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ABSTRACT

Title of Dissertation: Generalizations and Properties
of the Multiscale Maxima and Zero-Crossings

Representations

Zeev Berman, Doctor of Philosophy, 1992

Dissertation directed by: Professor John Baras
Department of Electrical Engineering
Professor Carlos Berenstein

Department of Mathematics

The analysis of a discrete multiscale edge representation is considered. A general
signal description, called an inherently bounded Adaptive Quasi Linear Representa-
tion (AQLR), motivated by two important-examples, namely, the wavelet maxima
representation, and the wavelet zero-crossings representation, is introduced. This
thesis addresses the questions of uniqueness, stability, and reconstruction. It is
shown, that the dyadic wavelet maxima (zero-crossings) representation is, in gen-
eral, nonunique. Nevertheless, these representations are always stable. Using the
idea of the inherently bounded AQLR, two stability results are proven. For a
general perturbation, a global BIBO stability is shown. For a special case, where
perturbations are limited to the continuous part of the representation, a Lipschitz
condition is satisfied. Two reconstruction algorithms, based on the minimization

of an appropriate cost function, are proposed. The first is based on the integration



of the gradient of the cost function; the second is a standard steepest descent algo-
rithm. Both algorithms are shown to converge. The last part of this dissertation
describes possible modifications in the basic multiscale maxima representations.
The main idea is to preserve the structure of the inherently bounded AQLR, while
allowing a trade-off between reconstruction quality and amount of information
required for representation. In particular, it is shown how quantization can be

considered as an integral part of the representation.
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NOTATION

AQLR Acronym for Adaptive Quasi Linear Representation

o= &8 L

»H =

=~
3

N

=~V

Linear space of real, finite sequences

The set of real numbers

The operator providing the set of local maximizers
The operator providing the set of local minimizers
The operator providing the set of zero-crossings
Linear operator

Linear operator

Maxima representation operator

Operator associated with zero-crossings representation
Signal representation operator

Reconstruction set

Linear operator associated with maxima representation
Type of k

Complement of (-).



Closure of the set (-).
Euclidean norm
Convolution operator
Fourier Transform of ().
Null space of (-)

The gradient of (-) ( as a column vector)

X1



CHAPTER

ONE

INTRODUCTION AND BACKGROUND

An interesting and promising approach to signal representation is to make
explicit important features in the data. The first example, taught in elementary
calculus, is a “sketch”‘ of a function based on extrema of a signal and possibly
of its first few derivatives. The second instance, widely used in computer vision,
is an edge representation of an image. If the size of expected features is a priori
unknown, the need for a multiscale analysis is apparent. Therefore, it is not
surprising that multiscale sharp variation points (edges) are meaningful features
for many signals, and they have been applied, for example, in edge detection
[10, 34], signal compression [31], pattern matching [29], detection of transient

signals [18, 24] and speech analysis [46].

1.1 Introduction

Traditionally, multiscale edges are determined either as extrema of
Gaussian-filtered signals [45] or as zero-crossings of signals convolved with the

Laplacian of a Gaussian (see e.g. [22] for a comprehensive review).



S. Mallat in a series of papers [33, 29, 30] (the last joint with S. Zhong) in-
troduced zero-crossings and extrema of the wavelet transform as a multiscale
edge representation. Two important advantages of this method are low algo-
rithmic complexity and flexibility in choosing the basic filter. Moreover, [29]
and [30] propose reconstruction procedures and show accurate numerical recon-
struction results from zero-crossings and maxima representations. In [29, 30],
as in many other works in this area, thé basic algorithms were developed using
continuous variables. The continuous approach gives an excellent background to
motivate and justify the use of either local extrema or zero-crossings as Impor-
tant signal features. Unfortunately, in the continuous framework, analytic tools
to investigate the information content of the representation are not yet avail-
able. The knowledge about properties of the representations is mainly based
on empirical reconstruction results. From the theoretical point of view, there
are still important open problems, e.g. stability, uniqueness, and structure of a
reconstruction set (a family of signals having the same representation).

Our objective is to analyze these theoretical questions using a model of an
actual implementation. The main assumption is that the data is discrete and
finite. The discrete multiscale maxima and zero-crossings representations are
defined in the general set-up of a linear filter bank, however, the main goal is to
consider a particular case where the filter bank describes the wavelet transform.
Since reconstruction sets of both maxima and zero-crossings representations

have a similar structure, a general form is introduced and named Adaptive



Quasi Linear Representation (AQLR). Moreover, many generalizations of the
basic maxima and zero-crossings representations fit into the framework of the
AQLR. This thesis uses the idea of the AQLR to investigate rigorously three
fundamental questions: uniqueness, stability, and reconstruction.

Regarding the uniqueness question, first, conditions for uniqueness are pre-
sented. By applying these conditions to the wavelet transform-based represen-
tation, a conclusive result is obtained. It turns out, that neither the wavelet
maxima representation nor the wavelet zero-crossings representation is, in gen-
eral, unique. The proof is based on constructing a sinusoidal sequence, whose
maxima (zero-crossings) representations cannot be unique for any dyadic wavelet
transform.

The next subject is stability of the representation. This issue is of great
importance because there are many known examples of unstable ZETO-Crossings
representations. In order to improve stability properties, Mallat [29] has included
additional sums in the standard zero-crossings representation and, together with
Zhong [30], they have introduced the wavelet maxima representation, as a stable
alternative to the zero-crossings representation. Indeed, very good numerical re-
sults have been reported, but stability analysis has not been pursued. Using the
idea of the inherently bounded AQLR, we are able to prove stability results. For
a general perturbation, global BIBO (bounded input, bounded output) stability
is shown. For a special case, where perturbations are limited to the continuous

part of the representation, a Lipschitz condition is satisfied.



One of the most important practical problems is the need for an effective
reconstruction scheme. Mallat and Zhong [30] and Mallat [29] have used an
algorithm based on alternate projections. In this dissertation, an alternative
reconstruction scheme is proposed. The procedure is valid for any inherently
bounded AQLR and is based on an appropriate cost function, whose minimum
is achieved at the reconstruction set. Specifically, we focus on an algorithm which
is based on the integration of the gradient of the cost function. It is shown that
this algorithm approaches the reconstruction set. This method yields efficient,
parallel algorithms, especially promising in the case of the wavelet transform.
In particular, the analog-hardware implementation, which is similar to a neural
network, may lead to a very efficient and fast scheme.

In addition, in a general set-up of the inherently bounded AQLR, a standard
steepest descent algorithm is described and its convergence is shown. Using this
approach for the case of the wavelet maxima representation, an efficient digital
reconstruction algorithm is developed and several examples of reconstruction
are presented.

The last part of this dissertation describes possible modifications in the basic
multiscale maxima representations. The main idea is to preserve the structure of
the inherently bounded AQLR, while allowing a trade-off between reconstruction
quality and amount of information required for representation. From a wealth
of possible modifications, some examples of reasonable modifications have been

chosen, one of them shows how quantization can be considered as an integral part



of the representation and how the reconstruction from an interval successfully

replaces the standard approach of reconstructing from an approximating point.

1.2 Previous works

The multiscale edge representation has mainly been investigated in the zero-
crossings case. The best-known result concerning the reconstruction of a signal
from zero-crossings is the Logan Theorem [27]. This theorem basically states
that zero-crossings uniquely define the signal within the family of band-pass
signals having the property that the width of the band is smaller than the lower
frequency of the band. Proving this theorem, Logan made an analytic exten-
sion of the signal and used standard properties of zeros of analytic functions.
These tools are known as unstable and Logan has noticed that the reconstruc-
tion from zero-crossings appears to be very difficult and impractical. Under
certain restrictions on the class of signals, usually polynomial data have been
assumed, several additional proofs that zero-crossings form a complete (unique)
signal representation have been published. All known proofs do not provide any
stability results since they are based on unstable characterizations of analytic
functions. The reader is referred to [22] for more details and further references.

In addition, in the case of general initial data, the restriction to polynomial
data or even to band-limited signals may provide a poor approximation of the
original signal. The situation is similar to the fact that a polynomial is deter-

mined by its zeros, but any nonzero value of a continuous function cannot be



determined from zero-crossings of the function.

In spite of the last remark, there have been a number of attempts to recon-
struct signals from multiscale zero-crossings, especially in image processing, e.g.
[14, 48, 39]). They have been based on the belief that the restriction of a given
reconstruction scheme into “natural” image data will be sufficiently stable and
precise. Although good reconstruction results have been shown, stability results
have not been proven.

R. Hummel and R. Moniot [22] have exhibited the stability problem by show-
ing two significantly different signals having almost the same multiscale zero-
crossings representations. In order to stabilize the reconstruction of a function
from its zero-crossings, the authors have included the gradient along each zero-
crossing. In fact, improved numerical results have been reported but stability
has not been analyzed. The reconstruction algorithm in [22] is based on the
solution of a Heat Equation; this approach is valid only for the Laplacian of a
Gaussian filter and it is required to record the zero-crossings on a dense sequence
of scales.

Aware of the above problems, S. Mallat [29] proposed to use the wavelet
zero-crossings representation as a complete and stable signal description. In
order to overcome the apparent instability of zero-crossings, he has included the
values of the wavelet transform integral calculated between two consecutive zero-
crossings. Using a reconstruction algorithm based on alternate projections, very

accurate reconstruction results have been shown. In subsequent work, S. Mallat



together with S. Zhong [31] introduced the wavelet maxima representation as an
alternative to the wavelet zero-crossings representation. As in the zero-crossings
case, they have demonstrated very accurate reconstruction results. But, in both
papers, neither uniqueness nor stability has been proven.

Recently two independent counterexamples for uniqueness have been pub-
lished. One example was given in a continuous context by Y. Meyer [35]. His

example is based on two functions :

1+cos(z) if |z| <7
folz) =

0 otherwise

and

2 ar (1 + cos ((2k + 1)z)) if |z| <=
fo(z) =

0 otherwise

Meyer [35] proves that, for a particular wavelet transform, a family of functions
fo(z) + folz), for a suitable set of sequences a = {ax}§’, has the same wavelet
zero-crossings representation. The second counterexample was given by Berman

[3] and will be described in Section 4.4.2

1.3 Wavelet transform

Since the motivation of this work is to investigate the wavelet maxima and zero-
crossings representations, this section gives a brief review on some properties of
the wavelet transform.

The wavelet transform is based on analyzing a signal (function) by dilations



and translations of a single analyzing function. This idea may be traced back to
the beginning of the century [21] or more recently to the work by A. Calderon
[9] in functional analysis and to [44] in quantum field theory and statistical anal-
ysis. In engineering, multiresolution signal processing, used in computer vision,
and subband coding, developed for speech and image compression, have been
recently recognized as different views of discrete wavelet transforms. Therefore,
the wavelet transform should be viewed as a well established mathematically,
unified framework for many signal analysis techniques. Recently, the subject
has drawn much attention, mostly due to establishing connection with multires-
olution analysis by S. Mallat [33], and due to constructing orthonormal bases
of compactly supported wavelets by 1. Daubechies [15]. This paper does not
attempt to survey the tremendous number of works recently published. The
paper [38] by O. Rioul and M. Vetterli is a very good comprehensive tutorial
on wavelets in signal processing and provides an extensive bibliography on the
subject. Other general references for wavelet theory and its applications are
[1, 11, 12, 17, 13, 16]. In this section, only subjects related to this work will be

presented. Our presentation follows essentially the approach described in [29].

1.3.1 Continuous Wavelet Transform

Let U,(¢) denote the dilation of a function ¥(£) by a factor (scale) s :

U, (¢) £ %\If (ﬁ)

S



The continuous wavelet transform of a (continuous) function f(¢) at the scale s

and position ¢ can be written as the following convolution:

W, f(§) =+ ¥s(8).

Let us denote by ¥(w) the Fourier transform of ¥(¢). Morlet and Grossman

[20] showed that if U (w) satisfies:

° | U(w) |

dw = Cy < 00, (1.3.1)

—oo |w]
then f(¢) can be reconstructed from its wavelet transform. The precise state-
ment assumes f € L*(R) (Hilbert space of measurable, square-integrable real
functions), and notices that f(€) can be reconstructed only for ¢ at which f
is continuous. The condition (1.3.1) is called the admissibility condition and it

implies that:

$(0) =0 (1.3.2)

and

/ Y w(e)de = o.

o0

The term “wavelet” is used for any function from L?(R) which satisfies the
admissibility condition. From (1.3.2) we see that the wavelet ¥(£) can be inter-
preted as the impulse response of a band-pass filter. Then the wavelet transform
of a function f can be viewed as the response of a family of dilated band-pass
filters to a signal f.

The main idea of multiscale analysis is that different properties of the signal



f can be detected from W, f for different scales s. Large s is suitable for low

frequency properties, while decreasing s increases sensitivity to small details.

1.3.2 Dyadic continuous wavelet transform

In practical implementations, both parameters, £ and s, of the continuous
wavelet transform W,(€) have to be discretized. The relationship between con-
tinuous and discrete versions of wavelet transform will be described carefully.

At this point, a discrete set of scales is considered. It turns out, that if
o ] 2
3 |\I; (2Jw)| =1, (1.3.3)
—o0

then the scale parameter can be sampled along the dyadic 1 sequence {2’} iez
while preserving the reconstruction property. Any wavelet satisfying equation

(1.3.3) is called a dyadic wavelet. The sequence of functions:

{Wai ()} ez

is called the dyadic wavelet transform.
Let Wy(€) = Wy(—€). The function f is reconstructed from its dyadic

wavelet transform by the following formula:

fO) = 3 Waf+Tu(6). (1.3.4)

j=—oo

1Z denotes the set of all integers.

10



1.3.3 Extrema and zero-crossings of the wavelet transform

In the context of dyadic wavelet transforms, extrema and zero-crossings have an
interesting interpretation. First, let us introduce 8(¢), a smoothing function. We
assume that a smoothing function is the impulse response of a low-pass filter,
i.e. it is a function whose Fourier transform has energy concentrated in the
low-frequencies. A classical example used in many applications is the Gaussian.
Let us assume that the first and the second order derivatives of 8(¢) are dyadic

wavelets, denoted W!(£) and W2(¢), respectively

‘W@)é—af (1.3.5)
and
<WQ)£dZ§X (1.3.6)

The wavelet transforms, defined with respect to each of these wavelets, are given
by:

W3, £(€) = f*¥3() (1.3.7)
and

W3 f(€) = f * 93:(8). (1.3.8)

Observe that:

Wi =5+ (P52) @ =2 U@ 039
and
W3 f(€) = fx* (2%' ddgj") (€) = 2% j_éz (f * 055) (£). (1.3.10)

11



Therefore, in this case, the wavelet transforms W), f(€) and W2 f(¢) are pro-
portional respectively to the first and the second derivatives of f (¢) smoothed
by 6,(£). As a result, the inflection points of f * 8,;(£) correspond to the local
extrema of W}, f(€) and to the zero-crossings of W, f(£). Observe that if one
uses W, f(€) and detects local extrema, the result is essentially equivalent to
Canny’s edge detection [10]. Likewise, the zero-crossings detection of W2 f(¢)
can be viewed as a Marr-Hildreth edge-detection algorithm [34]. An inflection
point of f *8,; can either be a maximum or a minimum of the absolute value of
its first derivative. Sharp variation points, which appear to be the most impor-
tant features of many signals, are exactly the maxima of the absolute value of
the first derivative. The minima correspond to the slow variation points. These
two different types of inflection points can be distinguished from the extrema of

W (&) but cannot be differentiated from the zero-crossings of W2 f(€).

1.3.4 Discrete dyadic wavelet transform

The dyadic wavelet transform, defined in the previous section, has infinite num-
ber of scales and cannot be implemented in this form. In practice, due to finite
view or interest, we are limited by a finite largest scale. Due to finite resolution
of any measurement equipment, the finest scale is bounded from below as well.
For normalization purposes, let us assume that the finest scale is 1 and 27 is the
largest scale.

For finite number of scales, we need to understand what kind of information

12



is included in
{Wai F(E)}1cjica - (1.3.11)
First, let us introduce a function ®(¢) whose Fourier transform satisfies:
) = 3 |F (2w)[" (13.12)
=1
The function ®(£) is called the scaling function. Using (1.3.12) one can show
that:
o) = 18 (20)] +]8 (7)) (1313)
=1
Using 1%, |& (27w)[" = 1, it can be shown that lim, . |$(w)| = 1. There-
fore ®(w) can be viewed as the impulse response of a low-pass filter or equiva-

lently as a smoothing function. Let us define the smoothing operator Sy, by:

Sai f(€) = f* ©2:(€) (1.3.14)

“where ®,;(¢) = 50 (—%) The larger the scale 2/, the more details are removed
by the smoothing operator S;.
Notice that one cannot expect to reconstruct the original signal f(£) from

{Wy, f(€)}52,. It turns out, that by disregarding the part {Wa £(6)}° we

j=1 jm—oo
introduce the same error as by smoothing the function f(¢) by Si. In other

words, one can reconstruct exactly the signal S f(¢) from {Wy, f(f)}(;il More-

over, Sy f(€) can be calculated from the following finite collection of functions:

{821 £(€), AW ()]s } -

That is, Sys f(€) contains the same information about S; f(§) as {Wa f()} 241

13



Energy conservation considerations give an additional view on the above

facts. The Fourier transform of S)f(¢§), Ssf(£) and Wy, f(€) are respectively

given by:
51f(w) = ®(w)f(w) (1.3.15)
Sprf(w) = @ (27w) f(w) (1.3.16)
Wy f(w) = ¥ (27w) f(w) (1.3.17)

Using Parseval’s theorem and equations (1.3.15), (1.3.16) and (1.3.17), it can be

shown that:

IS FON° —EHWz: O + 1152 £ (O (1.3.18)

The functions {5’21 FE), {Was £(E)} i= 1} are called the finite scale wavelet trans-
form of Sy f(€). The last step toward introduction of a practical signal represen-

tation it to establish a sampling scheme for ¢.

1.3.5 Finite scale wavelet series

Let {S1f(n)},cz be samplings at integers (for normalization purposes) of the
function Sy f(£). Similarly, {Syf(n)},cz, {Was f(n)}, ¢, are samplings at in-
tegers of the functions S,sf(£) and Wa f(€). In this section, {S1f(n)}, ¢z is
assumed to be known and the question of how to calculate {S;sf(n)},, and
{Wa f(n)},ez is discussed.

First, let us consider J = 1. Let H be a discrete filter whose convolution

with {S1f(n)},cz produces {Sy f(n)},c;- In other words, the Fourier series

14



of {Sg1f(n)},cz is equal to the Fourier series of {S1f(n)}, ¢, multiplied by a

2r-periodic function H(w). The Fourier series of these signals are respectively

[ee} o0

E (f * (I’)(n)e"i"w and Z (f * @2)(n)e—inw.

N=-—=00 n=—oo

These two series, using the Poisson formula, can be rewritten as:

i Flw+2n7)®(w + 2n7)  and i Flw+ 2n7)® (2(w + 2n7)) .

n=--0oo n=—oc

In order that, for all f (w), the right series be equal to the left series multiplied

by H(w) the following condition has to be satisfied:
d(2w) = H(w)®(w). (1.3.19)

Notice that ‘&)(0)’ = 1 implies |[H(0)| = 1. Thus, the function H(w) can be
interpreted as the transfer function of a discrete low-pass filter.

By cascading equation (1.3.19), a necessary condition on & (w) is obtained.

d(w) = ﬁ H(270). (1.3.20)

p=1

A following sufficient condition is shown in [32]. It turns out that if the

27-periodic function H(w) satisfies
|H(w)]” + |Hw +m)[* < 1, (1.3.21)

then the function ®(¢) whose Fourier transform is defined by equation (1.3.20)
is a function in L*(R).
However, the resulting limit (1.3.20) sometimes happens to be an “ugly”,

discontinuous, fractal function. In recent years, there has been a great interest

15



in finding conditions on H(w) such that the underlying ®(£) would have desired
regularity properties. The classical result on the subject is due to I. Daubechies

[15].

Lemma 1 Let us assume that H(w) has Ny > 1 zeros at w = 7 and define

F(w) and K in the following way.
o\ N
1 w m
H(w) = ((—+f—)> F(w) (1.3.22)

K= sup |F(w)|. (1.3.23)

we(0,27]

If K < 2N then the product [[;2, H (27Pw) converges pointwise to &)(w),

Fourier transform of a continuous function ®(£).

In view of these considerations, it was accepted as a standard technique, in
the design of wavelet-based discrete filters, to have at 7 as many as possible
zeros of H(w) (see [38, 43]). Recently, O. Rioul [37] has shown that H(r) =0
is a necessary condition to have a resulting ®({) continuous.

For a given scaling function ®(£), the corresponding wavelet ¥(¢) is obtained
from equation (1.3.13) by substituting J = 1.

|G20)| = |8(w)

‘2

— 8w (1.3.24)

Using equations (1.3.19) and (1.3.24), we can define a discrete filter G(w) such
that:

¥ (2w) = G(w)®(w) (1.3.25)
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where

IG(w)|> + |Hw)> =1 (1.3.26)

The function G(w) is 27-periodic and it can be interpreted as the transfer func-
tion of a high-pass filter.

One of the best known properties of wavelet transforms is the possibility that
a wavelet () can generate an orthogonal basis. It can be obtained by changing
the inequality (1.3.21) to an equality and then choosing G(w) = e~ H(w + 7)
(for details and proofs see Section 2.4 in [33]). However, this condition does not
bring any significant benefit in the context of local maxima or ZEro-Crossings.

For the maxima representation, it is advantageous to have a wavelet V(¢)
equal to the first derivative of a smoothing function f. This implies that ¥ (w)
must have a zero of order 1 at w = 1. Because |&>(0)| = 1, equation (1.3.25)
yields that G(w) must have a zero of order 1 at w = 0. Since G(w) and H(w)

are related by equation (1.3.26), the latter condition is equivalent to
H(w) =1+ 0(w?), (1.3.27)
where O(v) is an arbitrary function such that:

im 2 _ K < 0. | (1.3.28)

v—0

For the zero-crossings representation, we want to build a wavelet ¥(£) equal
to a second-order derivative of a smoothing function 6(¢). This implies that

G(w) must have a zero of order 2 at w = 0.
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1.3.6 Fast wavelet algorithms

As was shown in the previous section, if the discrete filters H, G satisfy condi-
tions (1.3.21) and (1.3.26) then {Sysf(n)},cy and {Wa f(n)},c7 can be calcu-
lated from {S;f(n)},cz- It turns out that these calculations involve neither the
wavelet function W(¢) nor the scaling function ®(¢); they are solely based on
the discrete filters H, G.

Before presenting the actual algorithm, some notations need to be intro-
duced. Let H,, G, denote the discrete filter whose transfer functions are H(2° w),
G(2Pw), respectively. The impulse response of H, (G,) is obtained by putting
27 _ 1 zeros between every two adjacent coefficients of the impulse response of

the filter H (G). We also denote H, and G, the filters whose transfer func-

tions are respectively H(2Pw) and G(2Pw) (complex conjugates of H(2w) and
(G(2*w)). Finally, let
Wy f = {Wa f(n)} ez (1.3.29)

and

ng’f = {S2:f(n)}nez- (1.3.30)

Proposition 1 Let g; and h; denote the impulse responses of filters GG; and H;.
Then the discrete signals W f and Sg; f are obtained by the following recursion

formulas

Weii f = S5 * g; (1.3.31)

S f = S5 f * hy (1.3.32)
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fory=0,1,...,J —1.

The proof is a straightforward consequence of (1.3.19) and (1.3.25).

The complexity of this algorithm is of order NKJ, where IV is a number of
nonzero samples in the original signal {S1f(n)},cz, K is a number of nonzero
coefficients in impulse responses of the filters H and G, and J is of course the
number of decomposition levels. The number of levels cannot exceed log(N),
and usually K is a small number, therefore the algorithm complexity is assumed
to be of order (Nlog N). Thus, in similarity to fast Fourier transform, this
algorithm is called the fast wavelet transform.

The reconstruction or inverse wavelet transform is the calculation of Sy f

from {Wg,-f}jzl and SZ, f.

Proposition 2 The discrete signal S{f can be calculated by the following re-
cursion formula.

S f = WEF*Gios + SEf*hj (1.3.33)

forj=J,J—1,...,2,1. Naturally, ﬁj,ﬁj are impulse responses of filters éj, Ej,

respectively.

The proof is again a consequence of (1.3.19) and (1.3.25).

1.3.7 Interpretation of discrete signals in continuous context

In the previous sections, it has been shown that for a given continuous function

f(£), one can calculate S;f(€) and then, by sampling it at integers, obtain the
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discrete signal S¢f. Now, using the fast wavelet algorithm, one can calculate
Sg ,f and W f which are indeed samples at integers of the continuous functions
S,sf(€) and Wy, f(€), respectively.

At this point, one can ask what would happen if an arbitrary discrete se-
quence is applied to the fast wavelet algorithm. The answer can be found in the

following representation property.

Lemma 2 [30]
Let D = {dn},c 5 be a discrete signal of finite emergy: 3272 |d,.|* < oo.
Let us suppose that there exist Ky > 0 and Ky > 0 such that for all w € R the

Fourier transform ®(w) satisfies:
K< Y |8+ 2mm)| <Ko (1.3.34)
Then there exists a function f(£) € L*(R) such that

VneZ  Sif(n)=d, (1.3.35)

In sampling theory terminology, the above characteristic can be interpreted as
a modified interpolation property (see e.g. [40]).

This well established relationship between continuous and discrete signals is
a very important property of wavelet transforms. Consequently, it enables us
to interpret continuous and discrete results as complementary views on corre-
sponding objects. In essence, the approach in [29] and [30] is based on giving

continuous interpretation to discrete signals. As was mentioned earlier, our
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method is based on the analysis of discrete signals. Nevertheless, at least in the
wavelet transform context, these works might be regarded as different views of

corresponding problems.

1.4 Overview and Contributions of the Thesis

Our point of view is as follows. Using a continuous variable approach, several
very promising representations and reconstruction algorithms have been devel-
oped. Especially algorithms based on wavelets deserve particular attention,
because of low complexity of the fast wavelet transform and because of possible
flexibility in choosing the basic filter. These algorithms provide accurate numer-
ical reconstruction results, but their basic properties have not been analyzed yet.
The reason seems to be, that the analysis of a continuous multiscale represen-
tation is a very difficult mathematical problem. On the other hand, even if the
continuous analysis is given, the conclusions about the discrete realization are
not obvious.

This thesis can be viewed as an attempt to analyze rigorously the numerical
reconstruction results from the wavelet maxima and zero-crossings representa-
tions. This objective leads to the discrete and finite data assumption. In essence,
using this assumption, we were able to obtain several new results. The following
chapters describe original contributions of this dissertation.

It turns out, that the discrete implementation of a continuous framework is

a delicate procedure and many details should be worked out. Even, in the case
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where the discretization of the linear transform is straightforward 2, the max-
ima and zero-crossings representations should be redefined and the investigated
problems should be restated. The basic definitions are given in Chapter 2. The
first observation is that the structure of the wavelet transform is not essential for
the analysis and can be generalized to any linear filter bank. After introducing
precise definitions of the multiscale maxima (zero -crossings) representations,
the exact conditions that an arbitrary sequence has to satisfy in order to belong
to the reconstruction set are presented. As a generalization of these conditions,
the structure of the Adaptive Quasi Linear Representation (AQLR) is defined.

The next observation is that, from the stability and reconstruction point of
view, the most important property of the wavelet maxima and zero-crossings
representation, as introduced by S. Mallat and S. Zhong [30, 29], is the fact that
the reconstruction set is always bounded. This finding leads to the definition of
the inherently bounded AQLR.

Chapter 3 uses some concepts from convex analysis and linear parametric
programming in order to establish foundations for the subsequent discussion
on uniqueness, stability, and reconstruction. This 'chapter only assumes the
structure of AQLR, especially the inherently bounded AQLR.

Chapter 4 investigates the uniqueness question. The general theorem about

nonuniqueness of the wavelet maxima (zero-crossings) representation is proven.

2An additional advantage of the wavelet transform is the correspondence between the
continuous and the discrete transforms.
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The proof is constructive in the sense that a sequence which has a nonunique
representation is shown. In view of additional counterexamples by Y. Meyer
[35], the importance of our result is mostly related to its generality. In addition,
the question of how a particular representation can be tested for uniqueness is
discussed. Several examples of both unique and nonunique representations are
given.

Stability results are described in Chapter 5. It turns out, that BIBO stability
is closely related to the definition of the inherently AQLR. For a special case,
where perturbations are limited to the continuous part of the representation,
a Lipschitz condition is satisfied. To the best of our knowledge, these are the
first rigorous stability results established in the context of multiscale maxima
(zero-crossings) representations.

Chapter 6 is devoted to the reconstruction issue. In the set-up of the inher-
ently bounded AQLR, a new reconstruction scheme is proposed. The proposed
algorithm is based on a cost function which does not have local extrema outside
the reconstruction set. The convergence of two algorithms is shown: the first is
based on the integration of the gradient of the cost function and can be imple-
mented by analog hardware; the second is a standard steepest descent algorithm
which is used in digital simulations.

The idea to minimize a cost function in order to reconstruct a signal from
the multiscale edge representation has appeared in many works, e.g. (22, 48, 39].

The comparison reveals the following advantages of the proposed algorithm.
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This algorithm is based on a continuously differentiable cost function.

e It does not apply approximations.

It is adapted for both unique and nonunique cases.

Its validity and convergence are guaranteed.

In short, we obtain new theoretical results because we benefit from the well
established representation structure, especially from its boundness property.

Chapter 7 describes possible modifications in the basic multiscale maxima
representation which preserve the structure of the inherently bounded AQLR.
From a wealth of possible modifications, several examples of reasonable mod-
ifications have been chosen. Perhaps the most interesting example is the one
describing how quantization can be considered as an integral part of the repre-
sentation and how the reconstruction from an interval successfully replaces the
standard approach to reconstruct from an approximating point.

Chapter 8 concludes this thesis with a summary, some general remarks and,

as usual, the hardest questions are left for further research.
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CHAPTER

TWO

THE BASIC REPRESENTATIONS

2.1 Introduction

This chapter consists of two similar sections, the first describes the discrete mul-
tiscale maxima representation and the second is devoted to the discrete multi-
scale zero-crossings representation. The main goal of the chapter is to state
precise definitions and to characterize the reconstruction set, which is an inverse
image of the representation. It turns out, that both the multiscale maxima
representation and the multiscale zero-crossings representation induce a very
similar structure in their reconstruction sets. Therefore a general signal descrip-
tion called an Adaptive Quasi Linear Representation (AQLR) is introduced. In
this thesis, a subclass, named an inherently bounded AQLR, is of main interest.
In subsequent chapters these structures will be studied extensively. This chapter
also develops sufficient conditions for a signal representation to be an inherently
bounded AQLR. As the main result, it is shown that both the wavelet max-

ima representation and the wavelet zero-crossings representation are inherently
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bounded AQLR's.

Both sections are based on the definitions introduced by S. Mallat and S.
Zhong [30], and S. Mallat [29]. However, there are two noticeable differences
between the approach of {30, 29] and ours. First, we assume no knowledge about
the (time) continuous version of signals, namely, the original signal is assumed
to be (time) discrete and all representation properties (uniqueness, stability,
reconstruction) are considered with respect to this signal. Second, the wavelet
transform, used in [30, 29], is generalized here to an arbitrary collection of linear
operators, i.e. the general structure consists of a linear filter bank.

The adjective “basic” in the tittle has been introduced in order to distinguish
between representations described here and further generalizations which will be

introduced in chapter 7.

2.2 The Multiscale Maxima Representation

As was mentioned earlier, the main assumption in this thesis is that signals
are (time) discrete and of finite duration. In other words, all signals under

consideration belong to £, a linear space of real, finite sequences:
L2{f:f={fNS, fn)eR}.

In the sequel we will use concepts like convex set, basis, linear operator, its null
‘and range space, linear operator representation by a matrix, norm, etc. which

are usually related to vector spaces. In these cases, we will regard this space
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as a standard RY. However, due to the need of introducing the ideas of local
maxima, minima and zero-crossings the form of a linear space of finite sequences
appears to be appropriate.

The definitions of local maxima and minima sets are introduced as follows.
Let X and Y denote operators on £ which provide vthe sets of local maximizers

and minimizers, respectively, of a sequence f € £. The formal definitions are :
Xf={k: f(k+1) < f(k) and f(k-1) < f(k) k=0,1,2,...,N—1} (2.2.1)
Yf={k:f(k+1)> f(k) and f(k—1)> f(k) k=0,1,2,...,N—1}. (2.2.2)

In this thesis, in order to avoid boundary problems, an N-periodic extension of
finite sequences is assumed.

As was already mentioned, the basic-set up is an arbitrary linear filter bank.
Namely, in this thesis, the term “multiscale” refers to any finite collection of
linear operators. Let Wi, Ws,...,W,, S, denote linear operators on L. The
collection {Wy, Wy, ..., W;, S;} will be called the multiscale linear operator.

The sets XW; f, YW; f are local maxima and minima points of the sequence
W; f. The values of W, f at extreme points are denoted by {W; f(k) }rexw, surw, ;-
Using the above notation, we can define the multiscale local extrema represen-

tation, R, f as:

Ref 2 {[{XW, £, YW1 AW f (W hrexwporw, Y o Saf e (2:23)

Observe that the whole signal S; f is included in the representation. Usually,

Sy is a low pass filter, and S;f can be described in a more compact way. This
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point will be discussed further in Chapter 7. At this stage the main goal is to
give a precise and general definition. This definition matches the basic definition
used in [30]. Malla£ and Zhong [30] have further modified this transformation to
include only local maxima of absolute values. They have used the term “maxima
representation” for this signal description. Following [31], R f, even in the ver-
sion (2.2.3), will be called the multiscale maxima representation. In the context
of [30] W1 f,Wa,...,W,f,Ssf describes the J-level wavelet decomposition of a
signal f . In this case R, f will be called the wavelet maxima representation.
Perhaps the main drawback of this representation is the fact that its analysis
is not easy, mainly because R, is a nonlinear operator. Our approach is to
separate its linear and nonlinear components. The determination of the extreme
point sets is a highly nonlinear operation on f. However, for the given extrema
sets, XW;f and YW, f, the remaining data are obtained by a linear operation
of sampling an image of a linear operator at fixed points. This observation is
the motivation for considering R,,f as consisting of two parts: the sampling
information and the maxima information. The sampling information is the
sequence Sy f and the values of W, f at the points XW; fUY W, f (j=1,2,....J).
The maxima information consists of the sets XW; f, YW, f and the fact that the
elements of XW; f and YW; [ are the local maximizers and minimizers of W; f.

Let T, denote the linear operator associated with the sampling information.

1The shorter notation Wif Wa,...,W;f S;f is used instead of the standard
Wldfa ngla .. ')Wszf)Sng
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The following is its precise definition.

Tg: L — L°

such that forall h € £

S}
[\
N
S’

Trsh = {Ssh, {W1h(E)}rexws joywigs - - - o {Wsh(k) Jeexw,sorw, st - (2:2.

L is the linear space of finite, real sequences of length N°, where

J
Ne=N+3 (| XWif [+ |YW;[]).

3=1
For any set A, | A | denotes its cardinal number.

Now, R,.f is written in an alternative way as:

Rof = {{XW; £,YW; f}]_y, Tms f} - (2.2.5)

This form will lead to a definition of a general family of signal descriptions
having reconstruction sets with common structure. For a given representation
Rf, the reconstruction set T'(Rf) is defined as the set of all sequences satisfying

this representation, i.e.

I'(Rf) £ {h€ L: Rh = Rf}. (2.2.6)

In other words, the reconstruction set is the inverse image of the representation.
At this point, the structure of the reconstruction set of the multiscale max-
ima representation is considered. It is clear that in order to satisfy a given

maxima representation, a sequence h € L, in addition to obeying the sampling
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information T ¢h = Tinyf, needs to meet the requirement that W;h has local
extrema at the points of XW; f and YW, f.

Suppose that T,,sh = Tpsf and for a moment let us dwell upon the latter
condition. Loosely speaking, we have to assure that W;h is increasing after a
minimum and before a maximum and it is decreasing otherwise. In order to make
it rigorous we need to introduce several definitions. For any k € XW,;f UY W, f,

the segment of k£ with respect to extrema of f at level 7, P;nf (k) is defined as:

mf X 5
PMk) =4k, k+1,... k+r} (2.

|\
Q%]
bt |
—

such that:
r>1
k+re XW;fUYW,;f
k+1,....k+r—1e€(XW,fUYW,f)
where (XW; f U YW, f)° denotes the complement of the set XW; f U YW, f with
respect to {0,1,..., N—1}. Note that due to the N-periodic extension employed,
k + ¢ is defined modulo N.

The desired monotonic property can be achieved by enforcing an appropriate
constraint on W;f(k + 1) — W, f(k) (> 0,> 0,< 0,< 0). If one of the points
k + 1,k is not an extremum, such a constraint is a function of £ and will be
defined by the type of k, t7/(k). If both k and k + 1 are extreme points, the

specific constraint cannot be defined solely either by k or by k + 1. However, in

the latter case, the sampling information assures the right relationship between
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W, f(k+ 1) and W, f(k). Consequently, the regular subset of XW; f UYW;f is

defined by:
(XW;fUYW;f) ={ke XW;fUYW,f:k+1 € (XW;fUYW;f)°. (2.2.8)

For all k € (XW,fUYW,f), the type of k with respect to XW;f, YW,

7 (k) is defined by:

-1 if ke XW;f
1 otherwise.
For all i € (XW,;fUYW;f)°, the type of ¢ with respect to XW;f,YW,[,

e

77 (4) is introduced by:

—1 ifie P//(k) and k € XW,f

T

3
[
P~~~
o~ .,
N
IS

1 otherwise.

This is a valid definition because it is easy to show that for given ; and
i € (XW;fUYW,f)® there exists exactly one k € XW;fUYW;f such that
i€ P (k).

The essence of the above definitions is that t;”f(k) = 1 if and only if
W;f(k + 1) > W;f(k). A similar statement is true for t;"f(k) = —1. Since
the maxima representation preserves these monotonic properties, the following

theorem 1is easily verified.

Theorem 1 Let R,.f be a given multiscale mazima representation. Then

h € T(Rnf) i and only if

Tosh = Tusf (2.2.9)
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™ (k) - (Wih(k + 1) — W;h(k)) > 0. (2.2.10)

J

The last inequality should be satisfied for j =1,2,...,J and for all

ke (XW,f UYW; ) U (XW;f UYW,f).

The maxima representations can be cast into the form Rf = {Vf,Tf},
where V f consists of sets of integers from {0,1,2,...,N — 1} and T is a linear
operator which may depend on V f. However, the key feature of the maxima
representation is the fact that the set V f yields additional constraints in the
form of linear inequalities, which do not appear directly in Rf. Stimulated by

this observation, we define the following general family of signal representations.

Definition 2.2.1 The representation Rf = {Vf,Tf} is called an Adaptive
Quasi Linear Representation (AQLR) if there ezists a linear operator C and

a sequence ¢ such that:
r€eT(Rf) & Te=Tf and Cz > c. (2.2.11)
C,c may depend on V f, but they must be independent of T f.

The reasoning behind the name “Adaptive Quasi Linear Representation”
(AQLR) is the following. This representation is adaptive since T, C,c depend
on the sequence f (via the set V f). It is quasi linear because it is based on a

set of linear equalities and inequalities. In addition, the AQLR appears to be
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the simplest nonlinear multiscale representation, at least from the point of view
of the structural complexity of the reconstruction set.

In the sequel, instead of “sequence” notation e.g. z € L, sometimes we
will use “vector” notation”, then z will be a column vector, z € " and linear
operators, like C, will appear as corresponding matrices. The interpretation of
(refeq:matl) in matrix and vector context is obvious.

Clearly, the following is true.
Proposition 3 Any multiscale mazima representation is an AQLR.

The next definition is a generalization of an essential boundedness property
of the wavelet maxima representation which says that the reconstruction set is

bounded by the linear part of the representation.

Definition 2.2.2 An AQLR is called inherently bounded if there exists a real
K > 0 such that

z € T(Rf) = |z|| < K||Tf]l. (2.2.12)

In this thesis, || - || denotes the Euclidean norm in an appropriate, finite
dimensional linear space. The coefficient K can depend on the parameters of
the representation e.g. N,J, Wi,..., W, S; but it must be independent of V' f
and Tf.

Condition (2.2.12) is very similar to a well known condition for stability in
regular or irregular sampling theory. See, for example, a comprehensive paper

by J. Benedetto [2]. Our situation is slightly dissimilar because for different
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signals, different linear operators are obtained. Nevertheless, condition (2.2.12)
implies stability 2.

The vast majority of the results in this thesis are developed in the framework
of the inherently bounded AQLR’s. In order to have a good idea about what
kind of a representation matches this definition, the following definitions are

introduced.

Definition 2.2.3 Let Rf = {Vf,Tf} be based on the linear filter bank
{Wh,...,W,,S5}. This representation is called bounding if there exists K > 0,

such that for all h € T(Rf) and 3 =1,2,...,J.
|\W;R|| < K||T fi (2.2.13)

and

|Sshl| < K||T f]|. (2.2.14)
Proposition 4 Any multiscale mazima representation is bounding.
Proof: Let h € I'(R,, f). Ssh is included in Ty, sk, hence:

1Sahll < | Toms £F1I- (2.2.15)
Consider:

| W;h(n) |< max | Wih(n) |= max | Wif(n) |< [Tasfll. (2:210)

2see Chapter 5
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The middle equality holds because W;h has the same local extrema as W, f, in
particular it has the same global extrema as W; f. The right inequality is valid
since max, | W;h(n) | appears (with its original sign) as a component of To.y f.
Therefore we conclude

|W;h|| < VN||Tns f]- (2.2.17)

One can think about multiscale maxima representations as consisting of two
phases: the first is a multiscale linear operator which provides
{Wyf,Wyf,...,Wsf,S;f}; the second phase is a nonlinear operation on W;f
(j =1,2,...,J). In this context, the bounding property is related to the non-
linear part of the representation.

A bounding multiscale representation is inherently bounded if it is based on

a linear filter bank which fulfills the following condition.

Definition 2.2.4 A multiscale linear operator {Wy, Wy, ..., W;,S;} is called

complete if there exists K > 0 such that for all z € L

Jzl] < K ((Z Hijll) + llSlel) (2.2.18)

7=1
Proposition 5 Let Rf = {Vf,Tf} be based on the linear filter bank
{Wh,...,Ws,5;}. If Rf is a bounding AQLR and the linear filter bank is com-

plete then this representation is an inherently bounded AQLR.
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Proof It is a straightforward consequence of the definitions. Indeed,

J
lz|| £ Ky ((Z ||WJ:1:||) + ||SJ3:||) <Ky -Ky-(J+1)-||TF]- (2.2.19)

j=1
O

Since {W;,Wa,...,W;,S;} are linear operators, the underlying multiscale
representation is complete if and only if the composite matrix
Wy 2 Wy - 2 WS S)]is of afull rank. W denotes the transpose of the
matrix corresponding to the linear operator W;. In other words, the word com-
plete which is associated with uniqueness appears to be proper, the multiscale
linear representation is complete if and only if {Wif, Waf,...,W;f,Ssf} is a
unique representation of a signal f. Due to the perfect reconstruction property,
it is evident, that the wavelet decomposition is a complete multiscale represen-

tation. Therefore:

Proposition 6 The wavelet mazima representation is an inherently bounded

AQLR.

The next section describes a very similar treatment for the multiscale zero-
crossings representation. The main observation is that the wavelet zero-crossings

representation also is an inherently bounded AQLR.

2.3 The Multiscale Zero-Crossings Representation

In defining the multiscale zero-crossings representation, we essentially follow

[29], but minor changes are necessary due to our basic assumption that only a
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(time) discrete signal version is available. Let Z be an operator which provides

the set of zero-crossings of a given sequence f € L, i.e.
Zf 2{k:f(k-1)-f(k)<0 k=0,1,...,N—1}. (2.3.1)

Mallat in [29] has stabilized the zero-crossings representation by including
the values of the wavelet transform integral calculated between consecutive zero-
crossing points. For the purpose of the precise discrete definition of these values,

the segment of k, with respect to zero-crossings of f at level j, is introduced. It

is denoted by szf (k) and defined, for all k € ZW; f, as follows:
zf A q
P (k) ={kk+1,....,k+7} (2.3.2)

such that

r>0
k+r+1eZW,f
kE+1,k+2,....k+r e (ZW,f).

The sequence of sums of h(n) between consecutive zero-crossing points of f at

level j, U]-th is given by:

ieP? (k)

U h é{ 3 th(i)} : (2.3.3)
keZwW, f

The multiscale zero-crossings representation, R, f, is defined as:

R.f 2 {ZW;f, U5 1Yo, Saf - (23.4)

37



As in the maxima representation case, for fixed sets ZW; f, the remaining

data Ufff and S;f are obtained by a linear operator, denoted by 7.
Tzf : ﬁ — [:o

such that:

Tosh = {Ssh, U7 h,... . U h}. (2.3.5)

L° is a linear space of finite, real sequences of length N°.

J
N =N+3 | ZW;f|.

i=1

The zero-crossings representation becomes:

R.f= {{ZWJ'f};j]:l,Tsz} . (236)

The above form is helpful in the study of the structure of the reconstruction

set. Note, that in order to have h € I'(R, f), in addition to obeying
T.sh =T, f,

W;h has to satisfy sign constraints yielding zero-crossings exactly at ZW,f
points. For the purpose of stating precisely the latter constraint, the set (ZW; f)"
is defined.

(ZW,fy = {ke ZW;f : (U7 f) (k) # 0} (2.3.7)

Observe that (ZW,f)" consists of “proper” zero-crossing points, namely only

points k for which W, f(k) # 0 are taken into account.
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Theorem 2 Let R.f be a given multiscale zero-crossings representation.

h € T(R.f) if and only if

T, h = Toyf (2.3.8)

sgn ((UF7£) (B)) - W;k(s) > 0. (2.3.9)

The last inequality should be satisfied for j=1,2,...,J and for all

i € (ZW; ) U (ZW;f) where k salisfies 1 € szf(k).

Proof: By a straightforward application of the above definitions.

As an immediate consequence of Theorem 2 we have:
Proposition 7 The multiscale zero-crossings representation is an AQLR.

The following characteristic of the zero-crossings representation is achieved
due to the additional information, proposed by S. Mallat, of the sums of elements

W, f(k) calculated between consecutive zero-crossings.

Theorem 3 The multiscale zero-crossings representation is a bounding repre-

sentation.

Proof: Let h € T'(R,f). Tf will be an abbreviated notation for T, f. We need

to find a constant K > 0 such that ||W;hk| < K||Tf]| and ||Ssh|| < K||T f]].
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Let j and k € ZW,f be arbitrary and fixed. It follows from the sampling

information constraint (2.3.8) that:
S Wik()= Y W)= (U f) (k). (2.3.10)
1P} (k) 1eP?! (k)

Since W;h has the same zero-crossing points as W; f, for all | € P]-zf (k) the values
of W;h(l) have the same, fixed sign. Therefore

S 1w 1=|(UF £) ()] (2.3.11)

1P (k)

Applying
fo < Z:L'f +2. Z:E,-wj = (Zmi)2

for nonnegative z;’s, we obtain:

> IWik() < (U ) (B[ (2.3.12)

1P (k)

Now consider:

Wik = > I WR(D) P<

k€ZW,f 1ep (k)

2 2
< > |(Uh) ®B] <ITSE.
keZW, f
In addition
ISsR|l = |SsfIl < T f)

because Syh = S;f and Sy f is included in T f. Using Proposition 5 we verify

that:

Proposition 8 The wavelet zero-crossings representation is an inherently

bounded AQLR.
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CHAPTER

THREE

THE GENERALIZATION: AQLR’s AND THEIR PROPERTIES

After two important examples of inherently bounded AQLR’s, the wavelet
maxima representation and the wavelet zero-crossings representation, have been
described, several basic properties of AQLR’s are presented. The following re-
sults are introduced: uniqueness characterization, description of the reconstruc-
tion set by its vertices, and bounds on the reconstruction set. The first result
is valid for any AQLR, while the remaining two are valid only for inherently
bounded AQLR. They are based on convex analysis and parametric linear pro-
gramming. There are many relevant sources for the subject; we have mostly
used [42, 19]. The primary objective of this section is to establish foundations

for the subsequent discussion about uniqueness, stability and reconstruction.

3.1 Uniqueness Characterization

A representation Rf = {Vf,Tf} is said to be unique, if the reconstruction
set ['(Rf) consists of exactly one element. We have the following uniqueness

characterization for AQLR’s.
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Lemma 3 Let Rf = {Vf,Tf} be an AQLR. Then Rf is unique if and only if

the kernel of the operator T is trivial, i.e. NT = {0}.

Proof: Thelemma becomes obvious by topological arguments. Nevertheless,
an elementary but constructive proof will be given. Initially, let us assume that
the representation is not unique. Then there exists h # f such that Rh = Rf.
In particular, Th = T'f, but then 0 # h — f € NT.

Next, consider the case where the kernel of T, N'T is not trivial. Let h # 0
be such that Th = 0. Suppose a > 0 and consider f, = ah + f, as a candidate
to belong to I'(Rf). Of course T'f, = Tf, therefore f, € I'(Rf) if and only if

Cfy > c (see Definition 2.2.1). The latter is equivalent to:
a-Ch>c—-Cf. (3.1.1)

Let (c—Cf); be the i-th component on the vector c—Cf. Observe that (c—~Cf);

is negative for all ;. Define:

. c—Cf)
Qo 2 mn {(—(C:T)‘zf) : (Ch), < 0} . (312)
Note that ag > 0. It is easy to show that for all a such that 0 < a < ao:

Cla>c (3.1.3)

Consequently, the representation Rf is not unique.

This claim has some significant consequences. Using the above lemma, an

algorithm which tests for uniqueness can be developed. One option is to derive
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it from a rank test of the operator 7. Another, more ambitious, approach is
to characterize, for a particular application, all sets V f giving rise to a unique
representation. Perhaps the most important consequence of Lemma 3 is the
fact that uniqueness of the representation Rf is equivalent to uniqueness of the
underlying irregular sampling T'f. In other words, in the unique case, all the
information about the signal is already contained in T'f. Additional constraints
Cf > c are redundant. On the other hand, from the signal compression, un-
derstanding and interpretation point of view, it seems to be desirable that little
information would be specified explicitly by T'f and as much as possible infor-

mation about a signal should be described implicitly by Cf > c¢. Therefore, in

—

our opinion, the most important and interesting features of AQLR’s appear in

the nonunique case.

3.2 The structure of the reconstruction set

At this point, the structure of the reconstruction set is described. Let Rf =

{Vf,Tf} bean AQLR, its reconstruction set is given as: !

IF'={z:Tzx=Tf, Cz > c}. (3.2.1)

The closure of the reconstruction set, I' is the following convex polyhedron.

FT'={z:Tz=Tf, Cz>c}. (3.2.2)

1The abbreviated notation I' is used instead of I'(Rf).

43



Since every equality of the form z; = t; can be replaced by two inequalities

x; > t;, —x; > —t;, without loss of generality, we can assume that
T'={z:Bz>b}

for a given p x N matrix B and a p-dimensional vector b.
For an inherently bounded AQLR’s, the associated set I'* is bounded. There-
fore as a special case of the theorem of Krein and Milman [26], the following

holds.

Theorem 4 For an inherently bounded AQLR, the closure of the reconstruction

set is the convex hull of its finitely many vertices.

In the sequel, the following property of a polyhedron vertex will be used. Let
{z : Bz > b} be a polyhedron and v its vertex. Then, there exist N rows of

B, which constitute a regular matrix [B]* such that:
. N -1 .
v = ([Bf) " - [bJ* (3.2.3)
where [b]" is a subvector of b corresponding to these N rows. By inserting zero
columns to the matrix ([B]f)™", the matrix D' is obtained, such that:

v' = D'b. (3.2.4)

Since the closure of the reconstruction set is the convex hull of its vertices, the
above equation can characterize the changes in the reconstruction set due to
perturbations in either the matrix B or the vector b. Accordingly, it will be

used to prove the stability results.
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3.3 Bounds on the reconstruction set

The last part of this section addresses the problem of finding bounds for the
set ['* = {z : Bz > b}. Especially, we will focus on the bound in which the
dependency on the matrix B and on the vector b will appear in different factors.

Consider the following characterization of a bounded polyhedron.

Theorem 5 ([42] pp 65)
The polyhedron T = {z : Bz > b} is bounded if and only if it contains no
halfline. If T # 0 the latter statement holds if and only if the associated homo-

geneous system of inequalities:
Bz >0 (3.3.1)
admits no nonzero solution.

Notice, that the homogeneous system of inequalities is independent of b.
Therefore, if there exists one by yielding a bounded polyhedron, then {z : Bz >
b} is bounded for all b. Let us assume that the matrix B is fixed and arbitrary,
but there exists by such that the set {z : Bz > bo} is nonempty and bounded.

Then, from the second statement of the theorem, for all z # 0 there exists at

least one index i such that (Bz); < 0. Let us define
I(z) = {i: (Bz); < 0}. (3.3.2)

Observe, that the following function is well defined for all = # 0.

Am(2) :Amin{(l;);)i: ieI(:c)}. (3.3.3)
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Next, consider I'y, the projection of T on the unit ball:
Ty £{z: ||| =1, and 3A(Z) >0 such that A(Z) -7 €T}. (3.3.4)
Proposition 9 )\, (Z) is a positive, continuous function for all T € I'y.

Proof: If £ € Ty then MZ)(Bz); > b; (¢ = 1,2,...,p). Since for : € Z(7),

(BZ); is negative, therefore, in this case, b; has to be negative and

for all ¢ € Z(%). Thus, in particular, A, (Z) > 0 for all Z € T'y. Consequently:

Bm(z) = L _ max{(ix)i 1€ I(.’L’)} : (3.3.5)

To proceed we need to get rid of the set Z(z) inside the above maximum. Let

us define :

T, = {i : b; < 0}. (3.3.6)

Notice, that Z(Z) C T, for all Z € I'y. Thus, B, (Z) can be written as:

Bm(Z) = maz {max { (P;f)i,O} 11 E Ib} ) (3.3.7)

From the above formula, it is clear that $,,(Z) is a continuous function for all
z € I'y. Therefore, since B,,(Z) > 0 for all z € I'y,

1

Bm(Z

An(Z) =

N—

is a continuous function for all z € I'y as well.
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Because T'y is a compact set, the following maximum is well defined.
Am = max{\,(2): % € Iy} (3.3.8)

In view of the above considerations, it is easy to show that A, is a tight bound
on T, namely:

VzeT |zl € An (3.3.9)
Jz € T such that |[z]j = An. (3.3.10)

The bound ),, is clearly the best possible. However, it has two important
disadvantages. The first is the need to know I'y, although it can be determined
independently of calculating T', it may involve complex computations. The sec-
ond disadvantage is that the effects on the bound of B and b are not separated. '
In what follows, a less accurate bound, but without the above drawbacks, will

be calculated. Consider:

Am(z) zmin{ ];”' ' :iEI(ac)} <

(B.’IZ)@

< max{| b; ]:i:1,2,...,p}~min{{ :iGI(as)}S

(B.’E)i

< bl min{ 2§ € 700}

Let us define

M(z) £ min{{ (;)_ e I(a:)}. (3.3.11)

1

Proposition 10 )\,(z) is a positive and continuous function for all x # 0.
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Proof: As a consequence of the definition of Z(z), A,(z) is positive for all z # 0.

To show continuity, let us consider:

Bo(z) = L _ max{—(Bz); : ¢ € I(z)}. (3.3.12)
Which can also be written as:
Bo(z) = max {max {—(Bz);,0} : i = 1,2,...,p}. (3.3.13)

It is apparent from (3.3.13) that B,(z) is a continuous function of x, and thus

Ao{(z) is continuous as well.

From the latter form one can see that §,(z) depends on B and  but it is b-
independent. Consider any compact set U containing nonzero elements such
that Ty € U. Then for all z € I'y:

1
Bo(Z)

Am(Z) < [[B] - <

: 1 —
< ||bl} - max :mEU}. 3.3.14)
ol {ﬂo(w) (
For example, the unit ball U = {z : ||z]| = 1} is used as a set U. Then, using

only the matrix B, the coefficient §y is calculated as:
By = min {max {max{—(Bz);,0} :i=1,2,...,p} 1z € U}. (3.3.15)
Combining together (3.3.14), (3.3.9), (3.3.8) the following result is obtained.

b -
2] < %ﬂ VzeT. (3.3.16)
U
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The above bound will be used to prove the convergence of the reconstruction

algorithm.
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CHAPTER

FOUR

UNIQUENESS

The main result established in this chapter is that, in general, the wavelet
maxima (zero-crossings) representation is not unique. In addition, a uniqueness
test for a particular representation is discussed. This chapter concludes with
several examples of both unique and nonunique signal representations. Results
described here are based on some specific properties of the discrete wavelet
transform which, together with an associated notation, are introduced in the

first section.

4.1 Description by Discrete Fourier Transform

As was mentioned in Section 1.3.5, discrete wavelet transform is based on two

discrete filters H and G. Using equations (1.3.31,1.3.32), the discrete wavelet

transform can be calculated by the following recursion (j = 1,2,...,J —1):
SJ'.Hf = hj * S]f (411)
Wj+1f =g;* ij (412)
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Since all described signals are discrete, the superscript d used in Section 1.3.5
is omitted here. Sof is equal to the original signal f. In addition, instead
of writing subscripts 27, related to discrete sampling of the continuous wavelet
transform at scale 27, we simply use the subscript j.

Further clarifications are needed due to our assumption regarding finite se-
quence length. In this case, a standard approach is to define the convolution
operation as N-circular or equivalently to consider all signals as N-periodic (for
details see e.g. [41]). Consequently, the impulse responses of the filters H and
G are denoted by {h(k)}N=! and {g(k)}iss', respectively. The Discrete Fourier
Transform (DFT), f = {f(k)}25! of a sequence f = {f(k)}i o is defined as:

N-1 nk

k)= 3 feap(~2mis) k=0,1,...,N~1 (4.1.3)

n=0
From the definition we see that the DFT’s of impulse responses of discrete filters

H, G are given as:

h(k)=H (%-ﬁ—f) and g(k) =G (277’;—) (4.1.4)

i.e. the DFT is equivalent to sampling the continuous Fourier transform at
Wi = 2%%.
Since convolution corresponds to multiplication of DFT’s, equations (4.1.1)

and (4.1.2) can be rewritten as:

(SimF)(k) = (5, )(k) - by(k) k=0,1,....,N—1 (4.1.5)
(Win£)(k) = (S;)(k) -Gi(k) k=0,1,...,N—1 (4.1.6)
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where ﬁj, g; are DFT’s of impulse responses of filters H;, G; respectively. They

are calculated from from H(w) and G(w) in the following way:

hi(k)y=H (2]’%-}’%) (4.1.7)
7(k)=G |22 £ (4.1.8
9;(k) = WN . 1.8)

By cascading equations (4.1.5) and (4.1.6), we can obtain:

o R J—lA
(S1)(k) = F(k) - IT (k) (4.1.9)
(W5 1)K = FR) - Gor - L holk): (1.1.10)

The latter is valid for j = 1,2, ..., J with the standard convention that product
over an empty set of indices is equal to 1. Using equations (4.1.9) and (4.1.10),
we can define the discrete transfer functions S and ﬁ/\] of the linear operators

S; and W;, respectively, as

(S)(k) = I:f?zp(k) (4.1.11)
(W5)(8) = 35-2()- TL ho(h) (1.112)

4.2 The nonuniqueness theorem

This section aims to show that, in general, the discrete dyadic wavelet max-
ima (zero-crossings) representation is not unique. The precise statement of the

- nonuniqueness theorem is as follows.
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Theorem 6 Consider a discrete dyadic wavelet mazima (zero-crossings) repre-
sentation based on a discrete low pass filter H(w). If H(x) =0, J >3, and N
is @ multiple of 27 then there exists a sequence f which has a nonunique mazima

(zero-crossings) representation.

Let us point out that, although the hypothesis of the theorem may seem to
be demanding, it is just a technical condition. Usually the number of levels, .J,
satisfies J > 3. In order to benefit from the fast wavelet transform, N has to be a
multiple of 27. Since H(w) is a low pass filter, it is natural to assume that |H(w)|
reaches its minimum at 7. If this minimum is nonzero, then essentially S;f
contains all information about f and the maxima (zero-crossings) information
is redundant. Moreover H(7) = 0 is a well known condition for the regularity of
the underlying scaling function ®(¢) (for more information, see Section 1.1.3).
Indeed, all filters used by Mallat, Zhong and many others fulfill the conditions
of Theorem refth:t1.

Most of the section describes the proof of the theorem, which will be divided
to proofs of several propositions. The result is a consequence of Lemma 3, which
relates uniqueness of the representation to the set T, the kernel of the sampling
information. The main idea is to construct a sequence f such that the set N'T
corresponding to the representation Rf cannot be {0}. The construction of the

counter example is based on the set B, defined as follows:
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p=1
where
yap_1(k) cos(ngk) 1,2,...,271 (4.2.2)
yap (k) = szn(272r§k) p=1,2,...,2771 _1 (4.2.3)

Proposition 11 The set B is included in N'S;, the kernel of the operator 5.

Proof: Let us consider:

N
m(p) = p2—J p=41,42,. .., +27"1, (4.2.4)

Since N is a multiple of 27, m(p) is an integer. Notice that p can be written as

p= 2'p; where 0 <1< J -1 and p; is an odd number. Observe that

~ 2'py N
hy_1-i(m(p)) = H (2“*% A’;;J ) = H(xp,) = 0. (4.2.5)
Therefore, using (4.1.11), we obtain:
Sy (m(p)) = 0. (4.2.6)

The integers m(p)’s, as zeros of the transfer function S, will be used to define
sequences belonging to the null space of S;. Let e, be the following exponential

sequence

k |
ep(k) = exp (m%) k=0,1,...,N — L (4.2.7)

Its Discrete Fourier Transform, €, is given by:

G(k) = N6, (k) (42

o
oo
~
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where

1 ifk=0p
5p(k)=

0 otherwise.

Combining together (4.2.6) and (4.2.8), one can conclude that
(SJZ;L(,,)) = 0, thus

Sjem(p) = 0. (4.2.9)

The sequences y, are expressed by en(y)’s in the subsequent way:

2w pk 1
Yap-1(k) = cos( oJ ) = g(em(p) + 6m(—p))

. 2wpk 1
y2p(k) = sin( oJ ) = '2—;(6"1(?) - em»(—P))-

Therefore Syy, = 0 for p=1,2,...,27 — 1.

Notice, that y,s does not appear in the set B. The reason is that y,s = 0

and in the next proposition the independence of the set B is asserted.
Proposition 12 The set B is linearly independent.

Proof: It is a well known fact, which can easily be proven by showing that the

set B is orthogonal and does not contain zero.

As a generic example of nonuniqueness the following sequence is proposed.

f(k) =cos(2r—=) k=0,1,...,N—1. (4.2.10)
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Observe that the same sequence is proposed for all dyadic wavelet transforms
and for both the maxima representation and the zero-crossings representation.

The representation Rnf (R.f) is wunique if and only if
NT,s = {0} (NT;s = {0}). Consequently, the nonuniqueness of Ry f (Rn f) is

easily deduced from the following proposition.

Proposition 13 The equation
Tmm=0 (T.yn =0) 1 € span(B) (4.2.11)
has a nontrivial solution.

Proof: Consider an arbitrary € span(B).

271

n = Z QpYp (4.2.12)
p=1

The dimension of span(B) is 2/ — 1. The idea is to show that the set of equa-
tions Typsn = 0 (Toyn = 0) yields less than 27 — 1 independent equations with

unknowns {a,}. Recall that:

T = {Sam, {(Win(k) eexwisorwi gy - - - AWan(k) beexw,sorw, £} -

and

Tzf’? = {SJUanZf’?, ER Ujfn}

From Proposition 11 we see that Syn = 0 for all {e,}. Let j be fixed. Consider

the equations:

Wi(k)=0 ke XW,fUYW;f (4.2.13)
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or

Ufn(k)=0 ke ZW;f. (4.2.14)
Recognize that fisa 2J-periodic sinusoid, therefore W, f is a 2J—periodic sinusoid
g J

as well. Moreover y, and Wjy, for p = 1,2,... ,27 — 1 are also 27-periodic.

Therefore solving equation (4.2.13), it suffices to consider
ke{0,1,....27 —1}(XW;fUYW,;[).

But W, f has only two local extreme points in a 27 period, consequently (4.2.13)
contains only two different equations with unknowns {a,}! Similarly for zero-
crossings, (4.2.14) has only two different equations. There are J levels
(7 = 1,2,...,J) so the set of equations Ty = 0 (T.yn = 0) consists of, at

most, 2J independent equations. But
2l —1>2J VJ>3. (4.2.15)

Accordingly, the equation (4.2.11) has a nontrivial solution and the representa-

tion is not unique.

Some remarks need to be made at this point. From the proof, it turns out,
that it is relatively easy to produce more examples of nonunique dyadic wavelet
maxima (zero-crossings) representations using 2P-periodic signals, where p is an
integer. For example, consider J = 5 and let f be a 2°-periodic signal. Then

W,f (5 =1,2,...,5) are 2>-periodic as well. In this case, if 27 —1 = 31 is greater
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than the total number of local éxtrema (zero-crossings) of Wy f, Waf,... . Wsf
per one 2’ period, then the representation is not unique. In other words, if
W; f’s have, in the mean, less than 3?1 = 6.2 local extrema (zero-crossings) in
one period, than R, f (R.f) cannot be unique.

Hummel with Moniot [22], Mallat [29], and Mallat with Zhong [31] have
reported that high frequency errors may occur in the discrete maxima (zero-
crossings) representation. For these 27_periodic signals, components of the re-
construction error can appear as 2P-periodic signals for p =1,2,...,J. Most of
them cannot be related as high frequency errors.

From our simulations and from Mallat’s results it turns out that for the vast
majority of signals, the representation is unique. We even conjecture that the

wavelet maxima (zero-crossings) representation is unique for a generic family of

signals, but we are not able to prove it.

4.3 Test for uniqueness

From the previous section we have learned that uniqueness is signal dependent.
The next natural question to ask is: What are the characteristics of a family of
signals having a unique representation ? This problem appears to be difficult
and, unfortunately, we are not yet able to answer this question. Nevertheless, a
given representation can be tested, quite efficiently, whether it is unique or it 1s
not.

Let R, f, the wavelet maxima representation of a signal f, be given. Recall
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that:

Rnf = {{XW,f, YW, fHoy, Tmsf}- (4.3.1)
From Lemma 3, we already know that uniqueness depends only on the linear
operator T,,; which, in general, is signal dependent. T, can be divided into two

parts, the first is the operator S;, which is signal independent, and the second

will be denoted by T*. For all n € £, T*n is defined as:

Tn = {{Wln(k)}kelequwlf REEP {WJW(k)}kexw,fuwaf} . (4.3.2)

Consequently we can write:

Tosn = {Som, T"n} (4.3.3)

for all n € L.
Since our approach is based on Lemma 3, the null space of T}, ¢ is investigated.

The definition of T implies:
NToy = NSy ONT® (4.3.4)

where N'T,,;, NS;, NT" are the null spaces of operators Ty s, S, Ty, respec-
tively. Let B = {y,}i_, be a basis of N'S;. As a consequence of the fact that

NTn; CNSy, everyn € NT,.; can be written as:

P
n= Z Yy (4.3.5)
p=1
Using this representation, we can say that:

nENT & TV (2P ay,) =0
(S eme) (4.3.6)

& YTy, =0
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In other words, NT,; = {0} if and only if zero is the only vector
a = (a1, ®,...,ap) solving Zfﬂ a, Ty, = 0.

In essence, the remaining steps are to describe the set B, the basis of NSy,
and to give a matrix interpretation to equation (4.3.6).

First, let us consider closely a particular wavelet transform on which the
maxima representation is based. In order to be able to compare results, we use
the same wavelets as [31]. Two cases were described in [31]. One corresponds

to the cubic spline wavelet with:

o = (o (3))

and the second corresponds to a Haar wavelet with:

w

H(w) = emp(—i%)cos(g).
G(w) is chosen to satisfy:
| G(w) " + | H(w) = 1.

For the cubic spline wavelet, following [31], the transfer function G(w) was chosen

as:

Gw) = (1 - (cos (‘%))8) e:tp(—%u -5

Sampling H(w), G(w) at wx = % for k = 0,1,...,N — 1 gives the Discrete

Fourier Transforms (DFT’s) & and § :

h(k) = (cos (%’“)) k=0,1,...,N—1 (4.3.7)
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k\\® : itk w
q = — — _ = = e -1 .3.
g(k) (1 (COS(N)) ) exp( N 2) k=0,1,...,N (4.3.8)
Eventually sequences & and ¢ are obtained by the inverse DFT.

1 N=? irkn

h(k) = + 2_: Rh(n)exp( ) (4.3.9)
1 M=l imkn
g(k) = 5 2 9(n)eap(—) (4.3.10)

For N=256, the following numerical results were obtained:

h(0) = 0.375 g(1) = —g(0) = 0.5907
h(1) = h(—1) = 0.250 9(2) = —g(—1) =0.1107

h(2) = h(=2) =0.0625  g(3) = —g(—2) =0.0145

There are small differences with the coeflicients which appear in [31]; for larger
N (e.g N = 4096) one gets exactly the numbers given in [31].

Recall that the set B, used in the proof of Theorem 6, is an independent
set which is included in M'S;. This set was constructed based on the fact that
H(w) = 0. It turns out, that if w = 7 is the only zero of H(w) then the set B is
a basis for the space A'S;. Since for both the cubic spline wavelet and the Haar
wavelet, the only zeros of H(w) appear at w = 7 the set B is a basis for /'S; in
both cases.

Recall that B consists of:

2w pk
Yap-1(k) = cos( 21; ) p=1,2,...,2/"1 (4.3.11)
2npk
ysp(k) = sin(5=) p=1,2,...,27" — 1. (4.3.12)
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A function n, which belongs to the null space of S; can be written as:

271

n(k) = ; apYp(k)-

By the linearity properties we can write:

271

Win(k) = 3 opWjyp(k)-

p=1
Let us define the column vector of free coefficients:

a=(a,az,...,090-1).

For every j = 1,2,...,J and every k = 0,1,...,N — 1, let W,(k) denote the

following row vector:
W;(k) = (Wipi(k), W;pa(k), ..., Wipps 1 (F)) -

The matrix W is defined as consisting of rows W (k) for k € XW; fUY W, f and
j=1,2,...,J. According to Lemma 3, { has a unique maxima representation if

and only if the only solution for:
W-a=0 (4.3.13)
is the vector & = 0. The latter condition is equivalent to:
rank(W) =27 — 1.

Theorem 7 The wavelet mazima representation R, fis unique if and only if

the rank of the matriz W is 27 — 1.
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Conclusion 1 If the number of the extrema points is less than 27 — 1, the
representation has to be nonunique. On the other hand, if the number of exirema
points is equal or greater than 27 — 1 then uniqueness of the representation can
be deduced from the rank(W). In the latter case, there may be situations in
which analysis of the rank(W) can allow to eliminate some extrema from the

representation.

4.4 Examples

During this study, we decomposed many signals and usually only a part of
extrema points sufficed to yield uniqueness. One of the reasons is that many
extrema points are obtained in the regions where a decomposed signal is close
to zero. Signal reconstruction from plenty of small extrema points is expected
to be numerically unstable. The parametric multiscale maxima representation,
introduced in Chapter 7, attempts to overcome this problem. Meantime, in
examples of the basic wavelet maxima, only signals with very clear maxima
points are considered.

Our first example illustrates the common case of a unique maxima represen-
tation. In addition to showing uniqueness, a reconstruction algorithm, based
on the efficient solution of linear equalities, is described. The second example
shows a nonunique representation. For this particular maxima representation,
using Theorem 1, the exact reconstruction set is calculated. The third example

is a nonunique wavelet zero-crossings representation.
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4.4.1 An example of a unique maxima representation

Let us assume N = 256 and J = 3 and consider the following sequence:

2rk, | k|

J(k) = sin(5e= (3()° + ).

This sequence was chosen in order to exhibit different frequency components
without evoking too many extreme points. Figure 4.1 shows its wavelet decom-
position, based on the cubic spline wavelet described in the previous section.

The extrema sets are as follows:
XWifuYW,f={0,92,110,121,129,136, 147,165}
XWo,f UYW,f = {1,92,111,121,129, 137,147,166}
XWsfUYWsf = {2,92,111,122,130,138, 149,168}

All together we have 24 extrema points, while the dimension of the null space
of S5 is 7. We can pick up 7 rows of the matrix W and check for regularity (non-

singularity). We have chosen:
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The signals f and S3f (dashed).

Figure 4.1: The signal f and its wavelet decomposition.
which is equal to:
—0.2621 —0.6328 —0.6847 —0.6847 —0.9237 -—0.3826 —1.0000
0.2621  0.6328 —0.6847 —0.6847  0.9237  0.3826 —1.0000
—0.6328  0.2621  0.6847  0.6847  0.3826 —0.9237 —1.0000

0.2621 —0.6328  0.6847 —0.6847  0.9237 —0.3826  1.0000

—0.0000 —0.7054 —0.0000 —0.2500  0.0000 —0.0208 0
0.4988  0.4988 —0.2500 0.0000  0.0147 -0.0147 0
0.0000 —0.1821  0.0000 0.0000  0.0000  0.0054 . 0
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This matrix is regular, therefore we can conclude that: The maxima represen-
tation R, f of the sequence f(k), defined here, is unique. Furthermore,
essentially, one can give up 17 extrema points out of 24, and still have a unique
maxima representation.

The inverse of the matrix W, is equal to:

—1.3151 —0.3815 0.5082 —1.1883  9.2922  2.7834 —20.2619
—0.0512  0.0000  0.0000 —0.0512  0.2804 -—0.0000 —6.2206
-2.5894 —0.7229  1.0055 —2.3068 18.1422  1.5071 —50.1899
0.2889 —0.0000 —0.0000  0.2889 —5.5825 —0.0000 19.6132
0.5874  0.6496 —0.1442  1.0927 —6.7751 —0.7899  20.2882
—1.7392  0.0000 0.0000 —1.7392  9.5260  0.0000 —24.8083
1.0750 —0.0050 —0.6884 1.3816 —8.5990 —1.0318  20.9344

This matrix does not have large entries, therefore, it can yield an apparently

stable signal reconstruction. In this case, the reconstructed signal is calculated

in the following way. Let us define:

GO (S (k
Tk)y={ G (Sa)(k) #0 (44.1)

0 otherwise

The sequence f, is calculated from fs by the inverse DFT.
Let W, denote the sampling operator at the chosen extreme points , i.e., in

our case,

Wen = (Win(0), Win(92), Win(110), Win(121), Won(1), Wan(94), Wan(2))'
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Then the reconstructed signal is given by:
T
fr=Tfat D oy
p=1
where the vector « is calculated by:
a= Ws—l(wef - Wefs)-

Figure 4.2 describes f — f,, the error from the deconvolution from S3f which
is not large in this case. This error is harmonic, since it has to belong to the null
space of S3. The bottom part of the figure describes the error from the complete
reconstruction, f — f, which is less than 1077.

One important remark is in order. The weak point in this reconstruction
is the division by (g';)(k) in the definition (4.4.1). Small values of (g”;)(l»)
introduce large sensitivity to numerical or approximation errors in S;f. Our
precise reconstruction results are due to high accuracy of the floating point
number representation and due to a small number of levels. Another possible
way to overcome this problem, is to reconstruct a signal using more maxima

points than required by the uniqueness test.

4.4.2 An example of a nonunique maxima representation

In this section a sequence which has a nonunique maxima representation is
described. As in the previous section, we assume N = 256, J = 3, and the cubic

spline wavelet.
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The error from the reconstruction from Ssf.

-100 -50 0 50 100 150

The error from the complete reconstruction.

0 50 100 150

-150 -100

Figure 4.2: The reconstruction errors.
Consider:
2rk  «
k)= — + ).
F(K) = cos( 2 + 5

This sequence is from the null space of S3. Figure 4.3 describes its wavelet
decomposition( S3f = 0 is omitted). Here at every level we have 64 extrema

points, they appear at regular distances. The sets of the extrema are given
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-15 -10 -5 0

-15 -10 -5 0

Figure 4.3: The signal f(k) and its wavelet decomposition.

below:

XWif={2+8k:
YWy f={6+8k:
XWof={2+8 k:
YWof ={6+8-k:

XWsf ={3+8-k:
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YWsf ={7+8-k:k integer}.
The basis for the null space of S3 is:

y1(k) = cos(%E) yo(k) = sin(E)
ya(k) = cos(g8) (k) = sin(*F)
ys(k) = cos(%gE)  we(k) = sin(%")
yr(k) = cos(*FF)
All the functions y, are 8-periodic. Linear operators preserve this periodicity.

Therefore the rows W;(k) are also 8-periodic in the sense:

Wi(k) = W;(k+8) k=0,1,...,N—1 j=1,23.

—J

Thus every level contributes only 2 different rows to the matrix W, and then
there can be only 6 different rows in W! The ultimate conclusion is that, in
this case, the maxima representation is not unique. In essence, till now, we
have just restored, for this particular case, the proof of Theorem 6. We continue
to study this case in order to calculate exactly the reconstruction set of this

representation.
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The different rows of W are as follows:

0.6328

—-0.6328

0.4988

—0.4988

0.1288

—0.1288

—0.2621

0.2621

—0.4988

0.4988

—0.1288

0.1288

0.6847

0.6847

0.2500

0.2500

0.0000

—0.0000

0.6847 —0.3826  0.9237 —1.0000

0.6847  0.3826 —0.9237 -1.0000

0.0000  0.0147  0.0147 0
—0.0000 —0.0147 -—0.0147 0
0.0000 —0.0038 —0.0038 0
0.0000  0.0038  0.0038 0

The rank of this matrix is only 5. One can observe that the last two rows are

dependent. Consider:

W, = W(1 :5,[2,3,5,6,7)).

W, is the submatrix of W consisting of the elements from the rows 1,2,3,4,5

and the columns 2,3,5,6,7. It is a regular matrix, with an inverse matrix not

having large entries. Therefore we will use it for the representation of a general

sequence satisfying Sz f = 0 and giving zero samples at extreme points (i.e. from

the space NTyy).

Let, of and o} be defined as:

of =

_W—l . Wcl

ob = —W;t. Wt

where W€ and W are the first and the fourth columns of the first five rows of

W. The space N'Ty,; is spanned by the two following sequences:

Y =y +of(1) y2 + f(2) - ys + af(3) - ys + 5 (4) -y + 5 (5) - yr
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yy =ys+ b(1) - y2 + 05(2) - ys + o5(3) - ys + a5(4) - ye + 5(5) - yr.

Therefore, the general solution of Ty, 5n = Ty f is:

n=f4+a- -y +a-y;.

Conditions for W;n to be monotonic between extrema of W;f introduce 24

linear inequalities in a; and a;. Elementary analysis of this system leads to the

following seven dominant inequalities:

1.0000a4
1.0000a4
0.0000a,
0.0000a,
1.0000q;,
1.0000a,

1.0000a,

_I,_

+

1.3059a,
1.3059a,
1.0000a2
1.0000a,
0.3574a,
0.3574a,

0.0000a,

<

<

—0.4330

—0.4330

—0.1849

0.1849

0.1007

0.1007

0.0991

First, we pick up three pairs ( 0, 0), ( 0, -0.4), ( -0.2, 0.16) which satisfy the

system of inequalities (4.4.2). In order to visualize different sequences with the

same wavelet maxima representation, let us define three sequences. The first is

the original f and the next two are defined as:

fa:f_0-4'yiu

fo=f—02 -y +0.16-yY.

Figure 4.4 and Figure 4.5 show these sequences and their wavelet transforms.

From the graphs one can indeed see that all have the same discrete wavelet
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Signals f, f.(dashed), fy(dotted).

Figure 4.4: The signals and their first level wavelet transforms.

maxima representation. Let us assume that f, was reconstructed from the rep-

resentation of f, in this case the noise to signal ratio is defined as

If — fall®
1112

and is equal to 0.345. In spite of the high —]5\4 ratio, these signals have a very

similar shape.

Set of inequalities (4.4.2) can be solved precisely. Figure 4.6 describes this
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Signals Wy f, W, f,(dashed), W fy(dotted).

15 -10 -5 0 5 10 15 20

Figure 4.5: The second and the third level wavelet transforms.

solution by showing the boundary of set A ,the set of all pairs (a1, a2) satisfying
set of inequalities (4.4.2).

Now, the reconstruction set of this representation is given as:
T(Rnf)={n:n=Ff+a -y +ay3 (a1,a2) € A} (4.4.3)

Figures 4.7, 4.8, 4.9 were obtained by plotting a family of functions on the

same graph. Figure 2 describes the set I'(R,.f), Figure 3 and 4 show the sets
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Figure 4.6: The boundary of the set A on the plane (a1, a3)

sets {Win:n € T(Rf)} and {Wan : n € (R, f)}. Of course all functions in
Figure 4.7 and 4.8 have the same extreme points.

As was already mentioned, only a nonunique case may exhibit distinctive
properties of the multiscale maxima representation. Therefore, it is worth-
while to examine carefully the reconstruction set I'(R.,s). Since the cubic spline
wavelet transform is based on wavelet W(£) which is a derivative of a smoothing
function, all sequences in I'(R,,s) have the same multiscale sharper variation

points. Moreover, they all appear to have a very similar shape. This “shape”
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_1.5 Il Il L L | 1 L
2 4 6 8 10 12 14 16

Figure 4.7: All sequences belonging to I'( R, f).

preserving property, perhaps expected, but not easily formulated and proved, is
apparently the most interesting and promising feature of the multiscale maxima
representation.

A nonunique representation can be viewed as an approximation, in this case
we can, at least for the above example, make the following observation. The
reconstruction set of the multiscale maxima representation, as a subset of &,
appears to be much less directional homogeneous than reconstruction sets based

on other standard approximations techniques like quantization or truncation.
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Figure 4.8: All Win such that n € (R, f).

The reconstruction set I'(Rns) was calculated for J = 3. It turns out that,
in this particular case, ['(R,,;) C N'S;. But then, for all n € ['(Rn;) and for
7 > 3 the following is true:

Win = 0. (4.4.4)

Therefore all n € I'(R,.s) have the same wavelet maxima representation regard-

less J as long J > 3.



L L 1 1 ] Il 1

2 4 6 8 10 12 14 16

Figure 4.9: All Won such that n € T'(R,, f).

4.4.3 An example of zero-crossings nonunique representation

Now, let us consider the zero-crossings representation based on the wavelet trans-
form defined in [29]. Let J = 5 and N = 256. By essentially the same analysis
as the one described in the previous sections we can show many signals with a
unique representation and a few with a nonunique representation. We skip the
description of detailed analysis and just define two signals having a nonunique

wavelet zero-crossings representation.
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Figure 4.10: The sequences f and f,
Consider
21k
B =oos (B} k=01
fa(k) = cos (@> +0.1-sin (%) =0,1,...,N-1

Using directly Theorem 2, it can be shown that they have the same zero-
crossings representation. Figure 4.10 describes these sequences, while Figure
4.11 presents their first level wavelet transforms (other levels wavelet transforms

are very similar).

I
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0.04

0.03

0.02

0.01

-0.01

-0.02

-0.03

-5 0 5 10 ' 15 20

Figure 4.11: The sequences W, f and W1 f,
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CHAPTER

FIVE

STABILITY

The problem of bounding possible variations in the reconstruction set due to
perturbations in the representation is considered. After spending some time, in
the previous chapter, with the wavelet maxima (zero-crossings) representations,

we return to the general case of inherently bounded AQLR's.

5.1 BIBO stability

To address the stability issue, the standard approach is to introduce the notion
of perturbation of the representation, and of the reconstruction set. In addition,
a distance measure for distinct representations and for different reconstruction
sets should be defined. In general, it is not an easy task. Observe that V f,T'f
may have different sizes for different representations. Fortunately, for inherently
bounded representations, the following characterization of BIBO (bounded in-

put, bounded output) stability is easily verified.
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Proposition 14 Let Rf; = {Vfi,T.f;}, i = 1,2 be inherently bounded

AQLR’s. Then for all K; > 0 there exists Ko such that:

HTgf,H < K;j (7. = 1,2) = ”:L‘l - CEQ“ < Ko Vz; € F(Rfl)

Proof: This claim is an immediate consequence of the definition of an inherently
bounded AQLR. Indeed, using the definition of an inherently bounded AQLR
and the hypothesis:
r; e N(Rf) = ||| < K- ||Tifil £ K- K;
But then:
|2y = 22|l < flzall + [l2ll < 2K - K7
O
The above result is strong in the sense that it is valid regardless of the sets
V f1,V fa. It is weak in view of the fact that the bound on ||z; — 24| is achieved
by the bounds on absolute values of z1,z2. In this case, a small perturbation in
the representation does not necessary yield a small bound of ||z; —2||. The next

result is complimentary in the sense that a certain structure of the perturbation

is assumed, but a bound, proportional to the size of the perturbation, is given.

5.2 A Lipschitz condition

In many applications, the reasons for perturbations in a representation are arith-

metic or quantization errors in a reconstruction algorithm. This kind of pertur-
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bations may change the continuous values of T'f but it preserves the discrete

values of V f. Therefore the perturbed representation, (Rf),, can be written as:
(Rf)y ={V,Tf+ AT} (5.2.1)

Let T', be the corresponding reconstruction set. Our results are related to the

following measure defined on (I',T',):

d(F’FP) = sup{||'y - 7p“ yel,y € Fp}-

Observe, that for inherently bounded AQLR’s, d(T',T',) is always finite. The
measure of the perturbation in the reconstruction set is the difference between

d(T,T,) and the size of I' which is defined as follows:

s(T) = d(T,T) = sup{llya — el : 1,72 € T} (5.2.2)

s(T') and d(T,T,) describe the largest possible Euclidean norm of a reconstruc-
tion error, from the original representation and from a perturbed one, respec-
tively.

One remark is in order. In general, for an arbitrary A(T f), the associated
reconstruction set may be empty and then d(I',T',) would not be defined. In the
sequel, it is assumed that this problem is treated by a reconstruction algorithm
and hence A(Tf) yields a nonempty I',. In this case, the following Lipschitz

condition is satisfied.

Theorem 8 For all inherently bounded AQLR, there exists K > 0 such that:

d(T,T,) < K - |A(TF)| + s(T). (5.2.3)
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Proof: Let T and T, be the closures of the sets I' and T',, respectively. Since
lv — 3| is a continuous function on T’ x ', which is a compact set, then there

existv e and ¥ € F_,, such that:
v — o]l = d(T, ;) = d(T\ T,). (5.2.4)

Moreover, v and & have to be vertices of T' and T,. Indeed, if, for example, v is

not a vertex, then there exists € > 0 such that v+ ¢ (v — v) € T, and:
lo+e(v—0)—0|=(1+¢€)-|jv—2o||>|v—2] (5.2.5)

This contradicts the fact that |Jv — 8] = d(T, T}).

Let A(T f) be fixed and arbitrary, such that I'; is nonempty. We define
(Rf)s 2{VL,TFf+X-A(Tf)} 0<A<1 (5.2.6)

with the underlying reconstruction set denoted by I‘;,\. From the definition of an

Adaptive Quasi Linear Representation (AQLR):
Ip={z:Tze=Tf+X-A(Tf) and Cz > c}. (5.2.7)

The above formula yields the following observation: if zo € I' = T and

0, €l, = le, then

a:0+)\-(m1—x0)ef’\ 0< A< (5.2.8)

P

Therefore F;} is nonempty for 0 < A <1 and d(T, F;}) is well defined.
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Next, notice that the closure of I‘;} is given by:
()" ={z: Tz =Tf+-A(Tf), Cz>c}={z:Bz2b+rAb}. (5.29)

where B is a p X N matrix and b, Ab are p-dimensional vectors (see Section
3.2). Since every equality of Tz = Tf + X - A(Tf) appears in two rows n
Bz > b + AAb:
1A8]| = 2| AT I (5.2.10)
We know that
d(T,T)) = ||v* — o™ (5.2.11)
where v* is a vertex of I’ and 9* is a vertex of -I_“E. Using (3.2.4) we can write:

v’ = D'b and %" = D'(b + AAb). (5.2.12)

Both matrices D' and D' are obtained from an inverse of a regular submatrix
of B. Note that ||Db — D(b + AAb)|| is a continuous function of A for any two

matrices D, D. Therefore, if

|0 = M} < ||ve = Vol (5.2.13)

for all pairs v,, 9, of vertices of T, T‘E, respectively, which are different from v*, %,

then there exists a segment [A;, Ai+1] such that:
d(T,T)) = | D'b — Di(b + AAD)[| VA € [Ai, Aiga]. (5.2.14)

Furthermore, there exists another pair of vertices, with associated matrices D*~!

and D'"!, such that:

d(T,I) = [D'b — Di(b + \:Ab)|| = [D'7'b — D' (b + \Ab)[|.  (5.2.15)
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Next observe that since the number of regular submatrices of B is finite, the
number of possible pairs D, D is finite as well. Consider |[Db — D(b + AAb)]|
and ||D,b — Dy(b + AAb)|| as two functions of A. As square roots of quadratic
forms, these expressions may coincide or be equal for at most two values of A.
Therefore all possible pairs of these functions intersect at finitely many points.

Consequently, there exist L points:
0:)\0</\1... </\L_1 =1 (5216)

and L pairs of matrices (D', D') i = 0,1,..., L — 1 such that Db is a vertex of

T and D(b + AAb) is a vertex of (T})" for all A € [A;, \i1]. Moreover
d(T,T2) = ||D'b — D(b + AAb)|| VA € [Ai, hiya]. (5.2.17)
d(D,I)) = |D'b = D'(b + AAb)|| = [D7'b = D' (b + XAD)||.  (5.2.18)
Proposition 15
i—1

d(D,T5) < d(D,T) + 3 (Aepr — M) - [ DFAB]. (5.2.19)

k=0

Proof: By induction on z. Let : = 1.
d(T, [‘;}’) = ||D'b — D*(b + M\ Ab)|| =

= ||D°b — D°(b + M Ab)|| =
= | D°b — D°b + D°b — D°(b + A\ Ab)| <

< [[D% — D°b]l + [ D°b — D°(b + X Ab)| =
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— d(T,T) + Ay - | DAb|.

Since Ao = 0, the above is exactly the claim for ¢ = 1. By induction, let us

assume that the proposition holds for z — 1. Consider:
d(T,T3) = |D"'b — D' (b + MiAb)|| =
= [|D""'b — D" (b + Ay Ab) + D7 (b + X1 Ab) — D (b + MAD)|| <
< ||Db — D(b 4+ A Ab)|| + | D (b + Ay Ab) — DT (b + A Ab)|| =
= d(T, 1)) + (A — At | D71 AB|| <

(using the induction assumption)

=2
<d(D,T) + Y- (Aesr — M) IDFAB|| + (X = Aoy DAY =
k=0
i—-1
= d(T,T) + 3" (Aess — M)l D*Ab].
k=0

This concludes the proof of the proposition.

Using the proposition we deduce that the distance between I' and I';, satisfies:
L-1 B
d(T,T,) < d(T,T) + 3 (kg1 — Ae)[| DFADJ|. (5.2.20)
k=0
Let ||D*|| be the induced matrix norm of D*. Then
|DAB| < D] - ). (5.2.21)

Since the number of possible matrix D* is finite, there exists Kp > 0 such that:

1Dl < Kp (5.2.22)
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for all valid D*. Combining together (5.2.22),(5.2.21), (5.2.20) we show that

d(T,T,) < d(T,T) + Kpl||Abj. (5.2.23)

By taking K = 2Kp and using (5.2.10), the desired relation is obtained:

Observe that the above result is global in the sense that as long as A(T f) gives
rise to a nonempty reconstruction set, the theorem holds regardless of the size

of A(Tf).

5.3 Discussion

One can ask whether the kind of stability just established is indeed the property
that has been desired to achieve. The answer has several different aspects and
let us dwell a while upon this subject. First consider the following citation from
Humme] and Moniot [22] "stability of the representation concerns continuity of
the inverse map 7. Theorem 8 is exactly of this type. Another citation, from
[29] is as follows: ”a representation is said to be unstable if a small perturbation
of the representation may correspond to an arbitrary large perturbation of the
original function.” This definition refers to BIBO stability, which was given by
Proposition 14. In view of these considerations, stability, as presented in this

thesis, is indeed a necessary property of a multiscale edge representation. But it
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does not mean that an inherently bounded AQLR will always provide accurate
reconstruction results. Somehow, perhaps because of partial uniqueness results
obtained by unstable tools, poor reconstruction results are often regarded as evi-
dences of instability. For instance, such was the case in the example given in [22],
mentioned earlier. A careful discrete analysis may point out different possible
reasons for inadequate reconstruction results, e.g. nonuniqueness of the discrete
representation, instability or high sensitivity of the reconstruction algorithm.
Therefore, stability should not be viewed as a sufficient condition of a desired
signal description. In our opinion, every practical signal representation has to be
tested quantitatively with respect to the size and the structure of reconstruction

sets and with respect to sensitivity of the reconstruction algorithm.
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CHAPTER

SIX

RECONSTRUCTION

6.1 General theory for an inherently bounded AQLR

For a nonunique representation, there are several ways to define a reconstruction
algorithm. One can require to find all elements from the reconstruction set,
on the other hand, sometimes it is desired to determine the smallest element
satisfying a given representation. In this work, a reconstruction algorithm is
defined as a procedure to find an arbitrary element = belonging to the closure
of the reconstruction set, I'. As mentioned earlier, we propose a reconstruction
algorithm based on an appropriate potential function v(z). This function should

satisfy:

v(z)=0, VzeTl (6.1.1)

o(z)>0, Vze(T). (6.1.2)
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where (F)c denotes the complement of T in £. Furthermore, it will be shown

that the proposed v(z) does not have any local extremum outside T, ie.
IVo(e)| >0 Vze (T) . (6.1.3)

Vu(z) denotes the gradient of v(x) with respect to z, namely it is a column
vector of derivatives of v with respect to components of z. With such a potential
function, the reconstruction is achieved by any minimization algorithm operating
on v(z). We will focus on the reconstruction algorithm based on the differential
equation:

#(t) = =V (v (2(1))) (6.1.4)

whose analog hardware implementation gives rise to a very fast algorithm. In
addition, a steepest descent algorithm, appropriate for a digital simulation, is
described and its convergence is shown.

In this section, a general inherently bounded Adaptive Quasi Linear Repre-
sentation (AQLR) is considered. As mentioned in Section 3.2, the closure of the

reconstruction set, I', can be written as:
I'={z:Bz>Db} (6.1.5)

for a given p X N matrix B and a p-dimensional vector b. The function v(z) is
derived from this representation in the following way.

P

v(z) =3 p(Bz —b); (6.1.6)

=1
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where (Bz —b); denotes the i-th component of the vector Bz —b. The function

p(+) is defined by:

| e ifeso
p(§) =

0 otherwise

Using the above definitions, it is easy to verify that (6.1.1) and (6.1.2) hold.
Observe that p(¢) is continuously differentiable. Therefore v(z) is continuous
and continuously differentiable. By elementary calculations, the gradient of v(x)

can be shown to be:

Vu(z) = 2B'Z(Bz — b)
where Z is a p X p diagonal matrix defined by:

NER if (Bz —b); <0
Z(i,0) =
0 otherwise
Naturally, B’ denotes the transpose of the matrix B.

The following theorem states that v(z) does not have local extrema outside

the set T'.
Theorem 9 Let I' be nonempty. Then Vo(z) =0 if and only ifz € T.

Proof: If z € T then Z(z,1) = 0fori = 1,2,...,p and clearly Vuv(z) = 0. Let us
assume Vu(z) = 2B’Z(Bz — b) = 0. Since z € T if and only if Z(Bz —b) =0,
we need to show that Z(Bz — b) = 0. Consider the following decomposition of
Zb:

Zb = ZBy + b, (6.1.7)
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such that b, LR(ZB), namely b,ZBz = 0 Vz, or equivalently:

(ZB)'b, = 0. (6.1.8)

Substituting this decomposition into the hypothesis yields:

0 = 2B'Z(Bz — b) = 2B'(ZBz — ZBy — b,) = 2B'(ZBz — ZBy).

Using Z = Z'Z we see that

2ZB)(ZB)(z —y) =0

which implies

(z—y)(ZB)(ZB)(z —y) = ||ZB(z — y)|| = 0.

Therefore

ZBz = ZBy. (6.1.9)
Consequently, in this case:
Z(Bzx —b)=ZBz — ZBy — b, = —b,. (6.1.10)

Hence, it suffices to prove that b, = 0. This will be based on the following

statement of the Farkas’ Lemma ([36],p 472-474).
Theorem 10 Ezactly one of the two alternatives holds:
1. 3z s.t. ZBx > Zb.

2. 3b, such that (ZB)Yb, =0 b, >0 (ZB)'b, > 0.
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Equation (6.1.8) already states (ZB)'b, = 0. Observe that from the defini-
tion of Z, ZBz — Zb < 0, therefore b, > 0. At this point, let us assume by

contradiction that ||b,|| > 0. Consider
(ZbYb, = (ZBy + b,)'b, = |[b|? > 0.

Therefore the second alternative holds. For the first alternative take any x € T'.
Then Bz > b, and for any matrix Z with nonnegative entries: ZBz > Zb.
Hence the first alternative holds as well. This is the contradiction we were after,

and eventually we have b, = 0.

In view of these considerations, a reconstruction scheme can be implemented

as:

arg min {v(z): z € L}. (6.1.11)
The minimization is significantly facilitated by the property that local extrema
of v(z) appear only in I'. We are going to focus on the algorithm based on
the differential equation (6.1.4). The desired property is that for all 2(0), =(¢)
will approach the set T as t — co. In other words, z(t) should approximate an
element from T for ¢ large enough. The convergence result is based on La Salle’s

Theorem.

Theorem 11 (La Salle )

Let Q be a compact set with the property that every solution of &(t) = f(x) which
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starts in Q remains for all future time in Q. Let v: Q — R be a continuously
differentiable function such that v(z) < 0 in Q. Let E be the set of all points in
Q where v(z) = 0. Let M be the largest invariant set in E. Then every solution

starting in §) approaches M ast — oo.
An invariant set M is defined by:
z(0) e M = z(t) e M Vit >0.
We say that {z(t)} approaches a set M if for all € > 0 there exists T', such that:
dist(z(t),M)<e, Vt>T

where dist(z(t), M) denotes the smallest distance between z(t) and a point from
M, ie.

dist(a(t), M) £ jnf lla(t) - €]|

The proof of Theorem 11 can be found, for example, in [25].

At this point we are able to prove the following convergence result.

Theorem 12 Let T be the closure of the reconstruction set of the inherently

bounded AQLR. Then for all z(0), the solution of
z(t) = =V (v(z(t))). (6.1.12)
will approach T ast — oo.

Proof: Let z(0) be arbitrary and fixed. Define:

Q= {z:v(z) <v(z(0))}. (6.1.13)
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Since 9(z) = —||V(v(z))||?> < 0, every solution of (6.1.12) which starts in
remains there. T C Q because for all z € T v(z) = 0. As a consequence of
Theorem 9 E = T. But T is an invariant set, therefore M = I'. By showing that
Q) is compact we will get the desired convergence result. ) is closed because
v(z) is continuous. Boundness of 2 is based on the fact that the representation
is inherently bounded. Let z € ) be arbitrary. Define the vector b, by:

(Bz); if (Bz); < B;

(bz‘)i :A

b; otherwise.

Proposition 16 The norm of b, is bounded in the following way
b2 ]|* < [[b]I* + v(z). (6.1.14)
Proof: For any vector y we define:

lyl2= > ¥

{i:(Bz);>b;}

lyliz, = > vl

{i:(Bz)i<b;}

Note that ||y||s, ||ly|lns are norms of appropriate projections of y. Therefore, we

can write:
bz ||* = {[bz]l3 + lIbellz, =
= |[be[|? + |Ibs — b + bl|7, <
< {lbz[l + IIbs = bIIZ, + IbII%,

Using v(z) = ||bz — b||%, and ||b,||> = ||b||?, the claim of the proposition is

shown.
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To conclude the proof of boundness of {2 observe that
Bz > b,.
Using the result (3.3.16) we see see that:
2]l < Kilfbell- (6.1.15)

From the definition of Q and from the proposition it can be shown that for all

z e

lz]| < Kiy/IIbl12 + v(z(0)) (6.1.16)

namely, Q is bounded and the proof is completed.

Theorem 12 enables us to use a very fast analog-hardware implementation
to reconstruct signals. However, before acquiring a costly and not flexible hard-
ware, an ability to perform digital simulations is required. The last part of these
section is devoted to this issue. First, we define a steepest descent algorithm,

based on the cost function v(z).

Definition 6.1.5 ([28/p215)
Let Rf be a given inherently bounded AQLR, and v(z) be the correspond-
ing cost function. The steepest descent algorithm is calculated by the following

iterative formula. For any zo € L, we define the sequence {z}.
Tpy1 = T — g - Vo(ay) k£=0,1,2,... (6.1.17)

where ay is a nonnegative scalar minimizing v (xr — oy - Vo(zy)).
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The convergence of this algorithm is described in [28], let us cite (with minor

changes in notation) from page 215.

Theorem 13 If v(z) has continuous partial derivatives and {zy} is bounded,

then the limit of any convergent subsequence of {xi} belongs to T.

The proof is based on the Global Convergence Theorem, proposed by Zangwill
[47], and appears in [28] pages 209-215 and pages 187-188.
Note, that the conclusion of Theorem 13 is written in apparently different

terms than Theorem 12. However,

Lemma 4 Let {z;} be a bounded sequence. If the limit of any convergent sub-

sequence of {zi} belongs to T then the sequence {z\} approaches T as k — oc.

The proof is a standard ¢ — & consideration and is given in Appendix A.
Observe that without the property that {z,} is bounded, we can not deduce
the convergence of this algorithm. Here again, in addition to several times
in the past, we can benefit from the powerful properties of inherently bounded
AQLR’s. The boundedness of {zx} can be shown from v(zx) < v(xo) by the same
technique used in the proof of Theorem 12 (see equation (6.1.16)). Consequently,
for any z¢, the steepest descent algorithm, based on the cost function v(z), will
approach the closure of the reconstruction set. In the next sections we will show

how an efficient reconstruction algorithm can be based on this idea.
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6.2 The detailed algorithm for a multiscale representation

As was shown in the previous section, to define reconstruction in the context of
solving a system of inequalities Bz > b is advantageous for analysis. However,
a direct implementation of this form may yield unnecessary high complexity,
related to the use of the “large” matrix B. In this section, using the structure
of the multiscale maxima representation, an efficient algorithm to calculate the
cost function v(z), and its gradient Vov(z) will be described. We will conclude
with the discussion of possible implementations of reconstruction using iterative
descent algorithms.

The cost function v(z) is calculated by taking into account all conditions that
z should satisfy in order to belong to the closure of the reconstruction set, T'.
For the multiscale representation, these conditions can be clustered according to

the different scales. To be more specific, let us consider the multiscale maxima

representation:
R f = {{XW, £, YW1, (Wi f (R hexwysorw, s}, Saf b (62)
The j-th part of this representation, R, f is defined as the following triple:
Rif 2 {XW; f,YW;f, AW, f (k) }rexw, rovw,s | (6.2.2)

In order to keep a uniform notation, Ry, f refers to Sy f and is defined as the

following triple.

Rinf 2 {5, (RH5 S0f}- (6.2.3)
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The conditions for a sequence 5 to belong to the closure of the reconstruction
set, [(R,s) are easily derived from Theorem 1. Theorem 1 can be rewritten as

follows. An arbitrary n € £ belongs to I'(R,.s) if and only if
Sim(k)=S;f(k) k=0,1,...,N=1
and for j =1,2,...,J
Win(k) = W;f(k), ke XW;fUYW,f (6.2.4)

7/ (k) - (Wn(k +1) = Wyn(k)) 2 0 (6.2.5)
ke (XW,fUYW,; ) U(XW;fUYW,;f).
Recall that the type of k, tTf(k), is calculated from the sets XW;f, YW, f.

With the objective of shortening the forthcoming notation, let us define

_ |t R) ik e (XWifUYW, ) U (XW,;fUYW,f).
{(k,R;f) = (6.2.6)

0 otherwise.

Observe that if XW,f = YW, f = {k}p' then
(XW;f UYW;f)°U(XW,fUYW,f) =

and therefore t(k, Ry, f) =0 for all k =0,1,...,N — 1.
In addition, we need to define the characteristic function of & with respect

to the set of local extrema, x(k, R, f).

1 ifke XW,fUYW,f
x(k,R;f) £ ! ! (6.2.7)

0 otherwise.
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Using the above definitions, we see that 7 € (T(R. f) in and only if
x(k, Ryga f) - (Son(k) = Ssf(k)) =0 k=0,1,...,N—1 (6.2.8)
and for j =1,2,...,J
xX(k, Bif) - (Win(k) = W;f(k)) =0 k=0,1,...,N -1 (6.2.9)

Hk,Rif) Win(k+1)—W;n(k)) >0 k=0,1,...,N -1 (6.2.10)

where ij(k) is introduced to justify the use of values which do not appear in the
maxima representation. The specific values of 1% sf(k)  for
k€ (XW;fUYW,f)® are not important, because they are multiplied by

x(k, R; f), which is zero in this case. For a formal definition, let us write:

L | Wif(k) ifke XW;fUYW;f
W;f(k) = (6.2.11)
0 otherwise.

The cost function v(7) is calculated from conditions (6.2.8), (6.2.9), (6.2.10).
Observe that, for a given j, the related conditions can be calculated using Wy
and R;f, which will be called the local information. Toward the objective of
defining rigorously the jth part of the cost function, let R = (X,Y/,T) be a
generic one-level maxima representation. In other words, X, Y are sets of num-
bers from {0,1,..., N—1} and T is a sequence of | X |-+|Y'| real numbers. Observe
that x(k, R), {(k, R) are well defined for any such R. Let T = {T(k)}N=! be
a sequence obtained from 7' by filling missing values with zeros. Its formal

definition is as follows:
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T (order(k, XW; fUYW;f)) if k€ XW,fUYW,f
T(k) £ (order( ! i) ! ! (6.2.12)

0 otherwise.

Where order(k, XW; f UY W, f) is the index of k in ordered list consisting

of elements from XW; fUYW,;f.

v}

For any y € £, we define the local cost function v(y, i) as follows.

N-

D

k=0

I
L

v(y, R)

(k. 20y (y8) = F0))" 4 x (B8, ) (K 1) = w(8)) - (u 1) = (8)?)
(6.2.13)

where x,,(£) is a characteristic function of £ < 0, i.e.

Ll 1ire<o
Xn(§) = (6.2.14)

0 otherwise.

Recall that we note interchangeably column vectors from R" and sequences
from £. The coefficient x(k, R) is y-independent and x, (f(k, R)(y(k+1) - y(k)))
is a piecewise constant function of y € R™. Therefore, the local cost function,
v(y, R), can be referred to as a piecewise quadratic form of y € R".

In the sequel we will use a uniform notation for S and W operators. Since J
is considered constant in this thesis, we will note W; 11 = Syn. After this long

introduction, we are now able to write a short definition of the cost function.

Proposition 17 The cost function of an arbitrary n € L, with regard to the
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multiscale mazima representation R, f, is given by the following formula:

1
v(n) = v(Win, R;f) (6.2.15)

1

<
+

.
il

Notice that v(7) is a piecewise quadratic form in n € Y.

Recall that v(n) accounts, with quadratic cost, for all constraints required
to have n € T'(Rnf). Equation (6.2.15) is a straightforward consequence of
conditions (6.2.8),(6.2.9), (6.2.10) and notations and definitions introduced af-
terwards. In the case that the reader is confused by the amount of notations and
definitions recently introduced, we would suggest to track back from equation
(6.2.15) to conditions (6.2.8),(6.2.9),(6.2.10).

From equation (6.2.15) we can see that the calculation of the cost function

consists of three steps:

J+1

e calculate the multiscale decomposition {W;n} .

e calculate the local cost function v(W;n, R;f) by scanning the sequence
{an(k)}i\:ol against the j-th level maxima representation R;f.

e sum up the resulting local cost functions

The algorithmic complexity of the last two steps is O(NJ), therefore it does
not exceed the algorithmic complexity of calculating the multiscale decomposi-
tion. We will show that a similar statement is true for the calculation of the

cost function gradient, Vou(n).
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Equation (6.2.15) yields

J+1
Vo(n) = > Vv(W;, R;f). (6.2.16)

i=1

Let W; be a matrix corresponding to the linear operator W;, namely:
Win=W;.g (6.2.17)

Now, let I/y(y,fi) denote the column vector of derivatives of ¥ with respect to

components of the vector y, 1.e.

vy (Y, R) will be called the local gradient.

The k-th component of the gradient Vv (W;n, é) (with respect to 7) is given

by:
dv(Wn, N-19u(y,R) 0 ,
vy = L0 e D

Since y = W;n, 8—%31 W,(p, k), where W;(p, k) denotes the (p, k) entry of

the matrix W;. Substituting this term into (6.2.18) provides:

N-1 y »
VUa)(k) = 3 W)

and then we obtain the following column vector notation.
V(n) = Wi - v,(y, R) (6.2.20)

The local gradient which is the derivative of v with respect to y is calculated

directly from equation (6.2.13). The result is:

vy(y, B)(k) = 2x(k, R) - (y(k) — T(k)) -
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— 2xn (T (K, B) (y(k +1) — y(k))) - (y(k + 1) — y(k)) +
+2xa (T (k= LR) (w(k) —y(k= 1)) - (w(k) —y(k = 1)) (6:221)

Summarizing, the gradient of the cost function v(n) is given by the following

formula:

J+1
V() =Y Wi v, (Win, R, f). (6.2.22)
Jj=1

The gradient calculation consists of four steps:

e calculate the decomposition {W]n};]:;

e calculate local gradients v, (W;n, R;f)
o calculate W' - v,(Win, R; f)
e sum up results for y =1,2,...,J4+1

Let W} be the linear operator corresponding to the matrix Wi. Of course,
if the linear operator W; is implemented by a matrix operation , the complexity
of calculating Wiy is the same as of W;n. Moreover, if W; is implemented by
convolution with, say, a filter h(k), then W can be implemented by convolution
with the filter (k) = h(—k) and again the same complexity is involved. In the
wavelet transform case, W/ corresponds to the inverse wavelet transform and

then the gradient calculation has an attractive interpretation:
e calculate the transform

e calculate the local gradients
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e calculate the inverse transform

In view of the above considerations, we can conclude that the algorithmic com-
plexity of calculating the gradient of the cost function is of the same order as

calculating the decomposition (Wi}t

J=1"

As was already mentioned, any minimization of the cost function can be
considered as a reconstruction algorithm. For large and nonlinear systems, the
standard approach is to use an iterative algorithm. Most of the relevant algo-
rithms can be identified as belonging to one of the following categories: Basic
Descent, Conjugate Directions and Quasi-Newton methods. See [28] for an excel-

lent description of the most important methods. Basically, every such algorithm

performs two-phase steps:

e find a direction to move (usually it is based on the gradient)

e line search - find a relative minimum (or its approximation) of the cost

function along the chosen direction

Due to the ” piecewise” quadratic structure of the function v(7), many interesting
methods for both precise and approximate search can be considered. However,
we have learned from the simulations that different methods provide very similar
performances.

We have started with the precise search along the gradient, i.e. we have used

the following recursion formula:

Met1 = Mk — ok - VU (k) (6.2.23)

106



where

ap = arg Ogrol(i<noov (nk — ax - Vo(ni)). (6.2.24)

Then using coarser and coarser approximations for line search along the

gradient, surprisingly, we concluded with the following algorithm:

M1 = Nk — a - Vo (ni) (6.2.25)

where « is chosen from {1, %,%,...} as a largest number satisfying:

v (mk — k- Vo(ne)) < v(nk).

Since development of an efficient, reliable, and generic reconstruction algorithm
is not the major concern of this dissertation and since the above scheme performs
satisfactory in the study cases, an algorithm based on equation (6.2.25) is used
in the following section. In practice, the search for a was extremely simple,

because in all experiments reported here a was either 0.5 or 0.25.

6.3 The rate of convergence

Although we have shown convergence results of the reconstruction algorithm, we
are not able to analyze the rate of convergence. In spite of the fact that v(x) is
a piecewise quadratic form and for quadratic forms there are well known results
about the bounds of the rate of convergence, applicability of these results to this
dissertation is really problematic. First, for different regions we have different

quadratic forms, and the algorithm usually switches between them in a way
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which is difficult to predict. Second, even for one region, the exact structure of
the quadratic form depends on the particular representation and we did not find
any related general characteristic. Moreover, for a reconstruction algorithm,
the problem of rate of convergence is twofold: first we can ask the standard
question of how fast does the cost function v(nx) decrease. The second, and
more important, question is how fast and in what manner does the sequence
{z\} approach the set T. Unfortunately, bounds, used in the proof of Theorem
12, are too loose for practical implementations. In view of these considerations,
the only source to learn about the convergence rate is experimental data.

We have tested many analytical signals and it was apparent that a con-
vergence pattern is very similar for different signals. In this section, we will
present two signals whose wavelet maxima representation is already known to
the reader. Recall the example of a unique wavelet maxima representation,
described in Section 4.4.1. Let us denote it by f,.

2k w

fu(k) = Szn(gs’g&( 198

P +1) k=0,1,...,255. (6.3.1)
The signal f,.(k) is the well-investigated example of nonunique wavelet max-

ima representation (see Section 4.4.2).

ok
fulk) = cos(—g—— + %) k=0,1,...,255. (6.3.2)

We use the cubic spline wavelet, described in Section 4.3 and consider recon-
struction from both R, f. and R, f,. Figure 6.1 describes the behavior of the

cost function v(nx) as a function of the number of iterations k. First, observe
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that for the first 100 steps, both cases look very similar and achieve approxi-
mately v(n) = 1073. At this point, the relative improvement for Ry, f, becomes
extremely slow, while for R, f, the improvement is still significant.

For the next graph we need to define the noise to signal ratio, %

_]Y_ 2 lImx = fII?
S 1 f1I2

Figure 6.2 describes the behavior of % as a function of k. As expected, the
reconstruction from R, f. is much more precise, and after about 100 steps we
achieve ]—;— = 3.1073, observe that in order to have —]SY = 1072, it suffices to
use only 30 steps. On the other hand, for R, f, we hardly reach %’— =5-10"2
However, the latter should be considered a satisfactory result because for the
signal f,, described in Section 4.4.2 and belonging to the reconstruction set, the
noise to signal ratio is 0.3458. In order to visualize better the quality of the re-
construction, Figure 6.3 describes the reconstructed signals, after 100 iterations
and after 4000 iterations. We can see that all signals are similarly shaped and
appear to belong to the reconstruction set. For this case, the reconstruction
set was calculated precisely, hence we can find the distance from a given recon-
structed signal to the set T'(R,, f,.). It turns out that after 100 steps, the ratio
—]S!, where N corresponds to the component of the reconstructed sequence which

is outside TI'( Ry, fr) is below 0.01.

Our conclusion from the experimental data is twofold:

e it is very easy, robust, and fast to get results corresponding to % ~ 1072
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e it is extremely difficult, sometimes even impossible, to get very accurate

(say & ~1077) results .

Therefore, we would recommend to use this type of representation in cases
where the required quality corresponds to % in the range 10~* — 1073. Fortu-
nately, most engineering applications in important areas like speech analysis,
computer vision, data fusion, etc. require this sort of quality.

In the next chapter, we will discuss how one can make multiscale maxima
representation much more flexible and more compact while preserving the ability

to reconstruct signals with % =107 —1073.
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continuous line - case of R, fn

dashed line - the case of R, f,
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Figure 6.1: Cost function v(nx) as a function of &
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continuous line - case of Ry, fn

dashed line - the case of R, fu
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Figure 6.2: The noise to signal ratio, %, as a function of k
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continuous line - original signal f,
dashed line - the reconstructed signal after 100 iterations
dotted line - the reconstruction signal after 4000 iterations
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Figure 6.3: The original and reconstructed signals

16



CHAPTER

SEVEN

MODIFICATIONS IN MAXIMA REPRESENTATIONS

7.1 Introduction

All previous chapters concerned with analysis of the basic form of signal rep-
resentations proposed by S. Mallat and S. Zhong [30] and S. Mallat [29]. As
a side benefit of this mathematical analysis, structural attributes required to
attain the described stability and reconstruction characteristics have been well
understood. This knowledge enables us to introduce many modifications while
preserving the desired properties within the framework of inherently bounded
AQLR’s.

Our main objective is to create a structure allowing a trade-off between the
amount of information required for representation and the reconstruction qual-

ity. We have followed the subsequent guidelines.

e Create

— the ability to add and delete information.
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e Preserve

— the structure of the inherently bounded AQLR;
— the multiscale structure;

— the algorithmic complexity.

It turns out that there is an abundance of possible modifications. The aim
of this chapter is to describe several examples of reasonable modifications to
exhibit the scope of flexibility in the resulting representations and to encourage

creativity for further modifications.

7.2 Improvement in the representation quality

Usually, the basic multiscale maxima representation provides an excellent re-
construction quality, but there are rare cases, like the nonunique example from
Section 4.4.2, that some improvement might be required. In this case, one
may try to use the basic maxima representation based on an alternative fil-
ter bank {Wl,Wz, ey le,gjl}. The interesting and important issue of how
to find the “best”, or even an “appropriate”, filter bank is beyond the scope
of this dissertation. In this chapter, we assume that the multiscale operator
{Wy,Wy,...,W;,5;} is fixed and we focus on structural modifications in the
basic maxima representation.

In order to improve the quality of the representation we propose to add new

sampling points. For j = 1,2,...,J, let F; be a subset of {0,1,...,N —1}. We
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define the following representation:

rf={Rf}

J=1

(7.2.1)
where
Ref 2 {XW,f, YW, (Wi f(B)beexw,sorw, o AWif (W) her ) (122)

Notice that the definition of the representation is not complete without defin-
ing the reconstruction set. In this case the definition is as follows. An arbitrary

n € L belongs to T(R* f) if and only if:
Synp(k) = S;f(k) k=0,1,...,N—1 (7.2.3)
and for y =1,2,...,J
Win(k) = W;f(k), k€ XW;fUYW,fUZF, (7.2.4)
£ (k) - (Win(k + 1) = Wyn(k)) 2 0 (7.2.5)
ke (XW,fUYW,f)°U(XW,fUYW;f).

From the definitions we see that:

Proposition 18 The multiscale representation R°f is an inherently bounded

AQLR.

Observe that from the above definition, it is straightforward to define the
local cost function v(y, RS f) (with y = W;n). From the local cost function, the

local gradient v, (y, R:f) can easily be calculated. All the remaining components

116



of the reconstruction algorithm are the same as of the algorithm described in
Section 6.2.

In general, the question of how to choose the “best” sets F; may lead to very
exciting research. The reason that we did not pursue further the investigatation

of this problem is twofold:

e its analysis seems to be very difficult;

o the need for improvement in the representation is very exceptional.

7.3 Reductions in S;f

In the basic maxima representation, usually, a greater part of samples belong to
the sequence {S;f(k)}og'. In the wavelet transform case, S, f is a significantly
blurred version of f and the whole sequence {S;f (k)}f::ol appears to contain
redundant information. Some reduction in the number of samples devoted to
S;f should not reduce the reconstruction quality.

It turns out, that using downsampling of S;f we can still attain the desired

properties. A version of S;f, downsampled at rate A, is defined as follows:

Sﬁf = {SJf(k)}k=o,A,2A,... (7~3-1)

Let R2f be a basic representation in which S;f was replaced by S A f. namely:

RAf 2 {{RifY], S5 f} (7.3.2)
Certainly, R® f is an AQLR. From the discussion in Section 2.2, we know

that if {Wy, W,,...,W;,5%} is a complete multiscale operator then RAf is an
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inherently bounded AQLR.

Fact

Let J=5, N=256, and consider the discrete wavelet transform based on the
cubic spline. Then {Wi, Wy, ..., W;,5%} is a complete multiscale operator for
A=1,2,4,8,16,32.

Proof

It suffices to check, for A = 32, the rank of the composite matrix
W 8 W, & B W (ST

A numerical test shows that , indeed, for A = 32 the above composite matrix

has a full rank.

All examples in this chapter were calculated using the cubic spline wavelet,
J=5, and N=256. We will show several reconstructions from different modifica-

tions, all with the same original sequence f defined as follows:
k x
F(k) = sin (‘1) e k=0,1,...,255. (7.3.3)

Figure 7.1 describes the behavior of the noise to signal ratio, during the
reconstruction from R? f, for two different cases: A = 1, which correspond to

the basic representation, and A = 32. We see that for the first 20 steps and

% ~ 2-1072%, both cases are very similar. For a better % ratio, the case of S5 f

converges slower.
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Figure 7.1: & for the reconstruction from R% f

An alternative approach to reduce the amount of the information related to

S;f is to describe this sequence by its local extrema.

Proposition 19 Let

Rf 2 {{R; Y]y, XS1£,Y Safo{Ssf () sexs,sovsss) (7.3.4)

then R®f is an inherently bounded AQLR.
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Proof:
R®f is a standard maxima representation for {Wy, Wa, ..., Wy, S;,0} where

0 represents an “empty” operator e.g.
On(k)=0 k=0,1,...,N -1

Since {W;,W,,...,W;, 85} is complete, the multiscale operator

{Wy,Ws,...,W;,Ss,0} is complete as well.

For the tested cases, the performance of reconstruction algorithms, for R” f

and for R? f are similar.

7.4 Quantization

Up to this point we have assumed that we are able to preserve the exact values of
the linear part of the representation. In practice, only floating point data types
match this assumption. In many situations, for example in data communication
or in data storage, an efficient data compression is required. In these cases,
continuous values are approximated with a relatively low precision.

Quantization is a standard technique for this problem. It is based on a set

D defined as follows.

D = {d(0),d(1),d(2),...,d(L),d(L + 1)} (7.4.1)
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such that
—o0o=4d(0) <d(l) <d(2)<---<d(L) <d(L+1)=o0. (7.4.2)

A quantizer (-), is defined as a mapping from ® to the set {0,1,...,L, L +1}

such that, for r in R

i ifr<d(z)andr>d(i—1
(7)o 2 ¥ S (143)
0 if r <d(1).

Now, let us assume that instead of having Rf = {R;f}3] where

R;f = { XW;f,YW; f, {W; (k) brexw, jorw,s }

we are given

J+1

(Rf)g = {(B;f),} (7.4.4)

j=1
with:
(Rif)o = {XW3 LYWl {0 (W30 G),) b v )
In this case, a standard approach would be to consider (Rf), as an approxi-
mation of Rf and then simply use the original reconstruction scheme with (Rf),

as the input data. In other words, one can search for € £ such that

Ry = (Rf), (7.4.5)
But, such 7 may not exist ! Nevertheless, one can propose to search for  whose
multiscale maxima representation best approximate, in an appropriate sense,

the given (Rf),. Although some of the desired shape preserving characteristics
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may be lost, this is a feasible approach. It turns out that, without increasing
complexity of the representation, a much better method can be developed. The
idea is to change the definition of the representation so that the quantized version
will always belong to the range of the representation.

The main observation is that, in our case, we can replace one equality con-
straint by two inequality constraints without changing significantly the com-

plexity of reconstruction. Therefore, instead of requiring

Win(k) = d (Wi f(k)),) ,

the constraints are:
Win(k) < d((W;f(k)),)
and
Win(k) = d ((W;f(k)), = 1)
In words, as an alternative for reconstruction from approximate values, recon-
struction from an interval, to which a precise value belongs, is proposed.

In order to define it rigorously, first let us denote this representation by R?f.

The structure of the representation is as follows:

J+1

Rif 2{(R;f),} . (7.4.6)

J=1

This representation is characterized by the following reconstruction set. An

arbitrary 7 € £ belongs to I' (R?f) if and only if

Sim(k) < d((S:f(k),) k=0,1,...,N—1
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Sm(k) > d((Ssf(k)),—=1)  k=0,1,...,N—1

Wn(k) < d (W;f(k)),) ke XW;fUYW,f (7.4.7)
Win(k) > d (W f(k)),—1) ke XW,;fUYW,f (7.4.8)
7 (k) - (Win(k + 1) — Win(k)) > 0 (7.4.9)

ke (XW;fUYW;f) U(XW;fUYW;f).
From the above definition, we conclude:

Proposition 20 The representation R f is an AQLR.

In the case of underflow or overflow in data representation, the bounding prop-
erty might be lost. Therefore, for the property of the inherently bounded AQLR,

we arrive at the following result.

Proposition 21 If

d(1) < min {W, f(k),S;f(k) : k=0,1,...,N =1 j=1,2,...,J}

and

d(L) > min{W; f(k),S;f(k): k=0,1,...,N -1 j=1,2,...,J},

then RIf is an inherently bounded AQLR.

The problem of underflow and overflow might be treated much better by
allowing an adaptive set D. In fact, D was assumed fixed in order to keep the

notation as simple as possible. It is clear that D may depend on any information
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which is available during reconstruction, for example on the level j, on whether
a given extremum is a maximum or a minimum, etc. Mallat and Zhong [30]
pointed out a different significance of maxima and minima points. Accordingly
it seems to be very reasonable to use different quantizers for maxima and min-
ima points. In [30], small extrema values are disregarded. Observe that this
operation also can be viewed as a part of the quantization. In addition the set
D may depend on the original signal f, in this case, some information about the
chosen set should be added to the representation.

In view of the above considerations we are naturally led to the issue of how to
design an appropriate set D. General analysis appears to be very difficult and we
can only propose to focus on a specific application and to perform experimental
studies.

In this dissertation we show the basic feasibility of the algorithm. We have
tested the following version of the representation. Let R?f = {(ij)q} be the

given representation with the following reconstruction set:
n € L belongsto T'(R7f)

if and only if:

Sin(k) > Syf(k) —q-arm k=0,1,....,N—1 (7.4.11)
Win(k) <W;f(k)+q-¢o; ke XW;fUYW;f (7.4.12)
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Win(k) > Wif(k) —q-a; ke XW,fUYW;f (7.4.13)
(24 (k) - (Wyn(k +1) = Wyn(k)) > 0 (7.4.14)

J

ke (XW;fUYW; ) U(XW;f UYW,f).

The normalizing factors a; are numbers taken from {...,0.2,0.5,1.0,2.0,5.0,...}.

They are chosen to be as large as possible but smaller then the global maxima
of the absolute value of the decomposed signal W, f(k). The coefficient ¢ de-
scribes the available number of bits per sample. In the following examples, the
values ¢ = 0,0.01,0.04 are used. Loosely speaking, ¢ = 0.01 corresponds to 8
bits per sample, while ¢ = 0.04 refers to 6 bits per sample. Figure 7.2 describes
reconstruction from R?f by showing the noise to signal ratio as a function of
iteration number. As expected, if ¢ increases then the ratio % increases as well.
For a given requirement for %, one can find the appropriate q. Recall that due
to shape preserving properties, probably, relatively large noise to signal ratios
are acceptable.

The last graph, described here, refers to the reconstruction from the rep-
resentation R f, in which, first S; was reduced by the factor 32 and then
quantization was performed with ¢ = 0.01. Also here we see that degradation
in performances, for some cases, may be acceptable.

The quantization scheme described above can be viewed as modifications

of equality constraints related to the reconstruction set. Similarly, inequality
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constraints of the form

(74 (k) - (Wn(k +1) = Wyn(k)) 2 0

7 -

can be modified. For example, one can consider threshold-like conditions on
a sequence variation on a given interval. However, since we do not have tools
to analyze quality of these representations, we leave these ideas to applications

oriented experimental studies.
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Figure 7.2: % for reconstruction from R?f
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Figure 7.3: % for reconstruction from R f
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CHAPTER

EIGHT

CONCLUSIONS

8.1 Summary

New theoretical results', regarding uniqueness and stability of the multiscale
(wavelet) maxima and zero crossings representations have been presented. The
concluding result, which states that the wavelet maxima (zero-crossings) repre-
sentation is stable but nonunique, provides a new consideration of these signal
descriptions. The standard multiscale zero-crossings ( without any additional
information ) representation was assumed, at least for some family of signals,
unique but unstable. Perhaps, this instability was the main obstacle to achieve,
in spite of the first enthusiasm for zero-crossings in multiresolution representa-
tions (in the early 1980’s), many engineering applications of this technique.
The new reconstruction scheme, based on the descent algorithm, appears to
be less complex than alternate convex projections while it provides very similar

experimental results. If, for a specific application, building a special purpose

1Gee Section 1.4 for a detailed list of results.
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hardware is justified then an efficient, neural network-like, analog hardware cir-
cuit might yield a very fast reconstruction algorithm.

Summarizing, a new analysis, accompanied with analytical tools for a promis-
ing family of representations, has been presented. However, it is premature to
predict how much of this promise can indeed be accomplished. The critical ques-
tion of characterizing the class of real engineering problems that can adequately

be solved by this approach still requires additional research.

8.2 General remarks

In the foregoing discussion, several general comments are pointed out. In our
opinion, in addition to the actual results, there are three important consequences
of this work.

The first is to show feasibility and capability of discrete analysis. In general,
the discrete approach described here may be applied for a variety of representa-
tions and reconstruction algorithms, providing new insights into their properties.
We believe that, even for complex algorithms, testing for uniqueness and com-
puting a precise reconstruction set, even for a few examples, is worth the effort.

The second is the conclusion that, in order to benefit from novel characteris-
tics, beyond properties of an adaptive irregular sampling, the multiscale maxima
(zero-crossings) representation should be considered in the nonunique context.
Signal processing based on a unique representation has the advantage of pos-

sible separation between different processing units. This separation facilitates
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significantly analysis and design, but it does not improve system performance.
Therefore, since the use of the multiscale maxima (zero-crossing) representa-
tion will require joint analysis and design of a whole system, one might expect
involved analysis and difficult design with possible, as usual when local opti-
mization is replaced by a global one, improvement in performance. However, in
the signal processing community, the core of theoretical studies has been devel-
oped in the framework of unique representations. In our opinion, the need to
develop more analytical tools and applications for nonunique representations is
apparent.

The third is the framework of inherently bounded AQLR’s. Observe, that
this structure makes possible to define, analyze, and reconstruct a wide family
of signal representations. Important examples are modifications of the basic
maxima representation, some of them were shown in Chapter 7. Design and
analysis methods for these modifications require further research.

Let us conclude with a citation from [22].

“The general methodology of studying a representation in terms of its math-
ematical properties, and developing reconstruction methods to evaluate the sta-
bility and variations in the fibers, in analogy with the study undertaken here, is
highly recommended.”

Hummel and Moniot meant, by using the word “here”, their work, but we

hope that they would agree to use it in the context of our dissertation as well.
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8.3 Further research

From the theoretical point of view, there are still many interesting open questions
concerning the discrete analysis of the multiscale edge representation. Consider

the following, partial, list of problems requiring further research.

e What is the family of signals for which the wavelet maxima (zero-crossings)

representation is unique ?

e What kind of information should be added to the dyadic wavelet maxima

(zero-crossings) representation in order to assure general uniqueness ?

Is multiscale zero-crossings points ? representation indeed unstable ?

o If it is, what is the minimal additional information which

stabilizes it 7

As a first step in the undergoing research, this work dealt only with one
dimensional signals. The reason is twofold: firstly, we thought that in the
simpler case the basic properties would be better recognizable, secondly, the one
dimensional multiscale edge representation has its own variety of applications.
One of the most promising application areas is speech analysis, for example,
pitch detection [23] or modeling signal transformations in the auditory nervous
system [46]. On the other hand, up to this point, the vast majority of multiscale

edge representations has been implemented in computer vision. Therefore, it is

2without any additional information
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advisable to extend these results for two dimensional signals. Surprisingly, there
is an essential difference between maxima and zero-crossings representations.
Two dimensional multiscale zero-crossings representation can easily be cast into
the structure of inherently bounded AQLR, thus the related results are valid in
this case. However, a two dimensional maxima representation appears to have
a different structure. It is because the absolute value of the gradient, which is
a nonlinear operation on an original signal, is involved in the two dimensional
maxima representation. In order to proceed with a similar analysis one has to

choose between:

¢ to extend the framework of the AQLR

e to change the definition of the two dimensional maxima representation to

match the structure of the AQLR.

In both cases, further research is required.

As was already mentioned, there is a substantial need to study, first ex-
perimentally, many practical aspects of multiscale maxima and zero-crossings
representations. In our opinion, one should consider, in the context of a specific
application, the problem of how to design and analyze suitable modifications
in the basic representations. Perhaps, in such a set-up, the shape preserving
characteristics of the multiscale maxima representation might be better defined,

understood, and analyzed.
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APPENDIX

A.1 The proof of Lemma 4
We need to show that for all € there exists K such that
k> K = dist (xk,f> <€

By contradiction, let us assume that there exists € > 0 such that for all K" there
exists k' > K such that dist(zy,I') > e. We define iteratively the following

sequence. Let ko be an arbitrary index such that dist(zo,I') > €. For a given

k;, we define k;;; to satisfy:

ki1 > ki and dist(zy,,,,[) > € (1.1.1)

i1

Since {z,} is bounded, {zy, }ic,, is bounded as well. Therefore it has a convergent
subsequence, let us denote it as {zy, };c;. By the hyphothesis, {zy, }icr converges
to a limit in T, say ¢ € T. But since dist(z,T') is a continuous function of

z, {dist(xknf) - dist(m,?)}

o converges to zero. But this is a contradiction
13
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since dist(z,T) = 0 and dist(zy,,T) > €. Thus, we conclude that indeed {z}

approaches T.
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