
 
 

	

 
 
 
 
 

ABSTRACT 
 
 
 

 
Title of Thesis: DYANMICS OF PHYTOPLANKTON 

POPULATIONS IN IRRIGATION PONDS  
  
 Jaclyn Smith, Master of Science, 2022 

  
Thesis Directed By: Professor Robert Hill, Environmental Science 

and Technology Department 
 
 
 The dynamics of phytoplankton community structure in two agricultural irrigation ponds 

located in Maryland, USA were evaluated. Stable spatiotemporal patterns and zones of 

consistently higher and consistently lower phytoplankton functional group concentrations were 

established for both ponds. Moderate and strong correlations were found between the spatial 

patterns of several water quality parameters and phytoplankton concentrations. Additionally, 

zones of consistently higher and lower concentrations were found for the cyanobacteria pigment, 

phycocyanin. Chlorophyll, colored dissolved organic matter, and turbidity were the most 

influential predictors for phycocyanin concentrations. The prediction of phytoplankton 

community structure from water quality measurements with the random forest machine learning 

algorithm was possible and easily measured physicochemical parameter models offered the best 

model performance. Results of this work indicate that in-situ water quality measurements may be 

a cost-effective and faster alternative to time-intensive microscopy analysis of phytoplankton, 

allowing for more efficient water quality monitoring.     
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Structure and Organization 

The organization of this thesis presents an introduction and literature review 

on phytoplankton importance and dynamics in freshwater sources (Chapter 1), and 

the results from three experiments elucidating the seasonal and spatial dynamics 

along with a machine learning application for prediction of phytoplankton community 

structure in agricultural irrigation ponds (Chapters 2, 3, and 4).   

Chapter 1 is a review of our current knowledge surrounding phytoplankton in 

lentic ecosystems. The importance of phytoplankton in freshwater ecosystems and 

ecological issues associated with phytoplankton and various functional groups are 

discussed. Additionally, current knowledge on spatial and temporal variability of 

phytoplankton and the cyanobacteria pigment, phycocyanin, as well as current 

machine learning models for phytoplankton estimation are reviewed in depth.  

Chapter 2 describes the first research study which focuses on spatiotemporal 

variability of phytoplankton functional groups and water quality parameters in two 

agricultural irrigation ponds. Mean relative differences were utilized to distinguish 

locations which were consistently higher, or consistently lower, than the ponds’ 

average concentrations for each measurement. Correlations between phytoplankton 

functional group patterns and water quality parameter patterns are also reported. The 

materials within Chapter 2 were published in November 2021 in the Frontiers in 

Water special issue, Functional Diversity of Aquatic Microorganisms and Their Roles 

in Water Quality. 

Chapter 3 describes the second research study which examines the most 

influential environmental covariates affecting the phycocyanin concentrations, an 
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accessory pigment belonging only to cyanobacteria, in two agricultural irrigation 

ponds. Phycocyanin is often used a proxy to detect and measure cyanobacteria, 

including harmful species, in aquatic systems. Regression tree analyses were 

conducted using machine learning techniques to determine the most influential water 

quality parameters. Additionally, average quartile ranks were used to elucidate 

locations within the ponds with consistently higher concentrations of phycocyanin 

pigment. The materials within Chapter 3 were published in the journal Environmental 

Monitoring and Assessment in October of 2020.   

Chapter 4 focuses on the creation and evaluation of a random forest machine 

learning algorithm for the estimation of phytoplankton community structure, 

presented at a broad functional group level, from water quality measurements in two 

agricultural irrigation ponds. Overall model performance is described along with the 

performance of the model when spatially applied across the ponds. The most 

influential water quality predictors for each phytoplankton functional group model are 

also reported. The materials within Chapter 4 were submitted to the journal 

Phycology in March 2022 and are currently in the second phase of review, with 

publication expected within a few weeks. 

A summary of the findings and conclusions for all three experimental chapters 

are presented in Chapter 5. Knowledge gaps and avenues of future research for each 

experimental chapter are also discussed as part of the summary. 
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Chapter 1 – Introduction and Literature Review 
Agricultural Irrigation Ponds 

Feeding the fast approaching eight billion people in the world wouldn’t be 

possible without the increased food production from modern advancements in 

agriculture (United Nations et al., 2019). Soil, water, and solar energy are some of the 

necessities for successful agricultural practices. Water, specifically, is essential for 

the production of healthy and bountiful crops. Agricultural lands span across nearly 

every climate. Some climates generate sufficient rainfall to produce healthy crops, 

while other climates rely on other sources of water for irrigation. Irrigation water may 

be withdrawn from either ground water sources and/or surface waters such as lakes, 

reservoirs, streams, rivers, and ponds. It is estimated that there are 277,400,000 small 

(0.001-0.01 km2) lakes and ponds globally, covering  almost 700,000 km2 of total 

surface area (Downing et al., 2006). According to the 2018 Irrigation and Water 

Management Survey, over half of all irrigation water in the United States is obtained 

from surface water sources (USDA, 2018). However, not all farms may have access 

to naturally occurring surface waters, and access to local ground water may be 

limited. In these instances, manmade ponds, embankments, or impoundments may be 

used to fulfill irrigation needs. Downing et al. (2006) estimates that the global total 

area of agricultural ponds to be 77,000 km2 with approximately 22,000 km2 of 

agricultural ponds in the contiguous United States. Irrigation ponds, whether natural 

occurring or man-made, provide a source of water to assist farmers in meeting crop 

irrigation demands (López-Felices et al., 2020). 
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Phytoplankton importance in lentic ecosystems 

Phytoplankton are free-floating photosynthetic microorganisms which are 

found in various fresh and marine waters. Phytoplankton have been extensively used 

as a bio-indicator of water quality and ecosystem health (Patrick, 1973; Reynolds et 

al., 2012; Smith, 2003). The richness and uniformity of a phytoplankton community 

as well as the presence or absence of individual species may be indicative of the 

water quality. Phytoplankton communities have been extensively utilized as a bio-

marker of the trophic level status of a waterbody (Adloff et al., 2018; Rimet & Druart, 

2018; Xiao et al., 2013). They have also been used to confirm eutrophication 

(Kauppila et al., 1995; Ren et al., 2016; Varol, 2019), pollution (Feki-Sahnoun et al., 

2014; Hu et al., 2012; Shi et al., 2012) and other anthropogenic effects (Feki-Sahnoun 

et al., 2018; Shi et al., 2015). Phytoplankton are a  microbial community often studied 

for water quality purposes due to their diversity and high environmental sensitivity 

(Jakhar, 2013; Thakur et al., 2013).  

Due to the high diversity of phytoplankton, populations are often binned into 

groups based on morphology, physiology, adaptations, and ecological attributes (Jin 

et al., 2020; Reynolds et al., 2002; Varol, 2019). These groups are often referred to as 

phytoplankton functional groups. Utilizing this method of phytoplankton 

enumeration, community data may be better used to indicate habitat conditions rather 

than using the presence or absence of individual species (Reynolds et al. 2002). 

Common phytoplankton functional groups are diatoms (Bacillariophyta), 

dinoflagellates (Dinophyta), flagellates, green algae (Chlorophyta), and cyanobacteria 

(Cyanophyta; also commonly referred to as blue-green algae), each of which possess 
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qualities that may influence and be indicative of different facets of water quality 

(Reynolds et al., 2002; Shi et al., 2012; Xiao et al., 2013). The organisms within 

phytoplankton functional groups possess many different morphological features but 

share ecological niches which may influence and be indicative of the water quality 

that they inhabit. 

Diatoms have been utilized as water quality indicators since the mid 20th 

century with early studies in both the United States (Marshall, 1967; Patrick, 1948; 

Weber, 1971) and Europe (Round, 1961). Diatoms exhibit numerous characteristics 

which enable their use as bio-indicators for fresh and marine waters including high 

sensitive to water chemistry changes, abundance in many aquatic systems, and are 

thoroughly documented with regard to their taxonomy and ecology (Reid et al., 

1995). The presence of diatoms alone does not indicate good water quality, but 

certain diatom species likely indicate water quality conditions from degraded to 

pristine. Bate et al. (2004) presented a water quality index indicating chemical 

constituents which would likely be present in river water where a specific diatom 

species was found. Schoeman (1979) previously devised a simple method of water 

quality assessment arranging diatom species into four indicator groups based on a 

more extensive method created by Lange-Bertalot (1979) that differentiates diatoms 

species for water quality assessment. The Chesapeake Bay Program assesses the 

water quality throughout Maryland and Virginia using plankton species and water 

quality data to create a plankton index of biotic index (P-IBI) (Lacouture et al., 2006). 

The phytoplankton index has also been applied to smaller, freshwater lacustrine 

systems, as demonstrated by Kane et al. (2009). 
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Dinoflagellates exist either as a vegetative cell (motile form) throughout the 

water column or as cysts often found within sediments or substrates (Carty & Parrow, 

2015). Dinoflagellate cysts found within sediments are often used as bio-indicators of 

water quality. Pospelova et al. (2005) reported sites with the highest levels of toxic 

pollution and hypertrophic conditions often had the lowest richness and 

concentrations of dinoflagellate cysts. Whereas, Dale et al. (1999) measured double 

the concentrations of total dinoflagellate cysts and an increase in one species, 

Lingulodinium polyedra, with increased eutrophication. Certain species of 

dinoflagellates in their planktonic state are known to proliferate in eutrophic 

conditions (Baohong et al., 2021; Glibert & Burkholder, 2006). Some studies reported 

when anthropogenic eutrophication was present in coastal waters, diatom populations 

decreased and other algal groups, such as dinoflagellates, tended to persist (Casé et 

al., 2008; Kim et al., 2009; Yusoff et al., 2002).  

Flagellates, and more specifically euglenoids, in freshwater ecosystems are a 

promising indicator organism for early detection of possible pollution and/or water 

degradation (Singh et al., 2013). Euglenoids as a pollution bio-indicator suggest likely 

organic matter contamination from an external source such as nearby livestock fecal 

contamination (Nweze, 2009). Species in the Euglena group may also pose as an 

ecotoxicological risk assessment tool due to the species’ abilities to grow in 

wastewater and their sensitivity to various environmental stressors in sewage, which 

may also be present in water, such as heavy metals, excessive visible and UV 

radiation, salinity, herbicides, and toxic compounds (Krajčovič et al., 2015). 
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The presence of chlorophytes in water may indicate pollution. It has been 

reported that chlorophytes are often present when nutrient concentrations are 

relatively high, such as in eutrophic and hypertrophic waterbodies. Jensen et al. 

(1994) found that chlorophytes tended to dominate in hypertrophic, shallow lakes and 

attributed their growth to the continual input of nutrients from sediments and external 

sources, such as runoff. Similar findings were reported by Marshall et al. (2006) 

indicating that the least impaired tidal waters of the Chesapeake Bay tended to have 

lower chlorophyte biomass than impaired or degraded waters. Additionally, 

chlorophyte biomasses have been found to be the greatest within areas associated 

with intensive fish farming and its resulting eutrophication (Mäkinen & Aulio, 1986). 

Meyer (1971) stated that phosphorus and nitrogen ions present after a cyanobacteria 

bloom were easily consumed by chlorophyte populations indicating that a large green 

algae population in a waterbody may suggest water quality degradation. Although 

chlorophytes may indicate impaired waters, Ali et al. (2010) claims that chlorophytes 

are responsible for releasing oxygen which offset foul and/or septic conditions which 

may develop under eutrophic conditions. 

Cyanobacteria have a longstanding and well-studied relationship with 

degraded aquatic environments and are effective indicators of water quality (Pinedo 

et al., 2007; Soltani et al., 2012; Teta et al., 2017). These microorganisms may 

quickly multiply and create large blooms on the water surface or along the benthos 

(Bouma-Gregson et al., 2017; Chorus & Bartram, 1999; Zanchett & Oliveira-Filho, 

2013). Cyanobacteria blooms often arise when there is an increase in nutrients, 

typically nitrogen and phosphorus (Chellappa et al., 2009; Lee et al., 2015a), and 
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usually occur in low flow and/or stagnant waterbodies (Lee et al. 2015a; Steinberg & 

Hartmann, 1988). Heterocystous cyanobacteria contain specialized cells which allows 

for atmospheric nitrogen fixation, thus expanding their pool of nutrient resources. 

While some non-heterocystous cyanobacteria are capable of nitrogen fixation, the 

majority cannot, and rely on nutrients available within the water (Paerl, 1996). It has 

been established that occurrences of cyanobacterial blooms are becoming more 

frequent due to increases in eutrophication and pollution of waterbodies (O’Neil et 

al., 2012; Riedinger-Whitmore et al., 2005), but improvement in water quality may 

decrease the occurrences of these blooms (Gemza, 1997). Climate change poses 

additional concerns for the frequency, intensity, and duration of cyanobacteria 

blooms. Proposed effects of global  climate change will result in conditions more 

conducive to cyanobacteria survival and bloom formation such as rising water 

temperatures, increased water stratification, and increases in precipitation bringing 

additional nutrients to the water column (Havens et al., 2019; Paerl, 2017, 2018).    

While all phytoplankton blooms can cause detrimental effects such as 

hypoxia, some blooms possess the ability to produce toxins that cause additional 

harm. These harmful algal blooms (HABs) and cyanobacteria HABs (cyanoHABs) 

are often comprised of a monospecific population of phytoplankton which can 

produce a toxin that is detrimental and poses both environmental and human health 

risks. In marine and estuarine environments HABs are usually composed of 

dinoflagellates or diatoms (Fu et al., 2012; Hinder et al., 2012) and in freshwater 

environments HABs are usually composed of cyanobacteria (Paerl et al., 2011; Paerl 

& Scott, 2010). In the marine environment, diatoms species within the genera 
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Nitzschia and Pseudo-nitzchia are widely known for producing domoic acid, which is 

the biotoxin responsible for Amnesic Shellfish Poisoning and responsible for 

significant losses in fisheries revenue, animal mortality, and poising outbreaks 

(Anderson et al., 2021; Smith et al., 2018). Many marine and some freshwater species 

of dinoflagellates are known to form harmful algal blooms (i.e., red tides) which can 

produce biotoxins (Dale, 2000; Li et al., 2015; Rengefors & Legrand, 2001; 

Steidinger et al., 2008). For example, brevetoxins produced by Karenia brevis, have 

been well established to cause shellfish poisoning and marine fauna mortalities as 

well as respiratory and gastrointestinal issues in humans exposed to K. brevis blooms 

and toxins (Steidinger, 2009). CyanoHABs, found in freshwaters and the freshwater – 

estuarine interface are responsible for the production of several toxins including 

microcystins, nodularins, cylindrospermopsin, anatoxins, and saxitoxins (Huisman et 

al., 2018). Cyanotoxins are associated with fish kills and the contamination of 

drinking and recreational waters (Paerl, 2017; Paerl & Otten, 2013). Additionally, 

cyanotoxins can affect birds, mammals, and humans by causing respiratory issues, 

contact dermatitis, and when ingested liver, digestive, and neurological issues (Buratti 

et al., 2017; Huisman et al., 2018; Wood, 2016).    

Issues arising from phytoplankton in agricultural irrigation ponds 

Aside from being a useful bioindicator of water quality, phytoplankton can 

often be detrimental to the quality of freshwater pond waters. Phytoplankton blooms, 

most frequently cyanobacteria, cause a reduction in the dissolved oxygen content and 

light infiltration of a waterbody (Huisman et al., 2018; Paerl & Otten, 2013). These 

environmental conditions create uninhabitable hypoxic conditions which can hinder 
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aquatic vegetation growth and reduce the diversity to or cause mortalities within the 

aquatic community (Diaz & Breitburg, 2009; Tourville-Poirier et al., 2010). There are 

also implications from the use of hypoxic water in agricultural settings. Using 

hypoxic waters for irrigation purposes may lead to oxygen depletion of crop roots 

which can impede crop growth and decrease crop yields (Bhattarai et al., 2008; 

Maestre-Valero & Martínez-Alvarez, 2010). Thus, a phytoplankton bloom has the 

capacity to render a waterbody unusable for agricultural purposes. Phytoplankton 

may also trigger issues with agricultural equipment. Algal blooms in irrigation waters 

can lead to clogged pipes and/or filters, resulting in additional wear on irrigation 

equipment (i.e., irrigation pumps)(Bucks et al., 1979; Nakayama & Bucks, 1991). 

Boman (1995) estimated that nearly half (46%) of all irrigation clogging was 

attributed to algae. Similarly, phytoplankton can be detrimental to aquaculture ponds. 

Beyond inducing hypoxic conditions, cyanobacteria may produce metabolites which 

add undesirable flavors to the fish (Paerl & Tucker, 1995). It has also been noted that 

similar to agricultural irrigation practices, phytoplankton in aquaculture systems can 

lead to the clogging of pipes and filters (Hangwelani et al., 2021; Ramli et al., 2018). 

The additional stress from clogging may result in more frequent equipment 

replacements and cleanings. 

Certain species of cyanobacteria pose an environmental and human health risk 

due to their ability to produce toxins, known as cyanotoxins. Exposure to cyanotoxins 

can occur through ingestion, inhalation, and/or direct contact and may affect the 

nervous system, skin, and/or the liver (Carmichael, 2001). Cyanotoxins can harm 

both humans and other animals such as wildlife and livestock. Currently there are no 
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known antidotes or cures for cyanotoxin poisoning and treatment of symptoms is 

based on palliative care (Pulido, 2016). To date, there are no regulations in place, 

only health advisories for cyanotoxins in drinking water, ground water, recreational 

water, and/or irrigation waters (US Environmental Protection Agency, 2015). 

Recently, it has been established that cyanotoxins present in irrigation waters can be 

transported to nearby crops and produce (Corbel et al., 2016; Saqrane & Oudra, 

2009). It has also been found that when cyanotoxin-contaminated water is used for 

irrigation, these toxins can bioaccumulate in agricultural soils (Corbel et al., 2014; 

Lee et al., 2017) and even in the flesh of crops and produce (Bittencourt-Oliveira et 

al., 2016; Buratti et al., 2017; Corbel et al., 2016; Kittler et al., 2012). Thus, irrigation 

water that contains cyanobacteria and cyanotoxins can present food safety risks to 

both humans and animals (Svirčev et al., 2017).  

Spatial and temporal variability of phytoplankton in lentic fresh waterbodies 

Uniformity of the phytoplankton throughout a waterbody should not be 

assumed regardless of waterbody size. Phytoplankton distribution within a water 

source may be highly variability and may differ between groups and even species 

within a community (Lewis, 1978). Furthermore, external factors such as wind 

(Fragoso et al., 2008), morphology (Li et al., 2013), and water flow (Cloern et al., 

1992) may impact phytoplankton distributions within a waterbody. Research on 

phytoplankton communities has previously been conducted to determine spatial and 

temporal population trends, to assess species composition, and community responses 

to changes in water quality. Spatial trends in phytoplankton populations have been 

studied in reservoirs (Ferral et al., 2017; Ren et al., 2016; Varol, 2019), lakes (Wang 
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et al., 2015; Wu et al., 2013; Xiao et al., 2013), rivers (Marshall, 2009; Shi et al., 

2012, 2015), wetland ponds (Soininen et al., 2007), and estuaries (Marshall et al., 

2005). Temporal trends of how the phytoplankton community changes in time within 

a waterbody have also been documented (Su et al., 2017; Wang et al., 2015; Zheng et 

al., 2015) and long-term phytoplankton datasets have aided in assessing longstanding 

temporal trends (Hernandez Cordero et al., 2020; Nishikawa et al., 2010). Several 

studies have evaluated the phytoplankton community composition within a waterbody 

(Adloff et al., 2018; Cellamare et al., 2010; Rimet & Druart, 2018) and, furthermore, 

how the phytoplankton communities respond in relation to water quality changes (Hu 

et al., 2012; Shi et al., 2012; Xiao et al., 2013).   

At the regional level, temporal and/or spatial trends have been assessed along 

with water quality measures in the Chesapeake Bay and its tributaries and estuaries 

(Hernandez Cordero et al., 2020; Marshall, 2013, 2014; Marshall et al., 2005, 2006). 

These studies have indicated how species and/or functional groups of phytoplankton 

may exist in waterbodies on both spatial and temporal scales. Aside from a laboratory 

study (DeLorenzo et al., 2002), to our knowledge, no attempts have been made to 

reveal spatiotemporal aspects of the phytoplankton communities in agricultural 

irrigation ponds. 

To determine spatial patterns in a water source, intensive sampling regimens 

are necessary. Table 1.1 shows a review of 25 publications on phytoplankton 

monitoring in various fresh waterbodies. This literature review indicates inconsistent 

methods for where to sample, how many samples to take, and how often to take 

samples for water quality assessment. Of 25 studies, 12 of these studies reported 
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spatiotemporal findings on fewer than 5 total sampling dates. Minimal sampling 

frequency may not allow for an accurate depiction of long-term spatial trends in 

phytoplankton populations. Furthermore, more than half (15 of 25) of the studies 

based their findings on 10 or fewer sampling locations within each waterbody. While 

less than 10 samples may provide a fine enough spatial scale to be able to assess for 

phytoplankton patterns on small waterbodies such as ponds, small lakes and rivers 

(Celewicz-Goldyn & Kuczynska-Kippen, 2008; Soininen et al., 2007; Touchart & 

Bouny, 2008), these small sample numbers may leave considerable water surface 

areas unanalyzed on larger waterbodies such as estuaries, reservoirs, large lakes, and 

river basins (Crossetti et al., 2013; Haque et al., 2021; Temponeras et al., 2000; Yang 

et al., 2020). Fine scale sampling is pertinent to establish spatiotemporal patterns 

within the phytoplankton community of a waterbody. Figure 1.1 is a graphical 

representation of the literature review conducted as a part of this study and highlights 

the number of samples and sampling frequency of the studies reported in table 1.1. 

The general trend of the data in the literature review is that the more samples that are 

taken the less often the waterbody is sampled. Alternatively, the less samples taken at 

each sampling the more often the pond is visited for sampling. The total number of 

samples taken from the two ponds analyzed in this study were on the high end of 

sampling frequency of the studies reported in Table 1.1 and Figure 1.1: Pond 2 being 

the highest of all the studies and Pond 1 having only two other studies with higher 

total samples. Furthermore, the number of samples per visit at each of the studied 

ponds was larger than all but four of the studies reported in Table 1.1. Of these four 

studies with more sampling locations, all studies reported fewer number of visits than 



 

12	
 

the ponds reported in this study. The design of this work provides some of the best 

coverages of both spatial and temporal compared with the designs found in the 

literature reviewed.  

 

Figure 1.1 Graph depicting the number of samples taken and the frequency of 
sampling for each study reviewed as part of a literature search. Hollow circles 
represent studies that are reported in the Table 1 literature review. The blue (Pond 1) 
and red (Pond 2) circles represent the ponds analyzed in this study. 

Determining spatial patterns among phytoplankton groups can have 

implications on water quality monitoring efforts. If stable spatial patterns throughout 

time can be established in a waterbody, improvements may be made to the monitoring 

of phytoplankton populations. Since a waterbody cannot be assumed to be 
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homogenous and if the spatial variability of phytoplankton populations is inherent 

across a waterbody, taking one or a limited number of samples may not provide an 

accurate representation of the phytoplankton community within the entire waterbody 

and sampling locations should not be chosen arbitrarily. Efforts should be placed on 

analyses to distinguish locations which are consistently higher, lower, and about the 

same concentrations as the waterbody’s average phytoplankton concentrations. This 

characterization allows for more informed and efficient sampling to be performed for 

water quality assessments. 
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Table 1.1 – Summary of phytoplankton monitoring studies. 

 Target  
Microorganism/ 

Parameter 

Location Water 
Type 

Sites Time of 
Day 

Sampling 
Frequency 

Sample 
Depth 

Samples 
per visit 

Sampling 
Locations 

Total 
Samples 

Reference 

1 Diatoms, 
Dinoflagellates, 
Cyanobacteria 

Central 
Argentina 

Reservoir 1 9:30am 
– 
5:30pm 

2 days 0.2 and 
14m 

22 11 42 Alexander 
& Imberger, 
2009 

2 Cyanobacteria, 
diatoms, chlorophytes, 
euglenoids 

Bangladesh River 1 9:00am 
– 
12:00pm 

Monthly 
(12) 

Surface  1 4 48 Haque et 
al., 2021 

3 Complete 
phytoplankton 
composition 

Russia Lake 1 n/a 1 date 0, 5, 10, 
25 and 
50m 

315 63 n/a Bondarenko 
et al., 1996 

4 Complete 
phytoplankton 
composition 

Poland Pond 1 n/a 1 date <1.5m 3 3 3 Celewicz-
Goldyn & 
Kuczynska-
Kippen, 
2008  

5 Cyanobacteria, 
diatoms, green algae, 
flagellates 

China Lake 1 n/a 1991-1999, 
seasonally 
36 dates 
total 

n/a 7 7 252 Chen et al., 
2003 

6 Complete 
phytoplankton 
composition 

China River 1 n/a 2 dates n/a 130 130 260 Ding et al., 
2021 

7 Diatoms, green algae, 
euglenoids, 

Vietnam River 1 n/a Bi-weekly 
(24) 

0.5m 18 18 432 Nguyen et 
al., 2022 
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cyanobacteria, 
dinoflagellates 

8 Complete 
phytoplankton 
composition 

India River 1 n/a Seasonally 
(3)  

Surface 
and 
“near 
bottom” 

12 6 36 Chowdhury 
et al., 2017 

9 Complete 
phytoplankton 
composition 

Minnesota, 
USA 

Lakes 2 n/a Seasonally 
(4) 

0.5M 34 15 and 19 136 Cloern et 
al., 1992 

10 20 phytoplankton 
functional groups 

Rio Grande 
do Sol 

Lake 1 n/a 2001 - 
2006, 
Twice a 
year  

Surface 3 3 36 Crossetti et 
al., 2013 

11 Complete 
phytoplankton 
composition 

China Lake 1 n/a Monthly 
for 1 year 

Surface, 
1m, 2m 

66 22 792 Deng et al., 
2007 

12 Cyanobacteria, green 
algae, diatoms, 
Euglenoids 

China Lake and 
River 

11 n/a Seasonally 
(4) 

Surface  20 20 880 Jiang et al., 
2014 

13 Complete 
phytoplankton 
composition 

China Lake 1 n/a Biweekly 
from 
autumn to 
spring and 
weekly in 
summer  

0.5m 5 5 222 Li et al., 
2013 

14 Diatoms, 
chlorophytes, 
cyanobacteria 

Spain Reservoirs 4 n/a 2002-2003 
Monthly 
(24) 

1m 21 21 504 Moreno-
Ostos et al., 
2008 
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15 Complete 
phytoplankton 
composition 

Finland Ponds 25 n/a Once 0.5m 5 5 125 Soininen et 
al., 2007 

16 Complete 
phytoplankton 
composition 

China River 1 n/a 3 dates Surface  1 10 30 Song et al., 
2020 

17 Complete 
phytoplankton 
composition 

Greece Lake 1 n/a Monthly 
(9) 

Surface 
and 1m 
intervals 

Varies 
through 
season 

2 n/a Temponeras 
et al., 2000 

18 Complete 
phytoplankton 
composition 

China Lake 1 n/a Monthly 
(12) 

0.5m 1 5 60 Tian et al., 
2013 

19 Complete 
phytoplankton 
composition 

France Pond 2 n/a 2 dates and 
1 date 

n/a 1 20 and 12 36 Touchart & 
Bouny, 
2008 

20 Cyanobacteria, 
chlorophytes, diatoms 

China Reservoir 1 n/a Seasonal 
(4) 

1m, 4-
7m, and 
10-20m 

21 7 84 Yang et al., 
2020 

21 6 Phytoplankton 
functional groups 

China River 
Basin 

1 n/a 2015-2016 
Bi-annually 
(4)  

10cm 10 10 40 Zhou et al., 
2019  

22 Cyanobacteria China Reservoirs 13 n/a Spring, 
summer, 
and autumn 
of 2014- 
2015 (6) 

0-2m Varied on 
waterbody 

90 480 Zhao et al., 
2019 

23 6 phytoplankton 
functional groups 

India Lagoon 1 n/a Monthly 
(12) 

Surface 13 13 156 Srichandan 
et al., 2015 
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24 Cyanobacteria, 
chlorophytes, diatoms 

China Estuary 1 n/a Monthly 
(18) 

n/a 10 10 180 Ren et al., 
2016 

25 Cyanobacteria, green 
algae, diatoms 

China River 1 n/a Weekly 
during wet 
season 
(Jun-Oct) 
2012-2017 
(100) 

n/a 9 9 900 Yang et al., 
2020 
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In-situ sampling to relate cyanobacteria populations to water quality in lentic 

ecosystems 

Cyanobacteria are the phytoplankton group that presents the most globally 

widespread risk to human and animal health due to the presence of cyanotoxins 

(Hilborn & Beasley, 2015;  Wood, 2016). Traditional methods for identifying and 

enumerating cyanobacteria in a water source are time consuming and require highly 

trained specialists (Lawton et al., 1999). Measuring phycocyanin, a photosynthetic 

pigment found only in cyanobacteria, can be a quicker and easier alternative method 

for identifying and quantifying cyanobacteria in a water source. While several 

methodologies exist for extracting phycocyanin pigments (Horváth et al., 2013), 

fluorometry provides immediate results (Kasinak et al., 2015). Furthermore, 

deploying an in-situ phycocyanin sensor may provide instant real-time phycocyanin 

measurements allowing for improved bloom predictions and management (Bastien et 

al., 2011; Brient et al., 2008). Establishing the correlations and relationships between 

phycocyanin and other basic water quality parameters could allow for the use of 

inexpensive and more attainable in-situ probes to be utilized for cyanobacteria 

monitoring and management.  

It should not be assumed that cyanobacteria and/or phycocyanin 

concentrations are homogeneous throughout a waterbody. Spatial and temporal trends 

and patterns in cyanobacteria populations have been reported in lakes (Otten et al., 

2012; Tan et al., 2009), rivers (Genzoli & Kann, 2016), ponds (Andres et al., 2019; 

Rozina et al., 2018), and reservoirs (Briand et al., 2009). Spatiotemporal variability in 
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phycocyanin concentrations and cyanobacteria populations has been attributed to 

several factors such as wind (Foster et al., 2019), water flow (Paerl & Otten, 2013), 

and waterbody depth (Andres et al., 2019; Scheffer et al., 1997). Cyanobacteria 

spatial and temporal variability have also been explained by nutrient availability and 

the ability for cyanobacteria to proliferate in nutrient rich areas (Davis et al., 2009; 

Havens et al., 2003; Paerl et al., 2011). While studies on the spatial and temporal 

trends of cyanobacteria and its photosynthetic pigment phycocyanin have been 

completed in various freshwater sources, research is lacking on agricultural irrigation 

ponds where the risk of cyanotoxin transfer to livestock, crops, and produce exists. 

It has been well documented that relationships between phycocyanin and 

water quality parameters exist in various sizes and types of waterbodies (Izydorczyk 

et al., 2005; McQuaid et al., 2011). Relationships between phycocyanin and water 

quality parameters have been established with temperature, turbidity, nutrients, 

chlorophyll, wave height, and meteorological measurements (Marion et al., 2012; 

Mchau et al., 2019; Song et al., 2013; Yang et al., 2021). Previously used methods to 

establish the relationships between phycocyanin concentrations and water quality 

parameters seemingly have been limited to correlations (Ahn et al., 2011; Izydorczyk 

et al., 2005) and linear regressions (Bastien et al., 2011; Thomson-Laing et al., 2020; 

Yang et al., 2021). Limited research has been performed using machine learning 

methodologies to model and reveal the complex relationships which may exist 

between the presence of phycocyanin and basic water quality measurements. To our 

knowledge the use of machine learning to discover relationships between 

phycocyanin and water quality parameters has only been attempted in two rivers 
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(Heddam et al., 2019) and a lake (Almuhtaram et al., 2021). An understanding of 

these complex relationships could improve water quality monitoring by allowing 

rapid in-situ measurements to be used as a surrogate measure for detecting and 

tracking cyanobacteria populations within agricultural ponds.  

Monitoring and modeling environmental controls of phytoplankton populations 

in lentic ecosystems 

Water quality monitoring as defined by Bartram and Ballance (2020) is the 

long-term standardized sample collection, measurement, and observation in order to 

define the status and trends of a waterbody. The purpose behind water quality 

monitoring is to ensure that the water being assessed can be utilized either for 

recreational, drinking, and/or irrigation purposes. Long-term datasets are useful for 

trend evaluations and ultimately can be used to help predict future conditions and 

guidelines for resource management plans. To predict or prevent phytoplankton 

growth is pertinent in building an understanding of the environmental controls which 

dictate the diversity and abundance of phytoplankton, and long-term monitoring data 

makes this prediction feasible (Pathak et al., 2021; Pinckney et al., 1997; Read et al., 

2014). The identification and enumeration of phytoplankton is time intensive and 

requires specialized taxonomic knowledge (Lawton et al., 1999) or equipment that 

may be expensive, such as  flow cytometers or imaging flow cytometers (Bergkemper 

& Weisse, 2018; Read et al., 2014). If relationships can be detected between 

phytoplankton populations and more easily measured water quality parameters, this 

association can allow for better prediction capabilities with data collected by more 
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moderate means. To our knowledge no long-term monitoring studies have been 

performed for agricultural irrigation ponds. 

Various types of analyses have been performed to help understand the 

relationships between water quality parameters and phytoplankton groups. 

Correlations have been utilized extensively to establish relationships between water 

quality parameters and diatoms (Pan et al., 1996; Pourafrasyabi & Ramezanpour, 

2014; Wu et al., 2013), green algae (de Figueiredo et al., 2006; Kane et al., 2009), and 

cyanobacteria (Davis et al., 2009; Sadegh et al., 2021; Smith et al., 1987). Regression 

analysis has also been applied to highlight relationships among water quality 

parameters and phytoplankton groups (Descy et al., 2016; Rao et al., 2021; 

Schönfelder et al., 2002). Statistical regressions have been successfully used to 

predict and distinguish phytoplankton community composition and dynamics in 

shallow freshwater lakes (Cheruvelil et al., 2008; Peng et al., 2021; Tian et al., 2013) 

and reservoirs (Zeng et al., 2017) but not within agricultural irrigation ponds.  

Although regressions and correlations allow for linear relationships to be 

established, these models fail to recognize non-linear relationships present amongst a 

dataset (Jordan & Mitchell, 2015; Murphy, 2012) and, therefore, may potentially 

overlook influential relationships between water quality parameters and 

phytoplankton populations. Machine learning, a branch of artificial intelligence, is 

able to map non-linear and complex relationships within a dataset (Jordan & Mitchell, 

2015). Neural networks have been utilized to extract non-linear and complex water 

quality relationships associated with cyanobacteria (Rousso et al., 2020; Yabunaka et 

al., 1997) and chlorophyll-a (Liu et al., 2015; Wu et al., 2020). The random forest 
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algorithm, another form of machine learning, has proven to be a very powerful 

algorithm due to its prediction capabilities (Breiman, 2001). A review of available 

literature on machine learning and its application to phytoplankton populations is 

depicted in Table 1.2. This literature review reveals that the application of random 

forests to predict and determine the environmental controls of phytoplankton have 

been studied in various freshwater sources such as reservoirs (Zeng et al., 2017), 

lakes (Mellios et al., 2020), and rivers (Shin et al., 2017), but research is lacking for 

small waterbodies such as agricultural irrigation ponds. Additionally, the review 

reveals that when multiple models were compared for accuracy with the random 

forest algorithm, in all but two instances the random forest algorithm was determined 

to be the superior model. 

Phytoplankton is an extremely important component of lentic ecosystems, and 

this review manifests its importance in environmental, public health, and management 

decisions. Based on the review of the status of the knowledge on phytoplankton in 

lentic ecosystems including agricultural environments and importance of irrigation 

ponds in agricultural enterprises, the primary research goal for this study was to form 

a better understanding of the dynamics and relationships of phytoplankton 

populations in agricultural irrigation ponds. The specific objectives for this study are: 

1. Reveal and quantify patterns in the spatial and temporal variability of 

phytoplankton in agricultural irrigation ponds. 

2. Evaluate in-situ sensing of the cyanobacteria pigment phycocyanin as the means 

for characterization of spatial variability of cyanobacteria populations and its 

relation to other water quality parameters.  
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3. Model the effects of the environmental controls on phytoplankton in agricultural 

irrigation ponds using machine learning algorithms.
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Table 1.2 – Summary of phytoplankton studies incorporating machine learning methodologies. 

Target 
Parameter/ 

Group 

Water 
Type 

Predictors Models Best 
Model 

Metric Ideal value 
for metric 

Performance Reference 

Cyanobacteria, 
Diatoms, 
Green algae 

Reservoir Temp, Secchi, pH, 
Ca, Mg, DO, DIN, 
TP, Cl, SO4 

ANN, 
RF, 
SVM, 
RT 

RF R 1 0.806 Zeng et al., 2017 

Phytoplankton 
Functional 
Groups (21 
total) 

Lakes Chl-a, SPC, DOC, 
NH4, NO3, NO2, 
DO, PO4, TP, Si, 
Temp, TSS, SEC, 
ALK 

RF RF n/a n/a n/a Derot et al., 2020 

Chlorophyll-a Fresh and 
estuarine 
reservoirs 

PO4, NH4, NO3, 
Temp, Wind, Solar 

ANN, 
SVM 

SVM R2 1 0.75, 0.45 Park et al., 2021 

Cyanobacteria Lakes Chl-a, TN, TP, AT 
ELV, SA, WD 

RT, 
KNN, 
SVM, 
RF 

RF Accuracy 100% 95.45% Mellios et al., 
2020 

Cyanobacteria Reservoir DO, ELV, pH, 
SPC, Temp, NTU, 
Si, TN, NH4, 
NO3+NO2, PO4, 
TP, FC, Chl-a, Fe, 
SS, TN:TP 

RF, 
SVM, 
BT 

SVM RMSE 0 n/a Harris & Graham, 
2017 

Cyanobacteria Reservoir NH4, NO3, PO4, 
SEC, BOD, Temp, 
SPC, pH 

ANN n/a RMSE 0 2.1594 Srisuksomwong 
& Pekkoh, 2020 
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Diatoms river NH4, Cl, K, Ca, 
Na, Mg, Si, PO4, 
SO4, TP, TSS, DD, 
BF, Runoff, Precip, 
WD  

RF, 
GLM 

GLM R2 1 0.25 Sun et al., 2022 

Cyanobacteria, 
Diatoms, 
Chlorophytes 

Lake SEC, WD, Temp, 
DO, SPC, ORP, 
TN, NH4, NO3, 
TP, PO4, Chl-a 

GLM n/a R2 1 Cyano: 0.43 
Dia:0.28 
Chl:0.51 

Zhu et al., 2018 

Chlorophyll-a Lake Chl-a, DO, TP, 
PO4, TN, NO3, 
NO2, SEC, Temp, 
ALK, Cl, WC, 
NTU 

RF, 
GAM 

RF R2 1 0.702 Zhang et al., 2021 

Diatoms, 
Cyanobacteria, 
Chlorophytes 

River Temp, pH, DO, 
SPC, Na, TDS, 
TSS, TN, TP, Si, 
POC, DOC, Chl-a  

ANN n/a r 1 0.678 Duong et al., 
2019 

Diatoms, 
Cyanobacteria, 
Chlorophytes 

Reservoir, 
river 

Temp, DO, pH, TN, 
TP, Ca, Mg, K, Na, 
Si, SO4, NO3, Cl  

BPANN,  n/a r 1 0.66-0.97 Wang et al., 2018 

Chlorophyll-a Lake DO, PO4, NO3, 
NH4, Si, DON, 
DOP, POC, Temp 

ANN n/a R2 1 0.83 Wang & Wang, 
2021 

 
Ca: Calcium ion, Mg: Magnesium ion, Cl: Chloride ion, SO4: Sulfate, NH4: Ammonia, DO: Dissolved oxygen, Si: Silica, Temp: 
Water temperature, SEC: Secchi disk, AT: Air temperature, TN: Total nitrogen, TP: Total phosphorus, Chl-a: Chlorophyll a, SPC: 
Conductivity, ORP, Oxidation reduction potential, DIN: Dissolved organic nitrogen, NO3: Nitrate, NO2: Nitrite, TSS: Total 
suspended solids, ALK: Alkalinity, PO4: phosphate, DOC: Dissolved organic carbon, Solar: Solar radiation, Wind: Wind speed, ELV: 
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Elevation, SA: Surface area, WD: Water depth, NTU: Turbidity, FC: Fecal Coliforms, SS: Suspended Solids, Fe: Iron, BOD: 
Biological oxygen demand, K: Potassium ion, Na: Salinity, DD: Daily discharge, BF: Baseflow, Precip: Precipitation, Runoff: Surface 
runoff, WC: Water color, POC: Particulate organic carbon, TDS: Total dissolved solids, DON: Dissolved organic nitrogen, DOP: 
Dissolved organic phosphorus. ANN: Artificial neural network, RF: Random Forest algorithm, RT: Regression Trees, SVM: Support 
vector machine, BT: Boosted tree, GLM: Generalized linear model, GAM: Generalized additive model, BPANN: Back propagation 
artificial neural networ
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Chapter 2: Temporal stability of phytoplankton functional 
groups within two agricultural irrigation ponds in Maryland, 
USA 

2.1. Introduction 

Phytoplankton are commonly found members of microbial populations within 

many diverse waterbodies including agricultural irrigation ponds. These primary 

producers are an important component of the food web within aquatic ecosystems. 

Previous research has shown that phytoplankton may be an effective bio-indicator of 

water quality and also a reflection of ecosystem health (Adloff et al., 2018; Su et al., 

2017; Wang et al., 2015).  

Freshwater phytoplankton populations are typically divided into functional 

groups based on morphology, physiology, adaptations, and ecological attributes (Jin 

et al., 2020; Reynolds et al., 2002; Varol, 2019). Three major phytoplankton 

functional groups are diatoms (Bacillariophyta), green algae (Chlorophyta), and 

cyanobacteria (Cyanophyta; also commonly referred to as blue-green algae), each of 

which possess different qualities that may influence and be indicative of water quality 

(Shi et al., 2012, 2015; Xiao et al., 2013). The richness and uniformity of the 

phytoplankton community may also indicate different water properties and a range of 

water qualities from pristine to degraded water quality conditions. Phytoplankton 

communities have been utilized as an indication of the trophic state of a waterbody 

(Hu et al., 2012; Ren et al., 2016; Rimet & Druart, 2018), to confirm eutrophication 

(Ren et al., 2016; Varol, 2019), pollution and/or other anthropogenic effects (Feki-

Sahnoun et al., 2018; Shi et al., 2015).  The use of phytoplankton functional groups in 

more complex assessments, such as understanding biogeochemical models (Shimoda 
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& Arhonditsis, 2016) and in the development of remote sensing technologies 

(Vandermeulen et al., 2017; Wolanin et al., 2016; Xi et al., 2017) continues to be a 

growing research area in large waterbodies or on broad scales, but less is known 

about the temporal stability of these groups on smaller scale irrigation water systems 

(e.g., irrigation ponds, retention ponds, and aquaculture ponds). 

Agricultural irrigation water has been shown to play a substantial role in the 

microbial contamination of fresh produce and foodborne illness outbreaks (Jongman 

& Korsten, 2018; Uyttendaele et al., 2015; World Health Organization, 2008). Certain 

groups of phytoplankton can form large proliferations or “blooms” and release toxins 

into the environment (Bouma-Gregson et al., 2017; Wood, 2016) which can be 

biotransported into the food supply (Bittencourt-Oliveira et al., 2016; Buratti et al., 

2017). This presents both environmental and human health risks. Monitoring of 

irrigation water quality is important to avoid the transport of degraded and potentially 

contaminated waters to nearby crops. 

Research on phytoplankton communities has previously been conducted 

across numerous waterbody types to determine spatial and temporal population 

trends, assess species composition, and community responses to changes in water 

quality. Within the Chesapeake Bay watershed, long-term phytoplankton data sets 

have been used to augment and support water quality guidelines in lakes, rivers, and 

estuaries (Hernandez Cordero et al., 2020; Marshall, 2013, 2014; Marshall et al., 

2006, 2009), but not specifically for agricultural irrigation waters.  

Although phytoplankton may be used as water quality bio-indicators, attempts 

to integrate phytoplankton community assessments to agricultural irrigation water 
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quality seemingly have been limited to laboratory studies (DeLorenzo et al., 2002). 

The objective of this study was to determine if temporally stable spatial patterns of 

phytoplankton functional groups exist within temperate agricultural irrigation ponds 

and if these groups could be correlated to easily measured water quality parameters 

which could lead to potential improvements in on-farm water quality monitoring and 

aid with the prediction and mitigation of food-safety issues.  

2.2. Material and methods 

2.2.1. Pond Monitoring 

Sampling was conducted at two working farms for two consecutive growing 

seasons (2017-2018). These ponds were chosen because water was routinely drawn 

for irrigation of co-located crop fields. Each pond was sampled six times during the 

May through October growing season, with an exception to Pond 2 in 2017 with only 

five sampling dates. For 2017 sampling occurred from May to August and for 2018 

from June to October. This resulted in a total of 276, and 242 phytoplankton samples 

collected for Pond 1 and Pond 2, respectively. Both ponds were located within a one-
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hour drive from the USDA-ARS laboratory, so samples were maintained at ambient 

temperature and processed the same day as collection.  

Figure 2.1. Sampling locations for both Pond 1 (P1) and Pond 2 (P2). Station location 
number is stated inside the circle. Yellow circles indicate interior water sampling 
locations and orange circles indicate nearshore sampling locations. Blue arrows 
represent inflow points and outflows are represented by red arrows. Irrigation intake 
is represented by a grey triangle. 

Pond 1 is a 1.01-acre man-made embankment pond located in Germantown, 

MD, USA with an average depth of 2.7m (Figure 2.1- P1). Vegetation surrounding 

Pond 1 embankments consisted of deciduous trees and shrubs along the northern and 

eastern banks with the remaining embankments having a grass cover. The pond is 

surrounded by crop fields. When the water level in this pond gets low, the farm 

operators will occasionally pump water into Pond 1 from another pond which is 
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stream-fed. The inflow and outflows are both located near sampling location 15. The 

irrigation pump intake is located near location 12 and is approximately two-three feet 

below the water’s surface. The photic zone in Pond 1, as determined by Secchi depth, 

averages 0.8 m. In 2017 and 2018, the algicide copper sulfate was commonly used to 

treat the water in Pond 1. 

Pond 2 is located at the University of Maryland Wye Research Center in Wye 

Mills, MD, USA (Figure 2.1-P2). This pond is a 1.05-acre excavated pond with an 

average depth of 2.7m and most of the bank areas are covered with grass and dense 

shrubs. Large trees are also present along the perimeter but are approximately 20m 

from the water’s edge. This pond is surrounded by crop fields, farm buildings, and 

one residential property. In March of each year, the surrounding crop fields receive 

chemical fertilizers, but no animal manures are applied. This pond is primarily fed 

through rainfall which typically enters through an ephemeral creek that leads into a 

culvert near location 12. This culvert tends to have a substantial inflow only when 

precipitation has recently occurred. On the south end of the pond, there is a water-

level dependent outflow drain near location 24. The irrigation pump intake is near 

location 27 and is approximately two-three feet below the water’s surface. The depth 

of the photic zone, determined by Secchi depth, for Pond 2 averages 0.5 m.   

2.2.2. Sample collection, handling, and storage 

Pond 1 had 23 sampling locations and Pond 2 had 22 sampling locations 

(Figure 2.1). Surface water samples were taken at a depth of 0-15cm. Nearshore 

samples were taken with a 500mL hand grab sampler at approximately 1.5m from the 

shoreline. Interior samples were taken from a boat with GPS tracking used to provide 
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consistency of sampling locations between different sampling dates. Sampling 

locations remained the same for every sampling date over both years. After 

collection, samples were immediately placed into a cooler without ice to help 

maintain the original ambient water temperature. Samples were then transported to 

the lab for analysis.  

2.2.3. In-field measurements 

In-situ water quality measurements were taken concurrently with sample 

collection using a YSI Exo-2 sonde (YSI Inc., Yellow Springs, OH). The YSI sonde 

was used to measure temperature (°C), dissolved oxygen (DO mg L-1), pH, 

fluorescent dissolved organic matter (fDOM, RFU), chlorophyll-a (CHL YSI, RFU), 

phycocyanin (Phyco YSI, RFU), and turbidity (NTU). A Secchi disk was used to 

measure water transparency, approximating the photic zone depth (m). Precipitation 

data was obtained from weather stations located within three km of each pond. 

2.2.4. Laboratory measurements 

Water samples were measured for colored dissolved organic matter (CDOM, 

µg L-1), in-vivo or whole-cell chlorophyll-a (CHL RFU, RFU), and phycocyanin 

(Phyco LAB, µg L-1) using an Aquafluor fluorometer (Turner Designs, San Jose, 

CA). Samples were also processed and measured for extracted chlorophyll (CHL 

EXT, µg L-1) following EPA method 445 (Environmental Protection Agency, 1997) 

using an Aquafluor fluorometer. For the extraction process, approximately 100mL of 

pond water was vacuum filtered using 0.7µm glass fiber filters (Whatman, 

Maidstone, United Kingdom) and steeped in a 90% acetone and 10% deionized water 

solution overnight at 4°C before being analyzed with the fluorometer. A subsample of 
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approximately 50mL was taken for phytoplankton identification and enumeration. 

This subsample was preserved with Lugol’s iodine solution at a 1% final 

concentration. Subsamples were stored at 4°C and in the dark to prevent 

phytoplankton cell degradation until microscopic analysis could be completed. 

2.2.5. Microscope analysis 

During examination and enumeration of the preserved phytoplankton samples 

each phytoplankton was identified to the lowest taxon possible using John et al. 

(2011) and Bellinger & Sigee (2015). To assess the phytoplankton community at the 

group level species data was recorded as cell abundance (cells L-1) and then classified 

into one of four major phytoplankton functional groups: diatoms, dinoflagellates, 

chlorophytes (including motile and non-motile species), and cyanobacteria as done 

for corresponding long-term, regional datasets (Lamlou, 1977;  Marshall, 2013, 2014; 

Marshall et al., 2006). Because of the infrequent occurrence of dinoflagellate species 

in both ponds over the two years these data were not included in the final analysis but 

are available in Appendix A, Supplemental Figure 2.2. The cell abundance data for 

potentially toxic cyanobacteria species were compared with cell abundances 

presented in national and regional action guidelines (Environmental Protection 

Agency, 2019; Virginia Department of Health, 2015). 

All phytoplankton samples were examined using a Nikon Ts2R inverted 

microscope (Nikon Instruments Inc., Melville, NY) and a modified Utermöhl method 

as described in Marshall & Alden (1990). A two- or three-mL Lugol’s iodine 

preserved sample was pipetted into a chambered covered glass slide (Thermo 

Scientific, Rochester, NY), and allowed to settle for thirty minutes to one hour. After 
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settling, enumeration started in the upper left-hand corner of the chambered slide. 

After the first frame was counted, the next frame would be moved down and to the 

right to avoid frame overlap and possible double counting of algal cells. This 

movement of the field of view created a diagonal pattern across the cover glass slide. 

The frames were counted in this pattern until either a 200-cell minimum or 20 frames 

were examined.  

2.2.6. Statistics and graphics 

To assess spatio-temporal stability of phytoplankton functional groups, mean 

relative difference method (MRD) was applied. The mean relative difference 

indicates how an individual location compares to the pond average over multiple 

sampling dates and reveals areas that are consistently higher or lower than the pond’s 

average for a measured parameter. This method applied here follows those reported in 

other spatial pattern studies (Pachepsky et al., 2017; Stocker et al., 2018). The relative 

difference RDij between the observation of variable x at location i at time j (xij), and 

the spatial average of x at the same time (<x>j), is defined as: 

	"#�$%� = 		x�$%�	 − 			x��%��		x��%�� 

The MRD for location i then becomes 

	MRD�$� = 	1�	-�.��		% = 1�% = 	-�.��	RD�$%�� 

Where Nt is the number of sampling days, and i= 1, 2, …, Ni, where Ni is the total 

number of locations. 
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The coefficient of variation (CV) was computed for each phytoplankton 

functional group for each date and pond. The calculation for CV is defined as: 

/0 = 		1�$%��	2�$%�� 

Where 	"�#$� is the population standard deviation of phytoplankton functional group 

i on sampling date j and 	%�#$� is the population mean of phytoplankton functional 

group i on sampling date j. 

Mean relative differences and Spearman rank correlations were computed in 

RStudio. Correlations were considered moderate if r≥0.400 (p values, P1=0.059 

P2=0.065) and considered strong if r≥0.600 (p values, P1<0.001 P2<0.001). 

Sigmaplot v. 13 (SYSTAT, Chicago, IL, USA) and QGIS (OSGeo, Switzerland) were 

used to create visual representations of the data. 

2.3. Results 

2.3.1. Data summary 

2.3.1.1. Weather data 

Daily ambient air temperature and precipitation data for both ponds and years 

are displayed in Figure 2.2. In 2017, there was an increase in the air temperatures at 

both ponds from May to July. In 2018, the initial increase in temperature was less 

pronounced than in 2017. Pond 1 experienced more rainfall in 2018 compared to 

2017. Information on the number of days following the last rainfall event from 

sampling dates and total rainfall accumulations may be seen in Appendix A, 

Supplemental Table 2.1. Over the two years, sampling at Pond 1 was performed six 

times with a rainfall event occurring the day before sampling, three times with a 
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rainfall event occurring one to three days before sampling, and three times when a 

rainfall event was four or more days before sampling. At Pond 2, sampling was done 

twice with a rainfall event occurring the day before sampling, six times with a rainfall 

event occurring one to three days before sampling, and three times with a rainfall 

event occurring four or more days before sampling. Major precipitation events 

(>6cm) at Pond 1 occurred on 7/28/17 and 7/21/18 with daily rainfall accumulations 

of 10.04 and 14.10 cm, respectively. Sampling near both major precipitation dates 

was avoided, and sampling was not conducted for three days following a major event. 

At Pond 2, major precipitation events occurred on 7/28/17, 7/29/17, 8/7/17, and 

7/21/18 with daily rainfall accumulations of 8.28 cm, 8.40 cm, 16.76 cm, and 8.03 

cm, respectively. Sampling was avoided within three days of these rainfall events 

with the exception of the 8/7/17 event. Sampling occurred on 8/8/17 which was one 

day following a major rainfall event. 



 

37	
 

Figure 2.2. Precipitation and ambient air temperature data for both ponds. 
Precipitation data is represented in bars and temperature data are shown with red 
lines. 

2.3.1.2. Water quality parameters 

Time series data of water quality parameters measured for 2017 and 2018 are 

presented in Appendix A, Supplemental Tables 2.2 and 2.3. Mean values of all 

measurements related to phytoplankton pigments (Phyco YSI, CHL YSI, EXT CHL, 

LAB CHL, and Phyco LAB) were generally higher at Pond 2 than at Pond 1 for both 
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2017 and 2018. Specific conductance and pH measurements were lower for both 

ponds in 2018 compared to 2017. The positive relationship between higher pH and 

higher DO concentrations was more pronounced for Pond 2 compared to Pond 1. 

Algicide was applied to Pond 1 after the first sampling date on 7/1/18. Consequently, 

in Pond 1 all measurements related to phytoplankton pigments (Phyco YSI, CHL 

YSI, CHL EXT, LAB CHL, and Phyco LAB) displayed large decreases on sampling 

date 7/5/18. Phycocyanin measurements remained low for the remainder of the 

sampling season (Phyco YSI, Phyco LAB), while chlorophyll measurements 

recovered after two sampling dates (CHL YSI, CHL EXT, LAB CHL). A decrease in 

Phyco YSI, CHL YSI, and CHL EXT measurements was seen in Pond 2 in 2017 

following a 16.8cm rainfall event. Phycocyanin measurements (Phyco YSI and Phyco 

Lab) for both ponds in 2018 indicated a cyanobacterial bloom was present during the 

first sampling dates. Phyco Lab measurements on the first sampling dates were 114 

%g L-1 and 110 %g L-1 for Pond 1 and Pond 2, respectively. Furthermore, these blooms 

were also visually identified by the appearance of green surface scums and confirmed 

via microscopy analysis of phytoplankton samples. Phycocyanin measurements 

remained approximately the same in Pond 2 during the entire sampling season.  

2.3.1.3. Phytoplankton functional groups 

The time series data of log concentrations of green algae, diatoms, and 

cyanobacteria for both ponds and years are presented in the box plot graphs of Figure 

2.3. Descriptive statistics for all phytoplankton groups, both ponds, and both 

sampling years are reported in Appendix A, Supplemental Table 2.4. Green algae 

displayed the lowest variability and cyanobacteria displayed the highest variability 
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among the phytoplankton functional groups for both ponds. The coefficients of 

variation (CV) values are presented in Appendix A, Supplemental Table 2.5. In 2017 

the CVs for Pond 1 ranged from 0.024 to 0.066 for green algae, 0.064 to 0.124 for 

diatoms, and 0.074 to 0.214 for cyanobacteria. The CVs followed a similar pattern in 

Pond 1 during 2018 with green algae CVs ranging from 0.023 to 0.051, diatoms from 

0.044 to 0.132, and cyanobacteria from 0.040 to 0.262. The green algae CVs were 

generally lower in Pond 2 than the values for diatoms and cyanobacteria. The CVs for 

diatoms and cyanobacteria did not follow the same pattern as found for Pond 1, the 

overall ranges of the diatom CVs were less than the cyanobacteria CVs for each 

respective sampling season. Green algae and diatoms had a similar intra-seasonal 

(May-August) trend during 2017 at both ponds wherein population growth occurred 

from May to June followed by a period of stabilization for the remainder of the 

sampling season. Diatoms and green algae in Pond 1 exhibited similar trends in 2018 

(June-October) displaying a period of stabilization from June to July followed by a 

drop in concentrations for the remainder of the sampling season. Cyanobacteria trends 

were drastically different from 2017 to 2018 for both ponds. A cyanobacteria bloom 

was observed within both ponds during June 2018. During this study, copper sulfate 

was applied to Pond 1 on 7/1/18 and impacted the total phytoplankton concentrations, 

particularly decreasing the abundance of cyanobacteria species. 
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Figure 2.3: Time series data of log concentrations of the major phytoplankton 
functional groups (green algae, diatoms, and cyanobacteria) for both years. The mid-
point line of the box plots represents the median for each date. Outliers (10th and 90th 
percentiles) are represented by black circles. The red dashed line represents an 
algicide application that took place on 7/1/18 at Pond 1. 

2.3.2. Temporally stable patterns of phytoplankton functional groups 

Temporal stability was assessed by considering the standard errors of the 

mean relative differences for each location. The mean relative differences along with 

standard error bars are displayed in Appendix A, Supplemental Figure 2.1. Small 
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standard errors indicate that a location has minimal phytoplankton variation between 

each sampling date and large standard errors indicate substantial phytoplankton 

variation between sampling dates. Green algae, diatoms, and cyanobacteria displayed 

temporally stable spatial patterns in both ponds and over the entire two-year study 

period.   

2.3.2.1. Pond 1 

The MRD values of the logarithms of green algae, diatoms, and cyanobacteria 

concentrations computed over the 2-years of observations at Pond 1 are shown in 

Appendix A, Supplemental Figure 2.1. Visual representations of the locations with 

consistently higher and consistently lower concentrations of each phytoplankton 

functional groups are displayed in Figures 2.4-2.6. The same patterns were observed 

for all three phytoplankton functional groups in Pond 1. The MRDs of each group 

tended to be lower for the interior sampling locations, and higher for the nearshore 

sampling locations. For green algae (Figure 2.4-P1), zones with consistently lower 

concentrations were all interior locations, except for location 6 where the irrigation 

pump is located. Zones of high concentrations of green algae were seen at the 

southern shoreline of the pond (locations 1, 8, 10), as well as locations 5 and 23. The 

southern shoreline of the pond is very shallow and located adjacent and downhill 

from crop fields. Location 5 is the site of an inflow pipe which pumps water from a 

nearby stream-fed pond. Location 23 is a very shallow area with aquatic vegetation 

and has an inflow from an ephemeral stream. Locations of consistently higher and 

lower concentrations of diatoms (Figure 2.5-P1) were very similar to those of green 

algae. Low concentrations of diatoms were exclusively observed at interior sampling 
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locations. High concentrations of diatoms were observed for locations 1, 5, 6, 23 

(previously described), and 2. Locations with consistently higher and lower 

cyanobacteria concentrations are displayed in Figure 2.6-P1. Low cyanobacteria 

concentrations were found at all interior sampling locations except for location 20. 

High cyanobacteria concentrations were found at all nearshore sampling locations 

except for location 17. Consistently high concentrations of cyanobacteria were also 

seen close to the ephemeral stream inflow at locations 21 and 22; and at location 1 

near the crop fields.    

2.3.2.2. Pond 2 

The MRD values of the logarithms of green algae, diatoms, and cyanobacteria 

concentrations computed over the 2-year period for Pond 2 are shown in Appendix A, 

Supplemental Figure 2.1. Visual representations of MRDs for green algae, diatoms, 

and cyanobacteria are displayed in Figures 2.4-2.6. Low MRDs for green algae 

(Figure 2.4-P2) were all nearshore sampling locations of the pond, although there was 

a somewhat dispersed distribution with similar values not observed within one 

specific area of the pond. Locations with consistently higher concentrations of green 

algae were mostly interior sampling locations except for sampling location 21, which 

is a shallow location with aquatic vegetation present. High concentrations of diatoms 

were found at nearshore sampling locations and within a small zone on the 

southeastern shoreline of the pond where there is a water level dependent outflow 

drain (Figure 2.5-P2). Cyanobacteria MRDs displayed a zonal pattern (Figure 2.6-P2) 

with higher cyanobacteria concentrations located in the northern portion of the pond 

apart from the observations at location 21 (as previously described). Consistently low 
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concentrations of cyanobacteria formed a zone in the middle of the pond containing 

both interior and nearshore sampling locations.  

Figure 2.4: Mean relative differences (MRD) of green algae over the two-year period 
for Pond 1 (P1) and Pond 2 (P2). Locations with MRD values below the 25th 
percentile are displayed in blue, locations above the 75th percentile are displayed in 
red, and locations between the 25th and 75th percentile are displayed in yellow. 
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Figure 2.5: Mean relative differences (MRD) of diatoms over the two-year period for 
Pond 1 (P1) and Pond 2 (P2). Locations with MRD values below the 25th percentile 
are displayed in blue, locations above the 75th percentile are displayed in red, and 
locations between the 25th and 75th percentile are displayed in yellow. 
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Figure 2.6: Mean relative differences (MRD) of cyanobacteria over the two-year 
period for Pond 1 (P1) and Pond 2 (P2). Locations with MRD values below the 25th 
percentile are displayed in blue, locations above the 75th percentile are displayed in 
red and locations between the 25th and 75th percentile are displayed in yellow. 

2.3.3. Water quality patterns 

The mean relative difference values of measured water quality parameters 

(Temp, DO, SPC, pH, NTU, Phyco YSI, CHL YSI, fDOM, and CHL EXT) for both 

ponds are shown in Appendix A, Supplemental Figures 2.3a-i. Within Pond 1, low 

MRDs were observed for temperature, DO, and pH for nearshore locations. For 

turbidity, Phyco YSI, CHL YSI, fDOM, and extracted chlorophyll, high MRDs were 

associated with nearshore locations and low MRDs were associated with interior 

locations within Pond 1. Within Pond 2, similar trends were observed with high MRD 
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values for temperature, DO, and pH being observed at interior locations and low 

MRD values found at the nearshore locations. An inverse distribution was seen for 

turbidity, Phyco YSI, CHL YSI, fDOM, and extracted chlorophyll within Pond 2. 

Low MRD values were typically observed for the interior locations and high MRD 

values were observed for the nearshore locations. Therefore, both ponds exhibited 

differences in the water quality parameters between the interior and the nearshore 

sampling locations. 

2.3.4. Phytoplankton and water quality MRD correlations 

The Spearman rank correlations between the mean relative differences of the 

water quality parameters and the mean relative differences of phytoplankton groups 

are displayed in Table 2.1. Moderate correlations were defined as r≥0.400 (p values, 

P1=0.059 P2=0.065) and are highlighted in yellow. Strong correlations were defined 

as r≥0.600 (p values, P1<0.001 P2<0.001) and are highlighted in blue. Moderate and 

strong correlations were observed within Pond 1 for the green algae MRDs and most 

of the water quality MRDs (DO, SPC, pH, NTU, Phyco YSI, CHL YSI, and CHL 

EXT). Lower correlations were observed for diatom MRDs and cyanobacteria MRDs 

within Pond 1. There were no moderate or strong correlations observed for diatom 

MRDs in Pond 1. The cyanobacteria MRDs were moderately correlated with the 

MRDs of the SPC, pH, and NTU parameters. Pond 2 differed from Pond 1 regarding 

MRD correlations. Within Pond 2, green algae MRDs were characterized with fewer 

moderate correlations than diatom MRDs and cyanobacteria MRDs. Green algae 

MRDs within Pond 2 had a strong correlation with the MRDs of extracted 

chlorophyll. Diatom MRDs correlated strongly with most water quality MRDs 
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(Temp, DO, SPC, pH, and NTU) and moderately with CHL EXT. Cyanobacteria 

MRDs correlated moderately with Phyco YSI and CHL YSI and strongly with most 

water quality MRDs (Temp, SPC, pH, and CHL EXT). 

Table 2.1. Spearman rank correlations between the mean relative differences of water 
quality parameters and MRD values of phytoplankton functional groups. Moderate 
correlations were defined as R≥0.400 and are highlighted in yellow (p values, 
P1=0.059 P2=0.065). Strong correlations were defined as R≥0.600 and are 
highlighted in blue (p values, P1<0.001 P2<0.001). 

Spearman Rank Correlations Between Water Quality MRDs and Phytoplankton MRDs 

2017 

+ 

2018 

Pond 1 Pond 2 

Green Algae Diatoms Cyanobacteria Green Algae Diatoms Cyanobacteria 

Temp 0.186 <0.001 0.163 <0.001 0.771 0.639 

DO 0.498 0.134 0.161 0.024 0.616 0.317 

SPC 0.906 0.142 0.703 0.221 0.713 0.842 

pH 0.895 0.173 0.931 0.004 0.849 0.684 

NTU 0.213 0.104 0.625 0.233 0.903 0.196 

Phyco YSI 0.174 0.003 0.103 0.005 0.387 0.589 

CHL YSI 0.220 0.001 0.231 0.007 0.297 0.467 

fDOM 0.017 <0.001 0.029 0.125 0.043 0.390 

CHL EXT 0.668 0.012 0.033 0.692 0.471 0.875 

2.4. Discussion 

The abundance and species distribution of phytoplankton taxa has been used 

as a bioindicator of water quality across freshwater and marine systems for decades 

(Patrick, 1973; Reynolds et al., 2012; Smith, 2003). Decadal phytoplankton data sets 

have proven to be useful when examining the seasonal periodicity and long-term 

trends in coastal water quality (Hernandez Cordero et al., 2020; Marshall et al., 2009; 

Nishikawa et al., 2010), however, similar longitudinal datasets are lacking for 
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agricultural irrigation waters despite the fact it has been reported that land-use and 

nutrient loading can impact phytoplankton biodiversity in agricultural waters (Zhang 

et al., 2020). Smith et al. (2020) demonstrated that within agricultural irrigation ponds 

there was a relationship between easily measured environmental co-variates, such as 

CDOM and NTU, and cyanobacteria (phycocyanin) concentrations. However, the 

temporal and spatial stability of the cyanobacteria, or other phytoplankton functional 

groups, in these ponds was not examined. Here, an assessment of the phytoplankton 

community present during the May to October growing season, when agricultural 

irrigation water is used most frequently and the risk due to cyanotoxins is greatest, is 

presented.                                                 

The agricultural irrigation ponds examined in this study, located on working 

farms in Maryland, did not exhibit drastically different phytoplankton populations 

during the growing seasons of 2017 and 2018. Diatom concentrations did not differ 

within the two ponds and were comparable with concentrations found in other 

temperate freshwater lakes and reservoirs (Gorokhova & Zinchenko, 2019; Jia et al., 

2019; Rollwagen-Bollens et al., 2013) including lakes studied by Marshall (2013, 

2014) in Virginia, located south of this study area. Mean concentrations of green 

algae were similar within the two ponds, but Pond 1 had a smaller overall range of 

concentrations than Pond 2. Concentrations of green algae were comparable to values 

reported for other freshwater systems (Dembowska et al., 2018; Gorokhova & 

Zinchenko, 2019; Khaliullina & Fazlieva, 2019). Pond 2 had slightly higher 

concentrations of green algae and cyanobacteria. These higher values may potentially 

be explained by the absence of an algicide application for Pond 2. Concentrations of 
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cyanobacteria within Pond 1 were similar to those previously reported within 

temperate lakes (Dembowska et al., 2018; Jia et al., 2019), including those studied 

locally by Marshall (2013, 2014). However, due to recurrent cyanobacteria blooms 

composed mainly of Aphanizomenon spp. and Microcystis wesenbergii in Pond 2, cell 

concentrations were comparable with concentrations reported within small temperate 

lakes in which cyanobacteria blooms frequently occur (Lee et al., 2015; Woodhouse 

et al., 2016), including other Maryland lakes (Tango & Butler, 2008; J. Wolny, 

unpublished data), but were greater than those recorded by Marshall (2013, 2014).  

Both ponds displayed spatial and temporal variability of major phytoplankton 

functional groups during the two growing seasons. Spatio-temporal variations of 

phytoplankton communities have been documented within freshwater lakes (Naselli-

Flores & Padisák, 2016; Wu et al., 2014; Xiao et al., 2018), wetland ponds (Soininen 

et al., 2007), reservoirs (Alexander & Imberger, 2009), rivers (Marshall et al., 2009), 

and estuaries (Marshall et al., 2006). While the phytoplankton community temporal 

trends noted in this study were similar to those reported by Marshall (2013, 2014) for 

Virginia lakes, comparisons between these earlier studies and spatial variation are not 

possible due to the limited spatial variance in the Virginia lakes dataset. The 

heterogeneity or homogeneity of phytoplankton communities should not be an 

assumed trait within a waterbody. As explained by Lewis (1978), not all species or 

groups of phytoplankton continuously exhibit heterogenous distributions, but rather 

homogenous and heterogenous distributions may synchronously exist within a 

waterbody. Additionally, exogenous forces, such as wind, water flow, and lake 
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morphology, have all been documented to attribute to the spatial variation of green 

algae, diatoms, and cyanobacteria (Li et al., 2013). 

 Two forms of spatial trends were observed within the two ponds during this 

study. The predominant spatio-temporal trends that were present within both ponds 

appeared to be a contrast between interior and nearshore sampling locations. Within 

Pond 1, this trend was displayed for all groups. Pond 1 had consistently higher 

concentrations of green algae, cyanobacteria, and diatoms at nearshore sampling 

locations; and consistently lower concentrations of green algae, cyanobacteria, and 

diatoms at interior locations. This pattern of higher concentrations at nearshore 

sampling locations versus interior sampling locations was reported for both ponds in a 

preceding study using average quartile ranks of phycocyanin concentrations (Smith et 

al., 2020). Higher concentrations of phytoplankton being closer to the shoreline of 

shallow waterbodies has been attributed to several different concepts. Bondarenko et 

al. (1996) stated that spatial distribution of phytoplankton was related to water depth, 

with shallow waters being richest in phytoplankton. Both ponds in this study were 

only 2.7 m deep, thus indicating that even in shallow environments depth-dependent 

gradients can be set up within the phytoplankton community. In other studies, greater 

abundances of phytoplankton were found in stands of Phragmites australis and other 

aquatic plants, due to the creation of favorable water quality conditions, including 

increased phosphorus concentrations (Celewicz-Goldyn & Kuczynska-Kippen, 2008, 

2017) and in zones with elevated nutrient concentrations and water temperatures 

(Chen et al., 2003). Aquatic vegetation was noted at both ponds and future work will 



 

51	
 

look to correlate the spatial patterns of the phytoplankton community with the 

characteristics of the resident aquatic vegetation. 

Similarly, within Pond 2 consistently higher concentrations of diatoms were 

found at nearshore locations. The opposite trend was observed for green algae within 

Pond 2 wherein consistently higher concentrations of green algae were observed for 

interior sampling locations, and consistently lower concentrations of green algae were 

observed for nearshore sampling. While this is a difference from co-located Pond 1, 

this trend has been previously documented by Celewicz-Goldyn & Kuczynska-

Kippen (2008) who indicated that the greatest abundance of small chlorophytes was 

found in open waters where the potential threat of predation from zooplankton was 

less.  

The major spatiotemporal patterns observed for Pond 2 were the formation of 

zones in which cyanobacteria were the dominant taxa. Consistently higher 

concentrations of cyanobacteria were found at the northern portion of the pond 

(sampling locations: 11, 13, 15, and 34) near a culvert, which following precipitation 

events provides inflow of potentially nutrient-rich waters to the pond. This high 

cyanobacteria biomass zone was also established in the preceding study on quartile 

ranks of phycocyanin concentrations (Smith et al., 2020). Other studies have 

documented spatial trends of cyanobacteria among other phytoplankton species due to 

either nutrient rich runoff or river inflow (Marshall et al., 2006; Powell et al., 1975; 

Woodhouse et al., 2016). Other potential explanations for the formation of these 

cyanobacteria-rich zones could be wind or wind driven water flow as noted by Cloern 
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et al. (1992) and Fragoso et al. (2008) or microhabitats set up through thermal 

stratification as noted by Vasas et al. (2013) 

There was a zone of consistently low cyanobacteria concentrations within 

Pond 2 that was located near the middle of the pond (sampling locations: 17, 27, 32, 

7, 19, 5).  The pump house and water intake pipe for the farm irrigation system is in 

this area. The location of the irrigation intake pipe has important implications for food 

safety. It has been well-established that irrigation waters with toxigenic cyanobacteria 

can contaminate crops (Miller & Russell, 2017), remain in soils for extended periods 

of time (Machado et al., 2017), and may even be taken up by the root system of the 

produce (Lee et al., 2017). Thus, placing an irrigation intake system in a location with 

consistently higher concentrations of cyanobacteria may increase produce 

contamination risks. It appears that the pump and intake infrastructure in Pond 2 is 

located in a low-risk zone, as cell concentrations of potentially toxic cyanobacteria 

species never exceeded EPA or regional guidelines (Environmental Protection 

Agency, 2019; Virginia Department of Health, 2015). However, future research and 

monitoring efforts should focus on determining the prevalence of cyanotoxins in 

these irrigation waters. 

Of note, a copper sulfate algicide was applied to Pond 1 midway through the 

study, on 7/1/18, to mitigate a bloom of Microcystis, a potentially toxigenic 

cyanobacteria species. While the concentration of copper sulfate used is unknown, all 

measured water quality parameters decreased significantly following this application. 

These reductions were comparable to values reported by Schrader et al. (2000) and 

Song et al. (2011) within other inland waters that were assessed during and after 
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treatments with copper sulfate. Average concentrations of DO, pH, CDOM, and 

fDOM returned to pre-application levels about one month after application.  For the 

algal pigments (CHL RFU, CHL YSI, CHL EXT, and phycocyanin), all 

concentrations decreased after the copper sulfate application and slowly recovered to 

either pre-application levels or higher by the end of August. The return of 

chlorophyll-a readings to previous values was also reported by Dia (2016) and Effler 

et al. (1980) following low-level algicide treatments (8-14 µg L-1) in freshwater lakes. 

Elder & Horne (1978) reported the recovery of pre-treatment algal populations in as 

little as five days after treatment and attributed this recovery to copper sulfate 

possibly being beneficial for biological activity if applied in very low concentrations 

(5-10 µg L-1). The effect of algicide on cyanobacteria concentrations was more 

pronounced than the effect on green algae and diatoms concentrations. Similar 

responses were reported by Padovesi-Fonseca & Philomeno (2004) and XiaoLi et al. 

(2009) wherein cyanobacteria concentrations, including Microcystis aeruginosa, 

Cylindrospermopsis raciborskii, and Anabaena flos-aquae, decreased and green algae 

and diatoms became the dominant taxa after an algicide application, with the 

subsequent population changes attributed to cyanobacteria species sensitivity to 

copper. The rate of recovery of the phytoplankton community to the application of 

copper sulfate, or other algicides, should be monitored if the algicide application is 

meant to act as a safeguard to crops from cyanotoxin exposure via irrigation waters. It 

should be mentioned that the treatment of waterbodies with algicides can immediately 

release large quantities of cyanotoxins, if toxin-producing algal species are highly 

concentrated (Greenfield et al., 2014; Zhou et al., 2013). An assessment of 
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phytoplankton community composition should be performed prior to an algicide 

application if the water is to be used for crop irrigation or as drinking water for 

livestock to safeguard against the introduction of concentrated biotoxins. 

Although not similar, both ponds expressed moderate and strong correlations 

between the spatial patterns of phytoplankton functional groups and water quality 

parameters. Pond 1 had strong water quality correlations with green algae, while Pond 

2 had strong correlations with diatoms and cyanobacteria. The correlations between 

water quality and phytoplankton spatial trends provides helpful insights for irrigation 

pond monitoring. The examination of phytoplankton community structure using 

microscopy is an intensive analysis which requires extensive laboratory infrastructure 

and highly trained personnel (Lawton et al., 1999). However, if strong correlations 

exist among water quality parameters and optical properties associated with distinct 

phytoplankton functional groups, the option of using less specialized monitoring 

methods, such as in-situ sensors or drone-based imagery could be employed for 

routine resource management. These technologies would be efficient and cost-

effective methods capable of being used by a broader group of personnel to safeguard 

against irrigating crops with degraded water drawn from agricultural irrigation 

waters. While identifying water quality covariates and the use of optical techniques to 

assess the phytoplankton functional groups present in water will not identify toxic 

versus non-toxic phytoplankton species it can provide the information necessary to 

make better informed decisions about when and where to conduct toxin risk 

assessments.  
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2.5. Conclusions 

Using a mean relative difference analysis to assess spatiotemporal stability, it 

was determined that phytoplankton functional groups exhibited stable spatiotemporal 

trends in the two agricultural irrigation ponds evaluated in this study. Temporally 

stable spatial patterns of the three phytoplankton functional groups studied here were 

found within both ponds over the two sampling years. Both ponds had locations 

where phytoplankton group concentrations were consistently higher or lower than the 

pond’s average concentrations. Typically, these patterns could be classified into two 

categories: nearshore or interior sampling locations or zones. These distributions 

indicate the importance of sampling locations for water quality monitoring purposes. 

If sampling is performed in areas of consistently higher or lower concentrations of 

phytoplankton, that sample may not be an accurate representation of the 

phytoplankton community within the entire waterbody. Because of the correlation 

between water quality parameters and certain phytoplankton functional groups it may 

be possible to employ broad-based technologies to routinely monitor irrigation waters 

for potentially harmful cyanobacteria instead of relying on labor intensive microscopy 

methods. However, it is important to note that there are other types of agricultural 

ponds, such as aquaculture ponds and retention ponds. While this study can provide a 

framework for assessing agricultural ponds no extrapolation should be made to these 

other water sources from the finding presented here. 
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Chapter 3: Intraseasonal variation of phycocyanin 
concentrations and environmental covariates in two agricultural 
irrigation ponds in Maryland, USA  

3.1 Introduction 

Cyanobacteria, also referred to as blue-green algae, are common in many 

types of ecosystems and are particularly prevalent in freshwaters. These 

microorganisms can multiply quickly and create large proliferations or “blooms” on 

the water surface or along the benthos (Bouma-Gregson et al., 2017; Chorus & 

Bartram, 1999; Zanchett & Oliveira-Filho, 2013). Cyanobacteria blooms tend to 

appear in low-flow or stagnant waterbodies that are nutrient enriched (Lee et al., 

2015; O’Neil et al., 2012; Steinberg & Hartmann, 1988) and therefore, the presence 

of large cyanobacteria populations may function as an indicator of poor or degraded 

water quality (Douterelo et al., 2004; Perona et al., 1998; Teta et al., 2017). In 

response to excess nutrient concentrations, dense cyanobacteria blooms can form 

throughout the water column. These blooms can reduce dissolved oxygen 

concentrations, create hypoxic conditions, and reduce light penetration to depths 

below the surface layer, all which can inhibit the growth of submerged aquatic 

vegetation, impair critical fisheries habitat, and reduce aquatic community diversity 

(Aboal et al., 2000; Huisman et al., 2018; Paerl & Otten, 2013; Tourville-Poirier et 

al., 2010).  

Cyanobacteria blooms are also called harmful algal blooms (cyanoHABs) 

because they may present risks to both environmental and human health. Certain 

species of cyanobacteria have the capacity to produce substances that are toxic and 

often these toxins are harmful to humans and livestock through acute exposure and 
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bioaccumulation (summarized in Hilborn & Beasley [2015] and Wood [2016]). 

Exposure to cyanotoxins can occur through ingestion, inhalation, or direct contact. 

The three most problematic cyanotoxins from a resource management standpoint are 

microcystin and cylindrospermopsin, which affect the liver, and anatoxin-a, which 

affects the nervous system (Carmichael, 1994, 2001; Environmental Protection 

Agency, 2019). 

Recently, it has been determined that cyanotoxins present in waters used for 

irrigation can be transported to produce or other plants (Corbel et al., 2016; Saqrane 

& Oudra, 2009). Bittencourt-Oliveira et al. (2016), Buratti et al. (2017), Corbel et al. 

(2014), Kittler et al. (2012) and Lee et al. (2017) have documented cyanotoxin 

bioaccumulation in crops, produce, and agricultural soils when contaminated waters 

are used as irrigation source water. Consumption of foods irrigated with cyanotoxin-

containing water may present severe risks to human and animal health (Saqrane & 

Oudra, 2009; Svirčev et al., 2017).  

Traditionally, cyanobacteria have been identified and enumerated using 

microscope-based analyses, but this process can be time-consuming, and the accuracy 

is dependent on the skill level of analysts (Lawton et al., 1999). The concentration of 

phycocyanin, a pigment unique to cyanobacteria, may be used as a surrogate 

measurement for the presence and abundance of cyanobacteria, including toxigenic 

species. Phycocyanin can be measured with extraction methods that require intensive 

laboratory work (Horváth et al., 2013; Sarada et al., 1999; Silveira et al., 2007) or via 

fluorometry performed with either a benchtop fluorometer or an in-situ water quality 

probe, the latter providing near instantaneous results (Brient et al., 2007; Kasinak et 
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al., 2015). However, the detection and quantification of phycocyanin may be strongly 

affected by other water quality parameters. Determination of the relationship between 

phycocyanin concentrations and commonly or more readily evaluated water quality 

parameters may allow for the rapid assessment of cyanobacteria concentrations, and 

by extension, the potential for the presence of cyanotoxins in the water. Currently, it 

is not well-known which water quality parameters have the strongest effect on 

phycocyanin concentrations in agricultural irrigation ponds.  

Regression trees are an artificial intelligence tool used to search for and 

describe complex relationships between variables within data sets (Breiman, 2017; 

Loh, 2011). The regression tree algorithm splits the dataset into subsets that are 

homogeneous regarding the output variable and are separated from each other as 

much as possible with respect to the output variable. The first split divides the dataset 

into two groups. After this, those two groups can be further divided into two more 

splits, and so forth. If a split cannot be completed, the split will end with a “leaf” 

which contains the average value of the output variable. The use of this technology to 

elucidate patterns in non-linear relationships in aquatic systems has been summarized 

by Chau (2006) and Quetglas et al. (2011). More recently, Harris & Graham, (2017) 

and Millie et al. (2014) have employed machine learning to monitor and predict 

harmful cyanobacteria blooms in large bodies of water used for recreational activities 

and as drinking water reservoirs. The use of similar technology in agricultural water 

systems, however, is untested. The objectives of this work were to (1) identify the 

most influential environmental covariates affecting the phycocyanin concentrations in 

two Maryland agricultural irrigation ponds by using the machine learning 
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methodology of decision trees and (2) to analyze the environmental covariates to 

create quartile ranks with respect to phycocyanin concentrations and therefore 

identify water quality parameters that are suitable for use in monitoring phycocyanin 

concentrations. 

3.2 Materials & Methods 

3.2.1 Pond Monitoring 

Sampling was conducted at two irrigation ponds located on working farms in 

Maryland. These ponds, referred to as Pond 1 and Pond 2, were chosen because water 

was routinely drawn to irrigate fruit and vegetable crops. Sampling of these ponds 

was conducted during the growing season which was between June and October 

2018. Each pond was sampled six times during this period and since both ponds were 

located within a 1-hour drive from the laboratory water quality samples were 

processed the same day as collection.  

Pond 1 is a 1.01-acre man-made embankment pond with an average depth of 

2.7 m located near Germantown, MD. There is vegetation consisting of deciduous 

trees and shrubs along the northern and eastern banks and the remaining banks have 

grass cover. The pond is surrounded by crop fields. When the water level in this pond 

gets low, farm operators pump in water from an adjacent creek-fed pond. The inflow 

and outflows are both located near sampling location 15 and the irrigation pump 

intake is located near sampling location 12 (Appendix B, Supplemental Figure 3.1A).  

Pond 2 is located at the University of Maryland Wye Research Center in Wye 

Mills, MD. This pond is a 1.05-acre, excavated pond with an average depth of 2.7 m 

and most of the bank is covered with grass and dense shrubs. Large trees are also 
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present along the perimeter but are not close to the water. This pond is surrounded by 

crop fields, farm buildings, and one residential property. In March, the surrounding 

fields receive chemical fertilizer, but no animal manures are used. This pond is 

primarily fed through rainfall which enters through an ephemeral creek that leads into 

a culvert near sampling location 12 (Appendix B, Supplemental Figure 3.1B). This 

culvert tends to have a substantial inflow only when precipitation has recently 

occurred. On the south end of the pond there is a water-level dependent outflow drain 

located near sampling location 24 and the irrigation pump intake is located near 

sampling location 27 (Appendix B, Supplemental Figure 3.1B). 

Sampling locations were the same for every sampling date. Pond 1 had 23 

sampling locations and Pond 2 had 34 sampling locations (Appendix B, Supplemental 

Figures 3.1A and 3.1B, respectively). Water quality and phytoplankton community 

samples were always taken at a depth of 0 - 15 cm. Nearshore samples were taken 

with a 500-mL hand grabber (Dynalon, Rochester, NY, USA) at approximately 1.5 m 

from the shoreline. Interior samples were taken from a small boat and GPS was used 

to provide consistency of sampling locations between different sampling dates. After 

collection, samples were immediately placed into a cooler and transported to the lab 

for analysis. Water quality variables were measured in-situ with a YSI Exo-2 sonde 

(YSI Inc., Yellow Springs, OH, USA) at the same time and place the water samples 

were collected. The YSI sonde measured temperature (°C), dissolved oxygen (DO mg 

L-1), pH, fluorescent dissolved organic matter (fDOM measured in relative fluorescent 

units, RFU), chlorophyll-a content (RFU), and turbidity (NTU). The YSI sonde was 

calibrated prior to each sampling date according to the manufacturer’s 
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recommendations in the support manual. Precipitation data was collected at a weather 

station < 1 km away from each pond. Both weather stations are owned and operated 

by the University of Maryland. At the time of collection phytoplankton community 

samples were fixed with 5% unacidified Lugol’s iodine solution in a ratio of 0.5 mL 

of fixative to 50 mL of sample. Phytoplankton samples were stored in the dark at 4 °C 

until analysis. 

3.2.2 Laboratory Analyses 

All water quality samples were analyzed using Aquaflor fluorometers (Turner 

Designs, San Jose, CA, USA) for colored dissolved organic matter (CDOM, µg L-1), 

in-vivo or whole-cell chlorophyll-a (CHL RFU, RFU), and phycocyanin (Phyco, µg 

L-1) prior to extraction. Samples were also processed for extracted chlorophyll-a 

(CHL EXT, µg L-1) according to EPA method 445 (EPA, 1997) and measured using 

an Aquaflor fluorometer. For the extraction process, approximately 100 mL of pond 

water was vacuum filtered onto 0.7 µm glass fiber filters (Whatman, Maidstone, UK) 

and steeped in a 90% acetone and 10% deionized water solution overnight before 

being analyzed on the fluorometer. The CDOM and extracted chlorophyll channels 

were calibrated using standards provided by TurnerDesigns (San Jose, CA, USA). 

The phycocyanin channel was calibrated with PB-11 by PROzyme (Hayward, CA, 

USA). 

Phytoplankton community samples were analyzed using a Nikon Eclipse 

Ts2R inverted light microscope (Nikon Instruments, Melville, NY, USA) using a 

modified Utermöhl method as described in Marshall and Alden (1990). 

Phytoplankton taxa were identified morphologically to the lowest taxon possible 
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using John et al. (2002). For comparison to the chlorophyll and phycocyanin data, 

taxon data was summed into phytoplankton functional groups including 

cyanobacteria, chlorophytes, diatoms, dinoflagellates, and uncharacterized flagellates. 

Cyanobacteria were further categorized within the taxonomic orders Chroococcales, 

Oscillatoriales, and Nostocales as defined by Komárek et al. (2014).  

3.2.3 Data Analysis with Regression Trees 

Regression trees were created using RStudio (RStudio team, Boston, MA, 

USA) with the rpart.plot package. Each sampling date was analyzed independently 

with the regression tree analysis. A text file containing all parameters measured for 

that sampling date was uploaded into RStudio. This text file was then processed with 

the rpart.plot package to produce a corresponding phycocyanin regression tree for that 

date. Only the first three splits were taken into consideration to determine the primary 

predictors. 

Each split was made according to a condition. If a condition was true for a 

dataset, this dataset was included in the left branch after the split. If a condition was 

not true for a specific dataset, then the dataset was included in the right branch. For 

example, if pH was < 7, then all datasets with values of pH < 7 would form the left 

branch and all data points with pH values ≥ 7 would form the right branch. The most 

influential inputs were the variables in the conditional statements in primary splits at 

the top of the regression tree. 
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3.2.4 Ranking sampling locations by the phycocyanin concentrations over the observation 

period 

The phycocyanin concentrations per se were not suitable for ranking sampling 

locations over the observation period because at different days concentrations across 

the entire pond could be higher or lower than on other dates. Therefore, comparing 

concentrations at different days for the same location did not inform about the rank of 

location relative to other locations. To overcome this, we employed the ranking 

method demonstrated in Stocker et al. (2019) which allowed us to determine the 

cumulative probability distribution functions for phycocyanin concentrations on each 

sampling date and the quartile that each sampling location belonged to. This provided 

six quartile numbers for each sampling location, one for each observation date which 

were then averaged and ranked. For example, if a location contained phycocyanin 

concentrations mostly in the first and second quartile, its rank would be between 1 

and 2. This location would have mostly low concentrations of phycocyanin. 

Conversely, if the phycocyanin concentrations for a location were found mostly in the 

third or fourth quartiles, then the rank of this location would be between 3 and 4 and 

would contain mostly high concentrations of phycocyanin.  

3.2.5 Statistics and Graphics 

Correlations were computed in RStudio. Correlations were considered 

significant if the associated p values were < 0.05. The Kolmogorov-Smirnov non-

parametric test was used to compare the overall equal distribution of interior and 

nearshore samples and to find the probability of median concentrations being similar. 
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Sigmaplot v. 13 (SYSTAT, Chicago, IL, USA) and ArcGIS Pro v2.31 (ESRI, 

Redlands, CA, USA) were used to create visual representations of the data. 

3.3 Results 

3.3.1 Data Summary 

Precipitation occurred prior to Pond 1 sampling dates 6/20/18 (7.6mm), 

7/19/18 (18.5mm), and 8/15/19 (2.5mm) and Pond 2 sampling dates 6/26/18 (22.9), 

8/23/18 (9.9mm) and 9/20/18 (13.5mm). All other sampling dates were preceded by a 

minimum of 48 hours of baseflow conditions. Information on the number of days 

from last rainfall and rain accumulations can be seen in Appendix B, Supplemental 

Table 3.1. Phycocyanin concentrations generally were between 20 and 50 µg L-1 at 

Pond 1, except for 6/20/18, when concentrations were 114 µg L-1 (Figure 3.1). 

Increased phycocyanin concentrations on this date were due to a cyanobacteria bloom 

that made up 72.04% of the phytoplankton community (Appendix B, Supplemental 

Table 3.2). In Pond 1, sampling dates after 6/20/18 indicated that cyanobacteria made 

up < 20% of the phytoplankton community composition, except on 10/4/18 when 

cyanobacteria comprised 94.70% of the phytoplankton community. Phycocyanin 

concentrations were higher throughout the summer at Pond 2 (70 to 170 µg L-1) and 

displayed an increasing trend over the sampling season. The phytoplankton 

community in Pond 2 was dominated by cyanobacteria most of the sampling season 

with all but two dates having a community comprised of > 40% cyanobacteria 

(Appendix B, Supplemental Table 3.2). Time series data of phycocyanin 

concentrations and other water quality parameters are shown in Appendix B, 

Supplemental Table 3.3. Mean values and variability of all measured parameters were 
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generally higher at Pond 2 than at Pond 1. Pond 1 was treated with the algicide 

copper sulfate on 7/1/18 which resulted in a substantial decrease in mean 

phycocyanin concentrations when routine sampling occurring on 7/5/18. Following 

this treatment, the chlorophyll-a, turbidity, CDOM, fDOM, and phycocyanin 

concentrations drastically decreased (Appendix B, Supplemental Table 3.3). The 

microscopy analysis of the phytoplankton sample collected on 7/5/18 also indicated 

that phytoplankton cell concentrations had severely declined after the algicide 

application (data not shown). Measurements returned to pre-treated levels by 8/29/18. 

The last sampling date for Pond 1 was on 10/4/18 and by this date most chlorophyll-a 

concentrations dropped drastically with the change of season.  

Consistent trends in water quality variables from date to date were generally 

not present in Pond 2. The only exceptions to this were turbidity and chlorophyll-a 

concentrations measured with the YSI sonde. At Pond 2, turbidity generally increased 

throughout the summer while the chlorophyll-a concentrations measured with the YSI 

sonde decreased throughout the 6 sampling dates. There was a substantial drop in 

fDOM, CDOM, and all three chlorophyll-a concentrations on 7/10/18 at Pond 2. Most 

of these concentrations returned to prior ranges by the next sampling date. 
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Figure 3.1. Precipitation data and phycocyanin concentrations for both ponds. 
Precipitation data is represented in bars and phycocyanin concentrations are shown 
with symbols. 

3.3.2 Correlations 

The strength of the relationships between water quality parameters was 

assessed by computing Pearson’s correlation coefficients (r). Correlations were 

considered significant if the associated p values were < 0.05. The correlations 

determined for both ponds are reported in Appendix B, Supplemental Table 3.4. 

Dissolved oxygen concentrations and pH had significant correlations in both ponds 

with r values ranging from 0.448 to 0.811 in Pond 1 and from 0.868 to 0.970 in Pond 

2. In Pond 1, phycocyanin concentrations had a moderate positive correlation with 

CDOM and CHL EXT concentrations with r values ranging from 0.519 to 0.761 and 

0.525 to 0.900, respectively. Other significant correlations observed in Pond 1 were 

between concentrations of CHL RFU and CHL EXT (r values from 0.525 to 0.910), 

CDOM and CHL EXT (r values from 0.619 to 0.819), and CHL RFU and CDOM (r 
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values from 0.462 to 0.915). There was also a positive relationship between turbidity 

and the CHL YSI concentration (r = 0.761) on 8/15/2018. Moderate to strong 

negative correlations were seen in Pond 1 between the concentrations of fDOM and 

DO (r values from -0.473 to -0.625), pH (r values from -0.435 to -0.564), and NTU (r 

value of -0.701). Negative relationships were also observed between concentrations 

of DO and CDOM (r values from -0.568 to -0.755), CHL EXT (r values from -0.480 

to -0.483), and phycocyanin (r value of -0.509). 

In Pond 2, phycocyanin concentrations displayed both positive and negative 

correlations with concentrations of CHL YSI (r values of -0.381 to 0.916), CDOM (r 

values from -0.616 to 0.991), CHL RFU (r values from -0.598 to 0.993), and CHL 

EXT (r values from -0.493 to 0.962). The majority of correlations between 

phycocyanin concentrations and CHL YSI, CDOM, and CHL RFU concentrations 

were significant and positive in Pond 2; however, on the 8/29/18, there was a 

significant negative correlation. Extracted chlorophyll-a (CHL EXT) concentration 

had moderate to strong positive correlations with turbidity (r value from 0.389 to 

0.836), CHL YSI (r values from 0.365 to 0.900), CDOM (r values from 0.575 to 

0.963), and CHL RFU (r values from 0.435 to 0.968) concentrations. The 

concentrations of CHL RFU also had strong positive correlations with CHL YSI (r 

values from 0.460 to 0.969) and CDOM (r values from 0.636 to 0.998) 

concentrations, as well as moderate positive correlations with dissolved oxygen (r 

values from 0.341 to 0.528) and turbidity (r values from 0.414 to 0.789). 

Concentrations of CDOM displayed moderate correlations with concentrations of DO 

(r values from 0.355 to 0.569) and turbidity (r values from 0.427 to 0.808) and had a 
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strong correlation with CHL YSI (r values from 0.578 to 0.970) concentrations. The 

concentration of fDOM was negatively correlated with all parameters in Pond 2 and 

had significant r values ranging from -0.343 to -0.891.  

3.3.3 Regression Tree Analysis 

Regression trees relating phycocyanin concentrations to environmental 

covariates at each pond and each observation date are shown in Appendix B, 

Supplemental Figure 3.2. Table 3.1 presents the environmental covariates that 

provided the first two splits and therefore were the most influential predictors 

according to the regression tree algorithm. The root mean square error (RMSE) and r2 

values for the regression trees can be seen in Appendix B, Supplemental Table 3.5. 

The most frequent influential variables were concentrations of CDOM, CHL EXT, 

and turbidity (NTU). The concentration of CDOM was found to be a leading 

predictor 32% of the time, CHL EXT 28% of the time, and turbidity 24% of the time. 

Concentrations of DO, fDOM, and pH were found to be the most influential predictor 

in fewer cases (16%). Inspection of the regression trees (Appendix B, Supplemental 

Figure 3.2) shows that after a split, lower phycocyanin concentrations were found in a 

smaller range of values of the splitting environmental covariate for CDOM, extracted 

chlorophyll-a and turbidity, except on two occasions. The exceptions, 7/19/18 and 

8/23/18, had larger turbidity values yielding smaller phycocyanin concentrations in 

Pond 1 and Pond 2, respectively. Dissolved oxygen concentrations only showed up as 

a predictor once in each pond and higher dissolved oxygen concentrations 

corresponded to lower phycocyanin concentrations. On 7/19/18 the phytoplankton 

community was comprised mostly of non-cyanobacteria algae with only 0.5% of the 
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community being cyanobacteria species. Similarly, on 8/23/18, less than 50 % of the 

phytoplankton community was comprised of cyanobacteria. Overall, CDOM, CHL 

EXT, and NTU concentrations were found as primary predictors and lower 

concentrations or readings of these predictors typically resulted in lower phycocyanin 

concentrations for both ponds. 

Table 3.1: Most influential water quality variables, as identified by regression tree 
analyses, and effect on phycocyanin concentrations for Pond 1 and Pond 2.  

Date: First Split Second split to the Left Second split to the right 
Split 
variable 

Phycocyanin is 
smaller if  

Split 
variable 

Phycocyanin is 
smaller if 

Split 
variable 

Phycocyanin is 
smaller if 

Pond 1 
06/20/18 CHL 

EXT 
CHL EXT is 
smaller 

CHL 
EXT 

CHL EXT is 
smaller 

NONE NONE 

07/05/18 CDOM CDOM is 
smaller 

CDOM CDOM is 
smaller 

NONE NONE 

07/19/18 NTU NTU is larger DO DO is larger NONE NONE 

08/15/18 CHL 
EXT 

CHL EXT is 
smaller 

NTU NTU is smaller NONE NONE 

08/29/18 CHL 
EXT 

CHL EXT is 
smaller 

CDOM CDOM is 
smaller 

NONE  NONE 

10/04/18 CHL 
EXT 

CHL EXT is 
smaller 

NTU NTU is smaller NONE NONE 

Pond 2 
06/14/18 CDOM CDOM is 

smaller 
pH pH is larger NONE NONE 

06/26/18 CDOM CDOM is 
smaller 

CDOM CDOM is 
smaller 

NONE NONE 

07/10/18 CDOM CDOM is 
smaller 

NTU   NTU is smaller NONE NONE 

08/07/18 CHL 
EXT 

CHL EXT is 
smaller 

CDOM CDOM is 
smaller 

fDOM CDOM is 
smaller 

08/23/18 NTU NTU is larger DO  DO is larger NONE NONE 

09/20/18 NTU NTU is smaller CHL 
EXT 

CHL EXT is 
smaller 

NONE NONE 

DO - dissolved oxygen (mg L-1), NTU - turbidity (NTU), CDOM - colored dissolved organic 
matter (µg L-1), CHL EXT – extracted chlorophyll-a concentrations (µg L-1). 
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3.3.4 Average Ranks 

Locations with quartile ranks of 1-2 represented locations of generally lower 

phycocyanin concentrations throughout the summer and locations with ranks of 3-4 

represented locations which harbored higher concentrations of phycocyanin 

concentrations throughout the summer. In Pond 1 (Figure 3.2A), sampling locations 

falling within the 3rd and 4th quartiles were generally shoreline or near shore 

locations. Conversely, interior sampling locations tended to fall into the 1st and 2nd 

quartiles. In Pond 1, the average quartile for interior sampling locations was 2.2 and 

the average quartile for shoreline sampling locations was 2.7. In Pond 2 (Figure 

3.2B), higher quartiles were seen at the northern area of the pond where the inflow 

culvert is located and lower quartiles towards the southern end of the pond near the 

outflow. In Pond 2, almost all interior samples fell within the 1st and 2nd quartile, 

except for sampling points 33 and 34 which were near the northern portion of the 

pond. In Pond 2, the average quartile for interior locations was 2.0 and the average 

quartile for nearshore locations was 2.7.  
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In Pond 1, significant differences between phycocyanin concentrations in the 

interior and nearshore samples were only seen in two of the six sampling dates. For 

Pond 1, these significant dates were the last two sampling dates, 8/29/18 and 10/4/18. 

In Pond 2 significant differences between the nearshore and interior phycocyanin 

concentrations were seen in three of the six sampling dates. For Pond 2, these 

significant dates were the first sampling date, 6/14/18, and the last two sampling 

dates, 8/23/18 and 9/20/18.  

Figure 3.2: Average quartiles of phycocyanin concentrations measured in each 
location throughout the sampling season for Pond 1 (A) and Pond 2 (B). Number 
located in the circle is the sampling location designation. Number located above the 
circle denotes the average phycocyanin quartile rank for that location. 
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3.4 Discussion 

Phycocyanin concentrations in Pond 2 were comparable with several other 

studies performed in eutrophic reservoirs (Kong et al., 2014; Li et al., 2015; Randolph 

et al., 2008), ponds (Kasinak et al., 2015) and bays (Mishra et al., 2013). Pond 1 

phycocyanin concentrations were low and were comparable with concentrations 

reported in mesotrophic freshwater reservoirs (Li et al., 2010; Sengpiel, 2007; Song et 

al., 2013). Because phycocyanin concentrations were representative of other 

waterbodies and water quality parameters remained relatively stable throughout the 

sampling season (Appendix B, Supplemental Table 3.1), the study areas examined 

here provided good systems in which to assess which measurable environmental 

covariates could be used as predictors of phycocyanin concentrations.  

Average concentrations of phycocyanin in Pond 1 were relatively constant 

after the algicide application in the beginning of July and only increased slightly on 

the last sampling date in October. In Pond 2, phycocyanin concentrations 

demonstrated a steady increase throughout the summer, which has been shown by 

other authors (McQuaid et al., 2011; Otsuki et al., 1994), and is also reflected in 

remote sensing analyses for cyanobacteria blooms (Sayers et al., 2016; Wynne & 

Stumpf, 2015) and ecological studies (summarized in Paerl & Otten, 2013). Because 

of climatic patterns in the Chesapeake Bay region, cyanobacteria populations start to 

develop in late-May to early-June and begin to decline in mid- to late- October 

(Marshall et al., 2005; Marshall & Alden, 1990; Wood et al., 2014; J. Wolny, 

unpublished data). Concentrations were noticeably different between ponds with 

Pond 2 having approximately 2.5 to 3 times greater phycocyanin concentrations from 
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July 1 onward. Precipitation seemed to have little effect on cyanobacterial 

communities with only slight increases in phycocyanin concentrations after rainfall 

events. After rain events there was no significant increase in fDOM concentrations 

which may indicate that rainfall did not transport runoff containing large amounts of 

organic matter. Future sampling strategies should be designed with the temporal scale 

needed to assess the immediate and long-term impacts of rainfall on agricultural pond 

water quality and phytoplankton community constituents. Temperature did not 

strongly correlate with phycocyanin increase in this work. One possible reason for 

that is the narrow range of temperatures measured at different locations on the same 

observation day. These ranges were on average 2.1°C. Another possible reason could 

be the relatively wide range of optimum temperatures for growth of the cyanobacteria 

populations found in these ponds. Konopka & Brock (1978) reported optimal growth 

occurred between 20 and 30 °C for many of the species we observed in our study 

sites. On all sampling days, water temperatures were in this interval, so the growth 

conditions were optimal for cyanobacteria during the entire observation period. The 

multicollinearity, i.e., correlation of temperature with other regression inputs, should 

also be considered. In the case of multicollinearity, the dependence on temperature 

could be masked by the dependence on another variable correlated with temperature. 

While possible, we did not observe a strong correlation of water quality parameters 

with temperature on any given day of the study. Although temperature is an important 

factor of cyanobacteria growth and metabolism, the observational setup in this work 

appeared to not be appropriate for the demonstration of the effects of temperature. 
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On 7/1/18, the algicide copper sulfate was applied to Pond 1. While the 

concentration of copper sulfate used in Pond 1 is unknown, all measured water 

quality parameters decreased significantly after this application. This is comparable to 

what Schrader & Kingsbury (2000) and Song et al. (2011) reported for other inland 

waters that were assessed during and after treatments with copper sulfate. Average 

concentrations of DO, pH, CDOM, and fDOM returned to pre-algicide application 

concentrations about one month after application. For the algal pigment 

measurements (CHL RFU, CHL YSI, CHL EXT and phycocyanin), all 

concentrations decreased after copper sulfate application and slowly recovered to 

either pre-application or greater levels by the last summer sampling date of 8/29/18. 

Return of chlorophyll-a readings to previous values after algicide application within 

days to weeks was also seen by Dia (2016) and Effler et al. (1980) with low-level 

treatments (8-14 µg L-1) of algicide. Elder & Horne (1978) observed recovery of algal 

populations in as little as 5 days after treatment and attributed this to copper sulfate 

possibly being beneficial to biological activity if applied in very low concentrations 

(5-10µg L-1). The rate of recovery of the phytoplankton community to the application 

of copper sulfate, or other algicides, should be monitored if the algicide application is 

meant to act as a safeguard to the exposure of crops to cyanotoxins via irrigation 

waters. It should also be noted that treatment of waterbodies with algicides can 

immediately release large quantities of biotoxins, if toxin-producing species are 

highly concentrated (Greenfield et al., 2014; Zhou et al., 2013), so assessment of algal 

community composition should be evaluated prior to algicide application if the water 

is to be used for crop irrigation or as drinking water for livestock.   
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In general, three variables consistently appeared to be primary predictors of 

phycocyanin concentrations and were the most influential variables from the 

regression tree analysis: the concentrations of extracted chlorophyll-a (CHL EXT), 

colored dissolved organic matter (CDOM), and turbidity (NTU). Chlorophyll-a can 

be regarded as a good primary predictor because cyanobacteria contain both 

phycocyanin and chlorophyll-a pigments. However, if phycocyanin and chlorophyll-a 

concentrations are divergent, this could indicate a phytoplankton community not 

dominated by cyanobacteria, though both Beutler et al. (2004) and Izydorczyk et al. 

(2009) have demonstrated some flaws with detecting cyanobacteria pigments via 

fluorometric analysis alone. Izydorczyk et al. (2009) and Zamyadi et al. (2016) 

summarized the water quality conditions and phytoplankton community composition 

that may cause discrepancies between pigment measurements taken with field-

deployed probes and fluorometry. These scenarios should be investigated for 

agricultural ponds such as those studied here. It is also important to note that CDOM 

and turbidity can result in a decrease in the excitation of chlorophyll in water samples 

causing a dampening effect on the in-vivo chlorophyll fluorescence and potentially 

altering results (Gitelson et al., 2008; Schalles, 2006; Witte et al., 1982). Turbidity 

was frequently in the first two splits as a predictor of phycocyanin concentrations. 

This is likely because the presence of cyanobacteria in the water increases turbidity. 

The more cyanobacteria present in the water column the less transparent the water 

will be, having negative consequences on the underlying ecosystem (Havens, 2008; 

Simis et al., 2005). Additionally, some cyanobacteria, such as species within the 

Oscillatoriales, are more shade tolerant and can dominate in light-limited turbid, 
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eutrophic waters (Havens, 2008; Scheffer et al., 1997). Conversely, in environments 

where there is less submerged aquatic vegetation increased light availability 

throughout the water column allows cyanobacteria to proliferate (Hudon et al., 2014; 

J. Wolny, unpublished data) and become more toxic as the production of microcystin 

may be protective from photo-oxidation (Paerl & Otten, 2013; Zilliges et al., 2011). 

Colored dissolved organic matter was the other water quality parameter that presented 

as a primary predictor of phycocyanin concentrations in the regression tree analysis. 

Cyanobacteria can contribute to the total CDOM concentration during bloom 

maintenance and degradation phases; this CDOM can provide nutrients to fuel 

existing or new blooms as it is broken down by photodegradation and heterotrophic 

bacteria into simpler organics, including urea, and inorganic compounds 

(Shanmugam et al., 2016; Steinberg et al., 2004; Xie et al., 2012; Zhang et al., 2014). 

However, CDOM may also offer protection to algal cells from UV irradiation 

(Patidar et al., 2015) thus providing a more suitable habitat for bloom proliferation.  

In both ponds, smaller predictor values resulted in smaller phycocyanin 

concentrations. However, there were two dates, 7/19/18 and 8/23/18, where turbidity 

was the primary split predictor but smaller phycocyanin concentrations were found 

for larger turbidity values. This may be due to a rainfall episode a few days prior to 

each of the sampling dates. On 7/19/18, there was a rainfall event with total 

accumulation of 18.5 mm of rain and on 8/21/18 a total accumulation of 9.9 mm of 

rain fell. Rainfall was above average for the study area during 2018, particularly for 

May through September (Winter et al., 2020). The saturated ground may have 

contributed to increased surface run-off that influenced the measured turbidity values. 
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The regression tree analysis in this work did not consider rainfall as an input variable 

since rainfall can be important for the average level of cyanobacteria on different 

days whereas the influential parameters in this work were determined from the 

differences across the pond on the same day. A sampling design with finer scale 

temporal monitoring may have allowed us to better assess how rain events affect 

agriculture ponds in the short- and long-term.  

While in general the ponds had the same predictors, they differed in the 

primary influential predictors. In Pond 1, chlorophyll-a was the primary split 

predictor in 4 out of 6 sampling dates while CDOM and turbidity occurred more so in 

the secondary splits. This relates well with the phytoplankton community 

composition data based on cell concentrations obtained through light microscopy 

analysis. For Pond 1, four out of six dates had a phytoplankton community that was 

comprised of less than 20% cyanobacteria. This indicates that Pond 1 was not 

dominated by a cyanobacterial community for a majority of the summer allowing for 

other chlorophyll-a producing algae to proliferate. In Pond 2, which was dominated 

by cyanobacteria and experienced blooms of the nitrogen-fixing cyanobacterium, 

Aphanizomenon, CDOM was the primary split predictor for half of the sampling 

dates. Benavides et al. (2018) have shown that DOM concentrations play an 

important role in stimulating nitrogen-fixation in marine diazotrophic cyanobacteria. 

Similarly, Vähätalo et al. (2011) showed that terrestrial DOM could support coastal 

plankton communities through biotransfer mediated by picocyanobacteria. The 

presence of diazotrophs may enrich the pond water with nitrogen, using this enriched 

pond water for irrigation may have a fertigation effect, which would be interesting to 
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evaluate in the future. To date, the role of DOM in small eutrophic ponds, such as 

those in this study, has not been investigated. 

Overall, the ranks of nearshore locations were slightly higher than that of the 

interior locations. Cyanobacteria tend to proliferate in low flow and stagnant 

environments (Paerl & Otten, 2013) such as those noted along shorelines of the two 

study sites. There was a difference in phycocyanin concentrations between interior 

and near shore samples in both ponds, although only significant in two of six dates 

and three of six dates for Pond 1 and Pond 2, respectively. Foster et al. (2019) stated 

that near shore or shoreline accumulations of cyanobacteria are driven mostly by 

wind. While wind direction and speed were not noted for this study this is a 

reasonable assumption to make given the open areas in which these ponds are situated 

and their shallow depths. Associations have been made between water quality, wind, 

and depth for other small waterbodies (Andres et al., 2019; Ji & Havens, 2019). 

Interestingly, locations of higher quartile ranks seem to group together in 

certain zones of the ponds which shows a stronger pattern than simply whether the 

sampling location was located on the interior or bank of the pond. In Pond 1 there 

seems to be two zones of high concentrations of phycocyanin: one in the northwest 

corner near locations 21, 22, and 23, and another on the east side of the pond near 

locations 4, 5, 6, 12, and 15. These zones may be a product of important features of 

the pond. The northwest zone is located near an inflow point, which is believed to be 

ground water fed. This area is relatively shallow compared to the rest of the pond. 

Scheffer et al. (1997) found shallow lakes to be more conducive to cyanobacteria 

growth because there is less thermal stratification and groundwater discharge has 
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been hypothesized as a nutrient source for inland and coastal HABs (Hagerthey & 

Kerfoot, 2005; Hu et al., 2006). Kosten et al. (2011) have hypothesized that shallow 

waterbodies are closer to the sediment-water boundary in which nutrients can re-

suspend into the water column and Rengefors et al. (2004) demonstrated that mixing 

action in the littoral zone can stimulate the growth of cyanobacteria, such as 

Microcystis and Dolichospermum. The eastern zone where the pond’s outflow and 

inflow are located may have a higher nutrient concentration compared to other 

regions in the pond as a result of water transfer activities from a nearby creek. 

Nutrient allocation within the pond or in the feeder creek was not studied during this 

survey but should be considered in future efforts. Additionally, the northern end of 

Pond 2, where an ephemeral creek brings in water during rain events had, on average, 

higher phycocyanin concentrations. This inflow consists of runoff from adjacent, 

fertilized agricultural fields. Cyanobacteria are known to congregate where nutrients 

are accessible (Davis et al., 2009; Havens et al., 2003; Paerl et al., 2011) and can even 

migrate to nutrient sources (Butitta et al., 2017). The fine-scale spatial gradient 

elucidated in the 1-acre ponds used in this study demonstrates that sampling results 

may be substantially different depending on the locations within the pond which are 

sampled. Thus, the choice of a sampling location should not be an arbitrary decision 

and if feasible multiple locations within cyanobacteria-prone waters should be 

routinely monitored. Samples from one zone of the pond may contain greater 

populations of potentially toxic cyanobacteria than other zones which could alter the 

conclusion of water quality assessments. Cyanobacteria toxins were not routinely 

assayed during this study. However, the phytoplankton communities in both ponds 
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were dominated by potentially toxigenic cyanobacteria (i.e., Microcystis, 

Aphanizomenon, and several other species from the Order Nostocales) from June to 

October. Resource managers who oversee these ponds, and others like them that are 

routinely used for agricultural irrigation purposes, should implement a toxin testing 

plan when water quality parameters, such as elevated DO and pH measurements, 

coupled with elevated turbidity or CDOM concentrations, indicate the likelihood of a 

cyanobacteria bloom. 

The most influential phycocyanin covariates, i.e., chlorophyll, CDOM, and 

turbidity, appear to be retrievable with remote sensing technologies and algorithms 

(Giardino et al., 2012; Kutser et al., 2020; Pyo et al., 2016). Therefore, drones with 

appropriate imaging equipment could be used to obtain data on the spatial distribution 

of influential covariates (Kislik et al., 2018) and help define zones for cyanobacteria 

monitoring. This opens an interesting research avenue to explore. 

3.5 Conclusions 

Using the machine learning process of decision trees, we determined that 

extracted chlorophyll-a, colored dissolved organic matter and turbidity were the most 

influential predictors of phycocyanin concentrations for both ponds on all but one of 

the sampling dates. Monitoring of the spatial patterns of these environmental 

covariates in ponds or lakes may be helpful to identify spatial patterns of 

cyanobacteria populations. Zones of consistently higher concentrations of 

phycocyanin were found in both of the agricultural irrigation ponds studied in this 

work. This demonstrates the importance of deciding where to sample when 

monitoring for water quality and harmful algae, even in small waterbodies like these 
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irrigation ponds. If sampling is conducted at zones with consistently high 

phycocyanin concentrations, it may not accurately represent the remaining area or 

potentially the majority of the waterbody. Conversely, measuring from zones with 

consistently low phycocyanin concentrations may lead to underestimating the 

potential risk from cyanotoxins in irrigation waters. Understanding the spatial 

patterns of cyanobacteria in irrigation ponds and the relationships between 

environmental covariates with easily measured water quality parameters may assist in 

better and more efficient pond management practices and the ability to better predict 

potentially toxic cyanobacteria blooms. There were impacts to both irrigation ponds 

following rain events, but finer scale temporal monitoring is needed to put these 

findings in context with cyanobacteria blooms.  
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Chapter 4: Examining the relationship between phytoplankton 
community structure and water quality measurements: a 
machine learning application 
4.1 Introduction 

Phytoplankton community composition and abundance is often used in 

assessments of recreational, aquaculture, and drinking water quality. Long-term 

monitoring studies conducted in marine and estuarine waters used for aquaculture 

activities (Marić et al., 2012; Marshall et al., 2009) and in freshwater lakes and 

reservoirs used to provide drinking water and recreational areas (Chen et al., 2003; 

Wynne & Stumpf, 2015; Znachor et al., 2020) have demonstrated distinctive 

relationships between certain phytoplankton community constituents and water 

temperature, salinity, and nutrient concentrations. However, long-term phytoplankton 

community composition studies in small-bodied agricultural irrigation waters to 

examine similar relationships, are lacking. 

The examination of waters for phytoplankton community composition and 

abundance is a time-consuming activity that relies on the expertise of well-trained 

phytoplankton taxonomists or automated technologies, such as flow cytometry, that 

may be cost-prohibitive to many water quality management programs (Bergkemper & 

Weisse, 2018; Lawton et al., 1999). Satellite imagery has proven useful for 

monitoring phytoplankton community structure in large lakes (>24,000 acres, (Ho et 

al., 2019)) but does not yet have the spatial scale needed to remotely observe smaller 

waterbodies that are increasingly being used in agricultural irrigation applications 

(López-Felices et al., 2020). Hence, alternative techniques are being explored to 

examine the relationships between more easily measured water quality parameters 
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(i.e., temperature, chlorophyll-a, and specific conductance) and phytoplankton 

community composition and abundance. The presence of such relationships makes 

the use of regression analysis feasible for predicting phytoplankton concentrations 

using measured water quality parameters. Regression analyses have been used to 

predict the occurrence of bloom-forming cyanobacteria in shallow lakes (Descy et al., 

2016; Rao et al., 2021), green algae in reservoirs (Fornarelli et al., 2013), and diatoms 

in estuaries, rivers, and lakes (Gayoso, 1998; Schönfelder et al., 2002).  

Regression analyses were used to successfully predict the composition of 

phytoplankton communities in a drinking water reservoir near Beijing, China that was 

greater than 44,000 acres (Zeng et al., 2017). However, as noted by Cheruvelil et al. 

(2008), scale and regionalization are important factors to consider when conducting 

water quality assessments and applying water quality standards. Recently, machine 

learning provided several versatile techniques to establish models suitable to create 

‘phytoplankton – water quality’ relationships. The work presented here assesses the 

use of the random forest analysis, similar to the regression analyses employed by 

Zeng et al. (2017), to estimate phytoplankton abundance in small scale (1 acre) 

agriculture ponds used for crop irrigation. The objective of this work was to evaluate 

the performance of the random forest algorithm in estimating the phytoplankton 

functional groups from in-situ water quality measurements of different complexity 

which were obtained during three years of spatially intensive observations at two 

agricultural irrigation ponds. 

Phytoplankton community structure has long been used to assess trophic 

changes in aquatic systems (Reynolds, 1998) with shifts from green algae dominated 
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communities to cyanobacteria dominated communities indicating eutrophic 

conditions (Duarte et al., 1992; Watson et al., 1997). For this study three 

phytoplankton groups were considered critical to assess in relationship to water 

quality parameters due to their abundance within local freshwater phytoplankton 

populations. Previous studies by Parson and Parker (1989) and Marshall (2013, 2014) 

demonstrated that between 70-80% of regional freshwater lake phytoplankton 

community structure was composed of green algae (Chlorophytes), diatoms 

(Bacillariophytes), and cyanobacteria (Cyanophytes). Due to the harmful and 

potentially toxic effects of cyanobacteria blooms on human and environmental health, 

the detection, prediction, and modeling of these blooms has become a focus for 

resource managers (Rousso et al., 2020; Stauffer et al., 2019; Stumpf et al., 2016). 

Additionally, there is growing concern about the risk that cyanotoxins may pose to 

the agriculture industry through degraded water quality and the transfer of 

cyanotoxins from irrigation waters to crops and livestock, particularly as climate 

change increases the occurrence and toxicity of cyanobacteria blooms (Lee et al., 

2017; Weralupitiya et al., 2022; Wood, 2016). 

4.2 Methods 

4.2.1 Data collection 

Phytoplankton and water quality sampling was conducted every two weeks at 

two 1-acre ponds on working farms in Maryland during the 2017 and 2018 growing 

seasons (May – October). Pond 1 (Figure 4.1-P1) located in Germantown, Maryland 

is a man-made embankment pond with in-flow from a co-located pond; 23 stations 

were routinely sampled in this pond. Pond 2 (Figure 4.1-P2) located in Wye Mills, 
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Maryland (University of Maryland Wye Research Center) is an excavated pond with 

inflow from an ephemeral creek; 34 stations were routinely sampled in this pond. 

Phytoplankton samples and water quality measurements were made at all stations in 

Pond 1. Phytoplankton samples at Pond 2 were collected at fewer locations, 

consisting of odd numbered nearshore locations and all interior sampling locations 

(22 stations) whereas water quality measurements were made at all stations. Full site 

descriptions are provided in Smith et al. (2020). In-situ measurements were taken 

along with a water sample for laboratory processing at each sampling location. A YSI 

Exo-2 sonde (Yellow Springs Instruments, Yellow Spring, OH, USA) was used to 

measure temperature (TEMP), dissolved oxygen (DO), specific conductance (SPC), 

pH, fluorescent dissolved organic matter (FDOM), and turbidity (NTU). As a proxy 

for phytoplankton density, both chlorophyll-a (CHL) and phycocyanin (Phyco) were 

measured with the YSI Exo-2 sonde as demonstrated by Brient et al. (2008) and Song 

et al. (2013). Water samples were measured for colored dissolved organic matter 

(CDOM) using a Turner Designs AquaFluor fluorometer (San Jose, CA, USA). 

Identification and enumeration of phytoplankton was performed using a modified 

Utermöhl method described in Marshall & Alden (1990) with taxa identified 

according to John et al. (2011) and Bellinger & Sigee (2015). For full details of 

sampling methodologies see Smith et al. (2021). Water quality sampling methods and 

phytoplankton analyses for the 2019 sampling year were the same as those performed 

in 2017 and 2018 but occurred on a less routine schedule. In Pond 1 there were six 

sampling dates in 2017, six sampling dates in 2018, and three sampling dates in 2019. 
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In Pond 2 there were five sampling dates in 2017, six sampling dates in 2018, and two 

sampling dates in 2019. 

Field work conducted in 2017 and 2018 yielded 518 phytoplankton samples, 

in-situ measurements, and laboratory-based water quality measurements. For the 

purpose of the random forest analysis phytoplankton data was examined at the 

functional group level (diatoms, pelagic green algae, and cyanobacteria). While other 

taxa (i.e., dinoflagellates) were observed with microscopy analyses, the low spatial 

and temporal occurrence and abundance of these taxa over the course of the study 

precluded examination with the random forest analysis. The data collected in 2019 

were used as a blind dataset to test the random forest model.  
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Figure 4.1. Sampling locations for both Pond 1 (P1) and Pond 2 (P2). Sampling 
location number is shown inside the circle. Yellow circles indicate interior water 
sampling locations and orange circles indicate nearshore sampling locations. 

4.2.2 Modeling with the random forest algorithm 

The machine learning random forest algorithm was used to predict 

phytoplankton functional group concentrations and the most influential parameters 

for each group. The random forest algorithm is an extension of decision tree 

algorithms. Each decision tree splits a dataset into multiple subgroups. At each split 

the data is divided into two groups: one group contains the most similar values within 

the dataset and another group containing the most dissimilar values within the dataset. 

The splitting process ends with subgroups called nodes, averages over which is the 
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sought prediction. While regression trees alone are very informative about influential 

parameters of the data set, a single tree is often not the best at prediction. The random 

forest algorithm builds many decision trees and averages their outputs. The result is 

more accurate outputs which are better suited for prediction models.  

Random forest models with various inputs and outputs were developed in this 

study. Three input datasets (A, B, and C) were used for each of the three output 

datasets of phytoplankton functional groups (diatoms, green algae, and 

cyanobacteria). The input set A included physio-chemical parameters, i.e., TEMP, 

pH, DO, NTU, and SPC. In 2018 photosynthetic active radiation (PAR) was included 

in input set A. The input set B included parameters related to organic constituents, 

i.e., CHL, Phyco, CDOM, FDOM. Input set C included nutrients and macro elements, 

i.e., potassium, calcium, magnesium, ammonium, nitrate, and phosphate. For 2017 

and 2017+2018 data sets, the random forest model was developed with input set A, 

input set B, and combined input sets A and B (AB). For the 2018 dataset random 

forest models were developed with input set A, input set B, input set C, and 

combinations of these input sets (AB, AC, BC, ABC). All random forest 

computations were completed in Rstudio (Rstudio Team, Boston, MA, USA) using 

the ‘randomForest’ package. 

4.2.3 Model performance metrics 

To evaluate the model’s prediction capabilities, the root-mean-squared errors 

(RMSEs) were computed with the predicted and measured values as: 

!"#$ = 	�	' = 1�)�			*+,	-�', /012� −
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where  &'(	)�#, +,-.� and &'(	)�#, /0,1#23� are measured and predicted 

concentrations for the ith dataset and N is the total number of datasets. The RMSE 

values were computed for testing datasets for individual regression trees of the 

random forest models if the independent testing data were not available. If the 

independent data was available, the RMSE vales were computed from the testing 

datasets and predictions of the random forest models. T-tests were used to determine 

significant differences in accuracy metric results, and a p value of 0.05 was selected. 

The Williams-Kloot test (Williams & Kloot, 1953) was utilized to compare 

performance of pairs of random forest models obtained with different inputs for 

estimating phytoplankton concentrations. The test consists of computing the slope of 

the inward regression using the following equation:  

	: − 	1�2�			:��1� + 		:��2��� = <			:��2� − 		:��1�� 

where Y is the measured concentration, 		4��1� is the predicted 

concentration from model 1 and  		4��2� is the predicted concentration from model 

2. If 7 is positive and significantly different from zero, then the performance of model 

2 is better than performance of model 1. If 7 is negative and significantly different 

from zero, then the performance of model 1 is the better of the two models. A p value 

of 0.05 was selected to determine significance in the Williams-Kloot test applications. 

The ratio of coefficients of variance (CVs) were also calculated to compare 

the variation of interior locations with the variation of nearshore sampling locations 

for phytoplankton functional groups and water quality parameters. The equation for 

calculating the ratio of CVs for each parameter is as follows: 
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where " is the standard deviation and % is the mean of the interior (i) 

parameters or nearshore (n) parameters. 

The input variable importance was quantified by the Mean Decrease Accuracy 

(%IncMSE) as implemented in the Rstudio randomForest package. The %IncMSE 

reflects the loss of model accuracy when a variable is scrambled, i.e., its values are 

randomly rearranged. The model decreases of accuracy are computed for each tree in 

the forest and the percentage of decrease of accuracy is averaged over all trees to get 

the mean value.  

4.3 Results 

4.3.1 Data summary 

Average daily temperatures, precipitation, and sampling dates for 2017 and 

2018 are displayed in Appendix C, Supplemental Figure 4.1. The total number of 

phytoplankton data points was 4,144 for both years and ponds. There were 1,554 

datapoints after phytoplankton data were combined into functional groups. Summary 

statistics for phytoplankton functional groups and water quality data over the two 

growing seasons are presented in Table 4.1 and Supplemental Table 4.1 (Appendix 

C). The most dominant and commonly occurring phytoplankton taxa were all 

representatives of eutrophic, shallow, small water bodies per the functional group 

classifications of Reynolds et al. (Reynolds et al., 2002). Diatom concentrations for 

both years ranged from 4.19 to 7.59 log cells L-1 and from 4.19 to 7.77 log cells L-1 in 

Pond 1 (Aulacoseira spp.) and Pond 2 (Aulacoseira spp. and Cyclotella spp.), 

respectively. In Pond 1, cyanobacteria (Microcystis spp.) ranged from 4.19 to 7.95 log 

cells L-1 and green algae (Coelastrum spp. and Scenedesmus spp.) ranged from 5.49 
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to 8.08 log cells L-1 for both years. In Pond 2 cyanobacteria (Aphanizomenon spp., 

Dolichospermum spp. and Microcystis spp.) and green algae (Closterium spp. and 

Scenedesmus spp.) ranged from 4.67 to 8.69 log cells L-1 and from 4.89 to 8.18 log 

cells L-1, respectively. In 2017 and 2018 green algae had the highest average cell 

concentrations, followed by cyanobacteria and then diatoms in Pond 1. At Pond 2, 

cyanobacteria had the lowest average concentrations of the phytoplankton groups in 

2017, whereas in 2018 diatoms had the lowest average concentrations. For both ponds 

and years, the median and the means of each phytoplankton group were similar in 

value indicating a symmetrical dataset. The only exception to this was in 2018 at 

Pond 1 where the cyanobacteria cell concentration mean was higher than the median, 

indicating a skewed dataset. 

In 2017 a total of eight physio-chemical parameters and organic constituents 

commonly used to assess water quality were measured in the field and used in set A 

and set B for training the random forest algorithm. An additional 11 physio-chemical, 

organic constituents, and nutrient/macro element parameters were added in 2018 and 

applied across set A, set B, and set C training datasets. Average TEMP, DO, SPC, 

pH, NTU, and Phyco did not differ from 2017 to 2018 in both Pond 1 and Pond 2. 

CHL averages doubled from 2017 to 2018 at Pond 2. While CHL concentrations were 

low at Pond 1 for both 2017 and 2018, there was a decrease in 2018. This may be the 

result of routine algicide application to Pond 1 during the study period.    

Table 1. Average values of measured parameters for 2017 

and 2018 

Variable Units Pond 1 Pond 2 

2017 

Diatoms  Log cells/L 5.94 6.32 
Green Algae  Log cells/L 7.10 6.92 
Cyanobacteria  Log cells/L 5.98 6.14 
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TEMP  °C 26.31 27.37 
DO  mg/L 10.39 11.82 
SPC  uS/cm 162.52 161.41 
pH   8.82 8.18 
NTU   5.16 10.82 
Phyco  RFU 1.14 3.49 
CHL  RFU 3.83 10.74 
FDOM  ppb 13.06 30.34 
2018 

Diatoms  Log cells/L 5.61 5.63 
Green algae  Log cells/L 6.70 7.10 
Cyanobacteria  Log cells/L 5.64 7.08 
TEMP  °C 26.99 27.54 
DO  mg/L 10.07 14.91 
SPC  uS/cm 148.83 142.59 
pH   7.65 8.17 
NTU   4.20 13.86 
Phyco RFU 0.95 4.86 
CHL  RFU 2.80 19.97 
FDOM  ppb 20.72 34.90 
CDOM  ug/L 76.80 177.00 
Sub. light 0cm  712.72 1113.02 
Sub. light 7.5cm  624.42 810.60 
Sub. light 15cm  540.88 578.13 
PAR   950.46 1312.86 

 

4.3.2 Model accuracy 

The RMSEs that characterized the random forest model performance are 

shown in Figure 4.2. The differences in RMSE between ponds were relatively small. 

However, in almost all instances RMSE values for Pond 2 were larger than those for 

Pond 1 for all three phytoplankton functional groups (green algae, diatoms, and 

cyanobacteria) and all three time periods (2017, 2018, and 2017+2018). It is also 

worth noting that the ranges of log phytoplankton concentrations, computed from 

minimum and maximum values in Appendix C, Supplemental Table 4.1, were also 

slightly greater in Pond 2 than in Pond 1 for all three phytoplankton functional groups 

and all three time periods. The smallest and the largest RMSEs for the combined year 
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data were found for green algae and cyanobacteria, respectively. RMSE values for 

diatoms were in most cases an intermediate value. An exception to this was in 2018 in 

Pond 2; here diatoms RMSEs were larger than the cyanobacteria values. RMSEs of 

the 2018 model were lower than RMSE of 2017 model. Mean values of measured 

parameters in the 2018 dataset were also lower than those from 2017 (Appendix C, 

Supplemental Table 4.1). RMSE values of the combined dataset 2017+2018 were 

smaller than the RMSE values of 2018. Creating the combined year dataset improved 

the robustness of the random forest models.  

The small differences in RMSE between random forest models using input set 

A and input set AB implied that there may be not a significant difference between 

model performance. All Williams-Kloot tests yielded positive λ values indicating that 

modeling with set AB as the input may be superior to model created with set A as the 

input. The Williams-Kloot test showed that there was a significant difference between 

models for green algae in Pond 1 (p<0.001) and cyanobacteria in Pond 2 (p=0.010), 

but not for green algae in Pond 2, cyanobacteria in Pond 1, nor diatoms in either 

pond. 
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Figure 4.2: Root-mean-squared errors of the random forest models for green algae, 
diatoms, and cyanobacteria for Ponds 1 and 2, with data from 2017, 2018, and 
2017+2018. 



 

95	
 

4.3.3 Model validation 

Models developed with the 2017 and 2018 datasets were tested using data 

collected in 2019. The results are shown in Figure 4.3. When using the random forest 

model on blind 2019 data, the RMSE results did not mirror what was predicted during 

model development using the 2017 and 2018 data. The RMSE values for green algae 

2019 predictions were larger than the values for the 2017 and 2018 datasets using any 

combination of input sets A and B. For 2019, cyanobacteria continued to produce the 

higher RMSE values, whereas diatoms presented the lowest RMSE values. Pond 2 

continued to have higher RMSEs for diatoms than Pond 1. Cyanobacteria in Pond 1 

displayed higher RMSE values in 2019 whereas for training years (2017 and 2018), 

Pond 2 typically had higher cyanobacteria RMSE values. Overall, green algae 

RMSEs were much higher for the 2019 validation data compared to the training 

dataset. In all instances RMSE values were lower when the model was run with set 

AB parameters. The Williams-Kloot test determined that the AB model was superior 

to the A model. The AB model performance was significantly different (p<0.05) for 

all groups and both ponds, except for Pond 2 diatoms (p=0.84). 
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Figure 4.3. Root-mean-squared errors of the random forest models for green algae, 
diatoms, and cyanobacteria for Ponds 1 and 2, with blind data from 2019. 

4.3.4 Spatial patterns of random forest model performances 

Spatial distribution of the individual location errors with data from 

2017+1018 and set A parameters is shown in Figures 4.4-4.6. There was a pattern of 

lower RMSE values for interior locations compared with nearshore locations in each 

pond. For all three groups of phytoplankton within both ponds, the lowest RMSE 

values were found in the interior of the ponds, except the outflow area of Pond 2 

(location 23). The average RMSE values were larger, and the performance of the 

models was reduced at nearshore locations compared to interior locations for all 

phytoplankton groups at Pond 2. Separation of nearshore locations from interior 

locations revealed that, in Pond 2, the probability (t-test) of the average RMSE being 

the same over nearshore and interior locations was very low (p <0.01) for green algae 

and cyanobacteria. The probability of RMSE values being the same for nearshore and 
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interior locations for diatoms in Pond 2 was greater but still small (p<0.1).  In Pond 1, 

no substantial differences in average RMSE for nearshore and interior locations were 

found for green algae (p>0.5), and only moderate differences were found for diatoms 

and cyanobacteria (p<0.1). The percentage of sampling dates in which the CV was 

larger for nearshore locations compared to interior locations can be found in Table 

4.2. For diatom and cyanobacteria, more than 54.6% of the sampling dates had higher 

CVs for nearshore samples compared to interior samples for both ponds. For green 

algae, Pond 2 (63.6%) had a higher percentage of dates with nearshore variability 

being higher than Pond 1 (41.7%). Overwhelmingly most water quality measurements 

had high CVs at nearshore samples with most being greater than 75% of the sampling 

dates. The exception to this is both SPC (63.6% of dates) and Phyco (72.7% of dates) 

in Pond 2.   

Spatial distribution of the individual location errors with data from 

2017+2018 and set AB parameters is shown in Appendix C, Supplemental Figures 

4.2-4.4. Similar to the spatial distributions of errors of the model using set A 

parameters, set AB parameters shows a similar pattern of interior locations mostly 

containing the lowest RMSE values. This was true for cyanobacteria and diatoms at 

Pond 1 and green algae and cyanobacteria at Pond 2. A t-test of set AB showed that 

no differences were found in the average RMSEs for interior and nearshore locations 

for green algae (p>0.05) at Pond 1. Diatom RMSEs at both ponds exhibited moderate 

(p<0.1) differences between interior and nearshore locations. Significant (p<0.05) 

differences between nearshore and interior RMSEs were found for cyanobacteria at 

both ponds and green algae at Pond 2.  
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Table 4.2. Percent of dates in which the coefficient of variation (CV) was larger for 
nearshore locations. 

Table 4.2 
Parameter Pond 1 % Pond 2 % 
Green algae 41.7 63.6 
Diatoms 66.7 63.6 
Cyanobacteria 66.7 54.6 
TEMP 75.0 81.8 
DO 100.0 90.9 
SPC 75.0 63.6 
pH 100.0 100.0 
NTU 91.7 81.8 
Phyco 91.7 72.7 
CHL 75.0 81.8 
FDOM 75.0 90.9 
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Figure 4.4: Spatial pattern of root-mean-squared errors calculated for green algae 
using set A parameters errors for 2017+2018 combined. Number located inside of 
symbol indicates sampling location number. Number above location indicates the 
RMSE for green algae at that location. 
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Figure 4.5: Spatial pattern of root-mean-squared errors calculated for diatoms using 
set A parameters errors for 2017+2018 combined. Number located inside of symbol 
indicates sampling location number. Number above location indicates the calculated 
RMSE for cyanobacteria at that location. 
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Figure 4.6: Spatial pattern of root-mean-squared calculated for cyanobacteria using 
set A parameters errors for 2017 and 2018 combined. Number located inside of 
symbol indicates sampling location number. Number above location indicates the 
calculated RMSE for cyanobacteria at that location. 

   

4.3.5 Importance of variables-predictors 

The top three most important predictors for each dataset and model for are 

shown in Tables 4.3 and 4.4, and in Figure 4.7. SPC and TEMP were the most 

influential predictors; found in 63% of all cases when using input set A and in 46% of 
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all cases when using input set AB. NTU was seen in 7% and FDOM was seen in 11% 

of all cases where input set A and input set AB were used, respectively. Predictors 

from set A continued to have high importance (total of 61%) when the input set AB 

was used.  

There was no significant difference between the ponds when considering the 

top three most influential predictors when input set A was used. Using input set A, 

SPC was the most influential predictor, with nine occurrences for each pond. TEMP 

was in the top three most influential predictors nine times for Pond 1 and seven times 

in Pond 2. There was a greater difference between the ponds when input set AB was 

used. SPC was the most influential predictor three times for Pond 1 and nine times for 

Pond 2. TEMP was among the most influential predictor eight times for Pond 1 and 

five times for Pond 2. The influence of CHL was more prominent for Pond 1 (4 

times) than for Pond 2 (once). Similarly, the fDOM was more prominent for Pond 1 

(five times) than for the Pond 2 (once). Overall, with the AB input set, predictors of 

the input set A were less influential in Pond 1 (52% of all occurrences) than in Pond 2 

(78% of all occurrences).  

There were clear differences among the phytoplankton groups. NTU was the 

most influential predictor when assessing cyanobacteria, yet CHL was not. For green 

algae, DO was the most frequent influential predictor with the input set A, but no 

influence of DO was found when the organic matter-related inputs were included as 

part of set AB. CDOM was found as an influential predictor only for diatoms. 

Diatoms in Pond 2 had the same most influential predictors with inputs sets A and 

AB. The same was true for diatoms with combined 2017+2018 data in Pond 1. 
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Top three most influential predictors were different in 2017 and 2018 in most 

cases, with green algae in Pond 1 being an exception. The 2017+2018 dataset, in 

some cases, led to the influential predictors being the same as individual years 

modeled separately (e.g., green algae in Pond 2 with the input set A, diatoms in Pond 

1 with the input set A, green algae with the input set AB in Pond 1, cyanobacteria in 

Pond 2 with input sets A and AB). The nutrient-related variables available in 2018 are 

grouped in input set C. These proved to be most important when all available input 

variables (input set ABC) were used as input for green algae and diatoms (Tables 4.3 

and 4.4), but not cyanobacteria. Because nutrient data was only collected in 2018 it 

was excluded from the 2017+2018 dataset to avoid unequal weighting across all 

parameters. 

Top three most influential predictors 

Functional 
Group 

Green Algae Diatoms Cyanobacteria 

Pond 1 Pond 2 Pond 1 Pond 2 Pond 1 Pond 2 

Rank 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 

Input set A 

2017                   

2018                   

2017+2018                   

Input set AB 

2017                   

2018                   

2017+2018                   

 

 Temperature  PAR 
 Specific Conductance  fDOM 
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 pH  Phycocyanin 
 Turbidity  Chlorophyll-a 
 Dissolved Oxygen  CDOM 

Figure 4.7. Top three most important predictors in random forest models of green 
algae, diatoms, and cyanobacteria populations in pond waters with datasets from 
2017, 2018 and combined 2017+2018. 

4.3.6 Sensitivity to inputs 

The mean decrease of accuracy (%IncMSE) are shown below each variable in 

Tables 4.3 and 4.4. For Pond 1 in 2017 and 2018, %IncMSE values were low for 

green algae and diatoms (<15), and slightly higher for cyanobacteria (>15). The 

combination of years (2017+2018) produced higher increases of mean square error 

indicating that multiyear data allowed for predictors to be more influential. For Pond 

2, the sensitivity to the important variables tended to be higher than in Pond 1. The 

values of %IncMSE in Pond 2 was less than 30 for green algae and diatoms for both 

years. Cyanobacteria had larger (>30) increase in mean square error values with the 

highest value being 143, indicating cyanobacteria predictions were more sensitive to 

the influential predictors than predictions for green algae and diatoms. Multiyear data 

tended to increase the %IncMSE values causing greater sensitivity to influential 

predictors. 

Table 4.3. Most influential predictors and the increase in accuracy for that variable 
for Pond 1 as determined using the random forest algorithm. 

Pond 1 Random forest most influential predictors 
Input 
Group 

Green Algae Diatoms Cyanobacteria 
Imp 

Var 1 
Imp 

Var 2 
Imp 

Var 3 
Imp 

Var 1 
Imp 

Var 2 
Imp 

Var 3 
Imp 

Var 1 
Imp 

Var 2 
Imp 

Var 3 
2017 
A TEMP SPC DO NTU SPC TEMP TEMP pH SPC 

4.3 2.7 2.6 14.3 12.6 12.4 21.0 15.5 14.9 
B FDOM  Phyco  Chl  Phyco FDOM  Chl  Chl  Phyco FDOM 

6.7 3.8 3.2 22.0 15.4 10.9 37.3 22.2 17.3 
AB FDOM TEMP  Phyco  Phyco TEMP NTU  Chl TEMP pH 

2.8 2.8 1.9 9.7 8.0 7.7 14.2 12.2 11.0 
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2018 
A TEMP SPC DO TEMP SPC DO TEMP SPC NTU 

9.5 6.1 6.1 10.0 8.0 7. 32.3 25.9 16.1 
B  Chl FDOM CDOM FDOM CDOM  Chl FDOM  Chl CDOM 

20.6 8.9 4.2 17.5 16.0 9.1 44.9 30.1 23.3 
C  K  NO3  Ca2  NO3 H2PO4  Ca2  NO3  K H2PO4 

13.1 4.8 4.8 12.9 9.7 8.6 29.1 28.7 18.9 
AB  Chl FDOM TEMP CDOM FDOM TEMP TEMP SPC FDOM 

10.3 5.3 4.5 6.6 6.0 5.5 18.5 17.7 15.6 
AC  K  Ca2  NO3 TEMP  NO3 H2PO4 TEMP SPC  K 

6.8 3.9 3.7 6.6 5.9 5.1 18.0 15.8 15.2 
BC  K  Chl  Ca2 FDOM  NO3 CDOM FDOM  K  NO3 

8.1 8.0 3.7 7.6 7.4 6.8 21.7 17.5 14.3 
ABC  Chl  K  Mg2 FDOM H2PO4  NO3 TEMP SPC  K 

5.3 5.1 2.9 4.7 4.4 4.1 12.0 11.8 11.5 
2017 + 2018 
A TEMP pH SPC TEMP SPC DO SPC TEMP NTU 

14.8 13.3 11.3 33.4 31.8 23.5 69.8 43.5 41.3 
B  Chl FDOM  Phyco FDOM  Phyco  Chl  Chl FDOM  Phyco 

33.5 14.0 6.6 42.4 40.6 38.9 81.3 79.8 58.4 
AB  Chl FDOM TEMP TEMP SPC DO SPC  Chl DO 

16.9 8.1 6.8 23.1 21.0 16.5 47.7 34.5 28.1 
 

Table 4.4. Most influential predictors and increase in mean square error for that 
variable for Pond 2 as determined using the random forest algorithm.  

Pond 2 Random forest most influential predictors 

Input 
Group 

Green Algae Diatoms Cyanobacteria 
Imp 

Var 1 
Imp 

Var 2 
Imp 

Var 3 
Imp 

Var 1 
Imp 

Var 2 
Imp 

Var 3 
Imp Var 

1 
Imp 

Var 2 
Imp 

Var 3 
2017 

A pH SPC TEMP pH SPC DO SPC NTU pH 
22.5 19.9 6.4 24.1 13.3 11.6 88.6 49.9 16.0 

B FDOM  Phyco  Chl FDOM  Phyco  Chl  Phyco  Chl FDOM 
26.3 20.4 8.3 29.9 19.1 12.3 118.2 32.4 24.3 

AB SPC pH TEMP pH SPC DO SPC NTU  Phyco 
16.7 16.5 6.8 15.7 11.2 9.8 60.6 36.6 33.4 

2018 

A TEMP SPC NTU SPC TEMP PAR SPC TEMP NTU 
21.9 19.2 13.6 10.6 10.2 10.1 16.7 10.9 7.9 

B  Chl CDOM FDOM CDOM FDOM  Chl FDOM CDOM  Chl 
31.6 22.5 16.3 23.5 18.1 16.7 29.0 16.0 15.1 

C  K  Mg2  NH4  Mg2  Ca2 H2PO4  Mg2  K H2PO4 
26.0 18.3 12.3 15.9 13.5 13.0 15.3 13.9 12.7 

AB TEMP SPC  Chl SPC TEMP CDOM SPC FDOM TEMP 
15.4 12.7 10.3 8.1 7.5 7.3 11.3 10.0 7.8 

AC  K TEMP  Mg2  Mg2 H2PO4  Ca2 SPC  Mg2 TEMP 
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13.5 10.2 9.9 7.8 6.2 5.9 10.3 7.3 6.6 

BC  K  Mg2  NH4  Mg2 H2PO4  Ca2 FDOM  Mg2  Chl 
19.8 13.9 11.4 11.5 8.8 8.6 11.7 11.5 7.8 

ABC  K  NH4  NO3  Mg2  Ca2 H2PO4 SPC FDOM  Mg2 
10.2 9.2 8.8 7.1 5.3 4.8 8.1 6.9 6.2 

2017 + 2018 

A pH SPC TEMP SPC DO TEMP SPC NTU TEMP 
30.7 25.7 25.6 52.6 38.8 26.6 104.5 59.3 45.3 

B  Phyco  Chl FDOM FDOM  Phyco  Chl  Phyco  Chl FDOM 
41.9 38.9 26.8 63.0 60.1 40.0 142.7 78.3 63.0 

AB pH TEMP SPC SPC DO TEMP SPC  Phyco NTU 
22.9 19.9 19.1 39.5 26.6 21.4 65.9 59.6 35.6 

 

4.4 Discussion 

Earlier work by Smith et al. (2020, 2021) demonstrated the correlation 

between several basic water quality parameters and cyanobacteria populations, as 

well as the temporal stability of phytoplankton populations within these ponds. Here 

the relationship between more complex water quality parameters and phytoplankton 

groups were examined with machine learning. Phytoplankton functional group 

concentrations in the two agricultural irrigation ponds in this study did not vary 

greatly nor were the community compositions significantly different, both 

representing communities of eutrophic, shallow, small-bodied waters. Average 

diatom and green algae concentrations were similar between years and the two ponds. 

Despite the routine application of the algicide copper sulfate during the study, 

phytoplankton concentrations in Pond 1 were comparable to those reported in 

regional (Marshall, 2013, 2014) and global lakes (Dembowska et al., 2018; Jia et al., 

2019). Pond 2 had recurrent cyanobacteria blooms during the study making the 

phytoplankton concentrations more comparable to those reported in small lakes by 

Lee et al. (2015) and in local waters by Tango & Butler (2008). Pond 2 phytoplankton 
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concentrations were slightly higher than Pond 1 concentrations and can potentially be 

explained by routine algicide use in Pond 1. All three phytoplankton populations in 

Pond 1 were greater in 2017 than 2018, whereas the opposite was true for Pond 2, 

except for diatom concentrations which were slightly higher in 2017 than 2018.  

Root mean square errors (RMSEs), a metric used to evaluate model 

performance, for the 2017, 2018, and 2017+2018 models (sets A and AB) varied 

depending on phytoplankton group. Green algae models tended to have the best 

performance, followed by diatoms, and then cyanobacteria. In a review by Shimoda 

& Arhonditsis (2016), green algae were found to have the least error of the three 

phytoplankton groups similar to the results in this study. Cyanobacteria models had 

higher RMSEs than green algae models in both our findings and those reviewed by 

Shimoda & Arhonditsis (2016). This could be explained by the natural spatial and 

temporal variability of cyanobacteria blooms making accurate population predictions 

more challenging (Beversdorf et al., 2017; Smith et al., 2021). While various types of 

models were used in the review by Shimoda & Arhonditsis (2016), the RMSEs from 

this work indicate that the random forest model is a superior model for predicting 

green algae when compared to the diatom and cyanobacteria models. Additionally, in 

the work of Di Maggio et al. (2016) where the same three functional groups were 

studied, cyanobacteria were found to have the least accurate model performance 

during peak biomass periods. However, Thomas et al. (2017) noted that cyanobacteria 

were more predictable than diatoms and green algae across many time scales in an 

alpine lake. Both ecosystem type and available input variables appear to affect the 

comparative performance of the random forest algorithm in predictions of 
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phytoplankton functional groups. The robustness of the model during the growing 

seasons is characterized by the RMSE values presented in this paper since these 

RMSEs are averages over the datasets used for testing by the random forest 

algorithm. Since this study only focused on assessing the accuracy of the prediction 

model in agricultural irrigations ponds during the growing season (May – October), 

when waters were used for irrigation purposes and when cyanobacteria biomass, and 

subsequently risks from cyanotoxins, was expected to be greatest in this region 

(Marshall et al., 2005; Tango & Butler, 2008), to better assess this model’s 

performance in comparison to similar models additional training and validation needs 

to be done using data collected outside of the growing season and in varying 

waterbody types. In this study, sampling was conducted during periods of time 

between rainfall events, when irrigation is more likely to take place due to crop 

production demands, elevated temperatures, and reduced soil moisture (Paul et al., 

2021). To better equip this model for prediction during all weather conditions and all 

seasons, additional sampling and training of the model would be necessary. 

Model performance did not differ drastically between years. The exception to 

this is for cyanobacteria predictions wherein RMSE values decreased substantially 

from 2017 to 2018, indicating better performance of the 2018 models. In Pond 1, 

models predicting diatoms and cyanobacteria performed better in 2018 compared to 

2017. Similarly, in Pond 2, better model performance in 2018 was seen for 

cyanobacteria predictions and to a lesser extent, diatom predictions. Furthermore, the 

combined 2017+2018 datasets had higher RMSE values than when using just the 

2018 dataset, but lower than when only the 2017 dataset was used. For all three 
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groups and both sets of parameters (A and AB), 2018 had the best model performance 

as indicated by the lowest RMSEs. Thomas et al. (2017) found that multiyear datasets 

were able to produce reasonable performance and attributed it to the model having 

more data points to train the machine learning algorithm with. Our individual years 

had fewer data points than the combined year models. While 2018 had the lowest 

RMSE values of the three data sets, the use of 2017+2018 caused a decrease in 

RMSE values for 2017. Furthermore, it was determined that the prediction of 2019 

data was not as accurate as the prediction of the 2017 and 2018 years. Additional 

monitoring would help to determine if the model performance of future years is 

comparable to the accuracy represented in the 2017 and 2018 evaluations. 

The addition of organic constituent-related input parameters did not improve 

model performance overall. While some aspects of the model saw a small increase in 

performance, others saw a small decrease and no general pattern could be defined. 

This follows many other studies that showed the use of inputs, similar to this study’s 

set A parameters (DO, pH, NTU, and TEMP), tended to be most important and 

produced the best prediction results (Fragoso et al., 2008; Huang et al., 2014; Liu et 

al., 2019). According to Rigosi et al. (2010), a model based on water quality physical 

parameters often has superior performance and this was attributed to the high level of 

complexity found in biological processes. Likewise, while the nutrient and macro 

element parameters in input set C were highly influential when evaluating the 2018 

data, the difference in model performance across phytoplankton groups may be due to 

the complex and interrelated way each phytoplankton group utilizes different 

nutrients and macro elements (Bradshaw et al., 2012; Finkel et al., 2010), which was 
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not captured with just one year of training data. The presence of short blooms of both 

nitrogen-fixing and non-nitrogen-fixing cyanobacteria in the study area (Smith et al., 

2021), which can utilize different forms of nitrogen and impact the overall nitrogen 

budget (Agawin et al., 2007; Newell et al., 2019) also may not have been equitably 

represented in this dataset. However, the ability to use the random forest algorithm to 

predict phytoplankton functional groups using only set A inputs is beneficial for a 

wide range of resource monitoring and research applications since the set A input 

parameters are often the least expensive and easiest parameters to collect, thus 

predictions can be quickly and easily done. 

Overall, spatial distributions of RMSE values differed based on phytoplankton 

functional group. Green algae had the lowest spatial average RMSEs (P1=0.278, 

P2=0.356), cyanobacteria had the highest spatial average RMSEs (P1=0.567, 

P2=0.679), and average RMSEs for diatoms were in between (P1=0.446, P2=0.578) 

for both ponds and models. This indicates that the set A and AB models were the 

most accurate in predicting the spatial green algae concentrations for the 2017+2018 

dataset. In general, interior waters tended to exhibit the lowest RMSE values in both 

ponds and for models with both inputs sets A and AB showing that the random forest 

algorithm predicted interior concentrations of green algae best, followed by diatoms 

and cyanobacteria. In a prior study, on the temporal and spatial variability of 

phytoplankton functional groups within these two agricultural irrigation ponds, it was 

established that interior waters tended to be less variable than nearshore waters 

(Smith et al., 2021). This stability allows the model to better predict the 

phytoplankton community structure in those locations. Variations in phytoplankton 
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concentrations tended to be greater in nearshore samples when compared to interior 

waters using an assessment of CV. In over 50% of the sampling dates, CVs were 

higher for nearshore samples except for green algae in Pond 1. Similarly, water 

quality CVs in both ponds were almost always higher for nearshore locations, with 

most nearshore variability being higher in 75% or more of the sampling dates. This 

pattern was also observed in the study by Awada et al. (2021), for marine waters; the 

model developed by these authors performed best in open water locations of the Gulf 

of Sirte and had poorer agreement between measured and simulated concentrations of 

chlorophyll-a along the shoreline. In Lake Taihu, locations closer to the shoreline 

tended to have higher simulation errors than central lake locations (Huang et al., 

2014). However, in a study on Lake Okeechobee the random forest algorithm had 

better model results at nearshore locations as opposed to pelagic locations and Zhang 

et al. (2021) attributed this to poor phytoplankton growth in the pelagic zones caused 

by wind-driven sediment resuspension. 

For all three phytoplankton groups, there was almost no change in RMSE 

values from models run using set A parameters to models run using set AB 

parameters indicating that the additional parameters did not impact the predictive 

abilities of the random forests. The ability of the random forest model to predict 

phytoplankton community structure or chlorophyll-a concentrations accurately on set 

A parameters (TEMP, pH, NTU, and SPC) alone has been noted in several other 

studies (Derot et al., 2020; X. Liu et al., 2019; Zeng et al., 2017). Whereas other 

studies (Cheng et al., 2021; Yajima & Derot, 2017) found that biological parameters 

(biological oxygen demand, chlorophyll-a concentrations) were more important for 
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phytoplankton prediction models. Biological oxygen demand was not measured in 

this study but should be considered for future modeling efforts as it is known to be 

spatially and temporally variable in lake waters (Carpenter et al., 1979; Wang et al., 

2007) and can be positively correlated with potentially toxigenic cyanobacteria 

species (Karadžić et al., 2013) and overall phytoplankton biomass (Wang et al., 

2007), both of which are of concern to agricultural resource managers. 

Overall, this study found that the most important variables tended to be set A 

parameters (TEMP, pH, NTU, and SPC) for both ponds. TEMP was determined to be 

the most recurrent parameter in the top three most influential parameters for all 

groups and both ponds. This is comparable to numerous other random forest models 

used for phytoplankton prediction (Derot et al., 2020; Kehoe et al., 2015; Liu et al., 

2019; Rousso et al., 2020; Yajima & Derot, 2017). Other set A parameters which 

were also reported in the top three most influential parameters, but to a lesser degree 

than TEMP in this study were SPC, NTU, pH, and DO. SPC appeared to be the most 

influential predictor in input set A. A possible reason for this could be the correlation 

between SPC and nutrient ion concentrations in agricultural waters (Taboada-Castro 

et al., 2004) and intercoupled relationship between specific nutrient forms and 

concentrations and phytoplankton groups (Varol, 2019).  

The only instance when set A parameters were not the most influential 

parameters was in 2018 when nutrients (input set C) were measured and used as 

inputs. Nutrients being the most influential or important parameters is in line with 

numerous assessments of phytoplankton community structure using random forest 

algorithms. Dunker et al. (2016) found a strong relationship between orthophosphate, 
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nitrogen, and chlorophytes. Total nitrogen, total phosphate, nitrate, and nitrite were 

identified as the most important predictors in phytoplankton models used in Lake 

Okeechobee (Zhang et al., 2021) and Lake Taihu (Wang et al. 2007). However, these 

studies took place in lakes considerably larger than the ponds studied here. Small 

waterbodies (<12 acres), which are increasing used in agricultural practices in the 

Mid-Atlantic region, often have a greater biodiversity than larger bodies of water and 

can experience more climatic stress (Brönmark & Hansson, 2002; Chopyk et al., 

2018), highlighting the need to refine models to local conditions. Since nutrients were 

only measured in 2018, these parameters were not included in the 2017 nor combined 

year models. The modeling robustness of nutrient parameters, when compared to set 

A parameters, has yet to be determined for ponded agricultural waters. It should be 

noted that the collection and laboratory processing of nutrient samples can be a labor-

intensive and costly process that has successfully been augmented with modeling for 

riverine systems (Harrison et al., 2021; Leigh et al., 2019). However, assessments 

similar to those outlined by Harrison et al. (2021) and Leigh et al. (2019) in 

agricultural irrigation waters have not been conducted and should be the focus of 

future model developing and training efforts. 

 In a review of predictive and forecasting models for cyanobacteria by Rousso 

et al. (2020)  it was found that parameters similar to this study’s input set A (TEMP, 

DO, pH) were reported as the most influential predictors in 38.5% of publications 

surveyed. Nutrients were reported as most influential parameters in 30.5% of the total 

publications surveyed. One of the least influential predictors reported (6% of 

publications) were similar to the parameters included input set B (FDOM, CHL, 
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Phyco) which is comparable to the findings in this study. As noted in a cyanobacteria 

research forecast by Burford et al. (2020) future modeling efforts should incorporate 

CO2 dynamics that will reflect future climate scenarios, temporally relevant weather 

patterns, as well as the intricate relationship cyanobacteria have with the food web, all 

factors which ultimately will influence agricultural irrigation water quality. 

Physiochemical parameters being the most important predictors for the three 

major phytoplankton groups is beneficial for water quality management. Enumeration 

of phytoplankton is time intensive, requires highly trained staff, and/or expensive 

infrastructure (Lawton et al., 1999; Stauffer et al., 2019; Zeng et al., 2017), whereas 

parameters such as temperature, dissolved oxygen, pH, conductivity, and turbidity 

can be easily and affordably measured in real time with an in-situ sensor. The quick 

acquisition and input of these parameters into a modeling application allows for the 

prediction of major phytoplankton groups by machine learning algorithms to be 

performed by a broader group of individuals that could lead to more timely alerts of 

potentially harmful phytoplankton species.  

4.5 Conclusions 

The prediction and estimation of phytoplankton functional groups in two 

working agricultural irrigation ponds was feasible with machine learning 

methodology and the random forest algorithm. Random forest models predicting 

green algae were found to be superior when compared to diatom and cyanobacteria 

predictions. The RMSE values of the model obtained with two years of data were in 

between the RMSE values obtained with data from individual years. When model 

performance was mapped, interior sampling locations tended to have lower model 



 

115	
 

error than nearshore sampling locations indicating that phytoplankton predictions are 

more accurate for interior waters compared to nearshore waters. Furthermore, 

minimal differences in model performance were seen when additional input set B 

parameters were added. Models using physical parameters (input set A) tended to be 

the models with the best performance. Physical parameters (TEMP, pH, DO, SPC, 

and NTU) were the most frequent influential predictors for the random forest 

algorithm allowing water quality managers to potentially bypass the use of time 

intensive and expensive monitoring procedures for those which can be obtained 

easily, affordably, and in real time. Development of machine learning models to 

provide site-specific estimates of phytoplankton groups from more easily obtainable 

water quality parameters presents a promising research avenue to explore.  
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Chapter 5: Conclusions 
Phytoplankton form a ubiquitous microbial community that is often studied to 

assess ecological functioning, water quality, and human health risks associated with 

drinking, recreational, and aquaculture waters. Prior research on phytoplankton has 

been performed on various fresh and marine waterbodies, but very little work has 

been performed on agricultural irrigation ponds. A better understanding of a 

phytoplankton community's dynamics and environmental relationships allows for 

more efficient and feasible management practices and prediction capabilities to be 

implemented.  

 This work was performed to (a) reveal and quantify the dynamics of 

spatiotemporal phytoplankton in agricultural irrigation ponds, and (b) relate those 

dynamics to the spatiotemporal variability of water quality covariates. An initial goal 

was to determine if there were stable spatial patterns in phytoplankton concentrations 

across ponds over time. We then researched spatial variability of the cyanobacteria-

related pigment phycocyanin and its relation to other measured water quality 

parameters. Finally, machine learning was employed to model the influence of 

environmental controls on the phytoplankton communities and attempted to predict or 

estimate phytoplankton community structure. 

 

Chapter 2 presents the results on temporally stable spatial patterns of 

phytoplankton functional groups within two agricultural irrigation ponds in 

Maryland, USA. Conclusions are as follows. 

 Stable spatial patterns were established for green algae, diatoms, and 

cyanobacteria in both agricultural irrigation ponds. Zones which were consistently 



 

117	
 

higher or lower than the pond's average phytoplankton concentrations were found for 

all phytoplankton groups and in both ponds. Two main patterns were detected, 

establishing zones as either a cluster of locations which had consistently higher or 

lower concentrations of phytoplankton, or locations having consistently higher or 

lower concentrations at nearshore or interior sampling locations.   

Spatiotemporal patterns had implications on water quality monitoring design 

and implementation. An agricultural irrigation pond cannot be assumed to contain a 

homogenous mixture of phytoplankton. A water sample may drastically 

underestimate or overestimate the concentrations of phytoplankton if it is collected 

only in one location of the pond or in locations where the phytoplankton 

concentrations are consistently lower or higher than the average across the pond. This 

spatial heterogeneity also indicates that the location of the irrigation pump intakes 

should not be arbitrarily chosen. The intake location may affect the nearby fields and 

crops by providing water that may contain toxins produced by cyanoHAB species.  

Moderate and strong correlations were found between the spatial patterns of 

phytoplankton group concentrations and measured water quality parameters in both 

studied irrigation ponds. Existence of such correlations suggests that in-situ water 

quality sensing technologies may be used to monitor irrigation ponds providing a 

timesaving, cost-effective alternative to intensive microscopy analysis. This 

alternative can deliver near-instantaneous results to monitoring irrigation water 

sources for their quality in terms of phytoplankton-related parameters.  

The findings in this study represent a specific region in the Mid-Atlantic 

United States. No extrapolations should be made to other irrigation ponds and other 
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agricultural ponds such as retention and aquaculture ponds. There is a need to 

investigate the spatiotemporal variations in the phytoplankton community in other 

agriculture-related ponds. It also remains to be seen if the diurnal dynamics in 

phytoplankton communities in such ponds can be strong enough to affect 

phytoplankton concentrations and community structure and correlations between 

them, water quality parameters, and phytoplankton attributes. The existence of 

phytoplankton-related toxicity should be determined at the diurnal scale, as it may 

have implications for irrigation scheduling. 

 

Chapter 3 reports data and analyses on intraseasonal variations of phycocyanin 

– a pigment which is often used to indicate cyanobacteria presence in waters. 

Concentrations of phycocyanin and water quality covariates were studied in two 

agricultural irrigation ponds in Maryland, USA. The research led to the 

following conclusions. 

The machine-learning algorithm of decision trees assisted in determining 

water quality variables that were important predictors for the observed concentrations 

of phycocyanin. These variables were: extracted chlorophyll, colored dissolved 

organic matter, and turbidity. Average quartile ranks were instrumental in 

highlighting locations within the ponds that had consistently higher or consistently 

lower phycocyanin concentrations. Zones of predominantly low and predominantly 

high phycocyanin concentrations were found in both agricultural irrigation ponds 

studied in this work.  
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Monitoring of agricultural irrigation ponds for phycocyanin may assist in 

early detection of cyanoHABs thus reducing food safety risks associated with 

cyanotoxins. Zones of consistently higher or lower phycocyanin concentrations must 

be sampled to represent the entire waterbody. Determining spatial patterns and zones 

of phycocyanin can assist in informed and efficient water quality monitoring for 

cyanobacteria. 

Understanding the relationships between phycocyanin and easily measured 

water quality parameters may assist in developing better and more efficient pond 

management practices along with the ability to better predict potentially toxic 

cyanobacteria blooms. Measuring phycocyanin might be a more economical option 

for water quality management. Further improvements in understanding which water 

quality parameters are the most influential variables for phycocyanin and 

cyanobacteria may give rise to even more cost-effective and faster alternatives to 

microscopy and/or toxin analysis for cyanobacteria and cyanotoxin early detection 

and monitoring. 

Future research should consider that detecting and quantifying phycocyanin 

cannot differentiate between toxic and non-toxic cyanobacteria species. In this study, 

there were impacts to both irrigation ponds following rain events, but finer scale 

temporal monitoring is needed to put these findings in the context of cyanobacteria 

blooms. Determining the intraseasonal variations and spatial patterns of toxin-

producing cyanobacteria species in irrigation ponds is essential to food safety and 

water quality monitoring. Research of the spatiotemporal variation of phycocyanin 
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may help contribute to the proper assessment of the human health and food safety 

risks associated with cyanobacteria populations in agricultural irrigation waters. 

 

Chapter 4 contains an example of the application of machine learning to 

estimate phytoplankton concentrations in agricultural irrigation ponds from 

water quality measurements. Conclusions are as follows. 

 The machine learning algorithm 'random forest' was capable of predicting and 

estimating phytoplankton functional groups within irrigation ponds. The green algae 

models performed the best compared to the diatoms and cyanobacteria models. 

Modeling with multiyear in-situ data had a degree of accuracy comparable with 

individual year models. Sampling locations in the interior of the ponds tended to have 

the least model errors compared to estimations near the shorelines.  

Model accuracy was compared with two input data sets, one data set with 

physicochemical parameters (pH, dissolved oxygen, temperature, conductivity, and 

turbidity) and the other data set with physicochemical and organic constituent-related 

measurements (chlorophyll-a, fluorescent dissolved organic matter, and colored 

dissolved organic matter). Models with the physicochemical water quality inputs 

tended to produce superior results to those models with both physicochemical and 

organic constituent-related water quality input datasets. The random forest algorithm 

showed that physicochemical parameters were the most influential predictors when 

both input parameter groups were used together. 

  Physicochemical parameters can be obtained easily and quickly in-situ from 

water quality sensors. Physicochemical data inputs were the most influential 
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predictors and offered the best model performance indicating that these parameters 

are useful to predict and estimate the phytoplankton groups in agricultural irrigation 

ponds. This procedure could allow water quality managers to avoid costly and time-

consuming monitoring procedures, such as imaging flow cytometry or microscopy 

analysis, for the identification and enumeration of the phytoplankton communities 

that are needed to make risk assessments regarding cyanoHABs and cyanotoxins in 

irrigation waters. Indications are that physicochemical parameters examined with the 

use of random forest models allow for a quick, affordable, and straightforward 

process for the prediction and estimation of phytoplankton functional groups within 

agricultural irrigation ponds. 

The distribution of phytoplankton within these agricultural irrigation ponds 

was not random. Consistent temporal patterns were present, and the variations in 

phytoplankton concentrations, or their pigments, was reflected water quality 

variations. Future research should look at other in-situ sensed variables as potential 

inputs to improve phytoplankton estimation models. In addition, other machine 

learning algorithms should be investigated and compared with the currently used 

models. It should be noted that this study represents the use of two farm irrigation 

ponds within the Mid-Atlantic region of the United States. Future longitudinal 

research is needed before applying the machine learning methodologies described 

here to other irrigation ponds located in different areas of the United States. 

Developing a more general model, applicable to a wider range of irrigation water 

sources, is a necessary avenue of research as climate change alters the timing and 

available water resources for farming practices. 
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Appendices 

Appendix A: Supplementary material for Chapter 2 
Supplemental Table 1. Sampling dates from 2017 and 2018 with corresponding 
rainfall event information for Pond 1 and Pond 2. 

Dates 

# of days 
from last 
rainfall to 
sampling 

date 

Total days 
of rainfall 

Total 
accumulation 

(cm) 

Pond 1 
6/7/17 0* 2 .25 
6/20/17 0* 1 .89 
7/5/17 0* 1 .94 
7/18/17 0* 1 5.08 
8/2/17 3 2 10.85 
8/15/17 0* 4 4.70 
6/20/18 0* 1 0.76 
7/5/18 14 3 1.75 
7/19/18 2 1 1.85 
8/15/18 1 2 .25 
8/29/18 7 2 6.27 
10/4/18 6 7 11.63 

Pond 2 
5/31/17 1 3 0.91 
6/13/17 7 1 0.10 
7/11/17 4 1 1.45 
7/25/17 0* 3 1.12 
8/8/17 0* 1 16.76 
6/14/18 3 3 1.98 
6/26/18 2 3 2.29 
7/10/18 17 3 2.29 
8/7/18 3 6 2.18 
8/23/18 2 1 0.99 
9/20/18 2 2 1.35 

* there was rain the day before sampling occurred. 
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Supplemental Table 2: Time series data of 2017 water quality parameters for Pond 1 
and Pond 2. 

2017 
Pond 1 Pond 2 

6/7/17 6/21/17 7/5/17 7/18/17 8/2/17 8/16/17 5/31/17 6/13/17 7/11/17 7/25/17 8/8/18 

Temp 22.73 27.14 28.00 29.14 25.44 25.43 24.52 30.73 29.75 29.61 22.24 

DO 10.52 9.12 11.92 11.02 10.16 9.58 16.94 14.49 11.98 10.33 5.35 

SPC 156.40 168.85 170.20 175.82 150.74 153.10 151.49 160.10 174.77 179.11 141.57 

pH 8.51 8.70 9.39 8.86 8.64 8.79 9.35 8.81 8.20 8.10 6.48 

NTU 2.88 4.82 4.06 7.38 6.28 5.54 4.83 8.38 3.85 32.23 4.84 

Phyco YSI 0.22 0.32 0.88 2.34 1.17 1.94 0.94 2.86 1.58 11.74 0.33 

CHL YSI 1.88 2.34 6.25 7.56 1.68 3.29 8.65 15.10 12.27 15.27 2.39 

fDOM 3.42 2.19 4.82 6.24 36.65 25.02 32.57 24.99 23.62 28.26 42.24 

CHL EXT 4.69 4.19 15.77 15.52 10.58 20.25 64.26 10.65 25.59 170.44 9.71 

Secchi 0.89 1.02 0.80 0.58 0.54 0.51 0.43 N/A 0.70 0.31 N/A 

 
Supplemental Table 3: Time series data of 2018 water quality parameters for Pond 1 
and Pond 2. 

 

Pond 1 was treated with copper sulfate on 7/1/18. 
 
  

2018 
Pond 1 Pond 2 

6/20/18 7/5/18 7/19/18 8/15/18 8/29/18 10/4/18 6/14/18 6/26/18 7/10/18 8/7/18 8/23/18 9/20/18 

Temp 26.59 29.57 28.25 26.83 27.73 22.97 25.45 27.12 28.64 31.93 25.92 26.21 

DO 11.59 7.89 8.96 10.50 11.23 10.23 20.73 16.78 11.11 14.05 11.46 15.33 

SPC 141.37 156.44 166.90 146.49 132.82 148.95 136.37 146.25 162.08 124.84 139.56 146.44 

pH 8.46 7.30 7.25 7.46 8.06 7.36 8.82 8.49 7.51 8.50 7.37 8.32 

NTU 8.80 3.76 2.57 2.47 3.97 3.60 9.30 6.04 10.17 18.68 18.52 20.47 

Phyco YSI 2.51 0.60 0.28 0.64 0.91 0.76 6.07 4.16 4.49 4.72 5.03 4.69 

CHL YSI 2.42 1.12 1.03 4.55 6.93 0.73 36.64 26.28 12.90 17.01 13.69 13.31 

fDOM 21.35 7.11 1.92 29.94 25.58 38.39 39.56 30.01 27.51 40.84 38.75 32.76 

CHL EXT 36.75 6.25 5.47 28.88 42.80 12.46 272.44 233.39 82.27 163.02 266.06 157.99 

CDOM 85.01 43.37 32.32 95.33 102.56 102.19 211.71 166.18 133.34 203.32 188.46 158.97 

LAB CHL 223.80 87.49 94.74 399.87 638.30 90.39 1182.11 1393.71 652.03 1183.12 1286.87 1053.45 

Phyco LAB 114.28 24.84 18.58 18.23 31.67 47.92 110.49 68.07 119.90 141.60 110.49 156.53 

Secchi 1.07 0.95 1.42 0.98 0.89 1.15 0.56 0.50 0.58 0.41 0.45 0.52 
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Supplemental Table 4: Descriptive statistics of phytoplankton functional groups. 

Time Series Data – Mean, standard deviation, and number of samples taken 

Group Green Algae Diatoms Cyanobacteria 

Dates Mean Std Dev # 
Samples 

Mean Std Dev # 
Samples 

Mean Std Dev # 
Samples 

Pond 1 

6/7/17 7.042 0.353 23 5.469 0.679 23 5.508 1.138 23 
6/20/17 6.812 0.192 23 5.887 0.376 23 5.644 0.739 23 
7/5/17 7.187 0.206 23 5.588 0.686 23 6.768 0.498 23 
7/18/17 7.091 0.469 23 6.564 0.674 23 6.141 0.948 23 
8/2/17 7.044 0.286 23 5.969 0.459 23 5.490 1.175 23 
8/15/17 7.405 0.179 23 6.181 0.419 23 5.601 1.106 23 
6/20/18 6.807 0.276 23 5.798 0.722 23 7.352 0.228 23 
7/5/18 6.760 0.234 23 5.919 0.463 23 5.020 1.203 23 
7/19/18 6.719 0.214 23 6.172 0.275 23 4.309 0.403 23 
8/15/18 7.391 0.173 23 6.110 0.368 23 5.223 1.352 23 
8/29/18 6.257 0.319 23 4.662 0.614 23 4.337 0.714 23 
10/4/18 6.257 0.319 23 4.667 0.594 23 7.585 0.249 23 

Pond 2 

5/31/17 5.836 0.469 22 5.625 0.487 22 5.411 0.917 22 
6/13/17 6.598 0.380 22 5.788 0.483 22 5.382 1.233 22 
7/11/17 7.513 0.289 22 6.883 0.399 22 5.696 1.003 22 
7/25/17 7.590 0.218 22 6.347 1.107 22 8.366 0.229 22 
8/8/17 7.051 0.275 22 6.980 0.254 22 5.862 0.869 22 
6/14/18 6.243 0.800 22 5.213 0.949 22 7.351 0.885 22 
6/26/18 6.810 0.271 22 5.940 0.502 22 6.871 0.489 22 
7/10/18 6.875 0.223 22 5.487 0.716 22 7.124 0.328 22 
8/7/18 7.818 0.164 22 5.111 0.831 22 6.240 1.392 22 
8/23/18 7.587 0.172 22 5.015 0.959 22 7.609 0.338 22 
9/20/18 7.323 0.214 22 6.250 0.367 22 7.058 0.629 22 
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Supplemental Table 5: Coefficient of variation values for Pond 1 and Pond 2 

Coefficient of Variation 
Dates Green Algae Diatoms Cyanobacteria 
Pond 1 

6/7/17 0.050 0.124 0.207 
6/20/17 0.028 0.064 0.131 
7/5/17 0.029 0.123 0.074 
7/18/17 0.066 0.103 0.154 
8/2/17 0.041 0.077 0.214 
8/15/17 0.024 0.068 0.197 
6/20/18 0.041 0.124 0.040 
7/5/18 0.035 0.078 0.249 
7/19/18 0.032 0.044 0.217 
8/15/18 0.023 0.060 0.262 
8/29/18 0.051 0.132 0.212 
10/4/18 0.051 0.127 0.066 

Pond 2 
5/31/17 0.080 0.087 0.169 
6/13/17 0.058 0.084 0.229 
7/11/17 0.039 0.058 0.176 
7/25/17 0.029 0.174 0.027 
8/8/17 0.039 0.036 0.148 
6/14/18 0.129 0.139 0.107 
6/26/18 0.040 0.092 0.075 
7/10/18 0.032 0.111 0.042 
8/7/18 0.019 0.140 0.161 
8/23/18 0.021 0.143 0.041 
9/20/18 0.025 0.060 0.062 
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Supplemental Figure 2.1: The mean relative difference values of the logarithms of 
green algae, diatoms, and cyanobacteria concentrations computed over the two-year 
period for Pond 1 and Pond 2. 
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Supplemental Figure 2.2: The mean relative difference values of the logarithms of 
dinoflagellate concentrations computed over the two-year period for both Pond 1 and 
Pond 2. 

 
 
Supplemental Figure 2.3a: The mean relative difference values of temperature over 
the two-year period for Pond 1 and Pond 2. 
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Supplemental Figure 2.3b: The mean relative difference values of dissolved oxygen 
over the two-year period for Pond 1 and Pond 2. 

 
Supplemental Figure 2.3c: The mean relative difference values of specific 
conductance over the two-year period for Pond 1 and Pond 2. 
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Supplemental Figure 2.3d: The mean relative difference values of pH over the two-
year period for Pond 1 and Pond 2. 

 
Supplemental Figure 2.3e: The mean relative difference values of turbidity over the 
two-year period for Pond 1 and Pond 2. 
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Supplemental Figure 2.3f: The mean relative difference values of phycocyanin from 
the YSI sonde over the two-year period for Pond 1 and Pond 2. 

 

Supplemental Figure 2.3g: The mean relative difference values of chlorophyll 
pigment from the YSI sonde over the two-year period for Pond 1 and Pond 2. 
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Supplemental Figure 2.3h: The mean relative difference values of fluorescent 
dissolved organic matter over the two-year period for Pond 1 and Pond 2. 
 

 
Supplemental Figure 2.3i: The mean relative difference values of extracted 
chlorophyll over the two-year period for Pond 1 and Pond 2. 
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Appendix B: Supplementary material for Chapter 3 
 

Supplemental Figure 3.1. Sampling locations for both Pond 1 (A) and Pond 2 (B). 
Location number is located inside the circle. Green circles indicate interior water 
sampling locations and blue circles indicate near-shore sampling locations. 
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Supplemental Figure 3.2. Regression trees for both Pond 1 and Pond 2 for each 
sampling date. Pond number and sampling dates are located in upper left-hand corner 
of each tree. Dates are in chronological order for each pond. 
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Supplemental Table 3.1: Sampling dates with corresponding rainfall information for 
Pond 1 and Pond 2. 

Dates 
# of days from 
last rainfall to 
sampling date 

Total days of 
rainfall 

Total rainfall 
accumulation 

(mm) 
Pond 1 

6/20/18 0* 1 7.6 
7/5/18 14 3 17.5 
7/19/18 2 1 18.5 
8/15/18 1 2 2.5 
8/29/18 7 2 62.7 
10/4/18 6 7 116.3 

Pond 2 
6/14/18 3 3 19.8 
6/26/18 2 3 22.9 
7/10/18 17 3 22.9 
8/7/18 3 6 21.8 
8/23/18 2 1 9.9 
9/20/18 2 2 13.5 

*Date with zero means there was rain the day before sampling occurred. 

Supplemental Table 3.2: Percentage of the algal community that was classified as 
cyanobacteria using light microscopy analysis on each sampling date for Pond1 and 
Pond 2.  

Date % 
Cyanobacteria 

% 
Nostocales 

% 
Chroococcales 

% 
Oscillatoriales 

Pond 1 
06/20/2018 72.04 0.56 97.47 1.97 
07/05/2018 18.90 35.59 26.49 37.92 
07/19/2018 0.50 100.00 0.00 0.00 
08/15/2018 12.57 49.27 50.73 0.00 
08/29/2018 3.67 0.00 100.00 0.00 
10/04/2018 94.70 100.00 0.00 0.00 

Pond 2 
06/14/2018 85.72 98.65 1.35 0.00 
06/26/2018 49.45 90.06 9.94 0.00 
07/10/2018 62.41 76.01 23.99 0.00 
08/07/2018 22.07 30.13 69.87 0.00 
08/23/2018 48.81 39.86 60.02 0.12 
09/20/2018 39.22 12.33 87.67 0.00 
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Supplemental Table 3.3: Time series of water quality parameters for Pond 1 and Pond 
2. 

*Pond 1 was treated with copper sulfate on 7/1/18. 
The “±” sign separates average and standard deviations across both ponds. 
DO - dissolved oxygen (mg L-1), NTU - turbidity (NTU), CDOM - colored dissolved 
organic matter (µg L-1), fDOM - fluorescent dissolved organic matter (relative 
fluorescent units), CHL RFU – chlorophyll-a fluorescence (relative fluorescent units), 
CHL EXT – extracted chlorophyll-a concentrations (µg L-1), CHL YSI – chlorophyll-
a measured via YSI sonde (relative fluorescent units), Phyco – Phycocyanin 
concentrations (µg L-1). 
 

  

Date DO pH NTU CDOM fDOM CHL RFU CHL EXT CHL YSI Phyco 

Pond 1 

6/20 11.6 ± 0.8 8.5 ± 0.2 8.8 ± 4.8 85.0 ± 6.9  7.0 ± 0.9 223.8 ± 56.1 36.7 ± 18.4 2.4 ± 0.7 114.3 ± 70.5 

7/5 7.9 ± 0.4 7.3 ± 0.1 3.8 ± 2.2 43.4 ± 2.1 2.4 ± 0.5 87.5 ± 30.8 6.3 ± 2.3 1.1 ± 0.5 24.8 ± 17.5 

7/19* 9.0 ± 0.3 7.3 ± 0.2 2.6 ± 2.3 32.3 ± 1.3 0.8 ± 0.3 94.7 ± 26.5 5.5 ± 2.3 1.0 ± 0.8 18.6 ± 20.6 

8/15 10.5 ± 0.3 7.5 ± 0.1 2.5 ± 1.3 95.3 ± 3.6 10.0 ± 0.6 399.9 ± 100.5 28.9 ± 12.8 4.6 ± 1.4 18.2 ± 7.9 

8/29 11.2 ± 0.5 8.1 ± 0.4 4.0 ± 1.9 102.6 ± 7.6 8.6 ± 0.8 497.6 ± 114.9 42.8 ± 19.6 6.9 ± 2.3 31.7 ± 15.2 

10/04 10.2 ± 0.5 7.4 ± 0.2 3.6 ± 0.7 102.2 ± 4.5 12.6 ± 0.6 90.4 ± 19.2 12.5 ± 8.4 0.7 ± 0.1 47.9 ± 30.4 

Pond 2 

6/14 20.7 ± 3.0 8.8 ± 0.3 9.3 ± 11.8 211.7 ± 140.2 13.1 ± 1.7 1182.1 ± 1388.5 272.4 ± 385.0 36.6 ± 49.4 110.5 ± 70.0 

6/26 16.8 ± 4.1 8.5 ± 0.5 6.0 ± 5.6 166.2 ± 118.9 10.2 ± 1.6 1393.7 ± 2634.9 233.4 ± 475.2 26.3 ± 34.1 68.1 ± 88.9 

7/10 11.1 ± 2.7  7.5 ± 0.3 10.2 ± 8.8 133.3 ± 92.4 9.1 ± 1.3 407.7 ± 362.0 82.3 ± 35.3 12.9 ± 29.2 119.9 ± 69.4 

8/7 14.1 ± 3.1 8.5 ± 0.5 18.7 ± 21.6 203.3 ± 40.6 13.6 ± 2.3 1183.1 ± 697.5 163.0 ± 117.0 17.0 ± 9.8 141.6 ± 80.5 

8/23 11.5 ± 3.8  7.4 ± 0.6 18.5 ± 4.5 188.5 ± 22.9 12.9 ± 0.4  1286.9 ± 427.2 266.1 ± 103.0 13.7 ± 4.6 110.5 ± 70.0 

9/20 15.3 ± 2.7 8.3 ± 0.6  20.5 ± 34.3 159.0 ± 26.2 13.3 ± 9.1 1053.5 ± 442.6  158.0 ± 84.5 4.7 ± 3.5 156.5 ± 128.4 
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Supplemental Table 3.4: Pearson correlation coefficients for Pond 1 and Pond 2. The 
significant critical value for Pond 1 was r =0.413. The significant value for Pond 2 
was r=0.339. Only significant correlations are displayed (P < 0.05).  

Pearson 
Correlations 

Pond 1 Pond 2 

 DO pH NTU CHL 
YSI fDOM CDOM CHL  

RFU 
CHL 
EXT Phyco  DO pH NTU CHL 

YSI fDOM CDOM CHL 
RFU 

CHL 
EXT Phyco 

DO 6/20  0.586     0.422   6/14  0.868   -0.343     

DO 7/5     -0.473 -0.755 -
0.737 

-
0.483  6/26  0.935 0.465 0.431 -0.810 0.533 0.528 0.461 0.517 

DO 7/19  0.448    0.419    7/10  0.909    0.375 0.373  0.402 

DO 8/15  0.811  -
0.682 -0.598     8/7  0.920  0.453 -0.672 0.355 0.341   

DO 8/29  0.759 -
0.464 

-
0.659 -0.625 -0.568  -

0.480 
-

0.509 8/23  0.970 0.366  -0.702 0.569 0.532  -
0.452 

DO 10/4  0.764        9/20  0.931 0.373 0.421     0.451 

pH 6/20     -0.449     6/14          

pH 7/5          6/26     -0.706 0.380 0.380  0.360 

pH 7/19        -
0.670  7/10    0.340  0.393 0.392  0.420 

pH 8/15    -
0.417 -0.564     8/7   0.373  -0.779    0.350 

pH 8/29    -
0.427 -0.549 -0.422    8/23     -0.653 0.548 0.562  -

0.476 

pH 10/4     -0.435     9/20    0.349     0.376 

NTU 6/20          6/14    0.844 -0.823 0.808 0.789 0.836 0.705 

NTU 7/5     -0.701     6/26    0.839 -0.728 0.427 0.414 0.389 0.424 

NTU 7/19          7/10    0.573 -0.795 0.568 0.555  0.549 

NTU 8/15    0.761      8/7     -0.520    0.351 

NTU 8/29          8/23    0.626  0.565 0.479 0.541 -
0.562 

NTU 10/4      0.508 0.512 0.480 0.486 9/20    0.631    0.531 0.701 

CHL YSI 6/20          6/14     -0.862 0.903 0.8662 0.900 0.749 

CHL YSI 7/5          6/26     -0.696 0.578 0.559 0.577 0.554 

CHL YSI 7/19      0.507 0.795   7/10     -0.608 0.970 0.969  0.845 

CHL YSI 8/15          8/7      0.732 0.776 0.665 0.454 

CHL YSI 8/29     0.762    0.433 8/23      0.638 0.599 0.365 -
0.381 

CHL YSI 10/4     0.792 0.613    9/20     0.540 0.713 0.460 0.836 0.916 

fDOM 6/20          6/14      -0.891 -0.695 -
0.855 

-
0.533 

fDOM 7/5       0.485   6/26      -0.486 -0.476 -
0.430 

-
0.465 

fDOM 7/19      0.465  0.463  7/10      -0.581 -0.580  -
0.575 

fDOM 8/15          8/7         -
0.451 

fDOM 8/29          8/23          

fDOM 10/4      0.494    9/20      0.753 0.779 0.568  

CDOM 6/20       0.594 0.707 0.668 6/14       0.636 0.954 0.489 

CDOM 7/5       0.606 0.711 0.519 6/26       0.998 0.963 0.991 

CDOM 7/19       0.462   7/10       0.998  0.899 

CDOM 8/15       0.783 0.619 0.548 8/7       0.958 0.808 0.667 

CDOM 8/29        0.819 0.672 8/23       0.947 0.575 -
0.616 

CDOM 10/4       0.915 0.775 0.761 9/20       0.908 0.842 0.668 

CHL RFU 6/20          6/14        0.680 0.915 

CHL RFU 7/5        0.525  6/26        0.968 0.993 

CHL RFU 7/19          7/10         0.889 
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CHL RFU 8/15        0.690 0.563 8/7        0.850 0.614 

CHL RFU 8/29          8/23        0.435 -
0.598 

CHL RFU 10/4        0.910 0.864 9/20        0.664 0.406 

CHL EXT 6/20         0.873 6/14         0.522 

CHL EXT 7/5         0.525 6/26         0.962 

CHL EXT 7/19          7/10          

CHL EXT 8/15         0.623 8/7         0.593 

CHL EXT 8/29         0.727 8/23         -
0.493 

CHL EXT 10/4         0.900 9/20         0.801 
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Supplemental Table 3.5: Root mean square error (RMSE) and r2 values for regression 
trees. Each column displays the analyses run with different chlorophyll-a values 
measured using different analytical techniques. 

Date CHL YSI CHL EXT CHL RFU 
R2 RMSE R2 RMSE R2 RMSE 

Pond 1 
06/20/18 0.699 37.778 0.675 39.281 0.700 37.714 
07/05/18 0.393 13.313 0.393 13.313 0.393 13.313 
07/19/18 0.441 15.036 0.441 15.036 0.441 15.036 
08/15/18 0.789 3.564 0.892 2.544 0.649 4.590 
08/29/18 0.696 8.175 0.708 8.009 0.658 8.676 
10/04/18 0.686 16.649 0.877 10.426 0.871 10.682 
Pond 2 
06/14/18 0.690 38.374 0.690 38.374 0.839 27.638 
06/26/18 0.565 57.749 0.565 57.749 0.565 57.749 
07/10/18 0.544 46.162 0.548 45.931 0.528 46.930 
08/07/18 0.712 42.588 0.716 42.299 0.713 42.463 
08/23/18 0.782 32.198 0.801 30.765 0.801 30.778 
09/20/18 0.896 40.732 0.685 71.006 0.680 71.508 

CHL RFU – chlorophyll-a fluorescence (relative fluorescent units), CHL EXT – 
extracted chlorophyll-a concentrations (µg L-1), CHL YSI – chlorophyll-a measured 
via YSI sonde (relative fluorescent units). 
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Appendix C: Supplementary material for Chapter 4 
 
Supplemental Figure 4.1. Weather data for Pond 1 and Pond 2 for 2017 and 2018. 
Average daily temperature readings are represented by the red line and daily 
precipitation is represented by black bars. Sampling dates are indicated with a yellow 
triangle at the x axis. 
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Supplemental Table 4.1. Summary statistics for all measured parameters and 
phytoplankton functional groups for 2017 and 2018. 

Minimum, maximum, mean, and median values of measured phytoplankton functional groups and water quality 
data for 2017 and 2018 

Variable Units Pond 1 Pond 2 

2017 Min Max Mean Median Min Max Mean Median 

Diatoms grouped  Log cells/L 4.19 7.59 5.94 6.00 4.19 7.77 6.32 6.46 

Green Algae grouped  Log cells/L 6.03 8.08 7.10 7.14 4.97 8.18 6.92 7.08 

Cyanobacteria grouped  Log cells/L 4.74 7.91 5.98 6.11 4.67 8.69 6.14 5.81 

TEMP  °C 22.33 29.84 26.31 26.34 21.81 33.74 27.37 29.16 

DO  mg/L 8.14 15.44 10.39 10.24 2.74 24.87 11.82 12.01 

SPC  µS/cm 149.50 178.30 162.52 162.15 138.90 183.20 161.41 160.15 

pH   6.90 9.56 8.82 8.84 6.18 9.90 8.18 8.49 

NTU   1.81 23.78 5.16 5.05 1.52 68.61 10.82 4.73 

Phyco  RFU 0.12 8.43 1.14 0.93 -0.27 34.18 3.49 0.83 

CHL  RFU 0.87 46.54 3.83 2.21 0.84 123.31 10.74 5.83 

FDOM  ppb -0.05 39.53 13.06 5.29 9.39 47.63 30.34 29.11 

2018 

Diatoms grouped  Log cells/L 4.45 7.22 5.61 5.75 4.49 7.42 5.63 5.79 

Green algae grouped  Log cells/L 5.49 7.78 6.70 6.72 4.89 8.08 7.10 7.15 

Cyanobacteria grouped  Log cells/L 4.19 7.95 5.64 4.19 5.29 8.38 7.08 7.25 

TEMP  °C 22.34 30.10 26.99 27.06 24.00 36.28 27.54 26.95 

DO  mg/L 7.04 12.68 10.07 10.41 5.83 27.18 14.91 14.94 

SPC  µS/cm 1.70 168.10 148.83 149.05 10.10 164.10 142.59 145.70 

pH   6.47 8.67 7.65 7.46 6.46 9.31 8.17 8.37 

NTU   1.20 24.00 4.20 3.28 1.00 178.46 13.86 9.85 

Phyco RFU 0.10 10.65 0.95 0.61 0.45 35.11 4.86 3.32 

CHL  RFU 0.51 11.12 2.80 1.79 1.37 166.42 19.97 10.43 

FDOM  ppb 0.49 41.25 20.72 23.60 9.09 50.64 34.90 35.58 

CDOM  µg/L 29.94 113.15 76.80 91.38 93.54 826.40 177.00 161.97 

Submerged light -0cm  7.00 1809.00 712.72 793.00 55.00 2128.00 1113.02 1195.50 

Submerged light – 7.5cm  7.00 1578.00 624.42 653.50 7.00 1946.00 810.60 848.50 

Submerged light – 15cm  6.00 1479.00 540.88 546.50 5.00 1933.00 578.13 607.00 

PAR   4.00 1278.00 950.46 928.00 48.00 2200.00 1312.86 1373.00 
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Figure 4.2. Spatial RMSE for 2017+2018 calculated for green algae using set AB 
parameters. Number located inside of symbol indicates sampling location number. 
Number above location indicates the calculated RMSE for green algae at that 
location. 
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Figure 4.3. Spatial RMSE for 2017+2018 calculated for diatoms using set AB 
parameters. Number located inside of symbol indicates sampling location number. 
Number above location indicates the calculated RMSE for diatoms at that location. 
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Figure 4.4. Spatial RMSE for 2017+2018 calculated for cyanobacteria using set AB 
parameters. Number located inside of symbol indicates sampling location number. 
Number above location indicates the calculated RMSE for diatoms at that location. 
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