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Chapter 1

Introduction

The range searching problem involves preprocessing a set P of n points in R?
so that given a region R, a predefined function f(P N R) can be computed
efficiently. The region R is called a range, and it is drawn from a predefined
range space R. We let ¢(R) = f(P N R) denote the result of the query. The
points p € P are called data points. Two examples of range searching are
represented in Figure [[1]

Range searching is a well-studied problem in computational geometry. Ex-
cellent surveys have been written by Matousek [43] and Agarwal and Erickson
[2]. The most common examples of functions include range counting, where
f(S) = |S| and range reporting, where f(S) = S.

More generally, we have a commutative semigroup (S, +), and each point
p € P is associated with a weight w(p) € S. The answer to a query is the sum
of the weights of the points in P N R. This version is called the semigroup
verston of the problem. With exception of range reporting, we assume that the

semigroup elements can be stored in O(1) space and the sum of two semigroup
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Figure 1.1: Examples of simplex range searching (left) and halfspace range
searching (right). The data points inside the query ranges are solid and the
data points outside the query ranges are dotted.

elements can be computed in O(1) time.

In the group version of the problem, we assume that (S, +) is not only a
commutative semigroup, but also a commutative (Abelian) group. The group
version often admits more efficient solutions, because the presence of inverses
means that both addition and subtraction may be used to compute the answer
to the query. The range counting problem can be formulated in the group
version, using the group (Z,+) where + is the standard arithmetic addition,
and setting w(p) = 1 for all p € P. Note that (Z,4+) is a group, so every
element x € Z has an inverse —x.

Another useful property for a semigroup is idempotence. A semigroup
(S, +) is idempotent if x + z = x for all x € S. The idempotent version often
admits more efficient solutions, compared to both the semigroup and group
versions, because the same element can be counted multiple times without
affecting the result. An important special case is range emptiness, which can

be modeled by the boolean idempotent semigroup ({0,1},V) and assigning
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w(p) =1 for all p € P.
In order to design a range searching data structure, we need to know the
range space R from which the query ranges are drawn. Some examples of

range spaces R examined in this dissertation are:
e (Convex ranges: The set of all d-dimensional convex shapes.
e (Orthogonal ranges: The set of all d-dimensional axis-aligned rectangles.
e Halfspace ranges: The set of all d-dimensional halfspaces.
e Spherical ranges: The set of all d-dimensional balls.

e Smooth ranges: The set of all convex shapes such that every point in
the boundary of the shape can be touched by a ball of constant radius

contained inside the shape.

o Simplex ranges: The set of all d-dimensional simplices, where a simplex

is defined as the (possibly unbounded) intersection of d + 1 halfspaces.

o [at simplex ranges: The set of all d-dimensional simplices formed by the
intersection of d+ 1 halfspaces such that the angle between the boundary

of any two halfspaces is at least a constant a.

We should note that some of the range spaces mentioned above are subsets
of other range spaces. For example, spherical ranges are a special type of
convex ranges. Not surprisingly, spherical range searching can be solved more
efficiently than convex range searching. Also, halfspace ranges are limiting
cases of both simplex and spherical ranges. A diagram relating the different

range spaces is presented in Figure [[2



orthogonal
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smooth) ——— > | spherical
Figure 1.2: Subset relation between different range spaces.

The relatively high complexity of exact range searching has lead researchers
to consider the problem in the context of approximation. There are several
ways to define approximation for the range searching problem. In the range
counting problem, one can define approximation in terms of the result of the
query function. There are two natural ways to approximate the counting.
Let ¢ > 0 be an approximation parameter, and ¢.(R) be the result of an

e-approximate query. With relative counting error, we have
(1 —¢)a(R) < ¢-(R) < (1 +¢)q(R).

Approximate range counting with relative counting error has been studied

in [ B5]. With absolute counting error, we have

w(R) _a(R)

57 €= <
[Pl P

Approximate range searching with absolute counting error have been exten-
sively studied under the topic of e-approximations [25], 27, 55] (see Section [3.3.2

for more details).



Figure 1.3: Fuzzy boundaries in the absolute error model.

A drawback of approximating the count is that it does not generalize to
arbitrary semigroups, since a notion of proximity between elements of the
semigroup is required. A more geometric way to define approximation is to
consider the range boundary to be “fuzzy,” and allow points that are close to
the range boundary to either be counted or not. This approach generalizes
to arbitrary semigroups because it considers proximity in the space where the
points are embedded, instead of proximity between the semigroup elements.
There are two natural ways in which to define this kind of approximation. In
both cases a user-supplied approximation parameter € > 0 is given. In the
relative error model (or simply relative model for short) it is assumed that the
range shape R is bounded, and points lying within distance ¢ - diam(R) of the
boundary of the range may or may not be included.

In contrast, in the absolute error model (or simply absolute model) points
lying within distance € of the range boundary may or may not be included,
regardless of the diameter of the range, as illustrated in Figure[[.3l The region
within distance ¢ of the range boundary is called the fuzzy boundary. In the
absolute error model, the thickness of the fuzzy boundary is independent of
the diameter of the range.

Note that, in the absolute model, some type of scaling is needed. Oth-



erwise, it would be possible to answer queries with arbitrarily high precision
by applying some high scale factor to the point and range coordinates, while
keeping the error parameter fixed. Without loss of generality, we assume
throughout that the point set P has been transformed (through a uniform
scaling and translation) to lie within the unit hypercube [0,1]%. We assume
that the ranges have been similarly transformed, and the parameter € has been
scaled correspondingly.

Approximate range searching in the relative model has been studied in [8]
9,10, 12]. Chazelle, Liu and Magen [26] studied approximate range searching
in the absolute model, but considered the problem in spaces of high dimen-
sion. They presented a data structure which answers halfspace queries in
O((d/<)?10g®V(d/e)) time with dn®(1/¢*) storage. Throughout this disserta-
tion, we assume that the dimension d is constant.

There are a number of reasons for studying approximate range searching in
the absolute model. First, the absolute model admits much simpler solutions.
While the most efficient data structures for answering range queries both in the
relative model and in the exact case tend to be quite complex, our techniques
are extremely simple (involving simple structures such as grids and quadtrees)
and so are amenable to efficient implementation. In the absolute model, the
data structures are not sensitive to the point distribution. Therefore, the
absolute model allows us to reason about the range searching problem (for
example, the best size and shape of the generators) in a simpler context, and
may lead to more efficient and simpler structures for exact range searching.

Second, the absolute model is better suited for several applications, when

compared to the relative model. If the coordinates of a point represent an



object that exists within some extent in space, or data that is subject to mea-
surement errors or noise, then the approximation quality should be based on
the expected error of the point locations, not on the diameter of the query
range. Another shortcoming of the relative model is that it cannot meaning-
fully handle unbounded ranges, such as halfspaces and unbounded polyhedra,
because the allowable error increases with the diameter of the range.

Finally, the storage space and query time of the absolute model data struc-
tures is independent of n, and hence our results can be adapted to work in
the data stream model [14,148]. In the data stream model, the data set is too
large to fit in memory. Therefore, the storage space should be independent of
n (sometimes polylogarithmic functions of n are acceptable). Also, the data
points are examined one at a time, in a single pass, while queries regarding
the points that have already been seen need to be answered efficiently. Exact
range searching clearly requires {2(n) storage for all reasonable range spaces,
and approximate range searching in the relative model requires 2(n) storage
when the query ranges can be scaled arbitrarily. Suri, Téth, and Zhou [53]
consider approximate range counting in the data stream model, approximating

the number of points inside the query region.

1.1 Summary of Results

The main results of this dissertation include the introduction of the absolute
model, approximate range searching data structures for several range spaces
in the absolute model, and application of these data structures to related

problems.



This dissertation is the first systematic work on approximate range search-
ing in the absolute model. The absolute model represents a natural way to
define geometric approximation. The absolute model is particularly suited
for practical problems where some form of approximation is performed when
determining the coordinates of the data points. Possible sources of such ap-
proximations are measurements errors, rounding, and noise. Another source
is the fact that points are often used to approximate objects with extent in
space or the expected values of data which is probabilistic in nature.

We develop data structures for the most fundamental shapes of ranges:
orthogonal regions, convex regions, halfspaces, Euclidean balls, and simplices.
The data structures are significantly more efficient and simpler than their
exact counterparts, and therefore are amenable to efficient implementation.
Several data structures involve a space-time tradeoff, where the query time
can be reduced at the cost of increasing the storage space. We also present
data structures that benefit from specific properties of the semigroup, such as
idempotence and existence of inverse. These data structures are also described
in [33].

We apply the techniques developed for the absolute model to several other
problems, including exact range searching, approximate range searching in the
relative model, approximate nearest neighbor searching, and the data stream
model. Perhaps the most notable application is approximate range searching in
the relative model, where we develop a data structure which is not only simpler
but also has reduced query time, storage space, and preprocessing time when
compared to previous data structures. We also describe this relative model

data structure in [34].



Range Version Storage space Query time Preprocessing Sec.
Convex semigroup 0O(1/e%) O(1/e4-1) O(n +1/e)
Onthogonal | semierwe | BT Lo Ot | B
semigroup | O(1/e?) o(1) Qt(n +1/e%) 5.2
Halfspace idempotent | m > 1/e(@+1/2 | O(1/me?) O(n +1/e%) B3l
emptiness m > 1/ed=1/2 | O(1/med—1) O(n 4+ 1/e%) B4
semigroup | O(1/e%) O(1/eld=1)/2) O(n+ 1/e%)
Spherical semigroup | m > 1/g%t! 0] l/méfo(%)adfo(n) O(n+m/e 2
emptiness O(1/e%) O(1/e(d=1)/2) O(n 4 1/e%) 631
Simplex group O(1/e%) O(1/e%=2 +1og(1/¢)) O(n + 1/e?) G4
Fat simplex | semigroup O(1/e%) O(1/e%=2 +1og(1/¢)) O(n + 1/e?) G4

Table 1.1: Complexities of several approximate range searching data struc-
tures.

Because most of our results make use of bucketing, we assume a model
of computation that supports integer division. We use 6(x) to denote
O(z10g°M z), Q(z) to denote Q(z/log®V ), a(m,n) to denote the inverse
Ackermann function [54], and log to denote the base-2 logarithm. We also
assume that d > 2 unless otherwise specified. The complexities of our data

structures are summarized in Table [[LIT We describe the data structures in

more detail below.

e Orthogonal ranges (semigroup and group versions): In Section [ we
present a reduction from approximate orthogonal range searching to the
partial sum problem. The technique consists of approximating the data
points using a grid aligned set of points. Then, we convert the set of grid
aligned points into a multidimensional array and use existing partial sum

data structures to answer orthogonal range queries.

o Convex ranges (semigroup version): In Section 2] we explain how to

use a quadtree to answer range queries for arbitrary convex ranges. We



assume that some information regarding the intersection of the range

with a hypercube can be computed in constant time.

Halfspace ranges (semigroup version): In Section (.2 we show how to
obtain an approximate halfspace range searching data structure with
constant query time and O(1/e?) storage space. We also describe how
to preprocess the data structure efficiently. This data structure is an

important component of the halfbox quadtree introduced later.

Halfspace ranges (idempotent version): In Section 53, we show how to
obtain a space-time tradeoff for the idempotent version of halfspace range
searching. The technique consists of properly distributing a set of large
Euclidean balls. The tradeoff is obtained by varying the diameter and
the number of balls. In the high-storage end of the tradeoff, the balls
degenerate to halfspaces, and we obtain the semigroup data structure,

with constant query time.

Halfspace ranges (emptiness version): In Section B4l we explain how
to compress the idempotent halfspace range searching data structure for
the emptiness case, reducing the storage space by a factor of 1/e without

affecting the query time.

Halfbox quadtree: In Section [6.1] we introduce the halfbox quadtree,
which efficiently answers approximate range queries for several range
shapes. The data structure combines the quadtree from Section with
the appproximate halfspace range searching data structure from Sections

or[5.4l The result is a data structure that allows the arbitrary cutting
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angles provided by halfspaces and the varying box sizes provided by the

quadtree.

e Spherical ranges (semigroup and emptiness versions): In Sections
and [6.3] we show how to use the halfbox quadtree to answer spherical
range queries. The idea is to approximate the boundary of a sphere using
flat regions bounded by quadtree boxes. Our results apply not only to
spherical ranges, but also to arbitrary smooth ranges. We also show how
to improve the spherical query time at the cost of additional space (this

result does not apply to general smooth ranges).

o Simplex ranges (semigroup and group versions): In Section [6.4] we show
how to use the halfbox quadtree to answer simplex range queries. The
general case requires the use of subtraction, and therefore only applies
to the group version. If the query simplex is fat, the use of subtraction

is not necessary.

Another important part of our work consists of applying approximate range
searching data structures developed for the absolute model to related problems.

Several applications are explained below.

e Range sketching: In Section .3 we introduce the range sketching prob-
lem, which tries to fill the gap between range counting and range report-
ing. We present a quadtree based data structure for answering range

sketching queries with arbitrary ranges.

e FEzact idempotent halfspace range searching: In Section 5.5 we apply the

approximate halfspace range searching data structure from Section (.3

11



to answer exact halfspace range searching queries in the idempotent ver-
sion. This exact data structure is defined in the semigroup arithmetic
model [10, 18, 22], and we assume that the data points are uniformly dis-
tributed inside the unit hypercube. The data structure has O(n!'~2/(@+1)
expected query time with O(n) space, matching the lower bound proved
in [18] up to logarithmic factors. The theoretical importance of the data
structure relies on the fact that uniform distribution and the semigroup
arithmetic model are also assumed in the lower bound proved in [I8].
Therefore, we open some important theoretical and practical questions:
Is the average case complexity for uniformly distributed data strictly
lower than the worst case complexity? Does the semigroup arithmetic
model allow more efficient idempotent halfspace range searching data

structures than the real RAM model?

Approximate mearest neighbor: In Section [6.3] we show how to use
O(log(1/e)) approximate spherical emptiness queries to answer approx-

imate nearest neighbor queries in the absolute error model.

Range reporting: In Section [6.5, we show how to modify the halfbox

quadtree to answer range reporting queries efficiently.

Data stream model: In the data stream model [14, 48], the data set is too
large to fit in memory, and the data points are examined one at a time,
in a single pass, while queries regarding the points that have already
been seen need to be answered efficiently. In Section [6.6] we show how

to modify the halfbox quadtree in order to make it more efficient for the

12



data stream model. Our results are presented in the form of a query

time versus update time tradeoff.

e Relative model: In Section 6.7, we combine a compressed quadtree, a
finger tree, and the absolute model approximate range searching data
structure from Section to obtain a data structure analogous to the
halfbox quadtree, but suited for the relative error model. We show how
to use the data structure to answer smooth range queries and simplex
range queries in the relative model. Our results are presented in the form
of space-time tradeoffs, and are an improvement over some of the best

results previously known.

1.2 Organization

This dissertation is divided into 7 Chapters, as follows.

In Chapter [Il, we define approximate range searching, explain the impor-
tance of studying approximate range searching in the absolute error model,
and summarize the results contained in this dissertation.

In Chapter 2, we define terms and discuss previous results that are used
throughout this dissertation. We define the models of computation that we use,
introduce the concept of partition trees, and prove several geometric lemmas.

In Chapter [3, we summarize previous work on range searching. The results
explained in this chapter are important for comparison purposes, but are not
strictly necessary for understanding our results. Most of the chapter is devoted

to exact range searching. Several exact range searching data structures and

13



techniques are presented.

In Chapter 4l we develop approximate range searching data structures for
two types of ranges: orthogonal ranges and convex ranges. We also introduce
the range sketching problem, which tries to fill the gap between range counting
and range reporting. A data structure for range sketching with arbitrary
ranges is presented.

In Chapter [, we present approximate halfspace range searching data struc-
tures for the semigroup, idempotent, and emptiness versions of the problem.
We also apply the results to obtain an exact halfspace range searching data
structure for the idempotent version of the problem, in the semigroup arith-
metic model and assuming uniform point distribution.

In Chapter [6 we introduce a data structure called the halfbox quadtree.
The halfbox quadtree is our most versatile data structure. It combines a
quadtree with approximate halfspace range searching data structures to ob-
tain an efficient data structure for various range shapes, including spherical
and simplex ranges. We present variations of the halfbox quadtree suited for
approximate nearest neighbor queries, approximate range reporting queries,
the data stream model, and the relative error model.

Finally, in Chapter[7, we present conclusions and directions for future work.

14



Chapter 2

Preliminaries

In this chapter, we define terms and discuss results that will be used through-
out this dissertation. In Section 2.1, we formalize the absolute error model,
by defining the ASA model, which is used to describe our data structures. In
Section 2.2] we introduce the concept of partition trees, and more specifically
quadtrees. In Section [2.3] we state and prove some geometric lemmas that are

used throughout this dissertation.

2.1 The ASA Model

Given a range R € R and an approximation parameter € > 0, we define R
as the locus of points = such that dist(x, R) < e. We define R~ as the locus
of points  such that dist(x, R) > ¢, where R is the complement of R. We say

that R. e-approximates R within B if

(R-NB)C (R.NB)C (R"NB).
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We say that R. e-approxvimates R if R. e-approximates R within [0, 1]¢. We
say ¢-(R) is an e-approzimation of q(R) if there is R, such that ¢.(R) = q¢(R.)
and R. approximates R.

We define a computational model, called the Approzimate Semigroup Arith-
metic model (ASA model for short), which makes it easier to describe our data
structures. The ASA model is similar to the semigroup arithmetic model [10,
18, 22]. We explain how to convert our approximate data structures from the
ASA model to the real RAM model (with integer division), preserving the
same query time and storage space.

Given a collection of sets S, let (J(S) = UgesS- In the semigroup version,
we say that a set of regions G and a function g : R — 29 e-generates R if, for
all R € R, the sets in g(R) are pairwise disjoint, and | J(g(R)) e-approximates
R. The elements of G are called generators. In the idempotent version the
elements of g(R) do not need to be pairwise disjoint, because = + = = x for all
x € S. In the group version, as the elements of the semigroup (S, +) have an
inverse, the generators can be summed and subtracted in a multiset fashion,
as long as the final result is a set, that is, no point is counted more than once,
or counted a negative number of times. For simplicity, we use J(g(R)) to refer
to the sums and subtractions of generators in the group version.

Our definition of generators is different than the standard semigroup arith-
metic model definition. We define a generator as a region of the space. In
the semigroup arithmetic model, a generator is defined to be a linear form
of weights of a set of data points. Our definition is more natural for the
data structures described in this paper, and can be generalized to handle non-

discrete point sets.
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In the ASA model, a set G and a function ¢ that e-generates R is called
a data structure for 'R. The storage space of the data structure is defined
as |G|, and the query time is defined as T(G,R) = maxger |g(R)|. We say
that a data structure provides internal approzimation if | J(g(R)) C R, for all
R € R, and provides external approzimation if R C |J(g(R)), for all R € R.
Modifying our data structures to provide either internal approximation or

external approximation is straightforward.

There would be little practical value to develop upper bounds using the
ASA model, if we could not convert the data structures from the ASA model
to a more standard model of computation such as the real RAM model. The
ASA model (as well as the semigroup arithmetic model) considers neither
preprocessing time nor the time to identify the proper generators for a given
range. Identifying the proper generators consists of computing g(R) efficiently,
and is a simple task for the data structures we present, with the exception of

the exact halfspace data structure from Section 5.5l

Preprocessing consists of computing w(G) = > prqw(p), for all G € G.
We may modify our set of generators G in order to obtain a set that is faster to
preprocess, by using an approximation of each GG € G, instead of G itself, when
computing w(G). We provide details on how to preprocess our data structures
efficiently throughout the text. Therefore, our data structures work in the
real RAM model, with the exception of the exact halfspace data structure

from Section [5.5] which works in the semigroup arithmetic model.
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2.2 Partition Trees and Quadtrees

Several kinds of partion trees (defined below) have application to range search-
ing. In particular, several new results presented in this dissertation are based
on the quadtree, which is a particular type of partition tree. Other partition
trees are used in exact range searching, and approximate range searching in
the relative model. We discuss the quadtree in this section, and discuss several
other partition trees in Chapter [3l

A partition tree is a hierarchical subdivision of the set of data points P.
Each node v in the partition tree is associated with a cell vg. The root of the
partition tree is associated with some kind of bounding box for the set of data
points. Each internal node v has children ¢y, ..., ¢ such that Ule co C vo.
Each node v is also associated, implicitly or explicitly, with a set of data points
v C vgN P. The root node vy is associated with vy = P. If ¢q,..., ¢, are the
children of a node v, then ¢ = Ule ¢; and ¢;N¢é; = 0 for i # j. The sum of the

weights of the data points in v, denoted by w(v) = > _. w(p), is precomputed

pED
and associated with node v.

First, we introduce the partition tree query algorithm, which answers a
query ¢(R) through a standard recursive approach. The query starts by calling
q(R,vg), where vy is the root of the partition tree. The procedure ¢(R,v)

considers four cases in order:

1. If ygN R = 0, then return 0.
2. If vogN R = v, then return the precomputed w(v).

3. If v is a leaf node, then return 3 ;- w(p).

18
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Figure 2.1: Representation of a quadtree.

4. Otherwise, recursively return ) __¢(R, ¢), for all children ¢ of v.

It is easy to see that the algorithm above correctly answers a range query.
The query time is proportional to the number of nodes visited during the
execution of the query algorithm, which depends on the specific partition tree,
as well as the shape of the range.

The most natural partition tree is probably the region quadtree, or just
quadtree. In a quadtree, the cell vg associated with a node v is a d-dimensional
hypercube. Each internal node has 27 children corresponding to the disjoint
subdivisions of vg by d hyperplanes (perpendicular to each orthogonal axis)
that divide vg into equal cells. Since the subdivisions of a node are disjoint,
we have © = vg N P. Generally, a node v is a leaf node if |0] < 1, but
different criteria can be defined to stop the subdivision process. A quadtree is
represented in Figure 2l See the book by Samet [52] for a detailed discussion

on quadtrees.
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Figure 2.2: Representation of a compressed quadtree.

A quadtree box is defined recursively as the original bounding hypercube or
the hypercubes obtained by evenly dividing a quadtree box by d hyperplanes
perpendicular to each orthogonal axis. Quadtrees are not efficient in the worst
case, because both the size and the depth of a quadtree are unbounded with
respect to n. To see this intuitively, imagine the case when the set P consists

of only two points that are very close together in a somewhat random position.

There are different variations of the quadtree, that remove certain un-
necessary nodes to save space and reduce query time. In the compressed
quadtree [32], 35], we replace all maximal chains of nodes that have a sin-
gle non-empty child by a single node associated with the coordinates of the
smallest quadtree box containing the data points. The size of a compressed
quadtree is O(n), but compressed quadtrees are still inefficient in the worst
case, as the depth of the tree can be as high as ©(n). Nevertheless, the depth
of a compressed quadtree is O(logn) for several natural point distributions.
A compressed quadtree is represented in Figure A compressed quadtree

storing n points can be built in O(nlogn) time [13].
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The worst-case ©(n) depth of the compressed quadtree makes it inefficient
for answering queries. There are several alternatives to remedy that, like the
BBD-tree [12, 13] and the skip quadtree [32]. In this dissertation, we use a
somewhat simpler approach which is based on [35].

A separator for a tree T" with n nodes is a node v such that removing v

from T produces a forest ' where every tree in F' have at most n/2 nodes.

Lemma 2.1. Every tree T" with n nodes has a separator, and it can be com-

puted in O(n) time.

Proof. Consider the following algorithm, started with v as the root of the tree.
We assume that the number D(v) of descendants of a node v, including v itself,

is precomputed and stored in the tree.
1. If D(v) < n/2, then return the parent of v.

2. Otherwise, find the child v" of v that maximizes D(v") and call the algo-

rithm recursively for v'.

The algorithm descends through a path vq,...,vg1 in T, with D(v1) = n
and D(v;) > D(v;y1), and returns vy, as a separator. To show that vy is actually
a separator, we need to show that all trees obtained by removing v, from v
have less than n/2 nodes. The subtrees rooted at the children of vy have less
than n/2 nodes because the largest of these trees, the one rooted at vg,1, has
D(vg41) < n/2 nodes. Also, since D(v) > n/2, the tree obtained by removing

from T the subtree rooted at v has less than n/2 nodes. ]

We build the finger tree T' by setting the root of T to be a separator v of

T, and the children of v to be the roots of the finger trees of the trees obtained
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by removing v from 7. Since we can find a separator in O(n) time, and the
depth of the finger tree is O(logn), the total time to build a finger tree is
O(nlogn). A node v in the finger tree 7" can have two types of children. A
parent-type child is a child u of v in 7" such that u is a parent of v in 7. A
descendant-type child is a child u of v in 7" such that u is a descendant of v
in 7. A node v can have up to 2¢ descendant-type children, but at most 1
parent-type children.

A important type of query that can be answered efficiently with the use of
a finger tree is called a cell query. Given a query quadtree box @, a cell query
consists of finding the only quadtree box @’ in T such that PN Q = PN ',
if it exists. To understanding the meaning of a cell query, we examine the
different possible results. If @) is in 7', then we have Q' = Q. Else, if P C Q,
then " D @ is the root of the quadtree. Otherwise, )" is the largest quadtree
box in T such that @' C Q). The only case in which @)’ does not exist is when
Q' NP =, in which case we return 0.

To answer a cell query ¢(Q, v), we start with v as the root of 7", and apply
the following procedure. The procedure takes O(logn) time because it only

descends in the finger tree, and the depth of the finger tree is O(logn).

1. If Q = v, then return v.

2. If @ D v, then determine the parent-type child ¢ of v. If v has no

parent-type child or ¢g O @, then return v. Otherwise, recursively

return ¢(Q, ¢)

3. If Q C v, then determine the child-type child ¢ of v such that cg C Q.

If ¢ does not exist, then return 0. Otherwise, recursively return ¢(Q, c¢).
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Figure 2.3: Triangle used in the proof of Lemma 221

2.3 Some Geometric Lemmas

In this section, we define and prove some geometric lemmas that are used
throughout this dissertation. The first lemma shows how well spherical sur-
faces and hyperplanes approximate each other. It is used in Section 5.3 when
a halfspace is approximated by balls, and also in Section [6.2] when a ball is

approximated by flat regions.

Lemma 2.2. Let B be a d-dimensional ball of radius r, and H be a hyperplane
that is tangent to B at point p. Consider the (d — 1)-dimensional ball B C H
of radius \/2re + &2 > \/re, centered at p. Then, all points in B' are within

distance € from B.

Proof. The proof follows from applying the Pythagorean Theorem on the tri-
angle formed by two rays of B and a segment of length v/2re + €2 connecting

the two points in the intersection of the two rays with H (Figure 2.3]). O

The remaining lemmas are all packing lemmas, that is, they limit the num-
ber of disjoint objects that can intersect some region, as a function of the size of

the objects and the region. In our case, the objects are always quadtree boxes
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(defined in Section 2.2). The following packing lemma follows from Lemma 2

in [12].

Lemma 2.3. If Q is a set of pairwise disjoint quadtree boxes, each of diameter

at least 6, that intersect a region R of diameter A > §, then

|Q|:O<<%>d>.

Proof. Consider the smallest quadtree box B that contains R. The diameter
of B is O(A), and the volume of B is O(A?). Since two quadtree boxes can
only intersect when one is completely contained inside the other, we can divide

the volumes of B and the quadtree boxes in Q to bound

Q| = %&?2 =0 ((%)j .

]

We can improve the previous result when the region consists of the (d—1)-
dimensional boundary of a convex d-dimensional region. The following packing

lemma follows from Lemma 3 in [12].

Lemma 2.4. If Q is a set of pairwise disjoint quadtree boxes, each of diameter

at least 0, that intersect the boundary of a convex region R of diameter A > 6,

|Q|=0<(§)d_l>.

Proof. Let OR denote the boundary of R. Note that we can consider only

then

quadtree boxes of diameter exactly d, since a larger quadtree box can be
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replaced by several smaller boxes, out of which at least one intersects the
boundary of R. Therefore, we consider a grid of cells of diameter §, and need

to count how many grid cells intersect OR.

We partition OR according to the normal vectors. The normal vector of
a point p € JR is the unit vector perpendicular to OR at point p. If there
are multiple normal vectors, pick an arbitrary one. Partition the points in OR
according to which face of a hypercube centered at the origin the normal vector
points to. Since a d-dimensional hypercube has 2d faces, we are partitioning
OR in 2d components. Without loss of generality, we prove that the lemma
holds for the points in one partition S of 0R. We say that S corresponds to
the top face of the hypercube. We define the direction of the normal vector
of that face as the vertical direction, and the horizontal (d — 1)-dimensional

hyperplane as perpendicular to the vertical direction.

We claim that S cannot intersect all grid cells in a vertical stack of more
than m = O(1) quadtree boxes. From Lemma applied to the (d — 1)-
dimensional projection of S, we have that S can only intersect O((A/§)41)
parallel vertical stacks of quadtree boxes of diameter at least §. Therefore,

the total number of quadtree boxes of diameter at least § that intersects OR

is O((A/8)4-1).

To prove the claim, consider a stack of m grid cells of diameter 4. The
height of the stack is md/ V/d, and to intersect all quadtree boxes in the stack
R needs to have points with vertical distance at least (m — 2)d/v/d. The hori-

zontal distance inside the stack can be at most dv/d — 1/+/d. Since S bounds

a convex region and has normal pointing to the top face of the hypercube, we
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which implies that m < vd + 2. O

We define a (d — 2)-flat region as a subset of a (d — 2)-dimensional hyper-
plane. We can still improve the previous result when the region consists of

(d — 2)-flats.

Lemma 2.5. If Q is a set of pairwise disjoint quadtree boxes, each of diameter

at least §, that intersect the (d — 2)-faces of a simplex of diameter A > §, then

|Q|=O<(%)d_2>.

Proof. A d-dimensional simplex has (jﬂ) = O(1) number of (d — 2)-faces, all
of which are (d—2)-flat. Consequently, it is sufficient to show that a (d—2)-flat
region R of diameter A > § can only intersect O((A/§)4~2) quadtree boxes.

As in the proof of Lemma [2.4] we consider a grid of cells of diameter §, and
need to count how many grid cells intersect R. Without loss of generality, we
assume that R is a subset of a hyperplane H such that the normal vector of
H points to the top face of a hypercube centered at the origin.

Then, we can use the same argument as in the proof of Lemma 2.4], to show
that R can only intersect O(1) grid cells in each stack, and then use Lemma [2.4]
on the projection of R onto the horizontal (d — 1)-dimensional hyperplane to

obtain the desired O((A/§)?~2) bound. O

A shape R is a-fat [50] if, for all d-dimensional balls B with center in R
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and not fully containing R, we have
a volume(R N B) > volume(B).

A shape is fat if there is some constant « for which it is a-fat. If a simplex is
fat, then the angle between any two (d — 1)-dimensional faces is bounded by
a constant. The following packing lemma considers the intersection between

quadtree boxes and strictly more than one face of a fat simplex.

Lemma 2.6. If Q is a set of pairwise disjoint quadtree boxes, each of diameter

exactly § and intersecting at least two (d — 1)-faces of a fat simplex R of

Q) :0((%)“)

Proof. Consider two (d—1)-faces Fy, F; of R. Let E be the (d—2)-face F1NF.

diameter A >0, then

A quadtree box of diameter ¢ that intersects both F; and F, must be within
distance O(9) from FE, since the angle between the two (d — 1)-hyperplanes
containing each of F} and F; is greater than a constant. Let S be the set of
points of H within distance ¢ from FE.

Even though the region S has diameter O(A) (because E itself has diame-
ter ©(A)), the width of S with respect to any direction perpendicular to E is
only O(6). We can partition S using a (d — 2)-dimensional grid that partitions
E into cells of diameter § (and extends infinitely in the other two dimensions),
obtaining O((A/§)%~2) smaller regions of diameter §. Applying Lemma 23 to
each of these smaller regions, we conclude that O(1) quadtree boxes intersect

each smaller region. Therefore, the total number of quadtree boxes that inter-
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sect S (and the number of quadtree boxes that simultaneously intersects F}

and Fy) is O((A/6)472). O
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Chapter 3

Previous Work

In this chapter, we summarize previous work on exact range searching, and
approximate range searching in the relative error model. The results explained
in this chapter are important for comparison purposes, but are not strictly
necessary for understanding the new results introduced in this dissertation. We
present data structures and techniques for exact orthogonal range searching
in Section B.Il Since the data structures for exact simplex range searching
and exact halfspace range searching are mostly similar, we handle these two
range spaces together in Sections and 3.3 In Section [3.2] we discuss the
case of linear space data structures, and in Section 8.3, we discuss the case
of polylogarithmic query time. Finally, in Section [3.4] we discuss approximate

range searching in the relative error model.
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3.1 Orthogonal Range Searching

The exact data structures for orthogonal range searching are much more
efficient than the exact data structures for any other reasonable range.
Many exact structures have polylogarithmic query time with linear or near-
linear storage. Some of these structures are close to the lower bound of
Q(log(n/log(2m/n))4"1) query time for O(m) space in the semigroup arith-
metic model [23]. For a good survey, see [2]. We discuss two simple data

structures for orthogonal range searching: kd-trees and range trees.

3.1.1 kd-Trees

The simplest partition tree that guarantees O(logn) depth is the kd-tree [16,
29]. In a kd-tree, the cell v associated with a node v is a d-dimensional axis-
aligned rectangle. Each internal node has two children ¢; and ¢y corresponding
to the disjoint subdivisions formed by a splitting vg with a hyperplane perpen-
dicular to an orthogonal axis a. Several different criteria are used to define the
split direction for each vertex of the kd-tree. The standard criterion consists
of cycling through the different axis in an arbitrary, but constant, order. Since
the subdivisions of a node are disjoint, we have v = vg N P. The splitting
hyperplane is chosen in a way that |¢i| and |¢;| differ by at most 1. A vertex v
such that |0] < 11is a leaf node in the tree. A kd-tree uses O(n) storage space
and can be constructed in O(nlogn) preprocessing time. A 2-dimensional
kd-tree and the associated spatial subdivision is represented in Figure B.1l
To analyze the query time, we break the execution tree of the query algo-

rithm into sequences of d levels of recursive calls, one for each different split
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Figure 3.1: Representation of a 2-dimensional kd-tree.

direction. First, we consider the case where the query range is an axis-aligned
halfspace. Since the halfspace is axis aligned, there is one splitting direction
that is parallel to the halfspace boundary. Therefore, only one recursive call is
performed for each query in the corresponding level of the tree. We can write

down the following recurrence for the query time:

T(n) = 21T (n/2%).

The recurrence solves to T(n) = O(n'~%/4). To analyze the number of
recursive calls performed when answering an orthogonal range query, we note
that if a vertex of the kd-tree is visited when answering an orthogonal range
query, then it is also visited when answering a query for one of its bounding
halfspaces. Therefore, the kd-tree can answer orthogonal range queries in

O(n'=Y) time, with O(n) storage space, and O(nlogn) preprocessing time.
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3.1.2 Range Trees

The first orthogonal range searching data structure to achieve polylogarith-
mic query time with almost linear space is the range tree. Range trees were
independently discovered by several authors [17], 37, 39 [56]. Our presentation
is based on [29]. We start by describing the 1-dimensional version, and then
generalize the construction to higher dimensions.

In 1-dimensional space, all convex ranges are intervals of the real line.
To answer orthogonal range searching in 1-dimensional space, we can use a
variation of a binary search tree. The data points are stored in the leaf nodes.
The key of a leaf node is the coordinate of the (1-dimensional) point stored in
it, and the weight of a leaf node is the weight of the point stored in it. The
weight of an internal node is recursively defined as the sum of the weights of
its children. The key vy of an internal node v is a real value such that, the
key of all nodes in the left subtree of v is less than or equal to vy, and the key
of all nodes in the right subtree of v is greater than v,. In order to support
range searching efficiently, the tree needs to be balanced, that is, the height
of a tree storing n elements should be O(logn). A 1-dimensional range tree is
represented in Figure

To answer a range query ¢(x1,x2,v) for the interval [z, z5], we use the
following recursive algorithm, starting with v as the root of the tree. Let vy,
Vw, U, and v, denote the key, weight, left child, and right child of node v,

respectively.
1. If |z1| = |x2| = oo, then return v,,.

2. If vy, € [z1, x5], then return ¢(xy, 00, v;) + ¢(—00, 2, v;).
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Figure 3.2: Representation of a 1-dimensional range tree.
3. If vy, < 2y, then return ¢(xq, z2, v,).

4. If vy > 1, then return q(xy, z2,v;).

To calculate the query time, we need to note that when case (2) happens,
the recursive calls have co as at least one range boundary. After one of the
range boundaries is set to 0o, one of the recursive calls performed in (2) takes
O(1) time, since it goes to case (1). Therefore, the maximum query time is
proportional to the height of the tree, which is O(logn).

In order to deal with more than one dimensions, we use the multi-level data
structure technique. A multi-level data structure is formed by data structures
that, instead of returning a set of points as the answer to a query, returns a set
of data structures for the corresponding set of points. A 2-dimensional range

tree is a 1-dimensional range tree on the z coordinate of the points where the
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Figure 3.3: Representation of a 2-dimensional range tree. Point weights are
not represented.

weight v, of an internal node v is the 1-dimensional range tree storing the
elements in the subtree rooted at v and indexed by the y coordinate of the
points (Figure B.3). The storage space is O(nlogn). The orthogonal range
query time is O(log®n), since the 1-dimensional query algorithm needs to be
executed for each coordinate. The same approach can be used to build d-
dimensional range trees with O(nlog®™* n) storage space, and O(log?n) query

time for orthogonal range queries.

Chazelle [20], 21] used compressed range trees and other techniques to im-
prove the storage space and query of range trees, obtaining some of the most
efficient orthogonal range searching data structures known, for different mod-

els of computation. Chazelle’s results for the real RAM are summarized in
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Range ‘ Version ‘ Storage space ‘ Query time ‘ Preprocessing

orthogonal | semigroup | O(nlog? 2 n) O(log™ & n) O(nlog?1n)
orthogonal | semigroup | O(nlog? 2 nloglogn) | O(log?nloglogn) | O(nlog? ' n)
orthogonal | semigroup | O(nlog? 2" n) O(log® n) O(nlog? ' n)
orthogonal | group O(n) O(log?* n) O(nlog? ' n)

Table 3.1: Complexities of some of the most efficient exact orthogonal range
searching data structures. In this table, € represents an arbitrarily small con-
stant.

Table B.11.

3.2 Simplex and Halfspace Range Searching
with Linear Space

In simplex range searching, the ranges are d-dimensional simplices. If m units
of storage are allowed, then the query time is Q(n/y/m) in the plane, and
Q((n/logn)/mi) in d-dimensional space [22]. In the exact version, the most
efficient linear size data structure is due to Matousek [42] and matches the
lower bounds up to logarithmic factors, achieving O(nl_é) query time for the
case of linear storage space.

In Section B.2.T], we present a simple data structure based on ham sandwich
cuts. In Section [3.2.2] we introduce the concept of simplicial partitions, which

is used in several of the most efficient data structures known.

3.2.1 Ham Sandwich Cut

The classic ham sandwich cut problem (see [31]) is:

Problem 3.1. Given two disjoint sets of points Py, P, in the plane, find a
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Figure 3.4: Set of 16 points divided into four subsets of the same size by 2
lines.

halfplane h such that |Py N h| = || P1|/2] and |Pa N h| = [|P2]/2].

It is not immediately clear that h exists. Not only does h always exist,
but it can also be found in linear time [38]. In the case when P; and P, are
separated by a line, Megiddo gives a simpler linear-time algorithm in [47]. The
ham sandwich cut existence implies that we can partition a set of points by
two lines in a way that each of the four remaining sets have the same number
of points (or a difference of at most 1 point), as shown in Figure B4l We
can divide the points recursively using this process, until we have at most one
point per cell.

To analyze the query time for a halfplane range query in the partition tree
described above, we note that a halfplane can intersect at most 3 out of the
4 regions in each subdivision. As the number of points is the same in all 4
regions, we have the following recurrence relation for the query time:

T(n) <O(1)+ 3T (n/4).

Solving the recurrence, we obtain T'(n) = O(n'°813) = O(n%™?). This is
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significantly sublinear, but still far from the optimum O(y/n) query time. Note
that the same data structure can answer simplex queries (triangle queries, in
the case) with the same query time, because every node visited when answering
a simplex query is also visited when answering a query for one of the three

halfplanes that define the simplex.

3.2.2 Simplicial Partitions

Let P be a set of n points in d-dimensional space, and r be a parameter
with 2 < r < n/2. A simplicial partition of size r, is a collection of r d-
dimensional simplices Ay, ..., A,. Each simplex A; is associated with a set
of points P, C A; N P, and each point p € P is associated with a simplex
in the collection. Differently than in the partition trees described before, the
simplices may and often will intersect each other. On the other hand, the sets
of points associated with any two different simplices are still required to be
disjoint, that is, P;N P; = () for i # j. An example of simplicial partition is in
Figure

A simplicial partition is fine if |P;| < 2n/r for 1 < i < r. The crossing
number k of a simplicial partition is the maximum number of cells that a

hyperplane can intersect. The following theorem is proved in [40]:

Theorem 3.2. For any set P of n points in d-dimensional space (d > 2), and
any parameter r with 2 < r < n, there exists a fine simplicial partition of size

r and crossing number k = O(r'=1/%).

We can use a fine simplicial partition to produce a partition tree. We start

by building a fine simplicial partition for P and recursively build a partition
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Figure 3.5: Example of a simplicial partition in the plane. The points are
drawn with different shapes according to the different sets P;.

tree for each set P; in the simplicial partition. Each node in the tree has r
children, the height of the tree is O(log, n), and the number of nodes is O(n).

A halfspace range query (or simplex range query) can be answered using
the standard partition tree query algorithm from Section 2.2 The query time

is defined by the following recurrence with base case T'(O(1)) = O(1):

T(n) <O(r) + cT(2n/r) = O(r) + O(r* V4 T(2n/7).

If we set r = n®, where ¢ is a sufficiently small constant, then the query

time is O(n'~"?1log®M n).

3.3 Simplex and Halfspace Range Searching

in Polylogarithmic Time

Matousek [42] showed that it is possible to answer a halfspace range query in
O(logn) time with O((n/logn)?) storage space and a simplex range query in

O(log™™ n) time with O(n?) storage space. The data structures are strongly
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based on Chazelle’s hierarchical cuttings [24] (Section B.3.3]). For the case of
simplex range searching, a multi-level data structure is used. In Section B.3.1],
we show how to reformulate halfspace range searching by using geometric
duality. In Section[3.3.2] we introduce a more abstract view of range searching.

In Section 3.3.3 we introduce the concept of cuttings.

3.3.1 Geometric Duality

In general, an operation is dual if recursively applying the operation to an
object twice produces the same original object. The most common duality
in geometry consists of mapping points to hyperplanes and hyperplanes to
points, in a way that incidence and order properties are preserved. One way
to define a duality transform in the plane consists of mapping a point (a,b)
into a line y = ax — b, and also mapping a line y = ax — b into the point
(a,b). In d-dimensional space, we can map a point (ay,...,aq) to a line z4 =
a1x1+ ...+ ag_1x4-1 — ag. We represent the dual of a point p by p* and the
dual of a hyperplane h by h*. We say that the original points and lines are
in the primal space, while their duals are in the dual space. An example of
primal and dual spaces is in Figure More details can be found in [29].

The following properties hold:
Property 3.3. Incidence preserving: p € h if and only if h* € p*.

Property 3.4. Order preserving: p lies above h if and only if h* lies above

*

p.

Halfspace range searching can easily be formulated in the dual plane:
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Figure 3.6: Example of primal and dual spaces. The dual of the point (a,b) is
the line y = ax — 0.

Problem 3.5. Let H be a set of n hyperplanes in R equipped with weights.
Preprocess H in a way that, given a query point q, we can find the sum of

weights of the hyperplanes lying above (or below) q.

Problem can be solved as a point location problem in a d-dimensional
arrangement of n hyperplanes, using the hierarchical cuttings described in
Section B33l The data structure obtained this way has O(logn) query time

with O(n?) storage space.

3.3.2 VC-Dimension, e-Nets, and e-Approximations

In this section, we examine range searching in a more abstract, combinatorial
setting. A set system (P,R) is formed by a universe set P and a set R
containing subsets of P. In the range searching setting, the set P corresponds
to the set of n points, and the set R corresponds to the intersection of P with

each range. We call R a range space. Sometimes the sets P and R are infinite.
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A subset S C P is called an e-net if SN R # () for every R € R with
|R|/|P| > e. A subset A C P is called an e-approzimation if it satisfies the

following stronger property:

[ANR| R .
|4 Pl =

Intuitively, an e-approximation is a subset of P that approximates P with
respect to the fraction of the points that intersects each range in R. An e-net
is a subset of P that approximates P with respect to emptiness queries, where
ranges with too few points may be misclassified as empty. Surprisingly, it is
possible to obtain both e-nets and e-approximations with size independent of

n for several important range spaces.

We cannot expect e-nets and e-approximations with size independent of n
to exist for any set system. A sufficient condition for the existence of such small
e-nets and e-approximations is bounded VC-dimension. The VC-dimension of
a set system is the size of the largest subset X C P such that, for all X' C X,
there is a set R € R with RN X = X’ [55]. A set system has bounded VC-
dimension if its VC-dimension is finite. For example, it is an easy exercise to

show that (R? R), where R is the set of all halfplanes, has VC-dimension 3.

Set systems of bounded VC-dimension not only have an e-net of size
O(1/elog(1/e)), but a random sample of this size (with a large enough mul-
tiplicative constant that depends on the VC-dimension) is an e-net with a
positive probability. Similarly, set systems of bounded VC-dimension have an
e-approximation of size O(1/?log(1/¢)), and a random sample of this size is

an e-approximation with high probability.
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Both an e-net and an e-approximation of optimal sizes can be computed
deterministically in O(n/e°®)) time, where the O(1) in the exponent depends
on the VC-dimension of the set system [44]. The deterministic computation
of e-nets and e-approximations is crucial for the derandomization of most

geometric algorithms [45].

3.3.3 Cuttings

Let H be a set of n hyperplanes in d-dimensional space. A partition of R?
into simplices is called an e-cutting for H if each simplex intersects at most
en hyperplanes of H. Cuttings can be used to design geometric divide and
conquer algorithms.

A canonical triangulation of an arrangement is a triangulation obtained
with the following recursive procedure. The 1-faces of the arrangement are
already triangulated. To triangulate a k-face F', connect the lowest vertex
of F' (the one with minimum x4 coordinate) to each simplex obtained in the
triangulation of the (k — 1)-faces that bound F'.

It is possible to construct e-cuttings with only O(1/e?) simplices. An ini-
tial, and almost successful, approach to compute an e-cutting is the following:
Pick a random subset X of ¢/e¢ hyperplanes of H, for some sufficiently large
constant ¢. Then, compute a canonical triangulation 7" of the arrangement
produced by H, and return 7.

Unfortunately, the algorithm in the previous paragraph does not gener-
ally produce an e-cutting. Nevertheless, the simplices of T" intersect at most

O(enlog(1/e)) hyperplanes of H with a constant positive probability. To re-
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move the undesired log(1/¢) factor, we need to refine T" using a second step of
sampling.

For each simplex ¢t € T, compute the set I; of hyperplanes of H that
intersect t. If |I;| < en, we keep the simplex ¢. Otherwise, we randomly sample
c|l;|/enlog(|I;|/en) halfspaces of I;, for a sufficiently large constant ¢, and
replace t by a canonical triangulation of the intersection of ¢ and the random
sample. We repeat this procedure until 7" is an e-cutting. The expected
number of repetitions is O(1).

A weakness of cuttings generated this way, is that they do not necessar-
ily compose well, as we show in this paragraph. Imagine we construct an
ek-cutting X}, (for some integer value k that is not necessarily asymptotic con-
stant) by building an e-cutting X;, and recursively building a cutting X; for
the halfspaces intersected by each simplex in X; 4, for ¢ from 2 to k. Unfor-
tunately, the size of X} is not O(1/e%), but really O(c*/e%). The reason is
that the constant hidden in the O notation accumulates through the £ levels
of the recursion.

Fortunately, Chazelle [24] gives a deterministic algorithm to produce a
hierarchy of cuttings X, X}, where X is an e’-cutting obtained by refining the
simplices of X;_;, and the size of each cutting X; is O(1/e%). Such a hierarchy
of cuttings is called a hierarchical cutting, and it has several applications,
the most straightforward one being point location in an arrangement of n
hyperplanes with O(n?) storage space and O(logn) query time.

Using geometric duality, point location in hyperplane arrangements is
equivalent to halfspace range searching. By using some additional techniques,

the storage space of halfspace range searching can be reduced to O((n/logn)?)
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while keeping the O(logn) query time.

3.4 Relative Error Model

In the relative error model (or simply relative model), it is assumed that the
range shape R is bounded, and points lying within distance € - diam(R) of the
boundary of the range may or may not be included. Range searching in the
relative model has been studied in [8, 9, [10, [12].

The BBD-Tree is the simplest data structure proposed for approximate
range searching in the relative model. The BBD-tree requires O(n) storage
space and O(nlogn) preprocessing time. Using the BBD-tree, we can an-
swer approximate range queries in O(logn + 1/&%) time for arbitrary ranges
and O(logn + 1/¢471) time for convex ranges [12]. In both cases, we used
the following unit-cost test assumption: given a range R and a d-dimensional
hypercube, in constant time we can determine whether the hypercube is con-
tained within R, is disjoint of R, or neither.

The cells of the BBD-tree are the set difference between two quadtree boxes.
The BBD-tree has two types of nodes: split nodes and shrink nodes. A split
node is similar to the typical quadtree subdivision. In a split node, an axis
aligned halfspace is used to divide a cell through its midpoint, splitting the
cell in its longest orthogonal direction. A shrink node v corresponding to a cell
v has two children corresponding to the cells ug and v\ ug, where ug C vg
is a quadtree box. An example of a BBD-tree is illustrated in Figure B.7]

The BBD-tree is also a very important tool for storing approximate Voronoi

diagrams [6, [7], which solve the approximate nearest neighbor problem. The
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Figure 3.7: Example of a BBD-tree.
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nearest neighbor problem consists of preprocessing a set P of n data points
in d-dimensional space in a way that, given a query point p, (generally not
in P), we can efficiently find the point p* € P that minimizes dist(py, p*).
In the relative model, the approrimate nearest neighbor problem consists of
preprocessing a set of data points P in a way that, given a query point p,,
a point p' € P such that dist(p,,p") < (1 + ¢)dist(p,, p*) can be computed
efficiently. An approximate Voronoi diagram is a subdivision of the space in a
way that, for every query point p,, the leaf cell v such that p, € vgis associated
with a set of data points v (¢ does not need to be a subset of v in this case)
with p’ € 0. If || = 1 for every leaf node, then the approximate Voronoi
diagram is said to have a single-representative. If |0| > 1 for some leaf node,
then the approximate Voronoi diagram is said to have multiple-representatives.
In [7], Arya, Malamatos and Mount present an approximate Voronoi diagram
with multiple representatives that solves the approximate nearest neighbor
problem in O(logn + 1/&(4=1/2) query time with O(n) space, as well as space
time tradeoffs.

Arya, Malamatos, and Mount [8] introduced a space-time trade-off for
approximate spherical range searching, which has faster query time than
the standard BBD-tree, at the cost of additional storage space. Given a
parameter 7 € [1,1/¢], an approximate spherical range query can be an-
swered in O(log(nvy)+1/(g7)4™!) time with O(ny?log(1/¢)) storage space and
O(ny*log(n/e)log(1/e)) preprocessing time.

A semigroup is idempotent if © + x = x for all semigroup elements x.
Arya, Malamatos, and Mount [10] introduced a space-time trade-off for ap-

proximate spherical range searching under idempotent semigroups. Given a
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parameter v € [1,1/¢], an approximate spherical range query can be answered
in O(log(n) + 1/(e7)41/210g(1/¢)) time with O(ny?/e) storage space and
O(n(v/e)4*t1/21og(n/e)) preprocessing time. If the range is an arbitrary
smooth range and the unit cost test assumption is used, then approximate
range queries under idempotent semigroups can be answered in O(logn +
1/£@=D/2) time with O(n/e) storage space [9].

There are several lower bounds for approximate range searching in the
relative model. Arya and Mount [I2] showed that any partition tree takes
Q(logn + 1/£971) time to answer orthogonal hypercube queries, and therefore
the query time of the BBD-tree for arbitrary convex ranges is optimal. In the
semigroup arithmetic model with m units of storage, approximate spherical
range queries take ((%)%71 (%)%7m> time [10]. In the semigroup arith-
metic model with m = n(1/¢)"*% units of storage, approximate rotated unit
hypercube range range queries take €2 ((%)dd\/a*zfd) time.

A semigroup (S, +) is integral if kx # x for all k € Nt and z € S\ {0}. If
we assume that the semigroup is integral and the generators are convex, then
several tighter lower bounds for approximate range searching in the relative
model exist. Approximate spherical range queries take € ((%)d_B (%)1_%>

time with m units of storage [10]. Approximate rotated unit hypercube range

range queries take Q (1) 7>7") time with m = n(1/¢)”® units of storage.
ge q !
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Chapter 4

Orthogonal and Convex Ranges

In this chapter, we develop approximate range searching data structures for
two types of ranges: orthogonal ranges and convex ranges. We also introduce

the range sketching problem.

In Section .1l we introduce orthogonal range searching data structures, for
both the group and semigroup versions of the problem. The data structures

are based on a simple point approximation technique.

In Section [4.2, we introduce convex range searching data structures. The
data structures for convex range searching are based on a quadtree decompo-

sition of space, which is also used in the halfbox quadtree (Chapter [).

In Section .3l we introduce the range sketching problems and data struc-
tures for solving it. The solution is based on compressed quadtrees and finger
trees, in a manner similar to the relative error model data structures presented

in Section
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Figure 4.1: Examples of orthogonal ranges.

4.1 Orthogonal Range Searching

In the orthogonal range searching problem, R is the set of all axis-parallel
rectangles. Some examples of orthogonal ranges are shown in Figure 4.1l In
this section, we reduce approximate orthogonal range searching in the absolute
model to the partial sums problem.

The exact data structures for orthogonal range searching are much more
efficient than the exact data structures for any other reasonable range.
Many exact structures have polylogarithmic query time with linear or near-
linear storage. Some of these structures are close to the lower bound of
Q(log(n/log(2m/n))41) query time for O(m) space in the semigroup arith-
metic model [23]. For a good survey, see [2].

In [12], Arya and Mount prove that if the points are stored in any parti-
tion tree, the worst case complexity of answering approximate range counting
queries for axis-parallel unit hypercube ranges is ©(1/e%71). The lower bound
also holds for the absolute model because the proof of [12] involves only ranges
of unit size. We show that we can do much better by not using partition trees.

The point approximation technique consists of creating a new weighted set
of points P’, in a way that approximate range queries on P are equivalent to ex-

act range queries on P’. The concept is somewhat similar to e-approximations,
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Figure 4.2: Point approximation.

except that P’ is generally not a subset of P.

To build P’, we partition the space using a rectangular grid with cells of
diameter 2. We bucket the points from P into the grid cells and, for each
non-empty grid cell, we create a new point p € P’ located in the center of the
grid cell (Figure 2]). The weight of p is defined as the sum of the weights of
all points of P contained in the same grid cell as p. Since P C [0, 1]%, we have
|P'| < min(n,O(1/e%)).

The set P’ can be converted into a d-dimensional array A with O(1/&?)
elements, where A(aq,...,aq) = w(p) and p € P’ is the point within the
grid cell aq, ..., aq, as shown in Figure Consequently, an orthogonal range
searching query is equivalent to a d-dimensional interval query in A. We denote
the size of each dimension of the array A by u = O(1/¢).

The problem of answering a d-dimensional interval query in an array has

been well studied before [28] [57], and is called the partial sum problem.
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Figure 4.3: Array built for a set of points with weight 1 in the plane.

4.1.1 Group Version

In this section, we study the group version of the partial sum problem. We
consider an d-dimensional array A where each dimension has size u and the
total size is u?. In the group version, it is possible to achieve constant query

time with linear storage.

Given X = (z1,...,24) and Y = (y1,...,y4), we represent the portion of
the array A formed by the elements between A(X) and A(Y), including both
A(X) and A(Y), by A(X..Y). We also represent the “unbounded” interval
A(X..(u,...,u)) by A(X..00).

Let ¢(X,Y’) denote the query for the range A(X..Y'), and ¢(X) denote the
query for the range A(X..00). As there are only O(1/u?) grid cells, we can
build a lookup table for ¢(X) using O(u?) space. This table can be built in

constant time per element using the principle of inclusion-exclusion:
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9(X) = A(X) - > (—1)°#Yq(2),

Ze{(z1,.2a) 2 €{wi i+ \{X}
where 0(Z, X) is the number of indices 7 such that z; # z;.
Bounded rectangular queries can be answered using 2¢ = O(1) unbounded
queries, since there is a subtraction operation and d is constant. We can

rewrite a bounded query as

¢(X,Y) = > (—1)°#¥g(2).
2a)%i

Z:(Zl,‘.., 'G{miuyi}

The following theorem summarizes the main results of this section:

Theorem 4.1. There exists an e-approximate range searching data structure
for orthogonal ranges with O(1/e?) size, O(n + 1/e%) preprocessing time, and

O(1) query time, for the group version of the problem.

4.1.2 Semigroup Version

We start this section by describing two simple solutions to the partial sum
problem, in the semigroup version. The first one gives an approximate range
searching data structure with O(1/e%) space and O(log?(1/e)) query time.
The second one gives an approximate range searching data structure with
O(1/e%log(1/¢)) space and O(1) query time. Then, we present the complexi-
ties of the optimal data structures [28, [57], which gives an approximate range
searching data structure with O(m) space and O(a(m,n)?) query time, for
m > 1/e?

For simplicity, we assume that u, the size of each dimension of the array, is
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Figure 4.4: Subdividing an array recursively in a fixed dimension and linking
to a (d — 1)-dimensional data structure. Only parts of the data structure are
shown.

a power of 2. The first data structure we present is similar to range trees [29],
but optimized for the case of arrays.

We can build a tree by recursively subdividing the array in half, splitting
in a fixed dimension. We repeat this process until we cannot divide the array
any more, as in the left Figure .4l Then, for each subdivision, we calculate
the sums in the dimensions different than the one we just subdivide, producing
a (d — 1)-dimensional array, as in Figure .4l We then build the same data
structure for the (d — 1)-dimensional array, repeating this process until d = 0.
The idea of linking an element in a data structure to another data structure
is called a multi-level data structure [29).

The total size of all the k-dimensional data structures is O(u?). As k goes
from 0 to d, the total size of the structure is O(u?). A query is performed in

each dimension, by finding the largest intervals that add together to the total
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Figure 4.5: Data structure with O(1) query time for the semigroup version of
partial sum.

query range in that dimension, and recursively answering the queries for the

lower dimension data structures. The query time is O(log®(u)).

We restrict our presentation of the second data structure to the case when
d = 1. Extending the result to multi-dimensional spaces is simple and can be
done using multi-level data structures, as in the previous example. Consider a
single-dimensional array with elements (vy,...,v,). We can precompute and
store Efﬁ v;, for 1 < k < w/2 and Zf:umH v;, for u/2 +1 < k < u. We can
answer any query that includes elements in both halves of the array in O(1)
time by adding two precomputed values. A query that only includes element
in one half of the array can be answered by another data structure built the
same way for the given half of the array (Figure [LH]). The total size for all the

data structures is O(ulogu), and the query time is O(1).

In the d-dimensional version, the storage space becomes O(u?logu) and

the query time remains O(1).
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An optimal static partial sum data structures are due to Chazelle and
Yao [28, 57]. The data structures have O(a(m,u?)) query time with O(m)
storage space, where m > u?. The function a(m,n) is the inverse Ackermann
function defined in [54]. According to the value of m, the data structure allows
constant query time with slightly superlinear space or linear space with very
slow growing query time.

The following theorem summarizes the main results of this section:

Theorem 4.2. There exists an e-approzimate range searching data structure
for orthogonal ranges with O(m) size (for m > 1/&?), O(n +m) preprocessing

time, and O(a(m, 1/e?)?) query time, for the semigroup version of the problem.

4.1.3 Reporting Version

Overmars [49] present two data structures to answer orthogonal range report-
ing when the data points are on a uxw grid in the plane. Let k£ denote the num-
ber of points reported in a query. The first data structure has O(y/logu + k)
query time with O(nlogn) storage space and preprocessing time. The second
data structure has O(loglogu + k) query time with O(nlogn) storage space
and O(u®logu) preprocessing time.

Using these structures on the set P’, we obtain e-approximate orthogonal

range reporting data structures for the plane with

e O(y/log(1/e)+k) query time, with O(min(1/?log(1/¢),nlogn)) storage

space and O(min(n + 1/e%log(1/¢),nlogn)) preprocessing time, or

e O(loglog(1/e) + k) query time, with O(min(1/e?log(1/¢),nlogn)) stor-

age space and O(n + 1/e%log(1/¢)) preprocessing time.
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Figure 4.6: Examples of convex ranges.

4.2 Convex Range Searching

In this section we consider R to be an arbitrary set of convex regions. Some
examples of convex regions are shown in Figure [4.6]

As the range space is quite general, we need to assume that some operations
on the range can be performed quickly enough. We use the same assumption
used in [12], that we call the wunit-cost test assumption: given R € R and a
d-dimensional hypercube, in constant time we can determine whether the hy-
percube is contained within R, is disjoint of R, or neither. We can restrict the
unit-cost test assumption only to the case when the d-dimensional hypercube
R is a quadtree box (defined in Section 2.2]).

There are no known exact range searching data structures for general con-
vex ranges. Agarwal and Matousek [4] study the range space formed by ele-
mentary cells. An elementary cell is defined as the conjunction of a constant
number of polynomial inequalities of constant degree.

Arya and Mount [12] addressed convex range searching in the relative
model, providing a data structure with O(logn+1/?"1) query time and O(n)
space. Their data structure is somewhat similar, but more complicated than

the one we describe here. Instead of storing the quadtree boxes in a quadtree,
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Figure 4.7: Convex range query. The points inside the gray quadtree boxes
are counted for a query with the convex range represented by the dashed line.

their data structure uses a BBD-tree (Section2.2). The depth of the BBD-tree
is O(logn), regardless of the value of ¢, which is part of the query, and not of

the data structure.

We define G as the set of quadtree boxes of diameter at least 2¢. Note that
|G| = O(1/¢%). The function g(R) is defined as the set of quadtree boxes from
G whose centers are contained in R. The data structure (G, g) answers convex
range queries in O(1/e%7!) time. We can efficiently compute g(R) in the real
RAM model if we assume that we can determine whether a range intersects
a quadtree box in O(1) time (as in [I2]). A variation of this data structure
uses a compressed quadtree to store arbitrarily small quadtree boxes. In this
variation, the parameter € only needs to be provided at query time, and the

storage space is O(n).

To analyze the query time, we consider the recursion tree of the query

algorithm. The diameter of the quadtree boxes at level £ is O(27¢). The query
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algorithm only makes a recursive call when vg intersects the boundary of R.
It follows from Lemma 2.4l that the number of recursive calls at level ¢ is

O(24=V). Summing the number of recursive calls for all levels we have

and conclude that the query time is O(1/e%7!) for d > 2.

The height of T is O(log(1/¢)), and insertions can be performed in
O(log(1/e)) time. To insert a point p, it suffices to perform a recursive
search for p, creating two new quadtree box, and adding the weight of p to

the boxes in the search path.

In the group version of the problem, deletions can also be performed in
O(log(1/¢)) time, without changing the data structure. The delete procedure

is similar to the insertion described above.

On the other hand, if a subtraction operation is not available, we can only
perform deletions if we explicitly store the elements. Using a tournament tree
[15], insertions and deletions can be performed in O(log(n/e)) time. This

approach requires O(n) space.

If we explicitly store the elements, the storage requirement becomes O(n),
but we can build the data structure without knowing ¢, and make ¢ part of

the query.
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4.3 Range Sketching

The semigroup definition of range searching focuses on queries whose results
can be stored in a constant number of memory positions. For example, the
result of a counting query is a single number between 0 and n, which is concise,
but provides no geometric information about the points in the range. Con-
versely, a range reporting query provides a complete description of the set of
points inside the query range, that can be as large as ©(n). In this section,
we consider the range sketching problem, which tries to fill this gap.

Let P be a set of n points in R? and s be a parameter specified at query
time. Given a range R € R, the result of a range sketching query qs(R) is a

set of pairwise disjoint hypercubes )1, ..., Q, such that, for 1 <i < k:

s/2 < diam(Q;) < s,

Q;NP+#0, and

Q; is associated with a weight

pGPﬂQi

An example of range sketching is presented in Figure [4.8 The output size
k is proportional to the smallest possible number of non-empty quadtree boxes
of diameter at most s that intersect R. Let § > 0 be an arbitrary constant,
and R" denote the locus of the points within distance at most ddiam(R) from

R. Let k' be the smallest number of non-empty quadtree boxes of diameter
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Figure 4.8: Example of range sketching.

at most s that intersect R™. In this section, we show how to answer range
sketching queries in O(log n+ k') time, with O(n) storage space and O(nlogn)
preprocessing time, for arbitrary ranges. We use the same unit-cost test as-
sumption as in Section 4.2 Note that answering a range sketching query
requires Q(logn + k) time in any decision tree based model and both & and &’
are O(1 + (diam(R)/s)?).

Let T be a compressed quadtree for the set P. We build a finger tree T”
for T as in Section 2.2l Given a query quadtree box @), a cell query consists
of finding the only quadtree box @’ in T such that PNQ = PNQ’. Using 1",
a cell query can be answered in O(logn) time (see Section [2.2]).

Let 0 > 0 be a constant. Let a be a valid diameter for a quadtree box, with
a between ddiam(R) and ddiam(R)/2. To answer a range sketching query, we
determine the set A of quadtree boxes of diameter a that intersect R. By
Lemma 23] we have |A| = O(1). Let B be the set formed by the result of
cell queries for each element of A. Note that |B| = |A| = O(1), and B can be

computed in O(log(n)) time.
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We answer the range sketching query by applying the following query al-

gorithm for each v € B:

1. If ygN R = 0, then return.
2. If |o| = 1, then return wv.
3. If diam(vg) < s, then return v.

4. Otherwise, recursively return J, ¢(R, ¢), for all children ¢ of v.

To analyze the time complexity, we look at the set of recursion trees of the
query algorithm above for each node v € B. By construction, the subtrees
rooted at the nodes in B are disjoint and only contain points within distance
0 from R. Because T is a compressed quadtree, every non-leaf node v has at
least 2 children, and contains more than one data point in v. Therefore, the
number of leaves and also the number of internal nodes in the recursion trees

is at most &’. The following theorem summarizes this result.

Theorem 4.3. There exists a linear space data structure which answers a
range sketching query in O(logn + k') time, where k' is the smallest number
of nonempty quadtree boxes of diameter at most s that are within distance

from the query range, and 6 > 0 is an arbitrary constant.
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Chapter 5

Halfspace Range Searching

In the halfspace range searching problem, the range space R is the set of
all halfspaces. Because of the unbounded nature of the ranges, halfspace
range searching cannot be solved in the relative model. In this chapter, we
present approximate halfspace range searching data structures for the semi-
group, idempotent, and emptiness versions of the problem, and also an exact
halfspace range searching data structure for the idempotent version.

In Section B.1], we present previously known upper and lower bounds for
exact halfspace range searching. In Section[5.2] we show that the approximate
version can be solved in O(1) query time, O(1/¢%) space, and O(n 4 1/¢%)
preprocessing time. This is noteworthy, given the high complexity of the exact
version. In Section [5.3] we make use of idempotence to achieve a space-time
tradeoff, building a data structure with m > 1/e(#1/2 storage space and
O(1/me?) query time. In Section 5.5 we use the approximate idempotent
data structure to improve the best known bounds of exact range searching, in

the semigroup arithmetic model, when the points are uniformly distributed in

62



the unit cube. In Section 5.4l we improve the idempotent data structure for
the case of emptiness queries.

Without loss of generality, we consider the range space R to be the set of
halfspaces of the form x4 < b+a1x1+ - -+ag_174-1 with —1 < aq,...,aq-1 < 1.
We call the terms aq,...,aq_1 slopes and b the xg-intercept. An arbitrary
halfspace can be converted into this form through an appropriate rotation. As
only 2d different rotations are necessary, one data structure can be kept for

each rotated set of points, without changing our asymptotic results.

5.1 Previous Results

Halfspace ranges are well studied not only because of their simple geometric
description, but also because halfspace ranges are related to two other impor-
tant types of ranges: simplices and spheres. It is believed that the complexity
of exact halfspace range searching is very similar to the complexity of ex-
act simplex range searching in both the semigroup and group versions [43].
Actually, most data structures for exact halfspace range searching in the semi-
group version can handle simplex ranges with little or no modifications. In the
emptiness and reporting versions, though, there are more efficient data struc-
tures for halfspace ranges than there are for simplex ranges. Exact spherical
range searching in d-dimensional space can be reduced to exact halfspace range
searching in (d+ 1)-dimensional space by projecting the points onto an appro-
priate (d + 1)-dimensional paraboloid [29].

Unlike orthogonal range searching, there are no known exact data struc-

tures with near-linear storage and polylogarithmic query time. We briefly
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mention some exact range searching results. There are two good surveys that

explain the problem in more detail: [2], [43].

There are essentially two types of exact data structures for the problem.
In the first type, the query time is logarithmic and the storage space is ex-
ponential (near O(n)). The best data structure of the first type is due to
Matousek [42], and has O(logn) query time with O(n?/log? n) storage space.
Efficient data structure with logarithmic query time are often described in
terms of the dual problem of point location (described in Section B.3.1]). A
simple and efficient way to solve the point location problem uses Chazelle’s

hierarchical cuttings [24].

The second type of data structure uses linear or almost linear space, but
the query time is exponential in d. The best data structure is due to Ma-
tousek [42], and has O(n'~4) query time with O(n) storage space and O(n'**)
preprocessing time, where ¢ is an arbitrarily small constant. The structure is

based on the idea of simplicial partitions, which we describe in Section

In [42], Matousck gives a space-time tradeoff which gives O(n/m) query
time with m units of storage space. This data structure is believed to have
optimal query time for linear space, and almost matches the simplex range
searching lower bound. There may be room for improvement by reducing the
preprocessing time to O(nlogn), as well as developing simple, more practical

structures with similar complexities.

Bronnimann, Chazelle, and Pach [I8] present a lower bound result that if

m > n units of storage space are allowed, the query time is
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d—1

( n >1_d(d+l)
logn

(@ [ S A—

m

=

The lower bound above uses the semigroup arithmetic model, and holds on
the expected case when the data points are uniformly distributed in the unit
hypercube. The most efficient exact data structure known for the semigroup
version is due to Matousek [42] and has O(n/mi) query time with m storage
space. For small d, the gap between the best general lower bound and the best
upper bound is significant. For example, when m = O(n) and d = 2, there is

a Q(n*/3) lower bound, and a O(n/2) upper bound.

Arya, Malamatos, and Mount [10] studied the importance of the semigroup
being idempotent. A semigroup (S, +) is idempotent if t+z = x for all z € S,
and is integral if kz # x for all z € S\ {0}, and k& € N*. They showed that,

when the semigroup is integral, the lower bound for exact halfspace range

n
U —=— |-
mad2+1 logn

They also used idempotence to develop more efficient spherical range searching

searching can be improved to

data structures, in the relative model. We show that idempotence can be used
not only to improve halfspace range searching in the absolute model, but also

in the exact version assuming uniform distribution.

Chazelle, Lin and Magen [26] considered the approximate version of the
problem in the absolute model, without assuming that d is a constant. They

present a data structure with O((d/e)?) query time and dn®1/=") storage.
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Their data structure is based on ball range searching in the Hamming cube.

5.2 Approximate Semigroup Version

In this section, we describe a data structure to solve approximate halfspace
range searching with O(1) query time, O(1/£%) storage space, and O(n+1/=%)
preprocessing time. The general idea is to define a sufficiently large set G of
halfspaces, so that any query halfspace is approximated by some halfspace in G.
As no two halfspaces in G are too similar to each other, efficient preprocessing
requires building approximate data structures for subdivisions of the unit cube.

We define the set of generators G as the set that contains (), [0,1]¢, and
the halfspaces whose boundary intersect the unit hypercube and have the
slopes and the z4-intercept as multiples of a parameter &’ to be specified later
(Figure B.0). Therefore, G contains O(1/¢'?) halfspaces. Given a halfspace
R € R, the function g(R) is the set containing the single halfspace obtained
by rounding all slopes and the x4-intercept of R to the closest multiple of &’. If
the boundary of R does not intersect the unit hypercube, then g(R) is defined
as {[0,1]4} if [0,1]¢ C R, and {0} if RN [0,1]¢ = 0.

Lemma 5.1. The halfspace in g(R) (d<’/2)-approximates R.

Proof. The case when the boundary of R does not intersect the unit hypercube
is trivial. Let aq,...,aq4_1,b denote the slopes and the z4-intercept of R, and
ay,...,al,_,,b" denote the slopes and the z4 intersect of g(R). With some

simple manipulations, we can show that the maximum distance § between the

boundaries of R and R/, along the x, axis and inside the unit box, is
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d—1
S< b=+ |ai—ail.
i=1
As V' and a; are obtained by rounding b and a; to the closest multiples of

', we have [b — V| <€'/2, and |a; — a;] < €'/2. Therefore, 6 < de’/2. O

To build an e-approximate data structure, we set & = 2¢/d. Using

Lemma [B.1], we have:

Theorem 5.2. (G, g) is an e-approximate halfspace range searching data struc-
ture with O(1/e%) storage space, O(1) query time, and 6(n+ 1/&%) preprocess-

g time.

It is easy to implement the query algorithm in the real RAM model, without
changing the storage space or the query time, as long as integer division is
available. Preprocessing the data structure efficiently is not trivial, though.
We discuss two ways to perform the preprocessing. Both approaches produce
an approximation factor greater than e, therefore the parameter € needs to be
scaled accordingly. The first way is similar to Chan’s discrete Voronoi diagram
construction [19]. Consider hyperplanes parallel to one arbitrary orthogonal

hyperplane to be horizontal.

1. Like cutting a loaf of bread, partition the unit hypercube in 1/¢ horizon-

tal slices, each of thickness ¢.

2. Project the points from each slice to a (d — 1)-dimensional horizontal
hyperplane that is parallel to the slice boundary and passes through the

center of the slice.
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3. Recursively compute a (d — 1)-dimensional approximate halfspace range
searching data structure for each slice. Use the O-dimensional case as a

trivial base case.

4. For each generator G € G (|G| = 1/¢?), and each slice s (out of 1/e
slices), perform a query for the intersection of G and s using the data
structure for the slice s. Make w(G) the sum of the results of all queries

from generator G.

Disregarding the additive term of O(n), the preprocessing time 7'(d) for a
d-dimensional data structure satisfies T(0) = O(1), and T(d) = O(1/&%*!) +
(1/e)T(d — 1) = O(1/&%+1).

The data structure obtained this way will not be an e-approximate data
structure, as the error accumulates through the d levels of the recursion. Ad-
ditionally, projecting the points from a slice into a hyperplane adds an error of
/2 at each level. Nevertheless, the data structure is O(e)-approximate (more
precisely, (3de/2)-approximate).

The second way to preprocess the data structure is:

1. Divide the unit hypercube in 2¢ identical hypercubes.

2. Recursively compute an approximate halfspace range searching data
structure for each subdivision. Use the case when the hypercube has

diameter € as a base case.

3. For each generator G € G (|G| = 1/¢%), and each subdivision s (out of 2¢

subdivisions), perform a query for the intersection of G' and s using the
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data structure for the subdivision s. Make w(G) the sum of the results

of all queries from generator G.

Disregarding the additive term of O(n), the preprocessing time 7'(0) for
a data structure of diameter ¢ satisfies T'(¢) = O(1), and T'(0) = O(§/e?) +
29T(5/2) = O(Slog(d/¢) /&?).

We should note that the error accumulates through O(log(1/e)) levels.
Consequently, the data structure is O(elog(1/¢))-approximate. We can set
e = £'/log(1/€'), and obtain an O(&’)-approximate data structure in O(n +

log®*(1/¢") /€'") preprocessing time.

5.3 Approximate Idempotent Version

In this section, we make use of idempotence to achieve a space-time tradeoff,
building a data structure with m > 1/£@+1/2 storage space and O(1/me?)
query time. The idea is to use a set of properly placed large balls as generators
(Figure [£.2)). There are two sources of approximation error: one comes from
the fact that we are approximating flat surfaces with balls, and the second one
comes from the fact that we may use balls that are not exactly tangent to the
surface being approximated. First, we present a scheme involving an infinite
number of generators, which addresses the first issue. Then, we reduce this to
a finite set of generators.

Let 7 > v/d + 1 be a constant, and let ¢ < 1/2 be an approximation
parameter. We define G’ to be the set of balls B of radius r such that B is
centered at (zy,...,x4) where xq,..., 14 1 are multiples of y/re/d. Note that

|G’| is infinite, and there is no restriction on z4. Given a halfspace R € R, let
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Figure 5.2: General idea of the idempotent version of the halfspace range
searching data structure.
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Figure 5.3: Proof of Lemma [5.3l

g'(R) be the subset of balls from G’ that are tangent to the boundary of R and

are contained in R.
Lemma 5.3. (G',¢') (¢/2)-generates R.

Proof. As r > /d, it suffices to show that every point in the boundary of R,

and inside the unit hypercube, is within distance at most /2 of some ball in
9(R).

Look at the point of tangency ¢(B) between a ball B € ¢g(R) and the
boundary of R. We can prove (using the Pythagorean Theorem) that there is
a (d — 1)-dimensional ball B’, on the surface of R, of radius greater than /re,
and centered at t(B), such that all points inside B’ are within distance /2 of
B. The points t(B), for B € g(R), form a grid of distance at most /re/v/d
on the surface of R. As the radius of B’ is at least /re, every point in the

surface of R is contained in at least one ball B’ (Figure [B.3]). ]

We now define G C G’ as the set of balls B such that

1. B has radius r;
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2. there is a hyperplane i with slopes between —1 and 1, that is tangent
to B at point p, with p € [—/re/d, 1+ v/re/d]*" x [0,1 + v/d]; and

3. B is centered at (x1,...,2z4) where xy,..., 24 1 are multiples of \/re/d,

and x4 is a multiple of /2.

We define a column of G as the set of balls with centers having the same
x1,...,Tq—1 coordinates. The function g(R) is obtained by replacing each
ball B’ from ¢'(R) that approximates the boundary of R within [0, 1]¢, with

the closest ball B € G such that B C R. Intuitively, the ball B is the ball

immediately below B’ in the same column.

Theorem 5.4. (G, g) is an e-approzimate halfspace range searching data struc-
ture, for the idempotent version, with internal approzimation, m > 1/d+1)/2
storage space, O(1/me?) query time, and O(n +log® ' (1/¢)/e?) preprocessing

time.

Proof. The balls in G are arranged in O((r/¢)@"1/2) columns, and there
are O(1/e) balls in each column, therefore the storage space is |G| = m =
O(rld=1/2 Jeld+1)/2)  The query time is O((1/re)@Y/2) = O(1/me?), for
r > 1+ vd. We defer the discussion on how to preprocess the data struc-
ture until Section

The set G has a ball within distance €/2 from any ball in G’ that can
g-approximate the boundary of a halfspace in R inside the unit hypercube.

From Lemma [5.3] we conclude that the set g(R) e-approximates R. O]
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5.4 Approximate Emptiness Version

In this section, we show how to reduce the storage space of the idempotent
data structure for the special case of range emptiness queries, that is, for the
semigroup ({0, 1}, V). In the plane, the exact problem can be solved in O(log n)
query time and O(n) space using a binary search in the convex hull [51]. For
d = 3, we can also have logarithmic query time with almost linear O(nlogn)
space [30]. For d > 3, the best known upper bounds are only slightly better
than the semigroup version. Our approach is to modify the data structure from
Section [5.3] to obtain some kind of monotonicity, and then apply compression
to reduce the storage space.

For a set of points B, let 7(B) = {(z1,...,2q4) @ I(z1,...,Tq-1,2)) €
B with 2!, > z4}. If B is a ball, then 7(B) is a bullet-shaped object formed
by the ball and a semifinite cylinder extending downwards. We modify the set
G from Section into a set Gepp = {7(B) : B € G}. It is not hard to see
that Theorem [5.4] still holds if we replace G with Gy,

The set Gemp can be compressed, because generators G € Gy, With the
same T, ...,xq 1 coordinates can be ordered by their x; coordinates, and the
value of w(G) can only change once. Therefore, the storage space requirement
is reduced by a factor of O(1/e). Preprocessing can be performed using the
technique described in Section [6.2], but using a halfbox quadtree for the empti-
ness version constructed using an approach similar to Chan’s discrete Voronoi

diagram construction [19].

Theorem 5.5. There is an c-approximate halfspace range searching data

d—1)/2

structure for the emptiness version with m > 1/8( storage Space,
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O(1/me®Y) query time, and O(n + 1/&?) preprocessing time.

Next, we describe another approach to this problem, which consists of
computing an e-kernel [3| [19] containing O(1/ £T") points, and then using an
exact halfspace emptiness data structure with the e-kernel as the set of points.
The latter approach attains lower query times for the case of O(1/g(@=1/2)
space, but involves complex data structures from [41] for d > 3.

An important tool in approximating geometric measures is called e-kernel,
and its applications are explained in detail in [3]. Let w(u, P) denote the width
of P with respect to direction u. An e-kernel is defined as a subset P’ of P

such that

(1-¢)w(u, P) < w(u, P,

for all directions u € R?.
We define an e-hull of P as a subset P’ C P such that, for all directions

u € R4,

w(u, P) <w(u, P') +e.

As P C [0,1]%, an e-kernel is a (v/de)-hull. Chan showed that an e-kernel of
size O(1/9=1/2) can be constructed in O(n + 1/¢4=4/2) time [19]. We show

that we can use the point approximation technique, using P’ as the e-hull.

Lemma 5.6. Let P be a set of data points, P' an e-hull of P, and h a halfspace
with boundary Oh. If P' N\ h is empty, then P N h contains only points within

distance at most € from Oh.
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Figure 5.4: Proof of Lemma 5.6

Proof. Let hy, hy (respectively b, ) denote the two supporting hyperplanes
for P (resp. P’) that are parallel to Oh, and perpendicular to the direction
u (Figure B4l). If Oh N Ay # O or Oh N kY # 0, the theorem holds because
P'Nh # (. Without loss of generality we say h) separates Oh from h}. If
Oh N hy = (), the theorem holds because P N'h = (). We only need to handle
the case where h contains h; but not h|. As the distance between h; and A}

is at most € because of the e-hull definition, the theorem holds. n

As P’ C P, we know that if PN h # (), then PN h # (. Using this
and Lemma [5.6] we conclude that an exact query with P’ is an e-approximate
query for P. Some of the best known near-linear space data structures to

answer exact halfspace emptiness queries are:

d Query Time Size Reference

d=2 O(logn) O(n) Preparata and Shamos [51]
d=3 O(logn) O(nlogn) Dobkin et al. [30]

d>4 O(n'~1/1d4/212000e™n)y O (p) Matousek [41]

d>4 O(logn) O(nl¥/2)  Matousek and Schwarzkopf [46]
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Replacing n with 1/£(=1/2 we have:

d Query Time Size

d= O(log(1/e)) O(1/e(@=1/2)

d=3 O(log(1/¢)) O(1/£@1/210g(1/))
even d >4 O(1/eld=3)/241/dg000e™(1/2)y (1 [ld=1)/2)

odd d>5 O(1/eld=3)/2)2000g"(1/2) O(1/ld=1/2)

even d >4 O(log(1/e)) O(1 /=11
oddd>5 Of(log(1/e)) O(1 /eld=1)?/4)

The data structures described in the last two lines of the table above are
not as efficient as the much simpler data structure with O(1) query time and
O(1/£9=1) space from Theorem The following theorem summarizes the

results in this section:

Theorem 5.7. There is an c-approximate halfspace range searching data

structure for the emptiness version with

O(\/1/¢) space, and O(log(1/e)) query time, for d = 2;

O(\/1/elog(1/e)) space, and O(log(1/e)) query time, for d = 3;

O(1/£99=Y/2) space, and O(1/e(d=3)/2+1/d)2000e" (1)) qyery time, for even

d > 4;

O(1/£19=D/2) space, and O(1/e(@=3)/2)200e" /&) gyery time, for odd d >
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5.5 Exact Idempotent Version

In this section, we show how to use the approximate idempotent data structure
to build an exact halfspace range searching data structure. The data structure
makes use of idempotence to improve over the most efficient exact data struc-
ture previously known. This exact data structure is defined in the semigroup
arithmetic model [I0, I8, 22], and has O(n'~2/(¢+1)) expected query time with
O(n) space, matching the lower bound proved in [I§] up to logarithmic factors.
The theoretical importance of the data structure relies on the fact that uni-
form distribution and the semigroup arithmetic model are also assumed in the
lower bound proved in [I§]. Therefore, we open some important theoretical and
practical questions: Is the average case complexity for uniformly distributed
data strictly lower than the worst case complexity? Does the semigroup arith-
metic model allow more efficient idempotent halfspace range searching data
structures than the real RAM model? We do not provide an efficient way to
determine the set of generators used to answer a given query. Consequently,
the results hold only for the semigroup arithmetic model. An improved data
structure that worked in the real RAM model would be of practical interest,

even if it relied on the uniform distribution of the points.

The general idea of the data structure is to properly set the parameter
¢ used in the data structure from Section [(.3], in order to make the expected
number of points in the fuzzy boundary equal to the query time of the approx-
imate data structure. Generators for individual points can be used to count

the points in the fuzzy boundary.

In this section, we assume that the n data points are uniformly distributed
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in the unit hypercube [0, 1]¢. Let m > n denote the storage space, and & =
(nm) =Y+ We apply Theorem [5.4]to build an e-approximate data structure

(G1, g1) with O(m) storage space and query time

1 pl—1/(d+1)
O (m_gd) =0 <W> = O(ne).

As the data structure (G, g;) provides internal approximation, no data
points outside R are counted, but some data points inside R and within dis-
tance € from the boundary may not be counted. To answer the query exactly,
we set Go = {{p} : p € P} and define go(R) as the set of generators {p} € G,
such that p € R and p is within distance ¢ from the boundary of R. As the
data points are uniformly distributed within the unit hypercube, for any fixed
R € R, the expected number of generators in go(R) is E(|g2(R)|) = O(ne).

Let G' = G1UG,, and ¢'(R) = g1(R)Uga(R). To use the standard semigroup
arithmetic model definition of generators, let G denote the set of linear forms

> pepnc W(p) for all G € G'. In summary, we have the following.

Theorem 5.8. G is an exact halfspace range searching data structure with
m > n storage space and O(n*~Y( @D /m/@+0) eopected query time, in the
semigroup arithmetic model and assuming that the points are uniformly dis-

tributed in a hypercube. The query time is O(n'~/( @) when m = n.

Theorem 5.8 matches the lower bound of Q(n!~(@=D/dd+D) /i a) [18] for the
case of m = n (up to logarithmic factors). The lower bound is also in the
semigroup arithmetic model, and also assumes that the points are uniformly

distributed inside the unit hypercube. Therefore, improving the lower bound
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for the case of m = n, if at all possible, would require either a different model

of computation or a different set of data points.
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Chapter 6

Halfbox Quadtree

In this chapter, we introduce a data structure called the halfbox quadtree, and
present some applications. In Section [6.I, we define the data structure, and
explain how to perform the preprocessing. In Section [6.2] we analyze the
query time of the halfbox quadtree for spherical ranges. We also show how an
additional set of generators can be used to provide a space-time tradeoff. In
Section [6.3, we show how to use the halfbox quadtree to answer approximate
nearest neighbor queries. In Section[6.4] we analyze the query time of the half-
box quadtree for simplex ranges, in the group version, and fat simplex ranges,
in the semigroup version. In Section[6.5, we modify the halfbox quadtree to be
efficient for range reporting. In Section [6.5] we modify the halfbox quadtree

to be efficient in the data stream model.
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Figure 6.1: Representation of a halfbox quadtree.

6.1 Definition and Preprocessing

A quadtree bor is a box that can be obtained by recursively dividing the unit
hypercube into 2% identical hypercubes. A quadtree is a hierarchical organi-
zation of a set of quadtree boxes, where the root of the tree corresponds to
the unit hypercube, and the 2 children of an internal node correspond to the
subdivisions of the parent node.

We define a half quadtree box (halfbox for short) as the intersection of a
quadtree box and a halfspace. The size of a halfbox is the diameter of the
corresponding quadtree box. A halfboxr quadtree is a quadtree T' containing
all quadtree boxes of diameter at least £, where each quadtree box () is as-
sociated with an (g/2)-approximate halfspace range searching data structure
for the bounding box ). If we use the semigroup halfspace data structure
(from Theorem [5.2)), the resulting halfbox quadtree has O(log(1/¢)/e?) stor-
age space, and O(1) query time for approximate halfbox range queries. A
halfbox quadtree is represented in Figure [6. 11

If we build a semigroup halfspace range searching data structure for each
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halfbox from the scratch, the total preprocessing time for the halfbox quadtree
is O(n + log®™?(1/¢)/e?). We can slightly improve the preprocessing time
to O(n + log™™(1/€) /) by noting that the preprocessing of the semigroup
halfspace range searching data structure for the unit hypercube already builds
a data structure for every quadtree box, in a bottom-up fashion. The fact that
the value of € needs to be modified in the preprocessing algorithm, because of
the error accumulation, is easily remedied by discarding unnecessary entries

from the data structures at each level.

Theorem 6.1. The halfbox quadtree uses O(log(1/¢)/e?) storage space, can
be constructed in O(n + log™™ (1/¢)/e?) preprocessing time, and answers e-

approzimate halfbox range queries in O(1) time, in the semigroup version.

6.2 Spherical Range Searching

In spherical range searching, the ranges are Euclidean balls. The exact ver-
sion of the problem can be reduced to halfspace range searching by projecting
the points onto an appropriate (d + 1)-dimensional paraboloid [29]. Spheri-
cal range queries in P are equivalent to halfspace range queries in P’. Arya,
Malamatos and Mount [8 [10] present approximate data structures, in the rel-
ative model, with m > nlog(1/e) space and O(n*~a /mae?1) query time, for
general semigroups, and O(n!/2=1/24 /;1/2dg(d=1)/2) query time for idempotent
semigroups.

In this section, we show that the halfbox quadtree answers spherical range
queries in O(1/ 5%) time. The data structure works for general semigroups.

We also show how to reduce the spherical range query time by increasing
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o N

Figure 6.2: Approximating a ball using quadtree boxes (left) and half quadtree
boxes (right).

the space, adding some extra generators to the data structure. Figure
illustrates how a small number of halfboxes can approximate a ball significantly

better than a larger number of quadtree boxes.

Theorem 6.2. The halfbozx quadtree is an c-approrimate range searching data
structure for spherical ranges with O(log(1/¢)/e?) storage space, O(1/4=1)/2)
query time, and O(n +log*(1/e) /) preprocessing time. If the query ball B

has radius r, then the query time is O((min(r, 1)/(r + 1)e)@=1/2).

Proof. 1f we start with () as the unit hypercube, and recursively subdivide ¢
until we can approximate B by a halfbox associated with (), we notice that
a recursive call is only performed when @) intersects the boundary of B. Let
§ = O(1/2%) denote the diameter of @ at level i in the recursion tree, and
A = O(min(r, 1)) be the diameter of the intersection of B and the unit box.
Using Lemmas 2.2] and 2.4] and summing the number of recursive calls, we

conclude that the query time is

log O(1/+/72) |
S (min(r, 1)/0(1/2))* = O((min(r, 1)/(r + 1)) ~/2),

=0
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]

The halfbox quadtree can be used to preprocess the approximate idempo-
tent halfspace range searching data structure from Theorem (.4l The total
preprocessing time for a data structure of size m = rld=1/2/c(d+1/2 " with

l<r<l/e is

0 (s B (1)) <o (s L) 6 (s 1)

The spherical range searching data structure from Theorem has min-
imum storage space, except for a logarithmic factor (because we could place
1/&? points in a grid, and retrieve each individual weight using ranges of radius
¢). It is natural to ask how we could improve the query time by increasing the
storage space. Let r > 1 be a parameter, and consider the set of generators G

formed by 0, [0, 1], and the balls B such that:

1. B has radius at most r,
2. the radius of B is a multiple of /2,
3. the boundary of B intersects [0, 1]¢, and

4. B is centered at (x1,...,zq) where x4, ..., x4 are multiples of £/2v/d.

Theorem 6.3. The halfbox quadtree, together with (G, g), is an e-approrimate
range searching data structure for spherical ranges with m = ré /4Tl > 1 /%!
storage space, O(l/m%’flded’%’fld) query time, and O(n +m/e\=V/2) prepro-

cessing time.
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Proof. The storage space is dominated by |G| = O(r?/e%™') = m. Any ball
R € R of radius at most r > 1 is e-approximated by a ball g(R) € G. There-
fore, queries with radius at most r can be answered in O(1) time. Using the

halfbox quadtree, queries with radius greater than r can be answered in

]

In the low storage version, Theorem gives a data structure with
O(1/£%1) storage space, O(1/£4=1/2) query time, and O(n+ 1/£34/2+1/2) pre-
processing time, which is inferior to the data structure from Theorem 6.2l In
2d+1)

the high storage version, Theorem gives a data structure with O(1/e

storage space, O(1) query time, and O(n + 1/£°¥?+1/2) preprocessing time.

6.3 Approximate Nearest Neighbor

The nearest neighbor problem is a well studied problem in computational
geometry. The nearest neighbor problem consists of preprocessing a set P of
n data points in d-dimensional space in a way that, given a query point ¢
(generally not in P), we can efficiently find the point p* € P that minimizes
dist(q,p*). The point p* is called the nearest neighbor (NN) of the point ¢. In
the planar case, the problem is often solved using the Voronoi diagram and a
point location data structure [29]. For d > 3, no known data structure achieves
both near-linear space and polylogarithmic query time.

In the relative model, the approximate nearest neighbor problem consists
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ANN(q)

Figure 6.3: Approximate nearest neighbor of a point g.

of finding a point p’ € P such that dist(q,p’) < (1 + ¢)dist(q,p*). The point
p is called an approzimate nearest neighbor (ANN) of the point ¢q. The litera-
ture on approximate nearest neighbor in the relative model is extensive (some
references are [0, [7, [IT), 13, [36]). Some of the best space time tradeoffs for
the problem are presented in [7], and include O(log(n/e)) query time with

O(n/e%1) space and O(logn + 1/£4=1/2) query time with O(n) space.

In the absolute model, the approzimate nearest neighbor problem consists
of finding a point p’ € P such that dist(q,p’) < e+dist(q, p*) (Figure[6.3). The
point p’ is called an e-nearest neighbor of the point q. We show how to use the
halfbox quadtree (with the approximation error of the halfbox quadtree set to
£/2) to solve the approximate nearest neighbor problem in the absolute model.
As usual, we assume that the data points are inside the unit hypercube [0, 1]¢,
but we do not make any assumptions about the query point ¢q. Note that,
if we assume that ¢ € [0, 1}‘1, then it is easy to answer approximate nearest

neighbor queries in O(1) time with O(1/&?) storage space.
In Section B£.4l we describe a data structure which answers e-approximate
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halfspace emptiness queries in O(1) time, with O(1/e97!) storage space and
preprocessing time. We can build a half-box quadtree using this data structure
and use the half-box quadtree to solve the emptiness version of approximate
spherical range searching. The storage space of the halfspace data structure

associated with a halfbox quadtree node at level £ is O((1/2%)471). As there

are 2% nodes at level ¢, the total size of the half-box quadtree for the emptiness
version is
log(O(1/¢)) 1\ ¢! log(O(1/¢)) ot
de _ _ d
=0 =0

Consequently, we have:

Theorem 6.4. There exists a constructive e-approximate range searching data
structure for spherical ranges with O(1/?) size, O(n + 1/&%) preprocessing

time, and O((1/€)4=Y/2) query time, for the emptiness version of the problem.

We can easily modify the data structure to report one of the points inside
the approximate spherical range, in case the range is not empty. This type of
query is called one-reporting query.

Given a query point ¢, we can determine the minimum and maximum
distance between ¢ and the region [0,1]¢ in O(1) time. We call these two
distances 19 and 7, respectively. Assuming that |P| > 1, for otherwise the
problem is trivial, we know that ry < dist(q,p*) < r; and also that r, —rg =
O(1).

We denote by B(c,r) the sphere with radius r centered at the point

o

We can perform a binary search to find the minimum value of r, with ry <

r < 71 and 7 being a multiple of /2, such that ¢./2(B(q,7)) is not empty.
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The binary search performs O(log(1/eps)) queries, and the total approximate
nearest neighbor query time is O(1/e@"Y/2log(1/¢)). The following theorem

summarizes the properties of this data structure.

Theorem 6.5. The one-reporting version of the halfbox quadtree can answer
approzimate nearest neighbor queries (in the absolute model) with O(1/&?)
storage space, in O((1/¢)4=V/210g(1/¢)) query time, and O(n + 1/&?) prepro-

cessing time.

6.4 Simplex Range Searching

In simplex range searching, the ranges are d-dimensional simplices. If m units
of storage are allowed, then the query time is Q(n/{/m) in the plane, and
Q((n/logn)/mi) in d-dimensional space [22]. In the exact version, the most
efficient linear size data structure is due to Matousek [42] and matches the
lower bounds up to logarithmic factors, achieving O(nl_%) query time for the
case of linear storage space.

We show how to answer e-approximate simplex queries in O(log(1/¢)) time
for d = 2 and O(1/¢%72) time for d > 3, using the halfbox quadtree. Our query
algorithm requires the use of a subtraction operation, and so applies only in the
group setting. If the query simplex is fat, the use of subtraction is unnecessary,
and the same query time is attained in the semigroup version.

We recursively answer a query ¢(Q, R) with a simplex range R in the

quadtree box @), starting with ) as the unit hypercube.

1. If Q N R =0, then we return 0.
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2. f QN R = Q, then we return the precomputed w(Q) = > pro w(p).

3. If the diameter of @) is less than e, then we verify whether R contains

the center of () and answer accordingly.

4. If @) does not contain any (d — 2)-faces of R, then there is a set H of at
most d—+ 1 halfspaces that form the complement of R, and the halfspaces
in H are pairwise disjoint. Then, we can return w(Q) — >, .5 ¢:(hNQ),
where hN @ is a halfbox, and ¢.(+) is the result of the approximate query

using the halfbox quadtree.
5. Otherwise, we return the sum of ¢(Q’, R) for all 2¢ subdivisions Q' of Q.

To analyze the query time, we look at the recursion tree of the query
algorithm. The diameter of the quadtree boxes at level £ is ©(27¢). The query
algorithm only makes a recursive call when @) intersects the a (d — 2)-face of
R. As R is the intersection of a constant number of halfspaces, the number
of (d — 2)-faces of R is also constant. As R is convex, each (d — 2)-face of R
inside the unit box is a convex polytope of constant diameter. It follows from
Lemma 2.5 that the number of recursive calls at level £ is ©(244=2)). Summing

the number of recursive calls for all log(©(1/¢)) levels we conclude:

Theorem 6.6. The halfbozx quadtree is an c-approrimate range searching data
structure for simplex ranges, in the group version, with O(1/e%log(1/e)) stor-
age space, O(log(1/¢)) query time for d =2, O(1/e%42) query time for d > 3,

and O(n + log® ' (1/) /%) preprocessing time.

Next, we consider the semigroup version of the data structure, where a

subtraction operation is not available. In the semigroup version, we require

90



the query simplex to be fat. A shape R is said to be fat when there is some
constant « such that, for all d-dimensional balls B not fully containing R, we
have

a volume(R N B) > volume(B).

Our results only require a weaker definition of a fat simplez: a simplex is fat
when the angle between any two (d — 1)-dimensional hyperplanes that form
the boundary of the simplex is at least a constant. A simplex is skinny when
it is not fat.

The need for subtraction when answering simplex range queries arises from
the fact that a simplex may be skinny (see Figure[6.4] for a 2-dimensional exam-
ple). In particular, a skinny simplex may have ©(¢) width in a given direction
uw and ©(1) width in any direction perpendicular to u. The d-dimensional
volume of such simplex is O(g), and it does not fully contain any halfbox of
volume greater than ©(e?). Therefore, if no subtraction is allowed, O(1/e%!)
halfboxes are necessary to approximate such skinny simplex.

We recursively answer a query ¢(Q, R) with a fat simplex range R in the

quadtree box @), starting with ¢ as the unit hypercube.
1. If QN R =0, then we return 0.
2. If QN R = B, then we return the precomputed w(Q) = > pro (D).

3. If the diameter of () is less than e, then we verify whether R contains

the center of ) and answer accordingly.

4. If @ contains only one (d — 1)-face h of R, then we return the result of

the query halfbox @ N A.
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Figure 6.4: Representation of a skinny triangle.
5. Otherwise, we return the sum of ¢(Q’, R) for all 2¢ subdivisions Q' of Q.

To analyze the query time, we look at the recursion tree of the query
algorithm. The diameter of the quadtree boxes at level £ is ©(27¢). The
query algorithm only makes a recursive call when () intersects more than one

(d — 1)-faces of R. Using the packing Lemma 2.6 we conclude:

Theorem 6.7. The halfbox quadtree is an e-approximate range Ssearch-
ing data structure for fat simplexr ranges, in the semigroup version, with
O(1/e%log(1/e)) storage space, O(log(1/¢)) query time for d = 2, O(1/%°2)

query time for d > 3, and O(n + log® ' (1/¢) /e?) preprocessing time.

Proof. We sum the number of recursive calls level by level in the recursion

tree. Using Lemma the query time is:

o) ((2%’)”) ~0 ((é)d_Q + log(l/e)) .

log O(1/¢)

1=0
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6.5 Approximate Range Reporting

The range reporting problem involves preprocessing a set P of n points in R?
so that given a region R, that is drawn from a predefined set of shapes R,
the set P N R can be computed efficiently. The range reporting problem is

a special case of the range searching problem where the semigroup is (2F,U),

and w(p) = {p}.

Range reporting deserves special attention because some assumptions made
for the semigroup version of the problem do not hold for range reporting in the
real RAM. First, storing a generator G with |G| data points requires Q(|G)
space (compared to O(1) space for the semigroup version). Second, reporting
k points takes (k) time, which means we can spend more time answering

queries that return more points.

The generators in the halfspace range searching data structures from Chap-
ter [B] are intentionally large, so queries can be answered efficiently. The semi-
group halfspace range searching data structure has ©(1/¢%) generators con-
taining ©(1/e?) points (assuming the data points are initially approximated
to a grid, otherwise the number of points can be even higher). Therefore, an
unmodified reporting version of the halfbox quadtree would take ©(1/£%?) stor-
age space. Fortunately, we can exploit some properties of the data structure
to reduce the storage space to O(log?™(1/¢)/e%).

Consider an e-approximate halfbox quadtree 77 for the unit hypercube.
For each halfspace h with a corresponding generator g(h) in the root of 17, we
link g(h) to a set of 2¢ generators, instead of explicitly storing P N h. The 2¢

generators are obtained by querying ¢(h) in the data structure corresponding
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to each child of the root. A second tree T; can be obtained by repeating the
procedure above, from top to bottom, to every subtree of T}. The leaves of T5
store the set of points contained in the corresponding cell, and no data points
are stored anywhere else in the tree. Since the leaf cells are disjoint, and each
generator in an internal node stores only 2¢ = O(1) pointers, the storage space
is O(n + log(1/¢)/e?).

In order to perform halfspace or halfbox queries, we need to follow the
links all the way to the root. Consequently, the query time can be as high as
O(1/e?), since we need to examine all leaf nodes inside the query halfspace.
To bound the query time as a function of k, the number of points reported,
we need to perform some kind of path compression in the tree.

First, we note that we do need to keep links to empty leaves or, more
generally, links that can only lead to empty leaves. Let T3 be the tree obtained
by removing from 75 all the links that are not in any path from the root data
structure to a non-empty leaf. Second, we compress chains of single links. Let
Ty be the tree obtained from T3 by directly linking a node v; to a leaf node
U9, Whenever v, is the only leaf node that can be reached from v;. We call T}
a reporting halfbox quadtree.

The set of links obtained from a single query halfbox in T defines a tree
where each internal node has at least two children, and all leaf node store at
least one distinct reported data point. The cost of traversing this tree when
answering a query is proportional to the number of leaf nodes. The query time
for halfspace and halfbox range searching to report k points is O(k).

The tree Ty can be preprocessed using the second halfspace range searching

preprocessing algorithm from Section 5.2l The trees 73 and finally T}y can be
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Range ‘ Version ‘ Query time

halfspace reporting | O(k)
spherical | reporting | O(k + 1/e(d=1/2)
fat simplex | reporting | O(k 4+ 1/&@=2 +log(1/¢))

Table 6.1: Query time of the reporting halfbox quadtree for different range
shapes. The storage space and preprocessing time are O(n + log?!(1/¢)/e%).

obtained from 75 in time proportional to the size of the original tree using tree
traversal.

It is important to note, though, that because of error accumulation, as
in the second preprocessing algorithm from Section (.2l the query will be

O(elog(1/e))-approximate. By adjusting ¢ accordingly, we conclude:

Theorem 6.8. Let R be a set of ranges for which the halfbor quadtree can
answer e-approzimate range queries in f(e) time, in the semigroup version. A
reporting halfbox quadtree can answer e-approximate range reporting queries
for R in O(f(e)+k) query time, with O(n+1log®(1/¢)/e?) storage space and

preprocessing time.

The query time of the reporting halfbox quadtree for different range shapes

is summarized in Table [6.1]

6.6 The Data Stream Model

Recently, a lot of attention has been given to problems where the data is too
large to be stored statically. In these applications, the input is presented as an

uncontrolled stream of data, which can only be examined once. Such problems
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often arise from network monitoring, sensor networks, telecommunication, fi-
nancial applications and others [14].

In the data stream model [14, [48], the input is too large to fit in memory,
and possibly unbounded. Therefore the storage space should be independent
of n (sometimes polylogarithmic functions of n are acceptable). Also, the data
points are examined one at a time, in a single pass, while queries regarding
the points that have already been seen need to be answered efficiently.

Exact range searching clearly requires 2(n) storage for all reasonable sets
of ranges, and approximate range searching in the relative model requires Q(n)
storage when the query ranges can be scaled to arbitrary small ranges, because
the weight of each individual point can be recovered. Therefore, there is no
hope to answer exact range searching or approximate range searching in the
relative model in the data stream model. Suri, T6th, and Zhou [53] consider
approximate range counting in the data stream model, approximating the
number of points inside the query region. In this section, we modify the
halfbox quadtree to design a data structure that is even more efficient in the
data stream model.

We use three parameters when evaluating a data structure in the data
stream model: storage space, query time, and update time. The update time
refers to the time to process each new point from the data stream. For a data
structure to be feasible in the data stream model, all these three parameters
must be independent of n.

The absolute model is naturally fit for data stream applications, since the
storage space and the query time of the data structures are independent of

n. However, the time to insert a new point in the halfbox quadtree can be
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as large as the storage space. While this approach is still feasible, we would
like to be able to insert points faster, in order to obtain a data stream data

structure with small update time.

In the data structures we describe, the update process consists of simply
inserting the new point in a set of generators. For all data structures we
describe, we can trivially locate the generators containing a given point in
O(1) time per generator. Therefore, the update time can be calculated as
the number of generators that contain the new point. Inserting a point in
the semigroup halfspace range searching data structure from section takes
Q(1/e%) time, because each data point is contained in ©(1/e?) generators.
Since the halfbox quadtree contains a halfspace range searching data structure,
the time to insert a point in the halfbox quadtree cannot be any better. In this
section, we modify the halfbox quadtree, in order to obtain a tradeoff between

update time and query time.

First, we examine how many generators contain a given point p at each
level of the halfbox quadtree. Since the quadtree boxes at each level of the
quadtree are disjoint, only one quadtree box per level contains p. A quadtree
box at level ¢ has size 27¢, and is associated with a halfspace data structure
with O(1/(2%)?) storage space. The total number of generators that contain

p among all levels of the halfbox quadtree is

log(O(1/¢))

> 0(1/(2%)%) = 0(1/e%).

£=0

Since the terms of the summation decrease geometrically, the top levels of

the quadtree are the ones that contribute the most to the sum. If we prune

97



the top part of the halfbox quadtree, by removing all quadtree boxes of size
larger than a parameter s € [e, 1], the total number of generators that contain

p becomes
log(O(1/¢))

O(1/(2%)") = O((s/e)")-

t=—1log s

We call this data structure a s-pruned halfbox quadtree, or just pruned halfbox
quadtree. The update time for the pruned halfbox quadtree is O((s/)?). The
storage space for the pruned halfbox quadtree is O(log(1/¢)/e?), since the
pruned halfbox quadtree is a subset of the halfbox quadtree.

To calculate the query time for the pruned halfbox quadtree, we need to
examine the cost of replacing large halfboxes by smaller ones. We assume that
the query is answered in a way that, for any range R € R, only a constant
number of halfboxes in g(R) correspond to the same quadtree box. The fol-
lowing theorem relates the query time for an s-pruned halfbox quadtree with

the query time for a halfbox quadtree.

Theorem 6.9. Let R be a set of ranges for which the halfbor quadtree can
answer e-approximate range queries in f(e) time, in a way that, for any
range R € R, only a constant number of halfboxes in g(R) correspond to the
same quadtree box. An s-pruned halfbox quadtree can answer e-approximate
semigroup range queries for R in the data stream model in O(f(g) + 1/5%)
query time, with O((s/)?) update time and O(log(1/e)/e?) storage space, for
s € e, 1].

Proof. The update time and storage space follow from the explanation in the
text. We only need to prove the query time part of the theorem. Without loss

of generality, we assume that s = 1/2* for some integer k. Let g<,(R) be the
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subset of g(R) containing only halfboxes of size at most s, and g~s(R) be the
subset of g(R) containing only halfboxes of size greater than s. The diameter of
U(gss(R)) is O(1), because g-,(R) C [0, 1]¢. Since all halfboxes in g-,(R) have
size greater than s, we can create ¢’'(R) such that | J(¢'(R)) = J(g9>s(R)), and
¢'(R) contains only halfboxes of size exactly s. Using Lemma 23] and the fact
that g-s(R) has only a constant number of halfboxes for each quadtree box,
we conclude that |¢'(R)| = O(1/s%). Therefore, we can keep the at most f(¢)
generators in g<4(R), and replace g-4(R) with g(R), totaling O(f(¢) + 1/s%)

generators. OJ

We can do slightly better than the Theorem by using a non-pruned
quadtree, as used in Section .2 together with the pruned halfbox quadtree.
We call these two data structures together an s-stream halfbox quadtree, or just

stream halfbox quadtree. The storage space for the stream halfbox quadtree is

O(1/¢" +1log(1/e)/e?) = O(log(1/e) /).

To calculate the update time, we only need to consider the additional work to
update the generators in the standard quadtree. Each point p is in O(log(1/¢))
generators, since a point is in only one generator for each level of the quadtree.
Therefore, the update time for the stream halfbox quadtree is O(log(1/e) +
(s/€)?). The following theorem relates the query time for an s-stream halfbox

quadtree with the query time for a halfbox quadtree.

Theorem 6.10. Let R be a set of convex ranges for which the halfbox quadtree

can answer e-approximate range queries in f(e) time, in a way that, for any
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range R € R, only a constant number of halfboxes in g(R) correspond to the
same quadtree box. An s-stream halfbox quadtree can answer e-approximate
range queries for R in the data stream model in O(f(e) +1/s%) query time,
with O((log(1/¢) + s/¢)?) update time and O(log(1/e)/e?) storage space, for

s € e, 1].

Proof. The update time and storage space follow from the explanation in the
text. To calculate the query time for the pruned halfbox quadtree, we need to
examine the cost of replacing large halfboxes by smaller ones, but consider the
fact that quadtree boxes do not need to be replaced. Halfboxes that are not
quadtree boxes are only useful for halfboxes that are intersected by the range
boundary 0R. Let g(OR) denote the halfboxes in g(R) that intersect OR.
Without loss of generality, we assume that s = 1/2% for some integer k.
Let g-s(OR) be the subset of g(OR) containing only halfboxes of size greater
than s. Since all halfboxes in g-s(OR) have size greater than s, we can create
¢'(OR) such that (J(¢'(OR)) = U(g9>s(OR)), and ¢'(OR) contains only half-
boxes of size exactly s. Using Lemma 2.4, and the fact that ¢g-s(0R) has
only a constant number of halfboxes for each quadtree box, we conclude that
|g'(OR)| = O(1/s%1). Therefore, we can keep the at most f(¢) generators in
g(R) \ gs(OR), and replace g-4(0R) with g(OR), totaling O(f(e) + 1/s%°1)

generators. O

Note that all query algorithms presented in this text for the halfbox
quadtree satisfy the conditions of Theorems [6.9) and [6.I0. The query time
of the stream halfbox quadtree for different range shapes is presented in

Table 6.2
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Range Version Query time

halfspace | semigroup | O(1/s%1)

spherical | semigroup | O(1/e(@=1/2 4 1/54-1)
simplex group O(1/e19=2) 4 log(1/e) +1/s471)
fat simplex | semigroup | O(1/2@2 +log(1/e) 4+ 1/s%1)

Table 6.2: Query time of the stream halfbox quadtree for different range
shapes, as a function of s. The storage space is O(log(1/¢)/e?), and the update
time is O(log(1/¢) + (s/¢)?).

We may want to have the update time equal or similar to the query time.

For the case of halfspace range searching, if we set s = 5261%1, then both the

query and update times are

o(am) =0 () = (%)

independently of the value of d.

For the case of spherical range searching, if we set s = £(@1/2¢ then both

the query and update times are O(1/e221) = o(1/e%/2).

6.7 The Relative Error Model

In the relative error model (or simply relative model), it is assumed that the
range shape R is bounded, and points lying within distance ¢ - diam(R) of
the boundary of the range may or may not be included. An example different
query ranges an their fuzzy boundaries in the relative model is illustrated in
Figure 6.5l Range searching in the relative model has been studied in [8] 9,

10, 12]. In this section, we use the halfspace range searching data structure
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Figure 6.5: Fuzzy boundaries of different query ranges in the relative model.

from Theorem to build the relative halfbox quadtree, a data structure that
is analogous to halfbox quadtree, but works in the relative error model.

The best upper bounds previously known for approximate range search-
ing in the relative error model with general semigroups and constant di-
mension are the following. Arya and Mount [I2] present a data structure
which answers arbitrary convex range queries (using the unit-cost test as-
sumption) in O(log(n) + 1/e%7!) query time, with O(n) storage space, and
O(nlog(n)) preprocessing time. Arya, Malamatos, and Mount [§] present a
space-time tradeoff for spherical ranges with O(log(nvy) + 1/(e7)?1) query
time, O(ny?log(1/¢)) storage space, and O(nvy?log(n/e)log(1/e)) preprocess-
ing time, for 1 < v < 1/e. Arbitrary smooth convex ranges are also studied
in [9], but an upper bound in only given for the idempotent case.

In this section, we show how the relative halfbox quadtree gives a space-
time tradeoff for smooth convex ranges which improves the best previous re-
sults for spherical range searching by logarithmic terms in the storage space,
query time, and preprocessing time. We also show how the relative halfbox
quadtree is the first approximate simplex range searching data structure (in

dfl)

the group version) to improve over the O(1/e query time for arbitrary

convex ranges. If the query simplex is fat, the result holds in the semigroup
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Range Remark Storage Query time
tradeoff, 1 <y < 1/y/e O(ny?) O(logn + 1/(e7y)?1)
Smooth | high storage O(n/e¥?) | O(logn + 1/ed=1)/2)
low storage O(n) O(logn + 1/e471)
tradeoff, 1 < v < 1/eY/(4=1 | O(ny?) O(logn + log(1/e) + 1/(ey)?~1)
Simplex | high storage O(n/e71) | O(logn +log(1/e) + 1/4=2)
low storage O(n) O(logn + 1/e471)

Table 6.3: Complexities of the relative halftbox quadtree for different range
shapes. Simplex results work in the group version for general simplices and
in the semigroup version for fat simplices. The preprocessing time is equal to
the storage space with an additive term of O(nlogn).

version. We summarize our results in Table 6.3l

Let A be the diameter of the query range R. A relative model query is
denoted by ¢.a(R) because it is equivalent to an (¢A)-approximate query in
the absolute model.

Let v > 1 be a parameter. We define a relative halfbox quadiree as a
compressed quadtree T', indexed by a finger tree T”, where each quadtree box
@ of size § stored in T is associated with an absolute model (§/7)-approximate
halfspace range searching data structure from Theorem 5.2l The general idea
is that halfboxes can be used to approximate a range R in the same manner
as in the absolute model, as long as §/v < Ae.

A (0/7)-approximate halfspace range searching data structure for a
quadtree box of size 0 takes O(y?) storage space. Since T has O(n) nodes, the
total storage space for the relative halfbox quadtree is O(ny?).

To preprocess T, we start by building a compressed quadtree and a fin-
ger tree in O(nlogn) time (see Section for details). The leaves of the
compressed quadtree contain a single data point. Therefore, we can build

a halfspace range searching data structure associated with the leaf nodes in
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O(7?) time for each leaf node. The data structure for an internal node v can
be built in O(y?) time by performing at most 2¢ queries to the children of v for
each entry in the lookup table, in the same way as the preprocessing algorithm
form Section 5.2l Note that the total error accumulation in the root of the
tree is bounded by a factor of 2, because the quadtree boxes of the children
of a node v have at most half the size of vg. Consequently, the preprocessing
time for a relative halfbox quadtree is O(nlogn + ny?), which is optimal.
Given a parameter «, a convex shape R is a-smooth if, for any point z in
the boundary of R, there is a ball B C R of diameter « diam(R) that touches
x. A range is smooth if it is a-smooth for some constant . We say that a
hyperplane h is tangent to R at point x if it is tangent to a ball B C R of
radius a diam(R) that touches x. The following lemma is the key for answering

smooth range queries efficiently.

Lemma 6.11. Let R be an a-smooth range of diameter A, € an approzimation
parameter, and Q) a quadtree box of diameter 6. If &6 < Ay/ae, then any

halfspace h that is tangent to R at a point x € QQ Ae-approrimates R within
Q.

Proof. Let x be a point in the boundary of R and inside ). Let B C R be
a ball of radius aA that touches x and h be the hyperplane tangent to B at
point z (Figure [6.6]). Note that the boundary of R must be between h and B
within @), because R is convex and smooth. It follows from Lemma that h

g-approximates R within Q). n

In order to answer queries efficiently, we need to make an assumption that

is stronger than the unit-cost-test assumption used in [9, [12]. We assume that,
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Figure 6.6: Smooth range in the proof of Lemma [6.111

given a smooth convex range R and a quadtree box (), in constant time we
can determine whether Q C R, is Q N R = (), or neither, and, in the latter
case, we can also find in constant time a hyperplane that is tangent to R at
some point x € (). Note that this assumption is easily satisfied for spherical
ranges.

Let 6 > 0 be a constant, and R be a query range of diameter A. Let a
be a valid diameter for a quadtree box, with a between JA and JA/2. To
answer a range query ga-(R), we first determine the set A of quadtree boxes
of diameter a that intersect R. By Lemma 23] we have |A| = O(1). Let V be
the set formed by the result of cell queries for each element of A. Note that
V| = |A] = O(1), and V' can be computed in O(log(n)) time. The query is
answered by performing the following procedure for each v € V, and summing

the results.

1. If yyN R = (), then return 0.

2. If vyg C R, then return w(v).
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3. If |0| = 1, then we verify whether the point stored in v is contained in R

and return the weight of the point or 0, accordingly.

4. If diam(vo)/y < Ae/2 and diam(vg) < Ay/ae/2, then we determine a

halfspace h that is tangent to R inside vg, and return the precomputed

Qaiam (v) /(P N v0).

5. Otherwise, we return the sum of the recursive calls of the procedure for

each child of v.

We only need to show the correctness of Step 4, since the other steps are
clearly correct. To show that Step 4 is correct, we note that, by Lemma [6.11],
the halfspace h (Ae/2)-approximates R within vg. Also, v is associated with
a (Ae/2)-approximate halfspace data structure, because diam(vo)/y < Ae/2.
Adding both approximation errors, we obtain a (Ae)-approximation.

To analyze the query time when « is a constant, we note that a recursive

call is only performed when v intersects the boundary of R and

diam(vn) = O(Aey + AVe).

Using Lemma 2.4 and summing the number of recursive calls, we conclude
that the query takes O(1/(e7)4* + 1/e4=1/2) time. Note that there is no

advantage in setting v > 1/4/e. The following theorem summarizes the result.

Theorem 6.12. The relative halfbox quadtree with 1 < v < 1/y/¢ is an e-
approximate range searching data structure for smooth ranges, in the rela-
tive model, with O(ny?) storage space, O(logn + 1/(ev)4™1) query time, and

O(nlogn + nvd) preprocessing time.
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In the high storage version, when v = 1/4/¢, Theorem [6.12gives an approx-

imate smooth range searching data structure with O(n/e%?) storage space,

O(logn + 1/£4=1/2) query time, and O(nlogn + n/e%?) preprocessing time.

The relative halfbox quadtree can also be used to answer simplex range

queries, as long as either subtraction is allowed or the query simplex is fat.

We first determine a set of O(1) vertices V', in O(logn) time, in the same way

as in spherical range searching. Then, the simplex range query is answered by

performing the following procedure for each v € V', and summing the results.

—_

If ygN R = 0, then we return 0.

. If vg C R, then we return the precomputed w(Q) = > pro w(p).

If |0] = 1, then we verify whether the point stored in v is contained in R

and return the weight of the point or 0, accordingly.

If diam(vg) < Aeg, then we verify whether R contains the center of vg

and answer accordingly.

Group version: If diam(vg)/vy < Ae and vg does not contain any (d—2)-
faces of R, then there is a set H of at most d 4+ 1 pairwise disjoint halfs-
paces that form the complement of R. We return w(v) — >, 5 qac(h N
vg), where hNwvg is a halfbox, and ¢.(+) is the result of the approximate

query using the data structure associated with v.

Fat simplex version: If diam(vg)/y < Ae and vg contains only one
(d—1)-face h of R, then we return ga.(hNvg), where hNvg is a halfbox,
and ¢.(+) is the result of the approximate query using the data structure

associated with v.
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6. Otherwise, we return the sum of ¢(c, R) for all children ¢ of v in the

compressed quadtree.

To analyze the query time for the group version, we note that a recursive
call is only performed when either (i) vg intersects the boundary of R and
diam(vg) = O(Aevy), or (ii) vg intersects a (d — 2)-face of R and diam(vg) <
Ae. Using Lemmas 2.4] and 2.5 and summing the number of recursive calls,
we conclude that the query takes O(log(1/¢) +1/(e7)* ! +1/e72) time. Note
that there is no advantage in setting v > 1/g!/(@=1),

To analyze the query time for the fat simplex semigroup version, we note
that a recursive call is only performed when either (i) v intersects the bound-
ary of R and diam(vg) = O(Aev), or (ii) vg intersects more than one (d — 1)-
faces of R and diam(vg) < Ae. Using Lemmas 2.4 and 2.6, and summing
the number of recursive calls, we conclude that the query takes O(log(1/¢) +
1/(ey)? + 1/e%72) time. Note that there is no advantage in setting vy >

1/e/(4=1 The following theorem summarizes the result.

Theorem 6.13. The relative halfbox quadtree with 1 <~ < 1/e'/(4=1 4s an e-
approzimate range searching data structure for simplex ranges, in the relative
model and group wversion, with O(ny?) storage space, O(logn + log(1/e) +
1/(e7)%1) query time, and O(nlogn + ny?) preprocessing time. The result

holds for general semigroups if the query simplex is fat.

In the high storage version, when v = 1/¢/(¢=1) Theorem BG.I3 gives a
data structure with O(n/e%(4=1) storage space, O(logn + log(1/e) + 1/£472)

query time, and O(nlogn + n/e¥(@=1) preprocessing time.
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Chapter 7

Conclusion

In this dissertation, we have introduced approximate range searching data
structures for several fundamental range spaces. Our work differs from previ-
ous works in that we use the absolute model (in contrast to the relative model
used in [8, @, 10, 12]), and we consider the dimension d to be a constant (in
contrast to spaces of high dimensions considered in [26]). Most data struc-
tures presented in this dissertation are not only more efficient, but are also
much simpler than both their exact and relative model counterparts. We also

applied the absolute model data structures for different problems and models.

7.1 Absolute Model Data Structures

The first data structure we presented answers orthogonal range queries. Or-
thogonal ranges are the only widely studied range shapes for which exact
queries can be answered in polylogarithmic time with near linear space [20, 21].

Nevertheless, more efficient and simpler solutions for the approximate ver-
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sion exist, especially in the group version. The approximate orthogonal range
searching data structure is the only data structure in this dissertation based
on the point approximation technique for the semigroup and group versions.
While the point approximation technique can be used with most range shapes,
the query time and storage space obtained this way are generally the same as
to the ones for the exact version of the problem, with n replaced by 1/&?. For
the case of approximate orthogonal range searching, the query time can be
improved because partial-sum data structures can be used [28], 57].

The simplest data structure we presented is the quadtree used to answer
queries with arbitrary convex ranges. Because of the unbounded complexity of
arbitrary convex ranges, we used the unit-cost test assumption as in [I12]. The
data structure is an important building block for the halfbox quadtree. It is
also the only approximate range searching data structure in this dissertation
whose storage space can be bounded by O(n) regardless of the value of .

The data structures for approximate halfspace range searching are among
the most efficient data structures presented in this dissertation. This is surpris-
ing considering the high complexity of the exact version of the problem [10, [I§].
In the semigroup version, a simple table lookup technique can be used to
answer halfspace range searching queries in O(1) time with O(1/e?) storage
space. This data structure is an important building block for the halfbox
quadtree. Other approximate halfspace range searching data structures are
presented for idempotent and emptiness queries. If the semigroup is idempo-
tent, a space-time tradeoff can be obtained, reducing the space to as low as
O(1/£9+D/2) " while keeping the product of the storage space and the query

time equal to O(1/¢%). For the emptiness version, the storage space goes as
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low as O(1/e@D/2) while the product of the storage space and the query
time is equal to O(1/e971). Alternatively, the point approximation technique
can be used, together with e-kernels [3, 19] and exact halfspace emptiness
data structures [30, [41), 46, [51], to obtain data structures for the approximate
emptiness version, which are especially efficient for d < 3.

Approximate spherical range searching is widely studied in the relative
model [8 O, 10]. We combine our approximate halfspace range searching
data structure with our data structure for convex ranges to obtain the half-
box quadtree. The halfbox quadtree efficiently answer approximate spherical
queries in the absolute model. Additional generators can be included in the
data structure, in order to reduce the query time.

Simplex range searching is widely studied in the exact version [2] 40} 42}, [43].
The halfbox quadtree provides an efficient data structure to answer approxi-
mate simplex queries. The use of subtraction is necessary for our query algo-

rithm unless the query simplex is fat.

7.2 Applications

The first related problem we presented is the range sketching problem. This
problem tries to fill the gap between range counting and range reporting.
The data structure is obtained by threading a finger tree with a compressed
quadtree. The same technique is used in the relative halfbox quadtree.

We showed how idempotent absolute error model halfspace range search-
ing can be applied to provide a tight upper bound for exact halfspace range

searching, by properly setting the value of € as a function of n. This exact
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data structure is defined in the semigroup arithmetic model, and we assume
that the data points are uniformly distributed inside the unit hypercube. The
data structure matches the lower bound proved in [I8] up to logarithmic fac-
tors. The theoretical importance of the data structure relies on the fact that
uniform distribution and the semigroup arithmetic model are also assumed in
the lower bound proved in [18].

We showed how to use the halfbox quadtree to answer approximate near-
est neighbor queries, approximate range reporting queries, approximate range
queries in the data stream model [14], 48] 53], and approximate range queries
in the relative model. Different tools were necessary for these variations, but
the underlying techniques remain the same. The most interesting of these
results is the relative halfbox quadtree, since there are several previous data
structures for approximate range searching in the relative model [8] [9] 10} 12].

The relative halfbox quadtree combines a compressed quadtree, a finger
tree, and a data structure for halfspace range searching in the absolute model.
The strong points of the relative halfbox quadtree when compared to other
existing structures are: (i) simplicity, (ii) faster query time (by a logarithmic
term), (iii) reduced storage space (by a logarithmic factor), (iv) optimal pre-
processing time, and (v) the ability to handle not only spherical ranges, but

also smooth ranges, simplex ranges, and polyhedral ranges.

7.3 Future Work

We focused this work towards structures with relatively low storage space

(mostly O(1/¢%)). Note that in the absolute model any range query can be
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answered in O(1) time with O(1/¢%) storage space, ignoring the time needed to
determine the set of generators. A possible direction for future work consists
of determining the minimum storage space necessary to answer queries in O(1)
time, for different range shapes, as well as finding new space-time tradeoffs.

We showed how to construct an exact halfspace range searching data struc-
ture, that uses idempotence to improve over the most efficient exact data
structure previously known. The data structure is defined in the semigroup
arithmetic model [10, [I8], 22] and matches the lower bound proved in [I8] up
to logarithmic factors. The theoretical importance of the data structure relies
on the fact that uniform distribution and the semigroup arithmetic model are
also assumed in the lower bound proved in [I§]. Therefore, we open some
important theoretical and practical questions: Is the average case complexity
for uniformly distributed data strictly lower than the worst case complexity?
Does the semigroup arithmetic model allow more efficient idempotent halfs-
pace range searching data structures than the real RAM model? An improved
data structure that worked in the real RAM model would be of practical in-
terest, even if it relied on the uniform distribution of the points.

We showed how to use O(log(1/¢)) approximate spherical emptiness queries
to answer approximate nearest neighbor queries in the absolute error model.
The approximate nearest neighbor query time can certainly be reduced by
increasing the storage space, but precise space-time tradeoffs still need to be
determined.

There are several non-trivial lower bounds for exact range searching [10,
18, 22 23]. There are also some non-trivial lower bound results for approx-

imate range searching in the relative model [9, [I0]. It would be interesting
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to investigate lower bounds for approximate range searching in the absolute
model.

The following weaknesses of the relative halfbox quadtree are important
topics for future research on approximate range searching in the relative model.
First, the space-time tradeoff for spherical range searching is limited to query
times that are not faster than ©(logn + 1/¢(4~1/2). While this query time
is optimal for arbitrary smooth ranges [9], it can be improved for spherical
ranges, at the cost of additional storage space [§].

Second, we do not know how to improve the space-time tradeoff of the
relative halfbox quadtree for the case of idempotent semigroups. Significantly
faster data structures for approximate idempotent spherical range searching
exist [10]. The data structure for approximate idempotent halfspace range
searching in the absolute model could possibly be used to obtain an idempotent
version of the relative halfbox quadtree.

Finally, the fastest data structures for approximate range searching over
arbitrary groups and semigroups in the relative model are still significantly
slower than the existing lower bounds. The best lower bound for approximate
spherical range searching in the relative model over integral semigroups is
Q((n/m)*=1/1/e4=5) query time with m storage space [I0]. The best lower
bound for approximate simplex range searching in the relative model over
integral semigroups is Q(1/e%72-2/9) query time with n/e/*® storage space

and 0 < f <1 [9].
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preprocessing, [17]
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halfspace, [68] [69]
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query time, [I7]

range, [I]
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query, [I
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searching, [T]
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relative counting error, M
relative error model, Bl 44l [T0T]
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reporting halfbox quadtree,

semigroup version, [IJ,

separator, 2]

set system,

simplex range, 3] 35 B8],

simplex range searching, [R9]
exact, [35],

simplicial partition, 37

slope,

smooth, [3 104

smooth range searching,

spherical range, [3]

spherical range searching, 83|

storage space, [I7

stream halfbox quadtree,

unit-cost test assumption, [44]
unit-cost-test assumption, 104l
update time,
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