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ABSTRACT

Integrating knowledge from multiple sources is an important aspect of au-
tomated reasoning systems. In [23], we presented a uniform declarative and
operational framework, based on annotated logics, for amalgamating multiple
knowledge bases and data structures (e.g. relational, object-oriented, spa-
tial, and temporal structures) when these knowledge bases (possibly) contain
inconsistencies, uncertainties, and non-monotonic modes of negation. We
showed that annotated logics may be used, with some modifications, to me-
diate between different knowledge bases. The multiple knowledge bases are
amalgamated by embedding the individual knowledge bases into a lattice.
In this paper, we describe how, given a network of sites where the different
databases reside, it is possible to define a distributed semantics for amal-
gamated knowledge bases. More importantly, we study how the mediator
may be distributed across multiple sites so that when certain conditions are
satisfied, network failures do not affect the end results of queries that a user
may pose. We specify different ways of distributing the mediator to pro-
tect against different types of network link failures and develop alternative
soundness and completeness results.
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ware integration, computational logic.
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1. Introduction

Integrating knowledge from multiple sources is an important aspect of automated
reasoning systems. In previous work [23, 17], we presented a unifying language for
integrating data/knowledge expressed across different data structures and represen-
tation paradigms, when time and uncertainty were present. The semantics of the
resulting mediatory language was studied. This semantics specifies what answers a
user should obtain from the system, independently of where the databases may be
physically located.

In practice, however, databases are often located at different sites in a network (ei-
ther a local-area network, or in a large-scale network such as the Internet). Any
semantics to integrate information located across a network must address the fol-
lowing questions: (1) which sites can be consulted by a given site in connection
with a specific query? (2) how will these sites communicate with each other? (3)
what is the semantics of the integrated distributed system once answers to (1) and
(2) are determined ? (4) Last, but not least, the distributed semantics must be
identical to the non-distributed semantics — after all, a user should get the same
answers (at least those that s/he is allowed to access, independently of where the
data is located).

In this paper, we attempt to answer questions (3) and (4) above. In particular, we
assume that there is some method of deciding which sites can be consulted by a
given site in connection with a particular query, i.e. we make no assumptions on
how this is done, only assuming that it is captured by some function. We assume
a very simple communication language that conveys queries and questions across
the network, but we make no claim of novelty here. Based on the answers to (1)
and (2), we show how a formal semantics can be devised for the entire distributed
system. Subsequently we address two points:

e first, we introduce the notion of an acceptable placement of mediating
clauses. Then we show that any siting of clauses from the mediator which is
an acceptable placement yields a soundness and completeness result, i.e. the
distributed semantics will coincide with the non-distributed semantics.

e subsequently, we address the issue of link failures, and specify conditions
under which mediating clauses can be distributed so as to guard against a
fixed number (of “worst-case”) of link failures in the network. The idea is
that we would like the afore-mentioned completeness theorem to hold even if
certain links in the network go “down.” We identify some conditions under
which these results hold even if links in the network go down.

The organization of the paper is as follows: in Section 2, we outline the basic ideas
underlying our mediated framework [17, 23, 1]. In Section 3, we present a motivating
example that will be used throughout the paper to illustrate the formal definitions.
Section 4 explains the syntax and semantics of mediatory knowledge bases — this is
merely a straightforward combination of [23, 17]. Section 5 defines the semantics of
a distributed mediated system. In Section 6, we show how it is possible to distribute
the mediator across the network so that the resulting semantics is identical to the



non-distributed semantics. We also develop methods (under certain conditions) to
distribute the mediator so that link failures do not affect the resulting semantics.

2. An Overview of the Syntax of Hybrid and Amalgamated
Knowledge Bases

This paper is the second in a series of papers [23] developing the theory and practice
of integrating information with the help of a “mediator”. These papers, together
with [17], uses the framework of “generalized annotated program” (GAPs for short)
framework proposed in [14] to integrate information from deductive databases to-
gether with information from nonlogical databases such as relational databases,
auxiliary data structures and numerical constraints. The GAP framework assumes
that we have a set, 7, of truth values! that forms a complete lattice under an
ordering <. In this paper, we are going to use the truth value lattice (UNTC, <)
which is the set of all functions from RT to [0,1] where RT denotes the set of
nonnegative reals. The ordering < on UNC is defined as follows: f;=<f, iff for all
r € R, fi(r) < fa(r) where < is the usual less-than-or-equal-to ordering on the
reals. For example, the expression [0.7,{1,2}] € UNC can be viewed as the function
f that assigns the truth value 0.7 to the time points 1 and 2 only, i.e. f(1) = 0.7,
f(2) =0.7and f(X) =0 for X ¢ {1,2}. Hence, [0.5,{1,3}] < [0.7,{1,2,3}], but
[0.5,{1,3}] and [0.6,{1,2}] are incomparable. GAPs work with annotated atoms of
the form A : 4 where A is an atom (defined in the usual way) and p is an expression
whose value evaluates to a member of the truth value lattice. As an example, an
annotated atom of the form at_robot(1,1) : [0.7, {1, 2}] can be read as: at both time
instants 1 and 2, there is at least a 70% certainty that the robot is at point (1,1).

An annotated clause 1s a sentence of the form:
A:ip — By:m&...&By,:py

where A, By, ..., B, are atoms, and p, p1, ..., tip, are truth values. In the case of
the truth value lattice (UNC, <), each p; is a pair [v;,?;] where v; is an evaluable
term denoting a real number between 0 and 1, and ¢; is an evaluable term denoting
a set of non-negative integers (time points).

Suppose we have a collection of deductive databases DBy, ..., DB, over the lat-
tice (UNC,=<) and a set Xy,..., %, of nonlogical databases or data structures.
Then the truth value lattice (UNC, <) can be extended to (2{1"“’”’m} X UNC, <)
where [X1, p1,11]=[X2, pa, to] iff X1 C Xo and [u1,t1] < [u2,t2]. m is a special
symbol referring to the “mediator” which integrates the local deductive databases
DBy,...,DB,. Then, an atom of the from at_robot(1,1) : [{3,5},0.7,{1,2}] can
be read as: according to the joint information in databases DBy and DB, at both
time instants 1 and 2, there is at least a 70% certainty that the robot is at point
(1,1). An annotated clause over this extended lattice is of the form

A:p — By:p&.. . &By g

1Tt was shown in [23, 17] that the hybrid and amalgamated knowledge base framework can be
easily extended to any complete truth value lattice.



where A, By, ..., By are atoms, and p, pt1, . . ., ptg are truth values of the form [D, u, t]
where p, t are as before, and D is a subset of {1, ..., n,m}. The nonlogical databases
are referred to as constraint domains. In addition to these databases, we assume
there is an additional database which we call a mediator. Suppose, for instance,
that we have some implementation of a spatial database that contains a pre-defined
implementation of a relation in_room(X,Y) which succeeds if the point (X,Y") is
inside some (fixed) room. Then, a clause of the form:

at_robot(X,Y) : [{m}, V,R¥] — in_room(X,Y) || at_robot(X,Y) : [{1,2},V,R"]

in the mediatory database can be interpreted in the following way: The mediator
will conclude that the robot is at point (X,Y) with certainty V at all points in
time, if databases 1 and 2 jointly assert that the robot is at this point with the
same certainty and the information stored in the spatial data structure states that
this point is in the room. Here the expression in_room(X,Y) is called a constraint
over the spatial data structure. This constraint may be viewed as a query that 1is
processed/evaluated by an existing implementation of the spatial data structure.

3. Motivating Example

In this section we will introduce a toy robotic example to motivate the use of
distributed, heterogeneous databases. This example will serve to illustrate various
concepts introduced later on in the paper.

Suppose two robots are placed in a room that contains several objects. The robots
are controlled by a mediating program which issues direct commands to them and
integrates information about the workspace and the properties of entities in the
workspace from a variety of sources (e.g. databases of different types, different
data structures, and sensor information). Such an integration may involve pooling
together information from these diverse sources, and resolving conflicts between
them. The mediator is distributed across several sites located on a network —
furthermore, the sources being integrated by the mediator may also be located at
different sites in the network. Figure 3. shows this network.

The network contains three sites; numbered 1, 2 and 3. The information available at
each site reflects certain aspects of the robots’ (common) workspace. Site 3 is a site
that gathers information from three temperature sensors that periodically report
the temperature of various objects in the workspace. The information gathered
by these three sensors is contained in the databases DBs, DB4, DBs, respectively.
Site 3 also contains a “local” mediator that integrates this sensor information and
reports, for each object, a temperature value together with an associated certainty
factor. These values may change with time.

Site 2 has access to three databases. One is a relational database X5 that describes
static attributes of objects in the workspace. These may include the COLOR, WEIGHT,
MOBILITY, and DIMENSIONS of the object. DBy and DB, are deductive databases
specifying the capabilities and positional attributes of robots r1 and r2, respectively.
Site 2 also has a local mediator which determines which objects a given robot can
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Figure 1: Distributed mediator for the robot example

move safely. However, it may need to access temperature information from Site 3.
This involves making a request to a remote site.

Site 1 is connected directly to Site 2 on the network and has access to a spatial data
structure X, (e.g. a quadtree) specifying the spatial layout of the workspace. In
particular, this spatial data structure specifies where different objects (including the
robots r1 and r2) are located. Site 1 also contains a local mediator which accesses
positional information and information about robot capabilities from Site 2. Note
that Site 1 may need to resolve conflicts (e.g. positional information specified by the
spatial data structure may be in conflict with positional information reported by
Site 2). Site 1 also uses proximity information to optimally utilize the robots. Site
1 is the “top-level” mediator, and it is responsible for eventually issuing commands
to the robots.

Site 1: The workspace of the robots is a (4 x 4) grid, with intersection points
representing the possible locations of the objects and the robots. The layout of
the workspace for this example is given in figure 3. and the corresponding spatial
information is stored in a data structure. There are many data structures that can
be used to represent spatial data. As an example, a point quadtree (cf. Samet
[20]) reflecting the spatial information about the workspace is given in figure 3.. We
assume the points are inserted in the order a,b,c,d,e f,rl,r2.
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Figure 3: Point quadtree for the robot example



Features Dimensions

obj | color weight | mobaility obj | width | height | length
a white | 50 mobile a 10 20 20

b blue 60 mobile b 15 5 20

c yellow | 40 immobile c 10 20 20

d white | 30 mobile d 10 5 5

e black | 45 mobile e 10 25 10

f red 100 mobile f 40 100 50

Figure 4: Tuples stored in the relational database

Site 2: The relational database X5 is located at site 2. This database is used
to obtain facts about the objects. These facts correspond to those attributes of
objects that don’t change with time. The information stored in the database is
structured in two relations, Features : { obj,color,weight(kg.),mobility }, Dimen-
sions: { obj,width(cm.),height(cm.),length(cm.) }. The tuples stored in these two
relations for the objects in the workspace is given in figure 4.

As explained above, databases DB; and DB» store information regarding the
robots’ capabilities and the location of the robots — the initial location and/or
the current location. The robots can only move vertically or horizontally. The
databases also contain information regarding the maximum speed at which each
robot can move in a given direction, the maximum weight a robot can lift, the max-
imum values for the size and the maximum temperature of objects that the robot
can handle safely. The information stored in databases DBy and DB, for robots
rl and r2 is given below:

DBli
at(rl,1,2) : [1,{0}]
mazx_weight_capability(r1,100) : [, RT] —
mazx_temperature_handling(r1,65) : [1,RT]
mazx_distance_between_arms(rl,20) : [[, RY]
max_speed(rl, vertical, 1) : [1, RY] —
mazx_speed(r1, horizontal,2) : [1,RT]

DBQI
at(r2,3,1): [1,{0}]
mazx_weight_capability(r2,50) : [I, RY]
max_temperature_handling(r2,90) : [, RT] —



mazx_distance_between_arms(r2,50) : [[, RY]
mazx_speed(r2, vertical, 2) : [1,RT]
max_speed(r2, horizontal,0.5) : [1, RY] —

Site 3: Databases DB3,DB4 and DB5 contain sensor information about the tem-
perature of the objects. Databases DBs and DB, are updated every 10 time units
and the sensor updating D Bjs operates 5 time units ahead of the sensor updating
DBy. (i.e. if DBg is updated at time points 0,10, 20, .. ., then DB, will be updated
at time points 5,15,25,....) These two sensors are considered to provide reliable
information. DB on the other hand, is updated every 2 time units by a very fast,
but not reliable sensor. For this part of the robot example, we will assume that the
sensors have completed recording information for the time points between 0 and 6
and the databases DBj3,D B4 and DBy contain the following information:

DBs: DBy:
temperature(a,45) : [1,{0}] — temperature(a,45) : [1,{b}]
temperature(b,60) : [1,{0}] — temperature(b,65) : [1,{b}] —
temperature(c,30) : [1,{0}] — temperature(c,40) : [1,{5}]
temperature(d,70) : [1,{0}] — temperature(d,65) : [1,{b}] —
temperature(e, 43) [1,{0}] temperature(e, 45) ([1,{5}] <
temperature(f,55) : [1,{0}] temperature(f,55) : [1,{b}]

DBsy:
temperature(a,45) : [1,{6}]
temperature(b,75) : [1,{6}] —
temperature(c,45) : [1,{6}]
temperature(d,65) : [1,{6}] —
temperature(e, 50) [1,{6}] <
temperature(f,58) : [1,{6}]

The above clauses can be read as follows: The atom temperature(a,45) : [1,{6}]
means that the truth value of temperature(a,45) is at least 1 at time 6. Similarly,
the atom max_weight_capability(r2,50) : [1, RT] means that the truth value of
max_weight _capability(r2,50) is at least 1 at all time points. The language used
to integrate data coming from the above sources will be described in the following
section. We will then use this language to specify how the sites may draw conclusions
in the presence of conflicting information.



4. Mediatory Knowledge Bases

A constraint domain [17] is a triple ¥ = (D, F, R) where D is a nonempty set,
F is a set of functions (including higher order functions) on D, and R is a set
of relations on D. Intuitively, the elements of D represent the data-objects we
wish to reason about, the elements of F' are the functions that can be applied
to these data objects, and the elements of R are relationships that exist between
these data objects. In [17], we showed how various heterogeneous data structures
(including spatial, relational, object-oriented, etc.) can be viewed as constraint
domains. As an example, consider point quadtrees[20] with nodes having an INFO
field and X and Y fields representing coordinates. Let D be the set of all quadtrees
that can be constructed using nodes having this type. Operations in /' may include
RANGE(X,Y,R) which finds all objects within R units of distance from (X,Y), and
X_SLICE(X,Y,D) which finds all objects in the quadtree located at (X4,Y4) where
[[X — X4|] <D. Relations in R may include the predicate IN specifying that a given
node occurs in a quadtree, SUBTREE specifying that a given quadtree is a subtree of
another, etc. Similar predicates may be defined on other kinds of quadtrees.

Definition 1 (Mediating Clause) A mediating clause is a clause of the form

A : [{m}, po,to] — (Brover¥) & ... & (E,overX,) ||
Al : [Dl,/,tl,tl]&...&Ar : [Dr,/,tr,tr]

where the p,’s, 0 < € < r are (expressions ranging over) real numbers between 0 and
1 inclusive, the t;’s, 0 < ¢ < r, are (expressions ranging over) sets of time points,
and the =;’s,1 < j < p, are constraints over the domain %;.

Such a clause can be informally read as: If the constraints Z;, 1 < j < p, are all
solvable over their respective constraint domains, and the databases in D; jointly
assert that A; has truth value “at least” u; at all time points in ¢; and ... the
databases in D, jointly assert that A, has truth value “at least” p, at all time
points in t,., then the mediator concludes that the atom Ay has truth value at least
po at all time points in the set {g. When the ¥;’s are clear from context, we will
often simplify notation and delete the over X; expressions in the above clause.

Example 1 Recall the robot example given earlier. Upto now, we have only spec-
ified the information stored in the databases. However, we haven’t specified the
mediating clauses located at the sites. For example, the following clause is stored
at Site 2.

can lift(rl,0bj) : [{m},1,{V;}] —
mazx_distance_between_arms(rl, D) : [{1},1, RT] &
mazx_weight_capability(r1, W) : [{1}, 1, RF] &
max_temperature_handling(r1,T) : [{1},1, RT] &
temperature(Obj, T1) : [{m},0.9,{V:}]&T1 < T.



In this example, the relational database is used to evaluate “weight” and “width”
relations, and the real number constraint domain is used to evaluate the constraints
“ Z Wln and “D Z D1”~

Intuitively, the above clause means the following: the mediator concludes that robot
rl can lift the object Obj if the size and the weight of the object, as stored in the
relational database, is well within the limits of the capabilities of 71 as given in DB,
and the mediator knows with 90 % certainty that the temperature of the object is
less than the maximum allowed value for »1. A similar clause is stored for the robot
r2 as well, but the certainty factor for the temperature is needed only to be 0.8 or
more. A possible reason for this may be that the temperature sensitivity of 2 1s
not a very critical variable and the upper limit stored in DBs is more lax.

Another example of a mediating clause is the following clause stored in Site 3:
temperature(a,Y) : [{m}, V,{Vi,}] — temperature(a,Y) : [{5}, V, {Vi, }]

This means that although the sensor which updates DBs is not very reliable, the
mediator will accept whatever DBy says for object a, since this value is usually
more recent and 1t may be the case that the temperature of a never exceeds the
limit values the robots can handle. ad

Definition 2 (Mediator) A mediator is a finite set of mediating clauses.

An atom A : [D, p, 1] is said to be ground annotated ifft D C {1,...,n,m}, p € [0,1]
and t € 2R+.
Definition 3 (M-interpretation) An M-interpretation I is a mapping from the Her-

brand Base By, of the base language, to the set of functions f : {1,...,n,m} —
(UNC,=<). That is, for all A € B, I(A) is a mapping from {1,...,n,m} to UNC.

We now extend the < ordering to M-interpretations as follows: given two M-
interpretations I; and Is,

I < Liff (VA € BL)(VD' C D) Ua,epr 1i(A)(d1) < Uayepr I2(A)(d2).

It 1s easy to see that the set of all M-interpretations under this ordering is a complete
lattice.

Definition 4 (M-satisfaction) Suppose I is an M-interpretation, [u,t] € UNC and
De{l,...,n,m}. Then, I M-satisfies A : [D, u,t], denoted by I ':M A [D, p,t]
iff for all tg € t, Ugep I(A)(d)(to) > u. Satisfaction of all other expressions are given
in the usual way.

Example 2 Consider the following clause:
temperature(a,45) : [{m},0.7, {7}] — temperature(a,45) : [{5},0.7,{6}].

This clause is a ground instance of the second mediating clause given in example 1.
Consider any M-interpretation 7 such that:

(I(temperature(a,45))(5))(6) 0.8
(I(temperature(a,45))(m))(7) = 0.9

10



Then, the interpretation I given above M-satisfies the above clause as it satisfies

both the body and the head. a
Definition 5 Suppose DB; is a GAP and C =
Ao : [/,Lo,to] — Al : [/,Ll,tl] & .. &Ar : [/,Lr,tr]

is an annotated clause in DB;. Then the mediating transform of C', denoted MT(C),
is the clause:

Ao [{i}aﬂoato] — A [{i}’/'tlatl] L. LA, [{i}’/'tTatT]
The mediating transform of DB;, denoted MT(DB;) is the set {MT(C)|C € DB;}.

In the appendix, we specify the mediating transform of the clauses in all databases
associated with the robot example, together with a complete list of all the mediating
clauses located in different sites.

Definition 6 (Mediatory Knowledge Base) Given a mediator M, a set of deduc-
tive databases DBy,..., DB, and constraint domains Xq,...,Y%,,, the mediatory
knowledge base @) is the set of clauses C' where either ' is in M or C' is in the
amalgamation transform of DB; for some 1 < < n.

The amalgamation transform of a deductive database D B; is obtained by adding the
annotation {7} to all the atoms that occur in DB;. Hence the clause p : [1,{1}] —
q :[0.5,{1,2}] in database D B3 will be replaced by the clause p : [{3}, 1, {1} —¢:
[{3},0.5,{1,2}] in the amalgamation transform of D Bs.

Definition 7 Suppose @ is a mediatory knowledge base. We associate with @, an

operator Tg that maps M-interpretations to M-interpretations as follows: 2
(To(D(A)(D)(s0) = U{plA : [Dp,t] — (EroverE) & ... &(Epovery,) ||
By i [Di,p1,t]& .. .& B, : [Dy, pr, 4] is a strictly ground instance of a clause in
Q, foralll <j<p X pE; forall 1 <i<r [ ':M B; : [D;, p;, t;]and sp € t}.

(To(N(A)D))(s0) = Uprcp (TH(I)(A)ND'))(s0), for all D C {1,...,n,m}.
The upward iteration of the Ty operator is defined in the usual way:
(Tq 10(A)(D))(s0) = 0
(Tq T a(A)(D))(s0) To((Tg 1 B(A)(D))(s0)) where o = § 41
(T 1 v(A)(D))(s0) Uacs((Tg T a(A)(D))(s0)) for limit ordinals v

Note that Té assigns truth values to the D-terms appearing in the head of clauses.
But, if we know that T(A)({1})(1) = pand I(A)({2})(1) = p', then we can conclude
that 7(A)({1,2})(1) = p U g'. The operator Ty is defined for this purpose. This
way, the truth values of all possible D-terms are established. The following theorem
follows directly from the properties of the fixpoint operators proved in [23, 17].

221] > Ej is true in any M-interpretation I iff the constraint =; is true in domain %;.

11



Theorem 1 Suppose () is any mediatory knowledge base. Then:
(1) I is an M-model of @ iff T(I) < I.
(ii) If Q is negation free, then:

(a) Tq is monotone.

(b) @ EM A [D,p, 8] iff (Ifp(Tg)(A)D))(to) < p for all tg € t.
(c) Ifp(Tg) =Tg T v for some ordinal 7. O

The above theorem establishes a non-distributed semantics for mediatory knowledge
bases. We will now develop the semantics for distributed knowledge bases and
examine the conditions under which the distributed semantics is equivalent to the
non-distributed semantics.

5. Distributed Mediators

We assume that there is a distributed network of sites and that the databases
(deductive, spatial, relational, object-oriented, etc.) are all located at sites in this
network. Mathematically, we use the word “network” to denote a graph, N = (V, F)
where elements of V' are the sites in the network, and the edges in £ C V x V" are the
site interconnections. We assume that GG is an undirected graph. We also assume
that there is a set D = {DBy,...,DB,,X1,..., X} of databases — the DB;’s
represent deductive databases, while the X;’s represent non-deductive databases
(constraint domains). These databases are located at various sites in the network
N. The following definition specifies this.

Definition 8 (Distribution Function) Given a network N = (V| E) and a set D =
{DBy,...,DBy, ¥1,...,5;} of databases, a distribution function, fpy, is a map
from D to V.

Intuitively, fy(DB;) = v; means that the database DB; is located at site v; in the
network. fpj(;) is defined in a similar way.

Example 3 In the robot example, the network considered is N = (V, E') where
V = {v1,v2,v3} and E = {(v1,v2), (v2,v1), (v2,v3), (v3,v2)}. The distribution func-
tion for this example is given by: f(DB1) = va,fN(DB2) = va, fN(DB3) =
Ug,fN(DB4) = V3, fN(DB5) = Ug,fN(El) = U1 and fN(Ez) = V3. (]

Definition 9 (Mediatory-Distribution Function) Given a network N = (V, E) and
a set M of mediatory clauses, a mediatory distribution function, mdpy is a map
from M to 2V. Intuitively, if v; € mdp (C) for a mediatory clause €', then this
means that the distributed mediator at site v; contains the clause C'. Note that a
mediatory clause in M may be located at several sites in the network.

Example 4 Recall that in the robot example, all the mediatory clauses occur only
at one site. In other words, if site ¢ contains the clause C', then no other site contains
C'. The mediatory-distribution function in this case is the function which returns a
singleton set containing the site at which a mediating clause is located. ad

12



Definition 10 Given a distribution function fpy : {DBy,..., DBy, %1, ..., 5} —
{v1,...,Um}, the set of databases directly connected to a given site v; is denoted

by dbs(v;) = {H € D | fy(H) = v;}.

Note that the function dbs is the inverse of the distribution function fpy. It specifies
the set of databases associated with a site that can be directly queried. The infor-
mation stored in dbs(v;) will be amalgamated with the mediatory clauses located
in v; to obtain a local computing environment.

Example 5 In the robot example, dbs(vs) = {DBs, DBy, DBs}, dbs(ve) = {DBy, DBg, X4}
and dbs(vy) = {X1}. O

Definition 11 Given a network N = (V, F) and a distributed mediator M with a
mediatory-distribution function mdpy, the amalgamated site knowledge base for a
site v;, denoted by ASK B(v;), is the union of the set of mediating clauses located at
this site with the set of clauses obtained by applying the amalgamation transform
to all the clauses in all deductive databases in dbs(v;).

Recall that the mediating transform of the clauses in the robot example is given in
the appendix. The clauses located at a single site constitute the amalgamated site
knowledge base for that site.

Next, we will define the concept of a distributed interpretation. Note that the
standard definition of an interpretation isn’t suitable for a distributed environment
where sites possibly send messages to each other and exchange information. These
messages will cause queries to be executed at other sites and the answers to these
queries to be sent back. The following is a list of messages used in the distributed
network of mediators:

o AskV9Vi(A:[D,p,t]) means that site v; is asking site v; what it knows about
atom A. In other words, site v; wants site v; to send the answer to the query
— A:[D,p,t].

o TellVvVi(A : [D,u,t]) means that site v; is answering the query site v; has
asked about atom A and A : [D, p, ] is true in the distributed knowledge base
according to the information available at site v;.

o AskV9Vi(ZoverX) means that site v; is asking site v; for the solution of the
constraint = over the constraint domain X.

o TellV"Vi(E overX) means that site v; is reporting to site v; that = is true in
domain X.

Definition 12 (Distributed-interpretation) A distributed-interpretation I' defined
for an amalgamated knowledge base with distributed mediators and a network N =

(V,E) is a pair ((Iy,,..., 1y, ), Msg) where

9t U

e [,, is an M-interpretation for ASK B(v;), and
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e Msg is a set of messages X where X is one of: AskVi(A : [D,pu,t]) ,
TellsVi(A : [D,pu,t]), Ask?»Vi(EoverX) , and TellV+Vi(Z over X).

In any distributed network, there must be some governing protocol which deter-
mines when a given site asks for assistance from another site. We model this
via a function, fasr, which determines, given a site v; in the network, and an
atom A : [D, p,t], which other sites v; should ask about A : [D) p,1]; intuitively,
one may think of the sites in fasr(vi, 4 : [D, p,t]) as being v;’s “friends” — those
sites fasp forces v; to consult. We say that the function f4,; 1s sensible iff when-
ever fasi(vi, A [D1,p1,t1]) = Vi, if po < py and t2 C ¢ and D2 O Dy, and
Fasi(viy, A 2 [Da, pa,ta]) = Vi, then V,, C V,,. Intuitively, the condition says
that if fasr consults another site about an atom A : [Dy, u1,141], and if the atom
A 1 [Da, pa, ta] is implied by (hence weaker than) A : [Dq, p1,t1], then fasp must
consult the other site about A : [Da, pa,ts] as well. (We emphasize that this is
a declarative requirement, and that operational procedures that implement this
requirement can implicitly achieve this rather than doing so explicitly).

The function fa,r is said to preserve subsumption iff whenever v; € fasp(vi, A :
[D,p,t]) and A'8 = A and D C D, it is the case that v; € fasr(vi, A" [D/, 1/, ¢]).
This property is similar to the sensibility property, but it is more general. For
example, if site v; believes that site v; may know something about the atom p(a),
then it should also ask v; about atom p(X) since (VX )p(X) implies p(a). Similarly,
if v; believes that site v; may contain information from databases 1 and 2 together,
then v; should also know about databases 1,2 and 3 according to v;. Clearly, if
fask preserves subsumption then f4;5 is also sensible. In this way subsumption is
a more general concept.

Example 6 Recall the robot example given in section 3 and the appendix. We
now define a suitable query strategy function fa.; for this example. For all p €
[0,1] and t € 9R* and for all the ground instances of the following atoms, the
value of fasr is given as follows: (“REL”€ {max_temperature_handling(X,Y),
max_distance_between_arms(X,Y), maz_speed(X,Y, 7)})

fASk(Ula “‘REL” : [Da/'Lat] = {UQ}a D - {1a2am}
Fask(vi, temperature(X,Y) : [D,u,t]) = {va}, D C{3,4,5,m}
fAsk(vlaat(XaYa Z) : [Da/'Lat] = {UQ}a D g {1a2am}

Fask(v, candift(X,Y) : [{m}, p, 7]

Fask(ve, temperature(X,Y) : [D, u, t]

Fask(va, candift(X,Y) : [{m}, p, 7]

Fask(ve, recent temperature(X,Y) : [{m}, u, ]
Fask(va, max_possible_speed(X,Y, 7) : [{m}, u,]
fase(v;, A [D,p,t]

Fask(v1, (weight(Obj, X)over Xy | Obj, X)
Fask(va, (at(Obj, X, Y)over Xy | Obj, X|Y)

)

fase(vj, (Eover X

{va}

{vs}, D C{3,4,5,m}
{v}

{vs}

{v}

{} for other atoms
{va}

{v}

= {} for other constraints

S S S N e e S S S S S
(l
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Definition 13 Given a network N = (V| EF), a function fas; which determines
when a site v; asks a query about an atom A to other sites and a distributed-
interpretation I* = ((I,,, ..., L,, ), Msg), the operator Fpy which maps distributed-
interpretations to distributed-interpretations is defined as follows.

o Let (), denote the amalgamation of the local databases at site v; with the

mediating clauses residing at v;.
o Let Q) = Qu; U LA [D,p, ]| Tell'*i(A: [D, p,t]) € Msg for some site v;}
o Let I{)j = TQ;(L}]’).

o Msg' = Msg U {Tell’s(A: [D,p,d])| Tor (I,) EM A:[D, 1] &
AskViVi(A D, p,t]) € Msg}
U{Ask? % (B [D, pA]) | Toy, (1) EM B [D, p, 1] &
Vs € fAsk(viaA : [Da/'tat])&
(vi,vj) € B}
UA{Tell’»Vi(E over X)) | Ask¥5 U (EoverX) € Msg & X > =}
U{Ask?"Vi(ZoverX) | v; € fasr(vi, (EoverX)) & (vi,v;) € E'}.

Then FN(Iu) =((Iy,,... I, ), Msg").

In the distributed framework, the operator > is interpreted as follows: given a
distributed-interpretation I = ((1,,,..., I, ), Msg), & > = is true at site v; iff (1)
the constraint Z is solvable in domain ¥ where X is located at site v;, or (2) Msyg
contains a message of the form Tell’57¢ : (E over X) for some site v; in N.

Intuitively, the Fy operator works as follows: at every step, the local M-interpretation
I, for site v; contains all the logical consequences of the distributed system com-
puted so far at site v; using the information available at this site and the information
provided by other sites through the messages sent by them. In addition to that,
sites have access to the global set, Msg, of messages. In practice, a site v; will
only need to know the messages of the form {Ask,Tell}?¥:. Then, during one
execution of the Fpy operator, every site executes the Ty operator using the lo-
cal M-interpretation I,,, the amalgamated site knowledge base for this site, and
the messages sent to this site so far. Hence, facts of the form A : [D, u,t] are
added to the knowledge base prior to the execution of the Ty operator for mes-
sages Tell'iVi(A : [D,p,t]) in Msg. During the execution of the Ty operator, if a
constraint (Zover X) needs to be solved and X is not located at site v;, then the
computation will use a relevant T'ell message sent to site v; about domain ¥ from
the current set of messages if such a message exists. At the end of each round, the
set M sg is updated as follows: every site sends a set of Ask messages for the infor-
mation that can be obtained from other sites as determined by the fas; function
and responds to the Ask messages sent to them using their local interpretations.

The following example illustrates the working of the operator Fy. (The expression
FIZ\I denotes the ith iteration of the Fy operator as defined for the T operator in

section 4.)
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Example 7 Suppose the distributed network consists of two sites only. One de-
ductive database DB; and one relational database 31 are located at site 1 and one
deductive database DBs is located at site 2. Site 1 and site 2 are connected by a
link. Suppose the following information is stored in the sites:

The mediator at site 1 contains the clause:
p(X) : [{m}, V,T] — adm(X) || ¢(X) : [{1,2},V,T] & r(X) : [{1},0.5, 7.
The mediator at site 2 contains the clause:
p(X) : [{m}, V1] — s(X) : [{2}, V. T

The relational database ¥; contains the tuple: adm(a). Deductive databases con-
tain the following facts:

‘DBl (at site 1): ‘ ‘DBZ (at site 2): ‘

() [{13,0.7, {1)] — (@) [[2),0.6, {1,2)]—

w(5) [(1},05, {1} — S(0) < [{2),05, {1.2)] —

q(a) : [{1},0.3,{1}] — q(X): [{24,0.7, 7] —¢X):[{2},0.5,7]
o(b) - [(1},08, {1} — 1Y) [{21,05.7]  —s(X) - [{2,05,7]

Suppose that fasp(vi, A : [D, pu,t]) = {va} forall A : [D, p, t] appearing in mediating
clauses in site v1 and fasp(ve, A: [D, p,t]) = {} for all A : [D, u,t] appearing in vs.
Also suppose that fasr(vi, (adm(a))) = fask(ve, (adm(a))) = {}. Since the sites
never ask about the predicates ¢,r, s and ¢, the truth value of these predicates is
determined at the local sites.

Let I' = ((I1,1.),0) where I, is the interpretation that assigns L (0 in the case
of UNC) to all the atoms in the underlying language. Then, for all ¢ € {1,2} and
for all 7 < 2, Ff\](ﬂ) = ((I}{ ,I! ), Msg') assigns the following truth values:

V1) U2

(L, (ra)()(1) = 07 (I, (s(@)(2))N(t) = 0.6
(23, (r(B)(1)))(1) 0.5 (L, (s(D)@))(t) = 05
(13, (a(a)(1)(1) 0.3 (L, (t(@)(2))(t) = 05
(L, (a®)(D))(1) = 08 (L, ®)2))(t) = 05
(L, (a(@)@)(t) = 0 (L, (a®)(2))(E) = 0
For i > 3, the above equalities hold except in the two cases listed below:
(I, (a()@))(t) = 0.7
(L, (a®)2))E) = 07

The truth values assigned to the atom p(X) : [{m}, V, ¢] for all time points ¢ € {1,2}
by the interpretations I and I, under different substitutions are given in the table
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below. The new messages that affect the truth values assigned to this atom are also
given at each step.

T T

pX) | X=a | X=b|X=a| X =0, | New Messages

i=010 0 0 0 0

i=1103 0 0.6 0.5 Askvvv2(p(X) : [{m},V,T))
Ask® V2 (¢(X) - [{1,2},V,T))

=203 0 0.6 04 | Tell’>" (p(a) : [{m], 0.6,

a): {1,2}])
b) - [{m},0.5,{1,2}])
X) - [{1,2},0,{1,2}]
X 7

Tell2?1(q )
) [{1,2},0.7,{1,2}])

i=3]06 0.4 0.6 0.4 Tell’>" (g
i>4 107 04 0.6 04 ]

(X

(q(

(p(
TellVzv1 (p(
(a(

(a(

We now extend the < ordering defined on M-interpretations to distributed inter-
pretations. Recall that the distributed knowledge about an atom A for a given site
v; is obtained from the local interpretation for this site as well as from messages
of the form TellV*¥7(A) that constitute the that answers site v; has obtained to its
queries about atom A. Hence, given a network N = (V| ) and two distributed-

Iy, ), Msg1) and Ig = ((T. Iy,..), Msga), we

’Um1 ’U12a"'a ’Um2

say that Iﬁ < Ig iff Msg1 C Msgs and I, <1, foralll<j<m.

interpretations Iﬁ =((I

Vigr )

Definition 14 (Negation-Free Network) A network N = (V| E) is called negation-
free iff the amalgamated site knowledge bases @Q,, are negation-free for all sites
v; €V.

Theorem 2 Let N = (V, I/) be a negation-free network. Then Fpy is monotone.

Proof: Suppose N = (V| E) is a network, and It and J¥ are distributed-interpretations
such that I < J*. Let IV = ((Lyy, ..., Ly,,), Msg1) and J* = ((Jo,, ..., Ju,,), Msg2).
We need to show that FN(Iu) < FN(Ju). Let FN(Iu) = ((I9, ..., I9), Msg®)
and FN(Jﬁ) = ((J5,...,J2 ), Msg”). We will first show that I} < J7 for all
1<f<m.

I3 =Tq, (I,,). Likewise, JJ _TQ/J[(JW) where

Q) = Qu, U{A:[D,ut]|Tell’"""*(A:[D,u,t]) € Msg, for some site v; }
Qy, = Qu, U{A:[D,pt]|Tell’**(A:[D,p,t]) € Msg, for some site v;}.

As Msg; C Msgy by virtue of the fact that I' < J¥ it follows that Q,, € Q..
We know, by monotonicity of the Ty operator as proved in 1, that TQ’W(I%) <
TQ;[(JE[). As @, C @y, and both @, and @)/, are negation-free, it follows that

TQ;[ (Jzi) S TQ;/[ (Jzi)’ and hence, TQ;[ (18) S TQ;/[ (Jzi)
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It only remains to show that Msg® C Msg®. Any formulain M sg® must be either
of the form TellV»Vi(A : [D, pu,t]) or AskVV5(A : [D,u,t]). We consider the first

case — the second case is entirely symmetric.
If Tellvovi(A: [D,u,t]) € Msg®, then one of the following two cases is applicable.

Case 1: Tell*sVi(A : [D,pu,t]) € Msg,. In this case, as I' < J' we know that
Msgy C Msgs and hence, TellVtVi(A : [D, u,t]) € Msga C Msg3.

Case 2: In this case, A : [D,pu,t] is M-satisfied by Tg:(1,,) and AskV V(A :
[D, i, t]) € Msgy. (Here, Q' is constructed as articulated earlier in the proof). Then,
as Msg1 C Msgs, it follows that Ask¥iV:i(A : [D,pu,t]) € Msgs. Furthermore, as
I, < Jy,, it follows, by the argument above, that To/(I,,) < Tgn(Jy,). Hence,
Tor(Jv,) M-satisfies 4 : [D, p,t]. It follows that Tell*s¥i(A : [D, pu,t]) € Msg".

If Tell'Vi(ZoverY) € Msg®, then there are two cases to consider. These cases are
similar to the cases above. Showing that all atoms of the form Ask?®vi(A : [D, p,t])
and the form AskViVi(Eovery) that are in Msg® are also in Msg® is symmetric.

O

The above result immediately allows us to conclude that the operator Fy has a least
fixpoint. The semantics of programs (both imperative and logical) have long been
characterized by the least fixpoints of associated operators (cf. Manna [18]), and
hence, we will consider this least fixpoint of Fy to be the meaning of the distributed
network of databases. We will subsequently show (cf. Lemmas 2 and 1) that this
least fixpoint is a generalization of the semantics for amalgamating knowledge bases
proposed in [23, 17]. Those semantics have a clearly defined model-theoretic basis.
Defining a model-theoretic basis for a network of databases is related to database
updates because messages received by a database from another database needs to
be assimilated and can be viewed as an update. Studying the semantics of updates
is beyond the scope of the current paper.

Corollary 1 Suppose N = (V, F) is a negation-free network. Then the function
Iy has a least fixpoint, denoted p(Fy). a

Corollary 2 Suppose I' is any distributed interpretation, N is a network, and
fask 1s sensible. Let FN(Iu) = ((Iyy, -+, Iy, ), Msg). Then Msyg is closed under
consequence in the following sense:

(i) if AskVi(A :[Dy, p1,t1]) € Msg, then Ask?®Vi(A : Da, po,t2) € Msg for all
fo <y, iy Ctyand Dy D Dy

(i) if Tell'vV5(A : [Dy, p1,t1]) € Msg, then Tell'V5i(A : [Da, pa,t2]) € Msg for
all 25 S Hi, tz g tl and D2 2 Dl.

Proof. (1) If Ask"""i(A : [Di,p1,t1] € Msg, then Tg, (I,,) M-satisfies A :
[D1,p1,t1] and v; € fasp(vi, A @ [D1,p1,t1]). Hence, TQu,(Iv,) M-satisfies A :
[Da, pta,t2] as po < py, t2 C ty and D2 D Dy As fasp is sensible, fasp(vi, A ¢
(D1, p1,t1]) C fase(vi, A 1 [Da, pa,ts]), hence v; € fasp(vi, A @ [Da, o, ts]), the
result follows immediately.
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(2) The proof of part (2) is similar. Suppose TellV*Vi(A : [Dy, p1,t1]) € Msg. Then
A [Dy, p,t1] is M-satisfied by Tq: (I,;) where these notations are defined as in
Definition 13. Thus, A : [D2, pa, t5] is M-satisfied by Tq: (Iy,) as prz < py, 12 Cty
and Dy D D;. By Part (2), it follows also that as Askvﬂ"”l’(A S [Dry pa,t1]) € Msg,
AskViVi(A : [Da, pa,t2]) € Msg. This completes the proof. |

Though message lists are closed under consequence when defining the least fixpoint
of Fy, in an implementation, an explicit listing is not required. The reason is that
an atom A : [D, u,t] may be used to represent all the atoms that are implied by
A [D, p,t] and this (potentially large) set is thus captured by just a single atom.

The Fy operator defined on the distributed network is a straightforward general-
ization of the Ag operator defined in [23] as well as the Tpp operator defined in
[17].

Lemma 1 Suppose N = ({v},0) is a network consisting of just one site, and sup-
pose D = {DB X;,...,X,,} are the databases located at this site, where DB is
a deductive database and X; 1s a non-logical database for 1 < 7 < m. Let @, be
the amalgamated site knowledge base for site v. Then, given any distributed inter-
pretation I* such that I* = ((I,),0), if Fy(I*) = (1)), M sg) then IY = Tpp(1,)
where Tpp is the fixpoint operator defined for the hybrid knowledge bases in [17]
applied for @, .

Proof. Let I' = ((I,),0) and @, be given as above. Suppose FN(Iu) = ((I7), M sg).
Since there are no messages in I*, Q% = @,. Then, I7 = Tg,(I,). Since, v contains
only one deductive database, the definition of Ty, can be simplified to:

(T, (D)(A)(s0) = u{pld : [n,t] — (E1overZq)& ... &(E,overE,) || By :
[1,t1] & .. . & B, : [y, 1] is a strictly ground instance of a clause in @, , for

all 1 <ji<p ¥ >E; ,forall1 <i<r [ ':M B; : [pi,t;] and sp € t}.

Similarly, the definition of M-satisfaction is simplified : [ ':M A, i I(A) (o) >
i for all t5 € ¢. This definition of T, is identical to the definition of Tpp given in
[17], hence IJ' = Tpp(l,). m|

The following lemma is proved along analogous lines.

Lemma 2 Suppose N = ({v},0) is a network consisting of just one site, and
suppose D = {DBy,...,DB,} are deductive databases located at this site, i.e.
IN(DB;) = vfor 1 <i < n. Let @, be the amalgamated site knowledge base
for site v. Given any distributed interpretation I' such that I' = ((1,),0), if
FN(Iu) = ((I3), M sg) then I] = Ag(l,) where Aq is the fixpoint operator de-
fined for the amalgamated knowledge bases in [23]. O

As we have seen so far in this section, when a set of databases is distributed across
a network, the inferences made by the system depend on several factors — these are:

e the network N = (V, F),
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e the databases {DBy,...,DB,,%1,..., X},
e the distribution function fy,
e the function f4sz,

e the mediatory distribution function mdpy,

the set M of mediating clauses.

We will refer to the 7-tuple
DMS = (VaEa{DBla .. 'aDBnaEb .. 'aEk}afNafAskamdNaM)
as a distributed mediated system.

Observe that for any network N, the definition of the operator Fy defined thus far
actually uses all components of a distributed mediated system. Hence, it is just as
appropriate to associate the operator Iy with a distributed mediated system and
to denote it by Fpyg, with the same meaning and definition as Fy.

6. Mediatory Distribution Functions

In this section, we study how to distribute the mediating clauses in M across the
different sites in the network so that the resulting distributed semantics achieves
the same effect as it would if M were completely stored at all sites in the network.
In technical terms, suppose

DMSy = (V,E,{DBl, DBy Y. ..,Ek},fN,fAsk,mdN,M)

is a distributed mediated system where N = (V, ) and such that mdp(v) = M
for all v € V 1.e. the mediator M is “completely” stored at all sites in the network.
We are looking for:

e a characterization of a mediatory distribution function, mdj,, such that the
distributed mediated system

DMS = (VaEa{DBla"'aDBnaEb"'aEk}afNafAskamdNaM)

has the same the least fixpoint as DHSg (i.e. has the same semantics as DMSp),
and

e a characterization that preserves the same least fixpoint when various arcs in
the network are allowed to go “down”,i.e. if X C F, and

DMS/ = (VaXa{DBla"'aDBnaEb"'aEk}afNafAskamdNaM)

then the least fixpoint of Fpyg/ coincides with the least fixpoint of Fpyg, -
Here, the arcs in (E — X) are the ones that “go down.”

We first consider the case when all links in the network are assumed to function
properly, i.e. no links “go down.” Subsequently, we will consider the situation when
link failures occur.
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6.1. Distributing Mediatory Clauses When Link Failures do not Occur

Suppose we consider
DMSO = (VaEa{DBla .. 'aDBnaEb .. 'aEk}afNafAskamdNaM)

and suppose v; € V is a specific site. Suppose site v; needs to acquire information
about the atom A : [D, p,t]. Then this information can be obtained by consulting
relevant sites in the network. The following definition specifies the set of sites that
may be queried (directly or indirectly) in connection with a particular atom.

Definition 15 Suppose DS is a distributed mediated system. The access set of
site v; w.r.t. atom A : [D, p,t], denoted ACCESSpyg(vs, A : [D, p,t]) is defined as
follows:

(1) v; € ACCESSDMs(UZ', A:[D, /J,t])

(i) if v; € fasu(vi, A : [D,p,t]) and (vi,v;) € E, then v; € ACCESSpyg(vs, A :
[D, i, t]) and furthermore, ACCESSpyg(v;, A : [D, u,t]) C ACCESSpyg(vi, A :
[D, u,1]).

(iii) Nothing else is in ACCESSpyg(vs, A : [D, p,t]).

Intuitively, condition (1) above specifies that the set of sites v; can turn to for help
(either directly or indirectly) in relation to the atom A : [D, pu,?] includes v; itself.
The first half of condition (2) says that v; may also ask any site v; that is deemed
by v; to be knowledgeable about A : [D, u,t] (i.e. v; € fase(vi, A : [D, p,t])). The
second half of Condition (2) says that if v; can turn to a site v; for help (as above),
and if site v; is allowed to access site vy in connection with the atom A : [D, p, ],
then v is in site v;’s access set w.r.t. the atom A : [D, p,1].

Example 8 Recall the robot example given in the appendix. Let DMSg be the
distributed mediated system for this example.

DMSgr = ({vlav2av3}a{(Ulavz)a(1}2’1}1)’(02’”3%(v3avz)}a{DBla"'aDB5a21a22}a
fN,mdN,M)

Definitions of fry and mdpy for this example were given in examples 3 and 4. A

complete list of all the mediating clauses M was given in the appendix. Finally let
fase be defined as in example 6. Then the following is true for DUSg:

ACCESSpys,, (vs, temperature(X,Y) : [D, u,t]) = {vs},
D C{m,3,4,5}
ACCESSpys,, (va, temperature(X,Y) : [D, u,t]) = {vs,vs},
D C{m,3,4,5}
ACCESSpys,, (vi, temperature(X,Y) : [D,u,t]) = {vi,v2,v3},
D C{m,3,4,5}
ACCESSpys,, (v2, recent temperature(X,Y) : [{m}, pu,t]) = {v2,vs}
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= A{ui}
{v1,v2}
{v1,v2}
{2}
= A{ui}

)+ [{m}, 1))
)+ [{m}, 1))
V) - [{m}, g, 1))

)
)

ACCESSpys,, (v1, recent temperature( X,

ACCESSpyg,, (v1, can li ft(X,
ACCESSpys,, (v2, can lift(X

ACCESSpys,, (v, max _speed(X, Y,

ACCESSpys,, (vi, maz_speed(X, Y,

Y
Y

[, 2}t
C[{L, 2wyt

Z)
Z)

6.1.1. Acceptable Placements

We now specify what constitutes an acceptable placement of a mediating clause.
Intuitively, suppose C' € M is a mediating clause of the form:

A [{m}, po, 0] — (EroverZi)& ... &(E, overX,) ||
Al : [Dl,/,tl,tl]&...&Ar : [Dr,/,tr,tr].

Then clearly we want C' to be placed at a set of sites such that all subgoals occurring
in its body are accessible to the sites at which C'is placed.

Definition 16 Suppose C' is a mediating clause of the above form and
DMS = (VaEa{DBla .. 'aDBnaEb .. 'aEk}afNafAskamdNaM)

i1s a distributed mediated system. An acceptable placement of C'is aset X C V
satisfying the following conditions:

(1) for all 1 <i<r,if ASKB(v;) contains a clause having head A7 : [D}, pf, ]
such that A; and A} are unifiable via mgu ¢ and D} C D, then

ACCESSpys (v, A7 « [Df, 17, 1710) C | ] AccESSpys(v, A; : [Dy, i, ti]).
veEX

(ii) for all 1 < w < p, there exists an integer £, such that there is a path
Uiy Vg1 - -y Uik = g, in (V, F) such that
(a) v; € X, and
(b) Ty € dbs(vg,, ), and
(¢) Vigr € fask(Vigr—1,(E;overy;)) forall 1 <r < k.
(iii) No strict subset of X satisfies the above two conditions.

A set X that satisfies conditions (i) and (ii) above (but not necessarily (iii)) is called
a semi-placement of C.

Intuitively, an acceptable placement i1s a set of sites at which C' can be located.
Note that this means that each and every site in X must have (' located in it.
Condition (1) in the above definition says that for a particular set to be considered
an acceptable placement of ', it must be the case that all sites having clauses that
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have in their head, an atom that possibly contributes to solving a subgoal of C (i.e.
an atom in C’s body) must be accessible to some site in X. Condition (2) says that
all constraint domains that ' may need to ask for assistance must be accessible as
well. Condition (3) says simply that we do not want to place C' at more places than
are strictly required.

Given a distributed mediated system DMS and a mediating clause C, if there exists
an acceptable placement of C'| then placing this clause at every site is certainly
acceptable. Another greedy placement strategy that is not optimal would be to
place C' at every site v; such that v; either contains a clause whose head is unifiable
with an atom in the body of C', or a domain ¥ accessed by C'is located at v;. Finally,
another algorithm would be to place C initially at a site v; where v; contains a set
of clauses (similarly for domains) that are unifiable with an atom in the body of C.
Then, calculate the ACCESS sets from this site, mark the sites that still need to be
accessed, pick one from this set and continue until there is no such site left. It is
possible, of course, that there is no acceptable placement for C' in DMS. The above
algorithms guarantee that an acceptable placement will be found, if one exists.
Hence, the acceptability of the placements found by these algorithms should be
checked at the final stage.

It can easily be seen that for strong mediating clauses (clauses that only have the
{m} annotation in the head) of the form

A [{m}, pro, o] — (EroverXq) &... & (E, over X,) ||
Al : [Dl,/,tl,tl]&...&Ar : [Dr,/,tr,tr].

where each D;j, 1 < j < r, is a subset of {1,...,n}, it suffices to determine the
placements of clauses in M one by one. In particular, the D;’s are not allowed
to evaluate to a set with m in it. Consequently, such clauses never refer to other
mediating clauses in their body. The following result shows that if we take two
mediatory distribution functions mdi\I and mdf\I such that for all clauses C' € M,
mdi\I(C’) C mdf\I(C'), then it is the case that least fixpoint of Fpyg is less than
(according to the <-ordering) than the least fixpoint of Fpyg, where DMS; and DMS,
are identical to each other except that they differ on mdi\I and mdf\I.

Theorem 3 (Monotonicity w.r.t. Mediatory Distribution Functions) Sup-
pose M 1is a set of strong mediating clauses, and suppose

DMSl = (VaEa{DBla"'aDBnaEIa"'azk}afNafAskamd]lN'aM)

and

DMSZ = (VaEa{DBla .. 'aDBnaEb .. 'aEk}afNafAskamd%V'aM)'
Furthermore, suppose that mdi\I(C’) C mdf\I(C') for all C € M. Let I' be any dis-
tributed interpretation such that I* = ((I,,,..., I, ), Msg). Suppose FDMSI(Iﬁ) =

3 tUm

((Juys--oyJu,,), Msgr) and FDMSQ(Iﬁ) =((Hy,,...,Hy, ), Msg2). Then,

(i) forall 1 <é<m, J,, < Hy,, and
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(il) Msg1 C Msga.

Proof. Suppose J,,(A)(D)(s) = p1 and Hy,(A)(D)(s) = pa. Let us examine the
definition of the F' operator (Definition 13).

Let Qf}l denote the amalgamation of the local databases with the mediating clauses
residing at site v; according to mdi\I together with the facts obtained from the
messages of the form Tell’V¢(A) € M sg as explained in definition 13. First observe
that Q.. C Q2 because mdi\I(C’) C mdf\I(C') for all C' € M; hence, if clause C € M

is at site v; according to DMS;, then C' must be at site v; according to DMSs as well.

Let Msge = Msg U {Tell’>i(A:[D,pu,t]) | A:[D,p,t] is M-satisfied by Ty (1,,)
and Ask® V(A 2 [D,p,t]) € Msgh U {Ask®>" (B : [D, pu,t]) | Tg: (1y,) M-satisfies
B : [D,u,t] and v; € fasp(vi, A @ [D,p,t])}U constraint messlages as given in
definition 13. Consider ¢ = 1,2. It is easy to see that the first component of the
above union when ¢ = 1 is a subset of the first component when £ = 2 because of the
monotonicity of TQﬁl proved in [23] and because Qll)l C le The same observation

z

holds for the second component of the union. The part of the constraint messages do
not depend on ¢, hence it is identical. This completes the proof that Msg; C Msg,.

Now observe that J,, = Tg1 (Iy,) and Hy, = Tgz (I,,). As Q,, C Q; , it follows
that
Joy = Tay (1) € Tog () = H,.

This completes the proof. a

The following theorem shows that as long as all mediating clauses are placed at all
sites in an acceptable placement, the resulting distributed semantics corresponds to
the naive semantics.

Theorem 4 (Soundness and Completeness of Acceptable Placement Dis-
tribution Strategy) Suppose M is a set of strong mediating clauses, and suppose

DMSy = (V,E,{DBl, DBy Y. ..,Ek},fN,fAsk,mdN,M)

is such that mdn (C) =V for all ¢' € M. Let mdpy be any mediating distribution
function such that for all C' € M, md’N(C’) is an acceptable placement for C'. Let

DMS = (V, E, {DBl, DBy Y, Ek}, fN, fask, md/l\I’ M)
Then the least fixpoint of Fpyg, is identical to the least fixpoint of Fpyg.

Proof. Let I = (I,,,...,1,, ), Msg) be any distributed interpretation. Suppose
FDMSD(Iu) = ((Jvl, ey Jvm), Msgl) and FDMS(Iﬁ) = ((Hvl, ey va), Msgz). It
follows immediately from Theorem 3 that for all distributed interpretations I*,
Fpus(I') < Fpus, (I*) because for all C' € M, md’N(C’) C mdp(C). Consequently,
it follows immediately that Ifp(Fpys) < Hp(Fpyg,). Hence, we only need to show
that lfp(FDMSD) S lfp(FDMS)'
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We prove, by induction, that for all ordinals v, Fpys, T v < Hp(Fpyg). We use
((J2,,---,J)), Msg]) to denote Fpyg, 1 v and ((H),...,H) ), Msg3) to denote

vyt

Fpus T 7. We use Hl]ip (resp. Jvilfp to denote the value of H) (resp. JJ.) where
v is the closure ordinal of Fpyg (resp. Fpyg)-

‘ Base Case (y = 0) ‘ Immediate.

Inductive Case | There are two subcases, when v = (4 1) is a successor ordinal,

and when ~ is a limit ordinal.

Subcase 1 (y = (74 1) is a successor ordinal): Suppose JJ (A)(D)(s) = p for some
1 <@ <m. Then J) = FDMSD(JS,’u) where JI = Ty, (JI) where @, is the

amalgamated site knowledge base constructed in part (2) of Definition 13 w.r.t.

the messages in Msg]. By the induction hypothesis, JI < H{l}fp. Hence, by the

monotonicity of Tg, , it follows that

JIh =T, (J1) < To, (HP) = HfP.

If we can show that @, C Q) where Q) is the amalgamated knowledge base
constructed in part (2) of Definition 13 w.r.t. the messages in Msg], then we
would be done because

TQQ (ng) S TQQ’ (HUZ'”) = 1':]7 .

Vi

Suppose C' € Q.. Then either C' € Q,, where Q,, is the amalgamation of the
clauses in v;, in which case C' € @, follows immediately, or C'is a unit clause of
the form A : [D, p,t] such that Tell'sV: (A : [D, p,t]) € Msg] for some site v;. As
Msg] C Msgld by the induction hypothesis, it follows that Tell’:Vi(A : [D, u,t]) €
M sgy and hence, A: [D,pu,t] € Q.

It remains to show that Msg] C Msgly. Suppose Tell’vVi(A : [D,p,t]) € Msg].
If Tell'sYi(A : [D,pu,t]) € Msg], then we are done immediately by the induction
hypothesis. Otherwise, A : [D, u,t] is M-satisfied by Tq: (Jy,) and hence, there is a
set of clauses in @, such that the bodies of these clauses are true in Gy, (Jy,) and the
heads of these clauses jointly imply A : [D, p,1]. By the induction hypothesis, these
clause bodies are true in H,,. Suppose By : [D1, u1,11] is an annotated atom in the
body of one of these clauses. By the definition of acceptable placement, every clause
in DBy, ..., DB, whose head By : [Ds, s, ts] is such that By and Bs are unifiable
and Dy C Dy is in the access set of v;. Hence, all these clauses must be present in
v, for some v, € ACCESS(v;, By : [D1, pt1,t1]). Hence, Tell’=V5(By : [Dy, p1,t1]) is
true in Msgs and hence, Tell’"Vi(By : [Dy, pu1,t1]) is true in ]\4sg;+Z where £ is the
length of the path from v, to v;, i.e. Tell’Vi(By : [Dq, pt1,t1]) € Msga, and we are
done.

Subcase 2 (7 is a limit ordinal): J is the lub of JPv; for B < v and as JPv; < HPv;
by the induction hypothesis, the result follows immediately. a

Note that Theorem 4 holds even if we consider the case when md’N(C’) Is a semi-
placement for all clauses C'.
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It is important to note that there may be, in general, several sets of sites which
satisfy the conditions for it (i.e. the set of sites) to be an acceptable placement for
clause C'. The following example illustrates how this may happen.

Example 9 Recall the robot example, DHSg, given in the appendix. The following
mediating clause was located at site 3:

temperature(X,Y): [{m}, V1 U Vo, {Wi}] —
temperature(X,Y) : [{3}, V1, {V;, 1 &
temperature(X,Y) : [{4}, Va, {Vi, .

Since the only clauses that unify with the atoms in the body of this clause are
located at site vz and as v3 1s 1n the ACCESSpyg,, set of both v; and vs for these
atoms, {v1},{va} and {vs} are all acceptable placements for this clause.

Let us now consider the following clause which is also located at site vs:

temperature(X,Y1): [{m}, Vi, {Vi}] —
Y1 > Y|
recent temperature(X, Y1) : [{m}, Vi, {Vi}] &
temperature(X,Ys) : [{5}, Va, {V4, }].

Suppose the clauses containing information about the predicate recent_temperature
are stored at site 3 as given. Then, ACCESSpys,, (v3, recent temperature(X, Y1) :
[{m}, V1, {V4}]) = {vs} and both {vs:} and {vs} are acceptable placements for the
above clause since {vs} is contained in the ACCESS set of both vy and vs for all the
atoms in the body of the clause. {v1} however is not an acceptable placement, since
ACCESSpys,, (v1, recent temperature(X, Y1) : [{m}, Vi, {Vi}]) = {vi} and {va} €

O

{vi}

6.2.  Distributing Mediators when Link Failures may Occur

In this section, we consider the case when we have a distributed mediated system
DMS = (VaEa {DBla .. 'aDBnaEb .. 'aEm}afNafAskamdNaM)

and ¢ > 0 links are allowed to fail. Intuitively, when a link between sites v; and v
fails, this means that £ above is modified to (F — {(v1,v2)}). A system designer
may reason thus: “Suppose, in my worst dreams, at most ¢ links in the network can
fail. T would like to distribute the mediator in such a way (if possible) that even if
¢ links go down, the system functions appropriately. Are there ways of identifying
the circumstances under which this 1s possible 77 This i1s the question addressed in
this section.

Definition 17 Suppose
DMS = (VaEa{DBla .. 'aDBnaEb .. 'aEm}afNafAskamdNaM)

is a distributed mediated system, ¢ is an integer, and for all C' € M, mdp; is an
acceptable placement for C'. A mediatory distribution function md’N is said to be
restlient w.r.t. DMS for at most ¢ link farlures iff:
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1) mdjy; is an acceptable placement of C' w.r.t. DMSy for all subsets Y C F of
N
cardinality card(E) — ¢ and (w.r.t. DMS) for all C' € M, and

(ii) for all subsets X C F that are of cardinality ¢, the distributed mediated system
DMSx which is identical to DMS except that £ is replaced by (£ — X) and mdpg
with md’N has. the property that the least fixpoint of Fpyg, coincides with
the least fixpoint of Fpyg.

Intuitively, the integer ¢ specifies an upper bound on how many links are assumed
to go down (in the worst-case). The links in X are the edges that are assumed to go
down. When the links in X go down, the network effectively consists of the edges in
(F—=X). A distribution, mdf;, of mediating clauses achieves the same effect as the
original distributed mediated system iff the least fixpoint of the operator associated
with the original system (i.e. Fpyg) coincides with the least fixpoint of the operator
associated with the system (whose links are down). As the identity of the links that
go down cannot be predicted in advance, all possible collections of ¢ links in £ need
to be considered.

Example 10 Suppose DHS is a distributed mediated system that has access to four
deductive databases, DB; only contains information about the atom p(X), DB»
about ¢(X), DBs about r(X) and finally DB, about s(X). Suppose the system
has three sites: vy has access to both DBy and DBj,vs to both DBy and DBs and
vz to DB3 and DB4. Sites are connected in a ring structure, i.e. E contains the

following edges: {(v1, v2), (v2, vs), (v3, v1), (v1, v3), (vs, v2), (v2, v1)}.

Suppose fasx 1s given as follows:

fase(o, ¢(X) - [{2L, V. T]) = {vs, 03}

fas(oa, p(X) - [{1L, V. T]) = {ur}

fas(a, (X)) - [{3}, V,T]) = {us}
(v3,¢(X) - [ )

{2},V,T = {1}1,1}2}

fask(va, ¢(X

We want to distribute the following mediating clauses such that the resulting system
is resilient w.r.t. DMS for at most 1 link failure. A suitable mediatory distribution
function mdpy can be given as follows: Place the first clause at site vy, second clause
at site vy and the third clause at site vs.

di(X) - [{m}, V. Tl — p(X): [{1}, V. T & q(X) - [{2}, V. T] (D)
dy(X) - [{m}, V. T — (X)) [{2}, V. T]&r(X) - [{3}, V, 7] (2)
d3(X) : [{m}, VTl — X):[{2},V,T1&n(X): [{3},V,T]

s(X) : [{4}, V. 7] (3)

Note that although site vs is also an acceptable placement for the first mediating
clause, the system resulting from placing this clause only at this site is not even
resilient to 1 link failure. ad
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The following result states that if md’N is an acceptable placement for a system
with “down” links, then mdy; must have been a semi-placement of the original
system. This means that acceptable placements for a system with “down” links
must be selected from the semi-placements of the original system.

Theorem 5 Suppose
DMS@ = (VaEa{DBla .. 'aDBnaEb .. 'aEm}afNafAskamdNaM)

is a distributed mediated system, and suppose ¢ > 0 links are allowed to go “down”.
Given a clause (', if md’N is an acceptable placement for C' w.r.t. DMSx (as specified
in Definition 17) for some X C F such that card(X) = card(F) — i and fas
preserves subsumption, then md’N is a semi-placement for C' w.r.t. DMSy.

Proof: We will prove this by showing that md’N satisfies conditions (1) and (2) of
definition 16. Proving conditions (1) and (2) are symmetric except that condition
(2) holds even if fa, is arbitrary. We will first construct a graph Apyg(A : [D, i, 1))
given an arbitrary distributed system DMS and show how the ACCESS set relates to
this graph. Then, we will prove that md’N satisfies the first condition in definition 16
for clause C' w.r.t. DMSy.

Suppose DMS is a distributed mediated system. We construct the directed graph
ADMS(A : [D,/J,t]) = (VDMS’EDMS) as follows: Set VDMS =V and EDMS = QJ, do
the following for all the edges (v;,v;) € E: if v; € fasr(vi, A : [D,u,t]), then
add the directed edge (v;,v;) (from v; to v;) to Epyg. Since the network of DMS
is undirected, £ contains symmetric pairs, hence v; will be considered in the pair

(v, vi).

Given the graph Apyg(A4 : [D,p,t]) = (Vpus, Fpug) constructed as above, let
Rpus(vi, A @ [D,u,t]) = {v; |v; is reachable from v; via a path in Apyg(4 :
[D, i, 1))}, then ACCESSpug(vi, A : [D, i, t]) = Rpug(vi, A : [D, u, t]).

We prove this using the definition of ACCESS given in definition 15.

(=) If v € ACCESSpys(v;, A4 : [D, p1,¢]) then v € Rpyg(vi, A : [D, p, t]):
(i) Since every node v; is reachable from itself, v; € Rpyg(vi, A : [D, p,1]) for all
v; € V.
(i) If v; € fasw(vi, A : [D,p,t]) and (v;,v;) € E then there is an edge (v;,v;) €
Epus and v; € Rpyg(vi, A @ [D, i, t]). To show that Rpyg(v;, A : [D,p,t]) C
Rpug(vs, A : [D, p,t]) we consider two cases:

e v; € Rpus(v;, A : [D,p,t]), then it must be the case that there is a
path from v; to v;. We know that there is a path from v; to v; as well
via link (v;,v;). Then, v; and v; reach exactly the same sites, therefore

Rpus(vj, A« [D, p,1]) = Rpyg(vi, A : [D, p,1]).

e v; ¢ Rpug(vj, A : [D,p,t]), then we know that {v;} U Rpyg(v;, 4 :
[D, p,t]) € Rpus(vi, A [D, p1,1]), and Rpys(vj, A : [D,p,t]) € Rpus(vi, A :
(D, u,1]).
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(<) If v € Rpyg(vs, A : [D, p,1]) then v € ACCESSpug(vi, A : [D, i1, ]): In this case,
there is a path from v; to v in Apyg(A : [D, p,t]). For all the edges (vq,, va,,, ) on this
path we have that ve,,, € fasr(va,, A : [D,p,t]), hence if vy, € ACCESSpyg(vs, A :
[D, ut,t]) then it must be the case that v,,,, € ACCESSpyg(vi, A : [D, p,t]). From
the definition of the ACCESS set, v; € ACCESSpyg(vi, A : [D, p,t]) and consequently
v € ACCESSpug(vi, A : [D, p,t]). Hence, we have proven that ACCESSpyg(v;, A :

[D, p,t]) = Rpus(vi, A : [D, i, 1]).

Given a mediating clause C, let A : [D, p,t] be an atom in the body of C' and
ASKB(v;) contain a clause having the head A* : [D*, u*,t*] such that A and A*
are unifiable via mgu # and D* C D. Since md’N is an acceptable placement for C
w.r.t. DMSx, we have that:

ACCESSpys , (v, A* : [D*, ", #°]0) € | ] ACCESSpyg, (v, A :[D,p,1]).

vEmd’l\I
This means that all sites in ACCESSpyg, (vj, A* : [D*, u*,t*]0) are reachable from a
site in X in Apyg, (A : [D, u,t]) = (Epus,, Vbus, ). We want to prove that

ACCESSpys, (vj, A" : [D*, 1", ]0) C | ] ACCESSpys, (v, A : [D, p,1]).
vEmd’l\I

Since DMSy contains ¢ more links than DMSx, we have that
Rpus, (vj, A" - [D", ", 17]0) C Rpys, (v, A" : [D*, ", 7]0).

Therefore, ACCESSpys , (v, A* : [D*, u*,t7]0) C ACCESSpyg, (vj, A* : [D*, ", 1]0).
Similarly, for all v € V' we have ACCESSpyg, (v, A : [D, p1,t]) C ACCESSpys, (v, A :
[D, u,1]).

Assume by way of contradiction that v € ACCESSpyg, (vj, A* ¢ [D*, p*,t*]0) and
v ¢ UvEmd’N ACCESSpys, (v, A : [D, p1,1]). Then, it must be the case that v is not

reachable from any site in X in Apyg, (A : [D, y1,1]). Since v € ACCESSpyg, (vj, A™ :
[D*, p*,17]0), it is reachable from a site v € ACCESSpyg, (vj, A™ @ [D*, p*,t*]0).
Since | ACCESSpysg, (v, 4 : [D, 11,1]) € U, ¢ mar ACCESSpys, (v, A : [D, p, 1)),

all such v’ is reachable from some site vx € X in Apyg, (A : [D,p,t])). Let
v, = v and v, = v and v,...,v, be a path from v" to v in Apyg, (A" :
[D*, p*,t*]0). Then, for all the edges (vi,,v,,,) € £ on this path, we have that
Uiy, € fase(u, A" 2 [D*, ", 17]0). Since A : [D, p,t] subsumes A* : [D*, u*,t*]0,
and fasr preserves subsumption, it must be the case that v, , € Fasi(vg,, A
[D, p,t]), and vy, is reachable from v;, in Apys, (A : [D, p,1]). Hence, v is reach-
able from v’ in Apus, (A :[D, i, t]) and consequently v is reachable from site vy € X
in Apys, (A : [D, pt,¢]) which contradicts with the statement above. O

vEmMd!

The following result is an immediate consequence of Theorem 5 and Theorem 4.

Corollary 3 Suppose
DMS = (VaEa{DBla .- 'aDBnaEb .- 'aEm}afNafAskamdNaM)
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is a distributed mediated system where f4,; preserves subsumption, and 7 is an
integer. Then there exists a mediatory distribution function that is resilient w.r.t.
DMS for at most 7 link failures iff there exists a semi-placement mdjy; w.r.t. DMS which

is resilient for 0 link failures w.r.t. DMSx for all X C E of cardinality card(E) — i.
O

The above corollary says, in effect, that looking at the semi-placements of clauses
in the mediator M 1s sufficient to determine whether it is possible to guard against
¢ link failures. An algorithm to perform such a check can be immediately devised
in the following way:

(i) Find a semi-placement, mdf;, of DMS that is different from previously gener-
ated semi-placements of DMS. If no such new semi-placements exist, then halt
and return fail.

(ii) If, for all X C F of cardinality ¢, it is the case that md’N is an acceptable
placement for DMSx, then halt with success, and return md’N.

(iii) Otherwise return to Step 1.

The above skeletal algorithm can be “fine-tuned” in many ways. However, in the
worst case, the problem of computing a resilient mediatory distribution function,
may be exponential in the number of links in the network as there are, in general

ways in which ¢ links may go down (where n is the number of links in

FE). Fortunately, this algorithm needs to be executed only once, when the mediator
is being distributed (though incremental modifications may need to be performed
when new nodes and/or databases are added to DMS).

7. Related Work

The idea of mediators and distributed mediators is due to Gio Wiederhold [26, 27]
who proposed that a program, called a mediator, should be used to inter-operate
between multiple representations of knowledge and data, both in distributed, as
well as in centralized environments.

A great deal of work has been done in multidatabase systems and interoperable
database systems[10, 24, 29]. However, most of this work combines standard re-
lational databases (no deductive capabilities). Not much has been done on the
development of a semantic foundation for such databases. The work of Grant et.
al. [10] is an exception: the authors develop a calculus and an algebra for inte-
grating information from multiple databases. This calculus extends the standard
relational calculus. Further work specialized to handle inter-operability of multi-
databases 1s critically needed. However, our paper addresses a different topic — that
of integrating multiple deductive databases containing (possibly) inconsistencies,
uncertainty, non-monotonic negation, and possibly even temporal information. Zi-
cari et. al [29] describe how interoperability may be achieved between a rule-based
system (deductive DB) and an object-oriented database using special import/export
primitives. No formal theory is developed in [29]. Perhaps closer to our goal is
that of Whang et. al. [24] who argue that Prolog is a suitable framework for
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schema integration. In fact, the approach of Whang et. al. is in the same spirit
as that of metalogic programming discussed earlier. Whang et. al. do not give a
formal semantics for multi-databases containing inconsistency and/or uncertainty
and/or non-monotonicity and/or temporal information. Reasoning with tempo-
ral mismatches has been studied by Jajodia and Wiederhold and their colleagues
[28, 25]. This work complements ours and it would be interesting, in future work,
to see how these ideas can be expressed in our framework.

Dubois, Lang and Prade [7], also suggest that formulas in knowledge bases can be
annotated with, for each source, a lower bound of a degree of certainty associated
with that source. The spirit behind their approach is similar to ours, though interest
is restricted to the [0, 1] lattice, the stable and well-founded semantics are not
addressed, and amalgamation theorems are not studied. However, for the [0, 1]
case, their framework is a bit richer than ours when nonmonotonic negations are
absent. The authors have extended their work to accommodate time in [6].

Previous Work of Authors: This paper forms part of a long-term project on
developing a formal theoretical foundation, as well as algorithms, implementations,
and applications of mediated information systems. In [23], Subrahmanian proposed
a formal logical framework for integrating multiple knowledge bases, and showed
that this framework could be used to represent and manipulate certain forms of time
and uncertainty, as well as nonmonotonicity. Subsequently, Nerode and Subrahma-
nian [17] proposed the notion of a hybrid knowledge base where inter-operating with
auxiliary data structures and constraint domains was also accomplished. Adali and
Subrahmanian developed this logical framework further, giving a set of data struc-
tures and algorithms that could be interrupted in the middle of a computation (if
necessary). Such an interrupt would cause an intermediate, approximate answer to
be returned. This paper uses the same logical framework described in the above
works, with one major difference. In reality, databases are likely to be located at
different sites on a network (such as a LAN or the Internet). Hence, though the
mediator-based framework in [23, 17] specifies the declarative result of such a logic
computation, it does not specify a distributed realization of this declarative seman-
tics. This is what has been accomplished in this paper. In addition, this paper also
addresses conditions under which this distributed semantics is robust, 1.e. continues
to behave appropriately even if some links in the network “go down.”

8. Conclusions

In [23, 17], we provided a formal declarative semantics for integrating multiple
databases. Concurrently with this paper, [1], provides a formal operational pro-
cedure that is interruptable (and will give approximate answers when interrupted)
and that caches previous computations so as to eliminate redundant computations.
This formal theory is now leading to an application for missile siting by the US
Army Corps of Engineers|[3].

In this paper, we have extended the theory of mediators developed in [23, 17, 1, 3] to
the case when the databases being mediated between are stored at different nodes
in a network (such as a LAN or the Internet). We have developed a distributed se-
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mantics for such mediated databases, and shown when such a distributed semantics
is equivalent to the non-distributed semantics. Declaratively, such an equivalence
result is of extreme importance because the physical location of the databases in
the mediated system should be irrelevant as far as the quality of answers provided
to the user is concerned. The user expects the right answer to his/her query, inde-
pendently of where along the network a particular database is located.

Subsequently, we show conditions under which the above distributed semantics
is equivalent to the nondistributed semantics, even when a certain (pre-specified)
number of links in the network are allowed to “go down.” What this means is that
if the system designer believes that in the worst case, ¢ links in the network may
go down, then s/he may choose to use our notion of a semi-placement to distribute
the mediator (under the conditions specified in the paper).
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Appendix: The complete robot example

In this section, we give the complete list of clauses stored in different sites. Note
that the mediating clauses stored in Site 1 access the spatial data structure when
evaluating the RANGE subquery and the at and in relations. Similarly, at Site 2, the
relational database is used to process the weight and width relations and finally the
real number constraint domain is used to evaluate the constraints involving numeric
expressions.

Site 1:

cool_spray(Obj, X, Y): [{m}, 1, {Vi}] —

(X1, Y1) InRANGE((X,Y),2)& at(Obj, X1, Y1) &at(rl, X,Y) ||

temperature(Obj, T) : {m}, 0.5, {Vi;}]&T > 90 .
max_possible_speed( R, Obj, S) : [{m}, 1, {V;}] —

at(R, X, Y) & at(0bj, X1, Y1) &

S = |X1—X|*SQ—|—|Y1—Y|*51H

mazx_speed( R, vertical, S1) : [{1,2}, 1, R¥] &

mazx_speed(R, horizontal, So) : [{1,2}, 1, RF] .
command_move(R,Obj) : [{m}, 1,{V;}] —

can lift(R,0bj)[{m}, 1, {Vi}] &

can lift(Ry,Obj)[{m}, 1, {Vi}]& Ry # R&

max_possible_speed( R, Obj, S) : [{m}, 1, {V;}] &

max_possible_speed(Ry,0bj,51) : [{m}, 1, {V;}] &S > 5;.
command_move(R,Obj) : [{m}, 1,{V;}] —

can lift(R,Obj)[{m}, 1, {Vi}]& Ry # R&

not(can lift(Ry, Obj)[{m}, 1, {Vi}]).
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Site 2

can lift(rl,0bj): [{m}, 1,{Vi}] —
mazx_weight_capability(r1, W) : [{1},1, RT] &
max_distance_between_arms(rl, D) : [{1}, 1, +] &
mazx_temperature_handling(r1,T) : [{1},1, RT] &
temperature(Obj, T): [{m},0.9,{Vi}] & T1 <7T.

can 1if(r2,06j) : [{m}, 1, {Vi}] —
wezght(Ob],Wl)&W > W1 & width(Obj, D1)& D > Dy ||
mazx_weight_capability(r2, W) : [{2}, 1, RT] &
max_distance_between_arms(r2, D) : [{2}, L,LRY &
mazx_temperature_handling(r2, T) : [{2}, 1, RT] &
temperature(Obj, T1) : [{m}, 0.8, {V:}]& Ty < T.

at(rl,1,2) : [{1},1,{0}] —

mazx_weight_capability(r1,100) : [{1},1, RY] —

mazx_temperature_handling(r1,65) : [{1},1,R*] —

mazx_distance_between_arms(r1,20) : [{1}, 1, RF] —

max_speed(rl, vertical, 1) : [{1},1, RT] —

mazx_speed(rl, horizontal,2) : [{1},1,R*] —

at(r2,3,1): [{2},1,{0}] —

mazx_weight_capability(r2,50) : [{2},1, RT] —

mazx_temperature_handling(r2,90) : [{2},1, R*] —

mazx_distance_between_arms(r2,50) : [{2}, 1, RF] —

mazx_speed(r2, vertical,2) : [{2}, 1, RY] —

mazx_speed(r2, horizontal,0.5) : [{2},1, R*] —

Site 3:

recent temperature(X,Y1): [{m}, Vi, {Vs, }] —

temperature(X, Y1) : [{3}, V1, {V4, }]1 &

temperature(X,Ys) : [{4}, Vo, {Vi, 1 & V2, > V4,
recent temperature(X,Ys) : [{m}, Va, {Vi, }] —

temperature(X, Y1) : [{3}, V1, {V4, }]1 &

temperature(X,Ys) : [{4}, Vo, {Vi, 1 & Vi, > V4,
temperature(X, Y1) : [{m}, Vi, {V;}] —

Yi > Y, ||

recent_temperature(X, Y1) : [{m}, Vi, {Vi}] &

temperature(X,Ys) : [{b}, Vo, {Vi, }].
temperature(X,Y) : [{m}, Vi U Vo, {V;}] —

Vi = M(Vha Vt2) H

temperature(X,Y) : [{3}, V1, {V;, H &

temperature(X,Y) : [{4}, Vo, {Vi, }].
temperature(a,Y) : [{m}, V,{Vi}] —

temperature(a,Y) : {5}, V, {V4, }.
temperature(X,Y) : {m}, f(V),{Vi}] —
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