

at the transcript level. This is evident since the expression levels are not up- or down-

regulated with low or high dietary taurine supply, respectively. Coupling this with the 

growth and survival data from the first two trials of this study makes it apparent that 

juvenile cobia do not synthesize sufficient quantities of taurine, if any at all, to meet their 

physiological requirements. Small juveniles fed low or no taurine supplemented feeds have 
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very poor survival and growth (Figures 1 and 2). Even larger juveniles fed no and low 

taurine supplemented feeds do not grow very well (Figure 3). The low growth but higher 

survival observed in the second trial may have been a function of the animal’s ability to 

recycle the taurine pool acquired prior to the transition onto the plant protein diets. 

Juveniles of this size should have a sufficient taurine pool to last during the short duration 

of the trials here, however it is apparent that any taurine present in the fish fed the PP1 diet 

during the second trial was minimal at best. Even without accurate measurements of 

cysteine sulfinic acid decarboxylase (CSD) and with only transcript abundance measured 

without protein quantification or activity measure, these results further indicate that taurine 

should be considered an essential amino acid for juvenile cobia, as they clearly do not 

survive or grow appropriately when not supplied with taurine in their diets. 

 Along with the significant increase in growth observed in the second trial between 

the PP1 and PP4 treatments, there were significant difference in vision capacity between 

these treatments. Overall, vision parameters recorded from cobia under the PP4 dietary 

treatment are very similar to those recorded by Horodysky et al. (2010) for wild caught 

cobia. Although there was no significant difference detected in overall light sensitivity, 

interestingly, after only an eight week trial significant differences were observed in color 

vision with wavelength ranges resulting in lessened response in fish fed the PP1 diet. 

However, these differences may not be biologically significant, as they represent the 

difference between ~80 % (PP4) and ~60 % (PP1) of maximum. The difference in color 

vision as compared to bright light may be due to the cones of the retina being more sensitive 

to light, and the lack of sufficient taurine leaves the PP1 fed fish unable to deal with the 

damage. Over longer periods of time these differences would only be magnified, with cones 
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and eventually rods becoming more and more damaged and irreparable. The role of taurine 

as a photoreceptor protectant, most likely through its role as an antioxidant, is apparent in 

these studies with living animal vision tests. This is evidence that although cobia have the 

ability to recycle taurine through the taurine transporter and biliary recycling pathways, 

constant dietary supply is required to maintain proper functions throughout multiple tissue 

types. Both the growth and effects on vision incurred by the low taurine diet would be 

anticipated to be further exacerbated the longer dietary taurine requirements are not met.  

  

Acknowledgements 

 The authors would like thank the staff of the Aquaculture Research Center at the 

Institute of Marine and Environmental Technology; Steve Rodgers, Chris Tollini, and Joy 

Harris. Drs. Richard Brill and Adrij Horodysky from the Virginia Institute of Marine 

Science (VIMS) and Hampton University, respectively, for running and analyzing the 

vision tests and Dr. Renate Reimschuessel of the FDA for assistance with microscopy. 

 

 

 

 

167 
 



 

Chapter 5: Fish Oil Replacement with Taurine Supplemented 
Fishmeal-free Diets 

 

 Chapter 5 is the logical next-step after successfully developing fishmeal-free 

formulations. This chapter examines the effects on production and fillet fatty acid profiles 

of fishmeal and fish oil-free diets. The results of studies utilizing a thraustochytrid meal 

plus soybean oil or a canola oil plus exogenous EFAs with juvenile cobia, Rachycentron 

canadum, and juvenile gilthead sea bream, Sparus aurata, are discussed in the first and 

second sections, respectively. This chapter provides further evidence of the importance of 

taurine in feeds and its role as a bile salt conjugate. This function may be the reason these 

species are able to thrive on diets utilizing alternative lipid sources and diets lower in total 

lipid than what many commercial produces are using for these species. 
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Taurine supplementation of plant derived protein and n-3 fatty acids are critical for the 

optimal growth and development of cobia, Rachycentron canadum 

Watson, A.M., Barrows, F.T., Place, A.R. 2013. Taurine supplementation of plant derived 
protein and n-3 fatty acids are critical for the optimal growth and development of cobia, 
Rachycentron canadum. Lipids. DOI : 10.1007/s11745-013-3814-2. 
 

Abstract 

 We examined growth performance and lipid content in juvenile cobia, 

Rachycentron canadum, fed a taurine supplemented (1.5 %), plant protein-based diet with 

two fish oil replacements. The first fish oil replacement was a thraustochytrid meal 

(TM+SOY) plus soybean oil (~9 % CL) and the second was a canola oil supplemented 

with the essential fatty acids (EFAs) docosahexaenoic acid (DHA) and arachidonic acid 

(ARA) (~8 % CL). The diet using the thraustochytrid meal plus soybean oil performed 

equivalently to the fish oil diet; both resulting in significantly higher growth rates, lower 

feed conversion ratios, and higher survival than the supplemented canola oil diet, even 

though all three diets were similar in overall energy and met known protein and lipid 

requirements for cobia. The poor performance on the canola oil diet was attributed to 

insufficient addition of EFAs in the supplemented canola oil source. Increasing levels of 

EFAs in the supplemented canola oil above 0.5 g EFA kg-1 would likely improve results 

with cobia. When fish fed either of the fish oil replacement diets were switched to the fish 

oil control diet, fatty acid profiles of the fillets were observed to transition toward that of 

the fish oil diet and could be predicted based on a standard dilution model. Based on these 

findings, a formulated diet for cobia can be produced without fish products providing 100 

% survivorship, specific growth rates greater than 2.45 and feed conversion ratios less than 

1.5, as long as taurine is added and EFA levels are above 0.5 g EFA kg-1. 
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Introduction  

 Aquaculture produced 63.6 million tonnes in 2011 and was responsible for 

supplying approximately 47% of the total fish and shellfish for human consumption in 

2010 (FAO, 2012). With increased population growth on the horizon, the aquaculture 

industry now faces several hurdles in order to continue expanding. One of the most pressing 

issues has been the industry’s heavy reliance upon capture and reduction fisheries to supply 

fish meal and fish oil as the major base components for aquatic feeds. Aquaculture 

currently consumes 68.2% of global fish meal production and 88.5% of global fish oil 

production (Naylor et al., 2009). Other major concerns include xenobiotic contaminants in 

the final products and public perception that aquaculture in its current state is not 

sustainable and is a detriment to local ecosystems (Tacon and Metian, 2009). 

 Replacement of fish meal and fish oil in aquaculture diets has been a goal for 

several decades but has met with limited success often due simply to the cost and 

inconsistency in quality and quantity of available fish meal alternatives. Replacing fish 

meal and fish oil without loss of production for freshwater species has been more 

successful than with marine species. This may be due to increased experience and 

knowledge involved with some of the extensively cultured freshwater species in 

comparison to marine species, but it may also be a result of some of the intensively cultured 

freshwater species being omnivorous in their natural systems. Most marine species that are 

sought for intensive culture on the other hand, are carnivorous, which dictates significantly 

different dietary habits and therefore, dietary requirements. Taurine, an amino acid not used 

for protein synthesis, but playing critical roles in lipid metabolism, oxidative stress 

responses, muscle activity, and photoreceptor protection (Schuller-Levis and Park, 2003) 
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is found in high concentrations in carnivorous fish and their prey (Satake et al., 1988), as 

well as fish meal (Kim et al., 2005b). However, taurine is not found in many fish meal 

replacement sources, most notably plant protein sources such as wheat flour, soy protein 

concentrate, and corn gluten (Gaylord and Barrows, 2009). Several researchers have noted 

increased feeding and growth rates in marine fish fed diets supplemented with taurine, 

especially when attempting to replace fish meal either partially or completely (Martinez et 

al., 2004; Gaylord et al., 2007; Kim et al., 2005b; Lunger et al., 2007a; Matsunari et al., 

2008; Watson et al., 2012). 

 Recently, fish oil replacements have been summarized (Turchini et al., 2011) and 

several commercially viable alternatives have emerged. The necessity for fish oil derives 

from the essential fatty acids (EFA) it supplies (Turchini et al., 2011). Docosahexaenoic 

acid (DHA; 22:6n-3) has consistently been shown to provide the greatest EFA value to 

most species for promoting growth. However, in addition to DHA, eicosapentaenoic (EPA; 

20:5n-3) and arachidonic (ARA; 20:4n-6) acids serve critical roles in membranes and as 

precursors molecules in multiple signaling pathways (Glencross, 2009). Although the 

potential for synthesis or inter-conversion of these EFAs from DHA or other long chain 

fatty acids varies by species, dietary intake is generally regarded as the most important 

source for all three of these EFAs. Requirement levels for these acids individually and 

combined is poorly understood in many species, although the importance of these EFAs is 

significantly greater than that exhibited by linolenic (LA; 18:3n-3) and linoleic (LNA; 

18:2n-6) acids (Glencross, 2009), which are the predominant polyunsaturated fatty acids 

(PUFA) in seed oils.  
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Very few studies have attempted to replace both fish meal and fish oil in the same 

diet. Torstensen et al. (2008) used plant meal and vegetable oil blends in an attempt to 

increase the sustainability of Atlantic salmon, Salmo salar, production by reducing the 

amount of wild fish product needed to produce an equivalent amount of farmed product. 

They found that at 80% fish meal and 70% fish oil replacement, growth was depressed. 

 Cobia, Rachycentron canadum, is a promising candidate for aquaculture, especially 

in recirculating systems, because it is a fast growing, highly fecund species found tropically 

and sub-tropically throughout the world with the exception of the Eastern Pacific (Holt et 

al., 2007). Boosting the appeal of cobia for intensive aquaculture is the fact that they are 

typically not a schooling fish and there is little wild commercial competition via a managed 

fishery. Cobia are cultured extensively in several Asian countries as well as some 

Caribbean nations, and a great deal of research has been performed on their ability to digest 

and grow on fish meal replacement protein sources (Lunger et al., 2007a, 2007b, 2006; 

Webb et al., 2010; Zhou et al., 2005; Zhou et al., 2004). Chou et al. (2001) determined the 

optimal dietary protein and lipid levels for juvenile cobia to be around 45% protein and 8% 

lipid. Salze et al. (2010) were able to completely eliminate fish meal and fish oil from cobia 

diets using soy protein concentrate, a marine worm meal, a yeast protein extract, and 

mannan oligosaccharides without significant decreases in production characteristics (i.e. 

feed efficiency, specific growth rate, and survival). Moreover, Trushenski et al. (2011) 

examined the effectiveness of replacing fish oil solely with soybean oil for juvenile cobia 

and found that a substantial portion of fish oil (~66%) can be replaced without reduced 

growth. Negative effects on feed intake and final weight were only observed with complete 

fish oil replacement. In terms of overall dietary lipid, high levels, i.e. >15%, have been 
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shown to detrimentally affect the health and growth of juvenile cobia (Fraser and Davies, 

2009), with a minimum level, 5.76%, identified by Chou et al. (2001). 

In general, replacement of high percentages of fish meal in diets for cobia with 

sustainable plant proteins has been unsuccessful without taurine supplementation (Watson 

et al., 2012). Similar trends in lipid replacement have been observed when terrestrial 

alternatives to fish oil have been utilized without supplementation of exogenous EFAs, 

most notably DHA (Trushenski et al., 2011; Trushenski et al., 2012). Non-fish oil sources 

of these EFAs, such as those utilized for this study, are in critical demand for the success 

of reducing the reliance of aquaculture on wild feed sources. Genetically engineered crop 

usage is highly controversial, however few other sources of exogenous EFAs currently 

exist, and those that do through the use of bacterial or algal production vectors are currently 

too expensive to be considered viable long-term solutions for the aquaculture industry. In 

order to develop truly sustainable diets for aquaculture, and break the reliance on dwindling 

reduction fisheries, both fish meal and fish oil replacement must be accomplished.  

 The main objective of the current study was to examine the effects of alternative 

lipid sources in combination with a successful taurine supplemented, plant protein-based 

diet, on the growth, feed conversion ratio, survival, and proximate compositions of juvenile 

cobia reared in recirculating aquaculture systems. We chose two alternative lipid sources: 

a canola based oil supplemented with ARA and DHA to mimic an engineered oil seed crop 

that will be commercially available in the near future (Domergue et al., 2005; Qi et al., 

2004; Venegas-Calerón et al., 2010) and a single cell microbial meal with high DHA levels 

(Lewis et al., 1999; Lippmeier et al., 2009) plus soybean oil. Additional objectives were to 

examine the fatty acid profiles in the fillets of fish reared on these alternative lipid diets, 
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determine whether the amino acid profiles of fillets from fish reared on the alternative 

lipids varied, and whether finishing diets with fish oil can be utilized to recover a fatty acid 

profile more typical of wild caught fish. 

 

Materials and Methods 

Diet Formulation 

The formulations for the three fish meal free diets using a blend of plant protein 

sources are presented in Table 5.1.1. The plant protein blend supplementation for all three 

diets is based on a proven formulation for rainbow trout (Barrows et al., 2010) with slight 

modifications to meet known minimum protein (44.5 %) and lipid (5.76 %) levels for cobia 

(Chou et al., 2001). Lysine, methionine, threonine, magnesium, and potassium chloride 

were all supplemented to mimic concentrations commonly found in fillet tissues (Barrows 

et al., 2010). All ingredients were ground using an air-swept pulverizer (Model 18H, 

Jacobsen, Minneapolis, MN) to a particle size of <200 μm. All ingredients were mixed 

before extrusion except for the menhaden oil. Pellets were prepared with a twin-screw 

cooking extruder (DNDL-44, Buhler AG, Uzwil, Switzerland) with an 18 s exposure to 

127 °C in the extruder barrel. Pressure at the die head was approximately 26 bar, and a die 

head temperature of 71 °C was used. The pellets were dried for approximately 15 min to a 

final exit air temperature of 102 ºC using a pulse bed drier (Buhler AG, Uzwil, Switzerland) 

followed by a 30 min cooling period to a product temperature less than 25 °C. Final 

moisture levels were less than 10 % for each diet. Oils were top-coated after cooling using 

a vacuum pressure of 25 bar (A7J Mixing, Ontario, CA). Diets were stored in plastic lined 

paper bags at room temperature, and were fed within 4 months of manufacture.  
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Table 5.1.1. Diet formulations and fatty acid compositions of the diets in the trial. 
  Diet  

Ingredient (g kg-1) TM+SOY CAN+EFA ARS Control  
Soy Protein Concentrate 269.3 269.3 269.3  
Corn Gluten 211 211 211  
Wheat Flour 226.5 226.5 226.5  
Soybean Meal 

121 121 121 
 

Solvent Extracted  
Menhaden Oil 0 0 84  
Soybean Oil 5 0 0  
Algamac 3050 79 0 0  
Canola Oil + DHA + ARA 0 84 0  
Dicalcium Phosphate 23.7 23.7 23.7  
Vitamin Pre-mix1 10 10 10  
Lysine-HCL 15.5 15.5 15.5  
Choline CL 6 6 6  
Trace Mineral Pre-mix2 1 1 1  
Magnesium Oxide 0.5 0.5 0.5  
Stay-C 3 3 3  
DL-Methionine 5.8 5.8 5.8  
Threonine 2.1 2.1 2.1  
Potassium Chloride 5.6 5.6 5.6  
Taurine 15 15 15  
     Fatty Acid (g 100g-1)1     

12:0 0.15 0.34 0.10 1 Contributed per kg diet;  
14:0 4.33 1.21 4.88 vitamin A, 13510 IU; 
16:0 17.17 7.73 22.89 vitamin D, 9.2 IU; vitamin E,  
17:0 0.16 0.15 0.47 184.4 IU; menadione sodium 
18:0 2.77 3.49 5.31 bisulfite, 6.6 mg; thiamine  
20:0 0.28 0.82 0.30 Mononitrate, 12.7 mg;  
22:0 0.24 0.38 0.14 riboflavin, 13.4 mg; 
SFA3 25.10 14.12 34.08 pyridoxine hydrochloride,  

16:1n-7 0.23 0.46 5.44 19.2 mg; pantothenate, 
18:1n-7 0.87 2.58 2.46 DL-calcium, 141.5 mg; 

18:1n-9+6 13.86 48.28 19.53 cyanocobalamine, 0.04 mg; 
20:1n-15+cis-8 0.06 0.03 0.22 nictonic acid, 30.5 mg; 

20:1n-9 0.14 0.76 1.21 biotin, 0.46 mg; folic acid,  
24:1n-9 0.0 0.13 0.32 3.5 mg. 
MUFA4 15.15 52.24 29.18 2 Contributed in mg kg-¹ of  
16:3n-4 0.05 0.06 0.57 diet; zinc 37; 
16:4n-1 0.04 0.06 0.79 manganese, 10;   
18:2n-6 33.27 22.86 12.74 Iodine 5; copper, 1. 
18:3n-3 3.94 6.25 1.19 3 Saturated fatty acids = sum  
20:2n-6 0.04 0.13 0.18 of all fatty acids without 
20:4n-6 0.70 0.32 0.84 double bonds. 
20:5n-3 0.42 0.27 8.90 4 Monounsaturated fatty acids 
22:5n-6 6.09 0.66 0.31 = sum of all fatty acids 

22:5n-3 0.16 0.16 1.51 with a single double bond. 

22:6n-3 14.93 2.85 8.57 5 Polyunsaturated fatty acids = 
PUFA5 59.75 33.64 36.75 sum of all fatty acids with 

n-36 19.45 9.53 20.17 two or more double bonds. 

n-67 40.10 23.97 14.07 6 Sum of all n-3 fatty acids. 
n-3:n-6 0.49 0.40 1.43 7 Sum of all n-6 fatty acids. 
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The Plant Protein Cobia Diet formulated by the USDA's Agricultural Research 

Service ("ARS") served as the control diet for this study as it relies on fish oil as the lipid 

source, and its palatability and effectiveness as a feed has previously been examined in our 

lab showing excellent performance with juvenile cobia (120-500 g) (Watson et al., 2012). 

The experimental diets for this study examined two possible fish oil replacement sources 

in the fish meal free, plant protein-based diet. A thraustochytrid based meal (Algamac 

3050; 35.58 % CL, 16.25 CP, 9.36 % ash, 0.89 % fiber) with additional soybean oil 

(Aquafauna Biomarine, Hawthorne, CA) ("TM+SOY") constituted the lipid source for one 

diet, and a commercially produced canola oil plus DHA, which was further supplemented 

with DHA (DHAsco, Martek BioSciences, Columbia, MD) and ARA (ARAsco, Martek 

BioSciences, Columbia, MD) in an attempt to meet known fish requirements 

("CAN+EFA") (Glencross, 2009), constituted the lipid source for the second experimental 

diet. This formulation with limited addition of ARA and DHA to the CAN+EFA diet was 

chosen to mimic currently available levels of these EFA's in genetically modified canola 

oil products. Neither experimental diet was supplemented with additional EPA due to the 

presence of the precursor lipid, alpha-linolenic acid (ALA). EPA has also been shown to 

be expendable for juvenile cobia, possibly only needed in trace amounts when using 

soybean oil and DHA (Trushenski et al., 2012). Proximate compositions of the three diets 

are presented in Table 5.1.2. To examine whether oxidation of the lipids occurred during 

the feed manufacturing process or storage and experiment duration, samples were sent to 

New Jersey Feed Labs (Trenton, NJ) for peroxide analysis.  
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Table 5.1.2. Proximate compositions (mean ± S.D.) of the three tested diets. 
 TM+SOY CAN+EFA ARS Control 
Lipid, g  100g-1 dm1 9.07 ± 0.54  7.32 ± 0.46  7.82 ± 1.05  
Ash, g  100g-1 dm1 5.66 ± 0.04 5.10 ± 0.26 5.04 ± 0.14 
Protein, g  100g-1 dm1 49.00 51.38 44.88 

Carbohydrate, g  100g-1 dm2 35.55 35.22 39.75 

Fiber, g  100g-1 dm1,3 (0.72) (0.98) (2.51) 
Moisture, g  100g-1 dm 4.02  7.70  5.11  
Energy Content, MJ Kg-1 20.69  ± 0.15 20.29 ± 0.13 19.30  ± 0.77 
1 After lyophilization. 
2 After lyophilization (100-% lipid, ash, protein, fiber). 
3 Values from New Jersey Feed Labs Analysis. 

 

Growth trial 

 This study was carried out in accordance with the guidelines of the International 

Animal Care and Use Committee of the University of Maryland Medical School (IACUC 

protocol # 0610015). Cobia eggs were obtained from the University of Miami and reared 

at the University of Maryland Center for Environmental Science's (UMCES) Institute for 

Marine and Environmental Technology (IMET) in Baltimore, Md. USA. Fish were reared 

on a combination of live feed (rotifers and Artemia), Otohime (Reed Mariculture, 

Campbell, CA), and Zeigler Marine Grower (Zeigler Bros, Gardners, PA) until reaching 

approximately 130 g. Temperature and salinity were maintained at 27 °C and 25 ppt 

throughout larval and juvenile rearing. Twenty-five fish each were placed into six identical 

two cubic meter tanks, connected in pairs as recirculating systems that share filtration and 

life support systems which include protein skimming, ozonation, mechanical filtration in 

the form of bubble-bead filters, and biological filtration. With two replicate tanks per diet, 

tanks were assigned a diet so that no system contained both replicates of any single diet. 

Water quality samples were randomly taken from each system 2-3 times per week during 

the study and analyzed by the National Aquarium in Baltimore (NAIB) water quality lab 

located at IMET. Water quality was not significantly different between systems utilized 
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(ANOVA, p>0.05) during the study and overall parameters (Standard Methods #) were: 

dissolved oxygen, 5.69 ± 1.62 mg l-1; temperature, 26.85 ± 1.77 °C; pH (4500-H+), 7.61 ± 

0.27; total ammonia nitrogen (4500-NH3), 0.06 ± 0.06 mg l-1; nitrite (4500-NO2
-), 0.12 ± 

0.08 mg l-1; nitrate (4500-NO3
-), 49.28  ± 8.87 mg l-1, alkalinity (2320), 95.77 ± 23.11 mEq 

l-1; and salinity (2510) 24.91 ± 1.65 ppt. 

 Fish were anesthetized with tricaine methanosulfonate (MS-222, 70 mg l-1, Finquel, 

Redmond, WA.) and weighed bi-weekly to record growth and reevaluate feed amounts 

according to total weight. Feed amounts were gradually reduced from 5% to 3% bw during 

the 8 week trial.  At the conclusion of the eight weeks, six fish from each tank were 

randomly selected and euthanized with an overdose of MS-222 (150 mg l-1). Three fish 

from each trial were used for fillet and whole body analyses.   

 Since lipid composition and source play important roles in final flavor and 

acceptance by consumers, we examined the changes that take place in a four week 

"finisher" period following the initial eight week trial. For four additional weeks after the 

initial eight week trial, tanks that had been fed the experimental diets (TM+SOY or 

CAN+EFA diets) during the initial eight weeks were switched to the fish oil ARS control 

diet, and were fed 3% bw daily with bi-weekly weighing. At the conclusion of the four 

week "finisher" period, three fish from each tank were randomly selected and sampled for 

fillet lipid analysis to assess the change in fatty acid profile following the diet switch. 

 Whole body and fillet samples were prepared by lyophilization to constant weight 

followed by homogenization by blending in a Waring blender (Waring Products, CT, 

USA). Ash percentage was determined by combustion at 600 °C for a minimum of 8 h 

(AOAC 942.05). Energy content was determined through bomb calorimetry (6772 
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calorimeteric thermometer and 1341 bomb calorimeter, Parr Instrument Company, Moline, 

IL) with calibration using benzoic acid every 20 samples. Crude protein was determined 

by CHN analysis (EPA method 440.0, Chesapeake Biological Laboratory, University of 

Maryland Center for Environmental Science, %N X 6.25). Amino acids (including taurine, 

AOAC 994.12) were determined by New Jersey Feed Labs, Inc. (Trenton, NJ) and 

examined for differences in amino acid profiles based on lipid source to determine if lipid 

source affected amino acid synthesis or deposition in fillet tissues. 

 

Contaminant analysis 

Samples of fillets were frozen, lyophilized, and sent for total mercury (Hg) and 

polychlorinated biphenyl (PCB) concentration quantification. The methods for total-Hg 

analysis in fish is derived from EPA Method 1631. Fillet samples were digested prior to 

analysis via hot reflux in a 7:4 HNO3:H2SO4 acid mix. Total Hg in samples is reduced to 

elemental Hg with SnCl2, stripped into the gas phase via a gas-liquid separator, trapped 

onto gold-coated bead columns and heated into the an-atomic fluorescence detector 

(Tekran 2600). Detection limits for most matrices are <0.05 ng g-1.  Routine QA/QC 

includes 10% blanks and duplicates/replicates, and analysis of CRMs (CRC DORM III) in 

every run.  

For PCB analysis, approximately 20 g of freeze dried fillet tissue was pulverized in 

a clean mortar and pestle and transferred to a 100 ml glass beaker. A surrogate spike of 

PCBs 14 and 65 was added to all the samples before extraction to check for PCB recovery. 

The samples were then extracted by sonication using a mixture of hexane:acetone 1:1 (v/v) 

following EPA method SW846 3550B. The extracts were concentrated to 5 ml and treated 
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with concentrated sulfuric acid (method 3665A) for removal of lipids followed by activated 

copper treatment for removal of sulfur (method 3660B). The extracts were further cleaned 

to remove interfering organics by passing through a glass column layered with 20 g of 

acidified silica gel (30 % concentrated sulfuric acid by weight), 24 g of 3 % deactivated 

Florisil©, and 1 inch of anhydrous sodium sulfate (top to bottom). 150 ml of hexane was 

used for complete elution of PCBs from the column. The eluate was concentrated to 1 ml 

under a gentle stream of nitrogen for analysis. PCB congener analysis was done using a 

gas chromatograph with a micro electron-capture detector (6890N, Agilent Technologies, 

Santa Clara, CA, USA). A 60 m X 0.25 mm X 0.25 µm fused silica capillary column (RTX-

5MS, Restek US, Bellefonte, PA) was used with helium as the carrier gas at constant flow 

of 1 ml min-1. The oven temperature program began at 100 °C and was increased at the rate 

of 2 °C min-1 to 280 °C, followed by an increase of 10 °C min-1 to 300 °C and was held at 

this temperature for 6 min. Quantification of the target PCB compounds was performed 

using a multi-level calibration. Identification of PCB congeners was carried out by 

comparison of retention times in the chromatogram with that of PCB standards purchased 

as hexane solutions from Ultra Scientific (North Kingstown, RI). PCB 30 and 204 were 

used as the two internal standards because they are not present in commercial Aroclor 

mixtures. Using this method 89 PCB congeners, including some coeluting peaks were 

identified and quantified. Coeluting peaks were quantified as the sum of the congeners. 

 

Lipid extraction and analysis of fatty acid methyl esters (FAMEs) 

 Total lipids were extracted as described in Harvey et al. (1987), a modified version 

of Bligh and Dyer (1959). Samples were subjected to three extractions with 4 ml of 2:1 
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methylene chloride (MeCl):methanol (MeOH), 1:1 methylene chloride (MeCl):methanol 

(MeOH) and 1:2 methylene chloride (MeCl):methanol (MeOH) in a sonicating water bath, 

the supernatant being removed each time to a clean round-bottom glass test tube. Water 

was added (0.25 vol) to the lipid extracts. After vortex mixing and phase separation, the 

organic layer was recovered and dried under N2 gas. The residue was brought to 1 ml in 

1:1 MeCl:MeOH, flushed with N2 gas, and stored at –20 °C for less than 1 month. 

 10 % (vol.) of the lipid extract was used to generate fatty acid methyl esters 

(FAMEs) according to procedures described in Ederington et al. (1995). Five μg of 

C19:C21 internal standard (2.5 μg of each FA) and the lipid extract were added to glass 

tubes and dried under N2 gas. Saponification of lipids was accomplished by adding 2.5 ml 

MeOH, 1.5 ml KOH-saturated MeOH, and 0.5 ml deionized water to each tube, which was 

then capped with a teflon-lined screw cap under a stream of N2 gas and incubated at 70 °C 

for 1 h. After cooling, 0.5 ml of deionized water was added and neutral lipids (such as 

sterols) were removed by extracting 3x with hexane:ether (9:1). Fatty acids were then 

recovered by dropping the pH of the mixture remaining in the tubes to <2 by drop-wise 

addition of concentrated HCl, and repeating the extraction (3x) with hexane:ether (9:1). 

Neutral lipids were stored frozen or discarded and fatty acids were dried under N2 gas. 

Methylation of fatty acids was accomplished using 10% (w/w) BF3 in methanol (Sigma-

Aldrich, Bellefonte, PA USA). To each dried sample, 1 ml of BF3/methanol were added, 

the tubes were flushed with N2 gas, capped with teflon-lined screw caps, and incubated at 

70 °C for 30 min. After cooling, 1 ml of methanol was added to each tube and the samples 

were mixed by vortexing. The FAMEs were extracted with hexane:diethyl ether (9:1) three 

times. The upper organic phase containing FAMEs was recovered to new glass tubes, dried 
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under N2 gas, resuspended in 500 μl hexane, transferred to crimp-top GC sample vials 

containing small-volume sample inserts, capped under N2 gas, and stored at –80 °C until 

analysis. 

 Identification of FAMEs by gas chromatography retention with authentic 

quantitative standards (stds 3B, GLC-68D, GLC-17AA’) from NU-CHECK, Inc. (Elysian, 

MN, USA) and qualitative standards (PUFA No. 1 – Marine Source) from Matreya 

(Pleasant Gap, PA, USA). Peaks in some samples were also confirmed by GC-MS. The 

Hewlett-Packard 6890 GC we used was equipped with a 30 m x 0.25 mm I.D. capillary 

column with 0.25 mm film thickness (DB Wax, J & W Scientific, Folson CA), and a flame 

ionization detector at 300 °C. The GC was run in ‘constant flow rate’ mode at 1.5 ml min-

1 with H2 as the carrier gas. The column-temperature profile was as follows: 50 °C for 0.5 

min, hold at 195 °C for 15 min after ramping at 40 °C min-1, and hold at 220 °C for 7 min 

after ramping at 2 °C min-1. Total runtime was 38.13 min. The mass of FAMEs was 

determined by comparison with the internal C19:C21 standards run with each sample. The 

relative distribution (% FAMEs) was calculated based on the peak area of a given peak 

divided by the total peak area of identified FAMEs in a sample. 

 

Dilution model 

 Control comparisons were made between fatty acid compositions of fillets from 

fish raised on a commercial diet from 30 g to 130 g average weight before beginning the 

trial in order to determine if fatty acid profiles were likely to change simply due to the 

growth of the fish in general. 
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 The dilution model of fatty acid turnover in fish is expressed as: 

Pt = Pr + (Pr − Pi)/(Qt
Qi

), 

where Pt is the percentage of a specific fatty acid in an experimental fillet at time T 

following the dietary change, Pi and Pr are the percentages of the same fatty acid before 

the diet change (initially) and in a reference fillet (fish fed the ARS diet throughout), and 

Qi and Qt are the total lipid content initially and at time T, respectively (Robin et al., 2003; 

Trushenski and Boesenberg, 2009). We compared the fillet fatty acid compositions from 

fish fed the three plant protein-based test diets, Pr, with the predicted values obtained from 

the model using the fatty acid profiles of the commercial diet fed to the fish prior to the 

trial as the initial, Pi. We then compared the fatty acid compositions of the fillets from fish 

that were involved in the four week switch to the ARS control diet, Pr, to the fatty acid 

profiles predicted by the dilution model using the TM+SOY and CAN+EFA fillet profiles 

as the initial, Pi. 

 

Statistics 

 All statistical tests were run using Aabel v2.4.2 (Gigawiz Ltd., OK, USA) with 

significance values of p <0.05. The experimental design was treated as a balanced 

incomplete block design with systems treated as blocks with not all diets represented within 

each block. ANOVA analysis was used to test differences in means between groups and 

two-way ANOVA was used to test differences in the growth curves from the trials. Means 

were averaged across each treatment if no significant difference was found within each 

treatment. Statistics were not performed on the carbohydrate and fiber content pool of the 
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tissues since all other components were measured directly, therefore dramatically 

increasing and pooling the error of this one group’s measurement. 

 

Results 

Diet formulation  

 The protein content of the two fish oil replacement diets are slightly higher (Table 

5.1.2) than the plant protein fish oil reference diet (ARS). Crude protein was lower in the 

ARS diet than either of the experimental diets. There were no differences between the diets 

in overall energy, lipid, or moisture content (Table 5.1.2). The canola oil prior to and post 

addition of DHA and ARA had peroxide values of 5.2 and 2.0 mep kg-1, respectively. The 

plant protein diet containing thraustochytrid meal and soybean oil had a peroxide value of 

18.0 mep kg-1, the CAN+EFA diet had a peroxide value of 2.2 mep kg-1, and the ARS diet 

with fish oil as the lipid source had a peroxide value of 10.0 mep kg-1. All these measures 

are below the accepted rancid values of 20 Mep kg-1 (Turchini et al., 2011). 

 

Growth trial 

 At the end of the eight week trial, growth rates and average weights were 

significantly higher in fish fed the TM+SOY and ARS diets than for fish fed the CAN+EFA 

diet (ANOVA, p<0.001, Figure 5.1.1),with no significant difference between the growth 

rates of fish fed the TM+SOY and ARS diets (ANOVA, p=0.115). Survival (58 %) was 

significantly lower for fish fed the CAN+EFA diet compared to 100 % and 98 % on the 

TM+SOY and ARS diets, respectively (ANOVA, p<0.05, Table 5.1.3). At the end of the 

four week period following the initial trial when fish were switched to the ARS diet, 
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specific growth rates approached a common value of around 1.35 regardless of prior dietary 

history. 

 

Figure 5.1.1. Growth of juvenile cobia (130 g initial weight) during 8 week trial. 25 fish 
per 2 m3 tank, 2 tanks per dietary treatment, maintained at 27 °C and 25 ppt salinity. 
Symbols represent means ± standard deviations. 
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Table 5.1.3. Production characteristics from the eight week grow out trial. Data from a previous grow out 
with juvenile cobia on a fish meal and fish oil based, commercially produced diet are included to show 
overall effects of fish meal and fish oil replacement.

TM+SOY CAN+EFA ARS Control Commercial Diet
(2009 grow out data)6

Weight Gain (%)1 288a 117b 275a 218
Fillet Yield (%)2 25.93 ± 3.34 20.88 ± 4.34 25.71 ± 1.90 20.12 ± 0.01
FCR3 1.42a 2.98b 1.46a 1.85
Plasma Osmolality 358.25 ± 30.59a 311.75 ± 36.82b 327.58 ± 13.83a,b na
PCB Content (ng g-1) 8.40 ± 1.54 9.30 ± 3.41 13.2 ± 4.2 45.5 ± 3.8
Mercury Content (ng g-1) 30.20 ± 3.53 48.17 ± 16.24 20.14 ± 2.96 71.37 ± 3.56
Hepatosomatic Index4 1.83 ± 0.19a 2.93 ± 0.79b 2.66 ± 0.55a,b 3.15 ± 0.002
Specific Growth Rate5 2.48a 1.42b 2.36a 1.93
Survival 100 %b 58 %a 98 %b 100 %

1 Weight gain=(final tank weight - initial tank weight)/ initial tank weight*100.
2 Fillet yield=(fillet weight/body weight)*100.
3 FCR=Feed conversion ratio= grams fed/grams gained.
4 Hepatomsomatic index=liver weight/ body weight.
5 SGR=specific growth rate= ((lnBW2-lnBW1)*(days of trial-1))*100.
6 Initital weight 120g, eight week trial (Watson et al. 2011).
Values in the same row with different superscripts are significantly different (p<0.05), no superscript indicates no significant 
difference within a category.
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The proximate compositions for the whole body and fillet tissues from fish fed each 

of the three diets are presented in Tables 5.1.4 and 5.1.5. Using final body weight as a 

covariate, there was no significant difference in whole body lipid, ash, or moisture content 

but whole body protein was significantly lower in the ARC fed fish than the TM+SOY fed 

fish (Table 5.1.4, ANCOVA, p<0.05). There were no significant differences in fillet lipid 

or protein between the diets however there were significant differences in ash with 

CAN+EFA being higher than TM+SOY and in fillet moisture content with CAN+EFA 

being higher than the other two diets (Table 5.1.5, ANOVA). There were several significant 

differences in the overall production characteristics of percent weight gain and feed 

conversion ratio (FCR) as well as the previously mentioned differences in survival and 

specific growth rate, all of which favored the TM+SOY and ARS diets over the CAN+EFA 

diet (Table 5.1.3).  

 

Table 5.1.4. Proximate compositions (mean ± S.D) of whole body tissues from animals 
fed the three experimental diets. 

 

 

 

 TM+SOY CAN+EFA ARS Control 
Lipid, g 100 g-1 dm1 11.39 ± 3.06 7.73 ± 2.45 11.15 ± 1.91 
Ash, g 100 g-1 dm1 9.86 ± 0.68 12.64 ± 1.95 10.37 ± 1.49 

Protein, g 100 g-1 dm1 71.84 ± 6.53a 70.34 ± 7.20a,b 59.90 ± 2.24b 

Carbohydrate/Fiber, g 100 g-1 dm2 6.91  9.29 18.58 

Moisture, g 100 g-1 dm 69.13 ± 0.03 74.75 ± 0.02 71.08 ± 0.03 
Energy Content, MJ Kg-1 23.61 ± 0.62b 21.72 ± 1.03a 23.36 ± 0.90b 

Body Weight3 516.67 ± 77.55 332.00 ±72.15 543.50 ± 105.28 

1 After lyophilization. 
2 After lyophilization (100-% lipid, ash, protein). 
3 For fish used in analyses, g.  
Values in the same row with different superscripts are significantly different (p<0.05), no superscript 
indicates no significant difference within a category. Final body weight used as covariate for 
proximate analyses in ANCOVA. 
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Contaminant analysis 

 Fillet PCB levels ranged from 8.4-13.2 ng g-1 dry weight, with no significant 

difference between the diets, however the ARS fish oil diet resulted in the highest PCB 

levels (13.2 ± 4.2 ng g-1). Mercury levels ranged from 20.14-48.17 ng g-1 with no significant 

differences between treatments. Mercury levels were highest in the CAN+EFA fed fish 

(48.17 ± 16.24 ng g-1). 

 

Fatty acid analysis 

 Fatty acid compositions did not differ significantly between fish raised on the 

commercial fish meal and fish oil based diet from 30 g to 130 g average weight prior to the 

start of this study, indicating that growth alone did not alter fatty acid composition of fillet 

tissue within these size ranges (linear regression, R2=0.992). Table 5.1.6 presents the fatty 

acid profiles for the fillet and whole body tissues after the initial eight week grow-out on 

the three diets as well as the fillet profiles obtained after the additional four weeks when 

switched to the ARS diet containing fish oil. Figure 5.1.2 presents a radial diagram 

comparing the fatty acid profiles of the fillet and whole body tissues for fish from each as 

a ratio of the same fatty acid concentrations within the diet. Deviations from the line of 

equality represent enhancement or depletion of each fatty acid when compared to the diet 

fed, with values greater than 1 indicating an enrichment in the fillet compared to the diet, 

and values less than 1 indicating a depletion in the fillet compared to the diet. Erucic acid 

(22:1n9) is a toxic fatty acid present in canola oil, however it was not detected in the diets, 

whole body, or fillet tissues of any of the animals fed the CAN+EFA diet.   
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Figure 5.1.2. Fatty acid compositions of fillet and whole body tissues from juvenile cobia 
fed experimental fish oil replacement diets expressed as a fraction of dietary total lipid 
profile. Values were calculated from relative fatty acid methyl ester (FAME) composition 
(Fillet or whole body fatty acid concentration/Diet fatty acid concentration). Based on this 
calculation, a value of 1 represents equality between fillet and dietary fatty acid 
composition.  
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Dilution model 

 Figure 5.1.3 presents the fatty acid profiles of fillets from fish fed the control ARS 

diet throughout the study as compared to fillets from fish fed either experimental diet for 

the 8 week grow out phase as well as after switching to the ARS diet with fish oil for the 4 

week recovery period. The dilution model accurately predicted the change in fatty acid 

composition as percentages of individual fatty acids (% dw) in fillets of fish fed either 

experimental diet (CAN+EFA diet switched to the ARS diet, linear regression, R2=0.9513; 

TM+SOY diet switch to the ARS diet, linear regression, R2=0.8564). The dilution model 

overestimated the concentrations of 16:0, 20:5n-3, and 16:1n-7 and underestimated the 

concentrations of 18:1n-9+6, 18:2n-6, and 22:6n-3 in the CAN+EFA predictions. The 

model also overestimated 20:5n-3 and 16:1n-7 and underestimated 18:2n-6 and 22:6n-3 in 

the TM+SOY predictions. 

 

Table 5.1.5. Proximate compositions (mean ± S.D.) of fillet tissue from animals fed the 
three experimental diets. 

 TM+SOY CAN+EFA ARS Control 
Lipid, g 100 g-1 dm1 5.81 ± 0.77 5.53 ± 3.15 7.90 ± 1.75 

Ash, g 100 g-1 dm1 5.40 ± 0.32a 6.45 ± 0.94b 5.46 ± 0.34a,b 
Protein, g 100 g-1 dm1 78.75 ± 5.80 83.85 ± 6.01 80.21 ± 3.37 

Taurine, g 100 g-1 dm2 (0.81) (0.79) (0.76) 

Carbohydrate/Fiber, g 100 g-1 dm3 10.04 4.17 6.43 
Moisture, g 100 g-1 dm 74.14 ± 0.02a 78.40 ±0.02b 74.10 ± 0.01a 
Energy Content, MJ Kg-1 22.630 ± 0.42a 21.720 ± 1.04b 22.83 ± 0.63a 

Body Weight4 547.00 ± 132.98 321.00 ± 98.32 530.17 ± 79.87 

1 After lyophilization.  
2 New Jersey Feed Labs analysis.  
3 After lyophilization (100-% lipid, ash, protein). 
4 For fish used in analyses, g. 
Values in the same row with different superscripts are significantly different (p<0.05), no superscript 
indicates no significant difference within a category.
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Table 5.1.6. Fatty acid compositions (g 100 g-1) of fillet and whole body tissues from the eight week grow out as well as 
recovery fillets from the additional four week period where animals that were on the two fish oil replacement diets were fed 
the control, fish oil based diet.

Fatty Acid
(g 100g-1)

Fillets Whole Body Recovery Fillets

TM+SOY CAN+EFA ARS Control TM+SOY CAN+EFA ARS 
Control TM+SOY CAN+EFA

12:0 0.08 ± 0.01 0.16 ± 0.29 0.06 ± 0.002 0.09 ± 0.01 0.11 ± 0.01 0.06 ± 0.01 0.08 ± 0.01 0.03 ± 0.04
14:0 3.86 ± 0.12 1.88 ± 0.43 5.05 ± 0.24 4.41 ± 0.29 2.82 ± 0.67 5.16 ± 0.25 4.40 ± 0.34 3.71 ± 0.61
16:0 19.78 ± 0.49 14.61 ± 1.07 22.85 ± 0.78 20.64 ± 0.74 14.19 ± 0.87 23.01 ± 0.87 21.84 ± 0.29 20.04 ± 0.66
17:0 0.20 ± 0.02 0.22 ± 0.11 0.32 ± 0.01 0.21 ± 0.01 0.19 ± 0.03 0.33 ± 0.01 0.27 ± 0.02 0.32 ± 0.04
18:0 4.36 ± 0.65 6.13 ± 3.27 5.25 ± 0.31 4.42 ± 0.31 3.55 ± 0.46 5.23 ± 0.36 5.55 ± 1.13 5.99 ± 0.88
20:0 0.35 ± 0.18 0.49 ± 0.19 0.26 ± 0.04 0.31 ± 0.08 0.38 ± 0.15 0.25 ± 0.05 0.24 ± 0.05 0.27 ± 0.16
22:0 0.45 ± 0.47 1.40 ± 0.37 1.18 ± 0.29 0.80 ± 0.30 2.23 ± 1.01 1.40 ± 0.37 0.40 ± 0.05 0.69 ± 0.12
SFA 29.08 ± 0.82 24.90 ± 4.34 34.96 ± 0.65 30.88 ± 1.01 23.46 ± 2.82 35.44 ± 0.97 32.78 ± 0.72 31.05 ± 0.66

16:1n-7 1.40 ± 0.30 1.78 ± 0.54 7.07 ± 0.28 1.91 ± 0.29 2.82 ± 0.52 7.37 ± 0.31 3.65 ± 0.38 4.93 ± 0.81
18:1n-7 1.18 ± 0.06 2.48 ± 0.16 2.94 ± 0.07 1.31 ± 0.06 2.46 ± 0.06 3.00 ± 0.04 2.02 ± 0.12 2.94 ± 0.05

18:1n-9+6 15.12 ± 0.49 31.98 ± 7.15 17.31 ± 0.66 16.51 ± 1.18 35.39 ± 4.21 18.60 ± 0.50 15.71 ± 0.95 20.58 ± 1.38
20:1n-15+cis-8 0.23 ± 0.25 0.34 ± 0.20 0.32 ± 0.07 0.16 ± 0.13 0.40 ± 0.14 0.32 ± 0.07 0.17 ± 0.03 0.35 ± 0.06

20:1n-9 0.78 ± 0.35 1.97 ± 0.39 1.69 ± 0.26 0.94 ± 0.35 2.38 ± 1.12 1.87 ± 0.30 0.84 ± 0.15 1.39 ± 0.24
24:1n-9 0 0.07 ± 0.11 0.24 ± 0.06 0 0.13 ± 0.14 0.19 ± 0.06 0.09 ± 0.07 0.09 ± 0.14
MUFA 18.70 ± 0.86 38.55 ± 7.29 29.33 ± 0.65 20.88 ± 1.26 43.57 ± 2.91 31.34 ± 0.28 22.39 ± 1.13 30.18 ± 1.95
16:3n-4 0.02 ± 0.06 0.32 ± 0.17 0.82 ± 0.04 0.16 ± 0.84 0.35 ± 0.15 0.86 ± 0.04 0.43 ± 0.04 0.59 ± 0.18
16:4n-1 0 0.18 ± 0.21 0.46 ± 0.47 0.08 ± 0.06 0.07 ± 0.06 0.16 ± 0.03 0.30 ± 0.11 0.51 ± 0.35
18:2n-6 26.84 ± 0.68 21.02 ± 1.50 9.87 ± 0.77 26.33 ± 0.79 21.44 ± 1.13 10.03 ± 1.03 17.94 ± 1.40 12.95 ± 1.26
18:3n-3 2.76 ± 0.09 3.20 ± 1.14 1.10 ± 0.08 2.48 ± 0.85 3.55 ± 1.31 1.19 ± 0.10 1.71 ± 0.45 1.33 ± 0.19
20:2n-6 0.38 ± 0.18 0.53 ± 0.19 0.21 ± 0.07 0.33 ± 0.17 0.38 ± 0.09 0.20 ± 0.08 0.29 ± 0.08 0.30 ± 0.16
20:4n-6 1.11 ± 0.18 0.87 ± 0.50 0.67 ± 0.08 0.89 ± 0.17 0.61 ± 0.25 0.60 ± 0.07 1.07 ± 0.33 1.00 ± 0.20
20:5n-3 0.92 ± 0.24 1.71 ± 0.75 10.15 ± 0.79 0.93 ± 0.16 1.43 ± 0.34 9.60 ± 0.70 4.91 ± 0.31 8.21 ± 0.98
22:5n-6 4.69 ± 0.36 0.14 ± 0.32 0.29 ± 0.11 4.05 ± 0.23 0.14 ± 0.18 0.25 ± 0.04 3.35 ± 0.64 0.85 ± 0.88
22:5n-3 0.31 ± 0.33 0.83 ± 0.28 2.33 ± 0.11 0.36 ± 0.11 0.62 ± 0.15 2.09 ± 0.16 1.08 ± 0.10 1.95 ± 0.12
22:6n-3 14.71 ± 0.83 7.27 ± 3.74 7.80 ± 0.65 12.21 ± 0.60 3.59 ± 0.68 5.83 ± 0.53 12.63 ± 1.13 9.43 ± 1.93
PUFA 52.22 ± 1.38 36.55 ± 3.99 35.70 ± 1.21 48.21 ± 1.67 32.96 ± 1.20 33.33 ± 1.17 44.83 ± 0.77 38.77 ± 2.34

n-3 18.70 ± 0.73 13.00 ± 3.56 21.86 ± 0.77 15.90 ± 1.06 9.04 ± 1.31 18.06 ± 1.14 20.90 ± 0.65 21.79 ± 0.75
n-6 33.38 ± 1.03 22.56 ± 1.12 11.37 ± 0.95 31.60 ± 1.03 22.57 ± 0.91 11.10 ± 1.11 22.65 ± 0.78 15.10 ± 1.82

n-3:n-6 0.56 ± 0.02 0.58 ± 0.16 1.94 ± 0.20 0.50 ± 0.03 0.40 ± 0.06 1.65 ± 0.23 0.92 ± 0.05 1.46 ± 0.15
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Figure 5.1.3. Fatty acid compositions of fillet tissues from juvenile cobia after eight weeks 
on experimental lipid replacement diets, eight weeks on fish oil based control diet, and 
eight weeks on experimental fish oil replacement diet with four "recovery" weeks on fish 
oil based control diet. 
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Amino acid analysis 

 Overall fillet amino acid profiles of fish fed the CAN+EFA diet were unaffected by 

the low growth and poor survival observed on this diet, and none of the three lipid sources 

used in the study appear to have had an effect on fillet amino acid composition (ANOVA, 

P>0.05), indicating limited interactions between amino acid and fatty acid uptake and 

deposition within the fish. At a dietary taurine level of 1.5 % inclusion, taurine accumulates 

in fillets to ~0.80 % (Table 5.1.5). 

 

Discussion 

 Aquaculture of cobia has risen dramatically over the last 10 to 15 years primarily 

due to its favorable production characteristics, most notably being the ability to reach 

market size (4-6 kg) within a year (Nhu et al., 2010). However, only recently has work 

been published on the specific nutritional requirements of this species due in part to the 

relative success of commercial compounded feeds (Chou et al., 2001). Fraser and Davies 

(2009) recently summarized these studies for cobia and determined optimum dietary 

protein and lipid levels in juvenile cobia to be 45 and 5-15 % dry weight, respectively. 

Zhou et al. (2006) determined the methionine requirement to be 2.64 % of dietary protein 

dry weight and lysine requirement to be 5.3 % of dietary protein (Zhou et al., 2007). 

Moreover, cobia exhibits a low capacity for protein sparing through dietary lipid, preferring 

mainly protein as the primary dietary energy source to lipid. Excess lipid levels (>12 %) 

reduce growth (Craig et al., 2006). Using the fatty acid profile of cobia eggs, Fraser and 

Davies (2009) estimate that juvenile cobia require high amounts of long-chain 

polyunsaturated fatty acids (LC-PUFA) DHA, EPA and ARA as these account for 
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approximately 80 % of the PUFAs in cobia eggs and yolk sac larvae. Considering these 

requirements and the success with a plant protein-based formulation for trout (Gaylord et 

al., 2007) we formulated a fish meal free diet for cobia (ARS). An important addition to 

this formulation was taurine, which is proving to be essential for efficient use of plant 

protein diets (Gaylord et al., 2006; Kim et al., 2005a; Lunger et al., 2007b; Watson et al., 

2012). We extended this formulation by replacing the fish oil with plant-based oils 

containing sufficient LC-PUFAs through either addition of DHA and ARA rich oils 

(Martek) or addition of thraustochytrid meal (TM+SOY) which is rich in DHA and the n-

6 fatty acid, docosapentaenoic acid (DPA, 22:5n-6). No addition of EPA was made to either 

of the fish oil replacements since EPA has been shown to be expendable, potentially only 

needed in trace amounts (Trushenski et al., 2012).  

 As clear from the growth and production characteristics, the plant protein diet with 

the microbial single cell meal and soybean oil source is equivalent in performance to the 

ARS Cobia diet with fish oil. The protein and ash content differences between the diets 

had no effect on growth rates, FCRs, or fillet characteristics. The unique fatty acid profiles 

for the diets are reflected in the fatty acid profiles of the whole body and fillets of each 

dietary treatment with patterns of enrichment, a comparison of individual fatty acid 

concentrations found in the diet to the concentrations found in the fish tissues, in whole 

body tissues and fillet tissues are very similar for each of the three diets (Figure 5.1.2). 

Both experimental lipid sources result in similar patterns of enrichment, with the exception 

of a greater enrichment of DHA in the fillets of fish fed the CAN+EFA diet, which would 

be expected in comparison to either of the other diets, due to the low concentration of DHA 

in the CAN+EFA diet. ARA and EPA are both enriched in the fillets compared to the diets 
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for both of the experimental diets, which would be expected considering there was no 

supplemental addition of EPA to either experimental diet, and low levels of ARA in both. 

With few exceptions, the enrichment pattern observed for fish fed the control ARS diet is 

very close to the 1:1 line of equality for both whole body tissues and fillet tissues, 

reinforcing how important matching the fatty acid profile of fish oil is for any replacement 

source.  

 Removal of fish meal and fish oil from dietary formulations resulted in drastically 

reduced PCB and mercury levels compared to similarly sized fish also reared for eight 

weeks on a commercial diet. Replacing fish meal alone and still utilizing fish oil resulted 

in PCB levels 71 % lower and mercury levels 72 % lower than utilizing both fish derived 

ingredients (Table 5.1.3). Further removal of fish oil from the formulation did not result in 

any greater reduction in PCBs, and the alternate lipid sources resulted in levels higher than 

the ARS fish oil diet used in this study, but levels still much lower than those in fish fed 

the commercial diet. This represents a significant consumer added advantage of utilizing 

both fish meal and fish oil replacements, in addition to the potential for more sustainable 

diets. 

 Figure 5.1.3 represents the recovery of the fillet fatty acid profile towards the fatty 

acid profile observed when fish were fed the ARS diet throughout the study. The four week 

switch to the ARS diet was not enough to fully recover the ARS fatty acid profile, however 

changes have taken place and many of the fatty acids have started to transition towards the 

ARS concentrations. Interestingly the concentration of DHA stays high relative to the ARS 

level, even though the fish have spent four recovery weeks on the lower DHA content ARS 

diet. A simple dilution model accurately predicted the fatty acid profile for the switch from 
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either experimental diet to the ARS fish oil control diet. The model had trouble predicting 

concentrations of 18:2n-6, 16:1n-7, 20:5n-3, and 22:6n-3 in both dietary switches. This is 

most likely due to these four fatty acids undergoing the most modification and conversion 

as opposed to simple dilution by different concentrations in the ARS diet. Understanding 

the dilution and rate of change in fatty acid profiles of fillet tissues can help reduce 

production costs by utilizing cheap lipid sources, followed by a short period on a replete 

finishing diet to obtain more appealing fatty acid profiles in the final product. This process 

allows for the maintenance of a healthy source of essential fatty acids for the consumer 

without substantially altering taste. 

  Both the TM+SOY and ARS diets performed better than the CAN+EFA based 

diet. The low survival and poor growth along with the production of a fillet with higher ash 

content and lower energy content lead us to the conclusion that sufficient EFAs were not 

added to canola oil to meet the requirements for cobia. The minimum EFA requirements 

for cobia are currently not known, however the g EFA kg-1 diet for marine fish has been 

suggested to be in the range of 0.5-1 (Glencross, 2009). As mentioned previously, the 

addition of DHA and ARA to the canola oil source was selected to mimic current 

genetically modified crop levels. This resulted in an EFA level of 0.25 g kg-1 diet for the 

CAN+EFA diet. In contrast the TM+SOY diet has an EFA level of 1.21 g kg-1 diet and the 

ARS diet has an EFA level of 1.70 g kg-1 diet. Plotting specific growth rate vs. g EFA kg-

1 (Figure 5.1.4) reveals our CAN+EFA diet may contain insufficient EFA to meet 

requirements for maximum growth. Concentrations of 0.5 g EFA kg-1 is considered 

minimum for other marine fish and 0.8 to 1.2 g EFA kg-1 has been suggested by Chou et 

al. (2001) for cobia. Although the CAN+EFA diet appears to be too low in overall EFA 
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content (Figure 5.1.4 insert), this short term trial with 130 g fish on a diet not completely 

devoid of EFAs should not alone have resulted in such poor survival (58 %), as the existing 

pool of fatty acids should be sufficient for survival. Potential explanations for the low 

survival include dilution of EFAs below minimum requirements, the presence of high 

dietary oleic acid which has been shown to have negative effects on leukocytes and 

respiratory organs in mammals (Brinkmann et al., 2013; de Albuquerque et al., 2012), an 

inhibition of even minimal conversion of precursors to EPA and DHA as evidenced in the 

rat model with ALA (Gibson et al., 2013), or an overall loss of EFAs throughout the whole 

body tissues of the cobia. Whole body g EFA kg-1 was 1.56 ± 0.24 at the initiation of the 

study, with the final concentrations being 1.36 ± 0.36 and 1.53 ± 0.34 for the TM+SOY 

and ARS diets, respectively. In contrast to this, the g EFA kg-1 in whole body tissue of the 

CAN+EFA fish dropped significantly to 0.35 ± 0.07 at the conclusion of the eight week 

trial (Figure 5.1.4 insert). Prior work with juvenile cobia (50-160 g) found that up to 66 % 

of fish oil can be replaced with soybean oil in diets with 10-12 % crude lipid, without 

significant reduction in production characteristics (Trushenski et al., 2011) and that 

addition of DHA, EPA, and combinations of the two resulted in higher concentrations of 

these in tissues (Trushenski et al., 2012). Using the EFA levels reported in these studies 

with the reported specific growth rates, we see a range of EFA concentrations utilized 

(Figure 5.1.4), with a general trend of increasing SGR as dietary EFAs are increased. 

However, supplementing diets with exogenous EFAs can be expensive, and little added 

advantage of overall EFA levels above ~1.2 is observed (Figure 5.1.4). Reducing the EFA 

levels to 1.2 g EFA kg-1 could be a considerable savings in cost in future formulations. 
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Figure 5.1.4. Grams of essential fatty acids per kg of diet (gEFA= (% dietary lipid * 
0.85)*(% DHA+EPA+ARA/100) and the specific growth rates obtained by various lipid 
source diets for juvenile cobia. Fatty acids assumed to be ~85 % of total dietary lipid. Light 
grey shaded area represents 0.5-1.0 g EFA kg-1 minimum suggested for marine fish by 
Glencross (2009). Dark grey shaded area represents 0.8-1.2 g EFA kg-1 suggested for 
juvenile cobia by Chou et al. (2001). Data from Trushenski et al. (2011) with juvenile cobia 
(62g initial weight, 27.1°C, 6 week trial, 10.6-12.2% lipid diets) Trushenski et al. (2012) 
with juvenile cobia (52g initial weight, 26.4°C, 9.4-11.0% lipid diets). Numbers in 
parentheses' are the n-3:n-6 ratio of each diet. Insert bar graph is g EFA kg-1 whole body 
weight for initial fish (black) compared to the final g EFA kg-1 whole body weight of fish 
from each of the three experimental diets at the conclusion of the eight week trial. Star 
indicates significant difference (ANOVA, p<0.05). 
 

 While it could be argued that since we only added DHA and ARA and not EPA to 

the canola oil, the poor performance of this diet is due to EPA deficiency. Our excellent 

growth performance with the TM+SOY diet which contains no EPA addition indicates that 

perhaps EPA is not required in as high levels as previously though for sustained high 

growth in cobia, a result also observed by Trushenski et al. (2012). It could also be that 

DPA has partially taken over the role of EPA or that there is some inter-conversion or retro-

conversion from other fatty acids. Further studies with higher levels of DHA addition to 

canola oil should help determine which explanation is correct. Because of the higher DPA 
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level in the fillet of fish fed TM+SOY diet, we examined whether switching to the ARS 

with fish oil would recover a more natural fatty acid composition, which was observed. 

The fatty acid profiles from fish raised on the CAN+EFA diet began to transition to that 

observed in the ARS fillets with survival maintained at 100 % during the recovery period 

and growth showing slight improvement. This indicates that whatever the cause of the poor 

performance during the eight week grow-out, potential remediation occurred after the 

switch to the fish oil based ARS diet.   

 The growth, FCR, and amino and fatty acid profiles of the fillets of fish fed the 

TM+SOY diet lead us to believe that this combination of lipid sources is a suitable fish oil 

replacement candidate. Carter et al. (2003) observed no significant decrease in production 

characteristics of Atlantic salmon fed a fish oil free diet containing 10 % of a 

thraustochytrid meal as part of the fish oil replacement source, but did observe lower 

survival after transfer to seawater and Vibrio challenges compared to fish fed fish oil. 

Further work with cobia and other high value marine species is needed to determine if any 

alternate protein and lipid sources or combinations result in similar immune deficiencies, 

especially considering the high rearing density in intensive recirculating aquaculture 

systems. 

The ability of cobia to thrive on low lipid and alternative lipid sources may be due 

to the role of taurine as a bile salt conjugate, but may also be due in part to some EFA 

biosynthesis capacity. Monroig et al. (2011) have described a fatty acid elongase in cobia 

embryos that is similar to mammalian elongase of very long-chain fatty acids (Elovl4). 

Elovl4, elovl5, and ∆6fad were all observed between 18-36 h post fertilization in cobia 

embryos, indicating an ability to biosynthesize LC-PUFAs, including DHA (Monroig et 
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al., 2011). However, given the poor performance of the CAN+EFA diet, the biosynthetic 

capacity for LC-PUFAs must be limited in juvenile cobia. 

 New technology is advancing quickly to increase the content of EFAs in alternative 

sources, but more work must be done to determine these levels for the highly sought after 

marine carnivores that intensive aquaculture relies upon. With aquaculture on the verge of 

consuming virtually all of the fish meal and fish oil produced worldwide (Naylor et al., 

2009), and being relied upon to expand and support increasing demand for protein (Tacon 

and Metian, 2008), it is clear that current practices are unsustainable and do not allow for 

the needed expansion. However, complete fish product replacement is possible, even in 

fast growing marine carnivores like cobia, if care is taken to meet nutritional requirements. 

Based on these short term trial results, some currently available commercial alternative 

lipid sources appear sufficient for fish oil replacement. Through judicious selection of 

highly digestible plant protein sources, addition of essential amino acids including taurine 

(Gaylord et al., 2007) and adequate essential fatty acids (Glencross, 2009), a completely 

fish product free diet can be formulated to allow the expansion of aquaculture for future 

global protein needs. 
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Abstract 

 Two lipid sources were examined as fish oil replacements in fishmeal-free, plant 

protein-based diets for juvenile gilthead sea bream, Sparus aurata. A thraustochytrid meal 

plus soybean oil (TM+SOY) and a canola oil (CAN+EFA) supplemented with 

docosahexaenoic (DHA) and arachidonic acids (ARA). A twelve week trial was 

undertaken to examine the performance of the diets and to assess whole body and fillet 

fatty acid profiles resulting from the use of alternative lipid sources was comparable to fish 

oil. A finishing period was also utilized in an attempt to recover a fish oil fatty acid profile 

in the fillets of fish fed the alternative lipid source diets. The TM+SOY diet significantly 

outperformed the fish oil control diet in terms of weight gain, feed conversion ratio, 

condition factor, and protein efficiency ratio while maintaining similar fillet yield while 

the CAN+EFA diet performed similarly to the control diet. Although fatty acid profiles in 

the whole bodies and fillets at the conclusion of the trial were representative of that of the 

diet fed, transition toward the fish oil profile was observed at the conclusion of the finishing 

period. Overall, both alternative lipid sources performed equivalently or better than the fish 

oil control, a significant finding for this species. Low dietary lipid (~7-9 %) was just as 

effective as high dietary lipid input, observed in other studies, and did not result in lowered 
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fillet lipid levels or growth performance. As a note taurine had to be supplemented to the 

plant protein diets. 

 

Introduction 

 Fisheries, and to a growing extent aquaculture, are responsible for a major source 

of n-3 and n-6 polyunsaturated fatty acids (PUFA) for the human population (FAO, 2012; 

Gjedrem et al., 2012; Glencross, 2009). Species used for direct human consumption are 

often high in these essential and human health beneficial fatty acids, as are the species 

captured for reduction to fishmeal and fish oil, components utilized for the bulk of protein 

and lipid sources in many aquaculture diets. However, both capture and reduction fisheries 

have reached production plateaus, with continued decline predicted for most fisheries 

worldwide. Aquaculture already consumes the bulk of the world’s production of both 

fishmeal (60.8 %) and fish oil (73.8 %) (FAO, 2012). In order for aquaculture to satisfy 

growing global population and protein requirements, alternative protein and lipid sources 

must be identified and evaluated to significantly reduce the quantities of fishmeal and fish 

oil used in diets for aquaculture. In fact, with the increase in aquaculture over the past few 

decades, the availability of fishmeal has steadily declined and costs have steadily increased 

(Tacon and Metian, 2008), with predictions that demand will soon be greater than supply.  

Gilthead sea bream, Sparus aurata, is one of the most heavily cultured species in 

Europe with ~140,000 metric tons produced annually (FAO, 2012) and the ability to 

replace high quantities of fishmeal with plant proteins in the diets of juvenile gilthead sea 

bream has been well established (Benedito-Palos et al., 2007; Lupatsch et al., 1997; Rigos 

et al., 2011; Robaina et al., 1995; Sánchez-Lozano et al., 2009; Sitjà-Bobadilla et al., 
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2005), although complete fishmeal replacement often results in poorer growth and feed 

conversion when compared to traditional high fishmeal or commercial feeds for many 

species (Kader et al., 2012; Luo et al., 2006; Xie et al., 1998; Zhou et al., 2005). Limited 

synthetic capacity of the essential arachidonic (ARA) and docosahexaenoic (DHA) acids, 

and their absence or low abundance in terrestrial oil sources has presented a formidable 

challenge in the development of complete fishmeal and fish oil free diets for many marine 

species (FAO, 2012; Rust et al., 2011). Eicosapentaenoic acid (EPA) has been considered 

an essential fatty acid for marine species, however recent evidence suggests that this may 

not be the case for all species (Trushenski et al., 2012). Studies attempting to completely 

or substantially replace fish oil with terrestrial oils in diets for gilthead sea bream have 

generally observed lower growth, poorer feed conversion, increased stress responses, and 

poorer fillet quality when compared to full or only partially substituted fish oil diets. Much 

of this decline may be attributed to lack of essential fatty acids in the substituted oils. 

The objectives of this study were to examine the effects on growth, feed conversion, 

survival, and proximate and fatty acid compositions of juvenile gilthead sea bream fed diets 

varying in lipid source. The base of the diets in the study consisted of a fishmeal-free, plant 

protein-based diet which has been used effectively for rearing juvenile cobia, Rachycentron 

canadum, in recirculating aquaculture systems (Watson et al., 2012). With fish oil serving 

as the sole lipid source in the control diet, two alternative lipid sources were selected for 

the experimental diets; a microbial single celled thraustochytrid derived meal high in DHA 

(Carter et al., 2003; Lewis et al., 1999; Lippmeier et al., 2009) plus soybean oil and a 

canola oil supplemented with ARA and DHA at levels to mimic potential genetically 

engineered canola oil levels (Qi et al., 2004; Venegas-calerón et al., 2010). In addition to 
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the twelve week trial on the complete fish product free experimental diets, a twelve week 

finishing period was implemented at the conclusion of the trial to determine the potential 

for fillet fatty acid profiles to return to a profile more similar to fish oil (i.e. farmed fish 

reared on traditional feeds or wild fish). 

 

Materials and Methods 

Diet formulation and growth trial 

 The formulations for the three fishmeal-free diets using a blend of plant protein 

sources are presented in Table 5.2.1. The plant protein blend supplementation for all three 

diets is based on a proven formulation for rainbow trout (Barrows et al., 2010) with slight 

modifications for cobia (Watson et al., 2012). Lysine, methionine, threonine, magnesium, 

and potassium chloride were all supplemented to mimic concentrations commonly found 

in fillet tissues (Barrows et al., 2010). All ingredients were ground using an air-swept 

pulverizer (Model 18H, Jacobsen, Minneapolis, MN) to a particle size of <200 μm. All 

ingredients were mixed before extrusion except for the menhaden oil. Pellets were prepared 

with a twin-screw cooking extruder (DNDL-44, Buhler AG, Uzwil, Switzerland) with an 

18 s exposure to 127 °C in the extruder barrel. Pressure at the die head was approximately 

26 bar, and a die head temperature of 71 °C was used. The pellets were dried for 

approximately 15 min to a final exit air temperature of 102 ºC using a pulse bed drier 

(Buhler AG, Uzwil, Switzerland) followed by a 30 min cooling period to product 

temperature less than 25 °C. Final moisture levels were less than 10 % for each diet. Oils 

were top-coated after cooling using a vacuum pressure of 25 bar (A7J Mixing, Ontario, 
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CA). Diets were stored in plastic lined paper bags at room temperature, and were fed within 

6 months of manufacture.  

 The control diet for this study utilizes the same fishmeal-free, plant protein base 

formulated by the USDA's Agricultural Research Service (“ARS Diet") with menhaden 

fish oil serving as the sole lipid source, and its palatability and effectiveness as a feed has 

previously been examined with positive results for juvenile cobia (120-500 g) (Watson et 

al., 2012). The experimental diets for this study examined two possible fish oil replacement 

sources in the fishmeal-free, plant protein-based diet. A thraustochytrid meal with 

additional soybean oil (Aquafauna Biomarine, Hawthorne, CA) ("TM+SOY Diet") 

constituted the lipid source for one diet, and a commercially produced canola oil plus DHA, 

which was further supplemented with DHA (DHAsco, Martek BioSciences, Columbia, 

MD) and ARA (ARAsco, Martek BioSciences, Columbia, MD) constituted the lipid source 

("CAN+EFA Diet") for the second experimental diet. Proximate compositions of the three 

diets are presented in Table 5.2.2. To ensure limited oxidation of the lipids did not occur 

during the feed manufacturing process or storage and experiment duration, samples were 

sent to New Jersey Feed Labs (Trenton, NJ) for peroxide analysis.  
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Table 5.2.1. Diet formulations and fatty acid compositions of the diets. 
  Diet  
Ingredient (g kg-1) TM+SOY CAN+EFA ARS Control  
Soy Protein Concentrate 269.3 269.3 269.3  
Corn Gluten 199 211 211  
Wheat Flour 198.5 226.5 226.5  
Soybean Meal, extracted 121 

0 
121 
0 

121 
84 

 
Menhaden Oil  
Soybean Oil 50 0 0  
Algamac 3050 74 0 0  
Canola Oil + DHA + ARA 0 84 0  
Dicalcium Phosphate 23.7 23.7 23.7  
Vitamin Pre-mixa 10 10 10  
Lysine-HCL 15.5 15.5 15.5  
Choline CL 6 6 6  
Trace Mineral Pre-mixb 1 1 1  
Magnesium Oxide 0.5 0.5 0.5  
Stay-C 3 3 3  
DL-Methionine 5.8 5.8 5.8  
Threonine 2.1 2.1 2.1  
Potassium Chloride 5.6 5.6 5.6  
Taurine 15 15 15  
     Fatty Acid (g 100g-1)     

12:0 0.15 0.34 0.10  
14:0 4.33 1.21 4.88  
6:0 17.17 7.73 22.89  

17:0 0.16 0.15 0.47  
18:0 2.77 3.49 5.31  
20:0 0.28 0.82 0.30  
22:0 0.24 0.38 0.14  
SFA 25.10 14.12 34.08  

16:1n-7 0.23 0.46 5.44 aContributed per kg diet; 
18:1n-7 0.87 2.58 2.46 vitamin A, 13510 IU; 

18:1n-9+6 13.86 48.28 19.53 vitamin D, 9.2 IU; vitamin 

20:1n-15+cis-8 0.06 0.03 0.22 E, 184.4 IU; 

20:1n-9 0.14 0.76 1.21 menadione sodium 
24:1n-9 0.0 0.13 0.32 bisulfite, 6.6 mg; thiamine 

MUFA 15.15 52.24 29.18 mononitrate, 12.7 mg; 

16:3n-4 0.05 0.06 0.57 riboflavin, 13.4 mg; 

16:4n-1 0.04 0.06 0.79 pyridoxine hydrochloride, 

18:2n-6 33.27 22.86 12.74 19.2 mg; pantothenate, DL  

18:3n-3 3.94 6.25 1.19 calcium, 141.5 mg; 

20:2n-6 0.04 0.13 0.18 cyanocobalamine, 0.04 mg  
20:4n-6 0.70 0.32 0.84 nictonic acid, 30.5 mg; 

20:5n-3 0.42 0.27 8.90 biotin, 0.46 mg; folic acid  

22:5n-6 6.09 0.66 0.31 3.5 mg. 

22:5n-3 0.16 0.16 1.51 b Contributed in mg kg-¹  
22:6n-3 14.93 2.85 8.57 diet; zinc 37; manganese, 

PUFA 59.75 33.64 36.75 10; iodine, 5; copper, 1. 
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Table 5.2.2. Proximate compositions of the three tested diets. 
 TM+SOY CAN+EFA ARS Control 

 
Mean ± S.D. 

(NJFL)3 
Mean ± S.D. 

(NJFL)3 
Mean ± S.D. 

(NJFL)3 

Lipid, g 100g-1 dm1 9.07 ± 0.54  7.32 ± 0.46  7.82 ± 1.05  
Ash, g 100g-1 dm1 5.66 ± 0.04a 5.10 ± 0.26b 5.04 ± 0.14b 

Protein, g 100g-1 dm1 49.00a 51.38a 44.88b 

Carbohydrate, g 100g-1 dm2 35.55 35.22 39.75 
Fiber, g 100g-1 dm1 (0.72) (0.98) (2.51) 
Moisture, g 100g-1 dm 4.02  7.70  5.11  
Energy Content, MJ Kg-1 20.69  ± 0.15 20.29 ± 0.13 19.30  ± 0.77 
1 After lyophilization. 
2 After lyophilization (100-% lipid, ash, protein, fiber).  
3 Values from New Jersey Feed Labs Analysis. 
Values in the same row with different superscripts are significantly different (p<0.05); no superscript 
indicates no significant difference within a category. 
 

This study was carried out in accordance with the guidelines of the International 

Animal Care and Use Committee of the University of Maryland Medical School (IACUC 

protocol # 0610015). Sea bream eggs were spawned from in-house broodstock and reared 

at the University of Maryland Center for Environmental Science's (UMCES) Institute for 

Marine and Environmental Technology (IMET) in Baltimore, MD. USA. Fish were reared 

on a combination of live feed (rotifers and Artemia), Otohime (Reed Mariculture, 

Campbell, CA), and Zeigler Marine Grower (Zeigler Bros, Gardners, PA) until reaching 

approximately 11 g. Temperature and salinity were maintained at 25 °C and 15 ppt 

throughout larval and juvenile rearing. One hundred fish each were placed into six identical 

two cubic meter tanks, connected in pairs that share filtration and life support systems 

including protein skimming, ozonation, mechanical filtration in the form of bubble-bead 

filters, and biological filtration; and for this reason tanks were randomly assigned diets to 

avoid having both tanks of one system feed the same diet. Water quality parameters did 

not differ significantly between systems utilized during the feeding trial and were: salinity, 
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15.93 ± 2.42 ppt; pH, 7.70 ± 0.51; total ammonia nitrogen, 0.15 ± 0.14 mg l-1; nitrite, 0.14 

± 0.12 mg l-1; nitrate, 236.74 ± 167.72 mg l-1; and alkalinity, 108.93 ± 33.45 mEq l-1. 

 Fish were anesthetized with Tricaine methanosulfonate (MS-222, 70 mg l-1, 

Finquel, Redmond, WA.) and weighed every six weeks to record growth with feed amounts 

gradually reduced from 4.4 % to 2.2 % bw during the 12 week trial.  At the conclusion of 

the twelve weeks, six fish from each tank were euthanized with an overdose of MS-222 

(150 mg l -1). Three fish from each trial were used for fillet and whole body analyses. Since 

lipid composition and source plays such an important role in final flavor and acceptance 

by the consumer, we examined the changes that take place in a twelve week finishing 

period. For these additional weeks, tanks that had been fed the experimental diets during 

the trial were switched to the ARS control diet with fish oil. Afterwards, three fish from 

each tank were sampled for fillet lipid analysis to assess the change in fatty acid profile 

following the diet switch. 

 Whole body and fillet samples were prepared by lyophilization to constant weight 

followed by homogenization by blending in a Waring blender (Waring Products, CT, 

USA). Ash percentage was determined by ashing three replicate samples at 600 °C for a 

minimum of 8 h. Energy content was determined in triplicate for each sample through 

bomb calorimetry (Parr instrument company, Moline, IL.) with calibration using benzoic 

acid ever 20 samples. Crude protein was determined by CHN analysis (Chesapeake 

Biological Laboratory, Center for Environmental Science, University of Maryland, %N X 

6.25).   
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Lipid extraction and analysis of fatty acid methyl esters (FAMEs) 

 Total lipids were extracted as described in Harvey et al. (1987), a modified version 

of Bligh and Dyer (1959). Samples were subjected to three extractions with 4 ml of 2:1 

methylene chloride (MeCl):methanol (MeOH), 1:1 methylene chloride (MeCl):methanol 

(MeOH) and 1:2 methylene chloride (MeCl):methanol (MeOH) in a sonicating water bath, 

the supernatant being removed each time to a clean round-bottom glass test tube. Water 

was added (0.25 vol) to the lipid extracts. After vortex mixing and phase separation, the 

organic layer was recovered and dried under N2 gas. The residue was brought to 1 ml in 

1:1 MeCl:MeOH, flushed with N2 gas, and stored at –20 °C for less than 1 month. 

 10% (vol.) of the lipid extract was used to generate fatty acid methyl esters 

(FAMEs) according to procedures described in Ederington et al. (1995). Five μg of 

C19:C21 internal standard (2.5 μg of each FA) and the lipid extract were added to glass 

tubes and dried under N2 gas. Saponification of lipids was accomplished by adding 2.5 ml 

MeOH, 1.5 ml KOH-saturated MeOH, and 0.5 ml dH2O to each tube, which was then 

capped with a teflon-lined screw cap under a stream of N2 gas and incubated at 70 °C for 

1 h. After cooling, 0.5 ml of dH2O was added and neutral lipids (such as sterols) were 

removed by extracting 3x with hexane:ether (9:1). Fatty acids were then recovered by 

dropping the pH of the mixture remaining in the tubes to <2 by drop-wise addition of 

concentrated HCl, and repeating the extraction (3x) with hexane:ether (9:1). Neutral lipids 

were stored frozen or discarded and fatty acids were dried under N2 gas. Methylation of 

fatty acids was accomplished using 10 % (w/w) BF3 in methanol (Sigma-Aldrich, 

Bellefonte, PA USA). To each dried sample, 1 ml of BF3:methanol were added, the tubes 

were flushed with N2 gas, capped with teflon-lined screw caps, and incubated at 70 °C for 
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30 m. After cooling, 1ml of methanol was added to each tube and the samples were mixed 

by vortexing. The FAMEs were extracted with hexane:diethyl ether (9:1) three times. The 

upper organic phase containing FAMEs was recovered to new glass tubes, dried under N2 

gas, resuspended in 500 μl hexane, transferred to crimp-top GC sample vials containing 

small-volume sample inserts, capped under N2 gas, and stored at –80 °C until analysis. 

 Identification of FAMEs was accomplished by comparing gas chromatography 

retention data with authentic quantitative standards (stds 3B, GLC-68D, GLC-17AA’) 

from NU-CHECK, Inc. (Elysian, MN, USA) and qualitative standards (PUFA No. 1 – 

Marine Source) from Matreya (Pleasant Gap, PA, USA). Peaks in some samples were also 

confirmed by GC-MS. The Hewlett-Packard 6890 GC we used was equipped with a 30 m 

x 0.25 mm I.D. capillary column with 0.25 mm film thickness (DB Wax, J & W Scientific, 

Folson CA), and a flame ionization detector at 300 °C. The GC was run in ‘constant flow 

rate’ mode at 1.5 ml min-1 with H2 as the carrier gas. The column-temperature profile was 

as follows: 50 °C for 0.5 min, hold at 195 °C for 15 min after ramping at 40 °C min-1, and 

hold at 220 °C for 7 min after ramping at 2 °C min-1. Total runtime was 38.13 min. The 

mass of FAMEs was determined by comparison with the internal C19:C21 standards run 

with each sample. The relative distribution (% FAMEs) was calculated based on the peak 

area of a given peak divided by the total peak area of identified FAMEs in a sample. 

 

Dilution model 

 The dilution model of fatty acid turnover in fish is expressed as: 

Pt = Pr + (Pr − Pi)/(Qt
Qi

), 

211 
 



 

where Pt is the percentage of a specific fatty acid in an experimental fillet at time T 

following the dietary change, Pi and Pr are the percentages of the same fatty acid before 

the diet change (initially) and in a reference fillet (fish fed the ARS diet throughout), and 

Qi and Qt are the total lipid content initially and at time T, respectively (Robin et al., 2003; 

Trushenski and Boesenberg, 2009). We compared the fatty acid compositions of fillets 

from fish that were involved in the twelve week switch to the ARS control diet, Pr, to the 

fatty acid profiles predicted by the dilution model using the TM+SOY and CAN+EFA fillet 

profiles as the initial, Pi. 

 

Statistics 

 All statistical tests were run using Aabel v2.4.2 (Gigawiz Ltd., OK, USA) with 

significance values of p <0.05. Paired t-tests and ANOVA were used to test differences in 

means between groups and two-way ANOVA was used to test differences in the growth 

curves from the trials. Means were averaged across each treatment if no significant 

difference was found within each treatment. Statistics were not performed on the 

carbohydrate and fiber content pool of the tissues since all other components were 

measured directly, therefore dramatically increasing and pooling the error of this one 

groups measurement. 

 

Results 

Diet formulation  

 The protein content of the two fish oil replacement diets are slightly higher (Table 

5.2.2) than the plant protein fish oil reference diet (ARS Plant Protein Cobia). Crude protein 
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was significantly lower in the ARS diet than either of the experimental diets (ANOVA, 

p<0.05). There were no significant differences between the diets in overall energy, lipid, 

or moisture content (Table 5.2.2). The canola oil prior to and post addition of DHA and 

ARA had peroxide values of 5.2 and 2.0 mep kg-1, respectively. The plant protein diet 

containing thraustochytrid meal and soybean oil had a peroxide value of 18.0 mep kg-1, the 

CAN+EFA diet had a peroxide value of 2.2 mep kg-1, and the ARS diet with fish oil as the 

lipid source had a peroxide value of 10.0 mep kg-1. All these measures are below the 

accepted rancid values of 20 Mep kg-1 (Turchini et al., 2011). 

 

Growth trial 

 At the conclusion of the initial twelve week trial, weight gain, percent growth from 

initial weight, was significantly higher (ANOVA, p<0.05) on the TM+SOY diet (785.69 ± 

3.84) than the ARS control diet (696.33 ± 0.05) and the CAN+EFA diet (680.34 ± 72.01), 

however weight gain on the CAN+EFA diet (680.34 ± 72.01) was not significantly 

different than the ARS control (Table 5.2.3, ANOVA, p>0.05). Feed conversion ratio 

(FCR) and hepatosomatic index (HSI) were both significantly lower on the TM+SOY diet 

than the CAN+EFA or the ARS control diets (ANOVA p<0.05). Protein efficiency ratio 

(PER) was significantly higher (ANOVA, p<0.05) on the TM+SOY (1.61 ± 0.04) and ARS 

control (1.64 ± 0.01) diets than the CAN+EFA diet (1.42 ± 0.04). There were no significant 

differences in fillet yield, condition factor, or survival between the three diets (Table 5.2.3, 

ANOVA p>0.05), with overall averages between the diets of 27.48 ± 1.79, 1.64 ± 0.14, 

and 95.8 % respectively.  

213 
 



 

 Proximate compositions of the whole body and fillet tissues of three randomly 

selected individuals from each tank, six per diet, are seen in Tables 5.2.4 and 5.2.5, 

respectively. There were no significant differences between the diets in the whole body 

compositions in terms of lipid, ash, protein, moisture, energy content, or carbohydrates 

(Table 5.2.4, ANOVA p>0.05). There was a significant difference in fillet protein, g 100 

g-1, content between the diets with the ARS control diet (78.02 ± 2.51) resulting in 

significantly higher fillet protein than the TM+SOY (71.54 ± 5.43) or CAN+EFA (73.65 ± 

2.64). There were no significant differences in fillet lipid, ash, moisture, or energy content 

between the diets (Table 5.2.5, ANOVA, p>0.05) between the diets. 

 

Table 5.2.3. Production characteristics from the twelve week grow out trial.  
 TM+SOY CAN+EFA ARS Control 

Weight Gain (%)1 785.69 ± 3.84a 680.34 ± 72.01b 696.33 ± 0.05b 

Fillet Yield (%)2 27.28 ± 1.30 27.50 ± 2.97 27.66 ± 1.09 
FCR3 1.27 ± 0.01a 1.37 ± 0.04b 1.36 ± 0.01b 

PER4 1.61 ± 0.04a 1.42 ± 0.04b 1.64 ± 0.01a 

Hepatosomatic Index5 1.41 ± 0.18a 2.14 ± 0.39b 2.11 ± 0.50b 

Specific Growth Rate6 2.48 ± 0.00 2.33 ± 0.11 2.36 ± 0.00 
Condition Factor7 1.56 ± 0.15 1.67 ± 0.13 1.68 ± 0.13 
Survival 97.5 % 94.5 % 95.5 % 
1 Weight gain = (final tank weight - initial tank weight)/ initial tank weight*100. 
2 Fillet yield = (fillet weight/body weight)*100. 
3 FCR=Feed conversion ratio = g fed/g gained. 
4 PER=Protein efficiency ratio = g gained /g protein fed. 
5 Hepatomsomatic index = (liver weight/ body weight)*100. 
6 Specific growth rate = ((lnBWF-lnBWI)/(days of trial))*100. 
7 Condition Factor = (Weight*100)/(Length3). 
Values in the same row with different superscripts are significantly different (p<0.05),  
no superscript indicates no significant difference within a category. 
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Table 5.2.4. Proximate compositions of whole body tissues from animals fed the 
three experimental diets. 

 TM+SOY CAN+EFA ARS Control 
 Mean ± S.D. Mean ± S.D. Mean ± S.D. 
Lipid, g 100 g-1 dm1 26.94 ± 5.55 27.40 ± 4.48 29.90 ± 6.65 
Ash, g 100 g-1 dm1 10.14 ± 1.66 10.51 ± 1.29 10.58 ± 1.22 
Protein, g 100 g-1 dm1 52.64 ± 5.88 51.42 ± 5.77 52.33 ± 4.52 
Carbohydrate/Fiber, g 100 g-1 dm2 10.28 10.67 7.19 
Moisture, g 100 g-1 dm 62.88 ± 2.48 64.71 ± 0.81 65.59 ± 1.05 
Energy Content, MJ Kg-1 23.02 ± 1.07 24.11 ± 0.73 24.08 ± 0.84 
Body Weight3 111.33 ± 8.76 94.75 ± 11.06 92.78 ± 13.79 
1 After lyophilization. 
2 After lyophilization (100-% lipid, ash, protein).  
3 For fish used in analyses, g.  
Values in the same row with different superscripts are significantly different (p<0.05), no superscript 
indicates no significant difference within a category. 
 
 
 
 
 
 
 
Table 5.2.5. Proximate compositions of fillet tissue from animals fed the three 
experimental diets. 

 TM+SOY CAN+EFA ARS Control 
 Mean ± S.D. Mean ± S.D. Mean ± S.D. 
Lipid, g 100 g-1 dm1 15.28 ± 4.54  16.33 ± 4.50 14.46 ± 3.93 
Ash, g 100 g-1 dm1 4.23 ± 0.87 4.07 ± 0.77 4.15 ± 1.15 
Protein, g 100 g-1 dm1 71.54 ± 5.43a 73.65 ± 2.64a 78.02 ± 2.51b 

Carbohydrate/Fiber, g 100 g-1 dm2 8.95 5.95 3.37 
Moisture, g 100 g-1 dm 69.69 ± 2.92 71.61 ± 0.62 71.06 ± 2.31 
Energy Content, MJ Kg-1 25.39 ± 0.80 24.64 ± 0.59 24.70 ± 0.84 
Body Weight3 118.72 ± 13.10 104.33 ± 12.52 113.47 ± 11.26 
1 After lyophilization. 
2 After lyophilization (100-% lipid, ash, protein). 

  
3 For fish used in analyses, g. 
Values in the same row with different superscripts are significantly different 
(p<0.05), no superscript indicates no significant difference within a category. 
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Fatty acid analysis 

Table 5.2.6 presents the fatty acid profiles for the fillet and whole body tissues after 

the twelve week trial and the fillet fatty acid profiles obtained after the additional twelve 

weeks when tanks fed either the TM+SOY or CAN+EFA diets were switched to the ARS 

diet containing fish oil. Figure 5.2.1 presents a radial diagram comparing the fatty acid 

profiles of the fillet and whole body tissues for fish from each diet at the conclusion of the 

twelve week trial as a ratio of fatty acid concentrations within the diet. Deviations from the 

line of equality represent enhancement or depletion of each fatty acid when compared to 

the diet fed, with values greater than 1 indicating an enrichment in the fillet or whole body 

compared to the diet, and values less than 1 indicating a depletion compared to the diet. 

Euricic acid (22:1n9) is a toxic fatty acid that can be present in canola oil, however it was 

not detected in the diets, whole body, or fillet tissues of any of the animals fed the 

CAN+EFA diet. 
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Figure 5.2.1. Fatty acid compositions of fillet and whole body tissues from sea bream 
experimental fish oil replacement diets expressed as a fraction of dietary total lipid profile. 
Values were calculated from relative fatty acid methyl ester (FAME) composition (fillet or 
whole body fatty acid concentration/diet fatty acid concentration). Based on this 
calculation, a value of 1 represents equality between fillet and dietary fatty acid 
composition. 
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Figure 5.2.2. Fatty acid compositions of fillet tissues from sea bream after twelve weeks 
on experimental lipid replacement diets, twelve weeks on fish oil based control diet, and 
twelve weeks on experimental fish oil replacement diet with twelve "recovery" weeks on 
fish oil based control diet. 
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Figure 5.2.3. Relationship between the predicted and actual fillet fatty acid compositions 
(% dw) following switch from either the Plant Protein: CAN+EFA (A) or TM+SOY (B) 
diets to the fish oil based ARS control diet (12 week duration). The dilution model is 
described in materials and methods with predicted results based on a standard model 
(Robin et al., 2003). 
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Table 5.2.6. Fatty acid compositions (g 100 g-1) of fillet and whole body tissues from the twelve week grow out as well as recovery 
fillets from the additional twelve week period where animals that were on the two fish oil replacement diets were fed the control, fish 
oil based diet.

Fatty Acid
(g 100 g-1)

Fillets Whole Body Recovery Fillets
TM+SOY CAN+EFA ARS Control TM+SOY CAN+EFA ARS Control TM+SOY CAN+EFA

12:0 0.10 ± 0.01 0.11 ± 0.01 0.09 ± 0.01 0.11 ± 0.03 0.11 ± 0.01 0.09 ± 0.01 0.08 ± 0.01 0.08 ± 0.01
14:0 5.48 ± 0.61 2.37 ± 0.20 4.99 ± 0.23 6.50 ± 1.14 2.20 ± 0.19 5.36 ± 0.59 4.18 ± 0.15 2.68 ± 0.11
16:0 24.93 ± 2.01 17.12 ± 0.55 26.08 ± 1.16 29.60 ± 4.21 16.74 ± 1.78 27.82 ± 3.13 22.05 ± 0.73 18.61 ± 0.61
17:0 0.23 ± 0.02 0.11 ± 0.01 0.25 ± 0.01 0.27 ± 0.03 0.13 ± 0.02 0.29 ± 0.03 0.26 ± 0.01 0.21 ± 0.02
18:0 4.08 ± 0.31 3.10 ± 0.13 4.57 ± 0.29 5.15 ± 0.70 3.54 ± 0.43 5.17 ± 0.51 3.87 ± 0.25 3.82 ± 0.11
20:0 0.22 ± 0.04 0.27 ± 0.02 0.24 ± 0.05 0.26 ± 0.04 0.29 ± 0.05 0.27 ± 0.04 0.22 ± 0.03 0.31 ± 0.05
22:0 0.27 ± 0.08 0.20 ± 0.12 0.40 ± 0.07 0.24 ± 0.11 0.25 ± 0.26 0.43 ± 0.05 0.33 ± 0.06 0.28 ± 0.06
SFA 35.32 ± 2.88 23.18 ± 0.60 36.61 ± 1.47 41.99 ± 6.10 23.10 ± 2.43 39.42 ± 4.24 30.98 ± 0.60 26.00 ± 0.79

16:1n-7 6.25 ± 0.55 3.71 ± 0.40 9.13 ± 0.41 6.37 ± 0.69 3.55 ± 0.48 9.08 ± 0.57 6.77 ± 0.61 5.16 ± 0.16
18:1n-7 2.17 ± 0.16 2.43 ± 0.05 3.07 ± 0.11 2.46 ± 0.19 2.58 ± 0.13 3.23 ± 0.16 2.48 ± 0.07 2.64 ± 0.07

18:1n-9+6 22.39 ± 1.48 43.53 ± 0.48 30.20 ± 0.69 23.65 ± 2.04 45.97 ± 2.71 31.13 ± 1.87 23.66 ± 0.85 34.57 ± 1.05
20:1n-15+cis-8 0.11 ± 0.02 0.09 ± 0.03 0.23 ± 0.06 0.16 ± 0.03 0.13 ± 0.07 0.26 ± 0.04 0.15 ± 0.03 0.15 ± 0.03

20:1n-9 0.71 ± 0.08 0.72 ± 0.12 0.81 ± 0.12 0.91 ± 0.08 0.84 ± 0.10 0.91 ± 0.13 0.91 ± 0.06 1.04 ± 0.08
24:1n-9 0.20 ± 0.04 0.20 ± 0.04 0.29 ± 0.07 0.33 ± 0.08 0.26 ± 0.06 0.37 ± 0.08 0.28 ± 0.06 0.33 ± 0.08
MUFA 31.84 ± 2.09 50.67 ± 0.42 43.72 ± 0.76 33.87 ± 3.02 53.34 ± 3.25 44.98 ± 2.46 34.24 ± 1.39 43.89 ± 1.12
16:3n-4 0.39 ± 0.04 0.16 ± 0.04 0.53 ± 0.04 0.31 ± 0.08 0.25 ± 0.10 0.49 ± 0.13 0.34 ± 0.12 0.35 ± 0.03
16:4n-1 0.34 ± 0.04 0.12 ± 0.04 0.38 ± 0.04 0.24 ± 0.05 0.14 ± 0.03 0.42 ± 0.03 0.31 ± 0.01 0.19 ± 0.02
18:2n-6 8.20 ± 0.60 17.12 ± 0.43 6.97 ± 1.99 6.35 ± 3.40 15.59 ± 3.13 6.40 ± 1.98 10.16 ± 0.35 14.45 ± 0.14
18:3n-3 0.73 ± 0.10 3.93 ± 0.13 0.69 ± 0.04 0.76 ± 0.12 3.56 ± 1.01 0.55 ± 0.21 0.89 ± 0.04 2.40 ± 0.08
20:2n-6 0.14 ± 0.03 0.25 ± 0.06 0.30 ± 0.39 0.15 ± 0.04 0.30 ± 0.07 0.15 ± 0.04 0.24 ± 0.03 0.36 ± 0.05
20:4n-6 0.79 ± 0.12 0.22 ± 0.03 0.39 ± 0.06 0.48 ± 0.38 0.23 ± 0.09 0.32 ± 0.13 0.93 ± 0.05 0.58 ± 0.08
20:5n-3 3.42 ± 1.09 0.55 ± 0.16 4.22 ± 0.17 3.21 ± 1.02 0.61 ± 0.35 3.04 ± 1.65 4.82 ± 0.38 3.39 ± 0.29
22:5n-6 3.73 ± 0.59 0.33 ± 0.12 0.33 ± 0.09 1.97 ± 1.66 0.37 ± 0.09 0.29 ± 0.08 2.40 ± 0.22 0.36 ± 0.06
22:5n-3 1.21 ± 0.17 0.25 ± 0.04 1.14 ± 0.14 0.82 ± 0.65 0.27 ± 0.10 1.04 ± 0.37 1.80 ± 0.11 1.39 ± 0.14
22:6n-3 13.46 ± 2.37 3.21 ± 0.41 4.23 ± 0.25 11.92 ± 2.81 2.53 ± 0.98 2.90 ± 1.58 12.33 ± 1.04 6.21 ± 0.57
PUFA 32.84 ± 4.38 26.16 ± 0.74 19.67 ± 2.03 24.14 ± 9.01 23.56 ± 5.55 15.60 ± 6.62 34.78 ± 1.84 30.11 ± 1.13
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Dilution model 

 Figure 5.2.2 presents radial diagrams of the fillet fatty acid (% dw) profiles from 

this study. The top panel represents the “recovery” of the fatty acid profile of fish fed the 

TM+SOY diet when switched to the ARS control diet for the twelve week finishing period, 

and the bottom panel represents the “recovery” of the profile of fish fed the CAN+EFA 

diet when switched to the ARS control for the finishing period. Table 5.2.6 contains the 

fatty acid percentages found in the fillets of fish switched from the TM+SOY and 

CAN+EFA diets to the ARS control diet. Figure 5.2.3 presents the linear regression of the 

dilution model as applied to either the TM+SOY switch (top panel) or the CAN+EFA 

switch (bottom panel) to the ARS control diet. Linear regression analyses for the 

comparisons of predicted fatty acid percentages based on the model to actual fatty acid 

percentages for the individual fatty acids measured resulted in R2 values of 0.91 and 0.86 

for the TM+SOY and CAN+EFA switches to the ARS diet, respectively. 

 

Discussion 

 Both experimental complete fish oil replacement diets performed as well or better 

than the fish oil, ARS, control diet. All three diets are also completely fishmeal-free, with 

this study representing one effective fishmeal-free and two effective complete fish product 

replacement diets for juvenile sea bream resulting in excellent growth rates, feed 

conversion ratios, and survival from 11-100 g over the initial twelve week trial. 

Performance of all three diets are similar to the results obtained by other researchers 

utilizing partial fish oil replacement in low fishmeal diets (Benedito-Palos et al., 2007; 

Fountoulaki et al., 2009; Glencross et al., 2003; Montero et al., 2008). However in this 
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study, complete fish oil replacement in a fishmeal-free diet was just as effective as full fish 

oil. It is important to note that the feeds used in this study were relatively low in overall 

lipid level (7.32-9.07 %), a significant reduction from the 14-16 % range utilized for many 

diets for this species (Dias et al., 2009; Fountoulaki et al., 2009; Izquierdo et al., 2005, 

2003; Liu et al., 2002). The low dietary lipid level did not result in lower lipid levels in the 

fillet when compared to other studies, with gilthead sea bream in this study maintaining 

14-16 % lipid in the fillet tissue, potentially indicating a strong ability for this species to 

modulate its tissue lipid content compared to dietary input.  

In addition to the performance of the fish on the diets, the fatty acid profiles 

obtained for fillet and whole body tissues display unique characteristics similar to those of 

the diets, with the ARS fish oil diet being the most similar to the 1:1 line of equality for 

both fillets and whole body tissues (Figure 5.2.1). This indicates the importance of 

attempting to match a fish oil profile when utilizing alternative oil sources, even if the 

supplementation with exogenous EFAs is necessary. However, even given the differences 

observed due to dietary input, results from the finishing period (Figure 5.2.2) give another 

indication that gilthead sea bream may have a strong ability to regulate the fatty acids being 

deposited in their tissues. For most fatty acids measured, there is little difference between 

the concentration in fillets of fish fed the ARS control diet compared to either the TM+SOY 

or CAN+EFA diets, and where large differences were detected, after the twelve week 

finishing period, concentrations had transitioned towards the ARS fish oil type profile. One 

major exception to this trend was the effect of DHA in the TM+SOY fed fish. The 

TM+SOY diet is very high in DHA (~14.93 % of fatty acids), and after the twelve week 

finishing period, DHA remained high in the fillets (12.33 % vs 13.46 %), while the ARS 
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diet only contains ~8.57 % DHA. This is potentially an added human health related benefit 

to the TM+SOY diet, with or without the use of a finishing period. The same trend is seen 

in docosapentaenoic acid (DPA), an intermediary between EPA and DHA that has been 

shown to have its own roles in benefiting human health (Herold and Kinsella, 1986; Hino 

et al., 2004; Sun et al., 2008). Even with these exceptions, the simple dilution model 

accurately predicted the overall transitions observed when switching fish fed either the 

TM+SOY or CAN+EFA diets to the ARS control diet (Figure 5.2.3). The minimum g EFA 

kg-1 (EPA+ARA+DHA in this instance) provided in the diet for marine fish has been 

suggested to be in the range of 0.5-1, with requirement levels for various species falling in 

the 5-10 g kg-1 range depending on overall lipid level (Glencross, 2009). As mentioned 

previously, the addition of DHA and ARA to the canola oil source was selected to mimic 

potentially available genetically modified crop levels. This resulted in an EFA level of 0.26 

g kg-1 diet for the CAN+EFA diet. In contrast the TM+SOY diet has an EFA level of 1.37 

g kg-1 and the ARS diet has an EFA level of 1.93 g kg-1. Even with the low level of overall 

EFAs in the CAN+EFA diet, growth was equivalent to the ARS control diet, indicating the 

EFA requirement for this species may be lower than other marine species, potentially due 

to some synthetic capacity. The fishmeal-free, plant protein-based diets in this study rely 

upon, and success with these and similar plant protein blends have largely been attributed 

to, the supplementation of taurine in the absence of fishmeal. Taurine is a non-protein 

amino acid that has multiple important physiological roles (Schuller-Levis and Park, 2003), 

however it is not found in any terrestrial plant sources, and must therefore be supplemented 

to feeds in the same manner as lysine and other essential components. Taurine has been 

shown to be the only amino acid used by marine teleosts as a bile conjugate, with 
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conjugated bile salts being critical for efficient lipid digestion (Kim et al., 2008). This may 

be a partial explanation as to why the low lipid diets in this study were still effective, 

especially considering the use of alternative lipid sources in these fishmeal-free diets. 
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Chapter 6: Potential consumer concerns of plant protein utilization 
in aquaculture 

 

Fillet assessment of fish fed fishmeal-free, plant protein diets: organoleptic and 

contaminant analysis of cobia, Rachycentron canadum, gilthead sea bream, Sparus 

aurata, and striped bass, Morone saxatilis 

Abstract 

 This study was undertaken to examine the organoleptic characteristics and organic 

contaminant loads of fish raised on plant protein-based diets compared to commercial 

fishmeal-based diets. Cobia, Rachycentron canadum, gilthead sea bream, Sparus aurata, 

and striped bass, Morone saxatilis, were raised for equivalent periods of time on either a 

commercial fishmeal-based diet or a plant protein formulation developed in our lab and 

produced by a commercial manufacturer. A panel of organoleptic analysts were unable to 

discern the difference within any of the three species between fillets from fish raised on 

the plant protein diet compared to those raised on the commercial diets. Polychlorinated 

biphenyl (PCB) and total mercury concentrations were also significantly lower in fillets of 

fish raised on the plant protein diet for all species except striped bass, where the reduction 

was present but not significant. This represents a highly significant advantage in 

developing more sustainable diets for aquaculture, as replacing fishmeal with plant proteins 

will result in lowered public concern over contaminants while producing fillets that are 

identical in taste and texture to what consumers expect from fish. 
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Introduction 

 As the aquaculture industry continues to expand globally in total volume and 

diversity of species, several critical issues have been encountered. One of the most 

important is how to expand and become more sustainable when one of the main ingredients 

historically for fish feeds, fishmeal, is declining in production and increasing in price 

(FAO, 2012). A partial solution to this problem has been to replace fishmeal with 

alternative protein sources such as animal by-product meals or plant proteins. Species 

specific formulations are currently being developed worldwide for virtually every species 

in intensive culture (Gatlin et al., 2007; Rust et al., 2011) but two very important aspects 

of fishmeal replacement have not yet received the attention they deserve for their potential 

impacts on the industry. Replacing fishmeal with plant proteins creates more sustainable 

feeds for the expansion of the industry, but their effect on organoleptic qualities has been 

under scrutinized. Producing aquacultured products more sustainably is futile if it results 

in unacceptable products to the consumer due to organoleptic differences from wild caught 

products. However, producing products that are lower in organic contaminants through the 

reduction of fishmeal use could potentially add value to aquacultured products when 

compared to their wild caught counterparts.  

Wild and farm raised fish have come under scrutiny for potentially containing high 

levels of organic contaminants (Du et al., 2012; Hayward et al., 2007; Kim et al., 2012; 

Stewart et al., 2011). This issue has been extensively explored in farmed Atlantic salmon, 

Salmo salar, a high trophic level carnivore raised in varying locations worldwide (Hites et 

al., 2004). Biomagnification of these contaminants, such as polychlorinated biphenyls 

(PCBs) and mercury, occurs in these high level predators as a result of their carnivorous 
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feeding habits. In aquaculture scenarios these species are reared in high densities on diets 

that rely heavily on fishmeal and fish oil, products of the reduction of wild caught stocks 

of species such as anchovy and menhaden which are not usually consumed directly by 

humans. The concentrations of contaminants is further increased during the reduction 

process, leading to the high levels observed in farmed fish raised on this type of feed. 

Therefore, it is much more important to consider the source and contaminant load of the 

feed ingredients used as opposed to the source or location of the fish farm itself. Reducing 

fishmeal and fish oil use in diets for aquaculture has resulted in lower contaminant loads 

in trials with Atlantic salmon (Bell et al., 2005; Berntssen et al., 2005).  

Mercury, most notably methylmercury, toxicity can lead to neurodevelopmental 

deficits, development of cardiovascular disease, and neurological deficits (Burger and 

Gochfeld, 2013). Although PCB production was halted decades ago, approximately 1.3 

million tons of the carcinogenic material was produced, with potential effects lasting for 

centuries (Borchers et al., 2010). The biggest route of contamination for both of these types 

of compounds to animals and especially humans is through ingestion. 

The purpose of this study was to examine organoleptic qualities and contaminant 

concentrations in fish raised on fishmeal-free, plant protein-based diets compared to fish 

raised on traditional commercial diets. Gilthead sea bream, Sparus aurata, and striped bass, 

Morone saxatilis, are both extensively cultured in Europe and North America, respectively. 

Cobia, Rachycentron canadum, is heavily cultured in several Asian countries and 

production is increasing in Central America and the Caribbean.  
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Methods and Materials 

Organoleptic analysis  

To examine the organoleptic differences of fillets from fish raised on plant-based 

diets compared to commercial, fishmeal-based diets, we raised three different species on 

either a plant-based diet (ARS) previously developed in our lab (Watson et al., 2012) or 

commercially available fishmeal-based diets. The plant-based diet used in this study is 

identical in formulation to that used by Watson et al. (2012) however, IMET had 5 tons 

produced commercially by Silvercup Fish Feeds (now Skretting USA, Murray, UT). Cobia 

were reared on the diets from 130 to approximately 500 g prior to harvesting with Zeigler 

Marine Grower used as the commercial comparison. Gilthead sea bream were reared from 

11 to 400 g prior to harvesting with Skretting Europa 18 used as the commercial 

comparison. Striped bass were reared from 530 to 1200 g prior to harvesting with 

Skretting’s Europa 18 used as the commercial comparison. After harvesting, fillets were 

removed, packed on ice, randomly labeled with numbers by type and sent to the University 

of Maryland, Eastern Shore’s Food Science and Technology Center for double-blind 

organoleptic analysis. Fillet samples were trimmed to similar sized pieces for each species 

and cooked in a 160 ºF convection oven to a consistent white, flaky state. 

Organoleptic analysis was performed by panels of 17 volunteer, un-paid judges 

with 34 judgments made per species comparing fillets from fish raised on the plant-based 

diet to those raised on the commercial diet, intra-species comparisons only. A triangle test 

was performed to determine if judges could determine which of 3 cooked fish samples 

differed from the other 2 presented. If differences were determined, panelists were asked 

to define and rate the intensity of the difference. Statistics were run to determine if the 
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number of correct responses for each comparison differed significantly from expected 

random guessing (33 % correct). Peak shear force, the amount of pressure needed to tear 

the fillet, was measured on fresh and cooked samples of the sea bream and striped bass on 

a Kramer shear press. There was not enough fillet material from the cobia trial to assess 

shear force as well as the organoleptic properties. 

Contaminant analysis 

Samples of fillets from each species and dietary treatment were frozen, lyophilized, 

and sent for total mercury (Hg) and PCB quantification. Total mercury and total PCB 

concentration were compared by t-test within each species between fish fed the plant-based 

diet and fish fed the commercial diet. The methods for total-Hg analysis in fish is derived 

from EPA Method 1631. Fillet samples were digested prior to analysis via hot reflux in a 

7:4 HNO3:H2SO4 acid mix. Total Hg in samples is reduced to elemental Hg with SnCl2, 

stripped into the gas phase via a gas-liquid separator, trapped onto gold-coated bead 

columns and heated into the an-atomic florescence detector (Tekran 2600). Detection limits 

for most matrices are <0.05 ng g-1. Routine QA/QC includes 10 % blanks and 

duplicates/replicates, and analysis of CRMs (CRC DORM III) in every run.  

For PCB analysis, approximately 20 g of freeze dried fish tissue was pulverized in 

a clean mortar and pestle and transferred to a 100 ml glass beaker. A surrogate spike of 

PCBs 14 and 65 was added to all the samples before extraction to check for PCB recovery. 

The samples were then extracted by sonication using a mixture of hexane:acetone 1:1 (v/v) 

following EPA method SW846 3550B. The extracts were concentrated to 5 ml and treated 

with concentrated sulfuric acid (method 3665A) for removal of lipids followed by activated 

copper treatment for removal of sulfur (method 3660B). The extracts were further cleaned 
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to remove interfering organics by passing through a glass column layered with 20 g of 

acidified silica gel (30 % concentrated sulfuric acid by weight), 24 g of 3 % deactivated 

Florisil©, and 1 inch of anhydrous sodium sulfate (top to bottom). 150 ml of hexane was 

used for complete elution of PCBs from the column. The eluate was concentrated to 1 ml 

under a gentle stream of nitrogen for analysis. PCB congener analysis was done using a 

gas chromatograph with a micro electron-capture detector (6890N, Agilent Technologies, 

Santa Clara, CA, USA). A 60 m X 0.25 mm X 0.25 µm fused silica capillary column (RTX-

5MS, Restek US, Bellefonte, PA) was used with helium as the carrier gas at constant flow 

of 1 ml min-1. The oven temperature program began at 100 °C and was increased at the rate 

of 2 °C min-1 to 280 °C, followed by an increase of 10 °C min-1 to 300 °C and was held at 

this temperature for 6 min. Quantification of the target PCB compounds was performed 

using a multi-level calibration. Identification of PCB congeners was carried out by 

comparison of retention times in the chromatogram with that of PCB standards purchased 

as hexane solutions from Ultra Scientific (North Kingstown, RI). PCB 30 and 204 were 

used as the two internal standards because they are not present in commercial Aroclor 

mixtures. Using this method 89 PCB congeners, including some co-eluting peaks were 

identified and quantified. Co-eluting peaks were quantified as the sum of the congeners. 

 

Results 

 There were no significant differences detected by the organoleptic analysis panels 

for any of the three species with no more than 33 % of the panelists correctly choosing 

which of three fillet samples presented to them was different from the other two in the 

triangle test. This means that the average consumer cannot detect the differences in odor, 
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color, or flavor in fillets from fish raised on this plant-based diet when compared side by 

side with fillets from fish raised on traditional fishmeal-based diets. Peak shear force was 

roughly equivalent in both species for fresh fillets, however after cooking peak force was 

roughly twice as high in fillets from fish raised on the commercial feeds (Table 6.1.1) 

compared to fillets from plant protein fed fish. Shear force also tended to increase with 

cooking, an expectation of the reduction in water brought about by cooking. 

Table 6.1.1. Peak shear force (g) of fresh and cooked fillets of sea 
bream and striped bass raised on commercial and plant-based diets. 
Analysis by Thomas Rippen, UMES. 

Species Diet Status Peak Shear Force (g) 
Sea Bream Commercial Fresh 11,641 
Sea Bream Plant Protein Fresh 10,820 
Sea Bream Commercial Cooked 19,298 
Sea Bream Plant Protein Cooked 7,295 

Striped Bass Commercial Fresh 17,299 
Striped Bass Plant Protein Fresh 12,922 
Striped Bass Commercial Cooked 45,532 
Striped Bass Plant Protein Cooked 22,689 

 

 Mercury and PCB concentrations were significantly higher (t-test, p<0.05) in fillets 

from fish raised on the commercial diets for all three species (Table 6.1.2) with the only 

exception being PCB concentrations in striped bass. Although the PCB concentration in 

striped bass was higher (12.05 ± 6.88) in fish fed the commercial diet than fish fed the 

plant-based diet (7.04 ± 5.12), the difference was not significant.  
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Table 6.1.2. Measured PCB and mercury concentrations (ng g-1 dry weight) 
in fillets of cobia, sea bream, and striped based raised at IMET. Numbers in 
parentheses are the initial and final average weights of fish used for fillet 
analyses. Values with different superscripts between each dietary type for 
each species and contaminant are significantly different from one another 
(p<0.05). 

 

 

 

 

 

 

 

  

 PCB congener analysis of both the diets (A) and fillets (B) are shown in Figure 

6.1.1. As expected, the higher PCB loads in the diets are carried through to reveal higher 

PCB concentrations of the fillets of fish raised on the commercial feeds. Several trends are 

apparent when comparing the congener profiles of the diets and fillets. The commercial 

diets have higher concentrations of the larger congeners (tetra, penta, hexa, and hepta) 

whereas the plant-based diet has higher concentrations of the smaller congeners (di, tri, 

tetra). This produces two different signature patterns for the diet types that is carried 

through to the fillet profiles (Figure 6.1.1 B). The length of time the fish were raised on the 

plant-based diets also has the effect of increasing the PCB concentrations, as cobia, who 

were raised for the shortest amount of time have some of the lowest concentrations while 

sea bream and striped bass tend to have higher concentrations of all congeners and total 

PCB concentrations.  

  PCB (ng g-1 dw) Mercury (ng g-1 dw) 
FDA limit in edible fish 2000 ng day-1 1000 ng day-1 

Cobia (130-500 g)   
     ARS Diet 3.60 ± 1.15a 20.14 ± 2.96a 
     Commercial Diet 45.5 ± 3.8b 71.37 ± 3.56b 

Sea Bream (11-400 g)   
     ARS Diet 6.31 ± 0.41a 7.82 ± 1.94a 

     Commercial Diet 12.19 ± 1.05b 115.76 ± 40.07b 

Striped Bass (530-1200 g)   
     ARS Diet 7.04 ± 5.12 36.92 ± 18.17a 

     Commercial Diet 12.05 ± 6.88 94.58 ± 5.05b 
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Figure 6.1.1. PCB congener concentrations (di-octa) for diets (A) and fillets (B) of fish 
used for contaminant and organoleptic analysis. PCB quantification performed by Dr. Upal 
Ghosh, UMBC. 
 

Discussion 

Elimination of fishmeal from diets for aquaculture results in significantly reduced 

contaminant loads in the fillets of fish (Table 6.1.2). Although values for fish raised on 

either the commercial feeds or the ARS plant-based diet were all much lower than FDA 

recommended limits, full-scale grow out cycles are longer than those used here, so values 

would go up slightly in a full-scale production setting. FDA advises intake of up to 0.4 

micrograms mercury per kilogram body weight per day. This means a 150 lb person can 

consume up to 27 µg mercury daily. Our mercury measurements have been made on dry 

weight tissues, so the wet fillet weight that would be consumed would result in 

concentrations roughly 75 % lower than those reported in Table 6.1.2. PCB concentrations 
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would also be roughly 75 % lower, although dry weight contaminant levels are already 

significantly lower than the 2000 ppb FDA advisory. 

The unique signature produced by the different type of protein sources is also an 

advantage for raising fish on plant-based feeds as the smaller congeners found in the plant-

based fed fish fillets are both less toxic and easier to break down than the larger congeners 

found in higher concentrations in the fillets of fish fed the commercial fishmeal-based 

feeds. In contrast to the perceived line of thought that these contaminants are found and 

biomagnificate mostly through the lipid portion, removal of only the fishmeal protein 

source and still relying on fish oil, as all these diets do, resulted in significant reduction of 

PCBs and mercury. As previously discussed in Chapter 5, replacing fish oil with alternative 

oils further reduces, but does not totally eliminate contaminants. This indicates that these 

contaminants are not only found in the lipid sources, but are incredibly pervasive in our 

environment. 

The differences observed in shear force in both sea bream and striped bass are 

interesting, as it appears the plant protein inclusion has effects on both water content and 

how that water behaves when cooked. However, these differences did not result in 

differences in taste or texture to the panel. The inability of potential consumers to detect 

differences in taste, odor, or smell of fillets from fish raised on the plant-based ARS diet 

compared to the commercial diets is a huge advantage for aquaculture. Just as replacing 

fishmeal with plant proteins would be ineffectual for aquaculture if fish do not consume 

and grow adequately, replacing fishmeal with plant proteins would be useless if it resulted 

in an inferior fillet product at market. Taken together, the lowered contaminant 

concentrations and similar organoleptic qualities of fish raised on the plant-based diet 
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represent a huge advantage in increasing the sustainability of aquaculture, feeds in 

particular. PCB concentrations from both dietary treatments of this study are significantly 

lower than concentrations observed in wild caught striped bass from both the Chesapeake 

Bay and Atlantic Ocean (Dr. Upal Ghosh, UMBC unpublished data). The lower 

contaminant concentrations also represents an added advantage to the consumer, and could 

be used to partially justify the currently higher prices incurred by this particular plant 

protein formulation. 
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Chapter 7: Conclusions and Future Directions 
 
Overarching conclusions 

Through this research, a major roadblock to replacing fishmeal has been overcome 

with the use of taurine as a supplement in dietary formulations using plant protein sources, 

especially for marine carnivores. Plant protein blends can be used effectively to fully 

replace fishmeal as long as taurine is supplemented adequately, in addition to other 

constituents known to be insufficient in plant sources. However, not all plant proteins will 

work effectively in all species, underlining the importance of species-specific work to 

maximize production while minimizing negative environmental impacts and waste. In 

these studies, barley meal and wheat gluten were identified as ingredients that are not 

appropriate for cobia, either due to low digestibility or negative impacts most likely due to 

anti-nutritional factors. Both of these ingredients have been used effectively in other 

species, as previously discussed, and although gluten issues have been identified in other 

vertebrate species, the lack of digestibility of barley meal is curious, and may be related to 

the types of storage proteins utilized in barley compared to the other plant proteins. 

Although these studies have shown significantly reduced PCB and mercury concentrations 

in the fillets of fish raised on fishmeal-free, plant protein-based feeds, there exist similar 

concerns with plant meals. Mycotoxins are incredibly toxic to animals and may become a 

serious concern when considering large-scale production of plant based feeds (Balbus et 

al., 2013; Berthiller et al., 2013). The future of aquafeeds may see regular analysis of feeds 

for mycotoxin concentrations or possibly reduced shelf-life of feeds in comparison to 

traditional meat meal based feeds currently being produced. 
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If taurine is not available or becomes too expensive as a single ingredient, other 

sustainable ingredients high in taurine are available as potential replacements. Clam 

byproduct meal, which currently largely goes to waste (Henderson and Strombom, 1990), 

can be utilized to achieve similar results in fishmeal replacement (Begum et al., 1994). 

Squid and krill meals have often been supplemented in small quantities as “feed attractants” 

(Barrows et al., 2007; Gaylord et al., 2007; Kim et al., 2007; Welch et al., 2010); however, 

these ingredients are more volatile than fishmeal in terms of quantities available and 

sustainability. Squid and krill meal in particular are very high in taurine, which may explain 

their effectiveness at small inclusion rates. However, they should be replaced with other 

invertebrate meals high in taurine to increase sustainability. Some meals such as earthworm 

meal can be utilized to achieve similar growth as fishmeal (Stafford and Tacon, 1985). 

Development of sustainable invertebrate meals from sources such as polychaete worms 

grown in the sludge sumps of marine, recirculating systems could become a dietary source 

of taurine, as well as an important secondary product for these expensive systems. These 

high taurine meals considered for inclusion in diets at low levels to meet taurine 

requirements may also help spare supplemental methionine requirements, as fish that are 

capable of synthesizing taurine would not have to rely on methionine or cysteine input to 

meet their taurine needs. 

Effective fish oil replacements have also been identified for cobia and sea bream, 

although research needs to continue to identify and determine requirement levels of the 

essential fatty acids for each species, as there are clear differences in the applicability of 

the lipid sources used here. The CAN+EFA diet produced drastically different growth and 

survival results between cobia and sea bream, indicating significant differences between 
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these two species in either requirement level or synthesis capacity for specific fatty acids. 

Similar to what has been observed with some protein sources, some lipid sources may cause 

negative effects in different species. The potential presence of anti-nutritional factors in 

terrestrial oil sources needs to be examined closer as full fish product replacement becomes 

a necessity. The emerging biofuels industry may become a significant competitor with feed 

manufacturers for access to algal oils, which are the best suited for direct fish oil 

replacement. However, great potential for collaborative research exists in the development 

of sustainable algal oil sources. 

The diets developed from these research projects often out-performed commercial 

diets. Although fishmeal and fish oil prices have not yet risen to the point of forcing 

manufacturers to find alternatives, many have begun seeking ways to reduce fishmeal, and 

several fish farms have already switched to having their own fishmeal-free, proprietary 

formulations manufactured. The diets developed here are anywhere from 10-20 % more 

expensive than current, commercially produced fishmeal-based diets depending on 

fishmeal and plant meal prices. Although the increased growth rates and reduced feed 

conversion ratios achieved by our diets make up for some of the cost differences by 

providing the ability to reach market size quicker with a lower volume of feed used, the 

differences are not currently economical on a large-scale. There also has yet to be enough 

research performed with these formulations on a wide enough range of species to justify 

their production and marketing on a wide scale. Feed manufacturers are unwilling, and 

farmers of species others than those tested here are too apprehensive, for these diets to be 

implemented on a large scale without further work. 
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An interesting phenomena occurs when compiling the fillet water content (% dw) 

versus dietary taurine values. Plotting all data points from the cobia growth studies 

described in the previous chapters based on the primary protein source of the diet (plant, 

fishmeal, or mixed) reveals opposing relationships with water content and dietary taurine 

(Figure 7.1.1). Plant-based diets result in decreasing water content in the fillet as dietary 

taurine increase, while fishmeal or mixed based diets have no effect on water content as a 

function of dietary taurine. This is clearly a response beyond simple taurine inclusion, and 

may be related to plant proteins affecting the overall physiology, water balance, or anti-

inflammatory/antioxidant effects of taurine. The relationship within the plant-based diets 

is being driven by the zero taurine supplementation diets resulting in the highest fillet water 

content, so it may be as simple as an inflammatory response that only requires minimal 

taurine to counteract, since removing these data from the comparison results in similar 

trends as the fishmeal and mixed base diets. Although rarely significant between fishmeal 

diets and plant-based diets, this was a recurring trend with few exceptions. This trend was 

also observed in sablefish during our collaboration with NOAA-NWFSC. Fish fed a zero 

taurine, plant protein-based diet resulting in 76.62 ± 1.02 % water in their fillets compared 

to 72.79 ± 4.33 % water for fish fed a commercial fishmeal-based trout diet. 

It is difficult to predict if this would be further exacerbated in longer trials and 

whether this is physiologically significant. This did not have an effect on any of the 

organoleptic tests with cobia, but it may be an explanation of the difference in shear forces 

recorded for sea bream and striped bass, where no organoleptic differences were detected. 

Higher water content of fresh fillets of fish raised on plant protein diets could be an added 
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advantage for farmers, as similar amounts of feed will produce an increased weight of 

product if all other growth characteristics are similar. 

 
Figure 7.1.1. Fillet water content (% dw) vs. dietary taurine (%) for cobia trials. Water 
content decreases with increasing dietary taurine for plant-based diets (diamonds), 
however there is no effect on water content with increasing dietary taurine for fishmeal-
based (squares) or mixed base (triangles) diets. 

 

Taurine synthesis and CSD 

 Dozens of primer sets designed from database deposited sequences for individual 

teleost species, as well as degenerate, non-degenerate, and iCODEHOP primer sets from 

various consensus sequences of teleosts and non-teleosts were designed during the course 

of this work. All work was attempted with cDNA sequences to identify the presence of the 

transcript. None of these primer sets produced products that were similar to CSD using 

BLAST. Possible explanations for this include no expression, too low expression for the 

CSD transcript to be the primary product, an insertion or deletion in the genomic DNA in 

cobia that has rendered it unable to be transcribed, enough divergence in the sequence that 

the primers designed are ineffectual, or the possibility that although other synthesis genes 

are expressed in the tissues examined in this work, CSD may not be. Not discussed in the 
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previous chapters was that in attempts to find CSD expression; kidney, intestine, and 

pyloric caeca were all examined with similar methods. Expression of ADO, CDO, and 

TauT was observed in all of these other tissues, but CSD transcripts were never detected. 

Although the lack of expression of CSD fits the hypothesis that cobia are unable to 

synthesize sufficient taurine, the inability to locate expression through these methods alone 

is insufficient to definitively conclude that issues with CSD are the reason cobia cannot 

synthesize taurine. After the attempts to isolate CSD expression and the variety of primer 

sets, primer design programs used, and PCR parameters tested, it is my opinion that CSD 

is not expressed in cobia. I believe that a mutation, insertion, or deletion in the CSD gene 

has occurred that has resulted in CSD either not being transcribed, or this change has been 

so significant that the product is no longer CSD and does not perform the same function. 

Due to the high dietary input of taurine in the natural diet of this carnivore, a change such 

as this would not have been lethal. Similar to the work done with cDNA sequences, 

research is currently underway with genomic DNA in an attempt to resolve this. However, 

it is clear from coupling the RT-qPCR results of these studies with the growth studies of 

cobia with zero taurine diets that cobia do not synthesize sufficient taurine, regardless of 

whether CSD is functional or not. Although there are significant increases in the transcripts 

of CDO, CSD, and TauT in sablefish fed a zero taurine supplemented plant protein-based 

diet, these fish were also apparently unable to synthesize sufficient taurine, as their 

performance was still significantly lower than that of conspecifics on a commercial trout 

diet (Dr. Ron Johnson, personal communication).  
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Figure 7.1.2 diagrams the major conclusions reached from the molecular work 

completed on the taurine synthesis genes. Overall, cobia do not show an ability to respond 

at the transcript level to low dietary taurine, unlike zebrafish. 

There are differences in the ability to synthesize taurine among marine carnivores 

from the two (cobia and sablefish) examined here, but it is apparent that neither are capable 

of synthesizing sufficient taurine. Taurine must therefore be considered essential and be 

provided through dietary supplementation. The only freshwater omnivore, zebrafish, 

examined here however is capable of synthesizing sufficient taurine. These results agree 

with the history of many freshwater omnivorous, herbivorous, or scavenging based feeders 

being able to transition off of fishmeal-based feeds without taurine supplementation. An 

interesting comparison would be to analyze the taurine synthesis potential of anadromous 

and catadromous species to determine if habitat or diet is the more critical driving factor 

of taurine requirement and synthesis capacity.  

These results and potential explanation also agree with decades of work done with 

dozens of species regarding fishmeal replacement. Many researchers have observed drop-

offs in production characteristics when reducing fishmeal inclusion below 10-15% without 

taurine supplementation. Taurine supplementation often partially or completely recovers 

these loses in production, indicating just how critical taurine is and how many species may 

have lost the ability to synthesize sufficient quantities. 
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Figure 7.1.2. Major sites of potential taurine synthesis in a freshwater omnivore (top) and 
a marine carnivore (bottom). Zebrafish respond, although through different mechanisms in 
different tissues, to low taurine at the transcript level, whereas cobia do not. Zebrafish 
image modified from http://animaldiversity.ummz.umich.edu/, cobia image modified by 
Alexandra Casmer. 

 

An interesting hypothesis to potentially explain the importance of taurine would be 

that when fish are fed reduced taurine feeds, the taurine present in the body is utilized for 

the most critical functions. Examining the whole body taurine pool over time after a switch 

to reduced taurine diets could answer this question. Tracking the different tissue taurine 
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levels (e.g. plasma, liver, muscle, bile) over time would help identify which roles of taurine 

are the most important physiologically, and this could be an explanation as to why lower 

taurine concentrations were observed in these studies with low taurine feeds, yet there was 

no change in bile salt concentration.  

 

Future considerations  

The next logical step in this research, which funding for was applied for but never 

obtained, is to look at protein expression through both western and enzymatic assays. 

Several published assays describe methods to determine the enzyme activity of ADO, 

CDO, and CSD (Goto et al., 2003, 2001a, 2001c; Ueki et al., 2012; Worden and Stipanuk, 

1985) through various methods including production of CO2 as a byproduct, measuring 

taurine production directly, or potentially through the incorporation of radiolabeled S35 

methionine for the entire synthesis pathway. Teleost specific antibodies for these proteins 

do not currently exist, but having them generated or testing anti-mammalian antibodies 

would allow for the identification and quantification of these proteins in various potential 

synthesis sites. 

 Utilizing these assays as the next steps in this line of research would help answer 

the question of whether or not cobia express CSD, and would determine the specific 

enzyme activities in the taurine synthesis pathway. These tools could be applied to similar 

dietary studies, as done here with graded levels of taurine to truly determine if cobia, and 

other species, are capable of responding to insufficient dietary taurine and in defining 

dietary requirements. 
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 Developmental stage also plays a major role in the ability or inability of various 

species to synthesize certain compounds. Embryos and early developing larvae have been 

shown to have limited capacity for essential fatty acid synthesis, and maternally deposited 

mRNAs for various enzymes are common up until the point the larvae can generate its own 

(Chang et al., 2013; Monroig et al., 2009). Developing the knowledge of when target 

species are capable or incapable of synthesizing essential components and how they gain 

or lose these abilities would be incredibly beneficial in developing and maximizing feed 

formulations. Taurine supplementation to the live feeds, rotifers and Artemia, has been 

shown to increase growth in larval cobia and Senegalese sole (Pinto et al., 2010; Salze et 

al., 2012). However, this method can be challenging due to taurine’s high water solubility 

so the development of improved enrichment methods could greatly enhance larval growth 

and survival for many species. Consistent supply of adequate fingerlings is a bottleneck for 

much of the industry with many species, and taurine may help alleviate this issue. 

Parallels can be drawn to broodstock in terms of providing diets that are adequate 

for maximizing reproductive potential based on synthetic capacity of the species and 

providing needed components for deposition in eggs. Broodstock are often fed “natural” 

diets of whole squid and fish during spawning seasons, as these have long been believed 

to be better nutritional sources than pelleted feeds. The specific reasons behind these 

feeding habits are often elusive, however taurine may play a major role in explaining why 

whole fish and squid are better nutritional sources than pelleted feeds. 

Taurine has been shown to play roles in spermatogenesis in eels (Higuchi et al., 

2012a, 2012b) and fatty acids are critical during vitellogenesis, which are just two 

examples of components that broodstock would need increased quantities of prior to and 
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during spawning season as opposed to basal levels provided through traditional feeds. If 

high taurine concentrations in eggs and embryos can be linked to subsequent increases in 

growth or survival, then broodstock diets may need to have higher taurine supplementation 

than grow-out diets. 

 It has been my goal in the final stages of this work to develop not only complete, 

sustainable diets for aquaculture, but also a set of simple molecular tools (RT-qPCR 

primers) that can be used in short term trials to aid in determining taurine requirements. 

Through the applied approaches taken in this work, both of these objectives have been 

accomplished. 

 It is also my hope that additional sets of similar tools can be designed in the future 

for other synthesis pathways, such as those for essential, semi-essential, and potentially 

essential constituents. This could greatly enhance the optimization of diets for specific 

species as well as significantly reduce the costs associated with traditional routes of 

determining minimal and optimal requirements. This work represents advances in multiple 

areas of sustainable aquaculture, but much work remains to develop the aquaculture 

industry, especially in the United States, into one that can supply the world with safe, 

sustainable protein. 
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