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Dissolved organic matter (DOM) is a complex ensemble of naturally occurring 

organic compounds found in virtually all aquatic environments. The overwhelming 

diversity of DOM makes it extremely difficult to understand the relationship between its 

bulk physicochemical properties and its molecular structure and composition. 

This dissertation describes the development of a novel method to identify 

ketone/aldehyde-containing species within DOM, which are known to contribute 

substantially to the ultraviolet/visible (UV-vis) absorption and emission of chromophoric 

DOM. In this method, an aqueous sample is treated with sodium borodeuteride (NaBD4) 

and is analyzed via ultrahigh resolution electrospray ionization (ESI) mass spectrometry. 

Ketone/aldehyde-containing species (at mass m) in the untreated sample are identified by 

searching the mass spectrum of the reduced sample for peaks corresponding to deuterated 



 

 

derivatives (at mass m+3.021927n). Initial experiments demonstrated that this method 

reliably discriminates among mass spectral peaks in an untreated DOM sample that 

comprise species with zero, one, and/or two reducible moieties. 

The reactivity and optical properties of reducible species within Suwannee River 

fulvic acid (SRFA) were studied by treating an aqueous sample with several amounts of 

NaBD4. This study demonstrated that most species with at least one ketone/aldehyde 

moiety were reduced a single time under low [NaBD4], while higher [NaBD4] resulted 

primarily in additional reductions on multi-ketone/aldehyde species. Furthermore, the 

changes in UV-vis absorption and emission of the reduced aliquots relative to that of the 

untreated were correlated with the number of ketone/aldehyde-containing species reduced 

and identified by this method. 

The fully developed protocol was used to compare DOM extracted from several 

aquatic environments. Two pools of ketone/aldehyde-containing species were tentatively 

identified: A terrestrially-produced group of lignin/tannin-derivatives and a microbially-

produced group of carboxyl-rich alicyclic molecules. While the first pool has previously 

been shown to contribute substantially to the absorption/emission of chromophoric DOM, 

the second pool most likely would not. The mass labeling method developed here 

revealed compositional features that are not observable by common ESI mass 

spectrometric analyses and may serve as a useful way to link the physicochemical 

properties of DOM to its structure and composition. 
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Chapter 1: Aquatic natural organic matter (NOM): Definitions, 

sub-fractions, and environmental significance 

 

1.1. A broad definition of natural organic matter (NOM) 

 Virtually all aquatic environments contain complex, heterogeneous ensembles of 

organic compounds. These ensembles comprise what is collectively referred to as natural 

organic matter (NOM), which can vary greatly in complexity, diversity, and 

concentration from one geographic locale to another. The worldwide size of the total pool 

of NOM within aquatic environments has been estimated to be over 1,000 Pg 

(petagrams), which surpasses the 720 Pg of atmospheric carbon dioxide.1,2 This nebulous 

description of NOM attests to the difficulty that researchers still face today in an attempt 

to fully understand its composition and reactivity, even after over a century of active 

research.   

 NOM can be divided roughly into two location-based subcategories: Riverine and 

marine NOM (Figure 1.1). The first of these two categories is generally accepted to 

comprise byproducts from the decomposition and runoff of terrestrial plant and animal 

matter, which is gradually transported to larger bodies of water such as lakes and 

estuaries. The origin and composition of the latter of these two categories is far more 

ambiguous and, as a result, has been the subject of much debate. While some studies 

show that marine NOM is greatly influenced by riverine and estuarine output,3–5 other 

studies have provided evidence that marine NOM arises largely from the in situ 

production from marine biomass such as algae and phytoplankton.6,7 Conversely, others 
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have demonstrated that marine NOM may act as a food source for such biota.8 In most 

cases, it is likely that marine NOM arises from a combination of both riverine input and 

in situ microbial production and consumption,9 and future studies may help elucidate the 

relative contribution of riverine input and in situ production of marine NOM in various 

geographic locales. 

 

 

Figure 1.1. Two major categories of aquatic NOM and their primary sources and sinks. 
  

In order to fully understand and predict the reactivity and dynamics of NOM 

within aquatic environments, an explicit description of the molecular composition of 

NOM must be realized. Early attempts at this goal relied on the assumption that if a 

sample of NOM was divided into different fractions using various physical and chemical 

techniques (e.g. chromatography, precipitation), each fraction would comprise a 

distinctive class of chemical compounds. Although this is not necessarily true, many of 

the separation techniques that were formerly used to characterize NOM are commonly 

practiced today as useful operational definitions of NOM sub-fractions (Figure 1.2). For 
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instance, the distinction between particulate organic matter (POM) and dissolved organic 

matter (DOM) is made using a 0.2 or 0.45 µm membrane filter, where the organic 

material that is retained is defined as POM, while the material that passes through the 

filter comprises DOM.10 The DOM in this permeate can then be separated from inorganic 

compounds via techniques such electro-dialysis/reverse osmosis or, more commonly, 

solid phase extraction (SPE).11 

 

 

Figure 1.2. Common separation processes used for isolating various sub-fractions of 
NOM from a water sample collected from an aquatic environment. 
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 Other important operationally defined components of NOM are humin, humic 

acid, and fulvic acid, all of which are collectively referred to as humic substances (HS).12 

These sub-categories are defined based on their pH-dependent water solubility; humin is 

the portion that is insoluble under all pH conditions, and is therefore not considered a 

component of DOM. Of the two water-soluble HS, species which are insoluble under low 

pH (<2) are defined as humic acids, while those which are soluble under all pH 

conditions are defined as fulvic acids. While some researchers continue to rely heavily on 

separation techniques to study the composition of DOM,13 this approach must be used 

with caution due to the importance of intermolecular interactions (e.g. hydrogen bonding 

and complexation), since destroying these interactions via separation can lead to 

significant changes in many physicochemical properties of the bulk NOM ensemble.14,15  

 

1.2. Description of chromophoric dissolved organic matter (CDOM) 

Presence and significance of chromophoric dissolved organic matter in the 

environment. Chromophoric dissolved organic matter (CDOM) is the name given to the 

fraction of DOM which absorbs light over a broad range of ultraviolet (UV) and visible 

wavelengths (~200 – 700 nm). Due to the characteristic brown to yellow color of these 

materials, colored natural organic matter has been referred to as yellow substance in the 

older literature.16 The currently accepted term “CDOM” refers to all species within an 

given DOM extract that participate in the observable photophysical properties of the bulk 

DOM samples, and unlike the operationally defined fractions described above, it may be 

impossible to physically isolate the “chromophoric” compounds from the “non 

chromophoric” ones within a DOM sample. 
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Owing to the absorption of light over a broad spectral range, CDOM can have a 

considerable impact on many biogeochemical processes within an aquatic environment. 

For instance, light absorption can substantially alter the solar radiation to which an 

aquatic ecosystem is exposed. This alteration can protect organisms (e.g. coral reefs) by 

filtering out harmful UV radiation.17 Conversely, CDOM’s absorption at visible 

wavelengths (400 – 700 nm) can decrease the amount of solar radiation available to 

chlorophyll, thus potentially hindering photosynthesis. Furthermore, absorption of light 

by chromophoric species can initiate myriad photochemical reactions such as the 

photosensitization of other chemical species within a given aquatic environment (e.g. 

pollutants)18,19 as well as the generation of various inorganic species such as carbon 

monoxide, carbonyl sulfide,15 and reactive oxygen species such as hydrogen peroxide.16 

Overall, CDOM’s participation in this complex web of biogeochemical processes is still 

poorly understood. Thus, research aimed at determining the chemical structures that 

influence the optical properties of CDOM would help explain and predict its role within 

aquatic ecosystems, as well as the environmental factors that influence its composition. 

Description of the optical properties of CDOM. Despite the virtually limitless 

variability in composition that is possible for such a complicated ensemble of molecular 

species, the absorption and emission of light by CDOM extracted from nearly all aquatic 

environments follow remarkably similar trends. The absorption of CDOM decreases 

exponentially with increasing wavelength and extends into the visible and even near-

infrared region of the electromagnetic spectrum, with very few, if any, discernable peaks 

or shoulders (Figure 1.3). Similarly, the wavelength of maximum emission and quantum 

yield also display monotonic dependencies on the excitation wavelength used.22  
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Figure 1.3. Absorption, wavelength of maximum emission, and luminescence quantum 
yield versus excitation wavelength for Suwannee River fulvic acid (SRFA). Adapted 
from Del Vecchio and Blough, 2004.22 
 

Owing to the steady, exponential decrease in absorption across the UV-visible 

wavelength regime, it has become a common practice to fit experimentally measured 

absorbance data across a broad range of wavelengths to the equation 

 (1.1)  𝐴(𝜆) = 𝐴(𝜆!"#)𝑒!!!  (!!!!"#) 

where A(λ) is the absorbance at wavelength λ between a given range of wavelengths, λref 

is a reference wavelength, and SA is the absorption spectral slope, which is determined 

from the fit.16 The spectral slope defines how quickly the absorption decays with 

increasing wavelength, and thus serves as a useful parameter for CDOM characterization, 

and is commonly used as a simple proxy for changes in CDOM composition. 

Although the lack of spectral features of CDOM limits the usefulness of 

UV/visible absorption spectrophotometry, it is possible to infer some general conclusions 

regarding CDOM’s overall composition when combined with other analytical techniques. 

For instance, Chin et al. reported that the average molecular weight (determined by high 

performance size exclusion chromatography) and aromaticity (determined by 13C nuclear 



 

 7 

magnetic resonance spectroscopy) of humic and fulvic acids from various locations 

throughout the United States correlated very well (R2 ≥ 0.90) with their molar 

absorptivities at 280 nm (calculated on a per molar basis of measured total organic 

carbon).23 Other studies have demonstrated that the spectral slope can be a useful 

indicator of major sources of DOM, with low spectral slopes being indicative of a high 

influx from nearby terrestrial (or riverine) sources, while high spectral slopes indicative 

of photobleached and/or perhaps microbially derived DOM.3,24,25 

 Excitation/emission matrix spectroscopy (EEMS) has been used to provide more 

detailed information about the structure and composition of CDOM. In this technique, a 

sample is excited at several wavelengths (usually spaced ≤ 10 nm apart) and an emission 

spectrum is recorded for each excitation wavelength. This results in a 3-dimensional plot 

(Figure 1.4) of fluorescence intensities over a range of excitation and emission 

wavelengths (EX and EM, respectively) and offers two primary advantages over 

absorption spectroscopy. Firstly, EEMS allows for greater resolution of broad electronic 

spectral features by spreading them out over a second dimension. Secondly, the superior 

sensitivity of fluorescence to absorption spectroscopy allows for measurements to be 

made on natural water samples without the need for concentration (e.g. via solid phase 

extraction) of CDOM, which can substantially alter the composition and observed optical 

properties.3,26,27 The primary disadvantage of fluorescence spectroscopy is that only a 

fraction of the  organic species which absorb UV and visible light will emit radiation. 

Therefore, EEMS measures the optical properties of only a sub-fraction of CDOM known 

as fluorescent dissolved organic matter (FDOM). However, it has been demonstrated that 

FDOM and CDOM are very closely correlated with one another.28  
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Figure 1.4. Fluorescence EEM of two CDOM samples, depicted using 3-dimensional 
wireframe (left) and contour plot (right) renderings. Adapted from Coble et al., 1996.29  
  

 The position (i.e., EX and EM) and intensity of bands in EEM spectra can be used 

to discriminate differences in CDOM composition and source. For instance, EEM spectra 

of humic and fulvic acids display two major features: One peak at EX/EM =  260/380 – 

460 nm and a lower intensity peak at EX/EM = 320 – 360/420 – 460 nm, which are 

generally referred to as UVC and UVA humic-like bands, respectively (Table 1.1). For 

CDOM samples collected from marine environments, this second band is usually shifted 

to shorter EX and EM ranges. In some cases, two UVA humic-like bands (marine and 

non-marine) can be resolved.30 Also commonly present in CDOM samples are protein-

like signatures at EX/EM =  275/310 – 340 nm. This feature typically presents itself as a 

well-defined shoulder of the higher intensity UVC humic-like band. The differences in 
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λEX and λEM for these bands, as well as their intensities, can thus be correlated to 

compositional changes within CDOM. 

Table 1.1. Common fluorophores identified in CDOM. 
EX (nm) EM (nm) assignment peak name29–31 

260 380 - 460 UVC humic-like A 

275 310 protein-like (tyrosine) B 

275 340 protein-like (tryptophan) T 

290 – 310  370 – 410  UVA marine humic-like M 

320 – 360  420 – 460  UVA humic-like C 

400 660 pigment-like (chlorophyll) P 

 

 

1.3. Physicochemical justification of the optical properties of CDOM 

 An intuitive approach to rationalizing the optical properties of CDOM may be to 

assign all spectral features to different classes of chromophores or fluorophores, thus 

assuming that the optical properties can be accurately described by a superposition of 

independently absorbing and emitting organic compounds within a DOM sample. 

However, many studies have demonstrated that a superposition model has many 

shortcomings, and that electronic interactions (e.g. charge-transfer complexes) between 

different chromophores greatly influence the observed optical properties.  

 The long wavelength absorption of CDOM is particularly difficult to justify with 

a simple superposition of the spectra of many organic compounds, since most organic 

chromophores absorb primarily at wavelengths shorter than ~300 nm. The main 

exception to this general rule are highly conjugated aromatic species and/or quinones, 

which can have n ! π* transitions that occur in the visible wavelength regime. However, 

such absorption bands are typically rather weak, and thus, if the total absorption spectra 
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of CDOM was indeed a simple superposition of many spectra, the absorption at short 

wavelengths (200 – 300 nm) would most likely be far greater than that at visible 

wavelengths. Perhaps even more difficult to justify are the excitation wavelength-

dependent trends in the wavelength of maximum emission and quantum yield, since most 

organic fluorophores which absorb and emit at long wavelengths typically have relatively 

high quantum yields. Therefore, the concomitant decrease in quantum yield with 

increasing excitation wavelength observed for CDOM is surprising. Also, since emission 

is largely independent of excitation wavelength, the continuous red shift in emission 

maxima that occurs with increasing excitation wavelength implies a continuum of 

coupled species.  

These observations, along with a wide range of other experimental22,25,32–34 and 

theoretical35,36 considerations have led to the acceptance of a model in which the 

absorption and emission of CDOM – especially in the visible wavelength regime – are  

better explained by a coupled manifold of many inter- and intramolecular electronic 

interactions, rather than merely a superposition of independent chromophores. These 

interactions are assumed to take place largely between poly hydroxy/methoxy aromatic 

electron donors and aromatic carbonyl electron acceptors which are present in partially 

oxidized lignin, a major component of CDOM. 

The suitability of this electronic interaction model has been rigorously tested by 

observing the optical properties of CDOM following treatment by sodium borohydride 

(NaBH4), a selective reductant of ketones and aldehydes.3,37,38 In these experiments, the 

absorption of a CDOM extract across a broad range of UV and visible wavelengths 

decreased substantially following treatment by NaBH4, with a greater fractional loss at 
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successively longer wavelengths (Figure 1.5). This result is difficult to rationalize by 

assuming a superposition of independent chromophores, since ketones generally do not 

absorb at wavelengths > 350 nm. Furthermore, although some quinones which have weak 

absorption bands at visible wavelengths and are readily reduced by borohydride to 

hydroquinones, these species usually rapidly reoxidize in the presence of air, whereas the 

majority of the loss of absorption observed in many CDOM samples is irreversible.  

 

Figure 1.5. Schematic of an absorption spectrum of CDOM before (left) and after (right) 
treatment by NaBH4 showing the disruption of charge transfer interactions (by reduction 
of acceptor moieties) and the corresponding loss of longer wavelength (>300 nm) 
absorption bands. 
 

 The reduction experiments described above indicate the importance of ketone and 

aldehydes within CDOM to the characteristic long wavelength absorption, even though 

such compounds would probably not absorb at long wavelengths if isolated. This 

interaction demonstrates, as alluded to earlier, that species within a DOM sample cannot 

be meaningfully separated into “chromophoric” and “non chromophoric” species. Rather, 

it is important to describe the role that individual compounds may play in the optical 

properties of a DOM sample in the presence of other “non chromophoric” species, thus 
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resulting in an accurate description of how the total ensemble of DOM species interact 

with one another.   
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Chapter 2: Advanced characterization of DOM using ultrahigh 

resolution mass spectrometry (an overview) 

 

2.1. Analyzing the structure and composition of DOM 

 Most analytical techniques are capable of only measuring bulk properties of an 

ensemble of dissolved organic matter (DOM). Although some techniques such as 

excitation emission matrix spectroscopy (EEMS; described in Chapter 1) may at first 

seem to resolve different subsets of species, inferring the presence of even broadly 

defined compound classes is difficult, since electronic interactions can drastically alter 

the apparent composition. Other instrumental methods such as Fourier transform infrared 

(FTIR) and nuclear magnetic resonance (NMR) spectroscopy allow the relative 

abundance of specific structural features to be measured. Although all of the above 

methods have been and continue to be invaluable for studying DOM,39,40 they are limited 

in terms of specificity, since they only allow for the measurement of bulk properties of an 

entire sample.  

A common practice in early DOM research was to describe a hypothetical 

“average DOM molecule” for DOM ensembles (Figure 2.1A,B). However the usage and 

description of these types of hypothetical model compounds is misleading, as it is likely 

that no such molecule exists in a given DOM sample. Instead, DOM can be more 

accurately thought of as a complex collection of a wide range of (mostly biologically 

derived) chemical compounds (Figure 2.1C). In fact, owing to the multitude of biological 

sources, an ensemble of DOM extracted from any given aquatic environment can consist 

of hundreds to even thousands of distinct chemical species.  
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Figure 2.1. Early hypothetical structures for (A) fulvic and (B) humic acids from 
seawater (structures from Zafiriou et al., 198441) and (C) representations of various 
classes of chemical compounds (lipids, peptides, cellulose, condensed hydrocarbons, 
lignin, condensed tannins) that may exist in a DOM sample. 
 

 Due to the overwhelming number of individual chemical species within DOM, it 

is practically impossible to identify specific compounds by using the aforementioned 

methods. A fundamental feature of mass spectrometry, on the other hand, is that it detects 

and measures the mass to charge ratio (m/z) ions produced by discrete chemical species 

(or fragments of species), thus serving as a complementary approach to the bulk analysis 

methods described above. This approach is especially useful when a “soft” ionization 

technique (i.e., one that does not produce fragments of compounds due to ionization) 

such as electrospray ionization (ESI) is coupled with ultrahigh resolution Fourier 

transform ion cyclotron resonance (FT-ICR) mass analysis. With this combination, a 

substantial subset of species within DOM can be ionized, detected, and differentiated 

from one another. 
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2.2. Instrumentation for mass spectrometric analysis of DOM 

 Ionization. For decades, mass spectrometry had limited use in DOM research, 

since most early ionization techniques required samples to be in the gas phase prior to 

ionization and mass analysis. Due to this limitation, mass spectrometric analysis could 

only be applied to small fractions of a total DOM sample. However, in the 1980s, 

electrospray ionization (ESI) quickly revolutionized mass spectrometry by greatly 

broadening the types of samples for which it can used to study. ESI allows for the 

ionization of nonvolatile organic compounds containing polar functional groups. The 

general setup for an ESI interface is shown in Figure 2.2 (operated in negative ion mode). 

Although positive ion mode is more commonly used and discussed throughout the 

literature, negative ion mode is usually preferred for the analysis of DOM. 

 

 

Figure 2.2. Schematic of an ESI interface operated in negative ion mode. 
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 In an ESI interface, a sample solution is introduced at a rate of ~50 µL/min 

through a (~0.1 mm internal diameter) metal capillary tube held at a high (3 – 5 kV) 

potential. In negative ion mode, the capillary is held at a negative potential, and as a 

result, positively charged counter ions are attracted to the interior walls, where they are 

neutralized via redox reactions. For acidic species, the counter ions are typically H+ and 

Na+. Simultaneously, the anionic forms of the compounds within the solution drift 

towards the front of the tube forming a cone shape at the tip.  

As anions collect at the tip of this cone shaped jet, the electrostatic repulsion of 

the like-charged ions eventually overcome the surface tension of the liquid. When this 

occurs, the jet breaks up into small electrically charged droplets, which drift apart from 

one another while also drifting towards the positively charged counter electrode near the 

instrument inlet. The combination of the anions repelling one another while travelling 

towards the inlet results in a spray of charged droplets. Meanwhile, the charged droplets 

continue to break apart into successively smaller droplets until gas phase analyte anions 

are left, which eventually make their way into the mass spectrometer. This process is 

facilitated by a flow of nitrogen gas which aids in the evaporation of the solvent.  

The ESI process described above generates deprotonated, quasi-molecular anions 

of compounds in DOM which contain polar functional groups. In the ESI process, solvent 

composition greatly influences the efficiency in which species are ionized.42 One of the 

most popular solvent compositions for ESI mass spectrometric analysis of DOM is a 

mixture of methanol and water, or in some cases, pure methanol.43 The fact that methanol 

works so well in ESI is perhaps serendipitous, as it is commonly used to elute chemical 

species from the solid phase extraction (SPE) cartridges used to isolate DOM. Therefore, 
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eluates from the SPE processes can be readily analyzed via ESI. Moreover, ESI can be 

interfaced with high performance liquid chromatography, which can further aid in the 

characterization of DOM.44,45  

Although positive ion mode is more common and generally achieves greater 

sensitivity, negative ion is preferential for DOM analysis. This because positive ion mode 

can potentially lead to the formation of not only the protonated quasi molecular ions 

(M+H+), but also sodium adducts (M+Na+), thus complicating the resulting mass 

spectrum.46–49 Also, chemical compounds with carboxylic acid functional groups are 

known to be prevalent in DOM49–51, and are therefore particularly amenable to ESI. 

Although ESI continues to be the most popular and well established ionization method 

for DOM analysis, it is possible that using other soft ionization techniques such as 

atmospheric pressure photoionization (APPI) and atmospheric pressure chemical 

ionization (APCI) can be used as complementary techniques to give a more complete 

picture of the composition of DOM by preferentially ionizing subsets of DOM species 

which are not as amenable to ESI.52  

Mass analyzers and the need for ultrahigh resolution. In order to successfully 

differentiate as many compounds as possible within such as complex sample as DOM, a 

mass spectrometer must be capable of resolving species with similar m/z. The resolving 

power (RP) of a mass spectrometer is typically defined by the equation 

(2.1)  𝑅𝑃 = !
∆!

 

 

where M is the measured m/z of a peak and ∆M is the width of the peak at half the 

maximum intensity. RP is most often reported as the full width of a mass spectral peak at 
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half its maximum intensity (FWHM) at a particular m/z value (usually 400).53 Fourier 

transform ion cyclotron resonance (FT-ICR) mass spectrometers can routinely achieve 

RP beyond 500,000 FWHM, which corresponds to peak widths of less than 0.001 m/z for 

ions with m/z 500. 

 As stated earlier, a DOM sample may contain thousands of compounds. 

Therefore, FT-ICR mass analyzers are needed to differentiate all ionizable compounds 

within a DOM sample. Such analyzers reveal that DOM can contain around 20 peaks 

within a single nominal mass (Figure 2.3A). When lower resolution mass analyzers are 

used with ESI for DOM analysis, many of the peaks at each nominal mass become 

broadened and unresolved (Figure 2.3B, C). However, although mass analyzers with 

lower (e.g. < 50,000 FWHM) would be insufficient for the detection of specific 

compounds within DOM, they have been used to successfully gain insights in to the 

general composition of DOM samples. For instance, time-of-flight and/or quadrupole 

mass analyzers have been used to measure molecular weight distributions of different 

fractions of DOM.48,54–56 Selectivity of specific subsets,57 as well as overall 

compositional information can also be gained by using tandem mass spectrometry.45,49  
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Figure 2.3. ESI mass spectra of various DOM samples collected using a range of 
operating resolving powers: (A) DOM extracted from the North Pacific Ocean using 12 T 
FT-ICR with a resolving power of > 500,000 (adapted from Sleighter et al., 201258) and 
humic acid from Mount Rainier using (B) 7 T FT-ICR and (C) quadrupole time-of-flight 
mass analyzers (adapted from Kujawinski et al., 200259). 
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 The exceptional mass accuracy and resolution of FT-ICR mass spectrometry was 

first demonstrated by Comisarow and Marshall in 1974.60 An FT-ICR mass analyzer 

consists of cell known as a Penning trap, which is placed inside a strong, uniform 

magnetic field. Packets of ions are introduced into the cell via radiofrequency (rf) 

multipole ion guides and are confined axially in the cell by an applied electrical field. A 

pair of electrodes excite the confined ions into coherent orbital motions. These motions 

are subsequently detected by a second pair of electrodes, resulting in a complex 

waveform signal from which the m/z and intensity of each ion can be accurately 

determined.  

There are three main physical principles on which an FT-ICR mass analyzer is 

based. First, ions within a uniform magnetic field will travel in a circular pattern 

perpendicular to the applied field at a frequency equal to 

   (2.2)  𝜔! =
!
!/!

 

Where B is the strength of the magnetic field and m/z is the mass to charge ratio of the 

ion, and ωc is the ion’s cyclotron frequency.61 Secondly, ions experiencing this cyclotron 

motion can absorb energy from an externally applied rf pulse, provided that the frequency 

of the pulse matches that of the ωc of the ion (resonance). Finally, the circular motion of a 

single ion between a pair of plate electrodes (perpendicular to the plane of ion motion and 

parallel to one another) will create an alternating current due to its varying proximity 

between the two plates.  

Although the cyclotron motion spontaneously occurs from trapping ions in the 

magnetic field, it does not by itself result in a measurable electrical signal. This is 

because ion cyclotron radii for ions at room temperature is prohibitively small to create a 
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measurable current (typically < 0.8 mm for ions less with masses less than 10,000 atomic 

mass units62). Furthermore, initially, the ion cyclotron motions of an ensemble of ions is 

incoherent and random. That is, since ions begin their circular motion at random times, 

any charge that is induced on one detector plate by the proximity of single ion at any 

given moment will be balanced out by an equal charge on the opposite detector plate by 

induced by another ion.  

 Since, as stated earlier, ions of a single m/z of interest can be excited to a larger 

and coherent cyclotron motion by application of an rf pulse of an appropriate frequency 

by a pair of excitation electrodes. After all ions are excited, the ion packet’s circular 

motion between a second set of detector electrodes will create a current which varies 

sinusoidally with time, with the amplitude of the signal being proportional to the number 

of ions in the coherent packet. While the resulting current is detected, the ion motions 

eventually relax back to their initial cyclotron radii, thus resulting in a dampening of the 

amplitude of the resulting electrical signal. This electrical signal is therefore referred to as 

a free induction decay (FID).  

Typically it is desirable to detect a broad range of m/z ions. In this case, ions of 

different m/z are successively excited to coherent cyclotron radii by using an excitation 

pulse that sweeps through a range of frequencies (e.g., 72 to 641 kHz over 3.79 ms, 

corresponding to excitation of ions with m/z between 225 and 90063). This type excitation 

pulse results in an signal which comprising a superposition of the FID waveforms created 

by the coherent packets of ions whose ωc fall within the range of the frequencies swept. 

This superposition can then be Fourier transformed to result in a plot of signal intensity 



 

 22 

versus ωc. Since, as seen previously, ωc is only dependent on m/z and B, this plot can be 

easily calibrated to be converted to a mass spectrum. 

 

 

Figure 2.4. Illustrations of (A) excitation of ions with small initial incoherent cyclotron 
orbits to larger and more detectable coherent motions and (B) subsequent detection of the 
currents in the ICR cell resulting from the coherent motions. (C) A measured FID signal 
and the corresponding mass spectrum obtained by Fourier transformation of the FID 
(adapted from Amster, 200264). 
 

 

 There are several instrumental parameters that affect the quality of a mass 

spectrum in terms of the achieved resolving power (RP), signal-to-noise ratio (S/N), and 

number of detected peaks. Such parameters include the strength of the magnetic field and 

the length of the scan for a single acquisition. Since  ωc is directly proportional to field 

strength (B, Equation 2.2), the difference between the observed ωc of two ions with 

different masses will be greater for instruments with high-field magnets than for 
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instruments with a lower field magnet. Usually, the strength of the magnetic field in 

modern-day FT-ICR mass spectrometers are between 7 to 18 tesla (T). The greater the 

change in ωc for a given change in m/z, the greater the resolution that is achieved.65 

Although the magnitude of the field does not adversely affect any experimental 

parameters, such high-field magnets are prohibitively expensive.  

In general, the resolution of a mass spectrometer is determined by the distance 

ions travel in a given scan. A fundamental reason why FT-ICR mass spectrometers are 

capable of substantially higher resolution than any other type of instrument is that in a the 

rapid, circular precession of ions within a cell allow ions to travel very large distances 

during the course of the scan. For instance, in a typical ICR cell, an excited ion of 100 

m/z can travel a distance of about 30 km during a 1 s observation period.62 Thus, the 

cyclotron frequency of a single ion can be determined to a very high degree of precision 

due to the large number of revolutions that the ion makes during the single acquisition 

period. This period of time in which the resulting FID is measured can be experimentally 

controlled to maximize resolution. However, the maximum time that a single acquisition 

can be scanned for is limited by how quickly an ion’s excited cyclotron motion decays.  

Furthermore, longer transient times may result in distortions in the mass distribution 

observed due to ion cloud stability and space charge effects.43,66  
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2.3. Analysis, interpretation, and representation of mass spectrometric data 

 Although DOM samples can vary greatly in specific composition, the ultrahigh 

resolution mass spectra of DOM samples display remarkably similar features (Figure 

2.5). Typically, ESI FT-ICR mass spectra of DOM contain distributions of up to several 

thousands of peaks which are centered at approximately 300 – 500 m/z, with several 

peaks appearing at each nominal mass. Also several specific m/z differences between 

peaks are frequently observed, which correspond to specific chemical changes between 

two species. Due to the overwhelming amount of data contained within a single FT-ICR 

mass spectrum of DOM, data must be simplified to efficiently and clearly highlight the 

differences and similarities between the composition of different DOM samples.  

 

 

Figure 2.5. ESI FT-ICR mass spectra of DOM extracted from (A) the Dismal Swamp 
and (B) the Atlantic Ocean off the coast of northern Virginia (adapted from Sleighter and 
Hatcher, 200867). 
 

A

B
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Mass distributions. Typical average molecular weights of DOM that are 

calculated from ESI mass spectrometry typically much lower (300 – 500 Da) than those 

determined by other methods such as size exclusion chromatography (500 – 4000 Da68) 

or small angle X-ray scattering (500 – 10,000 Da69). The discrepancies between the 

molecular weight estimates of humic substances (HS) from ESI and other bulk methods 

was formerly attributed to the multiple charging that is commonly observed in ESI. 

However, as pointed out by Stenson et al.,70 ions with high charge states would be 

associated with peaks corresponding 13C-containing isotopologues that are 1.003355/z 

higher in m/z (i.e. difference between the mass of 13C and 12C divided by the charge). 

However, pairs of peaks with these mass differences are rarely observed, demonstrating 

that multiple charging cannot sufficiently account for ESI’s bias toward lower apparent 

molecular weights. Instead, there are two likely explanations for this difference. First, 

high molecular weight species may not be efficiently ionized under ESI. Second, HS are 

primarily composed of relatively lower molecular weight species which form aggregates. 

In this explanation, these HS species remain aggregated when analyzed via bulk methods 

such as SEC, but are disrupted during the ESI process.  

In early work, m/z distributions observed via ESI mass spectrometry varied 

considerably, with some studies displaying distributions of peaks centered near 1000 – 

2000 m/z. However, the reproducibility and signal to noise ratio (S/N) of these higher m/z 

distributions were generally poor, and were heavily dependent on the data processing 

methods that were used.71,72 Currently, parameters such as transient processing, 

ionization source and ion optics voltages are routinely optimized to give the greatest 

sensitivity, resolution, and reproducibility at the lower m/z range (< 1000 m/z).43  
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Molecular formula assignment. One of the most common analyses done on an 

ESI FT-ICR mass spectrum of a DOM sample is the assignment of molecular formulae to 

as many of the (quasi-molecular ion) peaks as possible. Accurate molecular formula 

determination is useful for DOM analysis, as different classes of chemical compounds 

have characteristic ranges of atomic ratios. By analyzing the molecular formulae 

determined for  a DOM sample, researchers can estimate the relative contribution of 

individual classes of compounds to the entirety of the ionizable species in such samples, 

and would thus be able to make conclusions based on the overall composition of DOM.  

The most rudimentary approach to molecular formula assignment is to generate 

lists of all chemically reasonable formulae for the given mass range (typically using 

software such as MATLAB or Microsoft Excel), and to compare the masses of those 

formulae to a list of measured converted neutral masses (i.e., the measured m/z of a 

singly-charged, deprotonated species plus the exact mass of H+). Each converted mass is 

then matched up to a formulae if the resulting formulae error (FE) is below a pre-defined 

cutoff, typically defined in parts per million (ppm) as follows  

(2.3) 𝐹𝐸   =   1,000,000  ×   𝑀!!!"#   –   𝑀!"#$   /  𝑀!!!"# 

Were Mtheor is the calculated mass of the matched formula and Mmeas is the measured 

converted neutral mass of the peak. To achieve reliable molecular formulae assignments, 

the FE cutoff is usually set at ~ 1 ppm. The lower this maximum error limit is set, the 

more reliable the molecular formulae assignment is. The lowest FE cutoff which can 

practically be defined is limited by the mass accuracy of the instrument being used. 

Fortunately, however, FT-ICR and even some orbitrap mass spectrometers are capable of 
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routinely achieving mass accuracies less than 1 ppm at the m/z ranges that are used for 

DOM analysis, especially when internal calibration routines are used.73–76  

 In addition to the allowed FE cutoff that is used for formula determinations, 

another variable (or set of variables) that can have dramatic effects on the success of the 

molecular formula assignments is the number of atoms of each element that are used to 

calculate all possible formulae. Generally, the percentage of peaks in a given mass 

spectrum which are assigned molecular formula increases with the number of elements 

that are allowed. However, the inclusion of more elements also leads to a greater number 

of formulae which fall within a given FE cutoff of a single measured mass. For example, 

if formulae containing only C, H, and/or O are considered, approximately 50% of all 

peaks in a typical DOM sample can be successfully assigned formulae (Figure 2.6). 

Although this percentage can be dramatically increased to ~90% or more if formulae 

containing N, S, and/or P are included, the number of formulae which fall within 1 ppm 

of the measured mass increases as well (~15 or more!), especially at higher masses.77  

To offset this disadvantage, many researchers choose to allow for small numbers 

of non-oxygen heteroatoms (e.g. N ≤ 2, S ≤ 278,79). This typically results in a balance 

between minimizing equivocal assignments (i.e. assignments in which more than one 

formula is possible at a given FE cutoff) and analyzing the majority of chemical 

compounds. When higher numbers of heteroatoms are used, an extra step to choose the 

most reliable formula must be defined in order to minimize incorrect formula 

assignments. Although assigning the formulae whose mass deviates the least from the 

measured mass may be a possible means of choosing a single formulae, this is not 

necessarily reliable. A more widely accepted method selecting formulae is to use the 
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formula with the least number of heteroatoms.9 Another method of choosing the best 

formulae for peaks with more than one possible formulae which was recently proposed is 

to consider the range and frequency of DBE – O (count of double bond equivalent minus 

number of oxygen in a molecular formula) of all unequivocal assignments, and selecting 

the formulae with DBE – O values that fall within that range.80  

 

 

Figure 2.6. Number (and percentage) of peaks with at least possible molecular formulae, 
the respective sum of all possible assignments, and average number of formulae per peak 
(total number of possible formula divided by number of peaks assigned) for a negative 
ion ESI FT-ICR mass spectrum of Suwannee River fulvic acid (8429 total peaks with S/N 
> 3; 5029 at odd nominal masses, 3400 at even nominal masses) for three different sets of 
the number of elements used for formula determination: (A) C0 –  ∞ H0 – ∞ O0 –  ∞, (B) C0 –  ∞ 
H0 –  ∞ O0 –  ∞ N0 – 30 , and (C) C0 –  ∞ H0 –  ∞ O0 –  ∞ N0 – 30 S0 – 2 P0 – 2. Mass accuracy < 1 ppm 
(adapted from Koch et al., 200777). 
   

 

 An alternative approach to molecular formula assignment takes advantage of the 

common mass spacing patterns that are inherent in the ultrahigh resolution mass spectra 

of DOM (Table 2.1). In this method, the molecular formulae for low mass peaks (< 500 

m/z) are calculated as described previously. Next, unassigned peaks with masses differing 

from each assigned peak by one of the common mass spacing patterns are then searched 
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for and assigned an appropriately derived molecular formula. Although this “chemical 

building block”81 approach is less common than the one described previously, a similar 

methodology is oftentimes adopted to identify 13C and 34S containing isotopologues.78 

Also, analyzing a mass spectrum for a given homologous alkylation series (i.e. peaks 

whose molecular formulae only differ by the numbers of CH2 units) is useful for internal 

calibration routines.82,83  

Table 2.1. Mass spacing patterns observed in the ESI mass spectra of DOM. 
m/z difference molecular formula difference 

+14. 015 650 + CH2 

+0. 036 385 + CH4 – O  

+2. 015 650 + H2 

+0. 995 249 + N – CH 

+ 1. 003 355 + 13C – 12C 

+ 1.995 796 + 34S – 32S 

+ 0.003 371 + 32SH4 – 12C3 

 

 

Visual representation of data (Van Krevelen plots). Ultrahigh resolution ESI 

mass spectra of DOM can be extremely complicated, oftentimes comprising thousands of 

peaks from which molecular formulae can be calculated. Due to the overwhelming 

amount of data that is obtained from a single spectrum, mass spectral data must be 

visually represented in a compact manner in order to allow for any concise and 

meaningful comparisons between samples to be made. Perhaps the most popular method 

for visually representing molecular formula data of complex samples such as DOM is to 

construct a scatter plot comprising the O/C (x-axis) versus H/C (y-axis) molar ratios of 

each calculated molecular formulae, where each single point corresponds to the 
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molecular formula of a single resolved peak. This type of plot is known as a Van 

Krevelen plot, and was first used as a way to compare the elemental analyses of coal and 

petroleum samples.84  

The main utility of using such plots is that, as mentioned previously, major 

classes of biologically derived compounds have characteristics ranges of H/C and O/C 

molar ratios. This allows for the concise depiction of broad compositional differences 

between samples. For example, Figure 2.7 shows the Van Krevelen plots of molecular 

formulae calculated for ESI FT-ICR mass spectra of DOM collected from two local 

aquatic environments within the Lake Superior watershed: The Toivola Swamp and Brule 

River.82 From these plots, it is apparent that the Toivola Swamp sample has a greater 

abundance of species with low O/C (<0.3) and H/C (<0.5),  which corresponds to 

compounds which are most likely condensed hydrocarbons. Conversely, a higher number 

of species at high O/C (>0.6) and H/C (>1.0) are present in Brule River. These O/C and 

H/C molar ratios are typical of a wide range of biologically derived compounds such as 

carbohydrates, proteins, and tannins.  
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Figure 2.7. Van Krevelen plots of the molecular formulae (obtained using negative ion 
ESI FT-ICR mass spectrometry) within DOM collected from the Toivola Swamp and 
Brule River (adapted from Minor et al., 201282). 
 

 

Another attractive feature of Van Krevelen plots is that, the common chemical 

transformations and relationships between compounds in DOM (such as the ones 

described in Table 2.1) are visually apparent. For example, upon close inspection, many 

data points can be placed on one of several imaginary lines which converge at the point 

(O/C, H/C) = (0, 2). Here, all points which fall on one such line are species which differ 

from one another only by the number of CH2 structural units (for species with the same 

number of non-oxygen heteroatoms). Other such series can be visually identified on 

horizontal lines, vertical lines, and lines which converge at the origin (O/C = 0, H/C = 0). 

These three sets of series correspond to varying degrees of oxidation/reduction, 

hydrogenation/dehydrogenation, and hydration/condensation, respectively. 
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 As with any type of reduction of a large data set to a simplified representation, 

some information is lost when plotting molecular formulae of DOM on a Van Krevelen 

plot. Namely, the m/z and relative intensity of the peaks corresponding to the plotted 

molecular formulae are not explicitly shown. Furthermore, it is possible for multiple 

formulae to have identical O/C and H/C molar ratios. However, it is possible to 

ameliorate some of the loss of information by adding a third dimension to represent 

relative abundances. Since 3-dimensional projections are oftentimes difficult to read in 2-

dimensional space (i.e. in print), this third dimension is usually represented by varying 

the color of each data point (Figure 2.8, left). Alternatively, relative intensity can be 

represented relatively effectively by using varying sizes (point diameter or area) of data 

points (Figure 2.8, right), where larger points represent the formula of peaks with high 

relative intensities. An advantage of this type of representation is that the use of multiple 

data point colors can be used to represent differing like series of formulae. For instance, 

formulae containing only C, H, and O can be plotted as using one color, while formulae 

containing C, H, O, and N can be plotted with another color. 
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Figure 2.8. Possible improvements on the representation of Van Krevelen plots for the 
clarification of compositional differences: Relative intensities displayed using a color plot 
(left; adapted from Perminova et al., 201485), and different sizes of data points (right; 
adapted from Yekta et al., 201279). 
 

 In summary, ESI FT-ICR mass spectrometry has emerged as an indispensible tool 

for advancing the current understanding for the structure and composition of DOM.39 Its 

major disadvantage, however, is that it cannot differentiate between isomers. This 

disadvantage can be ameliorated when combined with other analytical techniques such as 

chromatographic separations,86,87 tandem mass spectrometry, and mass labeling 

methods.88,89 Many new discoveries concerning the composition and dynamics of DOM 

continue to be made with FT-ICR mass spectrometry, and the continuation of such 

progress is contingent upon the development of methods which aim to resolve the 

isomeric complexity of the thousands of mass spectral peaks within an ESI FT-ICR mass 

spectrum.90  
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Chapter 3: Development of a mass labeling method for identifying 

ketone/aldehyde-containing species in DOM 

(Adapted from Baluha, D. R.; Blough, N. V.; Del Vecchio, R. Selective Mass Labeling 

for Linking the Optical Properties of Chromophoric Dissolved Organic Matter to 

Structure and Composition via Ultrahigh Resolution Electrospray Ionization Mass 

Spectrometry. Environmental Science & Technology 2013, 47, 9891-9897.91) 

 

3.1. Introduction 

 Over the past decade, electrospray ionization (ESI) Fourier transform ion 

cyclotron resonance (FT-ICR) mass spectrometry has emerged as an important tool39 for 

studying how the composition of dissolved organic matter (DOM) differs due to 

geographic locale47,82 as well as how it is affected by natural processes such as 

photodegradation.5,92,93 ESI’s ability to ionize polar organic compounds with little to no 

fragmentation, combined with the unrivaled resolution and mass accuracy of FT-ICR, 

affords the capability to resolve and assign accurate molecular formulae to thousands of 

ionizable compounds within DOM.  

As new techniques to study DOM are developed, the specific roles that certain 

chemical moieties play in the overall physicochemical behavior of such ensembles are 

becoming better understood. For example, carboxylic acids and phenols have long been 

known to be major constituents within aquatic and terrestrial humic substances (HS) and 

have been shown to be important in metal ion binding, humic aggregation, and other 

chemical reactions.15,21,41,51,94 Other prominent organic moieties that have been identified 
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in humic substances include (aromatic) ketones95, quinones, and hydroquinones, of which 

the latter of two have been shown to be involved in the redox behavior of DOM.96,97 

 Previous work has shown that treatment of chromophoric DOM (CDOM) with 

sodium borohydride, a selective reductant of ketones, aldehydes, and quinones, produces 

a substantial loss of absorption at the visible wavelengths and enhanced, blue-shifted 

fluorescence emission, which has been interpreted to result from the elimination of 

charge-transfer interactions between carbonyl-containing electron-acceptors and aromatic 

electron donors.3,37,38 Other studies have shown that borohydride reduction also affects 

many photochemical properties of these materials and has been employed to investigate 

the mechanisms of these reactions.20,21,37 

 Although bulk structural techniques such as nuclear magnetic resonance (NMR) 

and Fourier transform infrared (FTIR) spectroscopy can be used to study the overall 

presence of ketones and aldehydes within CDOM ensembles95, such techniques do not 

allow for identification of the specific, individual molecules that contain such moieties. 

However, selectively reducing ketone and aldehyde functional groups with sodium 

borodeuteride would allow one to readily detect and identify specific compounds via ESI 

mass spectrometry, owing to the unique mass defect of deuterium. In this chapter, initial 

experiments are described which employed ESI FT-ICR mass spectrometry to identify 

species in a standard fulvic acid which contain ketones and aldehydes.  
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3.2. Materials and Methods 

 Samples, reagents, and materials. Suwannee River fulvic acid (SRFA) was 

purchased from the International Humic Substances Society (catalog number: 2S101H). 

Sodium borohydride (NaBH4), sodium borodeuteride (NaBD4; 98% D, 90% purity), and 

Sephadex G-10 (40 – 120 µm particle size) were purchased from Sigma Aldrich. A C18 

solid phase extract from the upper Delaware Bay was collected in December 2006 at 

coordinates 39.633, -75.574 (DEUB) and processed as previously reported by Boyle et al. 

(see Appendix 7 for details).32  Water was obtained from a Milli-Q Academic water 

purification system (Millipore).  

 Chemical reduction of DOM. A Shimadzu 2401-PC spectrophotometer was 

used to monitor changes in absorption during reduction. Two (3.0 mL) aliquots of an 

aqueous 1 mg/mL SRFA solution was adjusted to pH 7 with NaOH, placed in a 1 cm 

quartz cuvette capped with a vented septum, and purged with ultrapure nitrogen for 15 

min. The cuvettes were opened and a 5-fold mass excess (relative to SRFA) of NaBH4 or 

NaBD4 was quickly added, dissolved by nitrogen bubbling, and allowed to reacted with 

the sample in the (resealed) cuvettes for 24 h in the dark under nitrogen, and then open to 

air for 2 h. The reduced samples, as well as an untreated aliquot of the original SRFA 

stock were passed through a 2.5 cm x 5 cm Sephadex G-10 column equilibrated with 

Milli-Q water to remove borate salts, thus adjusting the final pH back to ~7. Eluates were 

stored at 0˚ C in the dark until further analysis by mass spectrometry. From this 

procedure, three aliquots were produced: untreated (UNT), borohydride-reduced (BDR), 

and borodeuteride-reduced (BDR). Reduction of DEUB was performed in a similar 

manner by Kelli Golanoski. To approximate the concentration (in mg/L), the stock 
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extract was diluted with water to match the absorption of the sample at 350 nm to that of 

a 1 mg/mL SRFA stock, as described elsewhere19.  

 ESI FT-ICR MS data acquisition and processing. Ultrahigh resolution mass 

spectra of all samples were obtained using a hybrid 7 T linear ion trap (LTQ) FT-ICR 

mass spectrometer (LTQ FT Ultra, Thermo Electron Corp.) at the Woods Hole 

Oceanographic Institution, with the assistance of Dr. Melissa Kido-Soule. Immediately 

prior to analysis, thawed samples were diluted in HPLC-grade methanol to a final solvent 

composition of 50:50 water/methanol. Data were collected in negative ionization mode 

from 200 – 1000 m/z using a spray voltage of 3.6 kV, capillary voltage of -17.50 V, 

capillary temperature of 265 ˚C, flow rate of 4 µL/min, and 206 co-added scans. An 

average resolving power of about 400,000 was achieved. 

 Signal processing, internal calibration, and peak alignment was done by Dr. Krista 

Longnecker. Signal transients were averaged together and processed using code provided 

by Southam et al.76 For each sample, individual transients were included in the average if 

their total ion current (TIC) was at least 20% of the highest TIC in the scans. The 

resulting average transient was Hanning apodized, zero-filled once, and fast Fourier 

transformed. A peak was considered to be detected if its signal-to-noise ratio (S/N) was 

greater than 5, and the generated peak lists were internally calibrated using a list of 

known internal standards (Appendix 1, Table A1.1) to achieve a mass accuracy of < 1 

parts per million (ppm). The individual peak lists were aligned using code developed by 

Mantini et al.98, which created a single master list comprising m/z and intensity data for 

all peaks detected in the acquired spectra, where peaks within 1 ppm were considered to 

be the same. All other data analyses were done using a custom written MATLAB 
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function (Appendix 9, Section A9.1). Only the peaks below 600 m/z were used for further 

analysis, since very few peaks were observed above this m/z. 

 Molecular formula assignment. Molecular formula containing 12C, 1H,  and 16O 

were calculated for the detected masses on the basis that such formulae should account 

for the majority of the most intense peaks in the ESI mass spectra of SRFA (and other 

DOM extracts)99 and that unequivocal identification (i.e., only one such possible formula 

per mass) is possible below  about 600 m/z given a 1 ppm error window.77  This formula 

assignment was done in two steps: First, formulae of the form 12Cc
1Hh

16Oo
 were 

determined for each converted neutral mass (i.e., measured m/z + exact mass of H+) using 

the following requirements: Formula error ≤ 1 ppm,  1  ≤ c ≤  m/z / 12, 0.2 ≤ h ≤ 2c + 2,  

0 ≤ o ≤ c and number of double bond equivalents (DBE = c +1 – h/2 + n/2) is an integer. 

Next, isotopologues containing a single 13C atom were identified by finding peaks with 

masses 1.003355 m/z (i.e. mass of 13C minus that of 12C) higher than the peak to which a 

molecular formula has been assigned.  

 Expected mass shifts upon reduction. If a species of mass M in an untreated 

sample contains n borohydride-reducible moieties (i.e., ketones and/or aldehydes), then 

reduction by NaBH4 and NaBD4 should result in the generation of new species at masses 

m+2.015650n (from the addition of nH2) and m+3.021927n (from the addition of nHD), 

respectively. Since a typical ultrahigh resolution mass spectrum of DOM contains an 

abundance of peaks whose m/z differ by 2.015650, unequivocal assignment of 

m+2.015650n masses as borohydride-reduced species would be practically impossible 

due to the presence of isobaric species. However, m+3.021927n masses should be unique 

to the mass spectra of the borodeuteride-reduced sample and can thus be used as reliable 
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mass markers for species containing ketones and aldehydes in the corresponding 

untreated sample owing to the negligible natural abundance (< 0.02%) of deuterium.   

 Although quinone moieties would also be reduced by sodium borohydride, the 

resulting hydroquinones that are produced are expected to rapidly re-oxidize back to their 

original form37 and thus should not affect the mass spectrum of a reduced sample. 

Furthermore, protons on hydroquinones would be readily exchangeable with water, thus 

making these species unidentifiable by borodeuteride reduction. As a consequence, the 

mass shifts described above are only expected to be observed for ketones/aldehydes. 

 Identification of species containing ketones and/or aldehydes. Peaks in the 

untreated mass spectrum of a sample (at mass m) to which a molecular formula was 

assigned was identified as comprising species with n ketone/aldehyde functional groups 

if a peak at m+3.021927n was present (± 1.0 ppm) in the subset of new peaks that 

appeared following borodeuteride reduction, where n = 1 or 2. As an additional 

constraint, the molecular formulae to that peak was required to have a least n O atoms 

and DBE. Since most peaks at even m/z were of low relative intensity, only peaks at odd 

m/z were considered to be identifiable as ketones/aldehydes. This, however, is not 

expected to be a major limitation, since many of the peaks at even m/z comprise 13C 

isotopologues of the higher intensity monoisotopic peaks at odd m/z. 

 

3.3. Results and Discussion 

 Changes in optical properties upon borohydride and borodeuteride 

reduction. Reduction of SRFA by NaBH4 and NaBD4 produced a similar loss of 

absorption throughout the UV-vis spectrum with the greatest fractional loss occurring at 
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long (>400 nm) wavelengths (Figure 3.1). Most of the loss in absorption occurred within 

3 h after the addition of NaBH4 or NaBD4 and remained after samples were open to air. 

These observations are consistent with earlier results3,19,37 and provide evidence that 

ketones/aldehydes were reduced selectively and irreversibly. Also, the similar changes in 

absorption upon treatment by both reducing agents support the assumption that no 

significant chemical difference between the two reduced samples occurred, aside from 

the α-H/D substitution on newly generated alcohols, which should not affect the optical 

properties of these species. 

 

 

Figure 3.1. UV-vis absorption spectra (left) and fraction of absorbance remaining after 
reduction (right) of UNT (black), BHR (blue), and BDR (green) SRFA. Spectra were 
taken prior to purification. 
 

General mass spectrometric features and changes following reduction. 

Although all mass spectra were recorded using a 200 – 1000 m/z range, only the range 

from 200 – 600 m/z were used for further data analysis. This range was chosen for three 

reasons. Firstly, as described above, molecular formula assignment becomes equivocal 

(i.e., more than one possibility) at m/z  > 600 given a 1 ppm error. Secondly, the use of 

the S/N cutoff of 5 resulted in an apparent truncation of peaks at m/z > 600 in BDR, 
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which was due to the intensities these of peaks falling below this cutoff (Figure 3.2). 

Therefore, it would be impossible to identify ketone/aldehyde-containing species above 

this m/z. Thirdly, the majority of peaks and TIC in all spectra resided in this region 

(Appendix 2, Table A2.1), thus demonstrating that this mass spectral region is 

representative of most major ionizable species within the sample. 

The mass spectra of untreated (UNT), borohydride-reduced (BHR), and 

borodeuteride-reduced (BDR) SRFA all displayed features that have been observed in 

previous studies,45,67,70,100,101 such as an overall distribution of peaks centered near 400 – 

500 m/z, periodic ~14 m/z-wide intensity distributions (from species which differ only by 

the number of CH2 units), and several peaks per nominal mass (Figure 3.3). Following 

borohydride reduction, the repeating 14 m/z wide intensity distributions were shifted 2 

m/z higher relative to that of the untreated sample, thus suggesting a reduction of major 

peaks throughout the entire m/z range. In contrast, this intensity pattern was shifted 3 m/z 

higher following borodeuteride reduction. Additionally, the alternation of intensities 

between the clusters of peaks at odd and even m/z observed in UNT and BHR was not 

observed in BDR. These changes are consisted with reducible species with large relative 

intensities (mostly at odd m/z) being shifted to even m/z following borodeuteride-

reduction via the expected m+3.021927 mass shifts. 
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Figure 3.2. Full scan negative ion ESI mass spectra of (A) UNT, (B) BHR, and (C) BDR 
SRFA. The apparent truncation of peaks at about 620 m/z is due to most peaks at higher 
m/z falling below the S/N cutoff. The peak cluster at 814 m/z was of unknown origin and 
were present in all spectra in this study acquired using the 7 T ESI FT-ICR MS (at the 
Woods Hole Oceanographic Institution).  

 

The substantial loss of ion intensities across the entire BDR spectrum relative to 

UNT and BHR can be partially explained by these expected mass shifts, assuming that 

the ionization efficiency of most species are not greatly effected by the reduction of an 

aldehyde or ketone moiety to a corresponding alcohol. During borohydride reduction, 

reduced species are simply shifted to masses that are the same as other non-reducible 
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species. If this transformation is assumed to occur throughout the entire mass range, it is 

expected that much of the loss of intensity at a given mass m from reduction will be 

counteracted by the addition of reduced species that initially had a mass 2.015650 m/z 

lower in the untreated sample. During borodeuteride reduction, reduced species are 

spread out onto new masses, rather being superimposed onto peaks that are already 

present the mass spectrum of the untreated sample. As a result, the loss of intensity at any 

given mass m from reduction would not be counteracted by the formation of new isobaric 

(reduced) species, and hence the relative intensity of each peak, and thus the entire mass 

spectrum, would decrease.  

 

Figure 3.3. Expanded region from 446 – 470 m/z of the negative ion ESI 7 T FT-ICR 
mass spectra of (A) UNT, (B) BHR, and (C) BDR SRFA. Peaks in red are those which 
were not present in UNT SRFA.  
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To show more clearly the occurrence of the aforementioned exact mass shifts, the 

five most intense peaks at 467 m/z in UNT were considered (Figure 3.4; peaks A – E; see 

Appendix 3 for peak lists). In UNT, masses corresponding to the addition of H2 

(+2.015650 m/z; peaks A’ – E’ ) to these precursor (M) masses were readily observed at 

469 m/z, whereas no peaks corresponding to the addition of HD (+3.021927 m/z) were 

found at 470 m/z within the 1 ppm error limit, as expected. However, after borodeuteride 

reduction, new peaks corresponding to the addition of HD for all five peaks appeared at 

470 m/z (peaks A” – E”) in BDR, with intensities similar to parent masses. Based on the 

appearance of peaks at m+3.021927 following borodeuteride reduction, and the changes 

in relative intensity of peaks at m+2.015650 following borohydride reduction, it is 

evident that all five major peaks at 467 m/z arise (at least in part, since several isomers 

are possible for each detected peak) from species containing at least one reducible group. 

Indeed, the lack of complete losses of peaks A – E following reduction implies the 

presence of isobaric species which do not contain reducible groups and/or incomplete 

reduction. 
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Figure 3.4. Mass spectra of UNT, BHR, and BDR SRFA at 467 (left; M), 469 (middle), 
and 470 (right) m/z. Red peaks are those that were not present in UNT. 
 

Peak reproducibility and molecular formula assignments. Figure 3.5 shows 

three Venn diagrams comparing the peaks detected in UNT to those detected in the 

replicate mass spectrum (UNT-2) and to the two reduced samples, along with the 

percentages of peaks to which a molecular formula was assigned. Of all peaks detected in 

the two untreated spectra, 73% (2138 peaks divided by 2930 peaks in one or both 

replicates) were identified in both replicates, which is similar to the reproducibility of 

mass spectra of identical DOM samples reported previously.43,58 The commonality of 

peaks in UNT and BHR was 49%, which can be expected from a slight chemical 

alternation of species in DOM, whereas the commonality of peaks in UNT and BDR was 

much lower (17%), thus demonstrating that borodeuteride reduction results in a large 

number of unique masses. Similar relationships between the mass spectra for DEUB 

(Figure 3.6).  
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Figure 3.5. Venn diagrams comparing the number of peaks detected in the mass 
spectrum of SRFA UNT to those in an untreated replicate (UNT-2), BHR, and BDR mass 
spectra. Percentages of peaks belonging to each subset to which molecular formulae were 
assigned are given in parenthesis. Below each Venn diagram is the percentage of all 
species in the two spectra that were in both spectra. 
 

 

 

 

Figure 3.6. Venn diagrams comparing the number of peaks detected in the mass 
spectrum of DEUB UNT to those in the corresponding BHR, and BDR mass spectra. 
Percentages of peaks belonging to each subset to which molecular formulae were 
assigned are given in parenthesis. Below each Venn diagram is the percentage of all 
species in the two spectra that were in both spectra. 
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Molecular formulae were successfully assigned to the majority of peaks in the 

untreated replicates and the borohydride-reduced mass spectra (70 – 80%). Moreover, the 

percentage of peaks which were assigned molecular formulae were greater for peaks 

which were present in more than one spectrum. In contrast, only 42% of all peaks in 

SRFA-BDR were successfully assigned CHO-containing molecular formulae, which is to 

be expected since many species in this sample were expected to contain deuterium atoms. 

In fact, when the molecular formula algorithm used for this work was altered slightly to 

allow for up to two deuterium atoms, the percentage of peaks in BDR to which a 

molecular formulae assigned increased dramatically to 97%, with very little changes in 

the percentage of assigned peaks for UNT and BHR (data not shown). 

 Reliability of m+3.021927n mass shifts as unique markers of 

ketones/aldehydes. In order for m+3.021927n masses to be used as reliable markers the 

identification of ketone/aldehyde-containing species in DOM samples, such masses must 

not be observed in the untreated sample (i.e., are unequivocal mass markers) and all 

masses that appear following borodeuteride reduction must be identifiable as 

m+3.021927n masses (where n is an integer), thus demonstrating that no other chemical 

change occurred. To test this, all possible m+3.021927n masses were calculated from the 

mass of each peak in the untreated samples at odd m/z to which a molecular formula was 

assigned using values of n ranging from 1 to 3. The peak lists of the untreated and 

borodeuteride-reduced mass spectra were then searched for these expected masses within 

a 1.0 ppm mass window. 
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 When n = 1, less than half (48.3% and 38.6% for SRFA and DEUB, respectively) 

of the new peaks appearing after borodeuteride reduction were identified as m+3.021927 

masses (Table 3.1). When n ≤ 2, these percentages increased nearly two-fold (83.5% and 

71.4% for SRFA and DEUB, respectively).While including n = 3 mass shifts in this 

search resulted in slightly larger percentages of the new peaks identified, a substantial 

percentage (≥ 15%) of masses in the untreated sample were also identified as 

m+3.021927n masses. Although these data show that m+3.021927n masses are only 

reliable markers for species with one or two reducible groups (with the currently 

achieved instrumental resolution and mass accuracy), the majority of peaks appearing 

after borodeuteride reduction were identified as being either m+3.021927 or m+6.042854 

masses, suggesting that species with more than two ketones/aldehydes are relatively 

uncommon in these samples. Also, it is possible that some of the unidentified peaks in the 

borodeuteride-reduced mass spectra are indeed m+3.021927 and/or m+6.042854 masses 

from species in the untreated sample which had S/N ratios lower than the employed 

cutoff, and were therefore not present in that mass spectrum.  

Table 3.1. Percentage of peaks in the mass spectra of untreated and borodeuteride-
reduced SRFA and DEUB identified as m+3.021927n (n = 1, 2, and/or 3) masses. 
 

  m+3.021927n (% of subset) 

subset sample n = 1 n ≤ 2 n ≤ 3 

UNT (all peaks) 
SRFA 0 1.7 15.3 

DEUB 1.8 2.6 20.4 

BDR (not in UNT) 
SRFA 48.3 83.5 91.5 

DEUB 38.6 71.4 81.8 
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 Compositional analysis of reducible species in SRFA and possible relations to 

its bulk physicochemical properties. The relatively high degree of peak overlap 

between the untreated and borohydride reduced mass spectra, the similar total numbers of 

peaks, ion counts, and mass spectral patterns of these two samples, as well as the 

uniqueness of M+3.0219n masses in the borodeuteride-reduced samples all suggest that 

chemical modification by NaBH4 and/or NaBD4 does not result in any artifacts (e.g. from 

contamination or non-uniform changes in ionization efficiency) that would interfere 

significantly with detection and identification of ketone/aldehyde-containing species.  To 

further demonstrate that mass spectral artifacts from sodium borohydride was not an 

issue, ESI mass spectra of an unreduced, borohydride-reduced, and borodeuteride-

reduced model compound (acetovanillone) were collected using orbitrap mass 

spectrometry. No evidence for large differences in ionization efficiency of the unreduced 

and reduced forms nor substantial contamination that would be present in the employed 

mass range was observed (Appendix 4). Therefore, the search method employed here is 

expected to be quite reliable.   

This search identified 48.5% and 34.4% of all peaks with molecular formulae at 

odd m/z in the untreated SRFA and DEUB, respectively, as arising (at least partially) 

from species with one and/or two ketones/aldehydes (Table 3.2). Most peaks that were 

identified as arising from species containing two ketones/aldehydes were also identified 

as arising from species containing one such moiety. That is, following borodeuteride 

reduction, many peaks which gave rise to a peak at mass M+6.0438 from a di-

ketone/aldehyde also gave rise to a peak at mass M+3.0219 from an isobaric mono-
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ketone/aldehyde, which is consistent with either incomplete reduction of di-ketones 

and/or the isobaric/isomeric complexity of HS samples reported by others.52,86,90 

Table 3.2. Percentage of peaks in the mass spectrum of untreated SRFA and DEUB 
identified as comprising ketone and/or aldehyde-containing species (based on a 
search for M+3.0219 and M+6.0438 masses in the corresponding borodeuteride-
reduced mass spectrum. 
 

m+3.021927n 
in BDR? peak composition 

(of m  in UNT) 
SRFA DEUB 

n = 1 n = 2 

no no non reducible 
species 

699 
(51.5%) 

1190 
(65.6%) 

YES no singly-reduced 
species only 

2 
(13.2%) 

143 
(7.9%) 

no YES doubly-reduced 
species only 

22 
(1.6%) 

50 
(2.8%) 

YES YES singly- & doubly-
reduced species 

464 
(32.2%) 

437 
(24.1%) 

 

 

Plots of H/C vs. O/C molar ratios (“Van Krevelen plots”; Figure 3.7) and DBE vs. 

m/z (Figure 3.8) are shown for all formulae identified in the mass spectra of both samples 

in this study. In DEUB, the number of ketone/aldehyde moieties identified for a given 

peak clearly increased with increasing m/z and DBE – a trend that is not as clear in 

SRFA. That is, while most species with only one ketone/aldehyde moiety had low m/z 

and DBE, the species identified as having two such moieties resided mostly at high m/z 

and DBE, which would be an expected trend if most ketone/aldehyde-containing species 

belonged to the same general class of compounds. A more obvious difference between 

the two samples that is revealed by this method is observed in the species at low H/C and 

high O/C molar ratios: While the species in this region of the Van Krevelen plot in the 
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Upper Bay are not identified as containing ketone/aldehyde moieties, they are identified 

as such in SRFA. Although a detailed characterization of these subsets of molecules is 

beyond the scope of this study, this specific structural difference between the two 

samples is only apparent using this mass labeling technique and could not have been 

deduced from molecular formulae assignments alone. 

 

 

Figure 3.7. Plots of DBE versus m/z of all molecular formulae in untreated SRFA (top) 
and DEUB (bottom) showing peaks comprising species with no reducible groups (grey), 
both one and two reducible groups (red, A & C), one group only (green), and two 
reducible groups only (purple, B & D). 
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Figure 3.8. Plots of H/C versus O/C molar ratios of all molecular formulae in untreated 
SRFA (top) and DEUB (bottom) showing peaks comprising species with no reducible 
groups (grey), both one and two reducible groups (red, A & C), one group only (green), 
and two reducible groups only (purple, B & D). 
 

 

The majority of the species identified as containing at least one ketone/aldehyde 

moiety had H/C and O/C molar ratios, DBE, and molecular weights, which are consistent 

with and thus commonly attributed to two major compound classes: lignin-derived 

species and/or carboxyl-rich alicyclic molecules (CRAM).5,7,39,67,100  However, it is highly 

unlikely that CRAM could comprise the majority of the carbonyl-containing species 

being reduced here. The substantial changes in absorption/emission and photochemical 

properties3,19,21,37,38 that are observed in CDOM/HS cannot be explained by borohydride 
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reduction of CRAM, since the reduction of the isolated, aliphatic ketones in such species 

would be expected to cause only slight changes in absorption due to the disappearance of 

weak n → π* transitions at ~280 nm (Figure 3.9A). In contrast, lignin-derived structures 

are likely to contain reducible groups in conjugation with alkoxy- or hydroxy- substituted 

aromatics, which have relatively strong transitions in the 280 to 330 nm wavelength 

region (Figure 3.9B). Reduction of the carbonyl would disrupt the extended conjugation 

and thus result in significant losses in absorption in the UVA. Moreover, the aliphatic 

ketones within CRAM cannot account for the previously observed wavelength 

dependence of the photosensitized oxidation of trimethylphenol, nor for the loss of this 

sensitization under borohydride reduction.19,102 

 

 

Figure 3.9. Two hypothetical molecular structures for the molecular formulae C24H28O11 
(O/C = 0.46, H/C = 1.17) containing one borohydride-reducible group: (A) carboxyl-rich 
alicyclic molecule (CRAM) and (B) lignin-derived structure. 
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Although visible absorption (>400 nm) still cannot be explained directly from 

either lignin derivatives or CRAM corresponding to these low mass (< 600 Da) 

compounds, aggregation could facilitate charge transfer interactions between electron 

acceptors (e.g. aromatic ketones/aldehydes and quinones) and donors (e.g. alkoxy 

aromatics), both of which are known to be present within lignin derivatives.22,33 Indeed, 

previous work45,70 has indicated that the ESI process may cause disaggregation of high 

molecular weight species. The view that humic substances are composed primarily of 

aggregates of  relatively low molecular weight components12,13,15,48 is compatible with a 

model in which inter and intra-molecular charge transfer interactions between lignin-

derived molecules of these aggregates give rise to the unique absorption and emission 

properties of these materials.  

 

3.4. Conclusions 

In this chapter, a novel method for discriminating among peaks in the ultrahigh 

resolution mass spectrum of a DOM sample which comprise species containing zero, one, 

and/or two reducible moieties was described and validated. In this method, species that 

contain up to two ketone and/or aldehyde functional groups are identified in the mass 

spectrum of an untreated DOM sample by searching for m+3.021927 and m+6.043854 

masses in the mass spectrum of a corresponding borodeuteride-reduced DOM aliquot. As 

the mass accuracy and resolution that can be achieved by mass spectrometry continues to 

improve, it may be possible to extend this mass labeling technique to accurately identify 

species containing three borodeuteride-reducible moieties. However, species with m/z < 
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1000 which contain more than two such moieties are expected to be quite rare, and such 

an extension may not be necessary. 

This method allows specific structural information to be gained from ultrahigh 

resolution mass spectra of DOM, thus extending the technique’s overall usefulness in 

DOM research beyond providing general compositional information based solely on m/z 

and molecular formula assignments. Furthermore, the isomeric/isobaric complexity of 

peaks in the mass spectra of DOM, as well as the reactivity of reducible species can be 

studied by using this technique. In summary, this method shows great promise as a means 

to further characterize the structure and composition of DOM, especially in identifying 

specific subsets of chemical species that contribute significantly to the optical and 

photochemical properties of such samples. 

 

   



 

 56 

Chapter 4: Reactivity of ketone/aldehyde-containing species in 

Suwannee River fulvic acid and their contribution to bulk optical 

properties 

 

4.1. Introduction 

 In the previous chapter, a method to mass label ketone and aldehyde-containing 

species in dissolved organic matter (DOM) using sodium borodeuteride (NaBD4) was 

developed. One experimental variable that was held constant in the initial demonstration 

was the extent to which the original DOM sample was reduced. If a sample being 

analyzed is only partially reduced as a result of insufficient amounts of NaBD4, than the 

mass labeling method would result in an underestimation of the abundance of 

ketone/aldehyde-containing species within the untreated sample. To address this issue, 

aliquots of an aqueous stock solution of Suwannee River fulvic acid (SRFA) were 

reduced with increasing amounts of NaBD4 and their ultrahigh resolution electrospray 

ionization (ESI) mass spectra were obtained.  

 Several experimental and instrumental improvements were incorporated. Firstly, 

the gel permeation used for the removal of borate salts (which would interfere greatly 

with the ESI analysis) was replaced with a solid phase extraction (SPE) protocol, a well 

accepted method of DOM purification and enrichment.11 Secondly, higher resolution, 

mass accuracy, and sensitivity was achieved using a 12 tesla (T) Fourier Transform ion 

cyclotron resonance (FT-ICR) mass spectrometer, as opposed to the 7 T instrument that 

was used in the previous chapter. Thirdly, the major mass spectral peaks that were 
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present in an extraction blank were subtracted from all sample spectra prior to data 

analyses, thus minimizing interferences from common contaminants and solvent peaks. 

Finally, the MATLAB code used in the previous chapter was written only to 

accommodate the aligned peak list which was used for the specific study. All MATLAB 

code was substantially revised and written in the form of several discrete functions. These 

new functions are intended to allow for the automation of this mass labeling technique on 

other ultrahigh resolution mass spectral datasets of an untreated and borodeuteride-

reduced sample.  

 In addition to implementing these technical improvements, a second goal of this 

study was to qualitatively investigate how the bulk optical properties of chromophoric 

dissolved organic matter (CDOM) change with respect to the reduction of the ketone and 

aldehyde-containing species which are detected by ESI FT-ICR MS by way of the newly 

developed mass labeling method. This relationship between optical properties, structure, 

and reactivity was investigated by identifying the subset of ketone/aldehyde-containing 

species which were reduced with various amounts of borodeuteride and relating those 

changes to the observed optical properties. 

 

4.2. Materials and Methods 

Samples, reagents, and materials. Suwannee River fulvic acid (SRFA) was 

purchased from the International Humic Substances Society (catalog number: 2S101H). 

Sodium borodeuteride (NaBD4; 98% D, 90% purity), hydrochloric acid (HCl, trace 

select) and sodium hydroxide (NaOH) was purchased from Sigma Aldrich. Water was 

obtained from a Milli-Q Academic water purification system (Millipore). LC grade 
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methanol (MeOH) was purchased from Fisher, and potassium phosphate mono- and 

dibasic (KH2PO4 and K2HPO4) was purchased from Baker. Bond Elut PPL solid phase 

extraction (SPE) cartridges (100 mg functionalized styrene-divinylbenzene polymer solid 

phase; part # 12105004) were purchased from Agilent. 

Sample preparation. A 0.10 mg/mL stock of SRFA was prepared  in Milli-Q 

water and adjusted to pH 10 with NaOH. This stock was divided into six (12 mL) 

aliquots within glass vials. To all but one vial, solid NaBD4 was added to different 

concentrations, thus achieving varying degrees of reduction. As a blank, 1.9 mg/mL 

NaBD4 (the same concentration used for the 20-fold mass equivalent reduction) in pH 10 

Milli-Q water was prepared in an additional vial. All vials were loosely capped and 

placed in the dark at room temperature for 24 h. To all aliquots, 10 M and/or 4 M HCl 

was added incrementally (~100 µL total) to a final pH of 2.0 ± 0.1 to decompose any 

residual NaBD4, with the aliquots then stored in the dark for 24 h. Descriptions of all 

samples and their corresponding abbreviations used throughout this chapter are given in 

Table 4.1. 

 After the 24 h period, the pH of each aliquot was measured. 10.0 mL of the pH 2 

aliquot was then loaded on a PPL cartridge (preconditioned with 2 mL MeOH and 2 mL 

of 10 mM HCl), and allowed to elute by gravity. The cartridges were rinsed with an 

additional 3 mL of 10 mM HCl and dried using a steady flow of nitrogen (~10 mins). The 

organic species were then eluted into glass vials using 1.5 mL MeOH, which was capped 

and then stored at 0˚ C until mass spectrometric analysis. A small fraction of the pH 2 

sample (pre-extraction) was reserved and stored in the dark at 4˚C for absorbance and 

fluorescence analysis.  
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Table 4.1. Descriptions, pH, and absorption data for untreated (UNT) and all 
borodeuteride-reduced (BDR) samples. 

sample MEa pH  
(pre-SPE)b 

pH  
(optics)c 

A(λ)BL  
( x10-3)d SA

e res f 

UNT 0 2.09 6.75 1.5 ± 0.2 0.0152 0.0040 

BDR-1 2.3 2.10 6.77 1.9 ± 0.2 0.0166 0.0028 

BDR-2 6.0 2.08 6.75 0.9 ± 0.2 0.0171 0.0020 

BDR-3 20 2.11 6.73 2.0 ± 0.7 0.0182 0.0024 

BDR-4 58 2.08 6.67 5.3 ± 0.4 0.0185 0.0016 

BDR-5 155 1.99 6.56 4.1 ± 0.4 0.0190 0.0011 

 

a Mass equivalents of NaBD4 (i.e. ratio of [NaBD4] / [SRFA]); b sample pH immediately 

before SPE; c sample pH immediately before absorbance and emission measurements 

([SRFA] = 25 mg/L, [phosphate] = 24 mM); d average ± standard deviation of the 

absorbance between 650 and 700 nm prior to baseline correction; e spectral slope for the 

300 to 650 nm wavelength range; f sum of the square of residuals between the measured 

and fitted absorbance data. 

 

  Mass spectrometric data acquisition and pre-processing. Ultrahigh resolution 

mass spectra of the untreated (UNT) and borodeuteride-reduced (BDR) aliquots were 

obtained by Dr. Mourad Harir using a Bruker Apex QE 12 T FT-ICR mass spectrometer 

at the Helmholtz Center for Environmental Science (Munich, Germany). An Apollo II 

electrospray ionization source was operated in negative ion mode using a spray voltage of 

-3.6 kV and 0.3 µL/min flow rate. Data were recorded from 100 – 2000 m/z, 500 

individual scans were averaged, and the resulting average resolution was >500,000. For 

each spectrum, lists of m/z and intensities of peaks whose signal-to-noise ratio (S/N) was 

greater than 10 were generated for further analysis and internally calibrated using a list of 
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common species found within DOM samples (Appendix 1, Table A1.2). Peak list 

generation and post calibration was done using the Bruker Daltonics Data Analysis 4.0 

software by Dr. Michael Gonsior to achieve a mass accuracy of < 0.2 ppm. 

 Peak list analyses (molecular formula assignment and identification of 

reducible species). All subsequent data processing and analyses were done using custom 

written MATLAB functions (Appendix 9), illustrated in Figure 4.1 and described below.  

 

 

 

Figure 4.1. Analysis of mass spectral peak lists (white boxes labeled P(UNT) and 
P(BDR)) by custom-written MATLAB functions (black arrows). Colored boxes represent 
matrices of molecular formulae calculated by the indicated functions F1, F1*, or F2. 
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Excision of multiply-charged peaks and common contaminants: For each raw 

peak list, doubly and triply-charged species were identified by searching for peaks in 

each mass list that varied by 0.501678 and 0.334452 m/z, respectively (i.e., the expected 

mass difference between doubly and triply-charged species and their 13C-containing 

isotopologues), within a 0.2 ppm error window. If such a mass difference was found, then 

the two peaks were excluded from the processed peak list. Also excluded from the 

sample peak lists were those that resided within 0.2 ppm of the most intense peaks in the 

mass spectrum of the extraction blank (see Appendix 1, Table A1.3 for peaks removed 

from the sample mass spectra). 

Molecular formula assignment of UNT (F1): Molecular formula assignment of 

peaks in UNT was accomplished using a custom MATLAB function based on the “low-

mass moiety” approach described by Perdue and Green.103,104 This algorithm performs 

hundreds of times faster than a conventional “brute-force” algorithm that that cycles 

through all chemically reasonable combinations of C, H, O, N, and S until a matching 

formulae is found for each measured m/z value. The new low-mass moiety approach 

yields identical formulae to those given by a brute force approach with the added benefit 

of completing molecular formula assignment of a single spectrum in a few minutes rather 

than in several hours. 

Briefly, each measured m/z was converted to its neutral mass (by addition of the 

mass of H+) and a base molecular formula of a hydrocarbon with the lowest possible H/C 

molar ratio was calculated (e.g. C28H6 for a measured m/z of 341.0878). This base 

formula was altered by adding or subtracting C4O-3 and/or CH4O-1 subunits until the 

following requirements were satisfied: (1) calculated mass of the formula was within 0.2 
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ppm of the measured mass, (2) c > 0, (3) 2 ≤ h ≤ 2c+2, (4) o ≤ c, and (5) o + n + s > 0 

(i.e., final formula is not a hydrocarbon), where c, h, o, n, and s are the numbers of C, H, 

O, N, and S, respectively. Additionally, non-oxygen heteroatom (N and S)-containing 

formulae were considered by altering the base hydrocarbon with varying numbers of 

N(CH2)-1 and/or  SH4C-3 subunits, where the maximum numbers of N and S were user-

specified inputs. If more than one molecular formula was within this error limit, the 

formula with the least number of heteroatoms (N + S) was used. Afterwards, 

isotopologues containing a single 13C atom were identified by finding peaks that were 

1.003355 m/z (i.e., the mass of 13C minus that of 12C) higher than a peak which was 

assigned a molecular formula. Similarly, 34S-containing isotopologues were identified by 

searching for peaks that were 1.995980 m/z (i.e., the mass of 34S minus that of 32S) higher 

than a peak that was assigned a 32S-containing formula in the first step. 

 “Mass shift-based” identification of ketone/aldehyde species in UNT and of 

deuterium-containing formulae in BDR (F2):  For each peak (at mass m) in UNT to 

which a molecular formula was assigned, the peak list of a borodeuteride-reduced sample 

was searched for peaks at m+3.021927 and m+6.043854 within a 0.2 ppm window, 

corresponding to singly and doubly-reduced species, respectively, where mass m was 

calculated from the molecular formula at that peak. As done previously,91 if only the 

m+3.021927 or m+6.043854 peak was found in the borodeuteride-reduced spectrum, then 

the species at mass m in UNT was identified as comprising at least one singly-reducible 

or at least one doubly-reducible species, respectively. Alternatively, if both the 

m+3.021927 and m+6.043854 peaks were found, then the peak at mass m was identified 

as comprising either a combination of species with one and two reducible moieties, or an 
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individual (or set of isobaric) species with two reducible moieties that was only partially 

reduced. Peaks in the searched (reduced) peak list that were identified as m+3.021927 

and m+6.043854 (reduced) species were then assigned formulae equivalent to that of the 

peak at m with the addition of HD and H2D2, respectively. Molecular formulae of any 

remaining, unassigned peaks in the searched peak list were calculated using function F1 

as described above. As a control, the peak list of UNT, rather than that of a reduced 

sample, was searched in a similar manner for m+3.021927 and m+6.043854 mass 

markers. 

Molecular formula assignment allowing up to 2 deuterium atoms (“F1*”):  As a 

further check on the reliability of the “mass shift-based” assignment of deuterium (D) 

containing formulae in the peak lists of BDR, a modified version of function F1 was used 

to calculate molecular formulae for all samples. This modification allowed  

D to be included in the possible combinations of atoms by allowing up to two HD 

subunits to be included in the base hydrocarbon molecular formulae. D-containing 

formulae calculated in this manner were then compared to those that were calculated 

based on mass shifts from F2. 

 Optical measurements. For all optical measurements, a portion of all aliquots of 

SRFA (initially at pH 2) was diluted with phosphate buffer to final concentrations of 25 

mg/L SRFA and 32 mM phosphate. This preparation served two purposes: Firstly, to 

ensure that the final pH of all samples were constant (6.7 ± 0.2) to minimize pH-

dependent optical changes, and secondly, to keep the absorbance of each sample below 

0.1 for all excitation wavelengths used in fluorescence measurements to minimize inner 

filter effects. Prior to analysis, all samples were filtered through 0.2 µm polyethersulfone 
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(VWR International, part no. 28145-501) sterile membrane filters to minimize 

interference (e.g. scatter) from particulate matter. 

 All optical measurements were done in a 1 cm quartz cuvette. Absorption spectra 

were measured against air from 200 – 700 nm using a Shimadzu 2401-UV 

spectrophotometer. Emission spectra were recorded using an Aminco-Bowman AB2 

luminescence spectrophotometer. Using excitation wavelengths spaced 5 nm apart from 

250 to 450 nm, forty-one emission spectra were recorded every 2 nm from 250 to 650 nm 

at a rate of 2 data points per second. Excitation and emission monochromator band passes 

were set a 4 nm, and spectra were corrected for the instrument response using factors 

supplied by the manufacturer. Absorption and emission (excitation wavelength = 350 

nm) spectra were acquired for solutions of 10 ppm and 100 ppb quinine sulfate in 0.1 M 

H2SO4, respectively. 

 The absorption and emission spectra of a blank (32 mM phosphate buffer in Milli-

Q water) were recorded and subtracted from all sample spectra using a custom MATLAB 

function (Appendix 9, section A9.8). For each absorption spectra, the average absorbance 

from 650 to 700 nm was subtracted from all absorbance values for the entire wavelength 

range to correct for slight baseline offsets.3 The absorption spectral slope (SA) was 

calculated from 300 to 650 nm using a non-linear least squares fitting of the following 

equation, 

(4.1)  𝐴(𝜆) = 𝐴(𝜆!"#)𝑒!!!  (!!!!"#) 

where A(λ) is the (baseline-corrected and blank-subtracted) absorbance at wavelength λ 

and λref is the reference wavelength (300 nm).  



 

 65 

Each individual emission spectrum was blank subtracted, smoothed using a 3-

point moving average, and corrected for primary and secondary inner filter effects as 

described by McKnight et al.26 The emission intensities at wavelengths within 10 nm of 

the Rayleigh and Raman scatter peaks were excised and interpolated using a procedure 

similar to that of Zepp et al.27 All corrected intensities were converted to quinine sulfate 

units (QSU), where 1 QSU is equal to the emission intensity of a 1 ppb quinine sulfate 

solution at excitation and emission wavelengths 350 and 450 nm, respectively. 

Fluorescence quantum yields were calculated for each excitation wavelength as described 

previously.28 

 

4.3. Results and Discussion 

General mass spectrometric features. The mass spectra of all samples contained 

about 8000 – 9000 resolved peaks, most of which were [M-H]- ions (Table 4.2; see 

Appendix 2, Figure A2.2 for full mass spectra of all samples in this study). For all 

subsequent analysis, only peaks within the 200 to 600 m/z range were analyzed. This 

range comprised the majority of peaks (79% to 94%) and total ion count (TIC; 94% to 

98%) in the full scan range. Many spectra contained a few peaks with very high 

intensities relative to the ions of interest within SRFA and were also present in the mass 

spectrum of the blank. The peaks with the highest intensities were tentatively identified 

as series of organosulfonate contaminants. Also present in substantial intensities in the 

blank spectrum were two clusters of unidentified species that were most likely chloride 

adducts, as well as two other unknown organic species (Appendix 1, Figure A1.1 and 
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Table A1.3). These suspected common contaminant peaks, as well as any peaks 

comprising doubly or triply charged ions, were removed from the sample peak lists. 

The number and weight average molecular weights (AMWN and AMWW) for all 

samples were around 400 m/z and were similar to values reported in previous studies 

using negative ion ESI mass spectrometry.48 These average molecular weights decreased 

slightly (average percent change ± standard deviation relative to UNT: -6.5 ± 0.7% and -

7.8 ± 1.0% for AMWN and AMWW, respectively) following reduction. This may 

tentatively suggest that there are more species that were reduced at high m/z than at low 

m/z. Although counterintuitive because borodeuteride reduction of a single species would 

result in a mass increase, it is likely that reduction of many species produces a net loss of 

ionization efficiency. Therefore, if more species at high m/z are reduced, then there would 

be a loss of intensity at the high m/z range, and a subsequent decrease in average 

molecular weight would be observed. 

In the 200 to 600 m/z range, the TIC of the mass spectra of the reduced samples 

were significantly lower than that of the mass spectrum of the untreated sample (-20.7 ± 

4.7%) , which is consistent with what was observed in the previous chapter (i.e., a loss of 

TIC following reduction). In contrast, the numbers of peaks in the reduced samples were 

higher (21.5 ± 5.3%) relative to that of the untreated, which is the opposite of what was 

observed in Chapter 3. However, the previously observed decrease in the number of 

peaks following reduction was most likely an artifact of relatively low instrument 

sensitivity, and the slight increase in number of peaks is more reasonable, since 

borodeuteride reduction would generate many peaks which were not in the untreated 

sample itself.  
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Table 4.2. Distribution of peaks in the full (50 – 2000) and analyzed (200 – 600) m/z 
ranges. 
 

sample MEa 
peaks TICb (x1011) 

AMWN
c AMWW

d 

full analyzed full analyzed 

UNT 0 8507 6753 2.88 2.70 408 436 

BDR-1 2.3 9030 8021 2.34 2.26 386 409 

BDR-2 6.0 8481 7716 2.06 2.01 380 402 

BDR-3 20 9095 8432 2.24 2.19 383 403 

BDR-4 58 9269 8632 2.28 2.24 379 399 

BDR-5 155 8734 8220 2.04 2.00 379 398 

 

a Mass equivalents of NaBD4 (i.e. ratio of [NaBD4] / [SRFA]) prior to PPL extraction; b 

total ion count; c number and d weight averaged molecular weight calculated using the full 

m/z range (see Appendix 9 and section A9.9 for calculations). 

 

Molecular formula assignment of UNT and BDR-3. Prior to molecular formula 

assignment, the maximum number(s) of non-oxygen heteroatoms (e.g. N, S) must be 

chosen. While allowing large numbers of heteroatoms can be beneficial for assigning 

formulae to as many peaks as possible in a mass spectrum, doing so may lead to a greater 

chance for false and/or equivocal formula assignments, especially at high m/z. Here, 

molecular formulae were calculated from the peak list of BDR-3 using two algorithms 

employing various maximum allowed numbers of N and S. In algorithm F1*, formulae 

were calculated directly using a modified “low-mass moiety” approach which allowed 

the addition of up to two HD moieties. In algorithm F2, the mass list of BDR-3 was 

searched for peaks at m+3.021927 and m+6.043854, where m is the mass of a peak in 

UNT to which a formula was previously assigned. These peaks were then assigned 
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formulae identical to that of the original peak at m with the addition of HD or (HD)2. The 

D-containing formulae calculated by algorithms F1* and F2 within BDR-3 were then 

compared to one another at four 100 m/z-wide ranges. To test the reliability of the D-

containing assignments, the two algorithms were used on the peak list of the UNT sample 

itself as a control.  

For all N and S allowances, virtually all D-containing formula identified by F2 

were also identified by F1* (Figure 4.2A). However, the converse was not necessarily 

true, especially in the 500 to 600 m/z range. That is, there were some peaks that were 

assigned D-containing formulae by F1*, yet were not identified as m+3.021927 or 

m+6.043854 derivatives (yellow bars). The presence of formulae identified by F1* but 

not F2 and the relatively small number of formulae identified by F2 at the highest m/z 

range might suggest that the mass shift-based search fails to identify some subset of D-

containing species. However, the numbers of D-containing formulae falsely identified by 

F1* in UNT were very similar to those identified in BDR (Figure 4.2B), suggesting that 

those peaks identified by in BDR-3 by only F1* are incorrect formulae.  

A second possible reason for the lower number of D-containing species identified 

by F2 than by F1* is that a 0.2 ppm formula error window is inappropriately small at the 

high m/z range, since formula error generally increases with m/z (see Appendix 5). To test 

this, all analyses were carried out a second time using an increased error tolerance of 0.3 

ppm. This resulted in substantial increases in the number of D-containing formula 

identified at high m/z ranges by both functions, with smaller changes occurring in the low 

m/z ranges (Figure 4.2C). Also, in all cases, only F1* and not F2 returned significant 

numbers of false assignments in UNT (Figure 4.2D), suggesting that by including this 
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additional nucleus (D) in F1* more false assignments were obtained due to the increased 

degrees of freedom in all possible elemental combinations, particular at the higher m/z 

range. These results demonstrate that a mass shift-based identification of D-containing 

species (as in F2) is far more reliable than a direct formula assignment, even at high m/z 

and N and S allowances. However, it is important to note that F1* served as an 

independent verification of all D-containing formulae assigned by F2. Based on the 

above results, a 0.2 ppm error tolerance and up to one N and one S was allowed for the 

molecular formulae assignment of peaks in UNT. Using these parameters, 54.4% (3674 

of 6753) of the peaks in the 200 to 600 m/z were assigned molecular formulae (see 

Appendix 5 for details). These assigned peaks accounted for 86.2% of the total spectral 

peak magnitude, thus showing that the unassigned peaks were of very low relative 

intensities. For the mass shift-based identification of ketones/aldehydes (via F2), a 0.3 

ppm error tolerance was used. 

 



 

 70 

 

 

Figure 4.2. Number of D-containing molecular formulae identified in BDR-3 (A and C) 
and UNT (B and D) in four m/z ranges by algorithms F1* and/or F2 with various 
maximum numbers of N and S using maximum formula error (FE) tolerances of 0.2 (A 
and B) and 0.3 (C and D) ppm.  
 
 

 

 Identification and reactivity of ketone/aldehyde-containing species in UNT. 

Species that were reduced by varying amounts of borodeuteride were identified by 

searching the mass lists of BDR-1 through BDR-5 for peaks at m+3.021927 and 

m+6.043854 (within 0.3 ppm), where m is the m/z of a peak in UNT to which a molecular 

formula was assigned. Additionally, a search in the peak list of UNT for these mass 

markers was performed as a control search. There were very few false assignments in this 

control search, which is consistent with the above results for the mass shift-based formula 

assignments. From a search in BDR-1 (i.e., the sample reduced with the lowest [NaBD4]), 
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45% (1647 out of 3674) of all assigned peaks in UNT were identified as comprising 

reduced species, 64% of which were identified as comprising species that were reduced 

only a single time (Figure 4.3A). In general, using higher [NaBD4] had minor effects on 

the total number of species reduced, but more drastic effects on the number of species 

that were reduced a second time. For instance, the total number of peaks reduced after 

treatment with 20 mass equivalents of NaBD4 (BDR-3) was only 2.4% higher than that 

which was reduced after treatment with 2.3 mass equivalents (BDR-1; 1686 versus 1647), 

whereas the number of doubly-reduced  species increased by 65% (994 versus 601).   

 
 

 

Figure 4.3. Percentage of peaks in UNT with an assigned molecular formula identified as 
comprising singly- and/or doubly- reducible species for m/z ranges (A) 200 – 600, (B) 
200 – 300,  (C) 300 – 400, (D) 400 – 500, and (E) 500 – 600. 
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The percentages of peaks identified as comprising ketones/aldehydes within the 

first three m/z ranges were similar to one another (Figure 4.3B – E), with the 300 to 400 

m/z range containing the highest percentages of reduced species. In these ranges, there 

were considerably more peaks identified as comprising singly- and doubly-reduced 

species than there were identified as comprising only doubly-reduced species. In all m/z 

ranges, the percentage of peaks that were identified as reduced from a search in BDR-2 

was much lower than expected. The cause of this deviation is unknown and is perhaps 

due to contamination, electrospray instability, and/or issues with the post-calibration of 

the peak list of BDR-2, which would lead to an artificially low number of m+3.021927 

and m+6.043854 mass markers. The highest m/z range was relatively devoid of reduced 

species, which may be due to suppression of low intensity peaks at this range for all BDR 

samples. The unexpected decrease in the number of identified ketones/aldehydes with 

increasing [NaBD4] confirms this explanation, since signal suppression would increase 

with successively higher [NaBD4]. 

Based on the observed positive monotonic relationship between the doubly-

reduced species and [NaBD4], it seems that the majority of species that contain at least 

one ketone/aldehyde moiety are reduced once under low [NaBD4], while higher [NaBD4] 

results mostly in the subsequent reduction of other reducible moieties within the same 

species. This phenomenon was readily confirmed in Table 4.3, which shows the number 

of species identified as non, singly, and/or doubly-reduced from a search in BDR-1 

(treatment with low [NaBD4]) and BDR-3 (treatment with high [NaBD4]). Most peaks 

(87%; 1768 of 2027) that were identified as non-reduced following treatment with low 

[NaBD4] were also identified as such following treatment with high [NaBD4]. 
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Conversely, of the 1046 peaks identified as comprising singly-reduced species upon 

treatment with low [NaBD4], about 35% were reduced a second time upon treatment with 

high [NaBD4], while about 45% remained singly-reduced, and about 20% went from 

singly-reduced to non-reduced. This phenomenon is useful, as it suggests that treatment 

of SRFA (and perhaps other DOM samples) with relatively low [NaBD4] can be used to 

confidently identify most mass spectral peaks which comprise species with at least one 

ketone/aldehyde moiety, whereas multiple reductions would be required to differentiate 

between peaks comprising singly- and/or doubly-reduced species. 

 

Table 4.3. Numbers of non, singly, and/or doubly reduced species in UNT (between 
200 and 600 m/z) following a 2.3-fold (BDR-1) and 20-fold (BDR-3) addition of 
NaBD4. Regions above and below the (shaded) diagonal correspond to species which 
decreased or increased in reduction, respectively, from BDR-1 to BDR-3.a  
 

peak 
composition 
vs. BDR-3 

peak composition vs. BDR-1 

non 
(2027) 

singly 
(1046) 

both 
(587) 

doubly 
(14) 

non (1988) 1768 210 6 4 

singly (693) 202 474 16 1 

both (929) 25 338 563 3 

doubly (64) 32 24 2 6 

 

a In parenthesis: Total number of species identified as non-reduced (“non”), singly-

reduced only (“singly”), singly- and doubly-reduced (“both”), and doubly-reduced only 

(“doubly”) for BDR-1 (topmost row) and BDR-3 (leftmost column).  
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 Molecular formulae of ketone/aldehyde-containing species.  To further 

understand the molecular composition of the reduced species within the UNT sample, 

plots of H/C versus O/C molar ratios (Van Krevelen plots) were constructed for each of 

the four m/z ranges, shown in Figure 4.4 (see Table 4.4 for numbers of formulae). These 

plots distinguish between species identified as non-, singly-, and/or doubly-reduced upon 

treatment with low (top) and high (bottom) [NaBD4]. The H/C and O/C molar ratios of 

the majority of all formulae are centered around H/C = 1 and O/C = 0.5, which has been 

observed previously for SRFA and other terrestrially influenced DOM samples, and are 

consistent with an abundance of lignin-derived material and/or carboxyl-rich alicyclic 

molecules (CRAM). This distribution is spread out at the low m/z range, and becomes 

tightly distributed and shifted to slightly lower H/C and higher O/C molar ratios at the 

higher m/z range. In addition to the major distribution of formulae at mid H/C and O/C, 

there was a small distribution of formula at low O/C (<0.25) and low H/C (< 1) at the 

high m/z range, which has previously been identified as carboxylated aromatic species 

derived from biochar.105,106 These species were devoid of ketone/aldehyde functional 

groups, even when high [NaBD4] is used, thus consistent with the common assumption 

that carboxyl moieties are the only dominant functional groups within these species. 
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Figure 4.4. Van Krevelen plots of formula of peaks in UNT identified as non, singly, 
and/or doubly-reduced based on a search for m+3.021927 and m+6.043854 mass markers 
in (top) BDR-1 and (bottom) BDR-3 in the four m/z ranges analyzed (see Table 4.4 for 
numbers of formulae).  
 

Table 4.4 Number of formulae in UNT at each m/z range identified as non-, singly-, 
and/or doubly-reduced. 

MEa peak 
composition 

200 – 300 
m/z 

300 – 400 
m/z 

400 – 500 
m/z 

500 – 600 
m/z total 

2.3 (BDR-1) 

non 408 443 634 553 2038 

singly 197 275 363 0 835 

both 146 289 170 0 605 

doubly 4 7 0 1 12 

20 (BDR-3) 

non 368 390 612 618 1988 

singly 162 212 244 75 693 

both 214 403 297 15 929 

doubly 11 9 14 30 64 
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At high m/z, the main distribution of formulae was slightly shifted to lower H/C 

and higher O/C, which may be either indicative of either oxidized lignin-derived species 

or condensed and/or hydrolysable tannins composed of flavone, polyphenolic, and/or 

sugar moieties.107,108 In contrast to the more saturated (i.e., higher H/C) and less 

oxygenated (lower O/C) lignin/CRAM-like compounds, the peaks with tannin-like 

formulae were reduced only a single time with low [NaBD4] and required much higher 

[NaBD4] to become reduced a second time. This suggests a greater structural 

heterogeneity for the tannin-like compounds. That is, while most ketones/aldehyde 

moieties within lignin/CRAM-like compounds reacted equally with both high and low 

[NaBD4], there were a few moieties in the tannin-like compounds that did not react 

except under very high [NaBD4]. 

Effects of borodeuteride reduction on absorption and fluorescence emission 

of SRFA. To study the effect of borodeuteride reduction on the optical properties of 

SRFA, absorption and emission spectra were taken for each aliquot prior to SPE. These 

spectra are thus representative of the optical properties of the entire sample, whereas all 

mass spectra were collected from post-SPE material. Therefore, direct comparisons 

between the compositional information obtained by mass spectrometry and the optical 

properties must be done with caution, since the species detected by ESI may exclude 

some subset of species within the original ensemble. However, this is true for all ESI 

analyses of DOM, as ESI is understood to only ionize a fraction of the total ensemble of a 

sample of DOM. Furthermore, preliminary experiments have demonstrated that SPE has 

relatively small effects on the bulk optical properties (Appendix 6).  
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Borodeuteride reduction resulted in a loss of absorption at wavelengths higher 

than about 250 nm, with a preferential fractional loss of absorption at the longer 

wavelengths (Figure 4.5). This behavior has been observed in many other humic 

substances following borohydride reduction, and has been explained by the disruption of 

charge-transfer complexes formed between electron donors (e.g. phenols) and reducible 

acceptor moieties (e.g. aromatic ketones).37 From 300 to 450 nm, the observed fractional 

loss of absorbance increased logarithmically  (see Appendix 6, Figure A6.2) with the 

amount of borodeuteride added, which is again in agreement with what has been 

observed for several terrestrial and aquatic humic and fulvic acids.109 For example, while 

reduction with 2.3 mass equivalents of NaBD4 (i.e., the lowest [NaBD4] used in this 

study) resulted in a ~30% loss of absorption at 400 nm, 155 mass equivalents of NaBD4 

were required to double this loss of absorption!  

 

 

 

Figure 4.5. Absorption and emission of all SRFA samples. A: Blank-subtracted 
absorption spectra, B: Percent loss of absorption (relative to UNT) following reduction, 
and C: quantum yield. 
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Although the loss of long-wavelength absorption increased with successively 

higher amounts of NaBD4 for all tested mass equivalents may suggest that complete 

reduction of all reducible moieties within a DOM sample would be achieved using 100 or 

more mass equivalents of NaBD4, doing so may not be advisable for a number of 

practical reasons. Firstly, using such high concentrations of NaBD4 (i.e. ≥ 10 mg/mL 

NaBD4 for a 0.1 mg/mL DOM sample) would necessitate the use of equally large 

amounts of acid such as HCl for the neutralization of samples after reduction. This can be 

especially problematic, since high concentrations of HCl would increase the likelihood of 

residual chloride remaining in the solid phase extracted sample, thus interfering with the 

ESI process. Secondly, introducing such large amounts of NaBD4 produces a vigorous 

evolution of hydrogen gas from the reaction of borodeuteride with water. Furthermore, 

previous work has suggested that amounts of borohydride in excess of approximately 5-

fold mass equivalents of HS contribute to the reduction of quinones, which re-oxidize 

once the excess borohydride (or borodeuteride) is consumed.109 Finally, the additional 

changes in absorption and emission from a 20-fold mass equivalent to a 155-fold mass 

equivalent were relatively small. Based on these considerations, a 20-fold mass 

equivalent of NaBD4 to DOM should be sufficient to convert nearly all (irreversibly 

reducible) ketones and aldehydes in other DOM extracts.  

Shown in Figure 4.6 are fluorescence emission spectra collected at excitation 

wavelengths (EX) spaced over 15 nm from 260 to 440 nm for all six samples. In all 

samples, the emission spectral envelope from successively higher EX fell within the 

envelope from lower EX, with steadily increasing (i.e. red shifted) emission maxima – a 

feature that has been interpreted as arising from a continuum of coupled charge-transfer 
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states.22 Upon reduction, the wavelength of maximum emission (EMMAX) for all EX 

shifted to shorter wavelengths, with the greatest shifts occurring primarily for lower EX 

(see Appendix 6, Figure A6.1). Most of these shifts occurred from the untreated to 20-

fold reduced sample, and very little additional shifts were observed for successively 

higher amounts of borodeuteride. Furthermore, emission intensities generally increased 

with increasing mass equivalents of NaBD4, with the exception of BDR-5 (i.e., 155-fold 

reduction).  

 

Figure 4.6. Corrected emission spectra of untreated and reduced SRFA (25 mg/L), in 
quinine units (QSU), where 1 QSU = emission intensity of a 1 ppb quinine sulfate 
solution at (EX, EM) = (350, 450). Mass equivalents of NaBD4 are given in parentheses 
(see Appendix 6 for difference spectra). 
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An addition spectral feature that appeared following reduction was a shoulder 

from emission wavelengths (EM) 300 – 350 nm for EX ≤ 275 nm. This spectral region is 

typically assumed to be indicative of proteinaceous material arising from the emission of 

tryptophan and tyrosine amino acid residues.29,110 However, there was no significant 

evidence of protein or peptide-like material in the ESI mass spectral data, which would 

produce N-containing species at high H/C molar ratios. Therefore, it is more likely that 

this spectral feature is due to the emission of other phenolic species (e.g. lignins and 

tannins) whose emission is originally quenched in the untreated sample via charge 

transfer from an excited-state phenolic moiety to a reducible acceptor such as an aromatic 

ketone. This result highlights how electronic interactions between reducible chemical 

moieties and other species within DOM can greatly influence the bulk excitation-

emission spectra of such materials, and that assignment of emission spectral features to a 

single compound class must be done with great caution.  

 Relating the bulk absorption and emission of SRFA to number of identified 

reduced species. The numbers of peaks identified as comprising ketone/aldehyde-

containing species were compared to several measured optical properties of each BDR 

sample (Figure 4.7). Since the number of ketone/aldehyde-containing species identified 

in sample BDR-2 was much lower than expected, data from this sample were excluded. 

The correlation between the number of ketone/aldehyde-containing species and the 

percent loss in absorption of BDR to UNT generally increased with increasing 

wavelength, thus supporting the premise that ketone/aldehyde-containing species 

influence primarily the long wavelength absorption of SRFA. The number of singly-

reduced species did not correlate strongly to the observed optical properties, but the 
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number of doubly-reduced species as well as the total number of reductions did. The 

correlations between the number of reduced species and the observed emission intensities 

were very weak when BDR-5 was included. However, upon exclusion of the data for this 

sample, very strong linear correlations (R2 ≥ 0.98) were observed for the percent change 

in emission versus the number of doubly-reduced species and total number of reductions. 

The lack of a correlation between all observed optical properties and the number of 

singly-reduced species implies that species with two or more ketone/aldehyde influence 

the bulk optical properties more than species with only one such moiety. 

 

 

Figure 4.7. Number of reduced species identified via ESI FT-ICR MS versus percent 
change in A(λ), F(EX,EM), and QY(360) relative to UNT. “All singly reduced” = singly 
reduced only + singly & doubly reduced; “all doubly reduced” = doubly reduced only + 
singly & doubly reduced; and “total reductions” = singly reduced only + 2(doubly 
reduced only) + 3(singly & doubly reduced). Total reductions (purple triangles) are given 
on the right-hand vertical axes. BDR-5 data are excluded for percent change in 
F(275,306), F(290,480), and QY(360). Percent changes are absolute values. 
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4.4. Conclusions 

 The work in this chapter addressed and expanded upon several major aspects of 

the reduction and mass labeling of DOM with NaBD4 that was developed previously. 

Firstly, it established that most of the major optical and mass spectrometric changes occur 

with a 20-fold mass equivalent of NaBD4 to SRFA. Although some additional structural 

and optical changes occurred at higher concentrations, 20 to 30-fold mass equivalents 

should be a practical standard amount of NaBD4 used to reduce nearly all ketones and/or 

aldehydes within an aqueous humic/fulvic acids as well as other CDOM samples. For 

analyzing the most reactive reducible species, considerably smaller amounts of NaBD4  

(< 1 mass equivalent) should be used. Secondly, since this analysis requires direct 

comparisons between two mass spectra, it is recommended that duplicate or triplicate 

mass spectra of untreated and reduced (low and high [NaBD4]) be acquired for routine 

characterization of DOM in this manner. Finally, several measured bulk optical 

properties were semi-quantitatively linked to the number of species which were identified 

as reduced following treatment by various [NaBD4]. 
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Chapter 5: Comparison of the presence and composition of 

ketone/aldehyde-containing species in DOM from various aquatic 

environments 

 

5.1. Introduction 

In this chapter, the fully developed and tested method of using sodium 

borodeuteride (NaBD4) to mass label ketone/aldehyde-containing species is employed to 

compare reducible species in dissolved organic matter (DOM) extracted from a variety of 

aquatic environments. Since ketone/aldehyde-containing species within DOM have been 

demonstrated to heavily influence the optical properties and photochemistry of these 

materials, the characterization of this subset of compounds would be of great use to better 

understand the relationship between the structure and composition of  DOM and many 

bulk physicochemical properties such as the absorption and emission of ultraviolet and 

visible light by these materials.3,19–21,37,38,111  

 Throughout the literature, there have been many studies which employ ultrahigh 

resolution electrospray ionization (ESI) Fourier transform ion cyclotron resonance (FT-

ICR) mass spectrometry to achieve similar objectives.9,47,79,82,83,112,113 That is, to 

extensively characterize and compare the composition of DOM collected from a suite of 

geographic locations based on the molecular formulae that are assigned to the many 

species observed by ESI FT-ICR mass spectrometry.  
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 Many of the same analysis techniques that were used in those previous studies to 

compare the compositional information are utilized here. In addition to these analyses, 

the newly developed mass labeling method is demonstrated to be a relatively easy 

method to employ in the routine mass spectrometric characterization of DOM, which can 

be used to gain additional molecular level details that would not otherwise be observed. 

As done in many other studies involving the characterization of DOM, Suwannee River 

fulvic acid (SRFA) is used as a standard with which to compare all other samples and to 

validate the analytical methodology being used. However, while SRFA is heavily 

influenced by the vast amount of decaying vegetation that is found within the 

environment of the blackwater Suwannee River, many of the samples in this study were 

extracted from remote marine samples whose compositions may be substantially different 

from that of SRFA.  

Recently, Pony Lake fulvic acid (PLFA), another DOM reference standard, has 

been characterized using ESI FT-ICR mass spectrometry.30 While SRFA comprises 

primarily terrestrially-derived material, PLFA is believed to comprise primarily (in situ) 

microbially-produced material, owing to its origin in a eutrophic, saline coastal pond in 

Antarctica which is devoid of high order plants.114 Since the origin of DOM in marine 

environments is still relatively poorly understood, using SRFA and PLFA as terrestrial 

and microbial end-members, respectively, may be useful for drawing conclusions 

regarding the origins of such samples. However, PLFA may not be ideal for detailed 

comparisons, since the microbes that are thought to be responsible for the production of 

PLFA (primarily Chlamydomonas intermedia115) are drastically different than those 



 

 85 

which are found in oceanic environments. However, the general types of compounds that 

are produced by microbial sources may share similar compositional traits. 

 The overall goal of the work described in this chapter is two-fold. First, the 

ketone/aldehyde identification method developed in the two previous chapters is applied 

to the ultrahigh resolution ESI mass spectra of DOM samples collected from diverse 

aquatic environments in an attempt to better understand the composition and location of 

ketone/aldehyde-containing species within DOM. Secondly, the usefulness of SRFA and 

PLFA as riverine- and in situ-produced end-members is tested.  

 

5.2. Materials and Methods 

Reagents, and materials. Sodium borodeuteride (NaBD4; 98% D, 90% purity), 

hydrochloric acid (HCl, trace select) and sodium hydroxide (NaOH) was purchased from 

Sigma Aldrich. Water was obtained from a Milli-Q Academic water purification system 

(Millipore). LC grade methanol (MeOH) was purchased from Fisher, and potassium 

phosphate monobasic and dibasic (KH2PO4 and K2HPO4, respectively) was purchased 

from Baker. Bond Elut PPL solid phase extraction (SPE) cartridges (100 mg 

functionalized polystyrene-divinylbenzene solid phase; part #12105004) were purchased 

from Agilent. 

DOM sample collection and predicted compositional relationships. Suwannee 

River fulvic acid (SRFA; catalog number: 2S101H) and Pony Lake fulvic acid (PLFA; 

catalog number: 1R109F) were purchased from the International Humic Substances 

Society. C18 extracts from the Lower Delaware Bay (DELB), Delaware River (DERV), 

Congo River Plume (EACR), equatorial Atlantic Ocean (EAUW) and northern Atlantic 
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Ocean at 0 m (EASO) and 1000 m depths (EADO) were collected on two separate cruises 

(see Appendix 7 for locations and extraction protocol). For this study, the relative 

contributions of terrestrial and in situ sources to all samples were approximately 

predicted based on the proximity of each sample collection location to a possible 

terrestrial source (e.g. riverine outputs), and SRFA and PLFA were assumed to have the 

largest relative contributions by terrestrial and in situ sources, respectively. Thus, the 

order in which samples were considered most terrestrially-produced to most in situ-

produced were predicted to be as follows: SRFA, DERV, DELB, EACR, EAUW, EASO, 

EADO, PLFA.  

Sample preparation. Working stocks of DERV and DELB (Delaware Bay 

extracts) were prepared by thawing the concentrated extracts (originally at pH 7), diluting 

them with Milli-Q water and adjusting to pH 10 with an aqueous solution of NaOH to 

roughly match the absorbance at 350 nm to that of of a 100 mg/L SRFA solution at pH 

10. Additionally, a 0.10 mg/mL stock of PLFA was prepared by dissolving solid sample 

in Milli-Q water and adjusting the pH to 10 with NaOH while stirring. The stocks were 

then divided into two (15.0 mL) aliquots in 20 mL glass vials. Approximately 75 mg of 

solid NaBD4 was added to one aliquot of each sample. All vials were loosely capped and 

placed in the dark at room temperature for 24 h. 6 M HCl was added to a final pH of 2.0 

± 0.1 (to decompose any residual NaBD4) and all aliquots were stored in the dark for an 

additional 3 h. Untreated (UNT) and borodeuteride-reduced (BDR) aliquots of SRFA 

were prepared as described in Chapter 4. 
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A similar process for EACR, EAUW, EADO, and EASO (Equatorial Atlantic 

extracts) was carried out as follows. Working stocks of all four samples were prepared by 

thawing concentrated C18 extracts (originally at pH 7) diluting them by a factor of about 

1:10 to 1:25 with Milli-Q water, and adjusting them to pH 10 with NaOH. These stocks 

were divided into two (12 mL) aliquots in 20 mL glass vials and approximately 20 mg of 

solid NaBD4 was added to one aliquot of each stock. All vials were loosely capped and 

placed in the dark at room temperature for 24 h. 6 M HCl was added to a final pH of 2.0 

± 0.1 and all aliquots were stored in the dark for an additional 24 h. 

 SPE cartridges were preconditioned with 3 mL MeOH, and 3 mL of 10 mM HCl 

(pH 2). 9.0 mL of the pH 2 aliquot was then loaded on the SPE cartridge and allowed to 

elute by gravity (about 3 min). The eluate from this process was clear, showing 

qualitatively that the colored material was retained by the solid phase. The cartridge was 

rinsed with an additional 3 mL of 10 mM HCl and dried using a steady flow of nitrogen 

(~10 mins). The colored, (borate-free) material was eluted using 1.5 mL MeOH into a 1.5 

mL LC vial, which was capped and then stored in 0˚ C until mass spectrometric analysis.  

  Mass spectrometric data acquisition and pre-processing. Ultrahigh resolution 

mass spectra of all samples were obtained using a Bruker Apex QE 12 T FT-ICR mass 

spectrometer at the Helmholtz Center for Environmental Science (Munich, Germany). An 

Apollo II electrospray ionization (ESI) source was operated in negative ion mode (see 

previous chapter for experimental details). Mass spectra for SRFA, EACR, EAUW, 

EASO, and EADO were acquired by Dr. Mourad Harir, and mass spectra for PLFA, 

DELB, and DERV were acquired by Dr. Michael Gonsior. Both batches of samples had 

an associated extraction blank. An average resolution of >500,000 was obtained for all 
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spectra. For each spectrum, lists of m/z and intensities of peaks whose signal-to-noise 

ratio (S/N) was greater than 10 were generated and internally calibrated, doubly and 

triply-charged species as well as peaks which were present in high abundance in the 

associated extraction blanks were removed (see Chapter 4 for instrumental details and 

Appendix 1 for calibrant and blank subtraction details).  

In the raw mass lists of DERV and DELB, there was a very high intensity peak 

observed at 495.3034 m/z, which was also observed in the extraction blank. However, the 

difference between the measured mass in the DERV and DELB samples and in the 

extraction blank was 0.24 ppm – slightly above the 0.2 ppm error limit that was used for 

all analyses in the previous chapter. Therefore, the error threshold used for this study was 

set to 0.3 ppm to allow for the subtraction of this problematic peak.  

 Molecular formula assignment and identification of ketone/aldehyde-

containing species. Molecular formula assignment of peaks in the untreated samples 

(UNT) was accomplished using the same custom MATLAB function described in 

Chapter 4. The molecular formula assignment algorithm was based on the “low-mass 

moiety” approach described by Perdue and Green103,104, and allowed up to 2 N and 1 S to 

be included in the calculated molecular formulae. Next, the mass spectrum of the 

corresponding BDR sample was searched for peaks at m+3.021927 and m+6.043854 

masses, thereby identifying peaks (at mass m) in UNT as comprising non-, singly-, and/or 

doubly-reduced species. As a control, the mass spectrum of the UNT sample itself was 

searched for these mass markers. All above analyses were carried out with a 0.3 ppm 

error tolerance.  
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5.3. Results and Discussion 

Comparison of mass spectrometric peak distributions. The ultrahigh 

resolution, negative ion ESI mass spectra of all samples contained between 7500 and 

10,000 resolved peaks within the full scanned (50 – 2000) m/z range (Figure 5.1 and 

Table 5.1). With the exception of PLFA, reduction with borodeuteride resulted in an 

increase in the number of peaks observed in the full-scan mass spectrum. This increase 

arises from the generation of deuterium (D)-containing species that can be differentiated 

from all other species in the mass spectrum. In most cases, only a slight concomitant loss 

of the peaks corresponding to the precursors of these reduced species are observed, since 

all mass spectral peaks likely comprise many isomeric species which do not contain any 

reducible species. Conversely, there was a considerably greater number of peaks in the 

untreated PLFA sample than in any other sample. Also, the total ion count (TIC) for this 

sample was substantially less than all other samples, suggesting that the majority of peaks 

in PLFA have low relative intensities. In this case, if a peak in the untreated sample 

partially comprised reducible species and was of very low intensity, then the peak 

intensity would probably fall below S/N cutoff following reduction, and would therefore 

not be observed in the mass spectrum of the borodeuteride-reduced sample. Similarly, the 

intensity of the resulting m+3.021927 and/or m+6.043854) peak(s) may also not be 

sufficiently above the noise level and, ultimately, a net loss in the number of peaks would 

be observed. 
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Figure 5.1. Full scan negative ion 12 T FT-ICR mass spectra for all samples included in 
this study. Purple triangles indicate the base peak in spectra with rescaled relative 
intensity axes (249.03222 m/z in EAUW and EADO; 209.00919 m/z in EASO-UNT). 
Blue circles indicate secondary peaks that were also off-scale. All spectra exclude peaks 
which were doubly or triply charged, were present in the corresponding blank spectrum at 
high intensity, and/or had S/N < 10. No peaks with m/z > 800 or m/z < 100 were observed 
in any sample. 
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Table 5.1. Mass spectral peak distribution of all samples in the full (50 – 2000) and 
analyzed (250 – 550) m/z ranges. 
 

sample [NaBD4]a 
peaks TICb (x1011) 

AMWN
c AMWW

d 

full analyzed full analyzed 

SRFA-UNT 0 8303 5353 2.82 2.40 408.4 436.9 

SRFA-BDR 2.35 8974 6708 2.33 2.07 386.5 409.1 

DERV-UNT 0 9286 6371 0.874 0.730 459.0 477.3 

DERV-BDR 5.24 9675 8086 0.557 0.510 435.0 449.2 

DELB-UNT 0 9710 7039 0.919 0.802 447.1 464.2 

DELB-BDR 4.82 9923 8516 0.691 0.648 431.6 444.5 

EACR-UNT 0 8431 5928 3.10 2.82 410.8 430.4 

EACR-BDR 2.41 9452 7534 3.06 2.87 410.0 425.9 

EAUW-UNT 0 8397 5216 5.38 4.89 436.8 453.0 

EAUW-BDR 2.28 8048 6103 3.52 3.26 420.7 435.9 

EADO-UNT 0 7505 4891 3.41 2.98 420.2 441.9 

EADO-BDR 2.33 7858 5940 3.29 2.94 419.4 437.6 

EASO-UNT 0 7213 5545 2.09 1.43 301.7 323.5 

EASO-BDR 2.49 8030 6309 2.69 2.52 418.0 433.3 

PLFA-UNT 0 9563 7715 0.660 0.605 418.4 434.8 

PLFA-BDR 4.81 8917 7892 0.407 0.385 403.8 418.1 

 

a concentration in mg/mL; b total ion count; c number and d weight averaged molecular 

weight (see Appendix 9, section A9.9 for calculations). 

 

Two other phenomena that were observed in all samples except for EASO were 

decreases in both TIC and average molecular weight following borodeuteride reduction. 

The loss of TIC for all samples ranged from 1.3% to 38% of the TIC of the untreated 

samples (for EACR and PLFA, respectively). In contrast, the TIC and average molecular 

weight for EASO both increased substantially following reduction. While low m/z 

distributions has been observed by others in DOM samples that have been extensively 
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photodegraded5,93 (as surface marine samples are expected to be), a similarly low m/z 

distribution is not observed for the corresponding borodeuteride reduced sample. In fact, 

the reduced sample displayed a distribution of peaks very similar to those of all other 

samples used in this study. Such a dramatic shift following reduction is very unlikely, and 

this extreme observation calls into question the spectral quality of the EASO samples, 

especially since the ion optics of the FT-ICR instrument was optimized to give a 

maximum signal in the 300 – 400 m/z region. Therefore, EASO was excluded in all 

further analyses. Since there were very few peaks below 150 m/z for all samples, and 

since molecular formulae assignments typically become less definitive at higher m/z, the 

250 – 550 m/z range was chosen for all subsequent analysis. This m/z region contained an 

average of 75% of all peaks and 90% of the total ion count (TIC) in the measured mass 

spectra (Table 5.1).  

Comparison of molecular formula assignments. Molecular formulae were 

assigned to 67 ± 4% (average ± standard deviation) of all peaks detected in the mass 

spectra of samples. Although this percentage is lower than previous studies,9,83 the 

average percentage of the total ion count (TIC) that was assigned was 84 ± 4%, indicating 

that most unassigned peaks were of low relative intensity (Table 5.2). The majority 

(72.1%) of formulae identified in SRFA contained only C, H, and O atoms, whereas this 

percentage was substantially lower for PLFA (58.7%) and all other DOM extracts (53.5 ± 

6.2%), indicating that there were substantially fewer heteroatom-containing species in 

SRFA than in all other samples. This difference between the two fulvic acid standards 

has been observed by D’Andrilli et al.,30 who identified 84.5% and  25.9% of all formula 

as containing only C, H, and O for SRFA and PLFA, respectively. The significant 



 

 93 

differences between the composition of the fulvic acid standards reported here and the 

previous study by D’Andrilli et al. are likely due to slight differences in the detection of 

low intensity peaks (see Appendix 8), and thus do not necessarily indicate a major 

discrepancy between the analyses in the two studies. 

 

Table 5.2. Summary of molecular formulae identified in all untreated samples in the 
250 to 550 m/z range. 

 
 SRFA DERV DELB EACR EAUW EADO PLFA 

num. formulae 3329 4528 5219 4152 3364 3265 5039 

% peaks a 62.2 71.1 74.1 70.0 64.5 66.8 65.3 

% TIC a 89.4 79.7 83.4 85.2 82.9 85.3 78.8 

% CHO 72.1 58.9 44.7 59.7 53.1 51.0 58.7 

% CHON 20.6 22.9 22.7 29.2 33.2 31.4 35.0 

% CHONS 1.9 0.5 5.3 0.6 1.9 2.0 0.8 

% CHOS 5.4 17.7 27.3 10.6 11.8 15.6 5.4 

% C mass 
b 55.3 57.0 56.1 57.3 57.0 57.2 56.5 

% H mass 
b 5.1 5.7 6.0 6.0 6.2 6.2 6.4 

% O mass 
b 39.3 36.3 35.9 36.0 36.0 35.7 33.8 

% N mass 
b 0.2 0.33 0.47 0.44 0.44 0.45 1.52 

% S mass 
b 0.1 0.69 1.55 0.34 0.37 0.50 1.77 

H/C avg.
b

 1.091 1.188 1.276 1.238 1.287 1.292 1.338 

O/C avg.
 b 0.542 0.487 0.487 0.475 0.478 0.471 0.459 

N/C avg. 
b 0.003 0.005 0.008 0.007 0.007 0.007 0.025 

DBE avg.
 b

 9.52 9.43 8.39 8.45 8.34 8.26 7.64 

AI avg.
 b 0.073 0.063 0.039 0.055 0.022 0.026 0.035 

error (ppm) c
 0.102 0.107 0.112 0.105 0.127 0.116 0.116 

 

a  percentage of peaks in range to which a formula was assigned; b relative intensity 

weighted; c root mean square error.  
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The intensity-weighted average H/C and O/C molar ratios, aromaticity index 

(AIavg; calculated as described by Koch et al.,116 see Appendix 9, Section A9.9), and 

double-bond equivalent (DBEavg) were calculated for all DOM samples. While H/Cavg 

generally increased with increasing distance from terrestrial sources, O/Cavg and DBEavg 

generally decreased. These trends suggest that, in general, there were more aliphatic 

species present in marine DOM than in riverine DOM. One possible interpretation is that 

riverine DOM contains primarily lignin/tannin-derived material, while marine DOM 

contains species such as carboxyl-rich alicyclic molecules (CRAM) and other sterol-

derived materials, which would have formulae with slightly higher H/C and lower O/C 

molar ratios. In addition to these trends, AIavg generally decreased from riverine to 

marine-like DOM samples with two notable irregularities. First, AIavg for DELB was 

substantially lower than expected. This may suggest that a unique source of aliphatic 

material is partially responsible for the DOM within the Lower Delaware Bay, perhaps a 

local microbial or algal source. Second, PLFA had a higher AIavg than what would be 

expected for primarily microbially-produced DOM. Clearly, use of these bulk 

measurements as unequivocal indicators for relative contributions of riverine or marine 

sources to a series of DOM samples would be an oversimplification and more detailed 

analyses are needed. However, the trends with location and H/Cavg, O/Cavg, DBEavg, and 

AIavg can still be useful for general comparisons among DOM samples. 

Comparison of reduced and non-reduced species within samples. Using the 

previously develop algorithms, peaks in each sample to which molecular formulae were 

assigned were identified as comprising species with zero, one, and/or two reducible 

moieties. Figure 5.2A shows the percentage of those peaks which were falsely identified 
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as reduced based on a search for borodeuteride-reduced (m+3.021927 or m+6.043854) 

species in the untreated sample itself (control search), and Figure 5.2B shows those based 

on a search in the corresponding borodeuteride-reduced sample (experimental search). In 

this study, the [NaBD4] used in the reduction of PLFA, DERV, and DELB was about 

twice of [NaBD4] used in the reduction of SRFA, EACR, EAUW, and EADO. However, 

it was demonstrated in the previous chapter that most species with one or more reducible 

groups are reduced at least once under low [NaBD4] while higher [NaBD4] primarily 

induces multiple reductions on the same species. Therefore, while the number of species 

which were identified as containing multiple reducible groups within all samples may not 

be comparable, the total number of identified reducible species is expected to be 

reasonably comparable.  

In the control search, only DELB, EAUW, and PLFA gave an appreciable number 

of peaks falsely identified as comprising reducible species, the majority of which resided 

in the highest (450 – 550) m/z range. The relatively high percentages (1.1% to 4.3%) of 

false assignments in these three samples are most likely due to the large numbers of 

peaks detected in the untreated mass spectra, which would increase the chance that the 

m/z of a peak would coincide (within the employed mass tolerance window) with the 

expected m/z of a reduced (deuterated) species. In the experimental searches, the 

percentage of peaks in the middle and high m/z ranges that were identified as comprising 

ketone/aldehyde-containing species decreased with increasing distance from possible 

terrestrial sources, with PLFA being an exception. This decrease suggests that the 

majority of ketone/aldehyde-containing species are terrestrially derived, which have been 

attributed to the long wavelength absorption and emission of CDOM.3 While this trend is 
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not as clear at the low m/z range for all seven samples, it does hold among the two 

Delaware River extracts and three Equatorial Atlantic extracts. Assuming that terrestrial 

sources are a primary source of ketone/aldehyde-containing species, the high number of 

species identified as such in PLFA is surprising. However, the very low absorption of 

PLFA relative to more terrestrially-influenced ensembles of CDOM114,115 suggests that 

not all of these reducible species contribute significantly or in the same manner to the 

bulk optical properties and thus may different chemically from terrestrially-derived 

ketones/aldehydes. 

 

 

Figure 5.2. Percentage of peaks with assigned molecular formulae in all 7 samples in the 
three m/z ranges identified as comprising at least one reducible species (A: control search, 
B: experimental search). 
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Plots of H/C versus O/C molar ratios of the identified molecular formulae (Van 

Krevelen plots) reveal that the terrestrially-influenced samples (SRFA, DERV, DELB, 

and EACR) were rich in formulae with relatively high O/C (>0.4) and low H/C (<1.0), 

while the more isolated, marine-like samples (EAUW, EADO, and PLFA) were largely 

devoid of such formulae. Similarly, the presence of formulae with similarly high O/C and 

low H/C molar ratios in terrestrial/riverine DOM samples has been reported by others, 

while many marine DOM samples have been shown to lack such formulae.44,85,113,117 It is 

possible, therefore, to expect that a distribution of peaks at in this O/C and H/C region 

can be attributed to tannins and/or oxidized lignin-derived compounds from high-order 

plant source material and can thus serve as a useful marker for terrigenous organic 

material, especially if the mass spectral peaks assigned to such formulae are identified as 

ketone/aldehyde-containing species. However, species identified as “doubly-reduced 

only” are rare in this region. As in the previous chapter, this can be attributed to a high 

degrees of isobaric complexity of peaks in this region and a high degree of chemical 

heterogeneity for those reducible species.  

It should be stressed, that while high O/C (>0.4) and low H/C (<1) may be useful 

as markers for terrestrial plant-derived material, the formulae which occur in the middle 

O/C and H/C molar ratios (e.g. near O/C = 0.5 and H/C = 1.0) is not necessarily 

attributable to lignin species, despite the frequent allocation of these formulae as such by 

others.113,118,119 As noted by these and other researchers, classifying formulae in this Van 

Krevelen region may be misleading, since a very large number of compositional isomers 

are possible for the elemental combinations with middle O/C and H/C ratios, and 
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therefore peaks in this region may be indicative of other classes of compounds such as 

CRAM.67,90  

At low m/z, a wide distribution of H/C and O/C molar ratios were observed for all 

samples. At higher m/z, H/C and O/C distribution becomes more tightly distributed, and 

more dramatic differences are observed among samples. In contrast to the largely 

terrigenous samples, EAUW, EADO, and PLFA contained predominantly formulae with 

high H/C. Some species at low O/C and H/C molar ratios were present in all samples 

except for PLFA, which have been previously attributed to condensed aromatic species 

derived from biochar. There was a large number of species identified as doubly-reduced 

only in PLFA, especially at high m/z. This is unlike the reducible species in the more 

terrigenous samples, which primarily comprised species which were singly-reduced only 

or both singly and doubly-reduced. This apparent difference in isobaric complexity 

and/or chemical heterogeneity supports the presence of a microbially-derived pool of 

ketones/aldehydes within the marine samples.  
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Figure 5.3. Van Krevelen plots of all formulae identified in all mass spectra within three 
m/z ranges (grey: non-reduced; red: singly-reduced only; green: doubly- and singly-
reduced; blue/purple: doubly-reduced only). 
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Commonality among samples. In order for SRFA and PLFA to be suitable end-

members for riverine and in situ sources, respectively, DOM samples collected near 

riverine outputs should have many compounds (or molecular formulae) in common with 

SRFA, while those collected in more isolated marine environments should have more 

compounds in common with PLFA than with SRFA. Depicted in Figure 5.4A are the 

percentages of formulae identified in each of the eight samples that were also identified 

in SRFA (red solid lines/points) and PLFA (blue dashed lines/points).  

 EACR had a slightly greater percentage of formulae (65%) in common with 

SRFA than both Delaware River/Bay extracts. Perhaps more surprisingly, the two remote 

oceanic samples (EAUW and EADO) had higher percentages of formulae in common 

with SRFA than DELB! These observations are further evidence of a secondary source of 

DOM within the Delaware River/Bay samples, especially for DELB. Also, the 

similarities and differences among SRFA, EACR, and the two Delaware River/Bay 

samples may to be related to watershed characteristics. That is, while the Delaware River 

traverses through hardwood forest regions with significant industrial, agricultural, and 

commercial developments, the Suwannee River and Congo River watersheds reside 

within tropical climates and are characterized by an abundance of mangrove swamps with 

little or no anthropogenic influences.  

The percentage of formulae in each sample that was also identified in PLFA 

increased monotonically as the proximity of the sample collection locations to riverine 

sources decreased. In fact, 78.5% of formulae identified in EADO was also within PLFA, 

which represented the greatest degree of similarity between all samples in this study and 

the fulvic acid end-members. This high commonality is similar to the peak 
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reproducibility of replicate measurements of a single DOM sample reported 

elsewhere.43,58,82,91 Although PLFA was extracted from a eutrophic coastal pond which is 

considerably different from oceanic environments, the aforementioned observations 

suggests that PLFA may be useful for estimations of the relative amounts of in situ-

produced material in the ultrahigh resolution mass spectra of a suite of DOM samples. 

 

 

Figure 5.4. Percentage of formulae identified in each sample which were also identified 
in SRFA and PLFA. A: all formulae, B: formulae identified as peaks comprising 
reducible species. In parenthesis are the total numbers of formulae in each sample within 
the studied 250 – 550 m/z  range. 
 

 

The 37.1% of formulae in PLFA that was also found in SRFA was the lowest 

observed similarity. This small but significant commonality between the two fulvic acid 

end-members suggests that there may exist a subset of formulae that are likely to be 

present in nearly all similarly complex mixtures of organic compounds that would be 

detected by ESI mass spectrometry. Likewise, a set of stable combinations of elements 

and molecular masses was observed in many marine DOM samples by Lechtenfeld and 
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coworkers, and were thus referred to as an “island of stability.”120,121 Indeed, Hertkorn et 

al.52 have explained that since complex samples such as DOM typically comprise a large 

portion of the total possible formula compositional space (i.e., all chemically relevant 

combinations of C, H, and O), signal overlap by dissimilar DOM samples is likely. As a 

consequence, rigorous comparisons between the ESI mass spectra of several DOM 

samples is likely to be insufficient for revealing detailed structural differences. As a 

result, DOM samples are likely to appear more similar to one another by such 

comparisons than they are in reality.  

Depicted in Figure 5.4B are the percentages of formulae identified as reducible 

species in each sample that were also identified as such in SRFA and/or PLFA. These 

plots were similar to that which considered all formulae (Figure 5.4A) with some notable 

differences. First, the percentage of reducible compounds in common with PLFA 

increased more sharply with proximity to riverine outputs than did the percentage of all 

compounds. Second, the percentage of reducible compounds in EACR that were also 

identified as such in PLFA was lower than expected, based on the observed trend. 

Finally, the percentage of reducible species in common with SRFA was relatively 

constant for all three Equatorial Atlantic samples. It is appears that the reducible 

compounds within SRFA and PLFA can act as end-members for the reducible species in 

this series of DOM compounds. Therefore, it is reasonable to assume that there is are two 

terrestrially-derived and microbially-produced pools of reducible species. As 

demonstrated here, this mass labeling method offers a relatively easy way to gain detailed 

structural information by ultrahigh resolution ESI mass spectrometry, and can thus be 

helpful in distinguishing among sets of DOM samples that have extensive signal overlap 
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within their unaltered mass spectra. It is important, however, that replicate measurements 

be taken in studies such as these in order to assess the uncertainty in all analyses prior to 

drawing conclusions regarding the compositional changes that occur among DOM 

samples.  

 

5.4. Conclusions 

 In this study, ketone/aldehyde-containing species within eight DOM extracts were 

identified and characterized via mass labeling by sodium borodeuteride and analysis by 

ultrahigh resolution ESI FT-ICR mass spectrometry. The results suggest that many 

ketone/aldehyde-containing species were riverine derived lignin/tannin-like compounds 

in most samples, but also that a second pool of more unsaturated and less oxygenated 

ketones/aldehydes are produced from microbial sources. This compositional relationship 

between riverine and marine DOM is apparent for the mass labeled (reduced) species, but 

less so for the entire ensemble of compounds identified solely by molecular formula 

assignment. This demonstrates that the mass labeling method reveals compositional 

details that would be not otherwise observed by considering only the ensemble molecular 

formulae identified via ESI FT-ICR mass spectrometry. 

 An important distinction to make between the two pools of ketone/aldehyde-

containing species is that reduction of the terrestrially-produced pool has been known to 

result in substantial changes in the bulk optical properties due to disruption of inter/intra-

molecular charge transfer interactions, whereas reduction of ketones/aldehydes within 

microbially-produced species would not (see discussion in Chapter 3). Future 

comparisons of the changes in optical properties that occur under borohydride reduction 
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of CDOM from riverine and oceanic samples would therefore prove very useful to test 

this hypothesis. It is expected that the use of other bulk methods of structural analyses 

such as infrared spectroscopy and/or nuclear magnetic resonance, combined with optical 

methods as well as this mass labeling method, can be of further use to confirm the 

relative presence of these two major pools of ketone/aldehyde-containing species within 

CDOM.   
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Chapter 6: Conclusions and Future Work 

 

Summary of the method. This dissertation describes the development and 

application of a novel method to mass label ketone and aldehyde-containing compounds 

in various ensembles of natural dissolved organic matter (DOM). In this technique, 

permanently reducible moieties are reduced by sodium borodeuteride (NaBD4) and 

purified via solid phase extraction. Untreated and reduced aliquots of the sample of 

interest are then analyzed via ultrahigh resolution electrospray ionization mass 

spectrometry. Peaks in the mass spectrum of the untreated sample to which molecular 

formulae are assigned are identified by searching the mass spectrum of the borodeuteride-

reduced sample for peaks which are 3.0219 and/or 6.0438 m/z higher, which corresponds 

to singly and doubly reduced derivatives, respectively. This data analysis and 

interpretation has been automated via custom MATLAB function code provided in the 

appendices of this dissertation. This code was written with the intention of allowing other 

researchers to readily apply this mass labeling method in future work involving the 

characterization of natural DOM. 

Future work. Implementation of this technique is intended for a current project 

involving the molecular characterization and comparison of DOM extracts collected from 

the Southern Pacific Ocean. In this project, this mass labeling method will be used to 

compare the structure and composition of ketone/aldehyde-containing species within 

DOM which reside at various depths. Moreover, attempts can be made to semi-

quantitatively link the presence of ketone/aldehyde-containing species detected by this 

method to the bulk optical properties of these materials. 
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 Although the development of this analytical methodology was done using 

electrospray ionization (ESI) exclusively, this mass labeling method can be combined 

with other soft ionization methods such as atmospheric chemical ionization and 

atmospheric pressure photoionization, which have been used by some researchers to 

provide additional information by ionizing species which are not as readily ionized by 

electrospray ionization. Such work would be expected to offer even further insight into 

the structure and composition of ketone and aldehyde-containing species within DOM.  

 Perhaps the most unresolved phenomenon that was observed many times in these 

initial studies is the effect of the ionization efficiency of compounds following 

borodeuteride reduction. During these experiments, it was observed that the mass 

spectrum of the reduced samples had substantially lower signal intensities than that of the 

corresponding untreated sample. It may be possible to investigate this phenomenon by 

comparing the relative ionization efficiencies of a suite of untreated and borodeuteride-

reduced model compounds. Efforts to investigate this phenomenon could possibly be 

accomplished by comparing the instrumental response of individual model compounds to 

that of a standard reference compound, similar to the work done by Lieto et al.122,123  

Furthermore, it is possible to adapt the identification algorithms developed here to give 

semi-quantitative information about the degree of reduction, rather than discrete 

assignments of reduced species, in a method similar to what has been done for deuterium 

labeling of acidic species in DOM,89 thus allowing for an approximation of the 

abundance of irreversibly reducible species relative to that of the non reducible species 

which comprise a single mass spectral peak.  
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In summary, it is expected that this mass labeling method will be of great use for 

future efforts involving the characterization of DOM, especially when a multi-

instrumental approach is used.124–126 Specifically, the identification and analysis of the 

ketone and aldehyde-containing species DOM which is demonstrated here should be able 

to provide a more detailed view of how they contribute to the optical properties and 

photochemical reactivity of these ensembles.  
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Appendix 1: Internal calibrants and extraction blanks 

 

Table A1.1. m/z and corresponding molecular formula (of [M-H]- ions) used for 
post-acquisition calibration of the 7 T ESI FT-ICR mass spectra (calibration 
performed by Dr. Krista Longnecker, Woods Hole Oceanographic Institution). 
 

m/z molecular formula 

337.1657 C18H25O6 

393.1555 C20H25O8 

407.1711 C21H27O8 

421.1868 C22H31O8 

435.2024 C24H33O8 

463.2337 C25H35O8 

477.2494 C26H37O8 

491.2650 C27H39O8 

505.2807 C28H41O8 

609.2189 C29H37O14 
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Table A1.2. m/z and corresponding molecular formula (of [M-H]- ions) used for 
post-acquisition calibration of the 12 T ESI FT-ICR mass spectra (calibration 
performed by Dr. Michael Gonsior, University of Maryland Center for 
Environmental Sciences). 
 

m/z molecular formula 
201.0404617 C8 H9 O6 
225.0040764 C9 H5 O7 
251.0197264 C11 H7 O7 
275.0561117 C14 H11 O6 
301.0353764 C15 H9 O7 
325.0928910 C15 H17 O8 
351.1085410 C17 H19 O8 
375.0721556 C18 H15 O9 
401.0514202 C19 H13 O10 
425.1089348 C19 H21 O11 
451.1245848 C21 H23 O11 
475.0881995 C22 H19 O12 
501.0674641 C23 H17 O13 
525.0674641 C25 H17 O13 
551.0831141 C27 H19 O13 
575.1042433 C26 H23 O15 
601.0835080 C27 H21 O16 
625.0835080 C29 H21 O16 
651.0991580 C31 H23 O16 
675.0991580 C33 H23 O16 
701.0995518 C31 H25 O19 
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Figure A1.1. Negative ion ESI FT-ICR mass spectrum of the extraction blank associated 
with SRFA, EACR, EAUW, EADO, and EASO. Asterisks (*) denote m/z values which 
were excluded from sample peak lists. 
 

Table A1.3. m/z and tentative assignments of peaks present in the extraction blank 
shown in Figure A1.1 which were removed from the mass spectra of SRFA, EACR, 
EAUW, EADO, and EASO (untreated and reduced). 
 

m/z assignment  m/z assignment 
250.14489 unknown 1 (monoisotopic) 297.15301 sulfonate 1 (monoisotopic) 
251.14825 unknown 1 (+13C-12C) 298.15637 sulfonate 1 (+13C-12C) 
260.78697 chloride adduct 1a  299.14881 sulfonate 1 (+34S-32S) 
262.78401 chloride adduct 1b  311.16866 sulfonate 2 (monoisotopic) 
264.78106 chloride adduct 1c  312.17202 sulfonate 2 (+13C-12C) 
265.14792 unknown 2 (monoisotopic)  313.16446 sulfonate 2 (+34S-32S) 
266.15128 unknown 2 (+13C-12C) 325.18431 sulfonate 3 (monoisotopic) 
266.80391 chloride adduct 2a 326.18767 sulfonate 3 (+13C-12C) 
268.80096 chloride adduct 2b 327.18011 sulfonate 3 (+34S-32S) 
270.79801 chloride adduct 2c 339.19997 sulfonate 4 (monoisotopic) 
272.79506 chloride adduct 2d 340.20333 sulfonate 4 (+13C-12C) 
293.17922 unknown 3 (monoisotopic) 341.19577 sulfonate 4 (+34S-32S) 
294.18258 unknown 3 (+13C-12C) 421.14288 unknown 4 (monoisotopic) 

  422.14624 unknown 4 (+13C-12C) 



 

 111 

 
 

 

Figure A1.2. Negative ion ESI FT-ICR mass spectrum of the extraction blank associated 
with PLFA, DELB, and DERV.  
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Table A1.4. m/z and tentative assignments of peaks present in the extraction blank 
shown in Figure A1.2 which were removed from the mass spectra of PLFA, DELB, 
and DERV (untreated and reduced). 
 

m/z assignment  m/z assignment 
260.78686 Cl adduct 1a 422.14555 unknown cluster 1b 
262.78390 Cl adduct 1b 422.66936 unknown cluster 1c 
264.78096 Cl adduct 1c 423.13924 unknown cluster 1d 
265.14782 unknown 1 424.66733 unknown cluster 1e 
266.15118 unknown 1 (+13C-12C) 426.66528 unknown cluster 1f 
266.80381 chloride adduct 2a 428.66323 unknown cluster 1g 
268.80086 chloride adduct 2b 495.30340 unknown cluster 2a 
270.79790 chloride adduct 2c 496.30675 unknown cluster 2b 
272.79497 chloride adduct 2d 496.61539 unknown cluster 2c 
291.20956 unknown 2 497.30046 unknown cluster 2d 
293.17913 unknown 3 498.30381 unknown cluster 2e 
294.18249 unknown 3 (+13C-12C) 498.61248 unknown cluster 2f 
297.15292 sulfonate 1 500.63527 unknown cluster 2g 
298.15628 sulfonate 1 (+13C-12C) 502.63234 unknown cluster 2h 
299.14872 sulfonate 1 (+34S-32S) 504.59342 unknown cluster 2i 
311.16856 sulfonate 2 565.36978 unknown cluster 3a 
312.17192 sulfonate 2 (+13C-12C) 566.37314 unknown cluster 3b 
313.16436 sulfonate 2 (+34S-32S) 567.36688 unknown cluster 3c 
319.09531 unknown 4 659.05664 unknown cluster 4a 
325.18421 sulfonate 3 660.05622 unknown cluster 4b 
326.18757 sulfonate 3 (+13C-12C) 660.05994 unknown cluster 4c 
327.18001 sulfonate 3 (+34S-32S) 661.05362 unknown cluster 4d 
339.19984 sulfonate 4 662.05309 unknown cluster 4e 
340.20320 sulfonate 4 (+13C-12C) 662.05309 unknown cluster 4f 
421.14220 unknown cluster 1a   
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Appendix 2: Full scan negative ion mass spectra 

 

 

 

Figure A2.1. Negative ion 7 T ESI FT-ICR mass spectra of (A) SRFA UNT replicate 2, 
DEUB (B) UNT, (C) BHR, and (D) BDR.  
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Table A2.1. Number of peaks and tota ion count (TIC) of the full scanned range 
(200 – 1000 m/z) and the analyzed range (200 – 600 m/z shaded rows) for all 7 T ESI 
FT-ICR mass spectra. 

 
 

 

sample peaks TIC ( x 10 5) 

SRFA-UNT-1 
3245 11.6 

2707 10.3 

SRFA-UNT-2 
2872 17.6 

2361 15.6 

SRFA-BHR 
2622 14.1 

2164 12.4 

SRFA-BDR 
2036 6.84 

1994 6.73 

DEUB-UNT 
4378 25.0 

3407 21.9 

DEUB-BHR 
4437 18.0 

3421 15.6 

DEUB-BDR 
2242 9.45 

2194 9.30 
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Figure A2.2. 12 T ESI FT-ICR mass spectra of SRFA UNT and BDR-1 though BDR-5. 
All spectra depicted exclude peaks which were doubly or triply charged, were present in 
the blank spectrum at high intensity, and/or had S/N < 10. No peaks with m/z > 800 were 
observed in any sample. 
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Appendix 3: Peak and molecular formula lists of UNT SRFA at 

selected nominal masses (for Chapter 3) 

 

 

Table A3.1. List of peaks, relative intensities, and molecular formulae at 467 m/z in 
the 7 T ESI FT-ICR mass spectra of SRFA (highlighted: Peaks A – E in Figure 3.4). 
 

 

 

 

 

 

 

 

relative intensity molecular formula 
m/z UNT-1 BHR BDR UNT-2 12C 13C H O error (ppm) 

467.01035 11.4 0.0 0.0 10.3 18 0 12 15 0.004 
467.01791 7.6 0.0 0.0 7.3 - - - - - 
467.02557 10.6 0.0 0.0 11.9 22 0 12 12 0.065 
467.03619 13.7 10.1 0.0 14.1 - - - - - 
467.04675 52.0 48.7 36.1 59.3 19 0 16 14 0.026 
467.05436 14.1 0.0 0.0 11.1 - - - - - 
467.06196 17.2 0.0 0.0 13.7 23 0 16 11 0.055 
467.08004 0.0 0.0 40.5 0.0 - - - - - 
467.08067 6.0 0.0 0.0 0.0 - - - - - 
467.08311 57.1 80.9 41.0 64.7 20 0 20 13 0.015 
467.09073 8.9 0.0 0.0 0.0 - - - - - 
467.09831 8.9 0.0 0.0 11.1 24 0 20 10 0.137 
467.11646 0.0 0.0 38.8 0.0 - - - - - 
467.11949 80.4 82.1 44.9 82.4 21 0 24 12 0.029 
467.13474 6.9 0.0 0.0 8.0 25 0 24 9 0.035 
467.14984 0.0 0.0 19.1 0.0 29 0 24 6 0.378 
467.15275 0.0 0.0 30.7 0.0 - - - - - 
467.15588 98.3 97.9 57.5 96.4 22 0 28 11 0.030 
467.17115 0.0 0.0 0.0 7.7 26 0 28 8 0.006 
467.18630 0.0 0.0 18.1 0.0 30 0 28 5 0.212 
467.18919 0.0 0.0 38.3 0.0 - - - - - 
467.19227 45.2 79.1 28.0 41.9 23 0 32 10 0.014 
467.22557 0.0 0.0 28.2 0.0 - - - - - 
467.22865 10.2 39.5 0.0 9.2 24 0 36 9 0.027 
467.26501 0.0 9.6 0.0 0.0 25 0 40 8 0.067 
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Table A3.2. List of peaks, relative intensities, and molecular formulae at 469 m/z in 
the 7 T ESI FT-ICR mass spectra of SRFA (highlighted: Peaks A’ – E’ in Figure 
3.4). 
 

 

 

 
 

 

 

 

 

 

 

relative intensity molecular formula 
m/z UNT-1 BHR BDR UNT-2 12C 13C H O error (ppm) 

469.00484 6.5 0.0 0.0 10.1 21 0 10 13 0.054 
469.02602 20.2 15.7 0.0 22.3 18 0 14 15 0.044 
469.03366 8.7 0.0 0.0 10.5 - - - - - 
469.04126 23.3 12.3 0.0 28.7 22 0 14 12 0.005 
469.05176 15.3 11.4 0.0 8.9 - - - - - 
469.06239 49.5 52.8 29.9 54.2 19 0 18 14 0.021 
469.07006 7.9 11.9 0.0 7.4 - - - - - 
469.07765 21.0 11.6 0.0 22.3 23 0 18 11 0.015 
469.08820 0.0 10.3 0.0 0.0 - - - - - 
469.09572 0.0 0.0 42.6 0.0 - - - - - 
469.09877 59.8 83.2 33.2 55.9 20 0 22 13 0.007 
469.11404 15.8 9.4 0.0 18.3 24 0 22 10 0.028 
469.12914 0.0 0.0 24.3 0.0 28 0 22 7 0.303 
469.13207 0.0 0.0 37.1 0.0 - - - - - 
469.13517 73.7 90.8 51.8 76.9 21 0 26 12 0.034 
469.15042 15.0 0.0 0.0 13.2 25 0 26 9 0.030 
469.16551 0.0 0.0 19.0 0.0 29 0 26 6 0.317 
469.16846 0.0 0.0 45.3 0.0 - - - - - 
469.17156 62.0 99.9 33.6 54.1 22 0 30 11 0.040 
469.18680 12.1 0.0 0.0 8.9 26 0 30 8 0.006 
469.20188 0.0 0.0 20.5 0.0 30 0 30 5 0.365 
469.20489 0.0 0.0 49.8 0.0 - - - - - 
469.20794 15.4 71.7 0.0 13.9 23 0 34 10 0.042 
469.24123 0.0 0.0 27.2 0.0 - - - - - 
469.24430 0.0 21.7 0.0 0.0 24 0 38 9 0.009 
469.55345 9.4 0.0 0.0 0.0 - - - - - 
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Table A3.3. List of peaks, relative intensities, and molecular formulae at 470 m/z in 
the 7 T ESI FT-ICR mass spectra of SRFA (highlighted: Peaks A” – E” in Figure 
3.4). 
 

 

 

  

relative intensity molecular formula 
m/z UNT-1 BHR BDR UNT-2 12C 13C H O error (ppm) 

470.02327 7.7 0.0 0.0 0.0 - - - - - 
470.03083 12.4 0.0 0.0 7.1 - - - - - 
470.04141 13.2 0.0 0.0 10.0 - - - - - 
470.04907 7.9 0.0 0.0 0.0 - - - - - 
470.05963 13.3 14.8 0.0 11.6 - - - - - 
470.06572 11.9 12.3 0.0 13.3 18 1 18 14 0.063 
470.06875 0.0 0.0 45.5 0.0 - - - - - 
470.07781 6.8 15.3 0.0 8.8 - - - - - 
470.09601 9.2 0.0 0.0 7.7 - - - - - 
470.10208 14.6 15.0 25.6 13.4 19 1 22 13 0.098 
470.10507 0.0 0.0 41.3 0.0 - - - - - 
470.13849 19.8 18.1 30.8 17.0 20 1 26 12 0.070 
470.14145 0.0 0.0 62.9 0.0 - - - - - 
470.17488 17.4 20.2 28.3 12.8 21 1 30 11 0.076 
470.17781 0.0 0.0 71.1 0.0 - - - - - 
470.21123 0.0 13.5 27.8 0.0 22 1 34 10 0.144 
470.21420 0.0 0.0 35.6 0.0 - - - - - 
470.24759 0.0 0.0 18.2 0.0 23 1 38 9 0.142 
470.57952 0.0 10.4 0.0 0.0 - - - - - 
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Appendix 4: Reduction and mass spectrometric analysis of 

acetovanillone 

 

Two 5.0 mL aliquots of 84 µM acetovanillone (adjusted to pH 10 w/ NaOH) were 

reduced by adding 50 µL of 10 mg/mL NaBH4 or NaBD4 solution (in 1.25 mM NaOH).  

Solutions shaken and stored in loosely capped vials over 3 days. Absorbance spectra were 

stable after this period. Aqueous solutions were filtered using a 0.2 µm filter and diluted 

with equal volumes of LC-grade methanol (for a final solvent composition of 50:50 

water/methanol) immediately prior to analysis by a Thermo ESI LTQ Orbitrap XL. Mass 

spectra were recorded from 100 – 250 m/z in negative ion mode with 100 co-added scans 

to achieve an average resolution of 52,000 (FWHM), with all other experimental 

parameters similar to those used for the analysis of DOM samples. These spectra (Figure 

A4.1) revealed that the total ion counts of the two reduced samples were only slightly less 

than that of the untreated sample, and confirms the expected appearance of M+2.0157 

and M+3.0219 mass shifts arising from borohydride and borodeuteride reduction, 

respectively.  The [M-H]- peak of the original species remained in both reduced samples, 

which is indicative of incomplete reduction, and the only other significant peaks were at 

150 m/z in all three spectra (possible organic impurity and/or fragment ion), and 135 m/z 

(possibly (CH3)4B-) in the two reduced samples, all of which were substantially less than 

the [M-H]- ions.  Therefore, contamination and large changes in ionization efficiency 

resulting from reduction are not expected to interfere significantly with the qualitative 

identification of ketones/aldehydes.   
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Figure A4.1. Negative ion ESI-orbitrap mass spectra of 42 µM acetovanillone in 50:50 
methanol/water: (a) untreated, (b) borohydride-reduced, and (c) borodeuteride-reduced 
aliquots.  TIC = total ion count.  Masses of molecular formula assignments are within 4 
ppm of the measured masses. 
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Appendix 5: Molecular formula assignment details for Chapter 4 

 

 

 

Figure A5.1. Molecular formula error vs. m/z for (A) UNT and (B) BDR-3 calculated 
using a 0.3 ppm error limit using function F2 (mass shift-based assignment of D-
containing compounds). 
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Table A5.1. Molecular formula assignment details for UNT in the 200 to 400 m/z and 
400 to 500 m/z ranges using 0.2 and 0.3 ppm error limits, respectively and various 
maximum allowances of N and S. 
 

FEmax 0.2 ppm 0.3 ppm  

Nmax, Smax (0, 0) (1, 1) (2, 2) (3, 3) (4,2) (0, 0) (1, 1) (2, 2) (3, 3) (4,2) 

# peaks 2761 3674 3733 4000 3775 3029 4059 4157 4323 4218 

% peaks 40.9 54.4 55.3 59.2 55.9 44.9 60.1 61.6 64.0 62.5 

% TIC 81.9 86.2 86.4 88.3 86.6 83.1 88.5 88.9 89.6 89.2 

% C mass 
a 55.4 55.3 55.3 54.9 55.3 55.4 55.3 55.4 55.3 55.3 

% H mass 
a 5.05 5.01 5.01 5.03 5.01 5.03 4.99 4.98 4.99 4.98 

% O mass 
a 39.6 39.4 39.4 39.1 39.3 39.6 39.4 39.3 39.1 39.3 

% N mass 
a 0 0.17 0.19 0.34 0.21 0 0.18 0.21 0.27 0.24 

% S mass 
a 0 0.048 0.11 0.62 0.13 0 0.10 0.16 0.33 0.18 

O/C avg.
 a

 0.543 0.542 0.542 0.542 0.542 0.544 0.543 0.541 0.539 0.542 

H/C avg.
 a

 1.086 1.081 1.081 1.092 1.081 1.083 1.078 1.077 1.078 1.078 

AI avg.
 a

 0.074 0.079 0.082 0.125 0.084 0.074 0.080 0.086 0.088 0.089 

DBE avg.
 a

 9.42 9.48 9.51 9.43 9.503 9.52 9.59 9.64 9.64 9.64 

FE b,c
 0.082 0.085 0.086 0.089 0.086 0.105 0.110 0.112 0.114 0.113 

 

a relative intensity weighted; b root mean square error; c error in ppm. 
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Figure A5.2. Expanded regions of the negative ion 12T ESI FT-ICR mass spectra of (A) 
UNT, (B) BDR-1, and (C) BDR-4 SRFA at 311 (left) and 314 (right) m/z. Black markers 
on peaks indicate those which have been assigned a molecular formula.  
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Table A5.2. Molecular formula for peaks at 311 and 314 m/z in SRFA UNT. 
Intensities are normalized to the most intense peak the 295 to 314 m/z range. 

m/z intensity 12C 13C H D O N 32S FE (ppm) 

311.00449 27.0 12 0 8 0 10 0 0 0.065 

311.01975 4.4 16 0 8 0 7 0 0 0.078 

311.02315 1.2 13 0 12 0 7 0 1 0.170 

311.04089 50.3 13 0 12 0 9 0 0 0.112 

311.05614 4.7 17 0 12 0 6 0 0 0.092 

311.05952 0.9 14 0 16 0 6 0 1 0.121 

311.07727 86.3 14 0 16 0 8 0 0 0.095 

311.09255 2.4 18 0 16 0 5 0 0 0.171 

311.11364 96.1 15 0 20 0 7 0 0 0.045 

311.12887 1.0 19 0 20 0 4 0 0 -0.038 

311.15004 17.4 16 0 24 0 6 0 0 0.092 

311.18636 0.9 17 0 28 0 5 0 0 -0.117 

314.03062 1.3 15 0 9 0 7 1 0 -0.015 

314.03874 1.3 15 1 10 0 7 0 0 0.030 

314.05990 7.5 12 1 14 0 9 0 0 0.128 

314.06706 1.8 16 0 13 0 6 1 0 0.158 

314.07516 1.3 16 1 14 0 6 0 0 0.140 

314.08812 1.8 13 0 17 0 8 1 0 -0.062 

314.09626 13.6 13 1 18 0 8 0 0 0.047 

314.11154 0.8 17 1 18 0 5 0 0 0.123 

314.13266 7.5 14 1 22 0 7 0 0 0.094 
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Table A5.3. Molecular formula for peaks at 311 and 314 m/z in SRFA BDR-1. 
Intensities are normalized to the most intense peak the 295 to 314 m/z range. 

m/z intensity 12C 13C H D O N 32S FE (ppm) 

311.00449 38.3 12 0 8 0 10 0 0 0.065 

311.01976 4.4 16 0 8 0 7 0 0 0.110 

311.03486 3.3 12 1 9 1 9 0 0 0.075 

311.03782 3.1 13 0 8 2 9 0 0 0.197 

311.04088 51.8 13 0 12 0 9 0 0 0.080 

311.05612 4.6 17 0 12 0 6 0 0 0.028 

311.07419 12.1 14 0 12 2 8 0 0 0.148 

311.07726 72.2 14 0 16 0 8 0 0 0.063 

311.09248 1.9 18 0 16 0 5 0 0 -0.053 

311.09952 1.8 14 0 16 1 7 1 0 0.059 

311.10762 5.5 14 1 17 1 7 0 0 0.041 

311.11056 10.0 15 0 16 2 7 0 0 0.098 

311.11364 86.7 15 0 20 0 7 0 0 0.045 

311.14399 4.9 15 1 21 1 6 0 0 -0.009 

311.14694 7.7 16 0 20 2 6 0 0 0.081 

311.15001 17.1 16 0 24 0 6 0 0 -0.004 

314.02640 1.9 12 0 9 1 10 0 0 0.011 

314.03874 1.5 15 1 10 0 7 0 0 0.030 

314.04165 3.5 16 0 9 1 7 0 0 -0.008 

314.04501 1.6 13 0 13 1 7 0 1 -0.043 

314.05989 6.7 12 1 14 0 9 0 0 0.096 

314.06281 18.5 13 0 13 1 9 0 0 0.090 

314.07804 3.5 17 0 13 1 6 0 0 0.006 

314.08810 2.1 13 0 17 0 8 1 0 -0.125 

314.09624 16.7 13 1 18 0 8 0 0 0.017 

314.09918 47.7 14 0 17 1 8 0 0 0.041 

314.11438 1.6 18 0 17 1 5 0 0 -0.138 

314.12956 1.7 14 1 18 2 7 0 0 0.082 

314.13264 10.1 14 1 22 0 7 0 0 0.030 

314.13557 51.5 15 0 21 1 7 0 0 0.055 

314.17196 7.8 16 0 25 1 6 0 0 0.070 
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Table A5.4. Molecular formula for peaks at 311 and 314 m/z in SRFA BDR-4. 
Intensities are normalized to the most intense peak the 295 to 314 m/z range. 

m/z intensity 12C 13C H D O N 32S FE (ppm) 

311.00448 39.6 12 0 8 0 10 0 0 0.033 

311.01975 4.5 16 0 8 0 7 0 0 0.078 

311.03485 5.7 12 1 9 1 9 0 0 0.043 

311.03779 9.9 13 0 8 2 9 0 0 0.101 

311.04088 53.1 13 0 12 0 9 0 0 0.080 

311.05611 4.3 17 0 12 0 6 0 0 -0.004 

311.07417 32.6 14 0 12 2 8 0 0 0.084 

311.07726 58.1 14 0 16 0 8 0 0 0.063 

311.09252 1.8 18 0 16 0 5 0 0 0.075 

311.10758 10.1 14 1 17 1 7 0 0 -0.088 

311.11055 27.8 15 0 16 2 7 0 0 0.066 

311.11364 82.0 15 0 20 0 7 0 0 0.045 

311.14399 8.0 15 1 21 1 6 0 0 -0.009 

311.14696 21.3 16 0 20 2 6 0 0 0.145 

311.15004 21.2 16 0 24 0 6 0 0 0.092 

314.02637 3.5 12 0 9 1 10 0 0 -0.084 

314.03405 1.8 12 0 13 0 7 1 1 0.172 

314.04170 5.7 16 0 9 1 7 0 0 0.151 

314.05676 2.1 12 1 10 2 9 0 0 -0.011 

314.05982 8.5 12 1 14 0 9 0 0 0.127 

314.06280 28.4 13 0 13 1 9 0 0 0.058 

314.06705 1.7 16 0 13 0 6 1 0 0.126 

314.07804 5.2 17 0 13 1 6 0 0 0.006 

314.09918 77.2 14 0 17 1 8 0 0 0.041 

314.11443 2.4 18 0 17 1 5 0 0 0.021 

314.12954 7.6 14 1 18 2 7 0 0 0.018 

314.13557 86.4 15 0 21 1 7 0 0 0.055 

314.16592 4.6 15 1 22 2 6 0 0 0.001 

314.17197 13.8 16 0 25 1 6 0 0 0.102 
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Appendix 6: Supporting optical data for Chapter 4 

 

 

Figure A6.1. Shifts in the wavelength of maximum emission (EMMAX) for various 
excitation wavelengths (EX) in BDR-1 through BDR-5 relative to those in UNT. 
∆EMMAX  = EMMAX (UNT) – EMMAX (BDR) 
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Figure A6.2. Percent loss of absorption (relative to UNT) of all samples at selected 
wavelengths versus mass equivalents of NaBD4. 
 

 

Comparison of PPL extracted and whole untreated and reduced SRFA via 

UV-visible spectrophotometry. The UV-visible absorption spectra of solid phase 

extracted and “whole” (pre-extraction) solutions of Suwannee River fulvic acid (SRFA) 

were compared to one another. This was done to test for any wavelength-dependent 

biases in the comparison of absorption spectra for untreated and reduced SRFA that may 

result from extraction via the functionalized polystyrene divinyl benzene (PPL) cartridges 

that were employed for purifying reduced samples.  

A 0.10 mg/mL SRFA stock of was prepared by dissolving 4 mg SRFA in 40 mL 

Milli-Q water and adjusting the pH to 10.3 with 10 µL 4 M sodium hydroxide. 20 mL of 

this stock was transferred to a 30 mL glass vial and 34 mg of solid sodium borohydride 

(NaBH4) was added to this vial to a final concentration of 1.7 mg/mL. The vial was 

loosely sealed with a Teflon-lined cap, gently shaken, and placed in the dark at room for 
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2 h. After the reduction period, 4 M hydrochloric acid (HCl) was added incrementally to 

the untreated and reduced aliquots (70 µL total) to adjust the pH to 2.0 to decompose any 

residual NaBH4.  

9.0 mL of each aliquot was loaded onto a new PPL cartridge (preconditioned with 

2 mL methanol (MeOH) and 2 mL of 10 mM HCl), and allowed to elute by gravity. The 

cartridges were rinsed with an additional 2 mL of 10 mM HCl and dried using a steady 

flow of nitrogen (~10 min). The SRFA was eluted into a glass vial using 2.0 mL MeOH, 

which was then evaporated under nitrogen (~10 mins). The dried solid was then re-

dissolved in 36.0 mL 24 mM potassium phosphate buffer. The remaining untreated and 

reduced aliquots were then diluted 1:4 to in 32 mM phosphate buffer (final phosphate 

buffer concentration was 24 mM). All four aliquots – untreated whole (UNT), untreated 

and extracted (UNT PPL), reduced whole (RED), and reduced and extracted (RED PPL) 

– were filtered using 0.2 µm polyethersulfone membrane filters. Absorption spectra were 

recorded in a 1 cm cuvette versus air from 200 – 700 nm. The spectrum of a 24 mM 

phosphate buffer blank was manually subtracted from all spectra for analysis. 

 The absorbance of the untreated PPL extract was slightly lower than that of the 

whole SRFA sample across all wavelengths, with a gradually increasing relative loss at 

longer wavelengths. Conversely, the absorbance of the borohydride-reduced PPL extract 

was slightly higher than the corresponding whole sample. This reverse trend is surprising, 

since a slight loss of absorption would be expected following the extraction, since some 

(aliphatic) compounds within SRFA may not adsorb efficiently to the PPL solid phase 

during extraction, resulting in a loss of absorption. However, the apparent differences 

between the two extracted and whole aliquots are much smaller than the differences 
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between the reduced and untreated sample, thus suggesting that these optical differences 

may be negligible. Furthermore, the lack of a drastic wavelength dependence in the loss 

or gains of absorption following extraction, along with the fact that the absorption of the 

reduced sample was slightly higher than that of the whole sample suggests that the 

differences observed here may be due to dilution error, rather than compositional 

differences which would affect the observed optical properties.  

 

Figure A6.3. Absorption spectra (left) of whole and PPL extracted SRFA (untreated and 
reduced) and difference (middle) and fractional (right) spectra comparing the ratios of the 
four samples. 
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Figure A6.4. Difference emission spectra of BDR SRFA samples relative to UNT SRFA. 
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Appendix 7: Sample collection details for C18 extracts 

 

 Extraction of Delaware River/Bay samples were collected and performed by 

Boyle et al.32 onboard the research vessel R/V Cape Henlopen. The individual water 

samples, collected at locations given in Table A5.1 were filtered through 0.2 µm Gellman 

filters, acidified to pH 2, and pumped through a C18 solid phase extraction (SPE) 

cartridge with a flow rate of 50 mL/min, which were pretreated with 100 mL high purity 

methanol and 50 mL of acidified water. Cartridges were rinsed with 1 L of acidified (pH 

2) water and stored in a refrigerator until further processing. Aqueous solutions of the 

extracted DOM were prepared by eluting the organic material from the cartridge with 

high purity methanol, evaporating to dryness with a rotary evaporator, re-dissolved in a 

few milliliters of deionized water (from a Mill-Q purification system), and adjusted to pH 

7 with aqueous sodium hydroxide (NaOH) solutions. A similar procedure was used for 

the collection of Equatorial Atlantic samples, as described and performed by Andrew et 

al.3 onboard the research vessel R/V Endeavor.  
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Table A7.1. Sample collection date and location for all C18 extracts.a 

 
a “--“ indicates unknown value; b date given in month/day/year format. 

 

  

Sample Datea Latitude Longitude Depth (m) 

DELB 10/13/2006 38.992 -75.132 2 

DERV 10/15/2006 40.139 -74.735 2 

DEUB 12/--/2006 39.633 -74.574 2 

EACR 5/--/2009 -6.0038 4.9928 4 

EAUW 5/--/2009 -0.7 0.0 40 

EADO 5/--/2009 3.0020 -22.9992 1000 

EASO 5/--/2009 3.0020 -22.9992 4 
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Appendix 8: SRFA and PLFA at 311 m/z (for Chapter 5) 

 

 
 
Figure A8.1. Expanded region of the negative ion ESI FT-ICR mass spectra of PLFA (A 
& C) and SRFA (B & D) as obtained by D’Andrilli et al. (A & B) and in this study (C & 
D). Red diamonds indicate peaks to which a molecular formula was assigned.  
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Appendix 9: Custom MATLAB functions and description of 

calculations 

 

A9.1. Chapter 3 analysis code 

============================================================================ 

function [ PData, PData_T, Spec, Form, V_U2, V_HR, V_DR, Shifts, Shift_T, 
ID_kets ] = D_ch3( U1, HR, DR, U2 ) 
%performs initial borodeuteride mass labeling test calculations 
 
 
% Input  Mass spectrum 
%  12    SRFA U1 (full) 
%  13    SRFA U2 (full) 
%  18    SRFA U3 (full) 
%  46    SRFA UpC (full) 
%   6    SRFA H (full) 
%   1    SRFA D (full) 
%  24    LB U (full) 
%  19    LB H (full) 
%  47    LB D (full) 
%  39    UB U (full) 
%  34    UB H (full) 
%  29    UB D (full) 
 
% Input numbers correspond to column numbers in the variable 'IntensityNeg' 
% in workspace 'BloughData_neg.08.31.2011.mat' 
 
%Creates matrix 'PData' for the specified spectra in 
%BloughData_neg.08.31.2011.mat, with the following columns: 
% 
%  mz RI(U1) RI(HR) RI(DR) RI(U2) 
%  1  2      3      4      5 
% 
load BloughData_neg.08.31.2011.mat 
PData = zeros(1,5); 
IntensityNeg(isnan(IntensityNeg))=0; 
pz = 0; 
for i = 1 : size(IntensityNeg,1) 
    if (IntensityNeg(i, U1)>0 || IntensityNeg(i, HR)>0 || IntensityNeg(i, DR)>0 
|| IntensityNeg(i, U2)>0 ) && PeaksNeg(i,1)<601; 
        pz = pz + 1; 
        PData(pz, 1) = PeaksNeg(i,1); 
        PData(pz, 2) = IntensityNeg (i, U1); 
        PData(pz, 3) = IntensityNeg (i, HR); 
        PData(pz, 4) = IntensityNeg (i, DR); 
        PData(pz, 5) = IntensityNeg (i, U2); 
    end 
end 
 
 
 
%Creates table 'PData_I', which stores number of peaks and TIC of each 
%spectrum 
PData_I = zeros(2,4); 
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for i = 1 : pz 
    for n = 1 : 4 
        if PData (i, n+1) > 0 
            PData_I(1,n) = PData_I(1,n) + 1; 
            PData_I(2,n) = PData_I(2,n) + PData(i,n+1); 
        end 
    end 
end 
Names = {'peaks',' TIC  '}; 
PData_T = table(PData_I,'RowNames',Names); 
 
 
 
%Normalizes intensities in 'PData' 
for n = 1 : 4 
    PData(:,n+1) = ( 100 / max(PData(:,n+1)) ) .* PData(:,n+1); 
end 
 
 
 
%Creates spectral plot data in 'Spectra', with the following columns: 
% 
%  U1(all)  HR(+U1)  HR(new)  DR(+U1)  DR(new) 
%  mz  RI   mz  RI   mz  RI   mz  RI   mz  RI 
%  1   2    3   4    5   6    7   8    9   10 
% 
Spec = zeros(1,9); 
SZ = zeros(1,5); 
for i = 1 : pz 
    if PData(i,2) > 0 
        SZ(1) = SZ(1) + 1; 
        Spec(SZ(1), 1) = PData(i,1); 
        Spec(SZ(1), 2) = PData(i,2); 
    end 
    if PData(i,3) > 0 
        if PData(i,2) > 0 
            SZ(2) = SZ(2) + 1; 
            Spec(SZ(2), 3) = PData(i,1); 
            Spec(SZ(2), 4) = PData(i,3); 
        else 
            SZ(3) = SZ(3) + 1; 
            Spec(SZ(3), 5) = PData(i,1); 
            Spec(SZ(3), 6) = PData(i,3); 
        end 
    end 
    if PData(i,4) > 0 
        if PData(i,2) > 0 
            SZ(4) = SZ(4) + 1; 
            Spec(SZ(4), 7) = PData(i,1); 
            Spec(SZ(4), 8) = PData(i,4); 
        else 
            SZ(5) = SZ(5) + 1; 
            Spec(SZ(5), 9) = PData(i,1); 
            Spec(SZ(5),10) = PData(i,4); 
        end 
    end 
end 
 
 
 
%Creates matrix 'formulae' from 'PData', with the following columns : 
% 
%  mz RI(U1) RI(HR) RI(DR) RI(U2) 12C 13C H  O  Err 
%  1  2      3      4      5      6   7   8  9  10 
% 
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MWs=[12.000000;13.003355;1.007825;15.994915]; 
Form = PData; 
Form(1:pz, 6:10) = zeros(pz,5); 
for i = 1 : pz 
    if mod(floor(Form (i,1)),2)==1 && Form(i,6)==0 %odd nominal mass 
        meas = Form (i,1)+1.007276; %converted neutral mass 
        for c = 1 : floor(Form (i,1)/12) 
            for h = 2*floor(0.1*c) : 2 : (2*c)+2; 
                for o = 0 : c 
                    calc = [c,0,h,o]*MWs; 
                    err = abs(((calc-meas)/meas)*1000000); 
                    if err < 1 
                        %assignes the 'i'th m/z a formula containing 12C, 
                        %H, and/or O if err < 1 ppm 
                        Form(i,6) = c; 
                        Form(i,8) = h; 
                        Form(i,9) = o; 
                        Form(i,10) = err; 
                        if c > 0 
                            calc_C = Form(i,1) + 1.003355; 
                            [err_CI, cz] = min( abs( 1000000 * (Form(:,1) - 
calc_C) / calc_C ) ); 
                            if err_CI < 1 
                                %identifies the 'cz'th m/z (i.e., the m/z 
                                %with the smallest deviation) as the 
                                %+13C-12C isotopologue of the 'i'th m/z 
                                Form(cz,6) = c-1; 
                                Form(cz,7) = 1; 
                                Form(cz,8) = h; 
                                Form(cz,9) = o; 
                                Form(cz,10) = err_CI; 
                            end 
                        end 
                    end 
                end 
            end 
        end 
    end 
end 
 
 
 
%VENN DIAGRAMS: 
%maxtrix 'V_XX' (where XX = U2, HR, or DR): 
%             U1-only   U1 & XX   XX-only 
% # peaks     (1)       (2)       (3) 
% # formulae  (2) 
% % w/ form.  (3) 
V_U2 = zeros(3,3); 
for i = 1 : pz 
    if Form(i,2) > 0 && Form(i,5) == 0 
        V_U2(1,1) = V_U2(1,1) + 1; 
        if Form(i,6) > 0 
            V_U2(2,1) = V_U2(2,1) + 1; 
        end 
   elseif Form(i,2) > 0 && Form(i,5) > 0 
        V_U2(1,2) = V_U2(1,2) + 1; 
        if Form(i,6) > 0 
            V_U2(2,2) = V_U2(2,2) + 1; 
        end 
   elseif Form(i,2) == 0 && Form(i,5) > 0 
        V_U2(1,3) = V_U2(1,3) + 1; 
        if Form(i,6) > 0 
            V_U2(2,3) = V_U2(2,3) + 1; 
        end 
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    end 
end 
V_U2(3,:) = 100 * (V_U2(2,:) ./ V_U2(1,:)); 
V_HR = zeros(3,3); 
for i = 1 : pz 
    if Form(i,2) > 0 && Form(i,3) == 0 
        V_HR(1,1) = V_HR(1,1) + 1; 
        if Form(i,6) > 0 
            V_HR(2,1) = V_HR(2,1) + 1; 
        end 
   elseif Form(i,2) > 0 && Form(i,3) > 0 
        V_HR(1,2) = V_HR(1,2) + 1; 
        if Form(i,6) > 0 
            V_HR(2,2) = V_HR(2,2) + 1; 
        end 
   elseif Form(i,2) == 0 && Form(i,3) > 0 
        V_HR(1,3) = V_HR(1,3) + 1; 
        if Form(i,6) > 0 
            V_HR(2,3) = V_HR(2,3) + 1; 
        end 
    end 
end 
V_HR(3,:) = 100 * (V_HR(2,:) ./ V_HR(1,:)); 
V_DR = zeros(3,3); 
for i = 1 : pz 
    if Form(i,2) > 0 && Form(i,4) == 0 
        V_DR(1,1) = V_DR(1,1) + 1; 
        if Form(i,6) > 0 
            V_DR(2,1) = V_DR(2,1) + 1; 
        end 
   elseif Form(i,2) > 0 && Form(i,4) > 0 
        V_DR(1,2) = V_DR(1,2) + 1; 
        if Form(i,6) > 0 
            V_DR(2,2) = V_DR(2,2) + 1; 
        end 
   elseif Form(i,2) == 0 && Form(i,4) > 0 
        V_DR(1,3) = V_DR(1,3) + 1; 
        if Form(i,6) > 0 
            V_DR(2,3) = V_DR(2,3) + 1; 
        end 
    end 
end 
V_DR(3,:) = 100 * (V_DR(2,:) ./ V_DR(1,:)); 
 
 
 
%Identifies peaks as M+3, M+6, or M+9 masses, where M is an (odd nominal) m/z 
%of a peak in U1 to which a molecular formula has been assigned. Stores 
%data in 'Shifts' (derived from 'Form'), with the following columns: 
% 
%  mz RI(U1) RI(HR) RI(DR) RI(U2) 12C 13C H  O  Err M+3? M+6? M+9? 
%  1  2      3      4      5      6   7   8  9  10  11   12   13 
% 
%columns 10, 11, 12, 13 = 0 or 1 
% 
Shifts = Form; 
Shifts(1:pz, 11:13) = zeros(pz,3); 
for R = 1 : 3 
    for i = 1 : pz 
        if Shifts(i,2) > 0 && mod(floor(Shifts(i,1)),2) == 1 && Shifts(i,6) > 0 
            M3 = Shifts(i,1) + 3.021927*R; 
            [err_s, idx] = min( abs( 1000000 * (Shifts(:,1) - M3) / M3 ) ); 
            if err_s < 1 
                Shifts(idx, 10 + R) = 1; 
            end 
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        end 
    end 
end 
 
 
%Creates Shift_T 
%                %M+3R 
%           Ntot R=1 R=2 R=3 
%   I(all)  1    2   3   4 
%  II(only) 2 
% 
Shift_T = zeros(2,4); 
for i = 1 : pz 
     if Shifts(i,2) > 0 
         Shift_T(1,1) = Shift_T(1,1) + 1; 
         if Shifts(i,11) == 1 
             Shift_T(1,2) = Shift_T(1,2) + 1; 
         end 
         if Shifts(i,11) == 1 || Shifts(i,12) == 1 
             Shift_T(1,3) = Shift_T(1,3) + 1; 
         end 
         if Shifts(i,11) == 1 || Shifts(i,12) == 1 || Shifts(i,13) == 1 
             Shift_T(1,4) = Shift_T(1,4) + 1; 
         end 
     end 
     if Shifts(i,2) == 0 && Shifts(i,4) > 0 
         Shift_T(2,1) = Shift_T(2,1) + 1; 
         if Shifts(i,11) == 1 
             Shift_T(2,2) = Shift_T(2,2) + 1; 
         end 
         if Shifts(i,11) == 1 || Shifts(i,12) == 1 
             Shift_T(2,3) = Shift_T(2,3) + 1; 
         end 
         if Shifts(i,11) == 1 || Shifts(i,12) == 1 || Shifts(i,13) == 1 
             Shift_T(2,4) = Shift_T(2,4) + 1; 
         end 
     end 
end 
 
 
 
%IDENTIFICATION OF KETONE/ALDEHYDE-CONTAINING SPECIES 
% 
% matrices 'ID_kets' containing the following columns: 
%   mz  DBE  O/C  H/C ID 
%   1   2    3    4   5 
% 
ID_kets = zeros(1,5); 
Zn = 0; 
for i = 1 : pz 
    if mod(floor(Shifts(i,1)),2) == 1 && Shifts(i,2) > 0 && Shifts(i,6) > 0 
        Zn = Zn + 1; 
        ID_kets(Zn, 1) = Shifts(i,1); 
        ID_kets(Zn, 2) = Shifts(i,6) + Shifts(i,7) + 1 - Shifts(i,8)/2; 
        ID_kets(Zn, 3) = Shifts(i,9) / (Shifts(i,6) + Shifts(i,7)); 
        ID_kets(Zn, 4) = Shifts(i,8) / (Shifts(i,6) + Shifts(i,7)); 
        M3 = Shifts(i,1) + 3.021927; 
        M6 = Shifts(i,1) + 6.043854; 
        [err_m3, idx_m3] = min( abs( 1000000 * (Shifts(:,1) - M3) / M3 ) ); 
        [err_m6, idx_m6] = min( abs( 1000000 * (Shifts(:,1) - M6) / M6 ) ); 
        if err_m3 < 1 && Shifts(idx_m3,4) > 0 
            ID_kets(Zn,5) = ID_kets(Zn,5) + 1; 
        end 
        if err_m6 < 1 && Shifts(idx_m6,4) > 0 
            ID_kets(Zn,5) = ID_kets(Zn,5) + 2; 
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        end 
    end 
end 
 
%Counts number of non, singly, and/or doubly reduced species at odd nominal 
%m/z to which a molecular formula was assigned. 
Z0 = 0; 
Z1 = 1; 
Z2 = 2; 
Z3 = 3; 
for i = 1 : Zn 
    if ID_kets(i,5) == 0 
        Z0 = Z0 + 1; 
    elseif ID_kets(i,5) == 1 
        Z1 = Z1 + 1; 
    elseif ID_kets(i,5) == 2 
        Z2 = Z2 + 1; 
    elseif ID_kets(i,5) == 3 
        Z3 = Z3 + 1; 
    end 
end 
ID_kets = sortrows(ID_kets,[5 1]); 
disp([' non-reduced:     ',num2str(Z0),' (',num2str(100*Z0/Zn),'%)']); 
disp([' singly-only:     ',num2str(Z1),' (',num2str(100*Z1/Zn),'%)']); 
disp([' doubly-only:     ',num2str(Z2),' (',num2str(100*Z2/Zn),'%)']); 
disp([' singly & doubly: ',num2str(Z3),' (',num2str(100*Z3/Zn),'%)']); 
 
end 

============================================================================ 

 

A9.2. Blank subtraction and excision of ions with multiple charges 

 
function [ PEAKS, PEAKS_T ] = ms_list( mz_min, mz_max, raw, tol, blank, z_lim ) 
 
%Pre-processes a raw mass spectral peak list: 
%   * includes peaks in a specified m/z range 
%   * blank subtracts peaks 
%   * removes multiply-charged peaks 
%   * displays mass distribution information (stored in 'PEAKS_T') 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%REQUIRED INPUT ARGUMENTS 
% 
% 'mz_min' and 'mz_max': Positive numbers specifying lower and upper limits 
% of the the m/z range to be included in the final peak list 
% (mz_min must be less than mz_max). 
% 
% 'raw': Two-column matrix containing the raw peak list of the mass 
% spectrum of the sample to be analyzed, with m/z in the first column 
% and raw intensities in the second column. 
% 
%OPTIONAL INPUT ARGUMENTS 
% 
% 'tol': Error limit (in ppm; positive number) used to find and excise 
% peaks that are present in the blank spectrum and to search for and excise 
% multiply-charged peaks. 
% 
% 'blank': Two-column matrix containing the raw peak list of the mass 
% spectrum of a corresponding solvent blank, with m/z in the first 
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% column and raw intensities in the second column. 
% 
% 'z_lim': Single integer or vector of integers specifiying charge states 
% that are to be excised based on 1.003355 / z mass spacings. If 
% z_lim = 0, no species will be excised in this manner. 
% Default value = [2 3]. 
% 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%OUTPUT ARGUMENTS 
% 
% 'PEAKS': Two-column matrix containing m/z (first column) and 
% normalized intensity data (second column) of the sample after the 
% following processes are performed on the raw data: 
%   (1) Excision of peaks outside the specified m/z range 
%   (2) If 'tol' (and 'z_lim') is/are given: 
%          Excision of peaks which differ by 1.003355/z within 'tol' ppm, 
%          where z is the charge state(s) of the ion specified by 'z_lim' 
%          (i.e., the monoisotopic peak and the corresponding 13C 
%          isotopologue). If more than one peak is found within 'tol' ppm 
%          of a theoretical isotopologue's m/z, the peak with the smallest 
%          deviation from the theorietical value will be excised. 
%   (3) If 'tol' & 'blank' are given: 
%          Excision of peaks which have m/z values within 'tol' ppm of a 
%          peak present in 'blank'. 
%   (4) Normalization of intensities to base peak 
% 
% 
% 'PEAKS_T': Table with the following rows (displayed when function ends) 
% 
%  (1) # peaks excised (blank) 
%  (2) # peaks excised (z) 
%  (3) # peaks remaining 
%  (4) total ion count (TIC) 
%  (5) number-average m/z (AMN) = sum(mz*intensity)/sum(intensity) 
%  (6) weight-average m/z (AMW) = sum(mz^2*intensity)/sum(mz*intensity) 
%  (7) polydispersity = AMN / AMW 
%  (8) intensity range = maximum intensity / minimum intensity 
%  (9) m/z of base peak 
% (10) raw intensity of base peak 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
PEAKS1 = raw; 
 
T_values = zeros(10,1); 
 
%converts 'isnan' values to 0 (if needed) 
PEAKS1(isnan(PEAKS1)) = 0; 
 
%default value for 'z_lim' if not specified 
if nargin < 6 
    z_lim = [2 3]; 
end 
 
 
for i = 1 : size(PEAKS1,1) 
 
    %Excises peaks (replaces row with [0 0]) with intensity equal to 0 
    if PEAKS1(i,2) == 0; 
        PEAKS1(i,1:2)=zeros(1,2); 
    end 
 
    %Excises peaks outside the specified m/z range 
    if PEAKS1(i,1) < mz_min || PEAKS1(i,1) > mz_max 
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        PEAKS1(i,1:2) = zeros(1,2); 
 
    else 
        %Excises multi-z peaks if 'tol' is given 
        if nargin > 3 && sum(z_lim) ~= 0 
            thr_mass = PEAKS1(i,1) + (1.003355 ./ z_lim); 
            for k = 1 : size(thr_mass) 
                %Finds peak with smallest deviation from theoretical 
                %isotopologue mass 
                [err, z] = min( abs( 1000000 * (PEAKS1(:,1) - thr_mass(k)) / 
thr_mass(k) ) ); 
                if err <= tol 
                    PEAKS1(i,1:2) = zeros(1,2); 
                    PEAKS1(z,1:2) = zeros(1,2); 
                    T_values(2) = T_values(2) + 1; 
                end 
            end 
        end 
 
        %Excises peaks shared in 'blank' (if specified) 
        if nargin > 4; 
            for k = 1 : size(blank,1) 
                if abs( 1000000 * ( PEAKS1(i,1) - blank(k,1) ) / blank(k,1) ) 
<= tol 
                    PEAKS1(i,1:2) = zeros(1,2); 
                    T_values(1) = T_values(1) + 1; 
                end 
            end 
        end 
 
    end 
end 
 
 
[T_values(10), BP_index] = max(PEAKS1(:,2)); %m/z of base peak 
 T_values(9) = PEAKS1(BP_index,1); %raw intensity of base peak 
 T_values(4) = sum( PEAKS1(:,2) ); %TIC 
 
 
%stores non-excised values in 'PEAKS' (removes rows of zeros) 
x = 0; 
PEAKS = zeros(1,2); 
for i = 1 : size(PEAKS1,1) 
    if PEAKS1(i,1) > 0 
        x = x + 1; 
        PEAKS(x,1) = PEAKS1(i,1); 
        PEAKS(x,2) = 100* PEAKS1(i,2) / T_values(10); 
    end 
end 
 
T_values(3) = size( PEAKS,1 ); %number of peaks 
T_values(5) = sum( PEAKS(:,1).*PEAKS(:,2) ) / sum(PEAKS(:,2)); %AMW(n) 
T_values(6) = sum( PEAKS(:,1).*PEAKS(:,1).*PEAKS(:,2) ) / sum( 
PEAKS(:,1).*PEAKS(:,2) ); %AMW(w) 
T_values(7) = T_values(6) / T_values(5); %Polydispersity 
T_values(8) = max( PEAKS(:,2) ) / min( PEAKS(:,2) ); %intensity range 
 
T_rows = {'peaks excised (blank)' 
          'peaks excised (z)    ' 
          'peaks remaining      ' 
          'TIC (raw)            ' 
          'avg mz (number)      ' 
          'avg mz (weight)      ' 
          'polydispersity       ' 
          'intensity range      ' 



 

 143 

          'base peak mz         ' 
          'base peak raw int.   '}; 
 
PEAKS_T = table(T_values,'RowNames',T_rows); 
disp(PEAKS_T); 
 
end 
 
%====================================== 
% Daniel R. Baluha 
% University of Maryland, College Park 
% June 2015 
% MATLAB version R2013b 
% OS X version 10.9.5 
%====================================== 
 
 
============================================================================ 

 

A9.3. Molecular formula assignment (“brute-force”) 

function [FORM, FORM_T] = ms_form1(peaks, tol, n_max, s_max, d_max) 
%Calculates molecular formulae for m/z values in 'peaks' 
%using a "brute force" algorithm 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%REQUIRED INPUT ARGUMENTS 
% 
% 'peaks': Matrix containing at least two columns with m/z and 
% intensity data in the first and second columns, respectively. 
% 
% 'tol': Error threshold (in ppm) allowed for molecular formula assignment 
% 
%OPTIONAL INPUT ARGUMENTS 
% 
% 'n_max': maximum number of 14N atoms allowed. Default value = 0. 
% 
% 's_max': maximum number of 32S atoms allowed. Default value = 0. 
% 
% 'd_max': maximum number of deuterium (2H) atoms allowed. 
% Default value = 0. 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%OUTPUT ARGUMENT 
% 
% 'FORM': Matrix of peaks to which a molecular formula has been 
% assigned with the following columns: 
% 
%          ...Number of atoms ... 
% [mz int 12C 13C H D O N 32S 34S FE O/C H/C N/C AI  DBE DBE-O] 
%  1  2   3   4   5 6 7 8   9 10  11 12  13  14  15  16  17 
% 
%    Column 11: formula error (in ppm) 
%    Column 12: O/C molar ratio (12C & 13C included) 
%    Column 13: H/C molar ratio (H & D included) 
%    Column 14: N/C molar ratio 
%    Column 15: aromaticity index (AI; described by Koch and Dittmar in 
%        Rapid. Comm. Mass Spectrom. 2005, 20, 926-932. 
%        AI = (1 + C - O - S - 0.5H) / (C - O - S - N) 
%    Column 16: Double bond equivalent (DBE) 
%        DBE = 1 + C - H/2 - N/2 
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%    Column 17: Double bond equivalent minus # O atoms 
% 
% 
% 
% 'FORM_T': 18 x 3 table containing the following data of the calculated 
% molecular formulae: 
% 
%            number or  percentage or 
%            average    minimum       maximum 
%            (1)        (2)           (3) 
%  (1) Intensity 
%  (2) Peaks 
%  (3) #CHO 
%  (4) #CHON 
%  (5) #CHONS 
%  (6) #CHOS 
%  (7) % mass C 
%  (8) % mass H 
%  (9) % mass O 
% (10) % mass N 
% (11) % mass S 
% (12) O/C 
% (13) H/C 
% (14) N/C 
% (15) AI 
% (16) DBE 
% (17) DBE-O 
% (18) error (ppm) 
% 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%EXPLANATION OF MOLECULAR FORMULA ASSIGNMENT 
% 
%PART 1. For each mass in 'peaks', all chemically reasonable molecular 
%formulae with the atoms 12C, 1H, 2H, 16O, 14N, 32S are calculated using 
%the following criteria: 
% 
%   33 < %C < 100 
%   2 <= #H <= 2(#C) + 2 
%   O <= C 
%   N  <= (user specified) 
%   S <= (user specified) 
%   DBE > 1  (double-bond equivalent, where DBE = C + 1 - H/2 + N/2) 
%   DBE is an integer 
%   O+N+S > 0 
% 
%The difference in ppm between the experimentally measured m/z (MM) 
%and the theoretical m/z of each formula (CM) is calculated using the 
%following equation: 
% 
%   FE = 1000000*(MM-CM)/CM 
% 
%   where CM = 12*C + 1.0078250*H + 2.0141018*D + 15.9949146*O + 
%   14.0030740*N + 33.9678669*S 
% 
%   If the absolute value of FE is less than or equal to the error 
%   threshold specified by 'tol', the formula is assumed to be correct. If 
%   more than one formula is possible, the one with the lowest number of 
%   D, N, and S is used. 
% 
%PART 3. +13C-12C and +34S-32S isotopologue peaks are searched for each 
%peak to which a molecular formula was assigned. If a peak whose measured 
%mass is within 'tol' ppm of the calculated mass of the isotopologue 
%peaks is found, the formula of this isotopologue is used. 
% 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
tic 
 
 
if nargin < 5 
    d_max = 0; 
    if nargin < 4 
        s_max = 0; 
        if nargin < 3 
            n_max = 0; 
        end 
    end 
end 
 
 
%Calculates molecular formulae 
FORM1 = zeros( size(peaks,1),18 ); 
FORM1(1:size(peaks,1),1:size(peaks,2)) = peaks; 
Masses = [12; 13.0033548; 1.0078250; 2.0141018; 15.9949146; 14.0030740; 
31.9720710; 33.9678669]; 
for i = 1 : size(FORM1,1) 
    if FORM1(i,3) == 0 
    meas = FORM1(i,1); 
    for d = 0 : d_max; 
        for s = 0 : s_max 
            for n = 0 : n_max; 
                for c = floor(meas/36) : ceil(meas/12) 
                    for h = 2 + mod(n+d,2) : 2 : 2*c + 2 + mod(n+d,2) 
                        for o = 0 : c 
                            %o + n + s > 0 
                            if (n+s+o) > 0 
                                % n + s minimized 
                                if FORM1(i,3) == 0 || sum(FORM1(i,8:10)) > (n + 
s) 
                                    calc_M = ([c,0,h,d,o,n,s,0]*Masses)-
1.0072764; 
                                    err = 1000000*(meas-calc_M)/calc_M; 
                                    if abs(err) <= tol 
                                        FORM1(i,3:9) = [c,0,h,d,o,n,s]; 
                                        FORM1(i,11) = err; 
                                        calc_Mci = calc_M + 1.003355; 
                                        [err_CI, cz] = min( abs( 1000000 * 
(FORM1(:,1) - calc_Mci) / calc_Mci ) ); 
                                        if err_CI <= tol 
                                            FORM1(cz,3:9) = FORM1(i,3:9); 
                                            FORM1(cz,3) = FORM1(cz,3)-1; 
                                            FORM1(cz,4) = 1; 
                                            FORM1(cz,11) = err_CI; 
                                        end 
                                        if s > 0 %34S-32S search 
                                            calc_Msi = calc_M + 1.995796; 
                                            [err_SI, sz] = min( abs( 1000000 * 
(FORM1(:,1) - calc_Msi) / calc_Msi ) ); 
                                            if err_SI <= tol 
                                                FORM1(sz,3:10) = FORM1(i,3:10); 
                                                FORM1(sz,9) = FORM1(cz,9)-1; 
                                                FORM1(sz,10) = 1; 
                                                FORM1(sz,11) = err_SI; 
                                            end 
                                        end 
                                    end 
                                end 
                            end 
                        end 
                    end 
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                end 
            end 
        end 
    end 
    end 
end 
TotalTime = toc; 
 
 
%calculates molar ratios, etc for each formula 
for i = 1 : size(FORM1,1) 
    if FORM1(i,3) > 0 
        c = FORM1(i,3) + FORM1(i,4); 
        h = FORM1(i,5) + FORM1(i,6); 
        o = FORM1(i,7); 
        n = FORM1(i,8); 
        s = FORM1(i,9) + FORM1(i,10); 
        FORM1(i,12) = o/c; 
        FORM1(i,13) = h/c; 
        FORM1(i,14) = n/c; 
        FORM1(i,15) = (1+c-o-s-(0.5*h)) / (c-o-s-n); %AI 
        if FORM1(i,15) < 0 
            FORM1(i,15) = 0; 
        end 
        FORM1(i,16) = c + 1 - (h/2) + (n/2); %DBE 
        FORM1(i,17) = c + 1 - (h/2) + (n/2) - o; %DBE-O 
    end 
end 
 
 
%Deletes rows with no formula 
FORM = zeros(1,17); 
fx = 0; 
for i=1:size(FORM1,1) 
    if FORM1(i,3) > 0 
        fx = fx + 1; 
        FORM(fx,1:17) = FORM1(i, 1:17); 
    end 
end 
 
 
%Builds formula distribution table 
numb_avg = zeros (19,1); 
perc_min = zeros (19,1); 
zero_max = zeros (19,1); 
 
%TIC assigned (number and percent) 
numb_avg(1) = sum(FORM(:,2)); 
perc_min(1) = 100 * numb_avg(1) / sum(peaks(:,2)); 
 
%peaks assigned (number and percent) 
numb_avg(2) = size(FORM,1); 
perc_min(2) = 100 * numb_avg(2) / size(peaks,1); 
 
for i=1:size(FORM,1) 
    if FORM(i,8)==0 && sum(FORM(i,9:10))==0 
        numb_avg(3) = numb_avg(3) + 1; % # CHO 
    elseif FORM(i,8)>0 && sum(FORM(i,9:10))==0 
        numb_avg(4) = numb_avg(4) + 1; % # CHON 
    elseif FORM(i,8)>0 && sum(FORM(i,9:10))>0 
        numb_avg(5) = numb_avg(5) + 1; % # CHONS 
    elseif FORM(i,8)==0 && sum(FORM(i,9:10))>0 
        numb_avg(6) = numb_avg(6) + 1; % # CHOS 
    end 
end 
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perc_min(3:6)  = numb_avg(3:6)  .* ( 100/sum(numb_avg(3:6))  ); 
 
%intensity-weighted mass sums 
mass_tot = sum( FORM(:,2).* ( FORM(:,1)+1.01) ); 
mass_c   = sum( FORM(:,2).* ( 12.000*FORM(:,3) + 13.003*FORM(:,4) ) ); 
mass_h   = sum( FORM(:,2).* (  1.008*FORM(:,5) +  2.041*FORM(:,6) ) ); 
mass_o   = sum( FORM(:,2).* ( 15.995*FORM(:,7) ) ); 
mass_n   = sum( FORM(:,2).* ( 14.003*FORM(:,8) ) ); 
mass_s   = sum( FORM(:,2).* ( 31.972*FORM(:,9) + 33.968*FORM(:,10) ) ); 
%percent (mass) C, H, O, N, S 
perc_min(7) = 100 * mass_c / mass_tot; 
perc_min(8) = 100 * mass_h / mass_tot; 
perc_min(9) = 100 * mass_o / mass_tot; 
perc_min(10) = 100 * mass_n / mass_tot; 
perc_min(11) = 100 * mass_s / mass_tot; 
 
for r = 12 : 17 
    numb_avg(r) = sum(FORM(:,r).*FORM(:,2)) / sum(FORM(:,2)); 
    perc_min(r) = min(FORM(:,r)); 
    zero_max(r) = max(FORM(:,r)); 
end 
 
%error (RMSE, min, max) 
numb_avg(18) = rms(FORM(:,11)); 
perc_min(18) = min(abs(FORM(:,11))); 
zero_max(18) = max(abs(FORM(:,11))); 
 
%time (min) 
numb_avg(19) = TotalTime / 60; 
 
Categories = {'TIC        ' 
              'peaks      ' 
              'CHO        ' 
              'CHON       ' 
              'CHONS      ' 
              'CHOS       ' 
              '% mass C   ' 
              '% mass H   ' 
              '% mass O   ' 
              '% mass N   ' 
              '% mass S   ' 
              'O/C        ' 
              'H/C        ' 
              'N/C        ' 
              'AI         ' 
              'DBE        ' 
              'DBE-O      ' 
              'err (ppm)  ' 
              'time (min) '}; 
 
FORM_T = table(numb_avg, perc_min, zero_max, 'RowNames',Categories); 
 
disp(' formula distribution ') 
disp(FORM_T) 
 
end 
 
%====================================== 
% Daniel R. Baluha 
% University of Maryland, College Park 
% June 2015 
% MATLAB version R2013b 
% OS X version 10.9.5 
%====================================== 
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============================================================================ 

 

A9.4. Molecular formula assignment (“low-mass moiety”) 

function [FORM, FORM_T] = ms_form2(peaks, tol, n_max, s_max, d_max) 
%Calculates molecular formulae for m/z values in 'peaks' 
%using a "low-mass moiety" algorithm as described by Green and Perdue in 
%Anal. Chem. 2015, 87, 5079-5085 and 
%Anal. Chem. 2015, 87, 5086-5094 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%REQUIRED INPUT ARGUMENTS 
% 
% 'peaks': Matrix containing at least two columns with m/z and 
% intensity data in the first and second columns, respectively. 
% 
% 'tol': Error threshold (in ppm) allowed for molecular formula assignment 
% 
%OPTIONAL INPUT ARGUMENTS 
% 
% 'n_max': maximum number of 14N atoms allowed. Default value = 0. 
% 
% 's_max': maximum number of 32S atoms allowed. Default value = 0. 
% 
% 'd_max': maximum number of deuterium (2H) atoms allowed. 
% Default value = 0. 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%OUTPUT ARGUMENT 
% 
% 'FORM': Matrix of peaks to which a molecular formula has been 
% assigned with the following columns: 
% 
%          ...Number of atoms ... 
% [mz int 12C 13C H D O N 32S 34S FE O/C H/C N/C AI  DBE DBE-O] 
%  1  2   3   4   5 6 7 8   9 10  11 12  13  14  15  16  17 
% 
%    Column 11: formula error (in ppm) 
%    Column 12: O/C molar ratio (12C & 13C included) 
%    Column 13: H/C molar ratio (H & D included) 
%    Column 14: N/C molar ratio 
%    Column 15: aromaticity index (AI; described by Koch and Dittmar in 
%        Rapid. Comm. Mass Spectrom. 2005, 20, 926-932. 
%        AI = (1 + C - O - S - 0.5H) / (C - O - S - N) 
%    Column 16: Double bond equivalent (DBE) 
%        DBE = 1 + C - H/2 - N/2 
%    Column 17: Double bond equivalent minus # O atoms 
% 
% 
% 
% 'FORM_T': 18 x 3 table containing the following data of the calculated 
% molecular formulae: 
% 
%            number or  percentage or 
%            average    minimum       maximum 
%            (1)        (2)           (3) 
%  (1) Intensity 
%  (2) Peaks 
%  (3) #CHO 
%  (4) #CHON 
%  (5) #CHONS 
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%  (6) #CHOS 
%  (7) % mass C 
%  (8) % mass H 
%  (9) % mass O 
% (10) % mass N 
% (11) % mass S 
% (12) O/C 
% (13) H/C 
% (14) N/C 
% (15) AI 
% (16) DBE 
% (17) DBE-O 
% (18) error (ppm) 
% 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%EXPLANATION OF MOLECULAR FORMULA ASSIGNMENT 
% 
%PART 1. Each measured m/z is converted to its neutral mass (by addition of 
%the mass of H+), and a base molecular formula of a hydrocarbon with the 
%lowest possible H/C molar ratio is calculated for that nominal mass. 
%This base formula is altered by adding or subtracting C4O-3 and/or CH4O-1 
%subunits until the calculated mass of the formula is within 'tol' ppm of 
%the measured mass. Heteroatoms are included by varying the number of 32S 
%and/or NH subunits to the base hydrocarbon. The following constraints must 
%be satisfied: 
% 
%   2 <= #H <= 2(#C) + 2 
%   O <= C 
%   N  <= (user specified) 
%   S <= (user specified) 
%   O+N+S > 0 
% 
%The difference in ppm between the experimentally measured m/z (MM) 
%and the theoretical m/z of each formula (CM) is calculated using the 
%following equation: 
% 
%   FE = 1000000*(MM-CM)/CM 
% 
%   where CM = 12*C + 1.0078250*H + 2.0141018*D + 15.9949146*O + 
%   14.0030740*N + 33.9678669*S 
% 
%   If the absolute value of FE is less than or equal to the error 
%   threshold specified by 'tol', the formula is assumed to be correct. 
% 
%PART 2. +13C-12C and +34S-32S isotopologue peaks are searched for each 
%peak to which a molecular formula was assigned. If a peak whose measured 
%mass is within 'tol' ppm of the calculated mass of the isotopologue 
%peaks is found, the formula of this isotopologue is used. 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
tic 
 
 
if nargin < 5 
    d_max = 0; 
    if nargin < 4 
        s_max = 0; 
        if nargin < 3 
            n_max = 0; 
        end 
    end 
end 
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%Calculates molecular formulae 
FORM1 = zeros( size(peaks,1),18 ); 
FORM1(1:size(peaks,1),1:size(peaks,2)) = peaks; 
Masses = [12; 13.0033548; 1.0078250; 2.0141018; 15.9949146; 14.0030740; 
31.9720710; 33.9678669]; 
for x = 1 : size(FORM1,1) 
    if sum(FORM1(x,3:10)) == 0 
        MM = FORM1(x,1) + 1.0072764; 
        for d = 0 : d_max; 
            for s = 0 : s_max; 
                for n = 0 : n_max; 
                    form = zeros(1,8); 
                    sum_HA = d*3.0219268 + s*31.9720710 + n*15.0108990; 
                    MMc = MM - sum_HA; 
                    if mod(round(MMc),2) == 0 
                        i = 0; 
                        %calculate initial molecular formula 
                        form(1) = floor(MMc/12); 
                        form(3) = round(MMc - 12*form(1)) + n + d; 
                        form(4) = d; 
                        form(6) = n; 
                        form(7) = s; 
                        while i < 100 
                            %calculate current formula mass 
                            CM = form * Masses; 
                            %calculate formula error 
                            FE = 1000000*(MM - CM)/CM; 
                            if abs(FE) <= tol 
                                %end 'while' loop, check formula 
                                i = 100; 
                            else 
                                %calculate number of CH4-O replacements needed 
(M) 
                                M = round((MM - CM)/0.0363854); 
                                %calculate formula error after M CH4-O 
replacements 
                                FE = 1000000*(MM - CM - M*0.0363854) / CM; 
                                if abs(FE) <= tol 
                                    %perform M +CH4-O replacements 
                                    form(1) = form(1) + M; 
                                    form(3) = form(3) + 4*M; 
                                    form(5) = form(5) - M; 
                                    %end 'while' loop, check formula 
                                    i = 100; 
                                else 
                                    %perform +O3-C4 replacement 
                                    form(1) = form(1) - 4; 
                                    form(5) = form(5) + 3; 
                                    i = i + 1; 
                                end 
                            end 
                        end 
                        %check formulae 
                        CM = form * Masses; 
                        %calculate formula error 
                        FE = 1000000*(MM - CM)/CM; 
                        if abs(FE) <= tol 
                            if sum(FORM1(x,3:10)) == 0 || ( sum(FORM1(x,3:10)) 
> 0 && sum(form(6:8)) < sum(FORM1(x,8:10)) ); 
                                if form(1) > 0 %C > 0 
                                    if form(3) >= 2 && form(3) <= 2*form(1)+2 
%2 <= H <= 2C+2 
                                        if sum(form(5:8))>0 % O+N+S > 0 
                                            if form(5) <= form(1) && form(5)>=0 
; % 0 <= O<= C 
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                                                FORM1(x,3:10) = form; 
                                                FORM1(x,11) = FE; 
                                                %search for 13C-12C 
isotopologues 
                                                CMci = CM + 1.0033548 - 
1.0072764; 
                                                [FEci, cz] = min( abs( 1000000 
* (FORM1(:,1) - CMci) / CMci ) ); 
                                                if FEci <= tol 
                                                    FORM1(cz,3:10) = 
FORM1(x,3:10); 
                                                    FORM1(cz,3) = FORM1(cz,3)-
1; 
                                                    FORM1(cz,4) = 1; 
                                                    FORM1(cz,11) = FEci; 
                                                end 
                                                %search for 34S-32S 
isotopologues 
                                                if FORM1(x,9) > 0 
                                                    CMsi = CM + 1.995796 - 
1.0072764; 
                                                    [FEsi, sz] = min( abs( 
1000000 * (FORM1(:,1) - CMsi) / CMsi ) ); 
                                                    if FEsi <= tol 
                                                        FORM1(sz,3:10) = 
FORM1(x,3:10); 
                                                        FORM1(sz,9) = 
FORM1(cz,9)-1; 
                                                        FORM1(sz,10) = 1; 
                                                        FORM1(sz,11) = FEsi; 
                                                    end 
                                                end 
                                            end 
                                        end 
                                    end 
                                end 
                            end 
                        end 
                    end 
                end 
            end 
        end 
    end 
end 
 
TotalTime = toc; 
 
 
%calculates molar ratios, etc for each formula 
for i = 1 : size(FORM1,1) 
    if sum(FORM1(i,3:10)) > 0 
        c = FORM1(i,3) + FORM1(i,4); 
        h = FORM1(i,5) + FORM1(i,6); 
        o = FORM1(i,7); 
        n = FORM1(i,8); 
        s = FORM1(i,9) + FORM1(i,10); 
        FORM1(i,12) = o/c; 
        FORM1(i,13) = h/c; 
        FORM1(i,14) = n/c; 
 
        FORM1(i,15) = (1+c-o-s-(0.5*h)) / (c-o-s-n); %AI 
        if FORM1(i,15) < 0 || isnan(FORM1(i,15)) || isinf(FORM1(i,15)); 
            FORM1(i,15) = 0; 
        end 
        FORM1(i,16) = c + 1 - (h/2) + (n/2); %DBE 



 

 152 

        FORM1(i,17) = c + 1 - (h/2) + (n/2) - o; %DBE-O 
    end 
end 
 
 
%Deletes rows with no formula 
FORM = zeros(1,17); 
fx = 0; 
for i=1:size(FORM1,1) 
    if sum(FORM1(i,3:10)) > 0 
        fx = fx + 1; 
        FORM(fx,1:17) = FORM1(i, 1:17); 
    end 
end 
 
 
%Builds formula distribution table 
numb_avg = zeros (19,1); 
perc_min = zeros (19,1); 
zero_max = zeros (19,1); 
 
%TIC assigned (number and percent) 
numb_avg(1) = sum(FORM(:,2)); 
perc_min(1) = 100 * numb_avg(1) / sum(peaks(:,2)); 
 
%peaks assigned (number and percent) 
numb_avg(2) = size(FORM,1); 
perc_min(2) = 100 * numb_avg(2) / size(peaks,1); 
 
for i=1:size(FORM,1) 
    if FORM(i,8)==0 && sum(FORM(i,9:10))==0 
        numb_avg(3) = numb_avg(3) + 1; % # CHO 
    elseif FORM(i,8)>0 && sum(FORM(i,9:10))==0 
        numb_avg(4) = numb_avg(4) + 1; % # CHON 
    elseif FORM(i,8)>0 && sum(FORM(i,9:10))>0 
        numb_avg(5) = numb_avg(5) + 1; % # CHONS 
    elseif FORM(i,8)==0 && sum(FORM(i,9:10))>0 
        numb_avg(6) = numb_avg(6) + 1; % # CHOS 
    end 
end 
perc_min(3:6)  = numb_avg(3:6)  .* ( 100/sum(numb_avg(3:6))  ); 
 
%intensity-weighted mass sums 
mass_tot = sum( FORM(:,2).* ( FORM(:,1)+1.01) ); 
mass_c   = sum( FORM(:,2).* ( 12.000*FORM(:,3) + 13.003*FORM(:,4) ) ); 
mass_h   = sum( FORM(:,2).* (  1.008*FORM(:,5) +  2.041*FORM(:,6) ) ); 
mass_o   = sum( FORM(:,2).* ( 15.995*FORM(:,7) ) ); 
mass_n   = sum( FORM(:,2).* ( 14.003*FORM(:,8) ) ); 
mass_s   = sum( FORM(:,2).* ( 31.972*FORM(:,9) + 33.968*FORM(:,10) ) ); 
%percent (mass) C, H, O, N, S 
perc_min(7) = 100 * mass_c / mass_tot; 
perc_min(8) = 100 * mass_h / mass_tot; 
perc_min(9) = 100 * mass_o / mass_tot; 
perc_min(10) = 100 * mass_n / mass_tot; 
perc_min(11) = 100 * mass_s / mass_tot; 
 
for r = 12 : 17 
    numb_avg(r) = sum(FORM(:,r).*FORM(:,2)) / sum(FORM(:,2)); 
    perc_min(r) = min(FORM(:,r)); 
    zero_max(r) = max(FORM(:,r)); 
end 
 
%error (RMSE, min, max) 
numb_avg(18) = rms(FORM(:,11)); 
perc_min(18) = min(abs(FORM(:,11))); 
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zero_max(18) = max(abs(FORM(:,11))); 
 
%time (min) 
numb_avg(19) = TotalTime / 60; 
 
Categories = {'TIC        ' 
              'peaks      ' 
              'CHO        ' 
              'CHON       ' 
              'CHONS      ' 
              'CHOS       ' 
              '% mass C   ' 
              '% mass H   ' 
              '% mass O   ' 
              '% mass N   ' 
              '% mass S   ' 
              'O/C        ' 
              'H/C        ' 
              'N/C        ' 
              'AI         ' 
              'DBE        ' 
              'DBE-O      ' 
              'err (ppm)  ' 
              'time (min) '}; 
 
FORM_T = table(numb_avg, perc_min, zero_max, 'RowNames',Categories); 
 
disp(' formula distribution ') 
disp(FORM_T) 
 
 
end 
 
%====================================== 
% Daniel R. Baluha 
% University of Maryland, College Park 
% June 2015 
% MATLAB version R2013b 
% OS X version 10.9.5 
%====================================== 
 

============================================================================ 

 

A9.5. Ketone/aldehyde identification  

function [LAB, LAB_T, RED, RED_T] = ms_ketid(form, peaks, tol, n_max, s_max, 
d_max) 
 
%Identifies species in 'form' which comprise species with borodeuteride 
%reducible moieties (i.e. ketones, aldehydes) by searching M+3.021927 & 
%M+6.043854 m/z in 'peaks' 
% 
%Calculates molecular formulae for unassigned masses in 'peaks' by calling 
%function 'ms_form.m' 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% ABBREVIATIONS: 
%   "M+3" = M + 3.021 926 8 
%   "M+6" = M + 6.043 853 6 
% 
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% where M refers to an m/z in 'form' 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%INPUT ARGUMENTS 
% 
% 'form': Matrix of peaks to which a molecular formula has been 
% assigned with the following columns (see function 'f_mf_calc.m' for more 
% details): 
% 
%          ...Number of atoms ... 
% [mz int 12C 13C H D O N 32S 34S FE O/C H/C N/C AI  DBE DBE-O] 
%  1  2   3   4   5 6 7 8   9 10  11 12  13  14  15  16  17 
% 
% 
% 'peaks': Matrix containing at least two columns, with the first 
% column containing m/z values and the second column containing intensities 
% (should be a borodeuteride-reduced mass spectral peak list). 
% 
% 
% 'tol': Error threshold (in ppm) allowed for molecular formula assignment 
% and M+3/6 searches 
% 
%OPTIONAL INPUT ARGUMENTS 
% 
% 'n_max': maximum number of 14N atoms allowed. Default value = 0. 
% 
% 's_max': maximum number of 32S atoms allowed. Default value = 0. 
% 
% 'd_max': maximum number of deuterium (2H) atoms allowed. 
%  Default value = 2. 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%OUTPUT ARGUMENTS 
% 
% 'LAB': Same format as 'form' with column 18 data added, which identifies 
% the peak composition based on presence/absence of M+3 or M+6 masses in 
% the searched mass spectral peak list. Values and meanings are as follows: 
%     0 : non-reduced species only (default) 
%     1 : singly-reduced species only 
%     2 : doubly-reduced species only 
%     3 : singly and doubly reduced species 
% theoretical M+3 and M+6 masses are determined from the calculated 
% (theoretical) mass of the given molecular formula. An M+3 or M+6 mass 
% marker is considered to be present if there is a peak with m/z within 
% 'tol' ppm of the theoretical M+3 or M+6 mass. 
% 
% 'LAB_T': Table with rows and columns defined as follows: 
% 
%    Columns: Peaks comprising species which are ___ reduced: 
%           (1) non 
%           (2) singly-reduced only 
%           (3) doubly-reduced only 
%           (4) singly- & doubly-reduced only 
% 
% 
% 'RED': Same format as 'FORM' from function 'f_mf_calc.m' 
% 
% 'RED_T': Same format as 'FORM_T' from function 'f_mf_calc.m' 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
tic 
 
 
if nargin < 6 
    d_max = 2; 
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    if nargin < 5 
        s_max = 0; 
        if nargin < 4 
            n_max = 0; 
        end 
    end 
end 
 
 
LAB = form; 
LAB(:,18) = zeros(size(form,1),1); 
RED_temp(1:size(peaks,1),1:2) = peaks(:,1:2); 
 
if nargout > 2 
    RED_temp(1:size(peaks,1),3:17) = zeros(size(peaks,1),15); 
end 
 
Masses = [12; 13.0033548; 1.0078250; 2.0141018; 15.9949146; 14.0030740; 
31.9720710; 33.9678669]; 
 
for i = 1:size(LAB,1); 
    %calculated M minus the mass of H+ 
    M = LAB(i,3:10)*Masses - 1.0072764; 
    %M = LAB(i,1); 
    M3 = M + 3.0219268; %theoretical M+3 mass 
    M6 = M + 6.0438536; %theoretical M+6 mass 
    if d_max >= 1 
        %Search for m/z in 'RED_temp' closest to theoretical M+3 
        [M3_diff, M3_in] = min( abs( M3 - RED_temp(:,1) ) ); 
        %if M+3 found & formula contains at least 1 O or N AND at least 1 
DBE... 
        if tol >= 1000000 * M3_diff / M3 && sum(LAB(i,7:8)) > 0 && LAB(i,16) > 
0 
            %increase ketone/aldehyde ID by 1 
            LAB(i,18) = LAB(i,18) + 1; 
            %if formulae are to be calculated for 'peaks'... 
            if nargout > 2 
                %mass shift-based molecular formula stored in 'RED_temp' 
                RED_temp(M3_in,3:17) = LAB(i,3:17); 
                RED_temp(M3_in,5) = RED_temp(M3_in,5) + 1; 
                RED_temp(M3_in,6) = 1; 
                calc = (RED_temp(M3_in,3:10)*Masses)-1.0072764; 
                meas = RED_temp(M3_in,1); 
                RED_temp(M3_in,11) = 1000000 * (meas - calc)/calc; 
                RED_temp(M3_in,13) = sum(RED_temp(M3_in,5:6)) / 
sum(RED_temp(M3_in,3:4)); 
                AI_d = 0.5 + sum(RED_temp(M3_in,3:4)) - RED_temp(M3_in,7) - 
sum(RED_temp(M3_in,9:10)) - RED_temp(M3_in,5)/2; 
                AI_c = sum(RED_temp(M3_in,3:4)) - RED_temp(M3_in,7) - 
sum(RED_temp(M3_in,9:10)) - RED_temp(M3_in,8); 
                RED_temp(M3_in,15) = AI_d / AI_c; 
                RED_temp(M3_in,16) = RED_temp(M3_in,16) - 1; 
                RED_temp(M3_in,17) = RED_temp(M3_in,17) - 1; 
            end 
        end 
    end 
 
    if d_max >= 2 
        %Search for m/z in 'RED_temp' closest to theoretical M+6 
        [M6_diff, M6_in] = min( abs( M6 - RED_temp(:,1) ) ); 
        %if M+6 found & formula contains at least 2 O or N AND at least 2 
DBE... 
        if tol >= 1000000 * M6_diff / M6 && sum(LAB(i,7:8)) > 1 && LAB(i,16) > 
1 
            %increase ketone/aldehyde ID by 2 
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            LAB(i,18) = LAB(i,18) + 2; 
            %if formulae are to be calculated for 'peaks'... 
            if nargout > 2 
                %mass shift-based molecular formula stored in 'RED_temp' 
                RED_temp(M6_in,3:17) = LAB(i,3:17); 
                RED_temp(M6_in,5) = RED_temp(M6_in,5) + 2; 
                RED_temp(M6_in,6) = 2; 
                calc = (RED_temp(M6_in,3:10)*Masses)-1.0072764; 
                meas = RED_temp(M6_in,1); 
                RED_temp(M6_in,11) = 1000000 * (meas - calc)/calc; 
                RED_temp(M6_in,13) = sum(RED_temp(M6_in,5:6)) / 
sum(RED_temp(M6_in,3:4)); 
                AI_d = 1 + sum(RED_temp(M6_in,3:4)) - RED_temp(M6_in,7) - 
sum(RED_temp(M6_in,9:10)) - RED_temp(M6_in,5)/2 - 1; 
                AI_c = sum(RED_temp(M6_in,3:4)) - RED_temp(M6_in,7) - 
sum(RED_temp(M6_in,9:10)) - RED_temp(M6_in,8); 
                RED_temp(M6_in,15) = AI_d / AI_c; 
                RED_temp(M6_in,16) = RED_temp(M6_in,16) - 2; 
                RED_temp(M6_in,17) = RED_temp(M6_in,17) - 2; 
            end 
        end 
    end 
end 
 
 
%Creates 'LAB_T' 
num  = zeros(4,1); 
for i = 1:size(LAB,1); 
    if LAB(i,18) == 0 
        num(1) = num(1) + 1; 
    elseif LAB(i,18) == 1 
        num(2) = num(2) + 1; 
    elseif LAB(i,18) == 2 
        num(3) = num(3) + 1; 
    elseif LAB(i,18) == 3 
        num(4) = num(4) + 1; 
    end 
end 
perc = 100 * num / sum(num); 
Categories = {'non      ' 
              'singly   ' 
              'doubly   ' 
              'both     '}; 
LAB_T = table(num, perc, 'RowNames',Categories); 
disp(LAB_T); 
 
 
 
%Calculates molecular formulae for remaining peaks in 'RED_temp' 
if nargout > 2 
    [RED, RED_T] = ms_form2(RED_temp, tol, n_max, s_max, 0); 
end 
 
end 
 
%====================================== 
% Daniel R. Baluha 
% University of Maryland, College Park 
% June 2015 
% MATLAB version R2013b 
% OS X version 10.9.5 
%====================================== 

============================================================================ 
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A9.6. Peak/formula list subset selection 

function [ Selected ] = ms_sub( List, ColVar, VarMin, VarMax ) 
%Returns a truncated list of peaks or molecular formula based on a minimum 
%and maximum value of a given variable 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%INPUT ARGUMENTS 
% 
%'List': Complete list of molecular formulae (or m/z values) 
% 
%'ColVar': Column number of 'List' containing the variable on which to base 
%the truncation 
% 
%'VarMin': Minimum value of column specified by 'ColVar' allowed in the 
%output variable 'Selected'. 
% 
%'VarMax': Maximum value of column specified by 'ColVar' allowed in the 
%output variable 'Selected'. If 'VarMax' is not given, then 'VarMin' 
%specifies the only value allowed in the column specified by 'ColVar' is 
%'VarMin'. 
% 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%OUTPUT ARGUMENTS 
% 
%'Selected': List of molecular formula (or m/z values; derived from 'List') 
%consisting only of rows in which the values of the column specified by 
%'ColVar' is greater than or equal to 'VarMin' and less than 'VarMax' (if 
%'VarMax' is specified) 
% 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
x = 0; 
cols = size(List,2); 
Selected = zeros(1,cols); 
for i = 1 : size(List,1) 
    if nargin == 3 
        if List(i,ColVar) == VarMin 
            x = x + 1; 
            Selected(x,1:cols) = List(i,1:cols); 
        end 
    elseif nargin == 4 
        if List(i,ColVar) >= VarMin && List(i,ColVar) < VarMax 
            x = x + 1; 
            Selected(x,1:cols) = List(i,1:cols); 
        end 
    end 
end 
 
end 
 
%====================================== 
% Daniel R. Baluha 
% University of Maryland, College Park 
% June 2015 
% MATLAB version R2013b 
% OS X version 10.9.5 
%====================================== 

============================================================================ 
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A9.7. Comparison of peaks and/or molecular formulae 

function [ TAB_p, ALIGNED, TAB_ni ] = ms_compare( tol, varargin ) 
 
%Compares two or more mass spectral data sets (molecular formulae or 
%peak lists). Returns either a table of Venn diagram data or a dendrogram 
%displaying Bray-Curtis linkages. 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 
%INPUT ARGUMENTS 
% 
% 'tol' m/z error (in ppm) tolerance used for peak alignment 
% 
% 'varargin'. Matrices (at least 2) comprising peak lists (2 columns) or 
% molecular formulae lists (at least 18 columns) to be compared. 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 
%OUTPUT ARGUMENTS 
% 
% 'ALIGNED' Aligned peaks or molecular formulae containing the following 
% columns: 
% 
%  mz int1 int2....intN 
%  1  2     3      1+N 
% 
% 
% 'TAB_p' 
% If 2 or 3 peak or formula lists are compared: 
%     Table of venn diagram data. Columns: (1) number and (2)percentage of 
%     peaks or formulae in the subset specified by each row, and (3) number 
%     and (4) percentages of D-containing formulae in the subset specified 
%     by each row. 
% 
%               variables (columns): 
%              A_num  A_per  D_num  D_per 
%      rows     (1)    (2)    (3)    (4) 
%      (1) A-only 
%      (2) A & B 
%      (3) B-only 
%      (4) B & C 
%      (5) C-only 
%      (6) C & A 
%      (7) A,B,C 
% 
% If 4 or more peak or formula lists are compared: 
%     Matrix containing Bray-Curtix linkage matrix, where the numbers of 
%     the rows and column corresponds to a single sample in the order in 
%     which they were entered in the function. 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
 
%Aligns molecular formulae or mz 
Masses = [12; 13.0033548; 1.0078250; 2.0141018; 15.9949146; 14.0030740; 
31.9720710; 33.9678669]; 
TEMP = 0; 
start = 1; 
for i = 1 : nargin-1 
    out = varargin{i}; 
    out_rows = size(out,1); 
    out_cols = size(out,2); 
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    stop = start + out_rows - 1; 
    if out_cols > 2 %formula & intensity data are inputted 
        alignd_cols = 9; %formula 
        TEMP(start:stop,2:9) = out(:,3:10); 
        TEMP(start:stop,i+9) = out(:,2); 
        start = stop+1; 
    elseif out_cols == 2 %only m/z  & intensity data are inputted 
        alignd_cols = 1; %m/z 
        TEMP(start:stop,1) = out(:,1); 
        TEMP(start:stop,i+1) = out(:,2); 
        start = stop+1; 
    end 
end 
if alignd_cols == 9 
    for i = 1 : size(TEMP,1) 
        TEMP(i,1) = (TEMP(i,2:9)*Masses) - 1.0072764; 
    end 
end 
TEMP = sortrows(TEMP, 1); 
ALIGNED = zeros(1, size(TEMP,2)); 
n_aligned = 1; 
curr_strt = 1; 
test_row = 1; 
while test_row < size(TEMP,1); 
    test_row = test_row + 1; 
    if alignd_cols == 1; 
        diff = 1000000 * ( TEMP(test_row,1) - TEMP(curr_strt,1) ) / 
TEMP(curr_strt,1); 
        if diff > tol 
            %adds aligned data to 'aligned' 
            ALIGNED (n_aligned, 1) = mean( TEMP (curr_strt:test_row-1, 1) ); 
            for spec = 1 : nargin-1 
                ALIGNED (n_aligned, spec+1 ) = sum ( TEMP (curr_strt:test_row-
1, spec+1) ); 
            end 
            %start new loop 
            n_aligned = n_aligned + 1; 
            curr_strt = test_row; 
            %in_rnge = 1; 
        end 
    elseif alignd_cols == 9; 
        if ~isequal( TEMP (test_row,1:8), TEMP (curr_strt,1:8) ) 
            %adds aligned data to 'masses' and 'aligned' 
            ALIGNED (n_aligned, 1:9) = TEMP (curr_strt, 1:9); 
            for spec = 1 : nargin - 1 
                ALIGNED (n_aligned, spec+9 ) = sum ( TEMP (curr_strt:test_row-
1, spec+9) ); 
            end 
            %start new loop 
            n_aligned = n_aligned + 1; 
            curr_strt = test_row; 
            %in_rnge = 1; 
        end 
    end 
end 
if alignd_cols == 9 
    if ~isequal( ALIGNED (n_aligned-1,1:8), TEMP (size(TEMP,1),1:8) ) 
        ALIGNED (n_aligned,1:7+nargin) = TEMP (size(TEMP,1),1:7+nargin); 
    end 
end 
 
 
%Calculates similarity or Venn diagram data 
if nargin == 3 
    A_num = zeros(3,1); 
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    D_num = zeros(3,1); 
    for i = 1 : size(ALIGNED,1) 
        if ALIGNED(i,alignd_cols+1) > 0 && ALIGNED(i,alignd_cols+2) == 0 
            A_num(1) = A_num(1) + 1; 
            if alignd_cols == 9 
                if ALIGNED(i,5) > 0 
                    D_num(1) = D_num(1) + 1; 
                end 
            end 
        elseif ALIGNED(i,alignd_cols+1) > 0 && ALIGNED(i,alignd_cols+2) > 0 
            A_num(2) = A_num(2) + 1; 
            if alignd_cols == 9 
                if ALIGNED(i,5) > 0 
                    D_num(2) = D_num(2) + 1; 
                end 
            end 
        elseif ALIGNED(i,alignd_cols+1) == 0 && ALIGNED(i,alignd_cols+2) > 0 
            A_num(3) = A_num(3) + 1; 
            if alignd_cols == 9 
                if ALIGNED(i,5) > 0 
                    D_num(3) = D_num(3) + 1; 
                end 
            end 
        end 
    end 
    A_per = 100 * A_num /  sum(A_num); 
    D_per = 100 * D_num /  sum(D_num); 
    Subsets = {'A  ','AB ','B  '}; 
    TAB_p = table(A_num, A_per, D_num, D_per, 'RowNames', Subsets); 
 
elseif nargin == 4 
    A_num = zeros(7,1); 
    D_num = zeros(7,1); 
    for i = 1 : size(ALIGNED,1) 
        if ALIGNED(i,alignd_cols+1) > 0 && ALIGNED(i,alignd_cols+2) == 0 && 
ALIGNED(i,alignd_cols+3) == 0 
            A_num(1) = A_num(1) + 1; 
            if alignd_cols == 9 
                if ALIGNED(i,5) > 0 
                    D_num(1) = D_num(1) + 1; 
                end 
            end 
        elseif ALIGNED(i,alignd_cols+1) > 0 && ALIGNED(i,alignd_cols+2) > 0 && 
ALIGNED(i,alignd_cols+3) == 0 
            A_num(2) = A_num(2) + 1; 
            if alignd_cols == 9 
                if ALIGNED(i,5) > 0 
                    D_num(2) = D_num(2) + 1; 
                end 
            end 
        elseif ALIGNED(i,alignd_cols+1) == 0 && ALIGNED(i,alignd_cols+2) > 0 && 
ALIGNED(i,alignd_cols+3) == 0 
            A_num(3) = A_num(3) + 1; 
            if alignd_cols == 9 
                if ALIGNED(i,5) > 0 
                    D_num(3) = D_num(3) + 1; 
                end 
            end 
        elseif ALIGNED(i,alignd_cols+1) == 0 && ALIGNED(i,alignd_cols+2) > 0 && 
ALIGNED(i,alignd_cols+3) > 0 
            A_num(4) = A_num(4) + 1; 
            if alignd_cols == 9 
                if ALIGNED(i,5) > 0 
                    D_num(4) = D_num(4) + 1; 
                end 
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            end 
        elseif ALIGNED(i,alignd_cols+1) == 0 && ALIGNED(i,alignd_cols+2) == 0 
&& ALIGNED(i,alignd_cols+3) > 0 
            A_num(5) = A_num(5) + 1; 
            if alignd_cols == 9 
                if ALIGNED(i,5) > 0 
                    D_num(5) = D_num(5) + 1; 
                end 
            end 
        elseif ALIGNED(i,alignd_cols+1) > 0 && ALIGNED(i,alignd_cols+2) == 0 && 
ALIGNED(i,alignd_cols+3) > 0 
            A_num(6) = A_num(6) + 1; 
            if alignd_cols == 9 
                if ALIGNED(i,5) > 0 
                    D_num(6) = D_num(6) + 1; 
                end 
            end 
        elseif ALIGNED(i,alignd_cols+1) > 0 && ALIGNED(i,alignd_cols+2) > 0 && 
ALIGNED(i,alignd_cols+3) > 0 
            A_num(7) = A_num(7) + 1; 
            if alignd_cols == 9 
                if ALIGNED(i,5) > 0 
                    D_num(7) = D_num(7) + 1; 
                end 
            end 
        end 
    end 
    A_per = 100 * A_num /  sum(A_num); 
    D_per = 100 * D_num /  sum(D_num); 
    Subsets = {'A  ','AB  ','B  ','BC ','C  ','CA ','ABC'}; 
    TAB_p = table(A_num, A_per, D_num, D_per, 'RowNames', Subsets); 
 
elseif nargin > 4 
 
    %Creates a presence/absence-based data matrix from which to calculate 
    %Bray-Curtis distance matrix between samples. 
    BC_data_PA=ALIGNED( :, alignd_cols+1:size(ALIGNED,2) ); 
    for i=1:size(BC_data_PA,1); 
        for j=1:size(BC_data_PA,2); 
            if BC_data_PA(i,j)>0 
                BC_data_PA(i,j)=1; 
            end 
        end 
    end 
 
    %Calculates Bray-Curtis distance matrix; see note below) 
    BC_data_PA = (BC_data_PA');           % transpose so will operate on 
columns 
    BC_data_PA = (BC_data_PA + 0.00000001); % prevent divide by zero errors 
    [n,p] = size(BC_data_PA); 
    D     = zeros(n); 
    % BRAY-CURTIS SIMILARITY: 
    if p>1 
       for i = 1:n-1 
          x1 = BC_data_PA(i+1:n,:); 
          x2 = BC_data_PA(1:n-i,:); 
          D(i+1:n+1:n*(n-i))=(1-(sum(abs(x1-x2)')'./sum(abs(x1+x2)')')); 
       end 
    end; 
    D              = D+D'; 
    D(1:(n+1):n*n) = ones(n,1); 
    TAB_p            = (1-D); % change output from similarity to distance (DLJ) 
 
    if nargout == 3 
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        %stores local (nominal mass) maxima of each column 
        comp_nm = (floor(ALIGNED(1,1)) : floor(ALIGNED(size(ALIGNED,1),1)))'; 
        comp_nm(1 : size(comp_nm,1), 2 : nargin-1) = zeros(size(comp_nm,1), 
nargin-2); 
        for z = 1 : nargin - 2 
            for i = 1 : size(comp_nm) 
                for j = 1 : size(ALIGNED,1) 
                    if ALIGNED(j,alignd_cols+z) > comp_nm(i,z+1) && 
floor(ALIGNED(j,1)) == comp_nm(i,1) 
                        comp_nm(i,z+1) = ALIGNED(j,alignd_cols+z); 
                    end 
                end 
            end 
        end 
        BC_data_NI=ALIGNED( :, alignd_cols+1:size(ALIGNED,2) ); 
 
        %normalizes relative intensities to (nonzero) local maxima 
        for j=1:size(BC_data_NI,2); 
            for i=1:size(BC_data_NI,1); 
                if BC_data_NI(i,j) > 0 
                    for z = 1 : size(comp_nm,1) 
                        if comp_nm(z,1) == floor(ALIGNED(i,1)) && 
comp_nm(z,j+1) > 0 
                            BC_data_NI(i,j) = 100 * BC_data_NI(i,j) / 
comp_nm(z,j+1); 
                        end 
                    end 
                end 
            end 
        end 
 
        %Calculates Bray-Curtis distance matrix; see note below) 
        BC_data_NI = (BC_data_NI');           % transpose so will operate on 
columns 
        BC_data_NI = (BC_data_NI + 0.00000001); % prevent divide by zero errors 
        [n,p] = size(BC_data_NI); 
        D     = zeros(n); 
        % BRAY-CURTIS SIMILARITY: 
        if p>1 
           for i = 1:n-1 
              x1 = BC_data_NI(i+1:n,:); 
              x2 = BC_data_NI(1:n-i,:); 
              D(i+1:n+1:n*(n-i))=(1-(sum(abs(x1-x2)')'./sum(abs(x1+x2)')')); 
           end 
        end; 
        D              = D+D'; 
        D(1:(n+1):n*n) = ones(n,1); 
        TAB_ni            = (1-D); % change output from similarity to distance 
(DLJ) 
    end 
 
end 
 
%note for lines 228 - 242 & 274 - 288: 
% 
% ======================================================================= 
%       Copyright (c) 1997 B. Planque - Sir Alister Hardy Foundation for Ocean 
Science 
%       bp@wpo.nerc.ac.uk 
%       Permission is granted to modify and re-distribute this code 
%       in any manner as long as this notice is preserved. 
%       All standard disclaimers apply. 
% ======================================================================= 
% 
% modified by David L. Jones (Feb-2001) after "distance.m" IN "EDAT Toolbox" 
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% to only calculate a Bray-Curtis distance matrix between columns 
% 
% This file is part of the FATHOM Toolbox for Matlab. 
% 
% modified by Daniel R. Baluha (June 2015) after "f_braycurtis.m" in 
%"FATHOM toolbox" 
% 
% 
%====================================== 
% Daniel R. Baluha 
% University of Maryland, College Park 
% June 2015 
% MATLAB version R2013b 
% OS X version 10.9.5 
%====================================== 

 

============================================================================ 

A9.8. UV-visible absorption and emission analysis 

function [ab_corr, em_corr, ex_data] = optics4( FileNames, Parameters) 
 
%Applies the following data analyses/corrections to absorbance (and 
%fluorescence) data for a single sample. Raw data are read from the raw 
%text files that are exported directly from the UVPC-2401 (and the AB2). 
 
 
% 1. ABSORBANCE, LOAD & FORMAT 
        % Raw absorbance data from .txt files exported directly from the 
        % UVPC-2401 with filenames specified in 'FileNames' are opened and 
        % converted to n x 2 matrices. 
 
% 2. ABSORBANCE, BLANK SUBTRACTION 
        % Absorbance values in 'ab_corr' are equal to those in the 
        % absorbance spectrum of the sample minus those in the 
        % absorbance spectrum of the blank. 
 
% 3. ABSORBANCE, BASELINE CORRECTION 
        % An average and standard deviation of absorbance is calculated 
        % from the wavelength range specified by 'Parameters(1:2,1)'. All 
        % new absorbance values in 'ab_corr' equal the initial absorbance 
        % values minus the average baseline absorbance. Only performed if 
        % Parameters(1:2,1) are all non-zero. 
 
% 4. ABSORBANCE, SPECTRAL SLOPE CALCULATION 
        % CDOM absorbance spectral slope (S) calculated and displayed using 
        % a non-linear least squares fitting of the equation 
        % 
        % ab_wl = ab_ref *e^ - S ( wl - ref) 
        % 
        %    ref: Wavelength specified in 'Parameters(3,2) 
        % 
        %    ab_wl & ab_ref: absorbance at a wavelength within the range 
        %    specified by 'Parameters(1:2,2)' and Parameters(3,2) 
        % 
        % Only performed if Paramters(1:3,2) are all non-zero. 
 
% 5. EMISSION, LOAD & FORMAT 
        % Raw emission data from .txt files exported directly from the 
        % AB2 with filenames specified in 'FileNames' are opened and 
        % converted to n x m matrices. 
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% 6. EMISSION, BLANK SUBTRACTION 
        % Emission intensity values in 'em_corr' are equal to those in the 
        % emission spectrum of the blank subtracted from those in the 
        % emission spectrum of the sample. 
 
% 7. EMISSION, SMOOTHING 
        % Individual emission spectra in 'eem_corr' are smoothed using 
        % a 'smoothing'-point moving average, where'smoothing' is an odd 
        % integer specified in the input variable 'Parameters(1,4)'. 
        % Performed only if 'smoothing' is an odd integer. 
 
% 8. EMISSION, SCATTER PEAK EXCISION 
        % Replaces intensity data at wavelengths +/- 10 nm of the center of 
        % a scatter peak with interpolated intensities. Wavelengths of the 
        % center of the  1st order Raman, 1st order Rayleigh, and 2nd order 
        % Rayleigh peaks ('scatter_wl') from excitation at wavelength 'ex' 
        % are determined from the following equations, (respectively): 
        % 
        %   scatter_wl = 10000000 / ( 10000000/ex - 3400 ) 
        %   scatter_wl = ex 
        %   scatter_wl = 2*ex 
        % 
        % Peak excision performed only if Parameters(1:3,5) are equal to 1 
        % for the corresponding scatter peak. 
 
% 9. EMISSION, WAVELENGTH OF MAXIMUM EMISSION 
        % Calculates wavelength of maximum emission for each excitation 
        % wavelength, given in 'ex_data' 
 
%10. EMISSION, INNER FILTER EFFECT CORRECTION 
        % Calculates and applies an inner filter affect correction factor 
        % for all intensity values based on the corrected absorbance 
        % values. 
 
%11. EMISSION, CONVERSION TO QUININE SULFATE UNITS 
        % Converts intensities in 'em_corr' to quinine sulfate units (QSU), 
        % where 1 QSU = intensity of 1 ppb quinine sulfate at 
        % excitation/emission wavelengths 350/450 nm. 
        % 
 
 
%12. EMISSION, QUANTUM YIELD DETERMINATION 
 
%INPUT ARGUMENTS 
 
% 'FileNames' 2x1, 4x1, 6x1, or 8x1 cell with the following data: 
%   { ab_sample;  ab_blank;  (}) 
%     em_sample;  em_blank;  (}) 
%     em_qs;      ab_qs;     (}) 
%     em_h2so4;   ab_h2so4   } 
 
% 'Parameters' 3x6 double (matrix) with the following data: 
%  [sc_min,   bl_min,   ex_min,   smoothing,    ram_1,   c_smp_e/c_smp_a; 
%   sc_max,   bl_max,   ex_max,   pife_corr,    ray_1,   c_qs_a; 
%   sc_ref,   em_norm,  ex_int,   sife_corr,    ray_2,   c_qs_e ] 
 
 
%OUTPUT ARGUMENTS 
 
% 'ab_corr' Corrected absorbance data 
% 
% 'em_corr' Corrected emission data 
% 
% 'ex_data' n x 2 matrix containing the following: 
% 
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%       column 1: excitation wavelengths 
%       column 2: wavelength of maximum emission 
%       column 3: fluorescence quantum yield 
 
 
%OUTPUT TEXT 
 
% baseline avg: average absorbance of the specified baseline region before 
% correction 
 
% baseline std: Standard deviation of the absorbance of the specified 
% basline region before correction. 
 
% spectral slope (S): Spectral slope calculated by non-linear least squares 
% fitting 
 
% residual: defined by SUM(exp - thr)^2 for fitted data, where 'exp' and 
% 'thr' are the experimental and theoretical absorbance values, 
% respectively. 
 
 
%ABSORBANCE DILUTION FACTOR 
if Parameters(1,6) > 0 
    df_smp = Parameters(1,6); 
else 
    df_smp = 1; 
end 
 
 
%ABSORBANCE, LOAD & FORMAT 
fileID = fopen( char( FileNames(1,1) ),'r' ); 
opened_smp = textscan( fileID,'%s','delimiter','\r' ); 
for i = 1:length( opened_smp{1} ) 
    row = str2num( char( opened_smp{1}{i} ) ); 
    if length(row)==2 
        ab_raw_smp(i,:) = row; 
    end 
end 
fileID = fopen( char( FileNames(2,1) ),'r' ); 
opened_blk = textscan( fileID,'%s','delimiter','\r' ); 
for i = 1:length( opened_blk{1} ) 
    row = str2num( char( opened_blk{1}{i} ) ); 
    if length(row)==2 
        ab_raw_blk(i,:) = row; 
    end 
end 
 
 
%ABSORBANCE, BLANK SUBTRACTION 
ab_corr (:,1) = ab_raw_smp(:,1); 
ab_corr (:,2) = ab_raw_smp(:,2) - ab_raw_blk(:,2); 
 
 
%ABSORBANCE, BASELINE CORRECTION 
bl_min = Parameters(1,2); 
bl_max = Parameters(2,2); 
if bl_min > 0 && bl_max > 0 
    n=0; 
    for i=1:size(ab_corr) 
        if ab_corr(i,1) >= bl_min && ab_corr(i,1) <= bl_max 
            n=n+1; 
            base(n,1)=ab_corr(i,2); 
        end 
    end 
    disp(['baseline avg = ',num2str(mean(base),'%10.4f\n') ]); 
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    disp(['baseline std = ',num2str(std(base),'%10.4f\n') ]); 
    for i = 1:size(ab_corr,1) 
        ab_corr(i,2) = ab_corr(i,2) - mean(base); 
    end 
end 
 
 
%ABSORBANCE, SPECTRAL SLOPE CALCULATION 
sc_min = Parameters(1,1); 
sc_max = Parameters(2,1); 
sc_ref = Parameters(3,1); 
if sc_min > 0 && sc_max > 0 && sc_ref > 0 
    n=0; 
    for i=1:size(ab_corr,1) 
        if ab_corr(i,1) >= sc_min && ab_corr(i,1) <= sc_max 
            n=n+1; 
            xdata(n,1) = ab_corr(i,1); 
            ydata(n,1) = ab_corr(i,2); 
        end 
        if ab_corr(i,1)==sc_ref 
            ab_ref=ab_corr(i,2); 
        end 
    end 
    fun=@(s,xdata) ab_ref.*exp(-s(1).*(xdata(:,1)-sc_ref)); 
    [s_slope, s_residual]=lsqcurvefit(fun,0.0001,xdata,ydata); 
    disp(['spectral slope (S) = ',num2str(s_slope)]); 
    disp(['residual = ',num2str(s_residual)]); 
end 
 
 
ex_min = Parameters(1,3); 
ex_max = Parameters(2,3); 
ex_int = Parameters(3,3); 
if length(FileNames) >= 4 && ex_min > 0 && ex_max > 0 && ex_int > 0 
 
    %EMISSION, LOAD & FORMAT 
    %Load sample 
    fileID = fopen( char( FileNames(3,1) ),'r' ); 
    opened = textscan( fileID,'%s','delimiter','\r' ); 
    for i=1:length( opened{1} ) 
        row=str2num( char( opened{1}{i} ) ); 
        if length(row)==2 
            em_raw_smp(i,:) = row; 
        end 
    end 
    em_raw_smp( all(~em_raw_smp,2), : ) = []; 
    %Load blank 
    fileID = fopen( char( FileNames(4,1) ),'r' ); 
    opened = textscan( fileID,'%s','delimiter','\r' ); 
    for i=1:length( opened{1} ) 
        row=str2num( char( opened{1}{i} ) ); 
        if length(row)==2 
            em_raw_blk(i,:) = row; 
        end 
    end 
    em_raw_blk( all(~em_raw_blk,2), : ) = []; 
    %Pre-allocate excitation/emission wavelengths 
    em_min = min(em_raw_smp(:,1)); 
    em_max = max(em_raw_smp(:,1)); 
    em_int = em_raw_smp(2,1) - em_raw_smp(1,1); 
    EMs = em_min : em_int : em_max; 
    EXs = ex_min : ex_int : ex_max; 
    em_smp(2:length(EMs)+1, 1) = EMs; 
    em_smp(1, 2:length(EXs)+1) = EXs; 
    em_blk = em_smp; 
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    %format sample 
    i = 1; 
    j = 1; 
    last = em_max; 
    for n = 1:size(em_raw_smp,1) 
        if last > em_raw_smp(n,1) 
            j = j + 1; 
            i = 2; 
        else 
            i = i + 1; 
        end 
        if em_raw_smp(n,1)==em_smp(i,1); 
            em_smp(i,j) = em_raw_smp(n,2); 
        end 
        last = em_raw_smp(n,1); 
    end 
    %format blank 
    i = 1; 
    j = 1; 
    last = em_max; 
    for n = 1:size(em_raw_blk,1) 
        if last > em_raw_blk(n,1) 
            j = j + 1; 
            i = 2; 
        else 
            i = i + 1; 
        end 
        if em_raw_blk(n,1)==em_blk(i,1); 
            em_blk(i,j) = em_raw_blk(n,2); 
        end 
        last = em_raw_blk(n,1); 
    end 
 
 
    %EMISSION, BLANK SUBTRACTION 
    em_corr = em_smp; 
    X = size(em_corr,1); 
    Y = size(em_corr,2); 
    em_corr(2:X,2:Y) = em_corr(2:X,2:Y) - em_blk(2:X,2:Y); 
 
 
    %EMISSION, SMOOTHING 
    if Parameters(1,4)>0 && mod(Parameters(1,4),2)==1 
        smoothing = Parameters(1,4); 
        for i = 1.5+(smoothing/2) : X - floor(smoothing/2) 
            for j = 2 : Y 
                i_start = i - floor(smoothing/2); 
                i_end = i + floor(smoothing/2); 
                em_corr(i,j) = sum( em_corr(i_start:i_end,j) ) / smoothing; 
            end 
        end 
    end 
 
 
    %EMISSION, SCATTER PEAK EXCISION (Raman peak) 
    if Parameters(1,5)==1 
        for j = 2 : Y; 
            curr_raw = em_corr(2:X,1); 
            curr_raw(:,2) = em_corr(2:X,j); 
            %center wavelength of the scatter peak 
            scatter_wl = 10000000 / ( 10000000/em_corr(1,j) - 3400 ); 
            %indices of wavelengths +/- 10 nm of the center of the scatter peak 
            [~, lower_n] = min( abs( (scatter_wl - 10) - curr_raw(:,1) ) ); 
            [~, upper_n] = min( abs( (scatter_wl + 10) - curr_raw(:,1) ) ); 
            %wavelength/intensity data outside of scatter peak range 
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            curr_ref = curr_raw; 
            curr_ref(lower_n : upper_n, :) = []; 
            %new emission wavelength/intensity data 
            curr_new = curr_raw(:,1); 
            curr_new(:,2) = interp1 ( curr_ref(:,1), curr_ref(:,2), 
curr_new(:,1),'spline' ); 
            curr_new(isnan(curr_new))=0; 
            %replaces input em_corr with new (excised) em_corr data 
            em_corr(2:X,j)=curr_new(:,2); 
 
        end 
    end 
 
 
    %EMISSION, SCATTER PEAK EXCISION (1st-order Rayleigh peak) 
    if Parameters(2,5)==1 
        for j = 2 : Y; 
            curr_raw = em_corr(2:X,1); 
            curr_raw(:,2) = em_corr(2:X,j); 
            %center wavelength of the scatter peak 
            scatter_wl = em_corr(1,j) ; 
            %indices of wavelengths +/- 10 nm of the center of the scatter peak 
            [~, lower_n] = min( abs( (scatter_wl - 10) - curr_raw(:,1) ) ); 
            [~, upper_n] = min( abs( (scatter_wl + 10) - curr_raw(:,1) ) ); 
            %wavelength/intensity data outside of scatter peak range 
            curr_ref = curr_raw; 
            curr_ref(lower_n : upper_n, :) = []; 
            %new emission wavelength/intensity data 
            curr_new = curr_raw(:,1); 
            curr_new(:,2) = interp1 ( curr_ref(:,1), curr_ref(:,2), 
curr_new(:,1),'spline'); 
            curr_new(isnan(curr_new))=0; 
            %replaces input em_corr with new (excised) em_corr data 
            em_corr(2:size(em_corr,1),j)=curr_new(:,2); 
        end 
    end 
 
 
    %EMISSION, SCATTER PEAK EXCISION (2nd-order Rayleigh peak) 
    if Parameters(2,5)==1 
        for j = 2 : Y; 
            curr_raw = em_corr(2:X,1); 
            curr_raw(:,2) = em_corr(2:X,j); 
            %center wavelength of the scatter peak 
            scatter_wl = 2*em_corr(1,j) ; 
            %indices of wavelengths +/- 10 nm of the center of the scatter peak 
            [~, lower_n] = min( abs( (scatter_wl - 10) - curr_raw(:,1) ) ); 
            [~, upper_n] = min( abs( (scatter_wl + 10) - curr_raw(:,1) ) ); 
            %wavelength/intensity data outside of scatter peak range 
            curr_ref = curr_raw; 
            curr_ref(lower_n : upper_n, :) = []; 
            %new emission wavelength/intensity data 
            curr_new = curr_raw(:,1); 
            curr_new(:,2) = interp1 ( curr_ref(:,1), curr_ref(:,2), 
curr_new(:,1),'spline' ); 
            curr_new(isnan(curr_new))=0; 
            %replaces input em_corr with new (excised) em_corr data 
            em_corr(2:X,j)=curr_new(:,2); 
        end 
    end 
 
 
    %EMISSION, WAVELENGTH OF MAXIMUM EMISSION 
    ex_data=zeros(Y-1,1); 
    for j = 2 : size(em_corr,2); 
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        ex_data(j-1,1)=em_corr(1,j); 
        [~,idx] = max( em_corr( 2:X ,j ) ); 
        ex_data(j-1,2)=em_corr(idx+1,1); 
    end 
 
 
    %EMISSION, INNER FILTER EFFECT CORRECTION 
    ifec = ones(X,Y); 
    %Determines excitation wavelength (primary) correction factor 
    if Parameters(2,4) 
        for z=1:size(ab_corr,1) 
            for j=2:Y 
                if ab_corr(z,1)==em_corr(1,j); 
                    ifec(2:X,j)=ifec(2:X,j)*3.1623^-(ab_corr(z,2)/df_smp); 
                end 
            end 
        end 
    end 
    %Determines emission wavelength (secondary) correction factor 
    if Parameters(3,4) 
        for z=1:size(ab_corr,1) 
            for i=2:X; 
                if ab_corr(z,1)==em_corr(i,1); 
                    ifec(i,2:Y)=ifec(i,2:Y)*3.1623^-(ab_corr(z,2)/df_smp); 
                end 
            end 
        end 
    end 
    %Applies inner filter correction 
    for i=1:X 
        for j=1:Y 
            em_corr(i,j) = em_corr(i,j) / ifec (i,j); 
        end 
    end 
 
end 
 
 
if length(FileNames) >= 5 && Parameters(2,6)>0 && Parameters(3,6)>0 
 
    %Load em_qs 
    fileID = fopen( char( FileNames(5,1) ),'r' ); 
    opened = textscan( fileID,'%s','delimiter','\r' ); 
    for i=1:length( opened{1} ) 
        row=str2num( char( opened{1}{i} ) ); 
        if length(row)==2 
            em_qs(i,:) = row; 
        end 
    end 
    em_qs( all(~em_qs,2), : ) = []; 
    %concentration of quinine sulfate (in ppb) for emission measurements 
    c_qs_e = Parameters(3,6); 
 
    %processing and blank subtraction of QS emission spectrum 
    if length(FileNames) >= 7 
        %Loads em_h2so4 (if specified) 
        fileID = fopen( char( FileNames(7,1) ),'r' ); 
        opened = textscan( fileID,'%s','delimiter','\r' ); 
        for i=1:length( opened{1} ) 
            row=str2num( char( opened{1}{i} ) ); 
            if length(row)==2 
                em_qs_blk(i,:) = row; 
            end 
        end 
    else 
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        %Uses em_blk at ex=350 nm for blank subtraction 
        for j=2:Y 
            if em_blk(1,j) == 350 
                em_qs_blk_pre = [em_blk(2:X,1) em_blk(2:X,j)]; 
            end 
        end 
        n = 0; 
        for i = 1:size(em_qs_blk_pre,1) 
            for z = 1:size(em_qs,1) 
                if em_qs_blk_pre(i,1) == em_qs(z,1) 
                    n = n + 1; 
                    em_qs_blk(n,1:2)=em_qs_blk_pre(i,1:2); 
                end 
            end 
        end 
    end 
    em_qs(:,2) = em_qs(:,2) - em_qs_blk(:,2); 
 
    %smoothing of QS emission spectrum 
    if Parameters(1,4)>0 && mod(Parameters(1,4),2)==1 
        smoothing = Parameters(1,4); 
        for i = 1.5+(smoothing/2) : size(em_qs,1) - floor(smoothing/2) 
            i_start = i - floor(smoothing/2); 
            i_end = i + floor(smoothing/2); 
            em_qs(i,2) = sum( em_qs(i_start:i_end,2) ) / smoothing; 
        end 
    end 
 
 
    %EMISSION, CONVERSION TO QUININE SULFATE UNITS 
    if Parameters(3,2) == 1 
        %gets emission of quinine sulfate at 450 nm 
        [~, n_450] = min( abs( (450) - em_qs(:,1) ) ); 
        em_qs_450 = em_qs(n_450,2); %emission of 'c_qs_e' ppb QS 
        em_corr(2:X,2:Y) = em_corr(2:X,2:Y) * (c_qs_e / em_qs_450); 
        em_qs(:,2) = em_qs(:,2) * (c_qs_e / em_qs_450); 
    end 
 
 
    %Raman peak excision and interpolation (EM = 397 +/- 10 nm) 
    if Parameters(1,5)==1 
        curr_raw = em_qs(:,1); 
        curr_raw(:,2) = em_qs(:,2); 
        %indices of wavelengths +/- 10 nm of the center of the scatter peak 
        [~, lower_n] = min( abs( 387 - curr_raw(:,1) ) ); 
        [~, upper_n] = min( abs( 407 - curr_raw(:,1) ) ); 
        %wavelength/intensity data outside of scatter peak range 
        curr_ref = curr_raw; 
        curr_ref(lower_n : upper_n, :) = []; 
        %new emission wavelength/intensity data 
        curr_new = curr_raw(:,1); 
        curr_new(:,2) = interp1 ( curr_ref(:,1), curr_ref(:,2), 
curr_new(:,1),'spline' ); 
        curr_new(isnan(curr_new))=0; 
        %replaces input em_corr with new (excised) em_corr data 
        em_qs(:,2)=curr_new(:,2); 
    end 
 
    %DETERMINATION OF QUANTUM YIELD 
    if length(FileNames) >= 6 && Parameters(3,6)~=0 
        c_qs_a = Parameters(2,6); 
        %Load ab_qs 
        fileID = fopen( char( FileNames(6,1) ),'r' ); 
        opened = textscan( fileID,'%s','delimiter','\r' ); 
        for i=1:length( opened{1} ) 
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            row=str2num( char( opened{1}{i} ) ); 
            if length(row)==2 
                ab_qs(i,:) = row; 
            end 
        end 
        %blank subtract ab_qs 
        if length(FileNames) >= 7 
            %Load and subtract ab_h2so4 from ab_qs 
            fileID = fopen( char( FileNames(6,1) ),'r' ); 
            opened = textscan( fileID,'%s','delimiter','\r' ); 
            for i=1:length( opened{1} ) 
                row=str2num( char( opened{1}{i} ) ); 
                if length(row)==2 
                    ab_h2so4(i,:) = row; 
                end 
            end 
            ab_qs(:,2) = ab_qs(:,2) - ab_h2so4(:,2); 
        else 
            ab_qs(:,2) = ab_qs(:,2) - ab_raw_blk(:,2); 
        end 
        %sum_I_qs & A_qs 
        sum_I_qs = sum(em_qs(:,2)); 
        [~, n_350] = min( abs( 350 - ab_qs(:,1) ) ); 
        A_qs = ab_qs(n_350,2); 
        %for each excitation wavelength 
        for j = 2:Y 
            sum_I_smp = sum(em_corr(2:X,j)); 
            [~, n_ex] = min( abs( em_corr(1,j) - ab_corr(:,1) ) ); 
            A_smp = ab_corr(n_ex,2); 
            I_s_dv_q = sum_I_smp / sum_I_qs; 
            A_q_dv_s = A_qs / A_smp; 
            cs_a_dv_e = 1 / df_smp; 
            cq_e_dv_a = c_qs_e / c_qs_a; 
            ex_data(j-1,3) = 0.51 * I_s_dv_q * A_q_dv_s * cs_a_dv_e * 
cq_e_dv_a; 
        end 
    end 
end 
 
end 

 

============================================================================ 
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A9.9. Calculations of average molecular weight,  H/C and O/C molar ratios, and mass 

percentages. 

 

Number-averaged molecular weight (AMWN) and weight-averaged molecular weight 

(AMWW), and polydispersity (PD) were calculated for a mass spectral peak list of x 

singly-charged species as follows: 

(1) 𝐴𝑀𝑊! =
!!!!

!
!!!

!!!
!!!

 

(2) 𝐴𝑀𝑊! =
!!
!!!

!
!!!

!!!!!
!!!

 

(3) 𝑃𝐷 = !"#!
!"#!

 

 

where Mi and Ii are the m/z and intensity of the ith species in the mass spectral peak list. 

 

 

Relative intensity-weighted average O/C and H/C molar ratios (O/Cavg and H/Cavg) were 

calculated for a list of x peaks with assigned molecular formulae as follows: 

 

(4) 𝑂/𝐶!"# =
!
!

𝑅𝐼!
!!
!!

!
!!!  

(5) 𝐻/𝐶!"# =
!
!

𝑅𝐼!
!!
!!

!
!!!  

Where Ci, Hi, and Oi , are the numbers of carbon, hydrogen, and oxygen in the ith 

molecular formula in the mass spectral peak list, and RIi is the relative intensity of the 

corresponding peak. Numbers of carbon and hydrogen are calculated from all isotopes 

(i.e. 12C, 13C, 1H, and 2H).  
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The mass percent of each element X was calculated as follows: 

(6) %𝑋!" =
!""    !!,!    !"!    !"!
(!/!!!!.!!")!"#!!!  

Where MWx is the molecular mass of atom x, TIC is the total ion intensity of all peaks 

with molecular formulae, and nx,i, RIi, and m/zi are the numbers of x atoms, relative 

intensity, m/z of the ith peak to which a molecular formula was assigned. 
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