
ABSTRACT

Title of dissertation: SYSTEMATIC EXPLORATION OF TRADE-OFFS
BETWEEN APPLICATION THROUGHPUT AND
HARDWARE RESOURCE REQUIREMENTS IN
DSP SYSTEMS

Hojin Kee, Doctor of Philosophy, 2010

Dissertation directed by: Shuvra S. Bhattacharyya, Professor
Department of Electrical and Computer Engineering,
and Institute for Advanced Computer Studies

Dataflow has been used extensively as an efficient model-of-computation to ana-

lyze performance and resource requirements in implementing DSP algorithms on various

target architectures. Although various software synthesis techniques have been widely

studied in recent years, there is a distinct lack of efficient synthesis techniques in the

literature for systematically mapping dataflow models into efficient hardware implemen-

tations. In this thesis, we explore three different aspects that contribute to the development

of a powerful dataflow-based hardware synthesis framework:

1. Systematic generation of 1D/2D FFT implementation on field programmable gate

arrays (FPGAs). The fast Fourier transform (FFT) is one of the most widely-used

and important signal processing functions. However, FFT computation generally

becomes a major bottleneck for overall system performance due to its high compu-

tational requirements. We propose a systematic approach for synthesizing FPGA

implementations of one- and two-dimensional (1D and 2D) FFT computations, and

rigorously exploring trade-offs between cost (in terms of FPGA resource require-

ments) and performance (in terms of throughput). Our approach provides an ef-

ficient hardware synthesis framework that can be customized to specific design

constraints. In our FFT synthesis approach, we apply two orthogonal techniques

in FPGA implementation to realize data-parallelism and parallel processing in FFT

computation, respectively. These techniques can be applied to various 1D FFT al-

gorithms, including Radix-2 and Radix-4 algorithms, and extended naturally and

efficiently to 2D FFT implementation.

2. Buffer optimization under self-timed execution. Self-timed execution is known to

provide the maximum achievable throughput when mapping DSP dataflow graphs

into hardware under certain technical constraints. Throughput-constrained buffer

minimization under self-timed execution is a key question in efficient hardware

synthesis for practical design scenarios. Previous approaches to this problem have

suffered from high worst case complexity or loose buffer bounds, which lead to in-

efficient resource utilization. In this thesis, we integrate a novel constraint into

traditional self-timed execution to obtain a modified form of self-timed execu-

tion, which we call MSTE (Modified Self-Timed Execution). We show that MSTE

greatly improves the efficiency with which we can accurately analyze and optimize

hardware configurations of dataflow graphs, and furthermore, the additional execu-

tion constraints imposed in MSTE result in relatively minor performance overhead.

Based on MSTE, we explore novel methods for self-timed analysis and associated

techniques for buffer optimization subject to given throughput constraints.

3. Hardware synthesis technique for parameterized dataflow model. Parameterized

dataflow modeling approaches allow for dynamic capabilities without excessively

compromising the key properties of the existing static dataflow model — compile-

time predictability and potential for rigorous optimizations. We develop a novel

PSDF-based FPGA architecture framework using National Instrument’s LabVIEW

FPGA, a recently-introduced commercial platform for reconfigurable hardware im-

plementation. This framework develops novel connections among model-based

DSP system design, FPGA implementation, and next generation wireless commu-

nication systems.

SYSTEMATIC EXPLORATION OF TRADE-OFFS BETWEEN APPLICATION
THROUGHPUT AND HARDWARE RESOURCE REQUIREMENTS IN DSP

SYSTEMS

by

Hojin Kee

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2010

Advisory Committee
Professor Shuvra S. Bhattacharyya, Chair/Advisor
Professor Gang Qu
Professor Raj Shekhar
Professor Ramani Duraiswami
Professor Andrew Harris, Deans Representative

c© Copyright by
Hojin Kee

2010

Dedicated to

my parents
my wife & our son

Acknowledgments

First of all, I would like to thank Dr. Shuvra S. Bhattacharyya for giving me an

invaluable opportunity to work on challenging and interesting projects. While working

with him, I have learned how to define an engineering problem, approach in solving

the given problem, and describe my approach technically in presentations and papers.

Furthermore, his positive advice and encouragement on my works motivated me in doing

my best, and became a great lesson when I co-worked with my colleagues.

I also would like to thank the people of National Instruments, including Dr. Jacob

Kornerup, Newton Petersen, Minhaz Khan, Ben Weidman, Dr. Ian Wong, Dr. Kaushik

Ravindran, and Yon Rao. It has been my pleasure to work and interact with good and

smart engineers from National Instruments. Also, it was always exciting to apply my

academic solutions to cutting-edge applications used in the real-engineering field.

It is my pleasure to thank the members of the committee, including Dr. Gang Qu,

Dr. Raj Shekhar, Dr. Ramani Duraiswami, and Dr. Harris for guiding me to complete this

thesis with constructive feedbacks and helpful discussions.

My gratitude goes to the DSPCAD research group, including Will, Chung-ching,

Ruirui, Nimish, Hsing-Huang, George, Inkeun, Scott, and Soujanya. I also feel grateful

to all my friends here for their generous friendship, which became a great support in

completing my Ph.D study.

I would like to give my deepest gratitude to my parents. “You can do it because you

are our proud son.” Their endless support and love motivated me in moving forward to

become their proud son when I was having hard times. Looking back, it was one of the

ii

best motivation to achieve this milestone in my academic career.

Finally, I thank my beloved wife, who accompanied me from the beginning to the

end of this thesis with full support, and my new born son, who is crying at this very

moment.

iii

Table of Contents

List of Figures viii

List of Tables x

1 Introduction 1

1.1 Contributions of this thesis . 3

1.1.1 Systematic generation of FPGA-based 1D-FFT implementation 3

1.1.2 Resource-efficient acceleration of 2D-FFT on FPGAs 4

1.1.3 Efficient static buffering for throughput-optimal FPGA Implementation of

synchronous dataflow graphs . 5

1.1.4 Hardware synthesis techniques for parameterized dataflow 6

1.2 Outline of thesis . 7

2 Systematic generation of FPGA-based 1D-FFT implementation 8

2.1 Introduction . 8

2.2 BACKGROUND AND RELATED WORK . 10

2.3 UNROLLING TECHNIQUES . 13

2.3.1 Outer Loop Unrolling . 14

2.3.2 Inner Loop Unrolling in radix–2 FFT 14

2.3.2.1 Address for the read . 15

2.3.2.2 Address for the write . 17

2.3.2.3 Conflict–free property in read/write 19

2.3.3 Inner Loop Unrolling in radix–4 FFT 19

2.3.3.1 Address for the read . 20

iv

2.3.3.2 Address for the write . 20

2.3.3.3 Conflict–free property in read/write 22

2.4 COST/PERFORMANCE ANALYSIS . 23

2.5 EXPERIMENTAL RESULTS . 26

3 Resource-efficient Acceleration of 2D-FFT on FPGAs 30

3.1 Introduction . 30

3.2 Background . 33

3.3 2D-FFT Design . 36

3.3.1 Inner Loop Unrolling Technique (ILUT) 37

3.3.2 2D-FFT Architecture . 38

3.4 Analysis and Comparison ILUT-based and OLUT-based Implementation 40

3.4.1 Operation of ILUT-based 2D-FFT Implementation 41

3.4.2 Operation of OLUT-based 2D-FFT Implementation 43

3.5 Experimental Results and Discussions . 45

3.6 Conclusion . 51

4 Efficient Static Buffering to Guarantee Throughput-Optimal FPGA Implementation

of Synchronous Dataflow Graphs 53

4.1 Introduction and related work . 53

4.2 Background . 58

4.2.1 Application representation . 58

4.3 Target platform model . 60

4.4 Design flow . 61

4.5 Two-actor SDF graph model (TASM) . 64

v

4.5.1 Two-actor SDF graph model (TASM) 65

4.5.2 Modified self-timed execution (MSTE) in TASM 66

4.5.3 Subperiods in TASM . 68

4.6 Properties of subperiods in TASM . 71

4.7 Throughput analysis in TASM . 76

4.7.1 Firing pattern analysis . 76

4.7.2 Saturated TASM systems . 85

4.8 Analysis of saturated systems . 87

4.9 Application to general tree-structured SDF graphs 90

4.10 Experimental results . 90

5 Hardware synthesis technique for parameterized dataflow model 94

5.1 Introduction . 94

5.2 Background . 97

5.2.1 LTE downlink physical layer . 97

5.2.2 Parameterized Synchronous Dataflow 97

5.3 Parameterized SDF Model of LTE . 98

5.3.1 LTE specification . 98

5.3.2 PSDF Modeling Details . 100

5.3.3 PSDF Execution Model . 101

5.4 LTE Prototype Implementation . 103

6 Conclusion and Future Work 105

6.1 Conclusion . 105

6.2 Future work . 107

vi

Bibliography 110

vii

List of Figures

1.1 Relationships among different levels of dataflow-based design methods for DSP

systems. 2

2.1 Signal flow graph of 8–point FFT with notational conventions illustrated. For each

stage p < n, the data written through an output index for stage p corresponds to

the data read through an input index for stage (p+1). 12

2.2 The pipelined radix–2 FFT implementation. 15

2.3 DM bank selection logic and parallel-in/serial-out shift register. 22

2.4 Resource utilization in Radix–2 FFT implementation with 4096 samples. 24

2.5 Resource utilization in Radix–4 FFT implementation with 4096 samples. 24

2.6 Resource utilization in the streaming Radix–2 FFT with 4096 samples 27

2.7 Resource utilization in the streaming Radix–4 FFT with 4096 samples 27

3.1 Functional block diagram of 2D-FFT computation. 35

3.2 Functional block diagram of ILUT-based, 1D-FFT implementation. 37

3.3 Functional block diagram of 1D-FFT with OLUT 40

3.4 Functional block diagram of 2D-FFT with ILUT. 41

3.5 A timing diagram of ILUT-based FFT computation. 45

3.6 Computation time and FPGA resource utilization for 2D-FFT with an image size

of 256x256. 46

3.7 Computation time and FPGA resource utilization for 2D-FFT with an image size

of 2048x2048. 46

4.1 Overall design flow. 62

viii

4.2 An example of an SDF edge and its TASM model. 65

4.3 Example of TASM-based modeling approach, and execution patterns under con-

ventional self-timed execution and MSTE. 70

4.4 DIF-based Application specifications . 92

5.1 Example LTE subframe showing multiplexing of various channels on a 2D time-

frequency grid (not to scale). 96

5.2 PSDF Model for LTE BS Modulator. 99

5.3 PSDF specification of RE Mapper. 100

ix

List of Tables

2.1 Time When address is accessed for read/write 23

2.2 Comparing synthesis report between radix–2 and radix–4 under the same perfor-

mance level . 26

3.1 Relative resource requirements for an image size of 256x256. 51

3.2 Relative resource requirements for an image size of 2048x2048. 51

4.1 The number of firings of vT
src and vT

snk in subperiod α and β of TASM 73

4.2 Sum of result buffer distribution under the maximum throughput(samples/cycle)

and its synthesis result . 93

5.1 FPGA resource utilization for LTE implementation. 103

x

Chapter 1

Introduction

Dataflow-based digital signal processing (DSP) system design methods include

three levels of design. Each level of design is closely related to the other levels, as il-

lustrated in Fig. 1.1. In this thesis, we explore techniques at each of these design levels,

and corresponding advances that are applicable to DSP system design flows at each of

these levels. Furthermore, novel trade-offs of performance enhancement techniques that

are enabled by our techniques are considered jointly to realize optimized DSP imple-

mentations subject to given constraints on performance and resource requirements. We

specifically consider techniques for efficient implementation of DSP-based application

representations on field programmable gate array (FPGA) devices, which are attractive

targets for rapid prototyping and high performance signal processing in many application

contexts.

For actor-level design, we explore trade-offs between throughput and resource re-

quirements (hardware cost) in implementing computational modules for the fast Fourier

transform (FFT), which is a fundamental function in many signal processing applications.

Due to its computational complexity — O(NlogN), where N the number of inputs — and

the large amount of data that must be processed, FFT computation often becomes a ma-

jor bottleneck for overall system performance. In this thesis, we develop a systematic

approach for generating a cost–efficient, FPGA–based FFT implementation based on a

1

SDF Graph
Model

CSDF Graph
Model

PSDF Graph
Model

CFDF Graph
Model

Dataflow model level design

Throughput
Analysis

Buffering
Analysis

Deadlock
Analysis

Power
Analysis

Graph level design
FIR filter
Design

1D-FFT
Design

2D-FFT
Design

DCT
Design

Actor level design

Figure 1.1: Relationships among different levels of dataflow-based design methods for

DSP systems.

designer–specified throughput requirement.

In dataflow-based system design, functional blocks and communication channels

for transferring data between adjacent blocks are modeled as graph vertices (actors) and

edges, respectively. When mapping dataflow graph edges into storage locations, care

must be taken to make effective use of limited storage locations (e.g., on-chip memory

in programmable digital signal processors, and block RAM and distributed memory in

FPGAs). However, reducing the storage space for transferring data between actors may

result in decreased throughput due to idle time that is required to prevent buffer overflow

— as buffers become smaller, the frequency and duration for such overflow-avoiding idle

time generally increases, which leads to decreased throughput. The limited amounts of

storage available in DSP implementation targets, and the importance of meeting real-time

performance constraints motivate the goal of throughput-constrained buffer minimization

for SDF graphs. In this thesis, we study this problem in the context of FPGA-based

2

implementation.

When mapping DSP dataflow graphs into FPGA implementations, it is important to

consider real-time constraints as well as optimization of hardware resources. Synchronous

dataflow (SDF) [1] has been used widely as an efficient model of computation for ana-

lyzing performance and resource requirements of DSP applications that are implemented

on various target architectures (e.g., see [2, 3, 4, 5, 6]). In recent years, the parameter-

ized dataflow meta modeling approach has evolved as a useful framework for modeling

graphs in which arbitrary actor, edge, and graph parameters can be changed dynamically.

However, the potential to enable efficient hardware synthesis has been treated relatively

sparsely in the literature for traditional dataflow modeling techniques, and even more so

for the newer, more general parameterized dataflow model. In this thesis, we develop

efficient techniques to synthesize SDF-based and parameterized-dataflow-based dataflow

models onto FPGA platforms.

1.1 Contributions of this thesis

1.1.1 Systematic generation of FPGA-based 1D-FFT implementation

We propose a systematic approach for synthesizing FPGA implementations of FFT

computations. Our approach considers both cost (in terms of FPGA resource require-

ments), and performance (in terms of throughput), and optimizes for both of these di-

mensions based on user-specified requirements. Our approach involves two orthogonal

techniques — FFT inner loop unrolling and outer loop unrolling — to perform design

space exploration in terms of cost and performance. By appropriately combining these

3

two forms of unrolling, we can achieve cost-optimized FFT implementations in terms of

FPGA slices or block RAMs in an FPGA subject to constraints on the required through-

put.

We compared the results of our synthesis approach with a recently-introduced com-

mercial FPGA intellectual property (IP) core — the FFT IP module in the Xilinx Logi-

Core Library, which provides different FFT implementations that are optimized for a lim-

ited set of performance levels. Our results demonstrate efficiency levels that are in some

cases better than these commercial IP blocks. At the same time, our approach provides the

advantages of being able to optimize implementations based on arbitrary, user-specified

performance levels, and of being based on general formulations of FFT loop unrolling

trade-offs, which can be retargeted to different kinds of FPGA devices.

1.1.2 Resource-efficient acceleration of 2D-FFT on FPGAs

The 2-dimensional (2D) FFT is a fundamental, computationally intensive function

that is of broad relevance to multidimensional signal processing computations, such as

those found in smart camera systems, medical imaging tools, and other important appli-

cations. In this thesis, we develop a systematic method for improving the throughput of

2D-FFT implementations on FPGAs. Our method is based on a novel loop unrolling tech-

nique for FFT implementation, which is extended from our work on FPGA architectures

for 1D-FFT implementation described in Section 1.1.1.

Our unrolling technique deploys multiple processing units within a single 1D-FFT

core to achieve efficient configurations of data parallelism while minimizing memory

4

space requirements, and FPGA slice consumption. Furthermore, using our techniques

for parallel processing within individual 1D-FFT cores, the number of input/output (I/O)

ports within a given 1D-FFT core is limited to one input port and one output port. In

contrast, previous 2D-FFT design approaches require multiple I/O pairs with multiple

FFT cores. This streamlining of 1D-FFT interfaces makes it possible to avoid complex

interconnection networks and associated scheduling logic for connecting multiple I/O

ports from 1D-FFT cores to the I/O channels of external memory devices. Hence, our

proposed unrolling technique maximizes the ratio of the achieved throughput to the con-

sumed FPGA resources under pre-defined constraints on I/O channel bandwidth.

To provide generality, our framework for 2D-FFT implementation can be efficiently

parameterized in terms of key design parameters such as the transform size and I/O data

word length.

1.1.3 Efficient static buffering for throughput-optimal FPGA Implemen-

tation of synchronous dataflow graphs

When designing DSP applications for implementation on FPGAs, it is often impor-

tant to minimize consumption of limited FPGA resources while satisfying real-time per-

formance constraints. We develop efficient techniques to determine dataflow graph buffer

sizes that guarantee throughput-optimal execution when mapping synchronous dataflow

(SDF) representations of DSP applications onto FPGAs. Our techniques are based on a

novel modeling technique, which we call the two-actor SDF graph model (TASM). The

TASM technique efficiently captures important characteristics relating to the behavior

5

and costs associated with SDF graph edges. With our proposed techniques, designers

can automatically generate upper bounds on SDF graph buffer distributions that realize

maximum achievable throughput performance for the corresponding applications. Fur-

thermore, our proposed technique is characterized by low polynomial time complexity,

which is useful for rapid prototyping in DSP system design.

1.1.4 Hardware synthesis techniques for parameterized dataflow

Parameterized SDF (PSDF) has evolved as a useful framework for modeling SDF

graphs in which arbitrary parameters can be changed dynamically. However, the po-

tential to enable efficient hardware synthesis has been treated relatively sparsely in the

literature for SDF and even more so for the newer, more general PSDF model. This chap-

ter investigates efficient FPGA-based design and implementation of the physical layer

for 3GPP-Long Term Evolution (LTE), a next generation cellular standard. To capture

the SDF behavior of the functional core of LTE along with higher level dynamics in the

standard, we use a novel PSDF-based FPGA architecture framework. We implement

our PSDF-based, LTE design framework using National Instrument’s LabVIEW FPGA,

a recently-introduced commercial platform for reconfigurable hardware implementation.

We show that our framework can effectively model the dynamics of the LTE protocol,

while also providing a synthesis framework for efficient FPGA implementation.

6

1.2 Outline of thesis

The rest of this thesis is organized as follows. Chapter 2, Chapter 3, Chapter 4,

and Chapter 5 develop the contributions discussed in Section 1.1.1, Section 1.1.2, Sec-

tion 1.1.3, and Section 1.1.4, respectively. In chapter 6, we present conclusions of the

thesis, and discuss useful directions for future work that emerge from the contributions in

this thesis.

7

Chapter 2

Systematic generation of FPGA-based 1D-FFT implementation

2.1 Introduction

The fast Fourier transform (FFT) is one of the most widely-used and important sig-

nal processing functions, for example, in applications related to digital communications

and image processing. Since the computational complexity of the FFT is O(NlogN),

where N the number of inputs, the FFT potentially requires multi-cycle processing, and

can become a major bottleneck for overall system performance. Thus, care must be taken

in FFT module development at the actor level of the design methodology illustrated in

Fig. 1.1.

To relieve this bottleneck, many commercial IP blocks provide a streaming form

of the FFT with single–cycle–per–sample throughput. This high–throughput form of

FFT comes at the expense of increased hardware cost, which in turn can lead to costly,

over–designed hardware in situations where single–cycle–per–sample throughput is not

required — that is, in situations where the FFT bottleneck is significant, but not so severe

as to require such a high degree of throughput optimization. This chapter develops a sys-

tematic approach for generating a cost–efficient, FPGA–based FFT implementation based

on a designer–specified throughput requirement. Our approach carefully integrates two

orthogonal methods for trading–off hardware cost and performance. The first method,

which can be viewed as outer loop unrolling of the targeted FFT, realizes parallelism by

8

instantiating multiple processing cores (dedicated hardware subsystems) across FFT but-

terfly stages. The second method, which can be viewed as unrolling of the FFT inner

loop, allocates multiple cores within each stage. Each of these methods has advantages

and drawback compared to the other, and in general, an integrated application of both

methods can lead to a more cost–effective solution for a given throughput constraint —

e.g., a more cost–effective solution compared to a solution that applies only one of these

methods, or that is based on the high performance/high cost streaming FFT implementa-

tion. Depending on the given throughput constraint, one of these unrolling methods may

be of more critical utility than the other. Furthermore, the proposed intergrated unrolling

technique can be applied to the radix–4 FFT algorithms as well as the radix–2. It en-

ables designers to choose the different processing unit showing different features in the

performance/cost trade–off, based on their performance requirement.

Motivated by these observations, we develop a comprehensive approach to mixing

and matching outer and inner loop unrolling for cost–efficient, throughput–constrained

synthesis of FPGA hardware. In FPGA synthesis, slices (basic logic cells) and block

RAMs (BRAMs) are limited, and usage in terms of these two resources is important

in evaluating hardware cost [7]. Our synthesis approach is prototyped in National In-

struments LabVIEW FPGA 8.5. LabVIEW is a graphical, dataflow–based programming

environment for embedded systems design. LabVIEW features for HDL (hardware de-

scription language) synthesis and fixed point data types, along with LabVIEWs dataflow

orientation make the tool well–suited to FPGA-based design of signal processing applica-

tions. The output of our techniques for synthesis and optimization of FFT configurations

is a LabVIEW dataflow diagram that specifies the structure and functionality of an opti-

9

mized FFT configuration. This diagram is then synthesized to an FPGA device by first

invoking LabVIEW’s HDL synthesis tool, and then mapping the resulting HDL code us-

ing the platform-specific tools of the targeted FPGA. In our experiments, we have targeted

the Xilinx Virtex II Pro FPGA.

In our experiments, we have compared the targeted cost metric — the usage of

FPGA slices and BRAMs — between implementations generated by our novel synthe-

sis flow, and those obtained from the Xilinx LogiCore library [8] for identical levels of

throughput. The results demonstrate that our synthesis approach provides results that

are of similar cost to those from the commercial library. This is encouraging since our

approach provides the unique advantage of being synthesis-driven (as opposed to library-

based) so that it can be driven by arbitrary performance levels rather than being restricted

to a pre-determined subset of FFT configurations. Also, because it is based on an abstract

synthesis formulation, it can be retargeted to different FPGA devices . e.g., by weighting

or otherwise revising the cost function in terms of the resources that are most critical for

a particular target.

2.2 BACKGROUND AND RELATED WORK

The discrete Fourier transform (DFT) for N points is given by

Xk =
N−1

∑
i=0

xi ·W ik
N (2.1)

where

W ik
N = exp(−2πik/N), k = 0,1, · · · ,N−1 (2.2)

10

The computational complexity of the DFT is O(N2). The radix–2 fast Fourier trans-

form (FFT) algorithm proposed by Cooley and Tukey [9] in Figure 2.1, is widely used to

compute the DFT with a complexity of O(NlogN). After that, numerous FFT algorithm

has been proposed to reduce the order of the algorithm complexity such as radix–2m al-

gorithms, Winograd algorithm (WFTA) [10], prime factor algorithms (FPA) [11], and fast

Hartley transform (FHT) [12]. Because of the simple structure with a constant butterfly

geometry, radix–2m FFT algorithm is one of the most popular algorithm implemented in

the hardware for the practical application.

FFT implementation in FPGA takes advantages of being reconfigured based on the

user-specified design parameters — a variable FFT size, a variable data word length, a

performance, and a hardware resource, compared to general purpose processors [13] [14]

and dedicated FFT processor ICs [15] [16]. Various research efforts are involved in de-

veloping FPGA–based FFT library. Uzun [17] developed a framework covering different

types of 1–D FFT algorithm. [18, 19, 20, 21] show the efficient FFT implementation on

FPGA target meeting one throughput requirement. Xilinx LogiCore [22] provides radix–

2/4 FFT library with a variable FFT size with two performance levels — burst mode and

streaming mode. These works are under limited throughput level restricting the design

space.

In achieving the various speed–up in the performance in radix-2/4 algorithm which

requires to run a butterfly operation (dragonfly in radix–4) iteratively in Figure 2.1, it

needs to execute multiple butterfly operations in parallel or a pipelined manner. Since a

pair of inputs for the butterfly operation are changed in each FFT stage in Figure 2.1, a

careful address scheme to read/write a data from/to storage spaces. Ma [23] developed

11

0
1

2

3
4
5

6

7

0
1

2

3
4
5

6

7

FFT Stage Index
p=0 p=1 p=2

N=8, n=log N=3
Input
indices

for stage 0

Output
indices

for stage 0

Figure 2.1: Signal flow graph of 8–point FFT with notational conventions illustrated. For

each stage p < n, the data written through an output index for stage p corresponds to the

data read through an input index for stage (p+1).

an efficient method for the conflict–free memory management in FFT implementation.

In Ma’s approach an conflict–free strategy is employed to store butterfly outputs in the

same memory locations that are used by the inputs to the butterfly. Such an conflict–free

strategy is useful in reducing memory requirements, and enabling pipelining in terms of

memory reads, butterfly operations, and memory writes. However, Ma’s scheme is also

developed for an FFT core that involves a single butterfly unit, so the overall approach is

limited in terms of throughput improvement. Our proposed address scheme realizes the

multiple butterfly operations in parallel and a pipelined manner by expanding Ma’s work.

Nordin [24] presented a parameterized soft core generator for the FFT based on the

Peace FFT algorithm with the stride permutation approach proposed by Takala et al. [25].

By running multiple butterflies simultaneously with a scalable stride permutation, the

generated FFT achieves an effective balance between hardware costs and performance

12

features, and is also customizable based on given design constraints. A distinguishing

aspect of the approach that we develop in this chapter is the realization of data parallelism

with a carefully–configured address generator, and the integration of this address genera-

tion approach with an inner loop unrolling technique. This is in contrast, for example, to

introducing special permutation structures for butterfly operations. Our approach, which

is especially targeted to FPGA implementation, results in efficient utilization of FPGA

slices.

A preliminary version of this work has been presented in [26], and this chapter goes

beyond the developments of [26] by applying the proposed address scheme to radix–4

FFT algorithm as well as radix–2 FFT. For saving the storage space for a twiddle factor

table, Hassan’s method[27] has been applied in the proposed implementation.

2.3 UNROLLING TECHNIQUES

The radix–2/4 FFT algorithm involves running the butterfly/dragonfly operation it-

eratively. Using a conflict–free memory management scheme, we roll the butterfly oper-

ations within a given stage using a for–loop, which we refer to as the inner loop. Across

different stages, we then employ another for–loop, which we call the outer loop. A ba-

sic FFT core(BFC) provides dedicated hardware for butterfly/dragonfly operation inside

for–loop, and we can execute a BFC iteratively with the aforementioned inner and outer

for–loops to achieve a complete FFT computation. However, rather than instantiating just

one BFC for computing all FFT stages, we can achieve k times throughput improvement

by running k BFCs simultaneously across stages, or by incorporating parallelism inside

13

the BFC so that multiple butterfly/dragonfly operations can be executed in parallel within

a given stage. We propose two orthogonal unrolling techniques to allocate and utilize

BFCs in an efficient and scalable manner on FPGAs. The techniques have different cost

functions in terms of usage of FPGA slices or BRAMs, and we show that in general, the

two approaches should be considered jointly for cost–efficient FPGA–based, FFT imple-

mentation.

2.3.1 Outer Loop Unrolling

The iteration count for the outer f or–loop in the FFT is equal to the total number of

stages, logN. Unrolling the outer loop by an unrolling factor (k≥ 1) instantiates k BFCs.

(k−1) of these BFCs have dlogN/ke outer loop iterations each, while the remaining one

has (logN−dlogN/ke) outer iterations. The designs of BFCs are identical to each other

as described in 2.3.2 and 2.3.3 , except for some initialization details, and the iteration

count. In this approach, k BFCs are running simultaneously, and up to a factor of k

improvement in throughput can be achieved. This approach introduces k identical copies

of BFCs, so that it is expected that a factor of k increase in hardware cost results — in

terms of BRAMs and FPGA slices. The trade-offs associated with outer loop unrolling are

complemented by inner loop unrolling, which we elaborate on in the following section.

2.3.2 Inner Loop Unrolling in radix–2 FFT

While unrolling the outer loop is realized by adding more copies of the BFC, the in-

ner loop unrolling could be realized by executing multiple butterfly units in parallel inside

14

Ap = RL (Counter,p)
 = an-r-2 an-r-3 … a0

ap

Bp = br br-1 … b1 0

Bp = br br-1 … b1 1
Butterfly
Unit

Bp+1 = (ap=0) br br-1 … b1

Bp+1 = (ap=1) br br-1 … b1

REGREG

REG
REG

REG

REG

Figure 2.2: The pipelined radix–2 FFT implementation.

a BFC. That is, we parameterize the BFC with the number of hardware butterfly units, and

we increase the value of the associated parameter to trade-off increased area for improved

throughput. Ma [23] indicated that indices of two inputs, u and l, for the butterfly unit in

the pth stage are identical, except for the pth bit in their binary patterns. Based on his ob-

servation, we propose a conflict–free memory addressing assignment for inputs/outputs

of multiple butterfly operations in parallel. With k of an inner loop unrolling factor, k

butterfly units within a BFC require 2k independent (parallel) data memory banks (DM

banks); however, the amount of storage required in each DM bank is reduced by a factor

of k so that the total amount of DM bank storage required after inner loop unrolling is

unchanged, compared with BFC that has a single butterfly unit. Note that in an FPGA

device, each DM bank will normally be implemented by one or more BRAMs [7].

2.3.2.1 Address for the read

For efficiency in a hardware utilization, we restrict the inner loop unrolling factor to

be a power of 2 ; that is, k = 2r for some non-negative integer r. Each DM bank contains

2(n−r−1) data locations that are accessed during FFT computation, where n = log2N, and

15

N is the number of sample points involved in the overall FFT computation. Given an inner

loop unrolling factor k = 2r, there are k hardware butterfly units in the parameterized

BFC, and 2k DM bank (two for each butterfly unit). If x denotes a binary bit pattern,

and y denotes a non-negative integer, let RL(x,y) denote the bit pattern that results from

left-rotation of x by y bit positions, and similarly, let RR(x,y) denote the bit pattern that

results from right-rotation of x by y bit positions. Also, for bit patterns x1 and x2, let

CONCAT (x1,x2) denote the concatenation of x1 and x2. For example, if x1 = 110, and

x2 = 01100, then RL(x1,2) = 011, RR(x2,3) = 10001, and CONCAT (x1,x2) = 11001100.

Let DM banks have indices of 0,1, . . . ,(2k− 1). Suppose that p is the index of a given

FFT stage (i.e., 0 ≤ p ≤ n− 1); let Bp = brbr− 1 . . .b0 be the binary pattern of the DM

bank index in the pth stage; and let Ap = an−r−2an−r−3 . . .a0 be the bit pattern for data

address in the DM bank in this stage. For clarity, our conventions for input indices, and

FFT stage indices, as well as N and n are illustrated in Figure 2.1. In the proposed memory

addressing scheme, the input index in the pth stage that corresponds to address Ap in DM

bank index Bp can be derived as

u = RL(CONCAT (RR(Ap, p),Bp), p) (2.3)

= an−r−2an−r−3 . . .apbrbr−1 . . .b0ap−1ap−2 . . .a0

With this notation, the least significant bit (LSB) in a given DM bank index b0, rep-

resents the pth bit of the corresponding input index in the pth FFT stage. Since two input

indices for a given butterfly operation in the pth stage are the same except for the pth bit,

the input index u and the index l for the other input in the same butterfly operation stand

16

for their data stored in DM bank brbr−1 . . .b10 and brbr−1 . . .b11, respectively. These two

DM banks, whose indices are identical except for their LSBs, become a pair of DM bank

that is assigned to the same hardware butterfly unit in Figure 2.2. Thus, we entirely avoid

any selection logic between among all DM bank in order to match one accessed input data

to the other input data for the correct butterfly computation in each FFT stage. Moreover,

all pairs of inputs to multiple butterfly operations can be accessed by the same address

because the indices of corresponding input pairs are identical, except for the pth bit, and

the pth bit is the one that the selects the DM bank for a given butterfly unit. One accessing

address for all input pairs in every iteration helps to implement the input address generator

in an efficient manner.

2.3.2.2 Address for the write

In the proposed FFT implementation, it does not introduce additional DM bank for

storing butterfly outputs to realize the pipelined operation in read, butterfly computation,

and write. After a butterfly operation in the pth stage, outputs should be written back to

DM bank where butterfly input pairs come from. Butterfly output pairs stored in DM bank

should be ready for the read in the (p + 1)th stage with the same manner in 2.3.2.1. In

other words, the destined DM bank index and addresses for writing back an output pair

indexed by u and l in the pth stage are equivalent, respectively, to the DM bank indices

and the address for reading the input indexed by u and l in the next stage, stage (p + 1).

Thus, the destined DM bank index and its associated addresses for writing butterfly output

pair can be generated by an inverse mapping from (2.3) with output indices of u and l,

17

and stage index (p+1). This inverse mapping is given by

Bp+1 = apbrbr−1 . . .b1 (2.4)

Ap+1 = an−r−2an−r−3 . . .ap+1b0ap−1 . . .a0 (2.5)

As reminding that pairs of inputs are accessed with the same address in pairs of

DM bank whose indices are same but for b0, the destined DM bank indices for each

butterfly output pair should be the same as in (2.4). In other words, each butterfly unit

produces an output pair which should be stored in one DM bank every cycle. Since 2 read

operations and 2 write operations in each butterfly unit should be done simultaneously

for the maximal pipelined operation and each BRAM in FPGA has only two ports, two

ports of the bank must be used as the read and write port respectively. In the situation

of a single port for the write, one of outputs is delayed by a inserted register to write a

output pair with one allowed port as in Figure 2.2. Also, pairs of destined DM bank is

connected to each butterfly units by a simple 1–by–2 demux selected by ap other than the

worst case of 1–by–2k demux to store butterfly output pairs in the proper DM bank by a

help of (2.4). For alternating the destined DM bank every cycle, the address, Ap,can be

generated efficiently by

Ap = RL(Counter, p) (2.6)

Here, the value of Counter is increased by one every clock cycle, so that bit ap

in Ap is flipped on each clock cycle. This provides a resource-efficient mechanism for

generating ap, and (via (2.4)), generating the required sequence of Bp+1 selections.

18

2.3.2.3 Conflict–free property in read/write

To figure out whether the proposed addressing scheme works well, it requires to

make sure that butterfly outputs should be written back to the address where data has

been read to avoid the read–after–write hazard. From all DM bank pairs, pairs of data in

Ap
0(ap = 0) are read out in even Counter as in (2.6). In the next cycle (odd Counter), data

of Ap
0(ap = 0) becomes inputs of butterfly units, while pairs of data in Ap

0(ap = 1) are read

out in the pipelined FFT implementation in Figure 2.2. It means that there are a pair of free

slots, Ap
0(ap = 0) and Ap

0(ap = 1), in all DM bank after the butterfly computation, and this

is the same to a pair of output addresses in (2.5) whatever b0 is. Therefore, our proposed

method makes it possible to read and write a data simultaneously without additional DM

bank for output pairs in a conflict–free manner. In this way, unrolling inner loop makes a

BFC achieve k times throughput due to running k butterfly units simultaneously.

2.3.3 Inner Loop Unrolling in radix–4 FFT

The dragonfly unit in radix–4 FFT algorithm is equivalent to 4 butterfly units in

radix–2 FFT algorithm, while it requires only 75% less multiplications and the same

additions to 4 butterflies [28]. Hence, it takes advantages over radix–2 FFT in terms of

less hardware resources. However, the size of FFT should be a power of 4 in radix-4

FFT so that the resolution of coverage in radix–4 FFT is worse, compared to a power of

2 in radix–2 case. For inputs for the dragonfly unit in the pth stage of radix–4 FFT, four

input indices are identical in their binary pattern, except for (2p)th bit and (2p+1)th bit

. Similar to the radix–2 FFT implementation, a group of four DM bank belongs to each

19

dragonfly unit, and the last two bits, b1 and b0 in a binary pattern of DM bank index, Bp,

specify four different inputs for a dragonfly computation. As the base of the logarithm

in radix–4 FFT is changed to 4, the total FFT stage is log4N and input indices in the pth

stage can be derived as

xi = RL(CONCAT (RR(Ap,2p),Bp),2p) (2.7)

= an−r−3an−r−4 . . .a2pbr+1br . . .b0a2p−1 . . .a0

,where Ap, Bp, and r is the address, the DM bank index, and log2k respectively when k is

the inner loop unrolling factor.

2.3.3.1 Address for the read

The group of four DM banks, whose indices are the same except for the last two

bits, belongs to the dragonfly unit in the radix–4 FFT implementation. From these DM

banks, a group of four inputs for each dragonfly unit are read out from the address of Ap.

In the pth FFT stage, (2.7) verifies that indices of the input group are identical except for

the (2p + 1)th and (2p)th bit which come from the last two bits of the DM bank group,

and the correct dragonfly input group.

2.3.3.2 Address for the write

A destined DM bank index and its associated four addresses corresponding to four

outputs from a dragonfly operation can be derived by an inverse mapping from (2.7) with

a stage index of (p+1).

20

Bp+1 = a2p+1a2pbr+1br . . .b2 (2.8)

Ap+1
0 = an−r−3 . . .a2(p+1)(b1 = 0)(b0 = 0)a2p−1 . . .a0

Ap+1
1 = an−r−3 . . .a2(p+1)(b1 = 0)(b0 = 1)a2p−1 . . .a0

Ap+1
2 = an−r−3 . . .a2(p+1)(b1 = 1)(b0 = 0)a2p−1 . . .a0

Ap+1
3 = an−r−3 . . .a2(p+1)(b1 = 1)(b0 = 1)a2p−1 . . .a0

Four dragonfly outputs are written back to one DM bank, as indices of a DM bank

group are same except for the last two bits. Because only one port is allowed for the write

due to BRAM port limit, it requires a parallel-in/serial-out shift register to write an output

group through the allowed port in Figure 2.3. From (2.8), a selector of 1–by–4 demux,

providing the dragonfly output group to the destined DM bank, is determined as a2p+1

and a2p, two bits out of the address Ap. As it takes four cycles to pass loaded outputs to

the DM bank port, a change in the selector of demux should be repeated in a period of

four cycles. To meet this requirement, the address Ap is generated as

Ap = RL(Counter,2p) (2.9)

, where Counter is increased by one every clock cycle. Similar to radix–2 FFT

implementation, a group of DM bank belonging to the dragonfly unit is pre-determined

by (2.8), and it makes the design of DM bank selection logic be simple.

21

Dragonfly
Unit

1:4
demux

D3 … D0
D0
D1
D2
D3

Shift Reg.
Shift Reg.
Shift Reg.
Shift Reg.

DM Bank0

DM Bank1
DM Bank2

DM Bank3

D0D1D2D3
reg port

reg
reg

reg
SEL

a2p+1a2p

Figure 2.3: DM bank selection logic and parallel-in/serial-out shift register.

2.3.3.3 Conflict–free property in read/write

After the dragonfly operation, the output group is written back to memory banks

where it has been read for the dragonfly operation. With the proposed address scheme,

the read-after-write (RAW) hazard can be avoided in the pipelined radix–4 FFT imple-

mentation like the radix–2 case. In a period of four cycles, the demux provides four

dragonfly outputs to each destined DM bank out of the group at each cycle. The out-

put addresses (2.8) for all of four DM banks in the period are Ap
0(a2p+1 = 0,a2p = 0),

Ap
0(a2p+1 = 0,a2p = 1), Ap

0(a2p+1 = 1,a2p = 0), and Ap
0(a2p+1 = 1,a2p = 1). As the de-

mux passes out outputs first to the shift register of DM bank0 in Figure 2.3 every period

and writes outputs to the same four address in the identical order in all of four DM banks,

the conflict–free property between the read and the write in DM bank0 guarantees that

there is no RAW hazard in the remaining DM banks. Input addresses have been generated

by (2.9), while output address are generated based on input address and the last two bits of

DM banks indices (2.8). Because of the shift register after the dragonfly unit in Figure 2.3,

22

Table 2.1: Time When address is accessed for read/write
Address Time for READ Time for WRITE

in DM bank0

Ap
0(a2p+1 = 0,a2p = 0) t0 t0 +2

Ap
0(a2p+1 = 0,a2p = 1) t0 +1 t0 +3

Ap
0(a2p+1 = 1,a2p = 0) t0 +2 t0 +4

Ap
0(a2p+1 = 1,a2p = 1) t0 +3 t0 +5

reading the input from the address Ap in any DM bank always occurs before writing the

output to Ap in DM bank0. Table. 2.1 shows the time for the read and write operation in

each address. With this proposed address scheme, multiple dragonfly operations inside

BFC could be executed simultaneously without introducing additional DM banks.

2.4 COST/PERFORMANCE ANALYSIS

The two orthogonal unrolling techniques developed in the previous section exhibit

different profiles of FPGA resource consumption. While outer loop unrolling pipelines

multiple BFCs, inner loop unrolling executes multiple butterfly/dragonfly units in parallel

inside BFC. Since the inner loop unrolling technique involves more localized control (i.e.,

control over a single BFC) it generally consumes less FPGA logic resources compared

with the more extensive control structures needed for outer loop unrolling. However, in-

ner loop unrolling is less flexible in terms of the set of possible unrolling factors — to

preserve the applicability of our streamlined approach for inner loop memory manage-

ment, while the inner loop unrolling factor must be a power of two. This requirement

makes the range of achievable speedups for the inner loop unrolling technique to be lim-

ited to powers of two, while outer loop unrolling can be applied with arbitrary positive

23

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 1 2 3 4 5 6 7 8

S
lic

es

Unrolling Factor

 0

 10

 20

 30

 40

 50

 60

 0 1 2 3 4 5 6 7 8

B
R

A
M

Unrolling Factor

OLUT
ILUT

Xilinx burst IP

Figure 2.4: Resource utilization in Radix–2 FFT implementation with 4096 samples.

 2000

 2500

 3000

 3500

 4000

 4500

 0 1 2 3

S
lic

es

Unrolling factor

 5

 10

 15

 20

 25

 30

 35

 0 1 2 3

B
R

A
M

Unrolling factor

OLUT
ILUT

Xilinx burst IP

Figure 2.5: Resource utilization in Radix–4 FFT implementation with 4096 samples.

integer factors. Thus, for example, if the degree of speedup required to achieve the given

throughput constraint is not a power of two, then a combination of inner–loop and outer–

loop unrolling may lead to the most cost–effective solution.

Figure 2.4 shows FPGA slice and BRAM utilization as functions of the unrolling

factor for both inner and outer loop unrolling. These results are obtained after synthesis,

and include the streamlining effects of our proposed schemes for address generation and

memory management. For both kinds of unrolling, BRAM and FPGA slice utilization

increase linearly with the degree of speedup achieved (unrolling factor). Also from Fig-

ure 2.4 and 2.5, we see that inner loop unrolling is more area-efficient compared to outer

loop unrolling for the same throughput increase. However, recall that inner loop unrolling

24

is restricted to factors that are powers of 2. In increasing FFT length, we take advantage

of more fully using BRAMs in a wider range of inner loop unrolling factors. For use

in analytical design space exploration, the following cost functions can be derived from

these synthesis results:

uinner = sinner ·uinitial(kinner−1)+uinitial (2.10)

uouter = souter ·uinitial(kouter−1)+uinitial (2.11)

Here, uinner and uouter are the amounts of utilization (FPGA slice or BRAM utiliza-

tion) after inner and outer loop unrolling, respectively; uinitial represents the amount of

resource utilization without any unrolling; kinner and kouter are inner and outer loop un-

rolling factors, respectively; and sinner(souter) is a constant factor that represents the slope

of the linear plots for inner (outer) loop configurations in Figure 2.4 and Figure 2.5.

The cost functions (2.10) and (2.11) are for inner and outer loop unrolling in iso-

lation. If both forms of unrolling are applied in combination, then the total hardware

resource requirements can be expressed as

ucombined = souter ·uinner(kouter−1)+uinner (2.12)

kcombined = kinner · kouter (2.13)

Given a throughput constraint, (2.12) and (2.13) can be used to efficiently search

the space of feasible designs (i.e., designs with satisfactory throughput) for a cost-optimal

solution. In particular, candidate pairs (kouter,kinner) that satisfy the throughput constraint

25

Table 2.2: Comparing synthesis report between radix–2 and radix–4 under the same per-
formance level

Algorithm FPGA slices BRAM Multipliers

Radix–2 FFT with (1,4) 2770 16 16

Radix–4 FFT without (1,1) 2471 14 12

(based on (2.13)) can be evaluated to select the one that minimizes cost (based on (2.12)).

This evaluation can be pruned by noting that whenever a particular pair (k′outer,k
′
inner)

is found to satisfy the throughput constraint, we need not consider any additional pairs

(k′′outer,k
′′
inner) such that k′′inner ≥ k′inner and k′′outer ≥ k′outer are both satisfied. This ap-

proach allows for very rapid, pre–synthesis determination of cost–effective architectures

for given throughput constraints.

2.5 EXPERIMENTAL RESULTS

We have targeted the Xilinx Virtex II Pro P30 embedded in the National Instru-

ments PCI-5640R to synthesize implementations derived by our architecture generation

techniques for the FFT. For a fair comparison with Xilinx library, HDL code for FFT

generated from LogiCore is encapsulated by a wrapper from LabVIEW FPGA before the

synthesis. The specific form of FFT implemented in these results is a radix–2/4 FFT with

4096 samples, with each sample represented as a fixed–point data type with 16-bit word

length.

Table 2.2 shows to compare the synthesis report of the radix–4 FFT to the radix–2

FFT under the same performance level. For all kinds of FPGA resource, radix–4 FFT

implementation shows a superior results to radix–2. It shows radix–4 FFT core is more

26

 3600

 3800

 4000

 4200

 4400

 4600

 4800

 5000

(6,1) (3,2) (2,4) (1,8)

S
lic

es

Unrolling Factor Fair(kouter, kinner)

 10

 20

 30

 40

 50

 60

(6,1) (3,2) (2,4) (1,8)

B
R

A
M

Unrolling Factor Fair(kouter, kinner)

OLUT/ILUT combination
Xilinx IP streaming mode

Figure 2.6: Resource utilization in the streaming Radix–2 FFT with 4096 samples

 4200

 4300

 4400

 4500

 4600

 4700

 4800

(2,1) (1,2)

S
lic

es

Unrolling Factor Fair(kouter, kinner)

 10

 20

 30

 40

 50

(2,1) (1,2)

B
R

A
M

Unrolling Factor Fair(kouter, kinner)

OLUT/ILUT combination
Xilinx IP streaming mode

Figure 2.7: Resource utilization in the streaming Radix–4 FFT with 4096 samples

preferable IP in a power of 4 FFT size.

Figure 2.6 and Figure 2.7 indicates the synthesis report comparison between the

proposed method and Xilinx IP core under the steaming performance level. In radix–

2 FFT case, we take a target speedup of 6 here because the throughput of a sequential

implementation (no unrolling) on this device is 6 cycles per sample, and 6 is the low-

est integer speedup needed to achieve the common ’‘streaming FFT” target of 1 cycle

per sample. Using the high level exploration approach developed in Section 2.5, and the

device–specific slopes and initial utilizations from the curves in Figure 2.2, we can cal-

culate analytically that when (kouter,kinner) is equal to (3,2) and (2,4), respectively, then

27

the generated FFT core is optimized in terms of FPGA slice usage and BRAM utilization.

These results agree with the optimal values observed from the two curves from actual

synthesis results in Figure 2.6, thereby demonstrating the accuracy of our high level ex-

ploration method. To compare our approach with relevant commercially–available FFT

core, we evaluated the FFT core that is available from the Xilinx LogiCore library under

the two different throughput levels that are available for it — streaming throughput and

sequential (resource–optimized) throughput. For streaming FFT performance (one cycle

per sample throughput), our approach required 25% less FPGA slices compared to the

Xilinx core, but 190% more BRAMs. In radix–4 case, the target speedup for achieving

the streaming performance is 2, because the throughput of the sequential FFT is 1.5 cycles

per sample. The inner loop unrolling is always more efficient than outer loop unrolling

and the best unrolling factor pair is (1,2). This implementation required 10% less FPGA

slices but 150% more BRAMs, compared to the Xilinx IP.

For the sequential performance level(burst mode), our approach required 14% fewer

slices, and 10% more BRAMs in radix–2 FFT implementation and 10% fewer slices 22%

more BRAMs in radix–4 FFT, compared to Xilinx IP core as shown in Figure 2.4 and 2.5.

Note that this comparison (“sequential performance”) does not include any unrolling and

is therefore essentially a comparison with Ma’s FFT configuration, which is the special

case of our approach that results when no unrolling is carried out. As well as the burst FFT

implementation, our method provides various FFT implementation having a wider range

of performance by help of two orthogonal unrolling technique. As the consumed resource

in FFT implementation increases slower than the achieved speed-up, it can be the ready-

to-use and cost-efficient FFT core meeting the user-specific target throughput. While the

28

heavy streaming FFT implementation is only one option in case of the target throughput

larger than the sequential performance for a commercial IP, the proposed method provides

well-tailored FFT library fit to the performance requirement.

29

Chapter 3

Resource-efficient Acceleration of 2D-FFT on FPGAs

3.1 Introduction

Fourier image analysis plays a key role in many image processing applications by

making it possible to replace convolution operations in the spatial domain to simpler mul-

tiplication operations in the frequency domain, and enabling FFT convolution and various

deconvolution techniques [29]. In spite of its wide use, FFT computation often becomes

a major application bottleneck due to its high computational complexity. Thus, improv-

ing the throughput of 2D-FFT computation is useful to enhance overall system perfor-

mance of the target application. Field-programmable gate arrays (FPGAs) are attractive

for acceleration of FFT computations since FPGAs allow for configuration of customized

digital logic structures that exploit the parallelism and regularity of FFT computations.

However, achieving the full potential of 2D-FFT throughput acceleration under FPGA

resource constraints is challenging since parallelism, interconnection complexity, FPGA

logic gate utilization, and memory utilization must be carefully traded off at the actor

level of the design methodology illustrated in Fig. 1.1.

The 2D-FFT is typically implemented as repeated invocations of 1D-FFT compu-

tations. Therefore, techniques for efficient FPGA-based 2D-FFT computations can be

derived by considering two key design issues — improving the throughput of 1D-FFT

computation with efficient FPGA resource consumption, and carefully utilizing the lim-

30

ited bandwidth of data transfer between the targeted FPGA device and external memory.

Since 2D-FFT computation consists of 2N 1D-FFT computations, the throughput of 1D-

FFT computation directly influences that of the enclosing 2D-FFT. In [26], we introduce

an inner loop unrolling technique(ILUT) with an associated memory addressing scheme

to achieve resource-efficient throughput improvement of the 1D-FFT. This technique can

be parameterized by the required throughput to generate an FFT IP (intellectual prop-

erty) subsystem such that the resource consumption is streamlined based on the targeted

performance, which avoids over-designed hardware.

A 2D-FFT for an N-by-N image can be computed by performing N row-wise 1D-

FFTs followed by N column-wise 1D-FFTs. Such an approach requires us to store N2

intermediate data values between the row-wise and column-wise phases of computation.

Due to the limited storage space within FPGA devices, external memory is often used to

store such high-volume sets of intermediate data. When external memory is employed in

this way, it is essential to carefully utilize the available bandwidth between the FPGA and

associated external memory.

This chapter presents the efficient application to 2D-FFT implementation of our

previously-developed ILUT technique [26], which is a systematic approach for generating

1D-FFT IP cores that are customized based on user-specified cost/performance trade-

offs, as described above. We show that by carefully building on our ILUT-based 1D-

FFT architecture to implement FPGA-based 2D-FFTs, we achieve significantly better

cost/performance efficiency compared to previous techniques for implementation of 2D-

FFTs on FPGAs. Here, by cost/performance efficiency we mean specifically the ratio of

consumed FPGA resources to the achieved throughput.

31

In our ILUT-based approach to 2D-FFT implementation, only a single pair of I/O

ports is needed, regardless of the inner loop unrolling factor, in the underlying 1D-FFT

IP core to transfer data with external memory. This provides significant improvements

in interconnect complexity and I/O scheduling overhead compared to related work on

2D-FFT implementation.

We prototyped our 2D-FFT implementation techniques in National Instruments

LabVIEW (LV) FPGA 8.6 — a graphical, dataflow-based programming environment

for embedded system design. LabVIEW includes a feature called Component-Level IP

(CLIP), which allows designers to create wrappers around existing FPGA IP cores so

that they can be used as components within LV FPGA. Designers can also write code

for custom-designed subsystems in a hardware description language (HDL) and integrate

this HDL code into LV FPGA using CLIP. In the experiments that we report on in this

chapter, we have used CLIP to interface platform-specific IP for sending and receiving

data between the targeted FPGA device and external memory.

For our experiments, we specified our optimized FFT architecture in the LV FPGA

design environment, and implemented the architecture on the targeted FPGA by first in-

voking the LV FPGA HDL synthesis tool, and then mapping the resulting HDL code

using the platform-specific tools of the targeted FPGA. The target FPGA that we used

was the Xilinx Virtex-5. More specifically, our experimental platform was the National

Instruments FlexRio board, which includes a Xilinx Virtex-5 device that is integrated with

128 MB of external memory (DRAM). Only the details in our implementation that per-

tain to synthesis and memory interfacing are related to the FlexRio board; the core FFT

architecture that we present can be retargeted to other kinds FPGA platforms.

32

The organization of the chapter is as follows: In Section 3.2, we review background

on the 1D and 2D-FFT algorithms, and describe challenges in implementing these com-

putations efficiently. Subsequently, we present details of our ILUT-based, 2D-FFT archi-

tecture in Section 3.3. In Section 3.4, we show how our proposed 2D-FFT architecture

provides significantly improved trade-offs between throughput and FPGA resource con-

sumption. Section 3.5 demonstrates experimental results from our proposed architecture

and comparisons with previous approaches. Section 3.6 provides a summary of the chap-

ter and concluding remarks.

3.2 Background

The discrete Fourier transform (DFT) for N samples is defined as follows.

Xk =
N−1

∑
i=0

xi ·W ik
N , (3.1)

where

W ik
N = exp(−2πik/N) ∀k = 0,1, · · · ,N−1.

As shown in Equation 3.1, a direct computation of the DFT suffers from O(N2)

complexity. After Cooley and Turkey [9] proposed the FFT algorithm to decrease the

computational complexity of the DFT to O(N · logN), a large body of research has been

focused on realizing the proposed 1D-FFT algorithm on various kinds of hardware plat-

forms, including general purpose processors, programmable digital signal processors, and

FPGAs. Ma [23] proposed an effective memory addressing scheme for a single FFT core

to promote reuse of memory locations, and thereby reduce overall memory requirements.

33

Takala et al. [25] proposed a stride permutation for FFT computation, and Nordin et

al. [24] developed a parameterized FFT soft core generator with a scalable stride permu-

tation.

While many approaches have been developed to implement the 1D-FFT, research on

design and implementation for 2D-FFT computations has centered around the approach of

deploying multiple 1D-FFT cores, where each 1D-FFT core embeds a single processing

unit — the butterfly unit for the radix-2 FFT or the dragonfly unit for the radix-4 FFT.

Jung et al. [30] developed a design methodology for exploring area/performance

trade-offs in hardware implementation, and demonstrated this methodology using a 2D

discrete cosine transform (DCT) benchmark. In this approach to DCT implementation,

larger numbers of 1D-DCT blocks are deployed to achieve increasing levels of speed-up

with corresponding increases in hardware resource consumption. The instantiated 1D-

DCT blocks communicate with one another through a shared memory, which is imple-

mented by an array of registers.

For a small input image, implementing the memory space for the image with an

array of registers can be a reasonable design option. Such a design avoids limitations

due to limited numbers of I/O channels and limited bandwidth between the FPGA de-

vice and external memory. However, since using arrays of registers is costly in terms

of FPGA resources, the approach of Jung et al. can be expected to result in very large

FPGA resource requirements for large input images. To avoid such dramatic increases in

FPGA resource requirements, image storage is generally implemented in external mem-

ory, which has limited numbers of ports (typically dual ports) and limited bandwidth.

However, external-memory-based implementation of image storage requires careful at-

34

Row-wise
FFT

Input
Image External

Memory
Column-
wise
FFT

Output
Image

Figure 3.1: Functional block diagram of 2D-FFT computation.

tention to memory interfacing in the design of the FPGA architecture The approach de-

veloped in this chapter examines 2D-FFT acceleration from such a viewpoint of efficient

integration of FPGA-based acceleration and external-memory-based image storage.

Uzun et al. [17] proposed a high level framework covering 1D and 2D-FFT im-

plementations for real-time applications. In this framework, the parallelism in 2D-FFT

computation is realized by allocating multiple 1D-FFT processors with a shared external

memory. Since the input and output data vectors associated with each 1D-processor are

transferred into a shared external memory, conflicts arise from multiple requests to read

and write to the shared memory. Resolving these conflicts requires a relatively complex

interconnection network, and also a complex control unit for scheduling data transfers

between the 1D-FFT cores and the shared memory.

2D-FFT computation can be executed by a combination of N row-wise and N

column-wise 1D-FFTs, as shown in Figure 3.1. Typically, 2D-FFT computation is per-

formed on large images, which require external memory for their storage. Thus, the

performance of the 2D-FFT is limited by the bandwidth of external memory, and the

FFT computation must be designed carefully to achieve parallelism in conjunction with

efficient communication with memory.

Previous work has emphasized accelerating 2D-FFT computation by employing

multiple 1D-FFT cores. In our approach, we build on this general multiple-core approach,

35

and to make the approach more efficient, we incorporate our recently-developed methods

to realize data parallelism within each of the instantiated 1D-FFT cores [26]. We do this

by allocating multiple processing units to an individual 1D-FFT core, and incorporating

a novel memory addressing scheme.

A distinguishing aspect of this approach is that our realization of data parallelism

inside a single 1D-FFT core requires only a single pair of vector reading and writing re-

quests to the external memory, regardless of the speed-up factor. Our architecture there-

fore prevents conflicts among requests from multiple cores in 2D-FFT implementation,

and enables better utilization of memory bandwidth. Furthermore, by regularizing the

access patterns to external memory, our approach reduces controller complexity and im-

proves predictability.

3.3 2D-FFT Design

As described above, our approach for ILUT-based acceleration of the 1D-FFT,

along with a formal development of the associated addressing scheme, are developed

in [26]. In this section, we summarize important features of the ILUT-based approach

that are relevant when applying it to 2D-FFT implementation, and we present details of

the 2D-FFT architecture that we have developed by building on our ILUT-based 1D-FFT

accelerator.

Henceforth, for conciseness, we refer to our ILUT approach simply as ILUT — that

is, by ILUT, we mean our specific approach for FFT inner loop unrolling, as developed

in [26], as opposed to the general concept of unrolling inner loops.

36

Butterfly
Unit 0

AGU

Butterfly
Unit 1

Data Memory
Bank0

Data Memory
Bank 1

Interconnection netw
orkData Memory

Bank (k-1)
Butterfly
Unit (k-1)

N/k

N/k

N/k

1-D FFT Core with ILUT

Single Input
Port

Single Output
Port

Figure 3.2: Functional block diagram of ILUT-based, 1D-FFT implementation.

3.3.1 Inner Loop Unrolling Technique (ILUT)

(1D) FFT computation involves logN FFT stages, where each FFT stage consists

of N/2 butterfly computations. In ILUT, we refer to each FFT stage as an inner loop that

“rolls” the butterflies. Also, we roll iterations across FFT stages through a conceptual

outer loop. Intuitively, ILUT involves unrolling a given FFT stage by running multiple

butterfly operations in parallel. Figure 3.2 shows an architectural block diagram of an

FFT core after applying ILUT. We parameterize the core with a configurable number B

of butterfly units, and increase the value of B to trade-off increased area for improved

throughput. Addresses for input/output and for the butterfly units are controlled by the

address generation unit (AGU). The AGU in our design allows conflict-free, simultaneous

read and write accesses to the same dual-ported data memory bank. With this carefully-

designed addressing scheme, the size of an individual data memory bank can be reduced

by a factor of k when unrolling the inner loop by k (i.e., when k = B). Thus, since k data

memory banks are required for an unrolling factor of k, the application of ILUT results in

no net change in the overall data memory requirement, regardless of the unrolling factor.

37

In contrast to ILUT, the outer loop unrolling technique (OLUT) allocates multiple

FFT cores to achieve parallelism in FFT implementation. OLUT-based approaches have

been explored extensively in previous research efforts, such as [17, 30]. Figure 3.3 illus-

trates a functional block diagram of OLUT-based FFT implementation. For an unrolling

factor of k, OLUT generally requires a factor of k in memory space increase compared to

a single core implementation with no outer loop unrolling applied. Furthermore, OLUT

introduces k identical copies of the underlying AGU, so it also involves an increase in the

number of FPGA slices required.

3.3.2 2D-FFT Architecture

Figure 3.4 shows a functional block diagram of our proposed 2D-FFT architecture,

which we refer to as the IBTF (ILUT-Based Two-dimensional FFT) architecture. The

IBTF deploys a single 1D-FFT core with ILUT applied within the 1D core to achieve the

desired level of parallelism. The 1D-FFT core employed has a single input port and a

single output port, regardless of the degree of inner loop unrolling applied to the 1D core.

Each of these ports is connected to a dual-port memory, which we call the local memory

(LM). The LM is used to buffer data between the external memory and the ILUT-based

1D-FFT core. More specifically, the LM is used for sending and receiving vectors of

FFT outputs and inputs, respectively, through an external memory interface that operates

concurrently with the transform computation within the 1D-FFT core. The LM is divided

into two separate regions — the LMR provides a buffer for reading from external memory,

and similarly, the LMW provides a buffer for writing to external memory. Both the LMR

38

and LMW have the same size Sbuffer (in bytes).

The LM is implemented on the targeted FPGA device. In general, it can be imple-

mented in FPGA block ram (BRAM) or in FPGA slices (distributed memory). For small

to moderate LM sizes, BRAM implementation has the disadvantage that the BRAMs

used for the LM are largely underutilized. In our experiments, we have used distributed

memory to implement the LM. Such an approach frees up the BRAMs to support other

applications or subsystems that co-exist with the IBTF core on the same FPGA device.

The control unit (CU) handles the scheduling of all requests for transferring data be-

tween the LM buffers and the external memory. Since external memory is volatile, the CU

must also take steps to ensure that the data stored in the external memory remains valid

throughout its required lifetime. Furthermore, to increase the efficiency of data transfers,

the CU accesses external memory through groups of sequential addresses, which are fur-

ther clustered together in terms of common types of accesses (read or write). This kind of

clustered, sequential access pattern is more efficient than more irregular types of patterns

(e.g., see [17]). For every iteration of the underlying 1D-FFT transformation, the CU

issues Sbuffer read requests followed by Sbuffer write requests.

In contrast to ILUT, OLUT-based approaches require k pairs of I/O ports in the ex-

ternal memory interface, along with k 1D-FFT cores. Furthermore, the external memory

interface in the OLUT approach requires a complex interconnection network, including

a crossbar switch, to connect the k pairs of I/O ports, and provide the required exter-

nal memory access from the set of parallel FFT cores. Furthermore, since the CU must

control multiple memory requests from multiple pairs of I/O ports, it needs to incorpo-

rate complex scheduling logic to manage contention among multiple requests. Hence,

39

Butterfly
Unit

AGU

Data Memory
BankN

1-D FFT Core 0

Butterfly
Unit

AGU

Data Memory
BankN

1-D FFT Core 1

Butterfly
Unit

AGU

Data Memory
BankN

1-D FFT Core (k-1)

1-D FFT Core with OLUT

Multi-Input
Ports

Multi-Output
Ports

Figure 3.3: Functional block diagram of 1D-FFT with OLUT

OLUT-based implementations of the 2D-FFT can be expected to consume more FPGA

slices compared to ILUT-based implementations under the same unrolling factor. We will

provide a more in-depth comparison on these points in Section 3.4.

3.4 Analysis and Comparison ILUT-based and OLUT-based Implemen-

tation

As described previously, when external memory is involved, the achievable speed-

up for a 2D-FFT implementation depends heavily on the bandwidth available for external

memory accesses. The on-board external memory on the NI-FlexRio platform provides a

bandwidth of 320 MB/s under a 40MHz base clock. Since the default size of data in the

interface to the memory is 64 bits, the bandwidth can be viewed as a single sample per a

cycle.

In both OLUT- and ILUT-based approaches, the CU needs to provide N samples

40

External Memory

1-D FFT core
with ILUT

Local Memory
For Read (LMR)

2-D FFT Core
(FPGA Design)

Local Memory
For Write(LMW)

CU

Figure 3.4: Functional block diagram of 2D-FFT with ILUT.

in LMR for the next 1D-FFT computation, and write out N samples from LMW to exter-

nal memory. Here, N represents the input image size — i.e., the input image contains

NxN pixels. During the k-th 1D-FFT computation, the CU must transfer N inputs for the

(k + 1)-th 1D-FFT computation in LMR from the external memory. In the same compu-

tation frame, the CU also needs to transfer N outputs (produced by the (k−1)th 1D-FFT

computation) from LMW to the external memory.

In other words, 2N cycles of data communication are required between the local

memory (LM) and the external memory for each 1D-FFT computation, and this is a lim-

iting factor in the achievable throughput.

3.4.1 Operation of ILUT-based 2D-FFT Implementation

A timing diagram for an iteration of ILUT-based 2D-FFT computation is shown in

Figure 3.5. The data loading and unloading processes can be overlapped in the proposed

1D-FFT IP, and with such overlapping, N clock cycles are required to process N samples.

FFT computation follows the loading/unloading process, and for this computation, N/2 ·

logN cycles are required if no unrolling is applied in the underlying radix-2 1D-FFT. If

41

we apply ILUT with unrolling factor k, then k butterfly units are deployed inside the 1D-

FFT core so that the execution time for each 1D-FFT computation can be decreased by

a factor of k. Therefore, the total time, as a function of the unrolling factor, for 1D-FFT

computation is

Tinner(k) = N +
N/2 · logN

k
. (3.2)

Now recall that it requires 2N cycles of data communication to prepare the next 1D-

FFT computation after the previous 1D-FFT computation has completed. Thus, an upper

bound on the achieved speed-up can be expressed as SMAX
inner = logN/2. Up to this level

of speedup, ILUT exhibits speed-up that is linear to the unrolling factor k. The achieved

speedup saturates, however, at SMAX
inner due to bandwidth limitations in the target platform.

Note that this analysis is based on our use of 2N cycles as a bound for the required

LM-external-memory data transfer between FFT computations. This transfer rate bound

is applicable, for example, in the NI FlexRio target platform that we have targeted in our

experiments. This bound is also applicable in the OLUT- and external-memory-based

2D-FFT implementations explored in [17]. Changes in this bound, however, require cor-

responding changes to the speedup analysis presented in this section.

ILUT-based implementation promotes efficient utilization of FPGA resources. To

see this, recall that LMR (LMW) connects the input (output) port of the underlying 1D-

FFT core to the output (input) channel of the external memory. Because of the regular

access patters to and from LM, LMR and LMW can be implemented by FIFO buffers

that operate based on standard (push and pop) FIFO access operations, and simple inter-

42

facing logic. More specifically, data transfers involving the LM can be controlled by a

simple rule — data is pushed or popped as needed whenever the FIFO status is neither

“full” nor “empty.” This simplicity is facilitated by the form of data parallelism provided

by the ILUT architecture, which is implemented entirely in the 1D-FFT core, and does

not require parallel or random-access interfaces to LM. Exploiting this feature allows

for resource-efficient implementation of LM and its associated interfaces in distributed

memory or BRAM, and allows also for simple, resource-efficient implementation of the

CU.

3.4.2 Operation of OLUT-based 2D-FFT Implementation

In OLUT-based FFT implementation, k ≥ 1 FFT cores operate simultaneously, and

each of these cores contains a single butterfly unit. Therefore, OLUT enables a reduction

in 1D-FFT processing time by a factor of k. To run k 1D-FFT cores in parallel, the

associated memory access controller must periodically fill up input data and clear out

output data local memory at a sufficient rate. Since 2N cycles are needed for the data

transfers associated with each 1D-FFT core, the controller can set up a single 1D-FFT

computation frame for each of k 1D-FFT cores every k ·2N cycles.

Thus, if Tbase represents the time for 1D-FFT computation without acceleration

(k = 1), then we can write

Touter(k) =
max(Tbase,k ·2N)

k

= max(
N +N/2 · logN

k
,2N). (3.3)

43

As with the ILUT-based architecture, the throughput improvement with OLUT is

limited by the bandwidth between the FPGA device and external memory.

Note also that the minimum inner loop unrolling factor kinner (for ILUT) that is

required to reach a given level of throughput is generally larger than the minimum outer

loop unrolling factor kouter required to achieve the same level of performance. This is

because the total size of the required data memory space (the storage space represented

by the blocks labeled as “Data Memory” banks in Figure 3.3) for OLUT is kouter times

larger than the data memory space required by ILUT, and hence, the net time required for

loading and unloading local memory is reduced by a factor of kouter by the ILUT approach

compared to OLUT. Note that ILUT requires constant data memory size (independent of

the inner loop unrolling factor), and therefore, the net time required by ILUT for loading

and unloading local memory is also constant.

Overall, even though the larger unrolling factors required by ILUT (for given lev-

els of performance) result in correspondingly higher factors of FPGA resource usage

increase due to parallel resource instantiation, this increase is more than compensated by

the improvement in the storage requirements of the data memory banks (especially for

larger unrolling factors). Thus, when FPGA distributed memory is used to implement

local memory, ILUT exhibits a significantly better ratio of achieved throughput to con-

sumed resources (FPGA slices) compared to the OLUT approach. This is demonstrated

quantitatively in section 3.5 through our experiments.

Furthermore, OLUT requires a relatively complex interconnection network to switch

paths from multiple I/O ports of the 1D-FFT cores to the local memory subsystem. To

maintain peak performance, this interconnection network must be capable of supplying

44

N cycles

One iteration of FFT computation
Load/
Unroad

N/2*log(N) cycles
Transformation Process

N cycles N cycles

One iteration of transferring
a pair of input/output vectors
with the external memory

Load
Input vector

Unload
Output vector

Figure 3.5: A timing diagram of ILUT-based FFT computation.

an input vector before each transform computation and receiving an output vector af-

ter each computation. Due to the reduced regularity of the memory accesses across the

OLUT interconnection network, the local memory cannot be managed in the form of a

simple FIFO, as can be done with our ILUT-based architecture. In OLUT, the local mem-

ory controller must keep track of the associated row/column vector set for each 1D-FFT

transform computation, and must continuously perform book-keeping to switch the in-

terconnection paths. Also, the OLUT controller must perform inter-core synchronization

across the set of 1D-FFT cores. As we demonstrate in the next section, the increased

control complexity in OLUT results in significant FPGA resource consumption increase

compared to ILUT.

3.5 Experimental Results and Discussions

In our experiments, 2D-FFT designs have been implemented and evaluated for two

different sizes of images — 256x256 and 2048x2048. Since a 2048x2048 image re-

quires approximately 33MB of memory, and our targeted platform has 128MB of exter-

45

 4

 6

 8

 10

 12

 14

 16

 18

 0 1 2 3 4 5

co
m

pu
ta

tio
n

tim
e(

m
s)

Unrolling Factor

OLUT
ILUT

 1800

 2100

 2400

 2700

 3000

 3300

 0 1 2 3 4 5

oc
cu

pi
ed

 F
P

G
A

 s
lic

es

Unrolling Factor

OLUT
ILUT

Figure 3.6: Computation time and FPGA resource utilization for 2D-FFT with an image

size of 256x256.

 600

 900

 1200

 1500

 0 1 2 3 4 5 6 7 8 9

co
m

pu
ta

tio
n

tim
e(

m
s)

Unrolling Factor

OLUT
ILUT

 2800

 3200

 3600

 4000

 4400

 4800

 5200

 0 1 2 3 4 5 6 7 8 9

oc
cu

pi
ed

 F
P

G
A

 s
lic

es

Unrolling Factor

OLUT
ILUT

Figure 3.7: Computation time and FPGA resource utilization for 2D-FFT with an image

size of 2048x2048.

46

nal memory, 2048x2048 is the largest standard image size (i.e., the number of rows and

columns is a power of two) that can be supported on our platform — the next largest image

size, 4096x4096 requires approximately 4×33MB, which slightly exceeds the available

128MB.

We have implemented both inner loop (ILUT) and outer loop (OLUT) unrolling

separately in alternative 2D-FFT implementations, and we have carefully compared the

results. Each unrolling technique has been applied with increasing unrolling factors until

the maximal throughput allowed by the external memory bandwidth was achieved. While

the given FPGA target allows us to transfer data between the external memory and FPGA

device at a clock frequency of 100MHz, our 2D-FFT implementation cannot operate on

such a fast clock. Thus, multiple clock domains are required to support the highest pos-

sible memory bandwidth. In this chapter, we focus on exploring 2D-FFT design trade-

offs for conventional, single-clock-domain implementation, and therefore, we slow the

memory interface down to the same speed as the 2D-FFT computation subsystem. More

specifically, we use a single clock domain that operates at 40MHz. Applying heteroge-

neous clock domains to explore further performance enhancement is a useful direction

for further investigation.

In our OLUT implementation, we employed the LabVIEW FPGA 1D-FFT library

module, which is a widely-used commercial 1D-FFT library module that has competitive

performance compared to related commercial FPGA cores [26]. In both the OLUT and

ILUT implementations, we employed distributed memory to implement the local memory

subsystems, as described earlier in Section 3.3. For this purpose, we used the distributed

memory library from Xilinx LogiCore [22]. Another useful direction for follow-on re-

47

search is the integration of block RAM (BRAM) into the design space for optimized

ILUT-based 2D-FFT implementation.

For our experiments with ILUT, we have restricted the inner loop unrolling factor

to be a power of 2 for efficiency in hardware utilization. When ILUT is applied with

unrolling factors that are not powers of two, significant resource usage inefficiency re-

sults. This is because the 1D-FFT data memory indices cannot be generated simply by

concatenating the binary bit patterns of the memory addresses to that of the associated

memory bank addresses, and thus significant overhead results in the address generation

logic. While multiple butterfly units jointly compute a single input vector and are con-

trolled by a novel memory address scheme in ILUT, each butterfly unit handles its own

individual input vectors separately in OLUT. In this sense, the unrolling factor in OLUT

can be a natural number rather than a power of two as in the ILUT case. We compare the

proposed ILUT to OLUT under the performance levels that ILUT provides. This com-

parison may not be a comprehensive comparison between two techniques, but it clearly

demonstrates the advantages of ILUT in terms of resource utilization across all of its

allowed performance levels.

Given a 2D-FFT implementation based on the assumptions described above (a sin-

gle clock domain and distributed-memory-based local memory), we define the relative

resource utilization as the quotient R/T , where R denotes the total number of FPGA

slices (including resources for computation and for distributed memory) required for

the implementation, and T denotes the throughput in 2D-FFT computations per second.

Thus, decreasing levels of relative resource utilization indicate increasing levels of cost-

efficiency relative to the achieved processing performance (or conversely, increasing lev-

48

els of performance-efficiency relative to the achieved cost).

Figure 3.6 shows the computation time and the number of occupied FPGA slices

for 2D-FFT implementation under both ILUT- and OLUT-based approaches with an im-

age size of 256x256. Corresponding values of relative resource utilization are given in

Table 3.1. From Figure 3.6, we see that OLUT exhibits a smaller computation time com-

pared to ILUT under for an unrolling factor of 2 (k = 2). This is due to the reduced

time for local memory loading and unloading, which we discussed in Section 3.4. Even

though there is a difference in throughput for k = 2, both ILUT and OLUT techniques

exhibit similar levels of relative resource utilization in Table 3.1. OLUT achieves the

maximal achievable throughput (as constrained by the external memory bandwidth) at an

unrolling factor of 3, while ILUT achieves the maximal achievable throughput at an un-

rolling factor of 4. At this maximal performance level, ILUT exhibits 20% less relative

resource utilization compared to OLUT, as shown in Table 3.1. This demonstrates the

significant resource-efficiency advantage offered by our ILUT-based approach compared

to the more conventional approach of OLUT-based 2D-FFT implementation.

Computation time and FPGA slice usage results for an image size of 2048x2048 are

shown in Figure 3.7. While OLUT has a smaller execution time than ILUT with a small

unrolling factor, ILUT consistently exhibits better relative resource utilization than OLUT

under similar levels of performance. For example, even though ILUT at k = 4 and OLUT

at k = 3 employ different unrolling factors, both of these configurations exhibit similar

levels of performance, as shown in Fig 3.7, and these configurations can be compared in

terms of the relative resource utilization metric. This is shown in Table 3.2.

Furthermore, ILUT consumes a smaller number of FPGA slices at the highest per-

49

formance level. The lowest unrolling factor at which OLUT achieves maximal through-

put is kouter = 4. However, OLUT cannot be synthesized on our target platform at this

unrolling factor. This is because, as indicated by the results from our synthesis attempts,

the number of FPGA slices required at this unrolling factor exceeds the number of avail-

able slices in the FPGA device. In Table 3.2, we make a note of the “compile error” in

the OLUT value at k = 4 to describe that we could not synthesize this case due to limited

FPGA resources on the target platform. Even though we cannot synthesize this case, we

can estimate its relative resource utilization. Since this case reaches the maximal achiev-

able throughput, it will have the same throughput as the ILUT case with k = 8, as shown

in Fig 3.7. Also, this OLUT configuration (k = 4) is expected to consume more FPGA re-

sources than the OLUT configuration with k = 3 due to increases in the butterfly unit and

its associated control logic. In Fig 3.7, the ILUT configuration with k = 8 shows much

better resource utilization than OLUT with k = 3. Hence, we can expect that the ILUT

approach has smaller relative resource utilization compared to OLUT when we compare

their respective maximal-performance configurations.

Another interesting result from our experiments is that the relative resource utiliza-

tion of ILUT at kinner = 4 is smaller than that at kinner = 8. This is because the potential

speed-up at kinner = 8 is not fully realized due to the limited external memory bandwidth.

This saturation of performance can be seen in Figure 3.7.

50

Table 3.1: Relative resource requirements for an image size of 256x256.

Unrolling Factor ILUT OLUT

k = 1 32.96 32.96

k = 2 21.71 21.43

k = 3 N/A 19.36

k = 4 16.18 N/A

Table 3.2: Relative resource requirements for an image size of 2048x2048.

Unrolling Factor ILUT OLUT

k = 1 3994 3994

k = 2 2391 2546

k = 3 N/A 2244

k = 4 1632 Compile Error

k = 8 1736 N/A

3.6 Conclusion

In this chapter, we have developed a systematic approach for generating dedicated

2D-FFT subsystems for FPGA implementation. Our approach realizes data parallelism

within an individual 1D-FFT core, and minimizes the interface complexity between the

underlying 1D-FFT core and local memory. Our approach allows for scalable, paral-

lel 2D-FFT implementation with a relatively simple interconnection network, and corre-

spondingly simple control logic. These features contribute to improved FPGA resource

consumption at a given level of performance compared to previous 2D-FFT FPGA archi-

tectures.

Our methods are demonstrated through extensive synthesis experiments using the

Xilinx Virtex-5 FPGA device. Our synthesis results quantify the cost-performance trade-

51

offs provided by our proposed class of FFT architectures. A distinguishing characteristic

of our approach, compared to previous techniques for 2D-FFT implementation, is that we

provide a systematic method to generate streamlined, FPGA-based, 2D-FFT architectures

while taking into account trade-offs between performance and cost.

52

Chapter 4

Efficient Static Buffering to Guarantee Throughput-Optimal FPGA

Implementation of Synchronous Dataflow Graphs

4.1 Introduction and related work

At the graph level of the design methodology illustrated in Fig. 1.1, it is important

to consider real-time constraints as well as optimization of hardware resources. When

describing a DSP application with an graph, functional blocks and storage space for trans-

ferring data between adjacent blocks are modeled as graph vertices (actors) and edges,

respectively. When mapping graph edges into storage locations, care must be taken to

make effective use of limited storage locations (e.g., on-chip memory in programmable

digital signal processors, and block RAM and distributed memory in FPGAs). However,

reducing the storage space for transferring data between actors may result in decreased

throughput due to idle time that is required to prevent buffer overflow — as buffers be-

come smaller, the frequency and duration for such overflow-avoiding idle time generally

increases, which leads to decreased throughput. The limited amounts of storage available

in DSP implementation targets, and the importance of meeting real-time performance

constraints motivate the goal of guaranteed, throughput-optimal buffer configuration for

SDF graphs. In this chapter, we study this throughput and buffering analysis problem in

the context of FPGA-based implementation.

53

Synchronous dataflow (SDF) [1] has been used widely as an efficient model of

computation for analyzing performance and resource requirements of DSP applications

that are implemented on various target architectures (e.g., see [2, 3, 4, 5, 6, 31]). Tradi-

tionally, throughput analysis for SDF graphs is performed by solving an instance of the

maximum mean cycle problem (e.g., see [32, 33]) after converting the input SDF graph

into an equivalent homogeneous SDF (HSDF) graph [1]. HSDF is a special case of SDF

in which the production and consumption rates are identically equal to unity for all input

and output ports of all actors. These rates are in terms of data values (tokens) per actor

execution (firing). Throughput analysis based on SDF-to-HSDF conversion suffers from

high worst case complexity because neither the time nor space required to perform this

conversion is polynomially bounded (e.g., see [34]).

This complexity arises from the nature of periodic schedules of SDF graphs, which

are used for static scheduling. A periodic schedule for an SDF graph is a schedule that

produces no net change in the buffer state — i.e., the numbers of tokens that are queued

on the buffers associated with the graph edges. The total number of actor firings in a

periodic schedule can scale exponentially even for simple classes of SDF graphs [34].

Since each actor firing corresponds to a separate vertex in the HSDF version of an SDF

graph, the SDF-to-HSDF transformation process can result in similar exponential growth.

Ghamarian et al. [35] have developed a method for SDF throughput analysis that

avoids conversion to an HSDF graph, and uses state space exploration techniques — in

terms of the buffer state — instead. In general, executions of actors change the buffer state

by removing (consuming) tokens from input edges of the actors that fire, and inserting

(producing) tokens onto output edges. Ghamarian exploits the property that when SDF

54

graphs execute in a purely data driven (“self-timed”) manner under bounded memory

space, the state space is also bounded, and execution eventually settles into a periodic

pattern (periodic steady state or PSS). In Ghamarian’s method for throughput analysis,

only selected states need to be stored when detecting the PSS of execution, and through

Ghamarian’s careful pruning technique for state storage, significant improvements can

be achieved in the efficiency of performance analysis. However, the technique requires

simulation of the overall schedule, and the worst case complexity is linear in the length

(number of firings in) the given periodic schedule, which, as described above, is not

polynomially bounded in the size of the input SDF graph.

Buffer minimization in SDF graph has been studied to mainly focus on single-

processor target, see for example [36, 37, 38, 39, 40]. FPGA implementation, however,

allows simultaneous actor firings by assigning each actor into its own dedicated FPGA

slices. Thus, the minimal buffer solution given by the previous deadlock-free schedule

can not be applied to this FPGA implementation domain.

Horstmannshoff et al. [41, 42] developed the scheduling method for complex RT

level building blocks from SDF graph. Based on timing patterns of producing and con-

suming token in each block, it constructed the retiming graph to generate the schedule of

generating the stall signal for each SDF actor with a minimum buffer cost.

Stuijk [43] develops a systematic approach for exploring throughput and storage

trade-offs for SDF graphs. This approach applies methods developed in [44] for determin-

ing minimum storage requirements based on state-space analysis of buffer states. Stuijk’s

approach operates by first finding a minimal storage distribution, and then recursively in-

creasing the storage space for each edge that has a storage dependency. This results in a

55

family of buffer distribution-throughput pairs as a representation of Pareto solutions for

the graph. Although this approach prunes the search space to reduce complexity, schedule

simulation is still required in the search process, so again, worst case complexity is not

polynomially bounded.

Wiggers [45] presents an algorithm with linear computational complexity to deter-

mine close-to-minimum buffer capacities for a given throughput constraint. However, this

approach imposes a form of strictly periodic scheduling that requires a counter in every

functional block, which leads to resource overhead in FPGA and other hardware-oriented

implementations. Also, since Wiggers’s approach assumes that execution will enter the

required periodic steady-state only with the timely availability of sufficient starting to-

kens for every actor, it may not adequately handle irregular streaming inputs, where token

arrival times are less predictable.

In contrast to the related prior work, we propose a heuristic algorithm with low

polynomial time complexity that provides upper bounds on buffer requirements to guar-

antee throughput-optimal FPGA realizations of SDF graphs. Our approach focuses on

the restricted class of tree-structured SDF graphs — that is, the input application model

(application graph) must be in the form of an SDF tree. We emphasize that our algorithm

is a heuristic only in the sense of the buffer sizes that are computed; in terms of achieved

throughput performance, our approach guarantees optimality.

We first analyze relationships of firing patterns between actors and buffer require-

ments for the two-actor SDF graph model (TASM), which is a specialized form of SDF

graph that we propose for efficient analysis of data communication on individual edges

in a given SDF application graph. We then apply this two-actor firing pattern analysis

56

repeatedly when traversing an application graph to determine buffer configurations that

guarantee maximum achievable throughput.

In our buffer optimization scenario and our associated TASM analysis, we consider

self-timed dataflow graph execution (e.g., see [46, 47]), which means that an actor is fired

as soon as all of its input edges have enough tokens — that is, as soon as the number of

tokens on each input edge e is at least c(ei). If each actor is mapped to a separate hard-

ware resource, and the overhead of communication and synchronization between actors is

negligible, then self-timed execution leads to the maximum achievable throughput (e.g.,

see [48, 47]). Moreover, this form of execution does not require any global schedule, and

therefore storage, performance, and interconnect overhead associated with implementing

a global schedule is avoided.

With predominantly coarse-grained dataflow actors (e.g., digital filters, and trans-

form computations as opposed to adders and multiplers), and streamlined implementa-

tion of dataflow edges, one can reduce the relative overhead of inter-actor communication

and synchronization significantly so that self-timed scheduling becomes an effective ap-

proach. This context of coarse-grain actors and streamlined edge implementation is the

form in which we explore self-time implementation and associated buffer configuration

strategies in this chapter.

We first present precise definition and notations related to buffer analysis of SDF-

based implementations. Using these concepts, we analyze the data transfer behavior on

an SDF edge by the TASM model described earlier. Based on this analysis, we develop

an algorithm for buffer analysis based on the TASM model, and we show an overall de-

sign flow for applying this algorithm for efficient synthesis of FPGA implementations.

57

The proposed algorithm is implemented in the dataflow interchange format (DIF) pack-

age [49], which provides a standard language and associated toolset that is founded in

dataflow semantics and tailored for DSP system design [5].

4.2 Background

4.2.1 Application representation

We represent a DSP application with a dataflow graph G = (V,E), where each com-

putational module is mapped to a vertex (actor) v∈V and each directed edge e∈ E corre-

sponds to a FIFO buffer for communicating data from the source actor src(e) to the sink

actor snk(e) of e. We assume that the given dataflow model adheres to the assumptions

of SDF, which require that the production and consumption rates of all actor output and

input ports, respectively, are constant [1]. The SDF model is used widely in tools for DSP

system design, and powerful analysis techniques have been develop for mapping SDF

representations into various kinds of platforms (e.g., see [47]).

Given an SDF edge e, we represent the associated production rate of src(e) by p(ei),

and we represent the associated consumption rate of snk(e) by c(ei). An SDF edge e also

has associated with it a non-negative delay, denoted del(e), which represents the number

of initial tokens that reside on the corresponding buffer at the start of execution.

A necessary condition for executing (firing) an SDF actor v is that the number of

tokens on every input edge ein of v is greater than or equal to c(ein). While v consumes

c(ein) tokens from each input edge ein during its execution — i.e., during the execution

of a single invocation or firing of the actor — it produces p(eout) tokens onto each output

58

edge eout.

If an SDF graph is properly constructed in a certain technical sense, then there

exists a periodic schedule for the graph — that is, a schedule that is free from deadlock,

fires each actor at least once, and produces no net change in the number of tokens on

every edge e in the graph. This concept of a properly constructed SDF graph is referred

to as consistency; efficient algorithms have been developed to determine whether or not

an SDF graph is consistent, and therefore has a periodic schedule [1]. For a consistent

SDF graph, the relative rates at which actors need to fire can be determined from the the

balance equations [1]:

p(ei)×q [src(e)] = c(ei)×q [snk(e)] foralle ∈ E. (4.1)

For a consistent, connected SDF graph G there is a unique minimum integer solu-

tion the balance equations in G. This solution is called the repetitions vector, and is often

denoted by q. repetition count. For each actor v in G, we refer to q[v] as the repetition

count of v. A valid and minimal periodic schedule should fire each actor a number of

times equal to the repetitions count of the actor. Such a periodic schedule can then be

iterated as many times as needed with guaranteed bounded memory for all of the edges in

the graph [1].

If an SDF graph G is not connected, then repetitions vectors and periodic sched-

ules can be computed separately for each connected component, and these “connected

component schedules” can be iterated at arbitrary rates relative to one another to achieve

bounded memory execution of G. The relative rates of execution for the connected com-

59

ponents can be managed — based on relevant characteristics of the associated signal pro-

cessing subsystems — using a vector called the blocking vector [50]. The blocking vector

has elements that are non-negative integers, and is indexed by the connected components

in G.

In the remainder of this chapter, we assume that we are working with connected

SDF graphs. However, through appropriate use of blocking vectors, the developments in

the chapter can be extended naturally to handle SDF graphs that are not connected.

4.3 Target platform model

Since resource sharing is often avoided in FPGA implementation due to the rela-

tively high cost of multiplexing and routing resources (e.g., see [51]), we assume that

each computational block (SDF actor) is assigned to a dedicated set of FPGA logic cells

without any sharing. Integrating resource sharing considerations into the developments of

this chapter is an interesting direction for future work, and may be useful in cases where

resources are limited compared to the amount of required computation.

FPGAs provide two ways of implementing memory space between functional blocks

— such memory space can be implemented using block RAMs, which provide dedicated

memory hardware within an FPGA, and distributed RAM using FPGA slices. The number

of ports for reading (writing) data from (into) both forms of RAM is limited, and these

limitations must be taken into account carefully for correct buffer management. In the

Xilinx Virtex-II Pro FPGA, which we target in this chapter, the number of ports is limited

to two, and therefore, only a single pair of simultaneous read/write operations to each

60

RAM subsystem is possible.

To support this limitation on RAM access, we incorporate in our dataflow-based ar-

chitecture model, a self-loop on each actor, and we add a single unit of delay to each such

self-loop. By a self-loop, we mean an edge whose source and sink actors are identical.

By adding a self-loop with unit delay to each actor, we ensure that successive executions

of the same actor are always serialized, which guarantees that the memory requests of one

actor invocation do not conflict with those of another invocation of the same actor.

Our overall mapping approach therefore maps each actor in the SDF application

model to a single actor (dedicated hardware resource) in the architecture model, along

with a self-loop connection for that actor. Thus, we allow for concurrent execution of

distinct actors, while serializing successive invocations of the same actor since such suc-

cessive invocations must access the same memory ports for buffer access.

4.4 Design flow

Fig. 4.1 illustrates the overall design flow for our proposed buffer optimization tech-

nique under performance constraints. The proposed technique is implemented in the

dataflow interchange format (DIF) package [5]. The DIF package provides a flexible

dataflow design language, intermediate representations, and transformations for specify-

ing, analyzing, and optimizing implementations of DSP applications. While DIF supports

a variety of dataflow models of computation, including synchronous [1], cyclo-static [52],

and enable-invoke [53] dataflow support for SDF in DIF is especially well-developed and

mature. We leverage this support for SDF graph techniques in the DIF package to de-

61

Figure 4.1: Overall design flow.

62

velop and experiment with the novel buffer optimization techniques that we introduce in

this chapter.

The buffer optimization module that we have developed in the DIF package has

two inputs — a DIF language specification of the the application to be implemented,

and the throughput constraint — that is, the required rate at which the implementation

must be able to process samples. As part of the DIF application specification, we include

timing characteristics that are derived by profiling the execution of each actor on the target

hardware. In the experiments that we report on in this chapter, the timing characteristics

are derived from the LabVIEW FPGA library, which is targeted to Xilinx Virtex II-Pro

FPGA platform.

The DIF package front-end parses the DIF-based application specification and con-

structs an intermediate representation on which we apply our new algorithm for analysis

and optimization of throughput-constrained buffer configurations. This algorithm is the

main contribution of this chapter.

Our proposed algorithm for buffer optimization aims to minimize FPGA resource

requirements for implementing the buffers associated with the edges in the input SDF

graph. This buffer resource minimization is performed subject to the given throughput

constraint. Careful estimation of throughput is performed in conjunction with our buffer

optimization technique to ensure that the throughput constraint is satisfied without signif-

icant performance over-design (i.e. with actual throughput that is significantly higher that

what is required based on the throughput constraint). Such over-design in general leads

to buffer allocations that are larger than what is required to achieve the given through-

put constraint, and is therefore counter-productive in terms of our throughput-constrained

63

buffer minimization problem.

In our experimental setup, the result of our buffer optimization technique is applied

by hand to the LabVIEW FPGA code of the target DSP system. Thus, we demonstrated

a semi-automated design flow, where the result of our fully-automated buffer optimiza-

tion algorithm is translated by hand to configure the buffers in the target implementation.

Although this process is generally more time consuming compared to an end-to-end au-

tomated flow, it is a highly flexible approach because it can easily be adapted to different

target platforms and back-end synthesis tools.

Through experiments with LabVIEW FPGA, we demonstrate significant improve-

ments in resource efficiency, and minimal levels of performance over-design that result

from the buffer configurations derived from our optimization technique.

4.5 Two-actor SDF graph model (TASM)

We assume a static buffering approach for SDF graphs, which means that for each

SDF edge we allocate a fixed amount of memory space at compile time. We refer to

the fixed amount of space that is allocated for an edge ei as the buffer size of ei, and we

denote this buffer size by the symbol D(ei). For real-time implementation of SDF graphs,

static buffering is often preferable due to its enhanced predictability and elimination of

overhead due to dynamic memory allocation.

In this section, we introduce a model called the Two-Actor SDF Graph Model

(TASM). For any edge ei ∈ E in an arbitrary SDF graph G = (V,E), the TASM for ei,

analyzed in terms of in SDF semantics, accurately captures the token transfer across ei

64

vsrc vsnk
p(ei) c(ei)di

(a) SDF Graph

vT
src vT

snk

p(ei) c(ei)τ1 (0) = di

p(ei)
τ2 (0) = D(ei) - di

(b) TASM

ei

eT
(i,1)

eT
(i,2)

c(ei)

Figure 4.2: An example of an SDF edge and its TASM model.

as the enclosing SDF graph G executes under bounded memory. Also, TASM facilitates

the formalization of our proposed synthesis approach, and its feature of computing buffer

space requirements for throughput-optimal implementation.

4.5.1 Two-actor SDF graph model (TASM)

Suppose that edge ei, shown in Fig. 4.5, is part of some arbitrary enclosing SDF

graph G = (V,E) (i.e., ei ∈ E), and suppose that src(ei) = vsrc, snk(ei) = vsnk, del(ei) = di,

and the production and consumption rates of ei are denoted by p(ei) and c(ei), respec-

tively. Suppose also that ei is assigned a pre-specified buffer size D(ei). Then the TASM

graph associated with ei, which we denote by GT
i , is defined as illustrated in Fig. 4.5(b).

Here, vT
src = vsrc and vT

snk = vsrc. Furthermore, eT
(i,1) connects vT

src to vT
snk with delay di, and

eT
(i,2) connects vT

snk to vT
src with delay (D(ei)−di). The production and consumption rates

for edges in the TASM graph are set as follows.

p(eT
(i,1)) = c(eT

(i,2)) = p(ei) (4.2)

65

and

c(eT
(i,1)) = p(eT

(i,2)) = c(ei). (4.3)

At any given time, buffer slots (cells in the memory that are allocated for the buffer)

are categorized into two types based on whether they contain live data (filled) or whether

they are available for storing new data (empty or free). The filled space in the buffer for ei

is modeled by eT
(i,1) in TASM. Thus as GT

i executes, each token on eT
(i,1) represents a live

token in the buffer associated with ei in a corresponding execution of G. Since the source

actor src(ei) can be fired only when ei has enough free space to store all of the tokens

produced by a firing of src(ei), each firing of src(ei) can be viewed as consuming p(ei)

free cells from the buffer space available on ei. Conversely, each execution of snk(ei)

expands the free space on ei by c(ei) cells. Hence, the free space on ei can be modeled by

the edge eT
(i,2) shown in Fig. 4.5(b), where each token on eT

(i,2) during an execution of GT
i

represents an empty cell in the buffer associated with ei in a corresponding execution of

G.

4.5.2 Modified self-timed execution (MSTE) in TASM

We use the self-timed execution model when mapping the input SDF graph into

an FPGA implementation. Self-timed execution of SDF graphs can in general lead to

execution periods (the patterns in which actors execute on the available resources) that

are of exponential length in terms of the size of the of the graph (e.g., see [47]). Such

exponential growth of execution periods can significantly complicate static analysis. To

help address this difficulty, we add an additional firing rule, which we call the MSTE firing

66

rule: actor vT
src in GT

i (see Fig. 4.5(b)) of the TASM model cannot be fired if

τ1(t)≥ max(p(ei), c(ei)), (4.4)

where τ j(t) represents the number of tokens on eT
(i, j) at time t for j = 1,2. By imposing

the MSTE firing rule, we obtain a modified form of self-timed execution, which we refer

to in the remainder of this chapter as modified self-timed execution (MSTE).

We have empirically observed that this additional firing rule usually results in only

relatively minor deviations from self-timed execution. However, imposing the rule leads

to a periodic execution pattern SP that is defined by the repetition vector of G. More pre-

cisely, by SP in this context, we mean a finite-duration schedule onto the disjoint subsets,

rsrc and rsnk, of FPGA resources that are occupied by the actors vsrc and vsnk, respectively.

In other words, SP can be viewed as a mapping

SP : [0,1, . . . ,(ti−1)]×{rsrc,rsnk}→ {vT
src,v

T
snk,vidle}, (4.5)

where ti is the length of the schedule (the period of the periodic pattern), and vidle repre-

sents a void computation (idle resource). Note that even though SP is formulated as a fully

static schedule, it is implemented using our modified form of self-timed execution — i.e.,

the constraints imposed by our modified form of self-timed execution lead naturally to

this kind of periodic pattern in the steady state. If ts represents the time when this steady

state pattern first emerges, (i.e., just after then point when the transient ends), then the

schedules for all time intervals of the form [(ts + kti),(ts +(k +1)ti−1)], for k = 0,1, . . .,

can be obtained by appropriately-shifted versions of the schedule defined by (4.5).

67

Thus, if ~q represents the repetitions vector of G, then one period of SP contains

q[vsrc] and q[vsnk] firings of vT
src and vT

snk, respectively. This kind of periodic schedule

helps to significantly reduce the complexity of performance analysis since the iterative

dataflow execution is characterized by a relatively compact periodic structure.

4.5.3 Subperiods in TASM

The entire firing pattern in an iteration (i.e., a single execution in the periodic rep-

etition) of SP can be expressed as a sequence of subperiods, where by a subperiod (SP),

we mean a smaller firing pattern within SP. From the additional firing rule that we intro-

duce in our implementation model, we are able to constrain execution so that it becomes

more structured, which leads to potential for more efficient static analysis. Fortunately,

the constraints imposed by the MSTE firing rule do not impose significant performance

limitations, which we will demonstrate in the experiments that we present in Section 4.10.

An SP is defined as the time period between two consecutive breakpoints of actor

execution, where the breakpoints are derived from two key conditions. The first condition,

which we denote by c1(t), is

c1(t) = c1,a(t) and c1,b(t), (4.6)

where

c1,a(t) = (τ1(t)≥max(p(ei), c(ei))), and (4.7)

c2,a(t) = (τ1(t)< p(ei)+ c(ei)). (4.8)

68

We say that the first condition, Condition 1, “holds” or “is true” at time a given time

instant θ if (4.7) is satisfied for t = θ (i.e., if both c1,a(θ) and c2,a(θ) hold). As we see

from the MSTE firing rule, the source actor cannot be fired when Condition 1 is satisfied.

To introduce Condition 2, denoted by c2(t), it is useful to first define the following

notion of inter and intra firing times of an actor. The set of inTRA firing times of an

actor X , denoted by TRA(X), is defined as the set of time instants during which actor X is

executing. This set can be formulated as follows.

TRA(X) = ∪∞
j=1 {t | start(X , j)≤ t < end(X , j)} .

Similarly, the set of inTER firing times of an actor X is defined as the set of time

instants during which actor X is not executing (“idle”). This set can be expressed as the

complement of the inTRA firing times of X with respect to the set Z+ of non-negative

integers:

TER(X) = Z+−TRA(X).

Condition 2 associated with the definition of breakpoints is defined as

c2(t) =


true, if t ∈ {TER(A)∩TER(B)}

false, otherwise

(4.9)

This condition represents that breakpoints do not occur during the execution time of either

actor in TASM — breakpoints occur only “between” executions of vT
src and vT

snk. Based

on the two conditions, c1(t) and c2(t), the k-th breakpoint, denoted BP(k), is defined by

69

3 5
vTsrc vTsnk

t (vTsrc) = 2 Tt (vTsnk) = 5 T
3 5

(a) TASM example

vTsrc

vTsnk vTsnk

vTsrc

vTsnk

vTsrc vTsrc vTsrc

vTsrc

vTsnk vTsnk

vTsrc

vTsnk

vTsrc vTsrc vTsrc

(b) Execution pattern under conventional self-timed execution

(c) Execution pattern under MSTE

τ1(t=0) = 5 τ1(t=5) = 6 τ1(t=10) = 10 τ1(t=15) = 5

τ1(t=10) = 7τ1(t=0) = 5 τ1(t=5) = 6 τ1(t=15) = 5

τ1(t=0) = 5

τ2(t=0) = 15

vTsrc firing pattern
vTsnk firing pattern

vTsrc firing pattern
vTsnk firing pattern

SPβSPα SPα

Figure 4.3: Example of TASM-based modeling approach, and execution patterns under

conventional self-timed execution and MSTE.

BP(k) = min{t | c1(t)∧ c2(t)∧ (t > BP(k−1))} . (4.10)

Fig. 4.3 shows a concrete example to illustrate our TASM-based modeling ap-

proach; Fig. 4.3(b) shows how the associated self-timed schedule evolves under conven-

tional self-timed execution; and Fig. 4.3(c) shows how execution of the TSNM evolves

under MSTE, our modified form of self-timed execution. In Fig. 4.3(c), c1(t) in (4.6) is

true in the shaded areas of the timeline for vT
src, and c2(t) is true at t = 0,5,10,15 when

both actor are idle. Hence, the dotted lines represents the breakpoints, and these break-

70

points divide an iteration of SP into three subperiods.

Since there are enough tokens on edge e1 to keep actor vT
snk running after the sec-

ond and fourth firings of actor vT
src in Fig. 4.3(c), it is not essential (to achieve maximum

throughput) for vT
src to start its third and fifth firings immediately after its correspond-

ing previous firings (i.e., vT
src can remain idle for some time while vT

snk consumes tokens

from the edge (vT
src,v

T
snk). Thus, in this example, MSTE does not reduce throughput per-

formance compared to standard self-timed execution. Indeed on practical examples, we

have found that typically the constraints imposed in MSTE do not affect throughput. At

the same time, MSTE results in subperiods, which improve the efficiency with which we

can analyze execution in terms of metrics that include performance and buffering require-

ments.

4.6 Properties of subperiods in TASM

As described in Section 4.5.2 and 4.5.3 , MSTE leads to efficient static analysis

because an execution pattern under MSTE can be decomposed into a periodic pattern,

and such a pattern can be further decomposed into a sequence of subperiods (smaller

patterns). A subperiod can be more precisely defined as the time between successive

breakpoints. For convenience in this discussion, let the greatest common divisor (GCD)

of p(ei) and c(ei) be denoted by g(ei), and consider the following two mutually exclusive

scenarios:

g(ei) 6=min(p(ei), c(ei)), (4.11)

71

and

g(ei) = min(p(ei), c(ei)). (4.12)

Under Scenario (4.11), we distinguish between two different types of subperiods

that occur, and we refer to these types as SPα and SP
β
. Each of these two types consists

of a fixed number of firings of vT
src and vT

snk. Thus, an iteration of SP is a sequence of

subperiods, where each subperiod in the sequence takes on one of two statically-known

forms — SPα and SP
β
. The specific numbers of firings are summarized in Table 4.1.

Here, fSP
λ
(X) represents the number of firings of actor X that occur in a subperiod of

type λ ∈ {α,β}. For example, in Fig. 4.3(c), the first two of these subperiods are of type

α, and the third is of type β.

Under Scenario (4.12), there exists only one type of subperiod in SP. In this case,

p(ei) divides c(ei) or c(ei) divides p(ei), and it follows that the numbers of firings in

Table 4.1 for the source and sink actors are the same between the rows corresponding to

type α and type β. In other words, under Scenario (4.12), SPα and SP
β

are identical, and

thus, execution proceeds based on only one type of subperiod.

In summary, there are in general two types of subperiods to consider — SPα and

SP
β
, and these forms are identical under Scenario (4.12). Execution within SP can always

be broken down into a succession of subperiods, where each individual subperiod con-

forms to one of these two forms. This is established by the following two lemmas. Basic

notation related to TASM, which is used in our formulation of these lemmas, is summa-

rized in Fig. 4.5(b). Proofs of theorems and lemmas are omitted throughout the chapter

72

Table 4.1: The number of firings of vT
src and vT

snk in subperiod α and β of TASM

of firings p(ei)≥ c(ei) p(ei) < c(ei)

Type α fSPα
(vT

src) 1 dc(ei)/p(ei)e
fSPα

(vT
snk) bp(ei)/c(ei)c 1

Type β fSP
β
(vT

src) 1 bc(ei)/p(ei)c
fSP

β
(vT

snk) dp(ei)/c(ei)e 1

due to lack of space.

Lemma 1. Suppose that we are given a TASM GT
i under MSTE. If p(ei)≥c(ei), then in

each subperiod, vT
src has exactly one firing, and vT

snk has either bp(ei)/c(ei)c or dp(ei)/c(ei)e

firings.

Proof. Suppose that

p(ei)≥c(ei) inGT
i . (4.13)

Then from the definition of TASM, vT
src produces p(ei) tokens on eT

(i,1). Thus, after the

first firing of vT
src in each sub-period, τ1(t)≥ p(ei). From (4.4), vT

src cannot be fired again

until τ1(t) becomes smaller than p(ei). Meanwhile, each firing of vT
snk reduces τ1(t), and

the breakpoint condition (see (4.10)) is satisfied before the next firing of vT
src. Since, by

definition, each sub-period ends at a breakpoint, there exists only one firing of vT
src in each

sub-period.

Now, we determine the number of firings of vT
snk in a subperiod. Let breakpoint

BP(k) denote the time at which the kth subperiod starts within the encolsing schedule

period SP. As shown above, vT
src is fired exactly once in each subperiod. Also, vT

snk is fired

continuously until τ1(t) meets the next breakpoint condition. Thus, the number of vT
snk

73

firings in a subperiod can be computed as

fSP
λ
()vT

snk

= min{ j | τ1(BP(k))+p(ei)− j∗c(ei)< p(ei)+c(ei)}

= bτ1(BP(k))/c(ei)c , (4.14)

where λ ∈ {α,β}. The left hand side in the inequality of (4.14) represents the change in

τ1(t) due to j firings of vT
snk. The initial value of τ1(t) is τ1(BP(k)) and p(ei) is added

from the single firing of vT
src. As vT

snk gets fired, τ1(t) is reduced until it meets the next

breakpoint condition. From (4.6), the minimum and maximum of τ1(BP(k)) are p(ei) and

(p(ei)+c(ei)−g(ei)), respectively, because τ1(t) is always a multiple of g(ei). We assign

these minimum and maximum values of τ1(BP(k)) to (4.14) for computing fSP
λ
()vT

snk. If

g(ei) 6=c(ei), then fSP
λ
()vT

snk is either bp(ei)/c(ei)c or dp(ei)/c(ei)e(= bp(ei)/c(ei)+1c).

On the other hand, if g(ei)=c(ei), then fSP
λ
()vT

snk = p(ei)/c(ei).

Lemma 2. Suppose that we are given a TASM GT
i under MSTE. If p(ei) < c(ei), then in

each subperiod, vT
snk has exactly one firing, and vT

src has either bc(ei)/p(ei)c or dc(ei)/p(ei)e

firings.

Proof. Suppose that

p(ei) < c(ei) inGT
i . (4.15)

First, we count the number of firings of vT
snk in each subperiod. Let ta be the time at

which the first firing of vT
snk completes. If τ1(ta)<c(ei), then vT

snk cannot be fired at time

ta because τ1(ta) < c(ei). In this case τ1(t) will be increased as time progresses due to

one or more firings of vT
src, and eventually τ1(t) will exceed c(ei) to satisfy the breakpoint

condition (4.10) and terminate the subperiod.

74

On the other hand, if τ1(ta)≥ c(ei), then it follows from (4.15) that condition c1,a

in (4.7) holds. Furthermore, observe from the MSTE firing rule together with (4.15) that

vT
src cannot be fired if τ1(ta) ≥ c(ei). Also, a single firing of vT

src adds p(ei) tokens to

τ1(t). Therefore, τ1(ta) is always smaller than p(ei) + c(ei). Thus c2,a in (4.7) holds,

and the overall breakpoint condition (see (4.10)) also holds. Thus, ta marks the end of a

subperiod, and by the definition of ta, vT
snk fires exactly once within this subperiod.

Next, we determine the number of firings of vT
src in each subperiod. In a similar

fashion to (4.14), the number of firings of vT
src in each subperiod can be computed as

fSP
λ
()vT

src

= min{ j | τ1(BP(k))−c(ei)+ j∗p(ei)≥c(ei)}

= d{2∗c(ei)−τ1(BP(k))}/p(ei)e , (4.16)

where λ∈{α,β}. The minimum and maximum of τ1(BP(k)) are then applied to (4.16) for

computing fSP
λ
()vT

src. If g(ei)= p(ei), then fSP
λ
()vT

src is c(ei)/p(ei). On the other hand, if

g(ei) 6= p(ei), then fSP
λ
()vT

src is either dc(ei)/p(ei)e or bc(ei)/p(ei)c(= dc(ei)/p(ei)−1e).

From Lemma 1 and 2, it follows that the numbers of firings of vT
src and vT

snk in a

subperiod can be determined as shown Table 4.1.

75

4.7 Throughput analysis in TASM

In this section, we analyze the pattern of actor firings in TASM and analyze the

impact of allocated buffer sizes on the achieved throughput.

4.7.1 Firing pattern analysis

We begin with the following lemma, which relates tokens produced and consumed

by the source and sink actors, respectively, in TASM.

Lemma 3. Given a TASM GT
i under MSTE, tokens produced by vT

src in a subperiod are

never consumed by vT
snk in the same subperiod.

Proof. We prove this Lemma by a contradiction. Suppose that

Ck > τ1(BP(k)), (4.17)

where Ck is the number of tokens consumed by vT
snk in the kth subperiod. (4.17) represents

that at least one token produced by vT
src in the kth subperiod is consumed by vT

snk within

the same kth subperiod. Let k′ denote the index of the subperiod that immediately follows

subperiod k — that is, k′ = 1 (the first subperiod in the next periodic schedule iteration) if

k represents the last subperiod within SP, and otherwise, k′ = (k +1).

We examine two separate cases, and derive contraditions in both cases.

Case 1:

p(ei)≥c(ei) inGT
i , (4.18)

Let τ1(BP(k)) = p(ei)+ε, where BP(k) is the beginning of the kth subperiod, and 0≤ε<

c(ei). From (4.17), we have that the total number of tokens consumed by vT
snk in the kth

76

subperiod must be greater than (p(ei)+ ε). Since there is a single firing of vT
src in each

subperiod (from Lemma 1), we have that at the end of the kth subperiod,

τ1(BP(k′)) = (p(ei)+ ε+ p(ei)−Ck). (4.19)

Since Ck > (p(ei) + ε), τ1(BP(k′)) < p(ei). This contradicts c1,a(t) (see (4.6)), which

was assumed to hold by the definition of a breakpoint.

Case 2: Now suppose that

p(ei) < c(ei) inGT
i . (4.20)

From Lemma 2, we have that

fSP
λ
()vT

snk = 1. (4.21)

Let τ1(BP(k)) = c(ei)+ ε, and 0≤ ε < p(ei). From (4.17), we have that the total

number of tokens consumed by vT
snk in the kth subperiod must be greater than (c(ei)+ ε).

Since, from the definition of TASM, vT
snk consumes c(ei) tokens on every firing, the

number of firings of vT
snk should be greater than one in the kth subperiod. This contra-

dicts (4.21).

Lemma 3 states that firing of vT
snk is never delayed in a subperiod (i.e., it is not

preceded by any idle time at the start of the subperiod). This is because vT
snk does not

need to wait for tokens produced from vT
src in the same subperiod. While (τ1(BP(k))

tokens are always sufficient to avoid delaying vT
snk during each subperiod k, vT

src may be

delayed (due to a value of (τ2(BP(k)) that is too small) if the allocated buffer size D(ei)

77

is not sufficient. In other words, vT
src can be delayed to wait for tokens on eT

(i,2) that must

be produced by vT
snk or equivalently, vsrc waits until one or more firings of vsnk generate

sufficient empty space in the buffer shown in Fig. 4.5(a). Hence, the firing pattern of vT
src

in a subperiod is in general a function of the allocated buffer size D(ei).

Before exploring a relationship between D(ei) and a firing pattern, we first show

that (τ1(BP(k)) determines a type of kth subperiod. From the second breakpoint condition

c2(t) in (4.9), the size of buffer(D(ei)) allocated on ei of Fig. 4.5(a) can be represented by

D(ei) = (τ1(BP(k))+τ2(BP(k))) (4.22)

Thus, (τ1(BP(k)) condition deciding a type of the subperiod is important in deriving

a buffer size equation subject to a certain firing pattern of vT
src and vT

snk. The type of a

subperiod is determined as a function of τ1(BP(k)). Our analysis here is divided into two

cases — p(ei)≥c(ei), and p(ei)<c(ei).

Case 1: first suppose that p(ei)≥c(ei). Then from Lemma 1, there exist bp(ei)/c(ei)c

and dp(ei)/c(ei)e firings of vT
snk in SPα and SP

β
, respectively. Since vT

snk only consumes

τ1(BP(k)) in each kth subperiod, as established by Lemma 3, we have that τ1(BP(k))

determines the type of a subperiod as follows.

SP
λ

=


SPα, ifτ1(BP(k)) < dp(ei)/c(ei)e∗c(ei)

SP
β
, otherwise

(4.23)

Case 2: now suppose that p(ei)< c(ei). Then from reasoning that is analogous to

that in Case 1 above, the type of a subperiod is determined as follows.

78

SP
λ

=


SPα, ifτ1(BP(k)) < 2∗c(ei)−

⌊
c(ei)
p(ei)

⌋
∗p(ei)

SP
β
, otherwise

(4.24)

We first derive a buffer size that is sufficient to guarantee that firings of vT
src are never

delayed. This derivation is general in the sense that it holds in the absence of information

about the execution times of vT
src and vT

snk (beyond the assumption that the execution times

are constant). Thus, this execution pattern analysis is useful for applications in which

actor execution times are known to be constant, but whose constant values are not known

exactly. Furthermore, this analysis provides a foundation for computing more tight buffer

size requirements in the presence of known (constant) execution times (as we show in

Section 4.8).

Theorem 1. Suppose that we are given a TASM GT
i under MSTE, and suppose that the

buffer size is given by

D(ei) = max(p(ei), c(ei))+p(ei)+c(ei)−g(ei). (4.25)

Then firings of vT
src are never delayed in any subperiod.

Proof. We examine two possible cases for GT
i , and derive a common buffer size equation

in both cases.

Case 1:

p(ei)≥c(ei) inGT
i , (4.26)

From Lemma 1, there is a single firing of vT
src in a subperiod. To fire vT

src without any delay

at the beginning of the kth subperiod, we must have that τ2(BP(k))≥ p(ei) From (4.22),

79

the corresponding buffer size requirement is given by

D(ei)≥ τ1(BP(k))+ p(ei).

From (4.6), we know that (p(ei)+ c(ei)− g(ei)) is an upper bound for τ1(BP(k)).

Thus, vT
src can be executed without delay if

D(ei) = 2∗ p(ei)+ c(ei)−g(ei). (4.27)

Case 2:

p(ei)<c(ei) inGT
i , (4.28)

We divide Case 2 into two sub-cases:

• Case 2a: g(ei) 6= p(ei).

• Case 2b: g(ei) = p(ei).

We begin with Case 2a. In this case, we have that from Lemma 2, the numbers

of firings of vT
src in SPα and SP

β
are dc(ei)/p(ei)e and bc(ei)/p(ei)c, respectively. Thus,

in a type α subperiod, dc(ei)/p(ei)e∗p(ei) is a lower bound for τ2(BP(k)) to achieve

dc(ei)/p(ei)e firings of vT
src in a type α subperiod. From (4.24), an upper bound on

τ1(BP(k)) for SPα is given by

(2∗c(ei)−bc(ei)/p(ei)c∗p(ei)−g(ei)). (4.29)

Thus, vT
src can be executed without delay in a type α subperiod if

80

D(ei) ≥ τ1(BP(k))+ τ2(BP(k))

= (2∗c(ei)−bc(ei)/p(ei)c∗p(ei)−g(ei))+

{dc(ei)/p(ei)e∗p(ei)}

= 2∗ c(ei)+ p(ei)−g(ei). (4.30)

Similarly, in a type β subperiod, bc(ei)/p(ei)c∗p(ei) is a lower bound on τ2(BP(k))

to achieve bc(ei)/p(ei)c firings of vT
src. Also, from (4.6), we have that c(ei)+p(ei)−g(ei)

is an upper bound on τ1(BP(k)) in a type β subperiod.

Thus, vT
src can be executed without delay in a type β subperiod if

D(ei) ≥ τ1(BP(k))+ τ2(BP(k))

= {c(ei)+p(ei)−g(ei)}+

{bc(ei)/p(ei)c∗p(ei)} (4.31)

= dc(ei)/p(ei)e∗p(ei)+c(ei)−g(ei).

Because (4.30) is a sufficient condition of (4.31), vT
src can be executed without delay in

both α- and β-type subperiods if

D(ei) = 2∗ c(ei)+ p(ei)−g(ei)

The right hand side of the last equation in (4.32) matches (4.25).

Now, we examine Case 2b: g(ei) = p(ei), which means that c(ei) = z× p(ei) for

some integer z, and from Table 4.1, the type α and type β subperiods are identical. In this

81

case, we have from (4.28), that the number of firings of vT
src in any subperiod is z. Thus, to

achieve z firings of vT
src, we must have that τ2(BP(k))≥ c(ei). Also, from (4.6), we have

that τ1(BP(k))≤ c(ei).

Thus, vT
src can be executed without delay in any subperiod if

D(ei) ≥ τ1(BP(k))+ τ2(BP(k))

= 2∗ c(ei)

= max(p(ei), c(ei))+p(ei)+c(ei)−g(ei). (4.32)

Again, the right hand side of the last equation (in (4.32)) matches (4.25).

In summary, from our analysis of Cases 1, 2a, and 2b, we have that vT
src is never

delayed delayed in a subperiod if

D(ei)≥ max(p(ei), c(ei))+p(ei)+c(ei)−g(ei). (4.33)

In the next two theorems, we derive buffer size levels that are sufficient to guar-

antee certain kinds of firing patterns for vT
src and vT

snk. These firing patterns are useful in

throughput analysis.

Theorem 2. Suppose that GT
i is executed under MTSE; p(ei)≥ c(ei); γ is an integer

satisfying 0≤ γ≤ fSPα
(vT

snk); and

D(ei) = 2∗p(ei)+(1−γ)∗c(ei)−g(ei). (4.34)

82

Then in any given subperiod, there is exactly one firing of vT
src. Furthermore, if n firings

of vT
snk precede vT

src in a given subperiod, then n ≤ γ. In other words, the single firing of

vT
src in a subperiod occurs after at most γ firings of vT

snk.

Proof. From Lemma 1, there is exactly one firing of vT
src in any subperiod. Also, from the

definition of TASM, vT
src can be fired whenever τ2(t)≥ p(ei). Now recall that the number

of tokens on eT
(i,2) at the beginning of the kth subperiod is denoted by τ2(BP(k)). Clearly,

the first γ firings of vT
snk in a subperiod produce (γ∗c(ei)) tokens on eT

(i,2). Thus, vT
src can

be fired after the γ-th firing of vT
snk within the kth subperiod if

τ2(BP(k))+(γ∗c(ei))≥ p(ei). (4.35)

From (4.6),

τ1(BP(k))≤ p(ei)+c(ei)−g(ei) forallk. (4.36)

It follows from (4.22), (4.35), and (4.36) that the single firing of vT
src occurs after at most

γ firings of vT
src if

D(ei)≥ 2∗p(ei)+(1−γ)∗c(ei)−g(ei).

Theorem 2 tells us how long a single firing of vT
src is delayed in each subperiod when

the buffer size for ei in Fig. 4.5(a) is bounded.

83

Theorem 3. Suppose that GT
i is executed under MTSE; p(ei) < c(ei); δ is an integer

satisfying 0≤ δ≤ fSP
β
(vT

src); and

D(ei) = (1+δ)∗p(ei)+c(ei)−g(ei). (4.37)

Then in any given subperiod, there is exactly one firing of vT
snk. Furthermore, if n firings

of vT
src occur before the end of the vT

snk firing in a given subperiod, then n ≤ δ. In other

words, vT
src is fired at most δ times in a subperiod before the single firing of vT

snk completes.

Proof. From Lemma 2, there is exactly one firing of vT
snk. Also, from the definition of

TASM, vT
snk does not produce any tokens on eT

(i,2) within a given subperiod before vT
snk

completes its firing in that subperiod. In other words, only τ2(BP(k)) “empty buffer

slots” are filled when firing vT
src. Thus, in each kth subperiod, vT

src can be fired δ times

before the single firing of vT
snk completes if

τ2(BP(k))≥ δ∗ p(ei). (4.38)

From (4.6),

τ1(BP(k))≤ p(ei)+c(ei)−g(ei) forallk. (4.39)

It follows from (4.22), (4.38), and (4.39) that vT
src is fired at most δ times in a subperiod

before the single firing of vT
snk completes if

D(ei)≥ (1+δ)∗p(ei)+c(ei)−g(ei).

84

Theorem 3 tells us, for a given bounded buffer size, how many times vT
src can be fired

independently of vT
snk within a given subperiod. After firing vT

src δ times in a subperiod,

any remaining firings of vT
src are delayed until vT

snk completes its execution.

4.7.2 Saturated TASM systems

In this section, we assume that the execution times of actors are constant and known

apriori, and we develop methods for throughput analysis of MSTE under this assumption.

We begin by defining some notation.

Definition 1. Suppose that we are given a TASM GT
i . Then the execution times of vT

src and

vT
snk are denoted by T(vT

src) and T(vT
snk), respectively.

Intuitively, T(vT
src) and T(vT

snk) give the time required for each actor to complete a

single firing on rsrc and rsnk, respectively. Our development of throughput analysis for

MSTE also involves the following definition.

Definition 2. Suppose that we are given a TASM GT
i that executes under MSTE, and

suppose that in each subperiod, the resource rsrc operates without any idle time — that

is, SP(t,rsrc) = vT
src for all t ∈ 0,1, . . . ,(ti−1). Then we say that GT

i is source-saturated.

Similarly, if rsnk executes without any idle time, then we say that GT
i is sink-saturated.

For example, the execution pattern shown in Fig. 4.3(c) illustrates a sink-saturated

scenario. Clearly, since the net production and consumption rates of vT
src and vT

snk are

balanced across SP, it follows that the original SDF graph (Fig. 4.5(a)) executes at its

maximum achievable throughput if GT
i is source- or sink-saturated. This is summarized

in the following property.

85

Property 1. A TASM that is source-saturated or sink-saturated executes at its maximum

achievable throughput when it executes under MSTE.

Due to the additional firing rule of MTSE (see (4.4)), the execution of TASM under

MTSE has the following property.

Property 2. Suppose that we denote the total non-idle time of the resource rη in a type λ

subperiod by

TSPλ
(rη) = fSP

λ
(vT

η)∗T (vT
η). (4.40)

Then GT
i is either source- or sink-saturated if

TSPλ
(rsrc) ≥ TSPλ

(rsnk) forallλ ∈ {α,β} (4.41)

or

TSPλ
(rsrc) < TSPλ

(rsnk) forallλ ∈ {α,β}. (4.42)

In particular, GT
i can be neither source- nor sink-saturated under two corner cases, which

we denote as corner case 1 (CC1) and corner case 2 (CC2). CC1 corresponds to the

condition that the following two inequalities both hold:

TSPα
(rsrc) ≥ TSPα

(rsnk) (4.43)

and

TSPβ
(rsrc) < TSPβ

(rsnk). (4.44)

Similarly, CC2 corresponds to the condition that (4.45) and (4.46) both hold:

86

TSPα
(rsrc) < TSPα

(rsnk) (4.45)

and

TSPβ
(rsrc) ≥ TSPβ

(rsnk). (4.46)

Equation (4.43) means that rsnk has nonzero idle time in each α-type subperiod, while (4.44)

holds if rsrc has nonzero idle time in each β-type subperiod. Clearly, neither rsrc nor rsnk

is saturated in such a system.

The corner cases CC1 and CC2 represent limitations in our MSTE approach since

our guarantee of maximal throughput, as given by Property 1, does not apply under these

cases. However, we observe that CC1 and CC2 do not apply to a broad class of practical

systems — in particular, systems that contain functional blocks that perform as bottle-

necks, where by a “bottleneck”, we mean a block whose computational complexity is

dominant over other functional blocks. For example, in the dataflow-based 3GPP-Long

Term Evolution (LTE) protocol application developed in [54], the FFT block can be ob-

served to be a bottleneck.

In Section 4.10 we present detailed experimental studies with three practical appli-

cations, all of which involve bottleneck actors and corresponding avoidance of the corner

cases (CC1 and CC2) that prevent source- and sink-saturated execution.

4.8 Analysis of saturated systems

Motivated by our discussion on bottleneck actors and the practical relevance of

source- and sink-saturated systems, we develop in this section a detailed analysis of

87

throughput-constrained buffer optimization for such systems. Throughout the remainder

of this section, we assume that we are working with a source- or sink-saturated TASM —

i.e., we assume that the corner cases CC1 and CC2 (defined in Section 4.7.2 do not hold).

Definition 3. Suppose that we are given an SDF Graph G = (V,E) that executes under

MSTE, and suppose that the time duration of SP (i.e., a single iteration of the periodic

schedule) is denoted by ti. Then by the throughput of an actor v ∈V , which we represent

by Φ(v), we mean the number of firings of v that execute per unit time. Since q[v] firings

of an actor v execute in each iteration of SP, we have that

Φ(v) = q[v]/ti for all v ∈V. (4.47)

Furthermore, by the throughput of GT
i , which we refer to as the TASM throughput,

we mean the reciprocal of the time duration of SP — i.e., (1/ti).

In this section, we show how to determine an upper bound on the buffer size re-

quired to execute GT
i at its maximum achievable throughput. Henceforth, we refer to the

reciprocal this maximum achievable throughput as tmin.

We remind the reader that although this analysis is developed for two-actor SDF

graphs, the methods can be applied to arbitrary tree-structured SDF graphs, as described

in Section 4.1, by using them on each edge (and the underlying two-actor subgraph)

separately and combining the results.

Property 3. Suppose that we are given a TASM GT
i . From the definitions of SP, ti, tmin,

and actor throughput, we have that

88

(Φ(vT
src)≥q[vT

src]/tmin) and (Φ(vT
snk)≥q[vT

snk]/tmin)

⇒ ti ≤ tmin

From Lemma 3, firings of vT
snk are never delayed in a subperiod. Also, from The-

orem 1, firings of vT
src are not delayed in a subperiod if D(ei) is set according to (4.25).

Thus, under such a setting for D(ei), each actor in GT
i is fired throughout a subperiod

without any dependency on the other TASM actor. Hence, we establish the following

lower bound on the throughput of an actor in GT
i under the buffer size given by (4.25):

Φ(vT
η)≥

minλ∈{α,β}fSP
λ
(vT

η)

max(TSPα
(rη),TSP

β
(rη))

for η ∈ {vT
src,v

T
snk}. (4.48)

If the execution times of vT
src and vT

snk are known, then it may be possible to exploit

this knowledge to relax the buffering requirements, and thereby save resources on the

target FPGA device. In particular, we can reduce buffering requirements if after applying

the reduced buffer size given by Theorem 2 or Theorem 3 (based on whether p(ei)≥ c(ei)

or p(ei) < c(ei), respectively), the resulting throughput given by (4.48) still meets the

given throughput constraint.

In a given enclosing SDF graph G = (V,E), the minimum achievable iteration pe-

riod for SP is given by

tmin = T (vbtlneck)∗q[vbtlneck], (4.49)

89

where vbtlneck = maxv∈V{v|q[v]∗T (v)}. If an iteration of SP completes exactly every tmin

time units, then we can conclude that vbtlneck is source- or sink-saturated, and the overall

TASM throughput cannot be increased further.

4.9 Application to general tree-structured SDF graphs

Our TASM analysis can be applied iteratively to determine buffer sizes for all edges

in an arbitrary tree-structured SDF graph. This assumption of a tree-structured graph is

needed to ensure that the “extra (feedback) edges” added by the TASM models for differ-

ent SDF graph edges do not “interact” (i.e., introduce new directed cycles in the overall

graph model). Many practical SDF graphs or subsystem models are tree-structured, in-

cluding models for multi-stage sample rate conversion, and various kinds of filterbanks,

as well as the JPEG and OFDM transmitter applications that we examine in Section 4.10.

Algorithm 1 provides a systematic procedure for determining buffer sizes for an ar-

bitrary, tree-structured SDF graph in a way that guarantees that the achieved performance

will satisfy a given throughput constraint. The output of this procedure is a buffer size

function D : E→ Zpos, where Zpos denotes the set of positive integers. The complexity of

this algorithm is O(E), which renders the approach practical for DSP and FPGA design

tools.

4.10 Experimental results

We have implemented Algorithm 1 in the DIF environment [5], and applied it to

three relevant signal processing applications — a CDtoDAT (compact disc to digital audio

90

Algorithm 1
1: INPUT : Tree-structured SDF graph G = (V,E)
2: : Actor execution times T : V → Zpos
3: OUTPUT: Buffer sizes, D : E→ Zpos
4: procedure TASM-BUFFERING(G)
5: for each e ∈ E do
6: p← p(e);c← c(e);
7: tsrc← T (src(e)); tsnk← T (snk(e))
8: if p≥ c then
9: γ = fα(snk(e))−dtsrc/tsnke

10: D(e)← apply Theorem 2 with γ

11: else
12: δ = btsnk/tsrcc
13: D(e)← apply Theorem 3 with δ

14: end if
15: end for
16: end procedure

tape) sample rate converter, JPEG encoder, and DVB-T OFDM transmitter for digital

video broadcasting as shown in Fig. 4.4. Using National Instruments LabVIEW FPGA

8.5, we have developed FPGA implementations of these three applications along with

corresponding buffer size computation results from Algorithm 1.

LabVIEW is a graphical, dataflow-based programming environment for embedded

system design. LabVIEW features for HDL (hardware description language) synthesis

along with LabVIEW’s dataflow orientation make the tool well-suited to FPGA-based

design of signal processing applications. We have targeted the Xilinx Virtex II Pro P30

embedded in the National Instruments PCI-5640R digital system prototyping board to

synthesize SDF-based application graphs with the buffer size functions computed by Al-

gorithm 1. The base clock rate for our experiments is 40 MHz.

In the CDtoDAT application, the FIR filter in the first conversion stage becomes the

bottleneck (vbtlneck in (4.49)) of the system due to the high number of taps. Similarly, a

91

Figure 4.4: DIF-based Application specifications

92

Table 4.2: Sum of result buffer distribution under the maximum through-

put(samples/cycle) and its synthesis result

CDtoDAT JPEG Encoder DVB-T OFDM

Algorithm

Result

Throughput 5.6∗10−3 .159 .191

Buffer Sum 32 34112 9179

Synthesis

Result

FPGA Slices 5438 8105 2810

Block RAM 5 41 36

18x18 MULT 5 41 36

discrete cosine transform (DCT) block in the JPEG encoder and the inverse FFT block in

the DVB-T OFDM transmitter are bottlenecks for their respective applications.

Table 4.2 shows the results of Algorithm 1 and the associated synthesis results on

targeted FPGA. Based on the synthesis results for the three applications, we verified that

all of the solutions operate at the corresponding maximum achievable throughput levels,

which correspond to the absence of idle time in the execution profiles of the resources

that execute the associated bottleneck actors. Our results are therefore consistent with our

theoretical results, which guarantee throughput optimality under the buffer sizes derived

from Algorithm 1.

93

Chapter 5

Hardware synthesis technique for parameterized dataflow model

5.1 Introduction

The ever increasing demand for richer applications and multimedia content in mo-

bile devices has fueled the continuous evolution of wireless standards towards bringing

higher data rates and lower latencies to the end user. The third-generation partnership

project (3GPP) has responded to this by recently finalizing the latest cellular standard

called long-term evolution (LTE) [55]. LTE promises data rates of up to 300 Mbps in the

downlink, 150 Mbps in the uplink, spectrum flexibility from 1.4 to 20 MHz, and mobil-

ity support from stationary users all the way to high-speed train speeds with a graceful

degradation of service. In order to meet these demanding requirements, both base station

and user equipment also require much higher complexity than ever before. In order to

meet the ever tightening time-to-market requirements and resource constraints, the ability

to quickly design, simulate, and prototype complex communication systems such as LTE

is becoming more and more valuable to equipment vendors and network operators alike.

The ability to input a design at an appropriate level of abstraction, and having the tools

to make necessary trade-offs early in the design process are becoming more and more

crucial in this rapidly evolving marketplace.

Synchronous dataflow (SDF) [1] has been used widely as an efficient model of com-

putation (MOC) to analyze performance and resource requirements when implementing

94

DSP algorithms on various kinds of target architectures (e.g., see [56, 57]). The SDF

model has been incorporated in many commercial tools for DSP system design, such as

ADS from Agilent, Signal Processing Designer from CoWare, and System Studio from

Synopsys. In SDF semantics, DSP applications are modeled by directed graphs in which

vertices (actors) correspond to computational blocks, and edges represent the passage of

data between blocks. SDF imposes the restriction that the number of data values (tokens)

that is produced on each output edge is constant per actor execution (firing), and similarly,

the number of tokens consumed per firing is constant for each actor/input-edge pair. Thus,

SDF does not accommodate actors that can have dynamically varying token production

and consumption rates. Such “dynamic dataflow” actors are employed in many modern

DSP applications, including the LTE physical layer, and therefore, when developing such

applications, we must explore models of computation that are more general than pure

SDF.

Parameterized dataflow (PSDF) is a generalization of SDF that allows dynamically-

changing production and consumption rates that are formulated in terms of changes to

parameters of parameterized SDF graphs (PSDF graphs) [58]. A PSDF graph can be

viewed as a parameterized family of graphs such that each instance in the family (i.e.,

each specific setting of the parameters) corresponds to an SDF graph. PSDF significantly

improves upon the expressive power of SDF while providing a framework in which many

SDF analysis techniques can be naturally adapted into parameterized versions. For ex-

ample, techniques for constructing efficient parameterized looped schedules have been

developed for PSDF graphs [58]. These scheduling techniques can provide for efficient

simulation or software synthesis from PSDF specifications.

95

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Control Channels

Data Channel

Reference Signals

1ms

Frequency

15kHz

Figure 5.1: Example LTE subframe showing multiplexing of various channels on a 2D

time-frequency grid (not to scale).

In this chapter, we apply PSDF to modeling the LTE physical layer protocol at the

dataflow model level of the design methodology illustrated in Fig. 1.1. A distinguishing

aspect of our approach is that we develop a PSDF-based hardware synthesis framework

for efficient utilization of parallel processing capabilities in FPGAs. In contrast, the pa-

rameterized looped schedules described above have been designed for single-processor,

software-based implementations. Also, our work develops novel connections among

model-based DSP system design, FPGA implementation, and next generation wireless

communication systems, which lead to systematic, formally supported design methods

for hardware implementation in this domain.

96

5.2 Background

5.2.1 LTE downlink physical layer

The LTE downlink physical layer is based on the modulation and multiple access

scheme called Orthogonal Frequency Division Multiple Access, or OFDMA. OFDMA

uses an IFFT to divide a wideband channel into multiple narrowband subchannels. This

creates a two-dimensional resource grid in frequency and time. In LTE, each element of

this grid is called a resource element. This 2D grid allows multiplexing various physical

channels, e.g., data and control channels, which could be intended for possibly multiple

users. An example 1ms LTE subframe comprising 14 OFDMA symbols in the normal

cyclic prefix mode is shown in Fig. 5.1. LTE can be configured for 6 different bandwidths,

namely 1.4, 3, 5, 10, 15, and 20 MHz, but still maintain a constant 15 kHz subcarrier

spacing. The LTE physical layer can also support multiple antenna transmission schemes,

including transmit diversity, beamforming, and spatial multiplexing, but we primarily

focuses on implementation for the single-antenna transmission mode.

5.2.2 Parameterized Synchronous Dataflow

Parameterized Synchronous Dataflow(PSDF) [58] extends the expressive power of

SDF to manage DSP application dynamics in terms of run-time configuration of dataflow

actor, edge, and subsystem parameters. A PSDF subsystem that is enabled for run-time

configuration involves two separate “parameter configuration controllers,” which are re-

ferred to as the init and subinit graphs of the associated subsystem. These controllers

97

provide two different levels of granularity in the run-time configuration processing — the

init graph can form parameter configurations that are in general less restricted but also less

frequent compared to the kinds of configurations that are allowed by the subinit graph.

The modeling discipline imposed by the subinit and init graphs in PSDF is designed

to provide significant flexibility in how and when parameters are configured, while ensur-

ing that configurations that affect the structure of subsystem schedules are allowed to

occur only between iterations (in terms of SDF repetitions vectors) of the associated sub-

systems. This allows each subsystem to be viewed as a dynamically evolving sequence

of SDF graphs whose SDF properties can change only at well-defined points in time (be-

tween SDF graph iterations). Such a structured view of dynamic dataflow graph execution

is valuable for efficient quasi-static scheduling [58, 59, 60].

5.3 Parameterized SDF Model of LTE

5.3.1 LTE specification

Fig. 5.2 shows our PSDF model for a single-antenna LTE Base Station Modula-

tor, which is the basis of our FPGA implementation. Each of the solid blocks corre-

spond to PSDF actors whose production and consumption rates at their solid edges can

change given the value of the parameters indicated by the dashed blocks communicated

by the dashed edges. The data, control, and reference symbol generation blocks pro-

vide the QPSK, 16-, or 64-QAM symbols that are multiplexed via the Resource El-

ement (RE) mapper. The RE mapper takes in different numbers of symbols s1, s2,

and s3 from the available input ports as a function of the number of control symbols

98

Snk
 L 1

p1 s1

p2 s2

p3 s 3

Figure 5.2: PSDF Model for LTE BS Modulator.

(Nctrl ∈ {1,2,3,4}), subframe index (S f idx ∈ {0, ..,9}), bandwidth configuration (BW ∈

{1.4,3,5,10,15,20}), cyclic prefix mode (CPmode ∈ {Normal,Extended}), and symbol

index (SymbIdx∈{0, ..,13}). These symbols are multiplexed into Nu ∈{72,180,300,600,900,1200}

used subcarriers, which is a direct map from the bandwidth configuration BW . The Zero

Pad block then takes in Nu symbols and appends zeros at the DC and edge subcarriers

forming 2048 frequency domain complex values. The following block then performs a

2048-pt IFFT, and appends a cyclic prefix of length that is a function of the CPmode and

SymbIdx parameters. The rate at the output of this block should be 30.72 Ms/s with a

worst case bandwidth of 20 MHz, and so in order to interface to the 25 MHz D/A con-

verter in our hardware platform, we require a fixed 625/768 FIR rational sampling rate

converter.

99

SELECTOR

REmapper.subinit (Фs)
Overall
C/P Rates
Decision

REmapper.init (Фi)

SWITCH

REmapper.body (Фb)p1 c1
1 1p2 c2

p3 c3

s1
s2
s3

Specification REmapper

Nu

Param.
Set

Figure 5.3: PSDF specification of RE Mapper.

5.3.2 PSDF Modeling Details

A PSDF specification for the RE mapper is shown in Fig. 5.3. Since there are differ-

ent bandwidth configurations allowed, and each symbol of the LTE subframe is composed

of different combinations of physical channel symbols (see Fig. 5.1), production and con-

sumption rates in the RE mapper subsystem can be changed across OFDMA symbols, i.e.,

across the invocations of the RE mapping subsystem. Meanwhile, in order to multiplex

the combination of physical channel types in each OFDMA symbol, the appropriate input

edge is connected to the output edge for each resource element in the OFDMA symbol

during each invocation of the RE mapper. We have likewise modeled the other process-

ing blocks in the downlink LTE physical layer protocol, and have verified that PSDF has

sufficient expressive power for describing the full functionality of our target LTE protocol.

PSDF specifications support hierarchical reconfigurable subsystem modeling struc-

tures in that a PSDF specification can be abstracted as a hierarchical PSDF actor, and

embedded in a parent (higher level) PSDF graph. For example, a PSDF abstraction of the

100

RE mapper in Fig. 5.2 is considered as a PSDF specification consisting of a body graph

(Φb), init graph (Φi), and subinit graph (Φs), as shown in Fig. 5.3.

Before the invocation of the RE Mapper PSDF specification, the init graph receives

the parameter set, determines the physical channel data combinations in the particular

OFDMA symbol, and counts the number of REs allocated for each physical channel to

determine production rates on input edges and consumption rates on output edges in the

parent graph. During the invocation of the specification, the subinit graph determines

production and consumption rates on internal edges in order to switch the input edge con-

nected to an output edge depending on the value of the received remapping matrix data at

run-time. Based on the distribution of active and inactive edges, the body graph, which

implements the computational core of the subsystem, can produce a sequence of data cor-

responding to the OFDMA symbol index. Hence, in the architecture of our parameterized

dataflow framework, the body graph models the main functional behavior of the RE map-

per, while the init and subinit graphs provide two different levels of control based on the

given, dynamically arriving parameter sets.

5.3.3 PSDF Execution Model

Each LTE subframe is composed of multiple OFDMA symbols, and each OFDMA

symbol in our PSDF specification is processed after all actors in the graph are fired at the

rate determined by the repetitions vector of the enclosing graph. Because PSDF semantics

guarantees that any specific configuration of a PSDF graph is an SDF graph, and that such

configurations can only be changed between SDF graph iterations, there is always a well-

101

defined repetitions vector that governs the processing of a given OFDMA symbol. For

details on fundamental relationships between SDF graphs and repetitions vectors, we refer

the reader to [1].

When executing the LTE FPGA implementation, we apply a self-timed execution

model, which means that each actor should be fired as soon as all of its input edges have

sufficient data. When actors execute and communicate on dedicated resources (so that re-

source contention is not an issue), this type of execution generally enhances throughput by

facilitating the exploitation of parallel processing capabilities on the target hardware. This

type of distributed-control execution model also avoids hardware and run-time overhead

due to the stronger synchronization requirements that are associated with centralized-

control schedules.

FPGA targets allow dataflow actors to be assigned onto independent, dedicated

processing units that are implemented by FPGA slices. In such a computing environ-

ment, signal processing throughput can be significantly increased due to the possibility

for simultaneous firings of multiple actors. To ensure valid, distributed firing rule check-

ing in our PSDF-based implementation framework, we model empty memory spaces on

dataflow graph edges by adding feedback edges with appropriate numbers of initial to-

kens (based on the sizes of the corresponding buffers) in the execution model graph (an

intermediate dataflow graph representation used to map the application into hardware),

and enable actors for execution using principles of efficient self-timed execution [47].

Wiggers et al. have employed a similar backpressure-driven, self-timed execution

model to implement cyclo-static dataflow (CSDF) graphs in multi-processor system-on-

chip devices [61]. Our approach is in this chapter differs in its exploration of PSDF,

102

Table 5.1: FPGA resource utilization for LTE implementation.

Occupied FPGA Slices 5,244 out of 14,720 (35%)

Number of BlockRAM 96 out of 244 (39%)

Number of DSP48Es 54 out of 640 (8%)

which is a significantly more dynamic form of dataflow compared to SDF or CSDF, and

its application to FPGA implementation.

5.4 LTE Prototype Implementation

As a proof-of-concept of our PSDF LTE model, we have designed and implemented

from the top down an LTE real-time base station emulator prototype [62]. The prototype

is based on a PXI-express system with an embedded real-time controller PC running a

real-time operating system, which handles the link control, higher-layer software, and

communication with an optional host PC via TCP-IP. The PSDF LTE model is designed

in LabVIEW FPGA [63], and implemented on the PXIe-5641R, Intermediate Frequency

(IF) Transceiver module, which includes a Xilinx Virtex-5 SX95T FPGA with integrated

2-input and 2-output IF ports. The IF signals are then modulated onto a radio frequency

carrier using the PXI-5610 2.7 GHz RF upconverter, and looped-back to a PXI-5600

2.7 GHz RF downconverter, where the downconverted IF signal is fed back to the IF

Transceiver for receiver processing. The base clock for our experiments with this system

is 160 MHz. Synthesis results from the experiments are shown in Table 5.1.

103

As an illustrative example, we detail the implementation of the 625/768 sample rate

conversion block of Fig. 5.2, which converts a 30.72MSPS LTE signal to the DAC at

25MSPS. In order to save hardware resources, we divide the filter into a cascade of two

rational resampling stages, namely a 25/24 and a 25/32 stage. Using the LabVIEW Digital

Filter Design Toolkit (DFDT), the individual floating point rational filters are designed

and the fixed point behavior of the overall filter is simulated. We then used Xilinx’s FIR

compiler to implement the filter using the IP integration node from NI-Labs. This node

uses an XCO or VHDL file as imports to build a simulation and implementation model

compatible with LabVIEW FPGA.

104

Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis, we have presented new design techniques and methodologies for

dataflow-based synthesis of field programmable gate array (FPGA) implementations for

digital signal processing (DSP) applications. We have focused mainly on formulating and

exploring design spaces for finding cost-efficient solutions subject to given constraints on

performance. Our experimental results have demonstrated that the proposed techniques

are highly effective in improving the efficiency of implementations on FPGA platforms.

In chapter 2, we developed a systematic approach for generating dedicated fast

Fourier transform (FFT) subsystems for FPGA implementation. Our approach incorpo-

rates efficient FFT address generation and memory management, and applies two or-

thogonal loop unrolling methods to provide a tunable trade-off between performance and

FPGA resource costs. We also developed an analytical approach for high level design

space exploration. This approach allows one to derive a resource-efficient FFT architec-

ture configuration for a given throughput constraint, and a given critical target resource

(e.g., FPGA BRAM or logic slices).

Our methods are demonstrated through extensive synthesis experiments using the

Xilinx Virtex II Pro FPGA device family. Our synthesis results quantify cost-performance

trade-offs provided by our proposed class of FFT architectures. A distinguishing charac-

105

teristic of our approach, compared to commercially available FFT IP cores and other

specialized FFT implementations, is that we provide a systematic method to generate an

FPGA-based FFT architecture while taking into account trade-offs between performance

and cost.

In chapter 3, we extended our 1D-FFT implementation technique to generate ded-

icated 2D-FFT subsystems for FPGA implementation. Our approach realizes data par-

allelism within an individual 1D-FFT core, and minimizes the interface complexity be-

tween the underlying 1D-FFT core and local memory. Our approach allows for scalable,

parallel 2D-FFT implementation with a relatively simple interconnection network, and

correspondingly simple control logic. These features contribute to improved FPGA re-

source consumption at a given level of performance compared to previous 2D-FFT FPGA

architectures. Our synthesis results quantify the cost-performance trade-offs provided by

our proposed class of FFT architectures.

In chapter 4, we presented a novel algorithm to provide upper bounds on FPGA

buffer distributions for throughput-optimal execution of synchronous dataflow graphs that

are in the form of tree-structured, directed acyclic graphs. The resulting bounds can be

employed directly as buffer sizes when mapping SDF graphs into digital hardware. A

distinguishing aspect of our proposed algorithm is that it has low polynomial time com-

plexity, which makes it especially useful for rapid prototyping and for implementation of

large scale or heavily multirate designs. Our work appears promising for integration into

high-level design processes for FPGA-based DSP system implementation, as our experi-

ments with the LabVIEW FPGA demonstrate.

In chapter 5, we presented a framework for the modeling and FPGA implementation

106

of LTE downlink physical layer processing using the parameterized synchronous dataflow

(PSDF) model of computation. The results of our study and our associated prototype pro-

vide a concrete demonstration of PSDF-based design and implementation techniques for

emerging wireless communication systems. Due to its formal properties, support for sys-

tematic scheduling and implementation techniques, and capabilities for efficient frame-

based dynamic dataflow modeling, PSDF is promising as a semantic foundation for future

design tools, and as an architectural foundation for digital system design methodologies

in the domain of fourth generation wireless communication systems.

6.2 Future work

In this section, we describe a number of useful directions for future work that build

on the results of this thesis.

The FFT actor architecture developed in chapter 2 has provided the framework and

core design for the burst mode built-in FFT IP block, which is a new feature introduced

in LabVIEW FPGA 8.6, released by National Instruments. This released version does

not employ the inner/outer loop unrolling features in our FFT actor architecture frame-

work. These features are presently integrated together with the other components of our

FFT actor implementation approach within in-house distributions that are being used ex-

perimentally at National Instruments. These unrolling-enabled versions provide higher

throughput FFT realizations, but are more complex and require more extensive experi-

mentation before integration into the commercially released product.

Overall, our FFT architecture techniques are suitable as the basis for FFT IP blocks

107

that can be configured across a wide range of trade-offs between resource cost and achiev-

able performance based on implementation requirements.

While radix-4 FFT designs are generally less resource-consuming compared to

radix-2 FFT designs, radix-4 designs are more restricted in that the FFT size must be

a power of 4, while the size for radix-2 must be a power of 2. To implement FFT sizes

that are powers of 2, combined radix-2/4 architectures are attractive candidates. One

interesting direction for further study is to apply our proposed unrolling techniques to

combined radix-2/4 FFT architectures.

The proposed buffering algorithm in chapter 4 is restricted to SDF graphs, which

are dataflow graphs that have static dataflow (production and consumption rate) behavior.

While many DSP applications can be modeled using SDF graphs, an increasing range of

applications require more flexibility and cannot be fully represented by SDF semantics.

Furthermore, SDF-compatible behaviors can sometimes be synthesized more effectively

if they are converted to alternative representations that employ more flexible modeling

techniques such as cyclo-static dataflow (CSDF) [52]. Thus, extending our techniques for

buffer analysis and optimization to more expressive dataflow models is a useful direction

for further investigation.

Another interesting direction for future work is buffer optimization for parameter-

ized dataflow graphs under self-timed execution. In chapter 5, we developed a novel

PSDF-based FPGA architecture design approach, and demonstrated this approach using

National Instrument’s LabVIEW FPGA. In this work, we exploited the expressive power

of parameterized dataflow, and demonstrated the mapping from a complex PSDF applica-

tion specification into an FPGA implementation. Integrating buffer optimization into the

108

PSDF-to-FPGA mapping process will be a useful direction for further study to achieve

more efficient hardware utilization in derived implementations.

109

Bibliography

[1] E. A. Lee and D. G. Messerschmitt, “Static scheduling of synchronous data flow
programs for digital signal processing,” IEEE Trans. Comput., vol. 36, no. 1, pp.
24–35, 1987.

[2] J. L. Pino, S. Ha, E. A. Lee, and J. T. Buck, “Software synthesis for dsp using
ptolemy,” Journal of VLSI Signal Processing, vol. 9, pp. 7–21, 1995.

[3] W. Sung, M. Oh, C. Im, and S. Ha, “Demonstration of codesign workflow in peace,”
in in Proc. of International Conference of VLSI Circuit, Seoul, Koera, 1997.

[4] J. Buck and R. Vaidyanathan, “Heterogeneous modeling and simulation of embed-
ded systems in el greco,” in CODES ’00: Proceedings of the eighth international
workshop on Hardware/software codesign. New York, NY, USA: ACM, 2000, pp.
142–146.

[5] C. Hsu, M. Ko, and S. S. Bhattacharyya, “Software synthesis from the dataflow
interchange format,” in Proceedings of the International Workshop on Software and
Compilers for Embedded Systems, Dallas, Texas, September 2005, pp. 37–49.

[6] C. Hsu, J. L. Pino, and S. S. Bhattacharyya, “Multithreaded simulation for syn-
chronous dataflow graphs,” in Proceedings of the Design Automation Conference,
Anaheim, California, June 2008, pp. 331–336.

[7] W. Wolf, FPGA-Based System Design. Upper Saddle River, NJ, USA: Prentice
Hall PTR, 2004.

[8] Xilinx, “Xilinx core generator 10.1,” 2008. [Online]. Available: http://www.xilinx.
com/ipcenter/coregen/updates 101.htm

[9] J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation of complex
Fourier series,” Mathematics of Computation, vol. 19, no. 90, pp. 297–301, April
1965.

[10] S. Winograd, “On computing the discrete fourier transform,” Mathematics
of Computation, vol. 32, no. 141, pp. 175–199, 1978. [Online]. Available:
http://www.jstor.org/stable/2006266

[11] D. Kolba and T. Parks, “A prime factor fft algorithm using high-speed convolution,”
Acoustics, Speech and Signal Processing, IEEE Transactions on, vol. 25, no. 4, pp.
281–294, Aug 1977.

[12] R. Bracewell, “The fast hartley transform,” Proceedings of the IEEE, vol. 72, no. 8,
pp. 1010–1018, Aug. 1984.

110

[13] M. Frigo and S. G. Johnson, “FFTW: An adaptive software architecture for the
FFT,” in IEEE Intl. Conf. Acoustics Speech and Signal Processing, vol. 3, 1998, pp.
1381–1384.

[14] A. Ganapathiraju, J. Hamaker, and J. Picone, “Contemporary view of fft algorithms,”
in Proceedings of the IASTED International Conference on Signal and Image Pro-
cessing (SIP ’98), 1998, pp. 130–133.

[15] B. Baas, “A low-power, high-performance, 1024-point fft processor,” Solid-State
Circuits, IEEE Journal of, vol. 34, no. 3, pp. 380–387, Mar 1999.

[16] W. Li and L. Wanhammar, “A pipeline fft processor,” in In IEEE Workshop on Signal
Processing Systems, 1999, pp. 654–662.

[17] I. Uzun, A. Amira, and A. Bouridane, “Fpga implementations of fast fourier trans-
forms for real-time signal and image processing,” Vision, Image and Signal Process-
ing, IEE Proceedings -, vol. 152, no. 3, pp. 283–296, June 2005.

[18] S. Sukhsawas and K. Benkrid, “A high-level implementation of a high performance
pipeline fft on virtex-e fpgas,” VLSI, 2004. Proceedings. IEEE Computer society
Annual Symposium on, pp. 229–232, Feb. 2004.

[19] J. Vite-Frias, R. Romero-Troncoso, and A. Ordaz-Moreno, “Vhdl core for 1024-
point radix-4 fft computation,” Reconfigurable Computing and FPGAs, 2005. Re-
ConFig 2005. International Conference on, pp. 4 pp.–24, Sept. 2005.

[20] C. Chad, Z. Qin, X. Yingke, and H. Chengde, “Design of a high performance fft
processor based on fpga,” Design Automation Conference, 2005. Proceedings of the
ASP-DAC 2005. Asia and South Pacific, vol. 2, pp. 920–923 Vol. 2, Jan. 2005.

[21] C. Gonzalez-Concejero, V. Rodellar, A. Alvarez-Marquina, E. M. d. Icaya, and
P. Gomez-Vilda, “An fft/ifft design versus altera and xilinx cores,” Reconfigurable
Computing and FPGAs, 2008. ReConFig ’08. International Conference on, pp. 337–
342, Dec. 2008.

[22] Xilinx, “Fast fourier transform v4.1,” 2007.

[23] Y. Ma, “An effective memory addressing scheme for fft processors,” Signal Process-
ing, IEEE Transactions on, vol. 47, no. 3, pp. 907–911, Mar 1999.

[24] G. Nordin, P. A. Milder, J. C. Hoe, and M. Püschel, “Automatic generation of cus-
tomized discrete fourier transform ips,” in DAC ’05: Proceedings of the 42nd annual
conference on Design automation. New York, NY, USA: ACM, 2005, pp. 471–474.

[25] J. H. Takala, T. S. Ja”rvinen, P. V. Salmela, and D. A. Akopian, “Multi-port inter-
connection networks for radix-r algorithms,” in In Proc. IEEE Intl. Conf. Acoustics,
Speech, Signal Processing, 2001, pp. 1177–1180.

111

[26] H. Kee, N. Petersen, J. Kornerup, and S. S. Bhattacharyya, “Systematic generation
of FPGA-based FFT implementations,” in Proceedings of the International Confer-
ence on Acoustics, Speech, and Signal Processing, Las Vegas, Nevada, March 2008,
pp. 1413–1416.

[27] M. Hasan and T. Arslan, “Fft coefficient memory reduction technique for ofdm ap-
plications,” Acoustics, Speech, and Signal Processing, 2002. Proceedings. (ICASSP
’02). IEEE International Conference on, vol. 1, pp. I–1085–I–1088 vol.1, 2002.

[28] C. Burrus, “Unscrambling for fast dft algorithms,” Acoustics, Speech and Signal
Processing, IEEE Transactions on, vol. 36, no. 7, pp. 1086–1087, Jul 1988.

[29] J. M. Blackledge, Digital Image Processing. Horwood Publishing, 2005.

[30] H. Jung and S. Ha, “Hardware synthesis from coarse-grained dataflow specification
for fast hw/sw cosynthesis,” in In Proceedings of Int. Conf. on Hardware/Software
Codesign and System Synthesis (CODES/ISSS, 2004, pp. 24–29.

[31] S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee, “Synthesis of embedded software
from synchronous dataflow specifications,” Journal of VLSI Signal Processing Sys-
tems for Signal, Image, and Video Technology, vol. 21, no. 2, pp. 151–166, June
1999.

[32] R. Reiter, “Scheduling parallel computations,” Journal of the Association for Com-
puting Machinery, October 1968.

[33] A. Dasdan, A. Dasdan, R. K. Gupta, and R. K. Gupta, “Faster maximum and mini-
mum mean cycle algorithms for system-performance analysis,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 17, pp. 889–899,
1998.

[34] J. L. Pino, S. S. Bhattacharyya, and E. A. Lee, “A hierarchical multiprocessor
scheduling system for DSP applications,” in Proceedings of the IEEE Asilomar Con-
ference on Signals, Systems, and Computers, Pacific Grove, California, November
1995, pp. 122–126 vol.1.

[35] A. H. Ghamarian, M. C. W. Geilen, S. Stuijk, T. Basten, B. D. Theelen, M. R.
Mousavi, A. J. M. Moonen, and M. J. G. Bekooij, “Throughput analysis of syn-
chronous data flow graphs,” in ACSD ’06: Proceedings of the Sixth International
Conference on Application of Concurrency to System Design. Washington, DC,
USA: IEEE Computer Society, 2006, pp. 25–36.

[36] J. T. Buck, “Scheduling dynamic dataflow graphs with bounded memory,” Berkeley,
CA, USA, Tech. Rep., 1993.

[37] R. Govindarajan, G. R. Gao, and P. Desai, “Minimizing buffer requirements under
rate-optimal schedule in regular dataflow networks,” Journal of VLSI Signal Pro-
cessing, vol. 31, p. 2002, 1994.

112

[38] C.-T. Hwang, J.-H. Lee, and Y.-C. Hsu, “A formal approach to the scheduling prob-
lem in high level synthesis,” IEEE Trans. on CAD of Integrated Circuits and Sys-
tems, vol. 10, no. 4, pp. 464–475, 1991.

[39] Q. Ning and G. R. Gao, “A novel framework of register allocation for software
pipelining,” 1993.

[40] H. Oh and S. Ha, “Efficient code synthesis from extended dataflow graphs for mul-
timedia applications,” in DAC ’02: Proceedings of the 39th annual Design Automa-
tion Conference. New York, NY, USA: ACM, 2002, pp. 275–280.

[41] J. Horstmannshoff and H. Meyr, “Efficient building block based rtl code generation
from synchronous data flow graphs,” in DAC ’00: Proceedings of the 37th Annual
Design Automation Conference. New York, NY, USA: ACM, 2000, pp. 552–555.

[42] ——, “Optimized system synthesis of complex rt level building blocks from multi-
rate dataflow graphs,” in ISSS ’99: Proceedings of the 12th international symposium
on System synthesis. Washington, DC, USA: IEEE Computer Society, 1999, p. 38.

[43] E. Stuijk, M. Geilen, and T. Basten, “Exploring trade-offs in buffer requirements
and throughput constraints for synchronous dataflow graphs,” in In DAC. ACM
Press, 2006, pp. 899–904.

[44] M. Geilen, T. Basten, and E. Stuijk, “Minimising buffer requirements of syn-
chronous dataflow graphs with model checking,” in in Proceedings of the Design
Automation Conference. ACM, 2005, pp. 819–824.

[45] M. Wiggers, M. Bekooij, P. G. Jansen, and G. J. M. Smit, “Efficient computa-
tion of buffer capacities for multi-rate real-time systems with back-pressure,” in
CODES+ISSS, 2006, pp. 10–15.

[46] E. A. Lee and S. Ha, “Scheduling strategies for multiprocessor real time DSP,” in
Proceedings of the Global Telecommunications Conference, November 1989.

[47] S. Sriram and S. S. Bhattacharyya, Embedded Multiprocessors: Scheduling and
Synchronization, 2nd ed. CRC Press, 2009.

[48] S. Y. Kung, P. S. Lewis, and S. C. Lo, “Performance analysis and optimization of
VLSI dataflow arrays,” Journal of Parallel and Distributed Computing, pp. 592–
618, 1987.

[49] C. Hsu, F. Keceli, M. Ko, S. Shahparnia, and S. S. Bhattacharyya, “DIF: An inter-
change format for dataflow-based design tools,” in Proceedings of the International
Workshop on Systems, Architectures, Modeling, and Simulation, Samos, Greece,
July 2004, pp. 423–432.

[50] S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee, Software Synthesis from Dataflow
Graphs. Kluwer Academic Publishers, 1996.

113

[51] W. Sun, M. J. Wirthlin, and S. Neuendorffer, “Fpga pipeline synthesis design ex-
ploration using module selection and resource sharing,” IEEE Trans. on CAD of
Integrated Circuits and Systems, vol. 26, no. 2, pp. 254–265, 2007.

[52] G. Bilsen, M. Engels, R. Lauwereins, and J. A. Peperstraete, “Cyclo-static dataflow,”
IEEE Transactions on Signal Processing, vol. 44, no. 2, pp. 397–408, February
1996.

[53] W. Plishker, N. Sane, M. Kiemb, K. Anand, and S. S. Bhattacharyya, “Functional
DIF for rapid prototyping,” in Proceedings of the International Symposium on Rapid
System Prototyping, Monterey, California, June 2008, pp. 17–23.

[54] H. Kee, I. Wong, Y. Rao, and S. S. Bhattacharyya, “FPGA-based design and im-
plementation of the 3GPP-LTE physical layer using parameterized synchronous
dataflow techniques,” in Proceedings of the International Conference on Acoustics,
Speech, and Signal Processing, Dallas, Texas, March 2010.

[55] G. Americas, The Mobile Broadband Evolution: 3GPP Release 8 and beyond, Feb.
2009.

[56] C. Hsu, S. Ramasubbu, M. Ko, J. L. Pino, and S. S. Bhattacharyya, “Efficient sim-
ulation of critical synchronous dataflow graphs,” in Proceedings of the Design Au-
tomation Conference, San Francisco, California, July 2006, pp. 893–898.

[57] C. B. Robbins, Autocoding Toolset Software Tools for Automatic Generation of Par-
allel Application Software. Technical report, Management Communications and
Control, Inc., 2002.

[58] B. Bhattacharya and S. S. Bhattacharyya, “Parameterized dataflow modeling for
DSP systems,” IEEE Transactions on Signal Processing, vol. 49, no. 10, pp. 2408–
2421, October 2001.

[59] S. Saha, S. Puthenpurayil, and S. S. Bhattacharyya, “Dataflow transformations in
high-level DSP system design,” in Proceedings of the International Symposium on
System-on-Chip, Tampere, Finland, November 2006, pp. 131–136, invited paper.

[60] M. Ko, C. Zissulescu, S. Puthenpurayil, S. S. Bhattacharyya, B. Kienhuis, and
E. Deprettere, “Parameterized looped schedules for compact representation of ex-
ecution sequences in DSP hardware and software implementation,” IEEE Transac-
tions on Signal Processing, vol. 55, no. 6, pp. 3126–3138, June 2007.

[61] M. Wiggers, M. Bekooij, P. Jansen, and G. Smit, “Efficient computation of buffer
capacities for cyclo-static real-time systems with back-pressure,” in Proceedings of
the IEEE Real-Time and Embedded Technology and Applications Symposium, 2007.

[62] I. Wong, Y. Rao, and M. Santori. Video: Prototyping complex communications sys-
tems. http://zone.ni.com/wv/app/doc/p/id/wv-1696.

[63] N. Instruments, LabVIEW FPGA User Manual, 2009.

114

