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This dissertation contains two essays exploring the asset pricing implications of asym-

metric information, hedging and market making.

Chapter 1 studies position limits on strategic speculators in commodity futures. In

this chapter I develop an equilibrium model with both spot and futures markets to evaluate

the effects of speculative position limits proposed by commodity regulators. One of the main

implications of this model is that the imperfectly competitive speculators can benefit from

the limits at the expense of unconstrained market participants. Therefore, it is important to

take into account the market competitiveness when setting position limits. I also find that the

limits always reduce market liquidity and thereby increase the cost of hedging. Thus, position

limits would benefit market makers but hurt hedgers. Moreover, the loss of liquidity due to

the limits has a spillover effect on the spot market as futures prices reveal less information

which makes all spot market participants worse off. Contrary to regulators’ beliefs, the model

suggests that an aggregate position limit may reduce speculators’ competition and market

liquidity even when the limit does not bind. The model provides an alternative explanation

of magnet effect of position limits, which is imperfect competitive speculators tend to exert

their market power to make the limits bind.



Chapter 2 (joint with Yajun Wang) studies dynamic of market making and asset pric-

ing. In this chapter, we develop a dynamic model of market making with asymmetric infor-

mation where imperfectly competitive market makers match offsetting trades and carry zero

inventory over time. Our model captures key features of market making in many financial

markets: market makers optimally facilitate trading in both bid and ask markets by adjust-

ing bid and ask prices and they hold close-to-zero inventories at the end of the day. We solve

for equilibrium bid/ask prices and market depths in closed-form, and examine how informed

traders dynamically hedge liquidity shocks and reveal private information. We further study

the dynamics of bid-ask spread and trading volume to understand how these may interact

with each other in shaping asset prices and market liquidity.
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Chapter 1

Position Limits of Strategic Speculators

in Commodity Futures

1.1 Introduction

Speculation in commodity futures has gained tremendous popularity over the last decade.

Along with the entry of financial speculators into commodity futures, a sharp increase in

price fluctuation raised concerns of policymakers. On November 5, 2013, the Commodity

Futures Trading Commission (CFTC) approved proposed rules that would impose speculative

position limits or aggregate position limits on physical commodity futures contracts under

the mandate of the Dodd-Frank Act (see 16, 17). The Commission believes that the rules

can reduce the cost of hedging by reducing price fluctuations and thereby benefit hedgers,1

and can promote market competitiveness by preventing speculators from amassing market

1 Testimony of Paul N. Cicio, the President of the Industrial Energy Consumers of America (IECA), in

front of Senate Permanent Subcommittee on Investigations on November 3, 2011.
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power.2 However, whether position limits would reduce price volatility or not is debatable.3

And it is unclear whether the rules will harm market liquidity and impede information

discovery.4 Moreover, several important questions remain unanswered: how would the limits

affect the competition among speculators? What are the externalities on the underlying spot

markets?

To address these questions, I develop a model with both futures and spot markets. To

justify why regulators impose position limits on speculators, the model assumes that specu-

lators have both speculating and hedging motives for trade and are imperfectly competitive.

Speculators’ trading can increase price fluctuations and their market power can increase the

cost of hedging. However, this paper finds that position limits on speculators do not always

reduce price volatility. More importantly, position limits always reduce market liquidity and

thereby increase the cost of hedging, resulting in a welfare loss of hedgers. The illiquidity due

to position limits has a spillover effect on the spot market because of reduced information

revelation. The impacts of these rules on speculators depend on the degree of competition

among speculators. Less competitive speculators can even benefit more from position limits.

This is because position limits may not only protect speculators from competing with each

2 Some legislation supporters (e.g., IECA) even suggest CFTC to set an aggregate position limit on all

commodity index funds and commodity-related exchange traded funds. They argue that these passive funds

follow some similar trading strategy and have the ability to amass market power.
3 See 10, 26, 7, 54
4 On September 28, 2012, a federal judge ruled in favor of the International Swaps and Derivatives Asso-

ciation (ISDA) and the Securities Industry and Financial Markets Association (SIFMA), that the position

limits rule should not be imposed because the CFTC did not first take steps to determine whether such

limits were “reasonable and appropriate”.
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other, but also mitigate the impact of adverse selection on speculators. Therefore, contrary

to regulators’ beliefs, position limits can lead imperfectly competitive speculators to take

larger positions at the limits, and an aggregate position limit can encourage competitive

speculators to amass their market power so that the market liquidity will be reduced even

when the aggregate limit does not bind.

The model consists of both futures and spot markets in a two-period setup. In the

futures market, there are three types of market participants: hedgers, market makers, and

speculators. Take the commodity grain as an example. Hedgers are grain farmers or distrib-

utors. They harvest the grain at fall and sell the grain in the spot market after harvest. We

can think of the first period as a pre-harvest contract of futures, and the second period as

a post-harvest contract of grains. Before harvest, farmers trade in futures market to hedge

their inherent risks which include both price risk and quantity risk (i.e., the uncertainty of

commodity supply). This leads to seasonality in hedging demands of futures.5 Farmers are

bona fide hedgers as categorized by the Commission, and hence are exempted from position

limits. The Commission argues that the rules will not harm market liquidity, because there

are unconstrained traders who provide liquidity to hedgers when limits bind for speculators.

The market makers in my model6 denote such unconstrained traders who can be floor traders

or grain consumers. Speculators in my model differ from hedgers and market makers in three

important aspects. First, they correspond to those institution investors (ETFs, Hedge funds)

5 Similar seasonality in hedging demands exists in many non-agricultural markets, e.g., natural gas.
6 They are not designated market makers but correspond to floor traders and managed money traders.

This paper distinguishes them from financial speculators, because from the view of regulators they always

provide liquidity in futures and should not be subject to position limits.
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who have no innate position in spot markets. Second, they are usually oligopolists as in real

markets. Third, they are subject to position limits.

This paper shows that position limits, contrary to regulators’ goals, can increase com-

modity price volatility. This is because speculators have dual trading motives: speculation

and hedging. On one hand, speculators’ trading brings their own noise into spot prices. On

the other hand, their trading reduces spot price fluctuations due to the trades of hedgers.

When hedgers face high quantity risk (large noise from hedgers) and low information asym-

metry (small noise from speculators), speculators’ trading tends to stabilize commodity price,

i.e., provide liquidity.7 In this situation, imposing position limits on speculators increases

spot price volatility. Moreover, my model shows that no matter speculators provide or de-

mand liquidity the rules always reduce market liquidity8 in two ways. First, when limits

bind the futures price becomes less informative, so the perceived uncertainty of spot price

by hedgers and market makers increases. Second, when limits bind speculators’ demands

become price-inelastic and they lose the ability to absorb exogenous liquidity shocks in fu-

tures. Therefore, limiting speculators’ trading positions always reduces market liquidity even

though market makers are exempted from the position limits. In addition, the illiquidity in

futures has a spillover effect on the underlying spot market through information channel.

7 Speculators are said to stabilize prices if they buy when prices are low and sell when prices are high

(27).
8 Market liquidity is proportional to the dollar volume divided by the sum of perceived riskiness and

market power. Dollar volume is measured by the reciprocal of risk aversion. Perceived riskiness is measured

by the conditional variance of payoff. The idea that market liquidity is related to the dollar volume per unit

of conditional payoff variance has the similar intuition with 38. Traders believe that transaction costs are

high in markets with low dollar volume and high perceived riskiness.
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Because the position limits increase the perceived uncertainty of less informed spot market

participants, who use futures prices to infer information. Furthermore, the cost of hedging

by hedgers can be decomposed into two components: market illiquidity and average hedging

demands. Since position limits significantly increase market illiquidity and yet have only

a marginal effect on the average hedging demands, the cost of hedging by hedgers always

increases when position limits bind on speculators.

I undertake a welfare analysis of the proposed rules by the Commission.9 Position limits

exhibit quite different impacts on market participants, depending on speculators’ competi-

tiveness and other market characteristics such as the degree of information asymmetry and

the level of quantity risk. Since the cost of hedging increases as discussed above, there is

always a welfare loss for hedgers in the presence of position limits. Position limits have two

effects on speculators (56): increasing risk premium (price effect) and decreasing trading

quantities (quantity effect). As the number of speculators increases (i.e., market becomes

more competitive and position limits become less likely to bind), the price effect dominates

and makes speculators better off. The new insight revealed in my model is that any market

power exerted by speculators will dampen the quantity effect and the increased information

asymmetry due to position limits will exacerbate the price effect. Therefore, the presence

of imperfect competition and information asymmetry tends to further improve speculators’

welfare, relative to the case of perfect competition and symmetric information. Position

limits also have two effects on market makers’ trading quantity. First, the increase of risk

premium due to position limits induces market makers to trade more in futures, since on

9 “The Commission fails to undertake a comprehensive cost-benefit analysis by the statue" from Comment

letter on position limits for derivatives from CME group on March 28, 2011.
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average market makers trade in the same direction as speculators do. Second, the increased

perceived uncertainty due to position limits makes market makers reluctant to trade in fu-

tures. Overall, when position limits are stringent, the first effect dominates and makes market

makers better off. Two direct implications of my model are that it is inappropriate to apply

a uniform position limit (which has been proposed by the Commission10) on markets with

different competitiveness among speculators and it is important to incorporate the changes

of market conditions when setting position limits.

In addition to risk sharing and liquidity provision, modern commodity futures markets

also serve as a barometer for commodity spot markets and even equity markets (33). When

position limits on speculators bind, information revealed by futures price is inevitably re-

duced. Previous literature (52) argues that information revealed by futures price can harm

hedgers, because in spot market hedgers have information advantage over market makers.

This argument implies that informational frictions in futures markets would benefit hedgers

in spot markets. Nonetheless, this argument becomes questionable when there is quantity

risk. For informed hedgers who are subject to quantity risk (as modeled here), the loss of

information advantage due to public information (futures price) is always outweighed by the

benefits of increased risk sharing due to public information. Consequently, position limits,

which hamper information revealing of futures price and reduce the scope of risk sharing,

generate negative externalities on both informed and less informed spot market participants.

The more stringent the position limits are, the more welfare loss the hedgers will suffer in

spot market, especially when quantity risk is high.

10 The Commission proposed to set a uniform limit at 25 percent of the estimated supply for all 28

commodity futures and a time frame for review or change the limit at every two years.
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The Commission believes that an aggregate position limit would promote market com-

petitiveness. Contrary to this belief, I find that an aggregate position limit can disincentivize

speculators to compete on their common information. There exists a trade-off for speculators

to be an informational monopolist in the presence of risk averse market makers.11 On one

hand, acting as a monopolist allows speculators to extract more rent from their information

advantage. On the other hand, being a monopolist incurs a higher adverse selection cost.

There are cases where speculators are better off to stay competitive in the absence of an

aggregate position limit, but once subject to the limit, their welfare from being an informed

monopolist can be greater than that from being fully competitive. In other words, an aggre-

gate position limit may hurt competitive speculators but benefit less competitive speculators.

This is because position limits mitigate the impact of adverse selection on speculators. This

result uncovers a potential counterproductive effect of implementing an aggregate position

limit: it may reduce the competition of speculators, and thus reduce the market liquidity

and the scope of risk sharing even when the limit does not bind.

In sum, this paper sheds light on this long-term debate on the CFTC proposed rules

of speculative position limits in commodity futures. The paper studies how position limits

interact with other market frictions such as information asymmetry and imperfect compe-

tition. It shows that position limits increase information asymmetry and cannot curb the

11 Since there is a large number of uninformed market makers in this model, the competition among

speculators is the competition on their common private information and liquidity shock. This trade-off is

adjusted by market makers’ risk aversion AM . If AM → ∞, market makers trade like noise traders, then

speculators are always better off if acting as a monopolist because there is no adverse selection from market

makers. If market makers are risk neutral, i.e., AM = 0, then speculators are always better off if competing

on their information.
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imperfect competition. The interaction of these market frictions leads to lower market liq-

uidity in both futures and spot markets and a higher cost of hedging. Contrary to regulators’

objectives, position limits can hurt hedgers but benefit speculators.

1.1.1 Contribution and Related Literature

To my best knowledge, this paper is the first one that examines how position limit on

imperfectly competitive speculators affects both spot and futures markets in the presence

of information asymmetry. In particular, I derive the existence condition for an imperfectly

competitive equilibrium and show that as the number of speculators decreases (i.e., the

market becomes less competitive) the equilibrium exists only when either speculators or

hedgers have sufficiently strong trading motives. This is consistent with the stylized fact

that it is rare to see a commodity futures market which has only a few financial speculators.

Moreover, existing literature (55) focuses on the imperfectly competitive equilibrium in a one-

period setup, and shows that market power always leads to a less liquid market. However,

this model shows that in a two-period setup market power may leads to more aggressive

trading, which increases market liquidity. In general, my model provides a framework that

can be extended to study other financial markets with large traders under certain position

restrictions.12

This paper is related to several bodies of literature. A widely accepted view of the

function of commodity futures is associated most prominently with the names of Keynes

12 For example, the European Union has banned naked credit default swap (CDS) positions on sovereign

debt. Another example could be that exchange-traded funds only allow large institutional organizations to

undertake the responsibility of obtaining the underlying assets.
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(36) and Hicks (31). Their standard conception interprets speculation as a process for the

transfer of price risks and the short positions in futures market as hedging pressure. Holbrook

Working (58), in contrast, has argued that hedging is a form of arbitrage involving the

purchase or sale of futures in the expectation of a favorable price change. This paper shows

that the average endowments determine the average hedging demands and supplies. With a

positive commodity supply, hedgers take short positions and speculators take long positions

on average, which is consistent with empirical findings (53) and also in agreement with the

hedging pressure theory of Keynes-Hicks. This model also shows that hedgers adjust their

futures positions on the margin in response to futures price changes even when quantity risk

(i.e., uncertainty of commodity supply) is low. This is consistent with Holbrook Working’s

interpretation of hedging and a series of recent empirical evidences (14, and 22). This

paper reconciles these two seemingly conflicting theories of hedging in futures by showing

that hedgers hedge on average but can speculate on the margin. In the presence of high

quantity risk, hedgers under-hedge on average and use the information revealed by futures

price more aggressively than speculators. Thus, this model presents a more nuanced view

of speculation and hedging in commodity futures than existing models. It suggests that any

regulatory measure based on the categorical identities of hedgers and speculators rather than

the specific activities they engage in is ambiguous and questionable.

This paper is also related to the growing literature about the commodity financializa-

tion, both theoretical (3, 54, 6, 20) and empirical (4, 37, 9, 48). This paper is closely related

to 51, 43, 21. The model in this paper differs from others in four key assumptions which are

necessary ingredients to study position limits. First, this paper models large speculators who

can exert market power and trade strategically, whereas other models assume competitive

9



traders. Second, there are naturally three types of market participants (hedgers, speculators,

and market makers) in futures market as assumed in this paper, while 43 and 21 consider

only two types of participants (hedgers and speculators) in futures. By market clearing in

their models, to constrain the trading of speculators is equivalent to constrain the trading

of hedgers. Although 51 consider three types of traders in futures, they do not fully model

the rational trading of speculators. Third, this paper assumes hedgers face quantity risk,

i.e., the uncertainty of commodity supply, in addition to price risk. It is the interaction

between price risk and quantity risk that risk averse market participants must respond to in

their hedging-speculative commitments (32). The other models do not consider quantity risk

but take commodity supply as a choice variable by commercial hedgers.13 The commodity

production, however, only affects the average hedging pressure instead of the market liquid-

ity. Market liquidity is largely affected by the uncertainty of commodity supply (quantity

risk). Therefore, quantity risk plays an important role in understanding how position limits

affect the market liquidity. Lastly, this paper assumes that the futures and spot markets

open sequentially and hedgers are non-myopic. Both models in 43 and 21 have one period,

entangling the substitution effect of futures market to spot market with the informational

effect of futures prices. Thus, it requires at least a two-period setup to identify the infor-

mation externalities of position limits on spot market. Although 51 use a two-period setup,

they assume commercial hedgers are myopic for tractability. When facing quantity risk,

13 Commodity production can be incorporated into this model by endogenizing the mean of commodity

supply or letting the supply mean correlate with commodity liquidation value. However, it is the quantity

risk rather than commodity production that is essential to study position limits. Position limits have a

significant impact on market liquidity but only a marginal effect on the average hedging pressure.
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myopic hedgers would not engage in anticipatory hedging which accounts for a large portion

of hedging demands in commodity futures.

This paper is also closely related to the literature studying the effects of position con-

straints on market participants (34, 1, 2, 56). However, the existing literature does not

consider the impacts of position limits on imperfectly competitive traders. Moreover, the

existing literature only studies how position constraints affect one market. This paper in-

stead examines the effects of position limits on both the derivative market and the underlying

spot market. Although 5 analyzes the underlying and derivative markets jointly when eval-

uating the impacts of trading restriction in one market, they focus on the role of derivative

market as an substitution of the underlying market. In contrast, this paper emphasizes the

informational role of derivative market on underlying market and highlights how trading

restriction interrupts the information learning of less informed traders and reduces over-

all market liquidity. More importantly, the increased illiquidty has a spillover effect from

a trading-constrained market to an unconstrained market as demonstrated in my model,

similar to the notion of illiquidty contagion via the information channel (11, 19).

More generally, this paper shows that position limits on informed traders can be sub-

stituted by price limits (8, 40), and this substitution effect comes from the homogeneity of

speculators. This model can be extended to compare the effectiveness of trading restrictions

commonly used by regulators (such as price limits, position limits, and margin requirements).
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1.2 The Model

This section presents the model setup and provides discussions on the main assumptions of

the model. The model consists of both futures and spot markets in a two-period setup. Take

the commodity grain as an example. Grain farmers harvest the grain at fall and sell the grain

in the spot market after harvest. We can think of the first period as a pre-harvest contract of

futures, and the second period as a post-harvest contract of grains. Before harvest, farmers

trade in futures market to hedge their inherent risks.

1.2.1 Model Setup

Assets and Markets The economy has three assets: one is an underlying asset, which is

a commodity, one is a futures contract, which is the derivative of the underlying asset, and

one is a risk-free asset with zero rate of return (called cash), which serves as the numeraire. I

assume that the commodity and its derivative can not be consumed. There are two markets:

a spot market where the commodity is traded and a futures market where the derivative is

traded. The economy has two periods and three dates, denoted as t = 0, 1, 2. To focus on

the informational role of futures markets, I assume a centralized futures market first opens

at t = 0 with a futures price F for futures contracts which expire at t = 1. The spot market

opens at t = 1 with a spot price P , and all the futures contracts are cash-settled or unwound

at P ,14 i.e., basis is assumed to be zero. The total supply of the futures contracts is zero

and the total supply of the underlying asset is a random variable, denoted by X, which will

14 I assume that no market participant takes the physical delivery. In reality, only less than 2% of

commodity futures are settled with physical delivery.
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be further discussed below. The liquidation value for each unit of the underlying asset is

realized at V + η, where

V ∼ N (V̄ , τ−1
V ), (1.1)

η ∼ N (0, τ−1
η ). (1.2)

Here, V represents the fundamental value of this commodity, and η denotes the residual

uncertainty that no one in the market knows. V and η are independent with each other.

Market Participants There are three types of market participants in the economy:

commercial hedgers (H for short), market makers (M for short), and speculators (S for

short). All the market participants are risk averse, as characterized by exponential (CARA)

utility maximizers.

Commercial Hedgers (H) There are NH identical commercial hedgers. Their market power

is negligible by assuming NH >> 1 so that they are effectively price takers. Hedgers trade in

both futures and spot markets. In reality, they are usually commodity producers, processors,

and/or inventory holders. At t = 1, they receive an aggregate endowment of X units of the

commodity, i.e., each hedger receives X/NH units, where

X ∼ N (X̄, τ−1
X ), (1.3)

which is independent of all other random variables, and only known by the hedgers at t = 1.

The distribution of X, however, is a common knowledge that all the market participants

know at the beginning t = 0. As the net supply of the commodity, X can also be understood

as the asynchronization of demand and supply of the commodity (23). The uncertainty of

X represents the quantity risk (32) that interacts with the price risk.
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Hedgers trade in both futures and spot markets. At t = 0, they know the priors of

all the random variables, and observe the futures price F . Based on such information, each

hedger submits his futures demand schedule yH . At t = 1, they observe the spot price P

and the fundamental value V , and receive the endowment shock X. Each hedger unwinds

his futures position at P and submits his demand schedule, xH , of the commodity in spot

market. At t = 2, each hedger realizes a terminal wealth by liquidating his inventory of the

commodity at V + η:

WH = (P − F )yH + (V + η − P )xH + (V + η)X/NH . (1.4)

I assume that each hedger’s risk aversion is NHAH such that the total risk-bearing capacity

of hedgers is constant and equal to 1
AH

. This assumption ensures that the population only

affects the degree of competition but not the aggregate risk tolerance. Then the optimal

trading strategy for each hedger is determined by sequentially solving

JH1 = max
xH

EH
1 [−e−NHAHWH

], (1.5)

JH0 = max
yH

EH
0 [JH1 (yH)], (1.6)

where EH
t [·] = E[· | FHt ]. Hedgers’ information sets are FH0 = {F} and FH1 = {F, P, V,X}.

Market Makers (M) There are NM identical market makers. Their market power is neg-

ligible by assuming NM >> 1 so that they are also price takers. They have no private

information or endowment shocks in neither market. In real world, they can be financial

institutions (e.g. bank holding companies), or commodity users who have future purchases

of the commodity. Market makers are rational uninformed traders who optimally trade to

share risks.
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Market makers can choose to trade in both futures and spot markets. At t = 0, they

know the priors of all the random variables, and observe the futures price F . Each of them

submits his futures demand schedule yM . At t = 1, each market maker observes the spot

price P at which he unwinds his futures position, and submits a demand schedule in spot

market, xM . At t = 2, every market maker realizes a terminal wealth by liquidating his

inventory of commodity at the value V + η:

WM = (P − F )yM + (V + η − P )xM . (1.7)

Again, each market maker’ risk aversion is assumed to be NMAM so that their aggregate

risk tolerance is constant and equal to 1
AM

. The optimal trading strategy for every market

maker is determined by sequentially solving

JM1 = max
xM

EM
1 [−e−NMAMWM

], (1.8)

JM0 = max
yM

EM
0 [−eJM1 (yM )], (1.9)

where EM
t [·] = E[· | FMt ]. Their information sets are FM0 = {F} and FM1 = {F, P}.

Speculators (S) There are NS identical speculators. Since one of the goals of imposing

speculative position limits on speculators is to curb their market power, I assume that they

are imperfectly competitive and trade strategically. Their market power depends on their

population NS. If NS = 1, there is only one speculator who is an informational monopolist.

If NS >> 1, then each speculator’s market power becomes negligible and the whole economy

is competitive. Speculators only trade in futures market. Different from hedgers and market

makers, they do not hold any underlying commodity. In real world, most of them nowadays

are institutional investors such as hedge funds and index traders.15 As sophisticated portfolio
15 In recent literature, they are often referred to as financial speculators. A large influx of these speculators
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investors, they seek a risk exposure to the commodity’s payoff to diversify their portfolios,

and in general they have no ability or interest to hold the commodity. Empirical evidence

(29, 30) shows that speculators have private information about the commodity fundamental

value and they also trade in futures for hedging motives. For this reason, I assume that

speculators at t = 0 receive a private information s about V : s = V + ε, where

ε ∼ N (0, τ−1
ε ), (1.10)

is independent of all the other random variables. In addition, speculators have a total risk

exposure z to the risk factor V − V̄ where

z ∼ N (0, τ−1
z ), (1.11)

is independent of all the other random variables. So each speculator receives an endowment

shock of 1
NS
z(V − V̄ ) and only speculators themselves know their risk exposure z at t = 0.

As this endowment is correlated with V , it generates a hedging motive for speculators to

trade in futures market.16

Unlike hedgers and market makers, each speculator is subject to a speculative position

limit denoted by L. At t = 0, based on the private information s and z and public futures

price F , each speculator submits a futures demand schedule yS up to the limit L by taking

into account his price impact. Then at t = 1, each speculator unwinds his futures position

into commodity futures since 2000 is referred to as commodity fictionalization.
16 The dual-motive assumption is more realistic, though it is not the key assumption that drives the results.

This prevents information from fully revealing in equilibrium. An alternative setup with exogenous liquidity

traders will not alter the main results.
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at the spot price P . At t = 2, each speculator realizes a terminal wealth:

W S = (P − F )yS +
z

NS

(V − V̄ ). (1.12)

Again, each speculator’s risk aversion is assumed to be NSAS so that their aggregate risk

tolerance is constant and equal to 1
AS

. Then each speculator’s optimal demand in futures

market is determined by solving

JS0 = max
yS≤L

ES
0 [−e−NSASWS

], (1.13)

where ES
t [·] = E[· | FSt ]. Their information sets are FS0 = {F, s, z} and FS1 = {F, P, s, z}.

Timeline I embed two sequentially opened markets into the model of 24 where speculators

trade strategically as in 41. In each market, there is an auctioneer who collects the demand

schedules and sets the publicly observable price to clear the market. Table 1.1 illustrates the

timeline of the model.

Information Inference If the speculative position limit does not bind, the information

revealing can be conjectured as follows. Since there is no other noise in the futures market,

the futures price is conjectured to be a linear function of speculators’ private information s

and z, i.e., F = L[s, z]. Since all the market participants are rational and non-myopic, both

the current information in the spot market and the past information in the futures market

will be incorporated into the spot price. Hence, the spot price is conjectured to a linear

function of all the information available up to t = 1, i.e., P = L[s, z, V,X] (see Appendix

1.8.1). The linearity of pricing functions comes from the CARA-Normal setup.

If the speculative position limit binds, the information revealing in the futures market

depends on speculators’ trading strategy. If speculators continue submitting their demand
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t = 0 t = 1 t = 2

Market Participants: Population Futures Price F Spot Price P Payoff V + η

observe V , X receive X(V + η)

Hedgers: NH submit yH unwind yH WH realized

submit xH

Market Makers: NM submit yM unwind yM WM realized

submit xM

Speculators: NS observe s, z unwind yS receive z(V − V̄ )

submit yS ≤ L W S realized

Table 1.1: Timeline of the two sequentially opened markets. In each market, there is an

auctioneer who collects the demand schedules and sets the publicly observable price to clear

the market.

functions, i.e., a limit order, to the auctioneer, they still reveal a mixed information of s

and z to the market. Speculators, however, may optimally submit a market order, i.e., a

price-inelastic demand, at the position limit. In this case, the market will lose track of

speculators’ information. Under different market conditions, speculators react differently to

the speculative position limit, as will be discussed in more detail later.
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1.2.2 Discussions on Assumptions

For tractability, all the random variables in this model are assumed to be normally dis-

tributed. Under normality, however, the endowments X(V + η) and z(V − V̄ ) may take

extremely large negative values which may drive the ex-ante expected utility to negative

infinity (55). To ensure the ex-ante expected utility to be finite, this paper assumes that the

variances satisfy the following regularity conditions:

A2
H

τX
(

1

τV
+

1

τη
) < 1, (1.14)

A2
S

τz

1

τV
< 1. (1.15)

All the futures contracts are cash settled or unwound in this model. In real world

less than 2% futures contracts are physically delivered at the expiration date (51). Also,

42 shows that cash settlement is equivalent to physical delivery under the assumption that

delivery mechanism does not affect the production market (13).

To focus on the informational role of futures market, this model assumes that the

futures market opens before the spot market. This also allows one to disentangle the sub-

stitution effect of the futures market to the spot market. In contrast, 5 emphasizes the

substitution role of the futures market by assuming both futures and spot markets open

simultaneously. If both markets open at the same time, the futures price has a negative

effect on the spot price due to the substitution effect.

The assumption of quantity risk, i.e., the uncertainty of X, is important. The presence

of quantity risk has two effects on hedgers. First, higher quantity risk (lower values of τX)

makes hedgers more likely to under-hedge on average since the commodity supply is more

negatively correlated with the spot price. Second, higher quantity risk may make hedgers
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to use the information revealed by futures price more aggressively than speculators. When

there is low information asymmetry between hedgers and speculators (i.e., high values of τz),

the uncertainty of commodity supply makes hedgers’ positions in futures change in the same

direction as the change of futures prices.

Finally, whether exerting market power benefits or hurts speculators depends on market

makers’ risk aversion which adjusts the impact of adverse selection on speculators. If market

makers are risk neutral, then speculators face the strongest adverse selection from market

makers and thus they tend to stay competitive. If market makers are infinitely risk averse

(like noise traders), then speculators face no adverse selection and have strong incentive to

act as an informational monopolist.

1.3 Benchmark: No Speculative Position Limit

I first solve the benchmark model where there is no speculative position limit (L → ∞).

Each market participant’s strategy is a demand schedule which is submitted to an auctioneer

in either spot or futures market. The auctioneer then aggregates all the demand schedules

submitted, determines a market clearing price, and allocates quantities to satisfy each market

participant’s demand. The equilibrium is a single price auction which, from the point of view

of auctioneer, looks “Walrasian”. The definition of an imperfectly competitive equilibrium

follows the concept in 41. What makes the equilibrium concept imperfectly competitive

is not the market-clearing rule itself, but rather the manner in which market participants

exploit the rules in determining what demand schedules to submit. In this model, the

market participants who need to take into account their price impacts are speculators. As
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NS increases, speculators become more and more competitive, and the equilibrium as defined

below converges to the standard competitive equilibrium of rational expectations as in 24.

Definition 1 (Imperfectly Competitive Equilibrium). An imperfectly competitive equilib-

rium (xi, yi, F, P ) with a vector of speculators’ strategies YS = (yS,1, ..., yS,NS)> is such that

1. In the spot market, given the future price F , the demand schedule xi as a function of

the spot price P , where i ∈ {H,M}, solves market participant i’s problem (1.5) and

(1.8) respectively. At t = 1 the spot market clears at the equilibrium spot price P such

that

NHxH +NMxM = 0, (1.16)

and the cash market is naturally cleared by Walras’ law.

2. In the futures market, given the pricing rule of P from Part 1, the demand schedule yi

as a function of F , where i ∈ {H,M}, solves market participant i’s problem (1.6) and

(1.9) respectively. For all speculators, n = 1, ..., NS, and for any alternative strategy

Y ′S differing from YS only in the n-th component yS,n, the strategy YS yields a utility

level no less than Y ′S:

ES
0 [US((P − F (YS))yS,n(YS))] ≥ ES

0 [US((P − F (Y ′S))yS,n(Y ′S))], (1.17)

where US denotes speculators’ negative exponential utility as in Eq. (1.13). At t = 0

the futures market clears at the equilibrium futures price F such that

NHyH +NMyM +

NS∑
n=1

yS,n = 0, (1.18)

and the cash market is naturally cleared by Walras’ law.
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In equilibrium, both prices and demands can be characterized by two state variables

sF and sP , which are defined below. They the information reveal by the futures price F and

the spot price P respectively. The state variable for futures market is {sF}, and the state

variables for spot market are {sF , sP}.

Proposition 1. Without a speculative position limit, in equilibrium the spot price P reveals

a mixed signal sP to the market, which is a linear combination of fundamental value V and

endowment quantity X:

sP = V − AH
τη

(X − X̄) ∼ N (V̄ , τ−1
V + τ−1

P ), (1.19)

where τ−1
P =

A2
H

τ2
η
τ−1
X = Var(sP − V ) is the variance of the difference between sP and V .

The futures price F reveals a mixed signal sF to the market, which is a linear combi-

nation of speculators’ private information s and their total endowment quantity z:

sF = s− AS
τε
z ∼ N (V̄ , τ−1

V + τ−1
F ), (1.20)

where τ−1
F = τ−1

ε +
A2
S

τ2
ε
τ−1
z = Var(sF −V ) is the variance of the difference between sF and V .

Proof. See Appendix 1.8.1.

Since in equilibrium F is informationally equivalent to sF and P is informationally

equivalent to sP , we can rewrite market participants’ information sets: FH1 = {sF , V,X},

FM1 = {sF , sP}, FH,M0 = {sF} and FS0 = {s, z}. To emphasize the dependence of the

market-clearing price on the trading strategies of speculators, we write F = F (YS) and

define the price impact of the n-th speculator as λS,n = ∂F
∂yS,n

based on the intuition of 39.

Then we can define the total price impact of all speculators as

λ =

NS∑
n=1

λS,n =

NS∑
n=1

∂F

∂yS,n
. (1.21)
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The optimal demands of each hedger, market maker and speculator respectively in futures

are given by

yH =
dH(sF − V̄ )− F

NHAHGH
11

+ hH ,

yM =
dM(sF − V̄ )− F
NMAMGM

11

+ hM ,

yS,n =
dS(sF − V̄ )− F

NSASVarS0 (P ) + λS,n
+ hS,

where the parameters dj and the hedging demand hj for j ∈ {H,M,S} can be found in

Appendix 1.8.1 and the matrices GH and GM are computed in Appendix 1.8.2.

Here, the matrix elements GH,M
11 > 0 denote hedgers’ and market makers’ effective

conditional variances of spot price, respectively. In other words, GH,M
11 can be viewed as

the perceived risks of hedgers and market makers, respectively. In the presence of quantity

risk, it can be shown that GH
11 > VarH0 (P ) and GM

11 < VarM0 (P ). It is intuitive that hedgers’

perceived risk is higher in the presence of quantity risk. As quantity risk decreases to zero,

i.e., τX increases to infinity, GH
11 decreases to VarH0 (P ) and GM

11 increases to VarM0 (P ). Since

both hedgers and market makers are homogeneous and perfectly competitive, we do not need

to distinguish their identity in the demand schedules. In equilibrium, the identity of any

speculator n can also be dropped due to the homogeneity of speculators.

The dimensionless coefficients dj for j ∈ {H,M,S} represents the aggressiveness of

speculative trading by each type of market participant. For the convenience of our discussion,

we introduce and define

d̄ = µ0(
dH

AHGH
11

+
dM

AMGM
11

), (1.22)

which is a weighted average of dH and dM , and where µ0 = ( 1
AHG

H
11

+ 1
AMG

M
11

)−1. The

parameter d̄ can be interpreted as the effective aggressiveness of speculation by hedgers and
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market makers who are less informed than speculators in futures market. The following

theorem characterizes the imperfectly competitive equilibrium described in Definition 1.

Theorem 1. There exists a linear equilibrium (P, F, {xH , yH}, {xM , yM}, yS) if and only if

dS
d̄
> 1 +

1

N2
S

or
dS
d̄
<

N2
S − 1

N2
S + 2µ0

ASVarS0 (P )

. (1.23)

Without speculative position limit, the equilibrium futures and spot prices are

P = a(sP − V̄ ) + b(sF − V̄ ) + V̄ − µX̄, (1.24)

F = d(sF − V̄ ) + h, (1.25)

where constants 0 < a < 1, 0 < b < 1, a+ b < 1, d > 0 and µ > 0. The equilibrium demands

in the spot market are

xH =
τη

NHAH
[V − V̄ − a(sP − V̄ )− b(sF − V̄ )]− 1− ω

NH

X̄, (1.26)

xM = − τη
NMAM

[V − V̄ − a(sP − V̄ )− b(sF − V̄ )] +
1− ω
NM

X̄, (1.27)

where 0 < ω < 1. The equilibrium demands of each hedger, market maker and speculator in

the futures market are respectively given by

yH =
dH − d

NHAHGH
11

(sF − V̄ ) + cH , (1.28)

yM =
dM − d

NMAMGM
11

(sF − V̄ ) + cM , (1.29)

yS =
dS − d

NSASVarS0 (P ) + λ/NS

(sF − V̄ ) + cS, (1.30)

where the coefficient d above is a weighted average of dH , dM , and dS. It can be shown that

dM < d, whereas dH − d and dS − d can be positive or negative. In equilibrium, the total

price impact of speculators is given by

λ =
µ0dS + ASVarS0 (P )d̄

dS − d̄− d̄/N2
S

. (1.31)
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Proof. See Appendix 1.8.1.

According to Theorem 1, the futures demands of hedgers can be positive or negative,

depending on the state variable sF . Note that cj = E[yj] is the average futures position

of market participant j ∈ {H,M, S}. To clear the market in equilibrium, the average

hedging demands of hedgers and market makers must be equal to NScS = X̄ − θV̄ , where

θ = −GH12

GH11
> 0 represents the under-hedging by hedgers due to the quantity risk. The element

GH
12 < 0 represents hedgers’ effective conditional covariance between the spot price P and

the commodity supply X. It can be shown that
∣∣GH

12

∣∣ increases with the quantity risk and

vanishes when there is no quantity risk. Due to symmetry, we can focus on the case of

long-side position limit, i.e., L > 0. Without loss of generality, this paper assumes that

X̄ − θV̄ > 0. (1.32)

Under this condition, one can verify that cH < 0 and cM > 0, that is, hedgers take the

short position on average whereas market makers take long position as speculators do on

average. The condition (1.32) is consistent with the stylized facts in modern commodity

futures markets (15), where institutional investors (speculators) take long positions and

hedgers take short positions. It is worth remarking that although on average hedgers and

speculators take opposite positions in futures, on the margin they can still speculate in

response to futures price.

In an environment where the maximal information about the fundamental available

to each market is fixed (i.e., given τV , τη and τε), the information asymmetry between

speculators and other market participants only depends on τz, and the hedging motive of
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Figure 1.1: The equilibrium existence condition, Eq. (1.23), for different numbers of specu-

lators. An imperfectly competitive equilibrium exists in the area either above the blue line

or below the red line in the parameter space (τz, τX). Other parameters are τε/τV = 0.3,

τη = 1, NH = NM = 30, X̄ = 1 and V̄ = 0.

hedgers is determined by τX .17 The equilibrium existence condition (1.23) in Theorem 1

indicates that an equilibrium exists only when there is sufficient difference of speculation

intensities (as characterized by dS/d̄) between speculators and other market participants.

When speculators are more and more competitive (as NS increases), a slight deviation of dS

from d̄ will motivate trading to support an equilibrium. This is confirmed in Figure 1.1 as

we see that the area where the equilibrium exists in the parameter space (τz, τX) expands

to the whole space excluding the line dS = d̄. When there is only one speculator in the

market, there is no equilibrium for the space dS < d̄. The analytical expression for the

condition dS = d̄ in terms of (τz, τX) is derived in Appendix 1.8.3. The line dS = d̄ divides

17 By the intertemporal price relation in 57, hedgers under-hedge as τX is low.
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the parameter space into two regions where the trading of speculators has different effects

on futures price volatility.

Definition 2. For market participant j ∈ {H,M,S}, if Cov(yj, F ) > 0 then market partic-

ipant j is said to destabilize the futures price. Otherwise, if Cov(yj, F ) < 0, then market

participant j is said to stabilize the futures price.

Following the previous literature (27), this paper adopts the term of price destabilizing

in the sense that trading makes the price more volatile.18 Since we have dM < d, it means

that market makers buy when price is low and sell when price is high, that is, they are always

stabilizing the futures price. The sign of dH − d can be positive or negative, depending on

two effects of futures price: informational effect and cost effect. The standard cost effect

suggests that a higher price leads to a lower demand. The informational effect means that

a higher futures price signals a stronger fundamental value and thus may motivate hedgers

to trade more aggressively on the information revealed from futures price. The term dH − d

nets these two offsetting effects, and it turns out that informational effect can be stronger

than the cost effect in the presence of quantity risk. This is similar for speculators. It can

be proved that when dS > d̄, speculators destabilize futures price, and when dS < d̄ they

stabilize futures price, as summarized in the following proposition.19

Proposition 2. By Definition 2, speculators destabilize futures price if dS > d̄, and they

stabilize futures price if dS < d̄.
18 21 use a similar definition to define liquidity consumers. This paper uses the term of destabilizing prices

because speculators in this model have dual trading motives (speculation and hedging) making it difficult to

distinguish whether speculators are consuming or providing liquidity.
19 We can easily prove that dS > d is equivalent to dS > d̄ and that Cov(yS , F ) ∝ d(dS − d).
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Proposition 3. Speculators’ price impact is positive, i.e., λ > 0, if dS > d̄, and their price

impact is negative, i.e., λ < 0, if dS < d̄. The market power makes speculators trade less

aggressively when dS > d̄, while the market power makes them trade more aggressively when

dS < d̄.

Intuitively, market power makes speculators trade less aggressively (55). This intuition,

however, can be flipped when there are multiple trading periods and quantity risk. When

dS < d̄, the information effect of futures prices dominates and hedgers utilize the information

revealed by futures prices more aggressively. In this case, speculators’ demands are downward

sloping and thus their price impact is negative. This negative price impact leads to a more

aggressive trading by speculators when their market power is not negligible.

1.4 Speculative Position Limit

Now we consider the case in which every speculator is subject to a position limit L:

yS ≤ L.

In the following, we use the subscript ·L to denote the equilibrium price or demand in the

presence of speculative position limit L. As shown in Proposition 1, the state variables for

the economy are {sF , sP} when there is no speculative position limit. Intuitively, the tails

of sF can be affected by the position limit, while sP is unaffected. When the state variable

sF is neither too large nor too small such that the speculative position limit does not bind,

information inference from prices will not be affected. Because of the symmetry, we only

focus on the positive position limit. This position limit can bind at a critical value of state
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variable sF on the right tail of the distribution of sF . In other words, when sF is so large

that the limit binds, information inference from futures price will be interrupted, leading to

the following result:

Proposition 4. Given a speculative position limit L, there exists a critical value of state

variable sF such that in equilibrium both futures and spot prices are independent of sF for

sF ≥ sF :

FL = F , (1.33)

PL = P ≡ a(sP − V̄ ) + b+ V̄ − µX̄, (1.34)

where µ > µ, a > a, b = bE[sF − V̄ | sF ≥ sF ] > b(sF − V̄ ), and F are constants depending

on L. The spot price P becomes more sensitive to the change of sP .

Proof. See Appendix 1.8.4.

The above proposition shows that the spot price P becomes more sensitive to the state

variable sP when the position limit binds since futures price becomes uninformative about

the state variable sF . Note that the futures price becomes a constant F when the limit

binds. This suggests that the position limit may be substituted by a price limit in futures

market.

Corollary 1.1. The speculative position limit L can be effectively substituted by a price limit

F , and the information inference is

E[V − V̄ | F, P ] =


[ τP
τV +τF+τP

(sP − V̄ ) + τF
τV +τF+τP

(sF − V̄ ), if F < F,

[ 1
τV +τF+τP

+ q2(sF )]τP (sP − V̄ ) + q1(sF ), if F = F ,
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Var[V | F, P ] =


1

τV +τF+τP
, if F < F,

1
τV +τF+τP

+ q2(sF ) > 1
τV +τF+τP

, if F = F ,

where q1 and q2 are well-defined functions given in 1.8.4. To obtain E[V − V̄ | F ] and

Var[V | F ], one can just take τP to zero.

Proof. See Appendix 1.8.4.

This substitution effect of the position limit results from the assumption that con-

strained traders is homogeneous and motivated by private information. Any heterogeneity

among speculators is expected to weaken this substitution effect, because the position limit

will bind at different prices for heterogeneous speculators. Another direct implication of

Corollary 4.1 leads to the following statement:

Corollary 1.2. The speculative position limit does not bias less informed market partici-

pants’ expectation of future payoff, but it does increase their perceived uncertainty, as mea-

sured by their conditional variance about future payoff.

For risk averse market participants, it is this adverse effect of position limits on their

perceived uncertainty that will reduce futures market information efficiency. Here, the infor-

mation efficiency is quantified by the less informed market participants’ perceived variance

of V conditional on the futures price F .

When speculators stabilize the futures price (i.e., dS < d̄), their demands are downward

sloping so that the position limit may also bind on the left tail of the distribution of sF .

There exists a critical value of state variable ŝF such that for sF ≤ ŝF the position limit

binds. However, this does not imply that the equilibrium futures price fails to be informative
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about sF . In fact, when dS < d̄ it is hedgers who use information from futures price more

aggressively than speculators, i.e., hedgers are selling when prices are low. Thus speculators

still have incentives to reveal sF to buy at a lower price. For sF ≤ ŝF , the market clearing

price is such that it reveals sF and clears the futures market with each speculator holding L

shares. This result is stated below:

Proposition 5. When speculators stabilize price, i.e., dS < d̄, given the speculative position

limit L, there exists a critical value ŝF such that for sF ≤ ŝF ,

FL = F̂ ≡ d̂(sF − V̄ ) + ĥ, (1.35)

PL = P, (1.36)

where d̂ > d and d̂(ŝF − V̄ ) + ĥ = d(ŝF − V̄ ) + h.

Proof. See Appendix 1.8.5.

When speculators destabilize price (i.e., dS > d̄), their demands are upward sloping,

and the position limit also binds at ŝF on the right tail of the distribution of sF if they

submit price-elastic demands. Both ŝF and sF depend on speculators’ population NS. We

have ŝF < sF when speculators are competitive, i.e, NS >> 1. However, in this case, the

position limit barely binds.20 Thus, the case of large NS is only reported in Appendix 1.8.5.

In an oligopoly market with a small number of speculators, we have ŝF ≥ sF and thus ŝF

becomes irrelevant. The following theorem summarizes the equilibrium prices in this case:

20 Both ŝF and sF are beyond five standard derivations for NS = 15 and L/X̄ = 0.25. Hence this case

only matters when there is an aggregate position limit on the entire group of speculators, as will be discussed

in Section 1.5.
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Theorem 2. With the speculative position limit L in futures market,

1. When speculators stabilize price (i.e., dS < d̄), there exist ŝF and sF such that position

limit binds for sF ≤ ŝF and sF ≥ sF , and in equilibrium each speculator submits a price

dependent limit order for sF ≤ ŝF but executed at L, and submits a price independent

market order at L for sF ≥ sF . The equilibrium prices are

FL =



F̂ , if sF ≤ ŝF

F, if ŝF < sF < sF

F , if sF ≥ sF

PL =


P, if sF < sF

P , if sF ≥ sF

(1.37)

2. When speculators destabilize price (i.e., dS > d̄), there exists sF such that position

limit binds for sF ≥ sF , and in equilibrium each speculator submits a price independent

market order at L for sF ≥ sF . The equilibrium prices are

FL =


F, if sF < sF

F , if sF ≥ sF

PL =


P, if sF < sF

P , if sF ≥ sF

(1.38)

Proof. See Appendix 1.8.5. The equilibrium demands in futures and spot markets are also

given in Appendix 1.8.5.

One claimed objective of imposing speculative position limits is to prevent commodity

price bubbles. However, as shown in Figure 1.2, futures price may jump up when the

realized state sF is close to the critical value sF . This corresponds to the situation when

futures price suddenly becomes uninformative and less informed market participants perceive

a sharp increase in uncertainty about the commodity fundamental. This price surge has a
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Figure 1.2: Equilibrium futures price with respect to the state variable sF for markets

with two speculators NS = 2. Dash-dot lines represent the equilibrium price without the

speculative position limit (SPL), while solid lines denote the price with position limits L/X̄ =

0.25. (a) Speculators destabilize price: dS = 2.5d̄. (b) Speculators stabilize price: dS = 0.1d̄.

Other parameters are τε/τV = 0.3, τη = 1, NH = NM = 30, X̄ = 1, and V̄ = 0.

spillover effect on spot market as Figure 1.3(a) shows. Since futures price has a positive

impact on spot price due to information learning, a sudden increase in futures price will also

lead to a jump in spot price. Furthermore, when position limit binds, the spot price becomes

more sensitive to the realized state sP and hence amplifies the changes in sP as Figure 1.3(b)

shows.

1.4.1 Equilibrium Positions

In position-limit-rule proponents’ mind, the limits will not affect speculators’ trading strate-

gies. In other words, when the limits do not bind, speculators will follow the same trading

strategy as if there were no limits for them. As Figure 1.4 shows below, position-limit-rule

33



−2 −1 0 1 2 3 4

−0.56

−0.54

−0.52

−0.5

−0.48

sF

E
qu

ili
br

iu
m

 S
po

t P
ric

e

 

 
without SPL

L/X̄ = 0.25, sP = V̄

sF

(a)

−5 0 5
−6

−4

−2

0

2

4

sP

E
qu

ili
br

iu
m

 S
po

t P
ric

e

 

 

sF < sF

sF > sF

(b)

Figure 1.3: Equilibrium spot price with respect to the state variables (a) sF and (b) sP

for markets with two speculators NS = 2. In panel (a), the dash-dot line represents the

equilibrium price without the speculative position limit (SPL) and the solid line denotes the

price with position limits L/X̄ = 0.25. In panel (b), the dash-dot line represents the price

when SPL does not bind (sF < sF ) and the solid line is the price when SPL binds (sF > sF ).

Other parameters are dS = 1.5d̄, τε/τV = 0.3, τη = 1, NH = NM = 30, X̄ = 1 and V̄ = 0.

proponents expect that speculators’ positions will not be affected by the position limits if

the limits do not bind. Therefore, CFTC calculated the binding probability of the proposed

rules based on the data without limits.

However, speculators’ position demonstrated in Figure 1.4 is not an equilibrium. Be-

cause position limits can benefit constrained speculators in two ways. First, when the limits

bind, speculators can submit price-independent market orders at the limits, which mitigates

the adverse selection problem of speculators and thus reduces the cost of their price impacts.

This effect is more prominent when speculators provide liquidity in the futures, because in

this case their information is more valuable to uninformed hedgers. Second, the position
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Figure 1.4: Position-limit-rule proponents expect that speculators’ positions will not be

affected by the position limits if the limits do not bind.

limits have a cartel effect. Without the limits, even though speculators know that they can

get a better price by constraining their supply in the futures, there is no enforcement to do

so. Position limits form a natural cartel for them and give them a higher return. Because of

these two reasons, speculators have incentives to make the limits bind on them. Therefore,

in equilibrium they will implement their market power to make the limits bind in the cases

their positions will below the limits if there were no limits as Figure 1.5 shows. In other

words, the limits are more likely to bind than CFTC expected, especially in the markets

where speculators have significant market powers.

Proposition 6. The binding probability of the limits is higher than the probability that
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Figure 1.5: The equilibrium positions of speculators under individual position limits.

speculators’ positions are higher than the limits if there were no limits, especially in the

markets where market makers have significant market powers.

1.4.2 Market Liquidity and Risk Premia

One major concern of the position limit rule is that how it affects market liquidity. The

Commission believes that market liquidity will not be harmed based on two arguments.

First, speculators are liquidity consumers when they destabilize prices. Second, there exist a

large number of unconstrained traders (market makers) who will keep providing liquidity to

hedgers when position limits bind on speculators. In reality, speculators have dual trading

motives: speculation and hedging. Speculation is traditionally viewed to provide liquidity
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while hedging is viewed to consume liquidity. The dual trading motives of speculators make

it difficult to disentangle whether they are providing liquidity or not. Moreover, one trader’s

liquidity provider can be another trader’s liquidity consumer. Thus, it is ambiguous to

consider speculators as liquidity consumers without identifying from whose perspective. For

this reason, this paper avoids to use the terms of liquidity consumer or liquidity provider.

Instead, this paper directly focuses on the measure of market liquidity. There are different

measures of market liquidity proposed in the literature. 55 suggests that market liquidity

can be measured by the coefficient of regressing price on trading quantity. This approach is

suitable for a linear equilibrium price. As shown in last section, the equilibrium price is not

linear in trading quantity anymore when there is position limit. An alternative measure of

market illiquidity in the literature is based on the intuition of 50 and 23 that the lower the

autocorrelation in rates of return, the higher the equilibrium level of market liquidity.

Definition 3 (Return Autocorrelation). Define γ as the autocorrelation between the price

changes in futures market:

γ =
Cov(P − F, F − E[F ])√

Var(P − F )Var(F − E[F ])
. (1.39)

It is easy to show that the return autocorrelation γ is negative. We denote the return

autocorrelation with speculative position limit L by γL. Then, as proved in Appendix 1.8.6,

we have the following relationship

Proposition 7. The return autocorrelation with the position limit L is less negative than

that without the position limit, i.e.,

γ < γL < 0. (1.40)
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The less autocorrelation is due to the fact that prices become less informative with

position limit. It does not mean that the market liquidity will be improved after imposing

position limits. Indeed, return autocorrelation is an appropriate measure of illiquidity when

it quantifies price reversals after a major liquidity shock where trading is not driven by

information.

Since a lot of trading in futures market is motivated by private information, here I

use a marginal price impact measure similar to Kyle’s λ, which is the marginal price change

caused by a small change in the aggregate demand, to quantify market illiquidity. In its

definition below, the small change δy (a perturbation) can be interpreted as some exogenous

market orders (a liquidity event) coming to the market.

Definition 4 (Market Illiquidity Measure). Market illiquidity measure is defined as the

marginal price impact caused by an infinitesimal liquidity shock.

1. In futures market, by market clearing NHyH +NMyM +NSyS + δy = 0 where δy is the

liquidity shock, we define the illiquidity measure of futures market as

λF ≡ lim
δy→0

∂F

∂δy
. (1.41)

2. In spot market, by market clearing NHxH +NMxM + δx = 0 where δx is the liquidity

shock, we define the illiquidity measure of spot market as

λP ≡ lim
δx→0

∂P

∂δx
. (1.42)

It is then straightforward to calculate λF and λP in this model.

Proposition 8. With a speculative position limit L:
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1. The futures market illiquidity is given by

λF = (
1

AHGH
11

+
1

AMGM
11

+
NS1yS<L

NSASVarS0 (P ) + λ/NS

)−1, (1.43)

where GH,M
11 denote the hedgers’ and market makers’ effective conditional variance of

spot price respectively.

2. The spot market illiquidity is given by

λP = (
1

AHVarH1 (V + η)
+

1

AMVarM1 (V + η)
)−1. (1.44)

When the position limit binds, both λF and λP increase.

As can be seen from Eq. (1.43), λF can increase through two channels when the position

limit binds. First, speculators stop contributing to market liquidity beyond position limit,

i.e., 1yS<L = 0. Second, the perceived uncertainty by hedgers and market makers rises, i.e.,

GH,G
11 increases. When the limit binds, there is an illiquidity spillover effect on spot market.

As Eq. (1.44) shows, λP increases due to less information learning by market makers. This

illiqudity is generated by a sudden surge in uncertainty as perceived by less informed traders.

One of the rationales for developing commodity futures markets is to facilitate hedgers

to unload their commodity risks to other economic agents. In Keynes-Hicks theory, specula-

tors collect the risk premium by sharing risks with hedgers in the futures market. The risk

premium increases with the net hedging demands (49). In Working theory (58), it is the

speculators who shift risks to hedgers and pay hedgers the risk premium in futures market.

The empirical evidence is mixed. 12 shows that the observed biases in futures prices, i.e.,

the futures basis, are related to the net positions of hedgers, which supports Keynes-Hicks

theory. Nonetheless, a more recent study 22 shows that the observed biases reflect the state
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of inventory, which is more consistent with Working theory (58). My model reconciles these

two seemingly conflicting theories by showing that hedgers can utilize the intertemporal price

relation to under-hedge on average, and both hedgers and speculators engage in speculation

on the margin. Therefore, the risk premium is determined by the average hedging demand

(from Keynes-Hicks theory) and the speculative trading on the margin (from Working the-

ory). It is the market liquidity that determines the speculative trading on the margin. In

other words, liquidity is not free for hedgers.

Proposition 9. The expected returns in futures and spot markets respectively are

E[P − F ] = λF (X̄ − θV̄ ), (1.45)

E[V + η − P ] = λP X̄. (1.46)

where θ > 0 represents the under-hedge by hedgers.

Corollary 2.1. When the average hedging demand in futures is positive (i.e., X̄ − θV̄ > 0),

the speculative position limit increases risk premia in both futures and spot markets as it

reduces market liquidity.

This result is consistent with empirical evidence that commodity financialization re-

duces risk premia in crude oil market (25). Imposing position limits on speculators can

increase the risk premia in both futures and spot markets.21 Position limits can not only

significantly increase illiquidity measure λF and λP , but also marginally change θ. When
21 The risk premia may be linked to the stochastic discount factor in this economy. Following 18, we

conjecture that without the speculative position limit there may exist an Equivalent Martingale Measure

(EMM) Q-measure, under which F = EQ[P ], P = EQ[V + η]. With position limit, if such a Q-measure

exists, the expectation of payoff is conjectured to serve as a lower bound of the equilibrium price; see 47.
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speculators stabilize price, position limit decreases θ, thus makes risk premia of futures

even higher. When speculators destabilize price, position limit increases θ slightly. But the

increase in λF dominates, thus risk premia are higher with position limits.

1.4.3 Welfare

In this section, I study how position limits affect the welfare of different market participants.

The welfare and the certainty equivalent wealth (CEW) of market participant j ∈ {H,M,S}

are defined as

Wj = E[J j0 ], (1.47)

CEWj = −log(−Wj). (1.48)

The calculation of the welfare and CEW can be found in Appendix 1.8.7.

Intuitively, when setting position limits regulators may expect a welfare transfer from

constrained speculators to unconstrained hedgers. However, whether the welfare of con-

strained speculators are reduced or not is unclear. There are two opposite effects of position

limits on speculators: price effect and quantity effect (56). The price effect comes from the

increased risk premia, which benefit speculators. This is because position limit moves the

price in the direction that favors speculators on average. The quantity effect comes from

decreased trading quantity, which hurts speculators by restricting them from trading the

optimal quantity. Thus, if the position limit is not too small, i.e., speculators are not too far

from their optimal trading quantity, the price effect will dominate the quantity effect and

speculators are better off with position limits. If the position limit L becomes too small, then

the quantity effect dominates price effect and thus speculators are worse off with position
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limits. These two effects also depend on the market power of speculators and the information

asymmetry between speculators and other market participants. The market power exerted

by speculators dampens the quantity effect, and the increased information asymmetry due

to the position limit exacerbate the price effect.

The two effects also depend on the competitiveness among speculators. The position

limit binds in a market with a large number of speculators at a low probability, thus it

should have little impact on a competitive market. For an oligopoly market with a few

speculators, the position limit binds with a high probability. Thus, given a position limit L,

whether speculators’ welfare increases or decreases is affected by their competitiveness, i.e.,

their population NS.

Proposition 10. Given the information environment and market conditions, for a specula-

tive position limit L, there exists a critical number of speculators NL
S such that

1. If NS < NL
S , speculators are worse off with the position limit;

2. If NS ≥ NL
S , speculators are better off with the position limit.

NL
S increases with dS/d̄.

Proof. See Appendix 1.8.7.

Figure 1.6 illustrates how speculators’ certainty equivalent wealth (CEW) change under

a speculative position limit in two different markets: (a) when dS > d̄ (NL
S = 5) and (b) when

dS < d̄ (NL
S = 2). In both markets, the position limit has small effects on competitive markets

with a large population of speculators, but has significant effects on oligopoly markets with

a small number of speculators. Figure 1.6(a) shows that when speculators destabilize prices,
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they are harmed by this rule if there are less than five speculators, they benefit from this

rule if there are more than five speculators, and they are barely affected by this rule if there

are more than ten speculators. Figure 1.6(b) shows that when speculators stabilize prices,

they always benefit from this rule, especially when there are less than five speculators in the

market.
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Figure 1.6: Percentage change of speculators’ Certainty Equivalent Wealth (CEW) under the

position limit L/X̄ = 0.25 with respect to their population NS. (a) Speculators destabilize

price: dS = 2.5d̄. (b) Speculators stabilize price: dS = 0.1d̄. Other parameters are τε/τV =

0.3, τη = 1, NH = NM = 30, X̄ = 1, and V̄ = 0.

Position limits on speculators always reduce hedgers’ welfare. As Figure 1.7 shows, in

a duopoly market with only two speculators especially when they stabilize prices. Hedgers’

CEW decreases as position limit L decreases. Position limits have a positive price effect on

market makers, because on average market makers trade in the same direction as speculators.

Position limits have two effects on the trading quantities of market makers, although they

are not subject to the position limit. On one hand, the higher risk premia induce them to
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Figure 1.7: Percentage changes of the Certainty Equivalent Wealth (CEW) for different mar-

ket participants versus position limit L/X̄. The symbols {S,H,M} in the figure correspond

to speculators, hedgers, and market makers. (a) Speculators destabilize price: dS = 2.5d̄. (b)

Speculators stabilize price: dS = 0.1d̄. Other parameters are τε/τV = 0.3, τη = 1, NS = 2,

NH = NM = 30, X̄ = 1 and V̄ = 0.

trade more. On the other hand, market makers lose valuable information if the limits bind on

speculators. Such information disadvantage increases their perceived uncertainty and thus

makes them trade less. As the position limit L decreases, the price effect dominates. Thus,

market makers are better off with a small position limit and worse off with a large position

limit, as shown Figure 1.7(a).

1.4.4 Information Externalities on Spot Market

If the position limit does not bind, then it has no impact on spot market. If it binds, however,

then there should be information externalities on spot market. These externalities are more

prominent when quantity risk is high, i.e τX is small. In cases that position limit binds
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at a point beyond the critical value sF , the futures price F (public information) becomes

less informative. This reduced public information increases information asymmetry in spot

market between market makers and hedgers, resulting in an increase of the hedging cost (i.e.,

market makers charging hedgers a higher risk premium). As a result, the trading volume in

spot market decreases when the position limit binds in futures. In other words, the scope of

risk sharing in spot market is reduced, and the welfare of both market makers and hedgers

are adversely affected by the position limit.

Proposition 11. If the speculative position limit binds in the futures market, the interim

utilities of hedgers and market makers from spot market decreases, especially when quantity

risk is high. Information revealed by futures price is more valuable for the market participants

who bear the quantity risk.

Proof. See 1.8.8.

Previous literature (52) argues that the information revealed by futures price can harm

hedgers, because in spot market hedgers have information advantage over market makers.

This intuition is correct only if there is no quantity risk. For informed spot market partici-

pants with quantity risk (hedgers), the loss of information advantage due to public informa-

tion is always outweighed by the increased scope of risk sharing. The position limit in futures

hampers information revealing of futures price, thus it always has negative externalities on

both informed and less informed spot market participants. In this model, hedgers are better

informed than market makers. Thus, it seems that the information revealed by futures price

is useless for hedgers, it is more valuable for market makers. Proposition 11, however, shows

that it is the opposite: the information revealed by futures price is more valuable for hedgers
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who bear the quantity risk, no matter how informed they are.

1.5 Competition under an Aggregate Position Limit

Also approved at the November 5 meeting was a proposed rule on aggregation of positions,

which the commission deems necessary in order to prevent affiliated companies from sidestep-

ping position limits rules by distributing positions among affiliates. The Commission and

the exchanges treat multiple positions subject to common ownership or control as if they

were a single trader. Accounts are considered to be under a common ownership if there

is a 10 percent or greater financial interest. The rules are applied in a manner calculated

to aggregate related accounts. For example, each participant with a 10 percent or greater

interest in a partnership account must aggregate the entire position of the partnership not

just the participant’s fractional share-together with each position they may hold separately

from the partnership. Likewise, a pool comprised of many traders is allowed only to hold

positions as if it were a single trader. The Commission also treats accounts that are not

otherwise related, but are acting pursuant to an express or implied agreement, as a single

aggregated position for purposes of applying the limits. The Commission believes that the

aggregate position limit can promote market competition.22

This section examines how an aggregate position limit affects a pool of speculators

compete on their common information. Therefore, in this section, there are NS speculators

who are allowed only to hold positions as if they were a single trader. In other words, each

22 http://www.cftc.gov/IndustryOversight/MarketSurveillance/SpeculativeLimits/index.htm.
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of them is subject to a position limit L/NS:

yS ≤ L/NS.

Surprisingly, the aggregate position limit may disincentive speculators to compete on

their common information under certain market conditions. As Figure 1.8 shows, without an

aggregate position limit, speculators’ CEW is greater if they fully compete on their common

information. However, with an aggregate position limit L/X̄ < 2, their CEW is greater

if they act as an information monopolist. This result comes from the following trade-off.

On one hand, speculators can extract more rent from their information advantage by acting

as an information monopolist. On the other hand, speculators face more severe adverse

selection as a monopolist. An aggregate position limit would mitigate the impacts of this

adverse selection. Thus, under certain market conditions, the aggregate position limit makes

speculators better off if they act as an informational monopolist. Proposition 12 summarizes

such market conditions.

Proposition 12. For τε/τV <
√

5−1
2

and NS >> 1, given an aggregate position limit L, there

exits a critical value κ > 0 such that for 2d̄ < dS < (κ+ 2)d̄,

1. with the aggregate position limit, speculators’ total CEW of acting as an information

monopolist is greater than their total CEW of fully competing on their common infor-

mation;

2. without the aggregate position limit, it is the opposite;

3. κ increases as L decreases.

Proof. See Appendix 1.8.9.

47



0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

C
E

W
 P

er
ce

n
ta

g
e 

C
h

an
g

e

 

 

L/X̄

Competitive
Monopoly

Figure 1.8: Percentage changes of speculators’ CEW relative to no trading versus the position

limit L/X̄. The solid line represents the case in which speculators fully compete on their

common information. The dash-dot line represents the case in which speculators act as an

information monopolist. Other parameters are dS = 2.5d̄, τε/τV = 0.3, τη = 1, NS = 15,

NH = NM = 30, X̄ = 1 and V̄ = 0.

In markets that satisfy the conditions in Proposition 12, an aggregate position limit

may potentially reduce speculators’ competition even when the limit does not bind. As

Figure 1.9 shows, in the presence of an aggregate position limit the futures price becomes

less sensitive to state variable sF due to the market power exerted by speculators acting

as an informational monopolist. As a result, a potential equilibrium position of speculators

is shown in Figure 1.10. When speculators demand liquidity in futures, their imperfect

competition makes them trade less aggressively, and in this case an aggregate position limit

may lead them to trade even lesser aggressively. When speculators provide liquidity in

futures, their imperfect competition makes them trade more aggressively, and in this case an
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Figure 1.9: The equilibrium futures price with respect to the state variable sF for markets

with NS = 15 and an aggregate position limit L/X̄ = 0.5. Dash-dot lines represent the

equilibrium futures prices without the aggregate speculative position limit (SPL) and solid

lines denote the prices with the aggregate SPL L/X̄ = 0.5 (a) Speculators fully compete

on their common information. (b) Speculators act as an information monopolist. Other

parameters are dS = 2.5d̄, τε/τV = 0.3, τη = 1, NH = NM = 30, X̄ = 1, and V̄ = 0.

aggregate position limit may lead them to trade even more aggressively. Therefore, another

potential unintended consequence can be concluded that an aggregate position limit may

exacerbate the imperfect competition among speculators. In markets that do not satisfy the

conditions in Proposition 12 (e.g., when speculators are stabilizing price so that dS < d̄),

an aggregate position limit may improve speculators’ welfare (Figure 1.6) at the expense of

hedgers (as shown in Figure 1.7).
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Figure 1.10: A potential equilibrium position of speculators under an aggregate position

limit.

1.6 Impacts on Price Volatility and Skewness

From Corollary 2.1, it is straightforward to conclude that the ex-ante average futures and

spot price levels are lower in the presence of position limits. However, the realized prices

can be higher than those in the case of no position limit. Moreover, both futures prices and

spot prices exhibit discontinuity with respect to the state variable sF .

One purpose of implementing position limits is to curb excessive fluctuations in com-

modity prices. By the law of total variance, the variance of the spot price can be written

as

Var(P ) = E[Var(P | F )] + Var(E[P | F ]). (1.49)
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The volatility of the commodity price can be decomposed into two parts. The first part

denotes the variance of spot price predicted by the futures price F , which comes from spec-

ulators’ trades in futures. The second part denotes the residual variance, which comes from

hedgers’ trades in spot market. The position limit has opposite effects on these two parts. It

reduces the first part by directly limiting speculators’ trades in futures. It, however, increases

the second part by making the spot price P more responsive to sP as a result of hedgers’

trades in spot market. Therefore, position limit can increase or decrease the commodity

price volatility by netting the two effects. When information asymmetry in futures is low

(i.e., large τz) and quantity risk is high (i.e., small τX), the first part is small and the second

part is large. This is the case of dS < d̄, in which speculators’ trading stabilizes futures

price, (i.e., speculators buy when price is low and sell when price is high). Thus, in this case

imposing speculative position limits should destabilize both futures and spot prices.

Proposition 13. When speculators stabilize futures price, i.e., dS < d̄, the speculative

position limits increase the volatilities of both futures and spot prices,

Var(FL) > Var(F ), Var(PL) > Var(P ).

Thus, contrary to the policymakers’ belief, imposing position limits can increase price

volatility under certain market conditions (when speculators buy low and sell high). In

order to study price skewness, I define the average skewness of short-horizon returns in

futures market by

SKEW =
1

2
Skew[F ] +

1

2
Skew[P − F ], (1.50)

where Skew[x] = E[(x − E[x])3]. Without position limits, the average skewness is zero by

normality: Skew[F ] = Skew[P − F ] = 0. With position limits, the first term is negative:
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Skew[FL] < 0, and the second term is positive: Skew[PL − FL] > 0. The average skewness

with position limit can be positive or negative, depending on market conditions.

1.7 Conclusion

To evaluate the impacts of speculative position limits in futures market, I develop a tractable

and flexible two-period rational expectation model, which jointly characterizes the equilib-

rium of commodity futures and spot markets with strategic speculators. I find that the equi-

librium for an oligopoly market (with a few speculators) only exists when hedging motive for

speculators is high or hedgers’ quantity risk is high, while the equilibrium for a competitive

market (with a large number of speculators) alway exists. Speculators destabilize prices

when their hedging motive outweighs hedgers’ hedging motive, and they are stabilize prices

otherwise. When speculators stabilize prices, the imperfect competition makes speculators

trade more aggressively due to a negative price impact.

This paper shows that, when the speculative position limit binds, market liquidity will

be harmed for two reasons. First, the perceived riskiness by less informed market participants

increases, because the binding of position limits interrupts the information revealing. Second,

speculators’ contribution to market liquidity vanishes when they submit price-inelastic orders

at position limits. The reduction of market liquidity raises the cost of hedging and makes

hedgers worse off.

This paper further examines how speculative position limits work in markets with

different competitiveness among speculators. I show that position limits have a marginal

effect on competitive markets with a large number of speculators. In oligopoly markets with
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a few speculators, however, position limits can significantly improve speculators’ welfare

at the expense of hedgers, especially when speculators stabilize futures prices. Thus, it is

inappropriate for regulators to implement a uniform position limit on all commodity futures

without considering the heterogeneity in market competitiveness. This paper also examines

how an aggregate position limit affects a competitive market. I find that an aggregate

position limit may hurt competitive speculators but benefit less competitive speculators.

This implies that an aggregate position limit can potentially reduce speculators’ competition

even when the limit does not bind.

Finally, the binding of position limits can dramatically increase the levels of both

futures and spot prices, as it increases the uncertainties perceived by less informed market

participants. Moreover, when speculators stabilize futures prices, imposing position limits

on them increases both futures and spot price volatilities.
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1.8 Appendix

1.8.1 Benchmark Model: No Speculative Position Limit

In this section, I solve the benchmark model in the absence of position limits. I assume

that there is a finite number of speculators, i.e., 1 ≤ NS << NH,M . In other words, both

hedgers and market makers have negligible market power, while speculators are imperfectly

competing on their common information. The model can be solved backward, and the

following lemma will be used repeatedly.

Lemma 1. Let u be an n × 1 normal vector with mean ū and covariance matrix Σ, A a

scalar, B an n × 1 vector, C an n × n symmetric matrix, I the n × n identity matrix, and

|M | the determinant of a matrix M . Then,

Eu exp{−ρ[A+B>u+
1

2
u>Cu]} =

1√
|I + ρCΣ|

exp
{
− ρ[A+B>ū+

1

2
ū>Cū

−1

2
ρ(B + Cū)>(Σ−1 + ρC)−1(B + Cū)]

}
.

I first solve the benchmark model with no position limits on speculators. For every

commercial hedger, her terminal wealth at t = 2 is

WH = (P − F )yH − PxH + (V + η)(xH +X/NH), (1.51)

which is normally distributed. So her expected utility at t = 1 is

EH
1 [−e−NHAHWH

] = − exp
{
−NHAH [(P − F )yH + PX/NH + (V − P )(xH +X/NH)

−1

2
NHAHVarH1 (η)(xH +X/NH)2]

}
.(1.52)
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Taking P as given, each commercial hedger maximizes her expected utility at t = 1 by

choosing

xH =
V − P

NHAHVarH1 (η)
− X

NH

. (1.53)

The second order condition to ensure the optimality requires that NHAHVarH1 (η) > 0, which

is satisfied automatically.

For every market maker, the terminal wealth at t = 2 is

WM = (P − F )yM + (V + η − P )xM , (1.54)

which is normally distributed. So each market maker’s expected utility at t = 1 is

EM
1 [−e−NMAMWM

] = − exp
{
−NMAM [(P − F )yM + (EM

1 [V ]− P )xM

−1

2
NMAMVarM1 (V + η)x2

M ]
}
. (1.55)

To maximize this expected utility, each market maker chooses

xM =
EM

1 [V ]− P
NMAMVarM1 (V + η)

. (1.56)

The second order condition to ensure the optimality requires that NMAMVarM1 (V + η) > 0

which is satisfied automatically.

For commercial hedgers, we plug Eq. (1.53) into Eq. (1.52) and obtain

JH1 = −e−NHAH [(P−F )yH+P X
NH

+ 1
2
NHAHVarH1 (η)(xH+ X

NH
)2]
. (1.57)

To compute the expectation EH
0 [JH1 ], I use Lemma 7 and set ρ = AH , A = −FNHyH ,
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ū = EH
0 [u], Σ = CovH0 (u), and

u =


P

X

NHxH +X

 , B =


NHyH

0

0

 , C =


0 1 0

1 0 0

0 0 AHVarH1 (η)

 .(1.58)

Let GH = (Σ−1 + AHC)−1, then

EH
0 [JH1 ] = −|G|

|Σ|
exp

{
− AH

{
(EH

0 [P ]− F )NHyH +
1

2
ū>Cū− 1

2
AH [G11(NHyH + EH

0 [X])2

+2G12(NHyH + EH
0 [X])EH

0 [P ] + 2G13(NHyH + EH
0 [X])AHVarH1 (η)EH

0 [NHxH +X]

+G22(EH
0 [P ])2 +G33(AHVarH1 (η)EH

0 [NHxH +X])2

+2G23AHVarH1 (η)EH
0 [NHxH +X]EH

0 [P ]]
}}
. (1.59)

The first order condition with respect to yH gives

yH =
EH

0 [P ]− F
NHAHGH

11

− GH
12

NHGH
11

EH
0 [P ]− GH

13

GH
11

AHVarH1 (η)EH
0 [xH +

X

NH

]− 1

NH

EH
0 [X], (1.60)

and the second order condition is AHGH
11 > 0 which is satisfied automatically.

For market makers, we plug Eq. (1.56) into Eq. (1.55) to obtain

JM1 = −e−NMAM [(P−F )yM+ 1
2
NMAMVarM1 (V+η)x2

M ]. (1.61)

To compute the expectation EM
0 [JM1 ], I use Lemma 7 and set ρ = AM , A = −FNMyM ,

ū = EM
0 [u], Σ = CovM0 (u), and

u =

 P

NMxM

 , B =

 NMyM

0

 , C =

 0 0

0 AMVarM1 (V + η)

 . (1.62)

Let GM = (Σ−1 + AMC)−1, then

EM
0 [JM1 ] = −|G|

|Σ|
exp

{
− AM

{
− FyM + ū1NMyM +

1

2
AMVarM1 (V + η)ū2

2

−1

2
AM [G11N

2
My

2
M + 2G12AMVarM1 (V + η)ū2NMyM +G22(AMVarM1 (V + η)ū2)2]

}}
. (1.63)
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The first order condition with respect to yM gives

yM =
EM

0 [P ]− F
NMAMGM

11

− GM
12

GM
11

AMVarM1 (V + η)EM
0 [xM ], (1.64)

and the second order condition requires that AMGM
11 > 0 which is satisfied automatically.

We assume that the total price impact of speculators is λ = dF
d(NSyS)

. Since NS <<

NH,M , each speculator is able to exert a finite market power λ/NS. Thus, each speculator’s

demand of futures is

yS =
ES

0 [P ]− F − ASCovS0 (P, V )z

NSASVarS0 (P ) + λ/NS

. (1.65)

The market clearing conditions give that

EH
1 [V + η]− AHVarH1 (V + η)X = L(P, F ), (1.66)

ES
0 [P ]− ASCovS0 (P, V )z = L(F ). (1.67)

This is because under CARA-Normal setup EM
1 [.] is a linear function of market makers’

information set at t = 1: FM1 = {P, F}. Similarly, Ei
0[.] is a linear function of i’s (i ∈ {H,M})

information set at t = 0: F i0 = {F}. Hence, the information revealed by futures price is

unaffected by NS. In other words, the competitiveness among speculators does not affect

their information revealing23. Therefore, the dependency of spot prices on the state variable

sF , which is defined in Proposition 1, does not change with the number of speculators NS.

By market clearing condition in the spot market, the equilibrium spot price has the
23This is because there is no noise trading in this model. If there is noise trading, then the informa-

tion revealing will increase by a factor of NS

NS+1 which increases with the population of speculators (44).

Nonetheless, adding noise trading in my model does not alter the main results.
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form

P = V̄ − µX̄ + a(sP − V̄ ) + b(sF − V̄ ), (1.68)

where µ = AHτ
−1
η ω, a = ω + (1 − ω) τP

τV +τF+τP
, b = (1 − ω) τF

τV +τF+τP
, and ω = (1 +

AH
AM

τV +τF+τP
τη+τV +τF+τP

)−1. It is easy to see that

ω ≥ 1

1 + AH
AM

, 0 < a < 1, 0 < b < 1, a+ b < 1. (1.69)

which means the sensitivity of spot price to commercial hedgers’ private information is

reduced because of the information brought by the speculators in futures market.

Thus, the equilibrium demands in spot market are

xH =
ω(1− ω)

µ
[

τV + τF
τV + τF + τP

(sP − V̄ )− τF
τV + τF + τP

(sF − V̄ )]− (1− ω)X̄,

xM = −ω(1− ω)

µ
[

τV + τF
τV + τF + τP

(sP − V̄ )− τF
τV + τF + τP

(sF − V̄ )] + (1− ω)X̄,

which are not affected by the number of speculators (NS) in futures market.

The equilibrium demand schedules in futures market are

yH =
dH(sF − V̄ )− F

NHAHGH
11

+ hH ,

yM =
dM(sF − V̄ )− F
NMAMGM

11

+ hM ,

yS =
dS(sF − V̄ )− F

NSASVarS0 (P ) + λ/NS

+ hS,
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where

hH =
1− AHGH

12

NHAHGH
11

(V̄ − µX̄)− µG
H
13

GH
11

X̄

NH

− X̄

NH

,

hM =
1

NMAMGM
11

(V̄ − µX̄)− µG
M
12

GM
11

X̄

NM

,

hS =
1

NSASVarS0 (P ) + λ/NS

(V̄ − µX̄),

dH = (1− AHGH
12)

τF
τV + τF

,

dM =
τF

τV + τF
,

dS =
τε

τV + τε
a+ b.

As GH
12 < 0, we can see that 0 < dM < dS and 0 < dM < dH , and whether dH is larger or

smaller than dS depends on GH
12. In equilibrium, the market clearing condition is NHyH +

NMyM +
∑NS

n=1 yS,n = 0, which gives the futures price

F = d(sF − V̄ ) + h,

where

d = ωHdH + ωMdM + ωSdS,

h = µ1(NHhH +NMhM +NShS),

and

µ1 = (
1

AHGH
11

+
1

AMGM
11

+
NS

NSASVarS0 (P ) + λ/NS

)−1,

ωH =
µ1

AHGH
11

,

ωM =
µ1

AMGM
11

,

ωS = 1− ωH − ωM .
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Since d is a weighted average of dH , dM and dS, then we have d > dM which means the

market makers’ demand in the futures market is always downward sloping. However, both

the hedgers’ and the speculators’ demands can be upward or downward sloping. We also

define

d̄ = µ0(
dH

AHGH
11

+
dM

AMGM
11

), (1.70)

which is a weighted average of dH and dM , and where µ0 = ( 1
AHG

H
11

+ 1
AMG

M
11

)−1. In equilibrium,

λ =
µ0dS + ASVarS0 (P )d̄

dS − d̄− d̄/N2
S

, (1.71)

which needs to satisfy the second order condition that

λ > −1

2
N2
SASVarS0 (P ). (1.72)

Thus, the equilibrium exists if and only if

dS
d̄
> 1 +

1

N2
S

or
dS
d̄
<

N2
S − 1

N2
S + 2µ0

ASVarS0 (P )

. (1.73)

Now plugging λ back in, we obtain the equilibrium futures price and demands. If dS >

(1 + 1
N2
S

)d̄, then d increases with NS towards dS and h decreases. If dS <
N2
S−1

N2
S+

2µ0
ASVarS0 (P )

d̄, then

as NS increases d decreases towards dS and h decreases. As NS increases, the existence area

on the parameter space (τz, τX) expands. Note that there is no equilibrium for dS = d̄, no

matter how many speculators are present.
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1.8.2 Computation of Gs

In this section, I compute the values of Gs.

|I + ACCΣ| = 1 +
τη

τV + τF
(1− a)2 − A2

H(τη + τV + τF )

τXτη(τV + τF )
a(2− a),

GH
11 =

1

|I + AHCΣ|
(

A2
H

τXτη(τV + τF )
+

A2
H

τXτ 2
η

+
1

τV + τF
)a2,

GH
12 = − AH

|I + AHCΣ|
τη + τV + τF
τXτη(τV + τF )

a,

GH
13 =

1
AH

τη
τV +τF

a(1− a)− AH
τX

τη+τV +τF
τη(τV +τF )

a2

|I + AHCΣ|
,

VarS0 (P ) = a2(
1

τV + τε
+

A2
H

τ 2
η τX

),

the second order condition requires that GH
11 > 0, i.e., |I + AHCΣC | > 0, otherwise the

commercial hedgers will not do anticipatory hedging in the futures market. This requires

that

(
A2
H

τXτη
+

τη
τη + τV + τF

)a(2− a) < 1. (1.74)

As 0 < a(2− a) < 1, the sufficient condition for the above condition is

τX > A2
H(

1

τη
+

1

τV + τF
) = A2

HVar(V + η|F )⇔ A2
HVar(V + η|F )Var(X) < 1,

this condition comes from the argument that under normality the endowment value (V −

V̄ )X may take large negative values to generate an infinitely negative expected utility for

commercial hedgers. Therefore, to ensure that the commercial hedgers’ utility is finite, the

sufficient condition is

A2
HVar(V + η)Var(X) =

A2
H

τX
(

1

τV
+

1

τη
) < 1, (1.75)
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which is guaranteed by Equation (1.14). And

GM
11 =

ΣM
11 + A2

MVarM1 (V + η)[ΣM
11ΣM

22 − (ΣM
12)2]

A2
MVarM1 (V + η)ΣM

22 + 1
> 0,

GM
12 =

ΣM
12

A2
MVarM1 (V + η)ΣM

22 + 1
=

−ω(1−ω)
µ

τV +τF
τV +τF+τP

(
A2
H

τXτ2
η

+ 1
τV +τF

)a

1 + AM
1−ω
µ
ω2( τV +τF

τV +τF+τP
)2(

A2
H

τXτ2
η

+ 1
τV +τF

)
,

GM
22 =

ΣM
22

A2
MVarM1 (V + η)ΣM

22 + 1
=

(ω(1−ω)
µ

τV +τF
τV +τF+τP

)2(
A2
H

τXτ2
η

+ 1
τV +τF

)

1 + AM
1−ω
µ
ω2( τV +τF

τV +τF+τP
)2(

A2
H

τXτ2
η

+ 1
τV +τF

)
.

The second order condition requires that GM
11 > 0, which is satisfied by Equation (1.15).

There is a relation between GHs and GMs:

GH
12 −GH

13

GH
11

=
GM

12

GM
11

. (1.76)

1.8.3 Market Condition for dS = d̄

In the parameter space (τz, τX), the boundary function f(τX) that satisfies dS = d̄ can be

determined by solving the equation

AM + αAH
AM

τX +
αA3

H

AMτη

τX

τX +
A2
H

τ2
η

(τV + τF )
= A2

H

( 1
τε

+ 1
τη

+ τV
τετη

)τz +
A2
S

β2τ2
ε
(1 + τV

τη
)

A2
SτV
β2τ2

ε

.

One can check that f(τX) is a monotone increasing convex function. Thus, f is invertible,

and f−1(τz) is a monotone increasing concave function. The asymptotic formula of f−1 is

derived and given by

f−1(τz) ≈
AM

AM + αAH
[A2

H

( 1
τε

+ 1
τη

+ τV
τετη

)τz +
A2
S

β2τ2
ε
(1 + τV

τη
)

A2
SτV
β2τ2

ε

− αA3
cH

AMτη
],

and for small τX we have

f−1(τz) ≈
β2A2

Hτ
2
ε

A2
SτV

( 1
τε

+ 1
τη

+ τV
τετη

)τz +
A2
S

β2τ2
ε
(1 + τV

τη
)

AM+αAH
AM

+ αAH
AM

τη
τε

+
A2
S

β2τ2
ε

τη
τz

1+
τV
τε

+
A2
S

β2τ2
ε

τV
τz

,
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and for large τX ,

f−1(τz) ≈
AM

AM + αAH
[A2

H

( 1
τε

+ 1
τη

+ τV
τετη

)τz + A2
s

β2τ2
ε
(1 + τV

τη
)

A2
SτV
β2τ2

ε

− αA3
H

AMτη
].

1.8.4 Proof of Proposition 4

Proof. The market makers’ expectation EM
1 [V ] = E[V |F, P ] and variance V arM1 (V ) =

V ar(V |F, P ) at t = 1 are:

E[V − V̄ |F, P ] =


[ τP
τV +τF+τP

(sP − V̄ ) + τF
τV +τF+τP

(sF − V̄ ), if F < F,

[ 1
τV +τF+τP

+ q2(sF )]τP (sP − V̄ ) + q1(sF ), if F = F ,

Var[V |F, P ] =


1

τV +τF+τP
, if F < F,

1
τV +τF+τP

+ q2(sF ) > 1
τV +τF+τP

, if F = F ,

where

q1(sF ) =
τFσF

τV + τP + τF

φ( sF−V̄
σF

)

1− Φ( sF−V̄
σF

)
>

τF
τV + τP + τF

(sF − V̄ ), (1.77)

q2(sF ) = (
τFσF

τV + τP + τF
)2[1 +

sF − V̄
σF

φ( sF−V̄
σF

)

1− Φ( sF−V̄
σF

)
−
( φ( sF−V̄

σF
)

1− Φ( sF−V̄
σF

)

)2
], (1.78)

where σ2
F = τ−1

V +τ−1
F , and φ and Φ denote the standard normal PDF and CDF respectively.

To compute E[V − V̄ |F ] and Var(V |F ), one can simply take the limit τP → 0:

E[V − V̄ |F ] =


τF

τV +τF
(sF − V̄ ), if F < F,

q′1(sF ), if F = F ,
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Var[V |F ] =


1

τV +τF
, if F < F,

1
τV +τF

+ q′2(sF ) > 1
τV +τF

, if F = F ,

where

q′1(sF ) =
τFσF
τV + τF

φ( sF−V̄
σF

)

1− Φ( sF−V̄
σF

)
>

τF
τV + τP + τF

(sF − V̄ ), (1.79)

q′2(sF ) = (
τFσF
τV + τF

)2[1 +
sF − V̄
σF

φ( sF−V̄
σF

)

1− Φ( sF−V̄
σF

)
−
( φ( sF−V̄

σF
)

1− Φ( sF−V̄
σF

)

)2
]. (1.80)

See 35 for more mathematical details.

If speculators stop revealing their state by submitting market orders beyond sF , then

for sF ≥ sF

P = a(sP − V̄ ) + b+ V̄ − µX̄, (1.81)

where ω = τη
AH
µ, and

µ = (
1

AHτ−1
η

+
α

AM

1
1

τV +τP+τF
+ q2(sF ) + τ−1

η

)−1 > µ, (1.82)

a = ω + (1− ω)
τP

τV + τP + τF
(1 + q2(sF )) > a, (1.83)

b = (1− ω)q1(sF ) > b(sF − V̄ ). (1.84)

The equilibrium spot demands for sF ≥ sF are

xH =
τη
AH

[V − V̄ − a(sP − V̄ )− b]− (1− ω)X̄, (1.85)

xM = − τη
AH

[V − V̄ − a(sP − V̄ )− b] + (1− ω)X̄. (1.86)

The average trading quantity (1− ω)X̄ is reduced when limit binds. In futures market, the

equilibrium price for sF ≥ sF is

F = c+ c0, (1.87)
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where

c = (1− G
H

11

G
H

12

µ0)(aq′1(sF ) + b), (1.88)

c0 = (1− G
H

11

G
H

12

µ0)(V̄ − µX̄)− (1 +
G
H

13

G
H

11

µ+
G
M

12

G
M

11

αµ)µ0X̄ + µ0L, (1.89)

where µ0 = ( 1

AHG
H
11

+ α

AMG
M
11

)−1 and all the Gs are functions of sF . Thus the equilibrium

futures demands for sF ≥ sF are

yH =
EH

0 [P ]− F
AHG

H

11

− G
H

12

G
H

11

EH
0 [P ]− G

H

13

G
H

11

AHVarH1 (η)EH
0 [xH +X]− EH

0 [X], (1.90)

yM =
EM

0 [P ]− F
AMG

M

11

− G
M

12

G
M

11

AMVarM1 (V + η)EM
0 [xM ], (1.91)

yS =
ES

0 [P ]− F − ASCovS0 (P , V )z/β

ASVarS0 (P )
. (1.92)

Now I compute all the Gs. Fist I need to compute Σs, since GH
= (Σ

H
+ AHC)−1

where C =


0 1 0

1 0 0

0 0 ACτ
−1
η

, all the elements of GH can be calculated by

VarH0 (V ) =
1

τV + τF
+ q2(sF ),

VarH0 (P ) = a2(
1

τV + τF
+ q2(sF ) +

A2
Hτ
−2
η

τX
),

CovH0 (V, P ) = a(
1

τV + τF
+ q2(sF )),

CovH0 (X,P ) = −a
AHτ

−1
η

τX
.

Similarly,

Σ
M

11 = VarM0 (P ), Σ
M

22 = (
ω(1− ω)

µ

τV + τF
τV + τF + τP

)2(
1

τV + τF
+ q2(sF ) +

A2
Hτ
−2
η

τX
),

Σ
M

12 = −ω(1− ω)

µ

τV + τF
τV + τF + τP

a(
1

τV + τF
+ q2(sF ) +

A2
Hτ
−2
η

τX
).
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Since GM
= (Σ

M
+ AMC)−1 where C =

 0 0

0 µ
1−ω

, all elements of GM can be computed

and GM

11 > GM
11 , i.e., the perceived riskiness by market makers increases when limits bind.

|I + AHCΣ| = 1 +
τη

τV + τF
(1− a)2 − A2

H(τη + τV + τF )

τXτη(τV + τF )
a(2− a)

+ τη(1− a)2q2 −
A2
H

τX
a(2− a)q2,

G
H

11 =
a2

|I + AHCΣ|
[

A2
H

τXτη(τV + τF )
+

A2
H

τXτ 2
η

+
1

τV + τF
+ (1 +

A2
H

τXτη
)q2].

Note that GH

11 depends on sF , and G
H

11 > GH
11, i.e., the perceived riskiness by hedgers increases

when limits bind,

q2 > 0, lim
sF→∞

q2 = 0, lim
sF→−∞

q2 =
τF

τV (τV + τF )
,

a > a, lim
sF→∞

a = a,

|I + AHCΣ| < |I + AHCΣ|, lim
sF→∞

= |I + AHCΣ|.

1.8.5 Equilibrium with Speculative Position Limit

If speculators stop revealing their state by submitting market orders beyond sF , then for

sF ≥ sF

P = a(sP − V̄ ) + b+ V̄ − µX̄, (1.93)

where ω = τη
AH
µ, and

µ = (
1

AHτ−1
η

+
1

AM

1
1

τV +τP+τF
+ q2(sF ) + τ−1

η

)−1 > µ, (1.94)

a = ω + (1− ω)
τP

τV + τP + τF
(1 + q2(sF )) > a, (1.95)

b = (1− ω)q1(sF ) > b(sF − V̄ ). (1.96)
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The equilibrium spot demands for sF ≥ sF are

xH =
τη
AH

[V − V̄ − a(sP − V̄ )− b]− (1− ω)X̄, (1.97)

xM = − τη
αAH

[V − V̄ − a(sP − V̄ )− b] +
1− ω
α

X̄. (1.98)

In futures market, the equilibrium price for sF ≥ sF is

F = c+ c0, (1.99)

where

c = (1− G
H

11

G
H

12

µ0)(aq′1(sF ) + b), (1.100)

c0 = (1− G
H

11

G
H

12

µ0)(V̄ − µX̄)− (1 +
G
H

13

G
H

11

µ+
G
M

12

G
M

11

αµ)µ0X̄ + µ0L, (1.101)

where µ0 = ( 1

AHG
H
11

+ α

AMG
M
11

)−1 and all the Gs are functions of sF . Thus the equilibrium

futures demands for sF ≥ sF are

yH =
EH

0 [P ]− F
AHG

H

11

− G
H

12

G
H

11

EH
0 [P ]− G

H

13

G
H

11

AHVarH1 (η)EH
0 [xH +X]− EH

0 [X], (1.102)

yM =
EM

0 [P ]− F
AMG

M

11

− G
M

12

G
M

11

AMVarM1 (V + η)EM
0 [xM ], (1.103)

yS =
ES

0 [P ]− F − ASCovS0 (P , V )z

NSASVarS0 (P )
≥ L. (1.104)

When speculators are stabilizing price, dS < d thus if speculators keep revealing their

state, then position limit L binds for sF ≤ ŝF where

ŝF = V̄ +
NSASVarS0 (P ) + λ/NS

dS − d
[L+

h

NSASVarS0 (P ) + λ/NS

− hS]. (1.105)

Hence for sF ≤ ŝF , in equilibrium the market clearing condition is NHyH+NMyM+NSL = 0.

Keep in mind that sF is still being fully revealed although L binds if speculators submit limit
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orders ŷS for sF ≤ ŝF :

ŷF =
ES

0 [P ]− F̂ − ASCovS0 (P, V )z

NSASVarS0 (P ) + λ̂/NS

, (1.106)

where λ̂ > λ, which means speculators provide less liquidity although they still reveal infor-

mation.

On the right tail of sF , position limit binds at sF if speculators stop revealing their

state, and sF is determined by

yS(sF ) =
ES

0 [P ]− F − ASCovS0 (P , V )z

ASVarS0 (P )
= NSL. (1.107)

As L becomes smaller, ŝF increases and sF decreases. Thus, when L is very tight, sF can be

smaller than ŝF . In such case, speculators’ position is always at L: for sF ≥ sF they submit

market order without revealing their state and for sF < sF they submit limit order to reveal

their state. Generally, when L is not too tight, ŝF < sF , and the equilibrium prices are

FL =



F̂ , if sF ≤ ŝF

F, if ŝF < sF < sF

F , if sF ≥ sF

PL =


P, if sF < sF

P , if sF ≥ sF

(1.108)

where F̂ is a linear functions of sF :

F̂ = d̂(sF − V̄ ) + ĥ, (1.109)

where

d̂ = (1− GH
12

GH
11

µ0)(
τF

τV + τF
a+ b) > d, (1.110)

ĥ = (1− GH
12

GH
11

µ0)V̄ − µX̄ − µ0X̄ + µ0L. (1.111)
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The equilibrium futures price is continuous at ŝF but discontinuous at sF with respect to

state sF . Then the equilibrium demands in futures and spot markets can be computed.

When speculators are destabilizing price and their population is large (NS >> 1), i.e.,

dS > d, thus if speculators keep revealing their state, then position limit L binds for sF ≥ ŝF .

Hence for sF ≥ ŝF , in equilibrium the market clearing condition is NHyH+NMyM+NSL = 0.

Keep in mind that sF is still being fully revealed although L binds if speculators submit limit

orders. Also on the right tail of sF , position limit binds at sF if speculators stop revealing

their state, and sF is still determined by Eqn. (1.107). As L becomes smaller, both ŝF and

sF decrease. Since speculators do not have much market power, ŝF < sF . As L increases,

the gap between sF and ŝF becomes smaller. The equilibrium prices are

FL =



F, if sF < ŝF

F̂ , if ŝF ≤ sF < sF

F , if sF ≥ sF

PL =


P, if sF < sF

P , if sF ≥ sF

(1.112)

where F̂ is a linear functions of sF :

F̂ = d̂(sF − V̄ ) + ĥ, (1.113)

where

d̂ = (1− GH
12

GH
11

µ0)(
τF

τV + τF
a+ b) < d, (1.114)

ĥ = (1− GH
12

GH
11

µ0)V̄ − µX̄ − µ0X̄ + µ0L. (1.115)

The equilibrium futures price is continuous at ŝF but discontinuous at sF with respect to

state sF . Then the equilibrium demands in futures and spot markets can be computed.
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When speculators are destabilizing price and their population is small, dS > d thus if

speculators choose to reveal their state then the position limit L binds for sF ≥ sF , where

sF is given by Eqn. (1.107); if speculators choose not to reveal their state then the position

limit L binds for sF ≥ ŝF , where ŝF is given by Eqn. (1.105). Speculators always prefer not

to reveal their state. When there is only a few speculators, however, ŝF can not bind without

sF binds i.e., ŝF < sF . As a result, in this situation speculators stop revealing their state for

sF ≥ ŝF . Then the equilibrium demands in futures and spot markets can be computed.

Proposition 14 (Equilibrium Demands in Futures Market with Position Limits).

With the speculative position limit L, the equilibrium demands of futures are:

1. When speculators are stabilizing price, given any L, there exist sF and ŝF such that:

in equilibrium the futures demand schedule of each speculator is y∗S and the demand is

executed at yLS ,

y∗S =



ŷS ≥ L, if sF ≤ ŝF

yS < L, if ŝF < sF < sF

L, if sF ≥ sF

⇒ yLS = min{y∗S, L} =



L, if sF ≤ ŝF

yS, if ŝF < sF < sF

L, if sF ≥ sF

The equilibrium futures demands of each market maker and each commercial hedger

are yLM and yLH respectively:

yLM =



ŷM , if sF ≤ ŝF

yM , if ŝF < sF < sF

yM , if sF ≥ sF

yLH =



ŷH , if sF ≤ ŝF

yH , if ŝF < sF < sF

yH , if sF ≥ sF
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2. When speculators are destabilizing price and their population is large (NS >> 1), given

any L, there exist ŝF < sF such that: in equilibrium the futures demand schedule of

each speculator is y∗S and the demand is executed at yLS ,

y∗S =



yS < L, if sF < ŝF

ŷS ≥ L, if ŝF ≤ sF < sF

L, if sF ≥ sF

⇒ yLS = min{y∗S, L} =



yS, if sF < ŝF

L, if ŝF ≤ sF < sF

L, if sF ≥ sF

The equilibrium demands of each market maker and each commercial hedger are yLM

and yLH respectively:

yLM =



ŷM , if sF < ŝF

yM , if ŝF ≤ sF < sF

yM , if sF ≥ sF

yLH =



ŷH , if sF < ŝF

yH , if ŝF ≤ sF < sF

yH , if sF ≥ sF

3. When speculators are destabilizing price and their population is small, given any L,

there exists sF such that: in equilibrium speculators collude and each of them submits

demand yLS in futures market,

yLS =


yS < L, if sF < sF

L, if sF ≥ sF

The equilibrium futures demands of each market maker and each commercial hedger

are yLM and yLH respectively:

yLM =


yM , if sF < sF

yM , if sF ≥ sF

yLH =


yH , if sF < sF

yH , if sF ≥ sF
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Figure 1.11: Equilibrium demands in futures market with position limit under different

market conditions, where (a) dS = 0.1d̄ and NS = 2, (b) dS = 1.5d̄ and NS = 15, (c)

dS = 2.5d̄ and NS = 2. Other parameters are τε/τV = 0.3, τη = 1, NH = NM = 30, X̄ = 1

and V̄ = 0.
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H, sF > ŝF
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Figure 1.12: Equilibrium demands in the spot market with position limit with respect to

sF (a) and sP (b) with parameters are τε/τV = 0.3, τη = 1, NH = NM = 30, NS = 15,

dS = 1.5d̄, X̄ = 1 and V̄ = 0.

Proposition 15 (Equilibrium Demands in Spot Market with Position Limits). With

the speculative position limit, there always exists sF such that the equilibrium commodity
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demands of each market maker and each commercial hedger are xLM and xLH respectively:

xLM =


xM , if sF < sF

xM , if sF ≥ sF

xLH =


xH , if sF < sF

xH , if sF ≥ sF

1.8.6 Proof of Proposition 7

Proof. Plug equilibrium prices in, then

P − F = a(sP − V̄ ) + (b− d)(sF − V̄ ) + V̄ − µX̄ − h,

F = d(sF − V̄ ) + h,

Since Cov(sF , sP ) = τ−1
V and Var(sF ) = τ−1

V + τ−1
F and Var(sP ) = τ−1

V + τ−1
P , thus

γ =
(τV + τF )/τF√

Var(P − F )Var(F )
(dM − d) < 0. (1.116)

For sF ≥ sF , the correlation between F and P −F goes to zero. For sF ≤ ŝF , d gets greater,

but so does Var(F ) and Var(P ).

1.8.7 Welfare

Welfare without Speculative Position Limit

First, let’s consider the welfare in the absence of position limits. Each speculator’s utility at

time t = 0 when he receives the private information and endowment is

JS0 = −e
−NSAS

[
1
2
NSASVarS0 (P )y2

S+ λ
NS

y2
S+ES0 [V−V̄ ] z

NS
− 1

2
ASVarS0 (V ) z

2

NS

]
, (1.117)
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where

λ =
µ0dS + ASVarS0 (P )d̄

dS − d̄− d̄/N2
S

,

yS =
ES

0 [P ]− F − ASCovS0 (P, V )z

NSASVarS0 (P ) + λ/NS

.

Firstly, in order to keep the welfare of the speculators finite, the sufficient condition is

A2
SVar(V )Var(z) =

A2
S

τV τz
< 1.

Rewrite JS0 as

JS0 = −C0e
−ASC1C2

2 , (1.118)

where

C0 = C0(s, z) = eES0 [V−V̄ ]z− 1
2
ASVarS0 (V )z2

, (1.119)

C1 =
λ/N2

S + 1
2
ASVarS0 (P )

[λ/N2
S + ASVarS0 (P )]2

, (1.120)

C2 = C2(sF ) = (dS − d)(sF − V̄ ) + λF (X̄ − θV̄ ). (1.121)

As NS increases, λ decreases and C1 increases monotonically. Note that

C2 ∼ N
(
λF (X̄ − θV̄ ), (1− ωS)2(dS − d̄)2(τ−1

V + τ−1
F )
)
, (1.122)

and it is easy to show that as NS increases, the mean of C2 decreases and the variance of

C2 increases. Therefore, C2(NS) second order stochastic dominates C2(NS + 1). In sum,

the competitiveness among speculators has two effects. On one hand, less competitiveness

(small NS) means more profit (C2(NS) SOSD C2(NS + 1)). On the other hand, it means

higher cost from more severe adverse selection (C1(NS) < C2(NS + 1)).

74



The ex-ante welfare of each speculator with no position limit is

WS = E[JS0 ] = − 1√
I + ASCSΣS

e
− 1

2
h2

VarS0 (P )
+ 1

2
[
h(dS−d)
VarS0 (P )

]2GS11
, (1.123)

where

u =


sF − V̄

z

s− V̄

 , B =


[hS − h

ASVarS0 (P )
](dS − d)

0

0

 ,

C =


(dS−d)2

ASVarS0 (P )
0 0

0 −ASVarS0 (V )

β2
1
β

τε
τV +τε

0 1
β

τε
τV +τε

0

 ,

and A = 1
2
ASVarS0 (P )[hS − h

ASVarS0 (P )
]2, GS = ΣS(I + ASC

SΣS)−1. As discussed above,

the competitiveness among speculators (or NS) has two offsetting effects on speculators’

welfare. Therefore, whether a oligopoly market is better for speculators depends on the

market condition, i.e., how large dS − d̄ is. Less competitive market is strictly better for

speculators only when |dS − d̄| is large enough to give sufficient rent that can be extracted

from information advantage and offset the cost of adverse selection.

For the market makers, their utility at t = 0 is

JM0 = − 1√
|I + AMCMΣM |

e
− 1

2
AM [AMG

M
11y

2
M+( 1

AMVarM1 (V+η)
−AMGM22)(µX̄)2]

, (1.124)

where

|I + AMC
MΣM | = A2

MVarM1 (V + η)ΣM
22 + 1,

1

AMVarM1 (V + η)
− AMGM

22 =
1

AMVarM1 (V + η)[A2
MVarM1 (V + η)ΣM

22 + 1]
.
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Therefore, the ex-ante welfare of the market makers with no position limit is

WM = E[JM0 ] = −e
− 1

2
(µX̄)2

VarM1 (V+η)[1+A2
M

VarM1 (V+η)ΣM22]√
1 + A2

MVarM1 (V + η)ΣM
22

e
− 1

2

A2
MGM11(E[yM ])2

1+A2
M
GM11Var(yM )√

1 + A2
MG

M
11Var(yM)

, (1.125)

where

E[yM ] = hM −
1

NMAMGM
11

h,

Var(yM) = (
dM − d

NMAMGM
11

)2(
1

τV
+

1

τε
+
A2
S

τ 2
ε

1

τz
).

As NS increases, the variance of yM stays the same but its mean decreases, thus yM(NS)

SOSD yM(NS + 1). Therefore, decreasing competitiveness will benefit market makers.

For commercial hedgers, their utility at t = 0 is

JH0 = −e
− 1

2
AH

[
AHG

H
11(yH+X̄)2+( 1

AHVarH1 (η)
−AHGH33)(µX̄)2−AHGH22(EH0 [P ])2−2AHG

H
23E

H
0 [P ]µX̄+2FX̄

]
√
|I + AHCHΣH |

,

= −Γ0e
−AH

[
1
2

Γ2(sF−V̄ )2+Γ1(sF−V̄ )

]
, (1.126)

where

Γ2 =
(dH − d)2

NHAHGH
11

− AHGH
22(

τF
τV + τF

)2,

Γ1 = (hH + X̄ − h

NHAHGH
11

)(dH − d)− AHGH
22(V̄ − µX̄)

τF
τV + τF

− AHGH
23µX̄

τF
τV + τF

+ dX̄,

Γ0 =
e
− 1

2
AH

[
( 1

AHVarH1 (η)
−AHGH33)(µX̄)2+AHG

H
11(hH+X̄− h

NHAHG
H
11

)2−AHGH22(V̄−µX̄)2−2AHG
H
23(V̄−µX̄)µX̄+2hX̄

]
√
|I + AHCHΣH |

.

Therefore, the ex-ante welfare of the commercial hedgers with no position limit is

WH = E[JH0 ] = − Γ0√
1 + AHΓ2Var(sF )

e
1
2

A2
HΓ2

1Var(sF )

1+AHΓ2Var(sF ) , (1.127)

where

Var(sF ) =
1

τV
+

1

τε
+
A2
S

τ 2
ε

1

τz
.
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The change of WH with the change of NS is ambiguous.

Welfare with Speculative Position Limit

In this section, I compute the welfare of different market participants with speculative posi-

tion limit L.

First, consider the case in which dS < d̄, speculators demands are downward sloping

with respect to sF , (i.e., τX is small enough), then there exist sF (L) > ŝF (L) such that for

ŝF < sF < sF they trade like without position limits because the position limit does not

bind, while for sF ≥ sF the speculators place market orders at L, and for sF ≤ ŝF they place

limit orders but get executed at L. As L→∞, ŝF → sF . There is an order gap at sF , but

not at ŝF .

The speculators’ utility at t = 0 in the presence of position limit L is

JSL =



ĴS0 (s, z), if sF ≤ ŝF ,

JS0 (s, z), if ŝF < sF < sF ,

J
S

0 (s, z), if sF ≥ sF ,

where

ĴS0 (s, z) = −C0e
−NSAS

[[
ES0 [P ]−F̂−ASCovS0 (P,V )z

]
L− 1

2
NSASVarS0 (P )L2

]
,

J
S

0 (s, z) = −C0e
−NSAS

[[
ES0 [P ]−F−ASCovS0 (P ,V )z

]
L− 1

2
NSASVarS0 (P )L2

]
,

where sF and ŝF are determined by

ŷS(sF , L) =
ES

0 [P ]− F̂ − ASCovS0 (P, V )z

NSASVarS0 (P ) + λ/NS

≥ L,

yS(sF , L) =
ES

0 [P ]− F − ASCovS0 (P , V )z

NSASVarS0 (P )
≥ L,
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where

ES
0 [P ]− F̂ − ASCovS0 (P, V )z = (dS − d)(sF − V̄ ) + λF (X̄ − θX̄),

ES
0 [P ]− F − ASCovS0 (P , V )z = E[sF − V̄ ]1sF≥sF + λF (X̄ − θX̄).

Therefore, the welfare with the position limit is

WS
L =

∫ ŝF

−∞
ĴS0 dp(sF ) +

∫ sF

ŝF

JS0 dp(sF ) +

∫ ∞
sF

J
S

0 dp(sF ), (1.128)

where p(sF ) is the CDF of sF , which is normally distributed.

Similarly, commercial hedgers’ utility at t = 0 is

JH =



ĴH0 (sF ), sF ≤ ŝF ,

JH0 (sF ), if ŝF < sF < sF ,

J
H

0 (sF ), if sF ≥ sF ,

where

ĴH0 (sF ) = −e
− 1

2
AH

[
AHG

H
11(ŷH+X̄)2+( 1

AHVarH1 (η)
−AHGH33)(µX̄)2−AHGH22(EH0 [P ])2−2AHG

H
23EH0 [P ]µX̄+2F̂ X̄

]
√
|I + AHCHΣH |

,

J
H

0 (sF ) = −e
− 1

2
AH

[
AHG

H
11(yH+X̄)2+( 1

AHVarH1 (η)
−AHG

H
33)(µX̄)2−AHG

H
22(EH0 [P ])2−2AHG

H
23EH0 [P ]µX̄+2FX̄

]
√
|I + AHC

H
Σ
H |

,

and where

ŷH(sF ) =
EH

0 [P ]− F̂
AHGH

11

− GH
12

GH
11

EH
0 [P ]− GH

13

GH
11

µX̄ − X̄,

yH(sF ) =
EH

0 [P ]− F
AHG

H

11

− G
H

12

G
H

11

EH
0 [P ]− G

H

13

G
H

11

µX̄ − X̄.

Note that JH0 is a constant which depends on L through sF . Therefore, the welfare with

position limit is

WH
L =

∫ ŝF

−∞
ĴH0 dp(sF ) +

∫ sF

ŝF

JH0 dp(sF ) + J
H

0

∫ ∞
sF

dp(sF ). (1.129)
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Similarly, market makers’ utility at t = 0 is

JML =



ĴM0 (sF ), if sF ≤ ŝF ,

JM0 (sF ), if ŝF < sF < sF ,

J
M

0 (sF ), if sF ≥ sF ,

where

ĴM0 (sF ) = − 1√
|I + AMCMΣM |

e
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2
AM [AMG

M
11 ŷ

2
M+( 1

AMVarM1 (V+η)
−AMGM22)(µX̄)2]

,

J
M

0 (sF ) = − 1√
|I + AMC

M
Σ
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2
AM [AMG

M
11y

2
M+( 1

AMVarM1 (V+η)
−AMG
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22)(µX̄)2]

,
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ŷM =
EM
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11

− GM
12
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11

µX̄.

yM =
EM

0 [P ]− F
AMG

M

11

− G
M

12

G
M

11

µX̄.

Note that JM0 is a constant which depends on L through sF . Therefore, the welfare with

position limit is

WM
L =

∫ ŝF

−∞
ĴM0 dp(sF ) +

∫ sF

ŝF

JM0 dp(sF ) + J
M

0

∫ ∞
sF

dp(sF ). (1.130)

Second consider the second case in which dS > d̄ and with large number of speculators,

speculators’ demands are upward sloping with respect to sF , (i.e., τX is large enough), then

there exist sF > ŝF such that for sF < ŝF they trade like without position limit because the

limit doesn’t bind, while for ŝF ≤ sF < sF the limit binds but the speculators still submit

limit orders so the mixed information sF still be fully revealed and the futures price is set to

clear the market given that the speculators’ position is L, and for sF ≥ sF the speculators

begin to submit market order of L instead of limit order. As L→∞, ŝF → sF .
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The speculators’ utility at t = 0 is

JSL =



JS0 (sF ), if sF < ŝF ,

ĴS0 (sF ), if ŝF ≤ sF < sF ,

J
S

0 (sF ), if sF ≥ sF ,

where

ĴS0 (s, z) = −e
−AS

[
ASVarS0 (P )LŷS− 1

2
ASVarS0 (P )L2+ES0 [V−V̄ ] z

β
− 1

2
ASVarS0 (V ) z

2

NS

]
,

where

ŷS(sF , L) =
ES

0 [P ]− F̂ − ASCovS0 (P, V ) z
β

ASVarS0 (P )
≥ L, for sF ≥ ŝF .

Therefore, the welfare with the position limit is

WS
L =

∫ ŝF

−∞
JS0 dp(sF ) +

∫ sF

ŝF

ĴS0 dp(sF ) +

∫ ∞
sF

J
S

0 dp(sF ). (1.131)

Similarly, the commercial hedgers’ utility at t = 0 is

JHL =



JH0 (sF ), if sF < ŝF ,

ĴH0 (sF ), if ŝF ≤ sF < sF ,

J
H

0 (sF ), if sF ≥ sF ,

Note that JH0 is a constant which depends on L through sF . Therefore, the welfare of the

commercial trader is

WH
L =

∫ ŝF

−∞
JH0 dp(sF ) +

∫ sF

ŝF

ĴH0 dp(sF ) + J
H

0

∫ ∞
sF

dp(sF ). (1.132)
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Similarly, market makers’ utility at t = 0 is

JML =



JM0 (sF ), if sF < ŝF ,

ĴM0 (sF ), if ŝF ≤ sF < sF ,

J
M

0 (sF ), if sF ≥ sF ,

Note that JM0 is a constant which depends on L through sF . Therefore, the welfare with

position limit is

WM
L =

∫ ŝF

−∞
JM0 dp(sF ) +

∫ sF

ŝF

ĴM0 dp(sF ) + J
M

0

∫ ∞
sF

dp(sF ). (1.133)

Lastly, consider the third case in which dS > d̄ and with small number of speculators,

thus ŝF > sF . Hence, their utility at t = 0 is

JSL =


JS0 (sF ), if sF < sF ,

J
S

0 (sF ), if sF ≥ sF .

Then the welfare with SPL is

WS
L =

∫ sF

−∞
JS0 dp(sF ) +

∫ ∞
sF

J
S

0 dp(sF ). (1.134)

Similarly, the commercial hedgers’ utility at t = 0 is

JHL =


JH0 (sF ), if sF < sF ,

J
H

0 (sF ), if sF ≥ sF .

Then their welfare with SPL is

WH
L =

∫ sF

−∞
JH0 dp(sF ) + J

H

0

∫ ∞
sF

dp(sF ). (1.135)
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Similarly, market makers’ utility at t = 0 is

JML =


JM0 (sF ), if sF < sF ,

J
M

0 (sF ), if sF ≥ sF .

Then their welfare with SPL is

WM
L =

∫ sF

−∞
JM0 dp(sF ) + J

M

0

∫ ∞
sF

dp(sF ). (1.136)

Therefore, the total ex-ante welfare with SPL is

WL = NHWH
L +NMWM

L +NSWS
L . (1.137)

Unsurprisingly, WL < W in any market condition. However, for each individual group of

traders, this is not the case. Unfortunately, for commercial hedgers, in any market condition,

WH
L <WH ,

dWH
L

dL
> 0,

which implies that the tighter L is, the more welfare loss commercial hedgers suffers. For

market makers, in the first case and the second case,

WM
L >WH ,

dWM
L

dL
< 0,

which implies that the tighter L is, the more welfare gain market makers have in the first

case and the second case. However, in Market Condition the second case, WM
L is not a

monotone function of L, and

lim
L→0
WM

L >WM , min
L
WM

L <WM ,

which implies that in the second case market makers can also suffer a welfare loss with

certain range of L.
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For speculators, WS
L is also not a monotone function of L in any market condition,

lim
L→0
WS

L <WS, max
L
WS

L >WS,

which implies that speculators can be always better off with certain range of L.

1.8.8 Proof of Proposition 11

Proof. Suppose there is a one period Grossman-Stiglitz economy (24) without noisy traders.

The liquidation value of the stock is V +η (i.e., the commodity), and informed traders know V

privately and also have a liquidity shock X (i.e., commercial hedgers). Uninformed traders

have no private information or liquidity shock (i.e., market makers). There is a public

information about V (i.e., futures price F ): sF ∼ N (V̄ , τ−1
F ), which is announced before

the realization of liquidity shock X. Thus, it is equivalent to show that as τF decreases,

both informed traders and uninformed traders are worse off. The welfare of informed and

uninformed traders are

WI = −e
−AI

2
ū>[C−AIC>Σ(I+AICΣ)−1C]ū√

|I + AICΣ|
,

WU = − e
− 1

2[1+A2
U

VarU (V+η)Var(xU )]

(µX̄)2

VarU (V+η)√
1 + A2

UVarU(V + η)Var(xU)
,

where AI,U are risk aversions for informed and uninformed traders respectively, and ū, Σ

and C can be found in 1.8.1. Both WI and WU are monotone increasing functions of τF as

following figure shows.

The pattern in Figure 1.13 still holds for non-zero V̄ and X̄. For non-zero V̄ and X̄, the

change of WI is more dramatic with respect to the change of τF . Welfare is more sensitive
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Figure 1.13: Welfare of informed trader (a) and uninformed trader (b) with respect to the

accuracy of public information for V̄ = X̄ = 0.

to the accuracy of public information for small τX . As τX increases, informed traders are

better off and uninformed traders are worse off. This is consistent with risk sharing trading,

not speculating in spot market.

Although both noise trading and liquidity shock prevent private information from fully

revealing, they are not always equivalent. In standard Grossman-Stiglitz model with noise

trading, public information always hurts informed traders but benefits uninformed traders,

because it reduces information asymmetry between informed and uninformed traders, no

matter the public information is revealed before the realization of noise trading or after. In

liquidity shock setup public information still always benefits uninformed traders. However,

when the public information is revealed makes huge difference for informed traders. If

the public information is announced before the realization of the liquidity shock, then it

also benefits informed traders by reducing their hedging cost. If the public information is

announced after the realization of the liquidity shock, then it hurts informed traders. This is
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why speculators prefer not to reveal their state with position limit. Although they decide the

critical point ŝF before the realization of X, the information asymmetry is increased after the

realization of X. Thus, speculators benefit from reducing their information revealing.

1.8.9 Proof of Proposition 12

Proof. The existence condition λ > 0 requires that dS − 2d̄ > 0. By plugging the formulas

of ds,

(
τε
τV

)2 +
τε
τV
− 1 < 0, (1.138)

which implies 0 < τε
τV

<
√

5−1
2
≈ 0.618. This gives a necessary condition τz <

A2
S

β2τε

τV
τV +τε

.

This is the existence condition for collusive equilibrium. However, this can not guarantee

speculators to collude. λ measures the cost of implementing market power, thus λ can

not be too big, otherwise the cost can not be compensated by the monopoly informational

advantage. Therefore, there exist a upper bound λ̂ for λ, i.e., λ ≤ λ̂. Equivalently there

exists a lower bound κ > 0 such that for dS ≥ 2d̄ + κd̄ speculators choose to collude and

exert market power. κ is numerically calculated. Thus, there exists a boundary function

τz = g(τX) in the space (τX , τz) such that:

τz = g(τX)⇐⇒ dS(τz, τX) = (2 + κ)d̄(τz, τX). (1.139)

Thus, the asymptotic equation of (τz, τX) on boundary g is

AM + AH
AM

τX +
A3
H

AMτη

τX

τX +
A2
H

τ2
η

(τV + τF )
= A2

H

( 1
τε

+ 1
τη

+ τV
τετη

)τz +
A2
S

τ2
ε

(1 + τV
τη

)

κd̄+
A2
SτV
τ2
ε
− (1 + τV

τε
)τz

. (1.140)
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Therefore, g(τX) is a monotone increasing concave function. Thus, g is invertible, and g−1(τz)

is monotone increasing convex. The asymptotic formula of g−1 for large τX is given by

g−1(τz) ≈
AM

AM + AH
[A2

H

( 1
τε

+ 1
τη

+ τV
τετη

)τz +
A2
S

τ2
ε

(1 + τV
τη

)

κd̄+
A2
SτV
τ2
ε
− (1 + τV

τε
)τz

− A3
H

AMτη
],

and for small τX is given by

g−1(τz) ≈ [
AM + AH

AM
+
AH
AM

τη
τε

+
A2
S

τ2
ε

τη
τz

1 + τV
τε

+
A2
S

τ2
ε

τV
τz

]−1A2
H

( 1
τε

+ 1
τη

+ τV
τετη

)τz +
A2
S

τ2
ε

(1 + τV
τη

)

κd̄+
A2
SτV
τ2
ε
− (1 + τV

τε
)τz

.
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Chapter 2

Dynamic of Market Making and Asset

Pricing

2.1 Introduction

Previous literature focuses on the informational oligopoly in the financial markets and as-

sumes that market makers are risk neutral and perfect competitive. In this paper, we focus

on the imperfect competition among market makers who are so risk averse that they won’t

take inventory over time. We want to study the dynamics of bid-ask spread and trading

volume to understand how these may interact with each other in shaping asset prices and

market liquidity. We develop a dynamic model of market making with asymmetric informa-

tion where imperfectly competitive market makers match offsetting trades. More specifically,

this model is finite time horizon with multiple trading periods. Hence, the equilibrium so-

lution for this model is not steady-state, but time-dependent. This model helps to better

understand how equilibrium prices evolve to steady state. There are three types of traders:
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informed traders with an initial liquidity shock, uninformed traders, and market makers.

We assume that there are a large number of informed and uninformed traders so that their

market power can be negligible. We also assume that informed and uninformed traders can-

not trade directly but have to trade through market makers. This assumption captures the

feature of over-the-counter markets, where 98% trades are facilitated by dealers. Since there

is no need of searching for informed or uninformed traders, this model is more suitable to

study the mature OTC markets with stable dealer networks. Unlike informed or uninformed

traders, market makers are imperfectly competitive and hold zero inventory over each time

period, and they optimally facilitate trading in both bid and ask markets by adjusting their

trading quantities. The market power of market makers may comes the limited number

of them, or comes from their monopoly quoting speed. Therefore, this model can also be

applied to the financial markets with high frequent traders, who quote faster than other

traders in the market so that most of the trades have to go through them and they hold

close-to-zero inventory at the end of the day. This is a very general framework which can be

applied to many financial markets.

This is a very challenge work for two main reasons. First, it is a dynamic model with

multiple rounds of trading and all traders in the model are rational non-myopic and choose

optimal trading quantity. Second, there are basically two markets: bid market for sellers

and ask market for buyers, and market makers need to clear both markets simultaneously.

Still, we are able to solve for equilibrium bid and ask prices and market depths in closed-

form, and examine how informed traders dynamically hedge their liquidity shock and reveal

private information. Because of the challenges, this model give some results that are distinct

from a one-period model with perfectly competitive traders. Firstly, unlike a static model in
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which traders always hedge their liquidity shock no matter they are informed or uninformed,

in this dynamic model informed traders may speculate on their liquidity shock when their

private information is very accurate. In other words, when informed traders expect to

receive accurate private information, they will be over-hedge before the accurate private

information coming in. Because the hedging cost for them will be higher after they receive

accurate private information due to a higher adverse selection. After they receive the accurate

private information, they will speculate on their previous liquidity shock instead of hedge.

Secondly, unlike the model with perfectly competitive market makers, the average trading

volume in this model is not monotonic decreasing with time. In a competitive model, average

trading volume always decreases with time, because more information is revealed with time.

However, this model can generate a reverse-J shape with time. Because rational traders take

into account the impact of trading volume on bid-ask spread, the trading volume becomes

part-dependent, which means high trading volume in the past can lead to a higher trading

volume in the current time. We also plan to examine what is correlation among bid-ask

spread, trading volume and return.

Most existing literature about the dynamic of bid and ask prices stems from the paper

by Glosten and Milgram 1985. Our paper differs from that stream of literature in two

ways. First, there is no quantity effect in those papers, where each trade only has one unit.

Second, market makers in those paper are perfectly competitive. The bid-ask spread comes

from adverse selection, while the bid-ask spread comes from imperfect competition among

market makers in our model.
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2.2 The Model

We consider a multiperiod model of trading in a market where all the transactions have to

go through market makers. There are three types of traders: informed traders, uninformed

traders and market makers. Informed traders receive a common private information about

the fundamental value of the asset. They also receive a liquidity shock at the beginning

of the trading, and only themselves know the size of the shock. Other traders, including

uninformed traders and market makers, have no private information but can infer a mixed

signal from the price, which is a linear combination of informed traders’ private information

and the size of their liquidity shock. Since neither the private information nor the size of

liquidity shock can be observed by uninformed traders or market makers, in equilibrium

the private information of informed traders will not be fully revealed. The model is further

defined as follows.

2.2.1 The Assets

There is a riskless asset and a risky asset (stock) available for trading at dates 1, ..., T − 1.

There also has an illiquid asset, which can not be liquidated until the final date T . The

riskless asset is of perfectly elastic supply with the rate of return r being a nonnegative

constant. For simplicity, we assume r = 0. There is zero supply of the riskless asset. Each

share of the stock pays a liquidation value of V at the final date T . Shares of the stock are

infinitely divisible and are traded through market makers. The total supply of of the risky

asset is fixed at Θ. Without loss of generality, we assume that each share of the illiquid asset

pays a liquidation value of V at the final date T .
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2.2.2 Investors

There are NI of identical informed investors, NU of identical uninformed investors, and

NM designated market makers who are also uninformed. We assume NI,U >> NM so

that informed and uninformed traders are perfectly competitive and market makers are

imperfectly competitive. All investors are endowed with zero share of riskless asset. Every

type i ∈ {I, U,M} investor is endowed with θi0 shares of risky assets before trading starts.

So the total supply of the stock is fixed at Θ = NIθ
I
0 +NUθ

U
0 +NMθ

M
0 . Moreover, informed

traders are also endowed with X shares of illiquid asset in total (i.e., each informed trader

receives X/NI units of illiquid assets). We also assume that investors only consume at the

final date, and W i
T is type i investor final wealth. Each trader of type i maximizes expected

utility by choosing their positions in the stock market

max
θi

E[−e−NiλiW i
T | F iT ],

where F it is type i investor’s information set at date t, and λi is the total risk aversion

coefficient of type i traders. Since all the orders have to go through market makers, they

can set ask prices At, at which they sell, and bid price Bt, at which they buy, by choosing

their positions as a cournot game.

W I
T = W I

0 +
T−1∑
t=1

[(θIt − θIt−1)−Bt − (θIt − θIt−1)+At] + θIT−1V + V X/NI

WU
T = WU

0 +
T−1∑
t=1

[(θUt − θUt−1)−Bt − (θUt − θUt−1)+At] + θUT−1V

WM,j
T = WM

0 +
T−1∑
t=1

(αM,j
t At − βM,j

t Bt) + θMT−1V

where αM,j
t and βM,j

t are the quantities that market maker j ∈ {1, 2, ..., NM} buys and sells

at time t. x+ = x if x > 0 otherwise 0, and similarly x− = −x if x < 0 otherwise 0. Since
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their utility functions are CARA, their initial wealth should not matter.

2.2.3 Information Structure

All investors have the same prior information about V and X. Assume that the prior

distribution are V ∼ N (V̄ , τ−1
V ) and X ∼ N (0, τ−1

X ), and V and X are independent.

At t = 0, i.e. before the trading, each type I investor receives X/NI shares of illiquid

assets, and X is known only by themselves. At each date t, only type I informed investors

receive a common private signal vt about stock’s liquidation part V :

vt = V + εt,

where εt ∼ N (0, τ−1
ε,t ) is the i.i.d. noise. The bid and ask prices of the stock At and Bt are

observable to all investors. Thus, we can write the investors’s information set as follows:

F It = {F0, X, vt, At, Bt} (2.1)

FUt = FMt = {F0, At, Bt} (2.2)

where F0 represents prior information as given by the prior distributions. We introduce the

notation Zt ≡ (Z1, ..., Zt) for any stochastic process {Zt}, i.e., Zt represents the history of

Zt up to and including t. Also, for notation simplicity, we define, respectively, expectations

conditional on F It and FUt :

ẐI
t = EI

t [Zt], ẐU
t = EU

t [Zt],

oIZ,t = VarIt (Z), oUZ,t = VarUt (Z),
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where

EI
t [.] ≡ E[. | F It ], EU

t [.] ≡ E[.|FUt ] ≡ E[.|FMt ],

VarIt [.] ≡ Var[. | F It ], VarUt [.] ≡ Var[. | FUt ] ≡ Var[. | FMt ].

For simplicity, we assume that all noise {εt} are independent with V and X. As the

number of trading dates increases, more private information will be revealed to informed

traders and true value of V will eventually be revealed to informed traders, so to uninformed

traders and market makers by the equilibrium prices. For simplicity, we solve the equi-

librium without public information. The extension to the case with public information is

straightforward.

2.3 Equilibrium with Competitive Market Makers

In this section, we solve for the equilibrium of the economy with large number of market

makers so that they drive their profits from market making to zero. In this case, there is no

bid-ask spread, so At = Bt = Pt. Markets makers are the same as uninformed investors, just

like [24], in which uninformed investors are market making.

Given the well-known properties of CARA preference under normal distributions of

payoffs and signals, we only consider the linear equilibria of the economy. In a linear equilib-

rium, the equilibrium stock price can be expressed as a linear function of the state variables

of the economy. In other words, we have

Pt = L[Φt], (2.3)

where Φt represents the vector of state variables of the economy at date t. The general
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history dependence of the equilibrium under differential information leads to difficulties in

solving the equilibrium since the dimensionality of the state variables increases over time

without bound. Generally speaking, the state vector Φt can contain all the information up

to time t: Φt = (X, vt). We use L[.] to denote a general linear relation. Since we often do

not care about the actual functional form within the linear class, the same symbol is used

for different functions.

In the current setting, however, the general history dependence can be simplified by

properly choosing the state space. The equilibrium only include first-order expectation due

to hierarchy information structure. This allows us to solve for the equilibrium prices and

trading strategies just like [28].

Lemma 2. In a linear equilibrium of the economy, the price function can be expressed as

follows:

Pt = L[X, vt]. (2.4)

Furthermore, we can rewrite Pt as

Pt = L[X, vt, P t−1] (2.5)

= at(vt − htX) + L[P t−1]. (2.6)

Define

st = vt − htX. (2.7)

Thus, {st} is informationally equivalent to {P t}.

This implies that, given past prices, observing the current price is equivalent to observe

st, which is a linear combination of the two unknowns for uninformed investors. Conse-
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quently, in a linear equilibrium the uninformed investors’ information set FUt = {F0, P t} =

{F0, st}, that is {P t} ⇔ {st}.

In order to derive each investor’s optimal stock holding, we have to solve the conditional

expectations, given his information set. In the linear equilibrium, calculating the conditional

expectations of the state variables is a linear filtering problem, since all the signals are linear

in the state variables, including endogenous signals such as prices. Utilizing the equivalence

between {F0, P t} = {F0, st}, we can solve for uninformed investors’ conditional expectation

of X and vt. Informed investors know X and vt, so their expectations of X and vt are the true

values. Therefore, in this hierarchy structure of information, the higher-order expectations

are reduced to first-order expectations.

Lemma 3. Given the linear price function, V̂ I
t and (V̂ U

t , X̂
U
t ) are determined by the following

stochastic differential equations:

V̂ I
t = V̂ I

t−1 +KI
t (vt − EI

t−1[vt]), (2.8)

and V̂ U
t

X̂U
t

 =

 V̂ U
t−1

X̂U
t−1

+KU
t (st − EU

t−1[st]), (2.9)

and X̂U
0 = 0, V̂ U

0 = V̄ , KI
t is a scalar, and KU

t is a 2× 1 vector.

Proof. See Appendix 2.8.1.

For uninformed traders, {X̂U
t , V̂

U
t } follows a Gaussian Markov process under the infor-

mation process generated by FUt , since (V̂ U
t , X̂

U
t ) can be expressed as a recursive equation

of (V̂ U
t−1, X̂

U
t−1) with the surprise in st as innovations. Similarly, for informed traders, {V̂ I

t }
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follows a Gaussian Markov process under the information process generated by F It , and

{X̂U
t , V̂

U
t } is measurable with respect to F It . Furthermore, st ≡ vt − htX ⊆ FUt ⊆ F It , thus

vt − htX = v̂Ut − htX̂U
t , where v̂Ut = EU

t [vt].

Now we start to solve investors’ optimal stock holdings. Let PT = V . An investor’s

optimal stock holding at each date is given by the solution to the following optimization

problem:

max
θUt

E[−e−NUλUWU
T | FUt ] (2.10)

s.t. WU
t+1 = WU

t + θUt (Pt+1 − Pt)

max
θIt

E[−e−NIλIW I
T | F It ] (2.11)

s.t. W I
t+1 = W I

t + θIt (Pt+1 − Pt), t ≤ T − 2

and W I
T = W I

T−1 + θIT−1(V − PT−1) + V X/NI .

Conjecture 1. We conjuecture that the equilibrium price is

Pt = ωt(V̂
I
t − µtX) + (1− ωt)V̂ U

t − µtωtΘ, (2.12)

= V̂ I
t − µt(X − X̂U

t )− µtωt(X̂U
t + Θ), (2.13)

= V̂ U
t − µtωt(X̂U

t + Θ), (2.14)

where 0 < ωt < 1. Define

St = V̂ I
t − µtX, (2.15)

which is informationally equivalent to Pt, and V̂ I
t − µtX = V̂ U

t − µtX̂U
t .

Under this conjecture, this is easy to find that {st} ⇔ {St}. Since V̂ I
t = L[vt] =

L[st] + µtX, V̂ I
t − µtX = L[st] = St. Therefore, {µ

t
} and {ht} have a one-to-one mapping
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as follows:

µt =

∑t
s=1 τε,shs

τV +
∑t

s=1 τε,s
, or (2.16)

τε,tht = (τV +
t∑

s=1

τε,s)µt − (τV +
t−1∑
s=1

τε,s)µt−1, (2.17)

where τε,1h1 = (τV + τε,1)µ1. Once we know {ht}, then we know {µt}, and vice versa. These

coefficients determine the information revealing through prices. So in this section, we will

compute the sets of these information coefficients backward.

Proposition 16. There is only one equilibrium solution for {µt} as

µt = λIoIV,t ≡
λI

τV +
∑t

s=1 τε,s
. (2.18)

Equivalently,

h1 =
λI

τε,1
, (2.19)

ht = 0, for t = 2, 3, ..., T − 1. (2.20)

Proof. See Appendix 2.8.2.

Note that from the price, uninformed traders can infer V̂ I
t − µtX, which serves as a

signal for informed traders’ estimation about stock value V̂ I
t and informed traders’ total liq-

uidity shock X. According to this proposition, the noise-signal ratio for uninformed traders

is µt, which decreases over time when there is new private information for informed traders

every period. Thus, the current price becomes more and more informative about informa-

tion traders’ estimation of the stock value. More specifically, this proposition tells us that

uninformed traders know s1 = v1 − h1X, which is a mixed signal about informed traders’

private information v1 and total liquidity shock X in the first period, and know st = vt
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for t = 2, 3, ..., T − 1, which is the exact informed traders’ private information in the later

periods. Thus, uninformed traders’ estimation about stock value {V̂ U
t } and liquidity shock

{X̂U
t } and variance {OU

t } can be expressed explicitly.

Proposition 17. The value functions for informed and uninformed traders have the forms

as below

J It = −ρIt e−λ
INIW

I
t −λIXV̂ It −

1
2

Φ>t H
I
t Φt , (2.21)

JUt = −ρUt e−λ
UNUW

U
t −

1
2
HU
t (X̂U

t +Θ)2

, (2.22)

where Φt =

X̂U
t

1

 is the state vector for informed traders, and HI
t =

 kt −kΘ
t Θ

−kΘ
t Θ 0

,

which means there is no cross term of XX̂U
t in the value function.

In the last period,

ωT−1 =
(λIoIV,T−1)−1

(λIoIV,T−1)−1 + (λUoUV,T−1)−1
. (2.23)

By Proposition 16, ωt can be computed recursively as

µtωt − µt+1ωt+1

=

(
1 +

HU
t+1K

U
X,t+1

λUbQ,t+1

−
kΘ
t+1K

U
X,t+1

λIaQ,t+1

)(
1

λIa2
Q,t+1ΞI

t

+
1

λUb2
Q,t+1ΞU

t

)−1

, (2.24)

where HU
t+1, kt+1 and kΘ

t+1 (i.e., HI
t+1) can be computed backward, and at+1, bt+1 and Ξt can

be calculated by Proposition 16.

The equilibrium stock holdings are

NIθ
I
t = γt(X̂

U
t + Θ)− X̂U

t , (2.25)

NUθ
U
t = (1− γt)(X̂U

t + Θ), (2.26)
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where

γt =

(
1 +

HU
t+1bX,t+1

λUbQ,t+1

)
ct +

kΘ
t+1K

U
X,t+1

λIaQ,t+1

(1− ct), (2.27)

and

ct =
(cIt )

−1

(cIt )
−1 + (cUt )−1

∈ (0, 1), (2.28)

where

cIt = λIa2
Q,t+1ΞI

t , (2.29)

cUt = λUb2
Q,t+1ΞU

t . (2.30)

Proof. See Appendix 2.8.2.

This proposition verifies the Conjecture 1 that the equilibrium price is linear in state

variables.

2.4 Equilibrium with Oligopolistic Market Makers

In this section, we study the case where the population of market makers is not large enough

to neglect market makers’ market power. For example, in [46], there is a monopolistic market

maker who can indirectly set both bid and ask prices through the quantities they buy and

sell. It is well known that price has a dual role: information revealing and market clearing.

In above section, we separate price’s information role from its market clearing role. Since

market makers have no private information, their trading brings no new information into

prices. Therefore, the information role stays the same as in competitive case.
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Lemma 4. In a linear equilibrium, the ask price At and bid price Bt are informational

equivalent to st = vt − htX or St = V̂ I
t − µtX: {At, Bt} ⇔ {st} ⇔ {St}.

This lemma implies that although there are two prices (ask and bid), both of the

prices contain the same linear combination of the two unknowns (informed traders’ private

information and liquidity shock), i.e. both ask and bid prices reveal the same information.

Therefore, state variables {Φt} also follows a Gaussian Markov process under information

process generated by F It and FUt respectively.

Now we start to solve traders’ optimal stock holding problem. Define P i
t as the price

at which type i ∈ {I, U} traders are trading at time t. For example, for informed and

uninformed traders i.e. i ∈ {I, U}, P i
t = At if they buy at t, and P i

t = Bt if they sell at

t. We can always write informed and uninformed traders’ trading strategies in terms of the

difference between their private value P iR
t and their trading price P i

t as in [46]:

Niθ
i
t = Niθ

i
t−1 +

P iR
t − P i

t

cit
(2.31)

for i ∈ {I, U}, and where P iR
t is the reservation price of type i traders at time t, i.e. type i

traders don’t trade at P iR
t . Define

∆t = P IR
t − PUR

t (2.32)

as the reservation price difference at time t. Reservation prices are revealed to market makers.

Since they are infinite risk averse, they hold no inventory and bear no risk. They always set

ask and bid prices through their trading quantities without change informed and uninformed

traders’ trading direction in competitive case. We denote αM,j
t and βM,j

t as the quantities

that market maker j ∈ {1, 2, ..., NM} chooses to buy and sell at time t. We also assume that
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at initial time t = 0 market makers hold on inventory, i.e., θM0 = 0, due to their infinite risk

aversion.

Lemma 5. The optimal quantities that market maker j buys and sells at time t = 1, 2, 3, ..., T−

1 are

αM,j
t = βM,j

t =
1

NM + 1

|∆t|
cIt + cUt

. (2.33)

The equilibrium bid and ask prices are respectively

At = PUR
t +

NM

NM + 1
ct∆t +

∆+
t

NM + 1
= P IR

t −
NM

NM + 1
(1− ct)∆t +

∆−t
NM + 1

, (2.34)

Bt = PUR
t +

NM

NM + 1
ct∆t −

∆−t
NM + 1

= P IR
t −

NM

NM + 1
(1− ct)∆t −

∆+
t

NM + 1
. (2.35)

The bid-ask spread is At −Bt = |∆t|
NM+1

.

Proof. See Appendix 2.8.3.

Now we start to solve informed and uninformed traders’ optimal stock holding. Let

Qi
t+1 = P i

t+1 − P i
t (t = 1, 2, ..., T − 2) and Qi

T = V − P i
T−1 be the excess return on one share

of the stock for type i ∈ {I, U} traders. An investor’s optimal stock holding at each date is

given by the solution to the following optimization problem:

max
θUt

E[−e−λUNUWU
T |FUt ] (2.36)

s.t. WU
t+1 = WU

t + θUt Q
U
t+1

max
θIt

E[−e−λINIW I
T |F It ] (2.37)

s.t. W I
t+1 = W I

t + θItQ
I
t+1, t ≤ T − 2

and W I
T = W I

T−1 + θIT−1Q
I
T +XN/NI .
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Their excess return depends on whether they buy or sell, i.e. depends on the signs of ∆t+1

and ∆t. For example, if ∆t > 0 and ∆t+1 < 0, then informed traders buy at t and sell at

t + 1, hence P I
t = At and P I

t+1 = Bt+1. Therefore, QI
t+1 = Bt+1 − At in this example. By

examining the four cases, it interestingly turns out that

QI
t+1 = (P IR

t+1 − P IR
t )− NM

NM + 1
[(1− ct+1)∆t+1 − (1− ct)∆t], (2.38)

QU
t+1 = (PUR

t+1 − PUR
t ) +

NM

NM + 1
(ct+1∆t+1 − ct∆t), (2.39)

QI
t+1 −QU

t+1 =
1

NM + 1
(∆t+1 −∆t), (2.40)

which means the form of the excess return Qi
t nicely does not depend on the sign of ∆t.

As NM → ∞, QI
t = QU

t = Qt, where Qt is the excess return in competitive case. The

reservations prices are revealed to all traders. We conjecture that for t = 1, 2, 3, ..., T − 1

P IR
t = L[Φt]− cItNIθ

I
t−1, (2.41)

PUR
t = L[(X̂U

t + Θ)]− cUt NUθ
U
t−1. (2.42)

This conjecture implies the following one.

Conjecture 2. QI
t andQU

t , measurable with respect to F It and FUt respectively, are Gaussian

process under information {F It } and {FUt } respectively:

QI
t+1 = L[Φt, e

I
t+1]−

cIt+1

NM + 1
NIθ

I
t +

cIt
NM + 1

NIθ
I
t−1, (2.43)

QU
t+1 = L[(X̂U

t + Θ), eUt+1]−
cUt+1

NM + 1
NUθ

U
t +

cUt
NM + 1

NUθ
U
t−1. (2.44)

As NM →∞, QI
t = QU

t = Qt, and they don’t depend on previous inventories.

With the above lemma and conjecture in this section, we can obtain our main result

which is presented in the following proposition:
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Proposition 18. In a linear equilibrium of the economy, the price function has the following

form: for t = 1, 2, 3, ..., T − 1,

At = max

{
Pt +

cIt
NM + 1

[
(1− γt)(X̂U

t + Θ)−NUθ
U
t−1

]
, Pt −

cUt
NM + 1

[
(1− γt)(X̂U

t + Θ)−NUθ
U
t−1

]}
Bt = min

{
Pt +

cIt
NM + 1

[
(1− γt)(X̂U

t + Θ)−NUθ
U
t−1

]
, Pt −

cUt
NM + 1

[
(1− γt)(X̂U

t + Θ)−NUθ
U
t−1

]}
The bid-ask spread is At −Bt = |∆t|

NM+1
, where

∆t = (cIt + cUt )
[
(1− γt)(X̂U

t + Θ)−NUθ
U
t−1

]
. (2.45)

The equilibrium stock holdings are

NIθ
I
t =

NM

NM + 1
[γt(X̂

U
t + Θ)− X̂U

t ] +
1

NM + 1
NIθ

I
t−1, (2.46)

NUθ
U
t =

NM

NM + 1
(1− γt)(X̂U

t + Θ) +
1

NM + 1
NUθ

U
t−1. (2.47)

Proof. See Appendix 2.8.4.

This proposition verifies the Conjecture 2 that the excess returns are also linear in

state variables and previous inventories.

2.5 Dynamics of Trading Volume and Bid-Ask Spread

We now examine in more detail the behavior of trading volume and its relation to bid-ask

spread and price volatility under different specifications of the information flow in the market.

2.5.1 Trading Volume

In our model, there are three types of traders. Since market makers are assumed to hold zero

inventory over time, all the trades are actually exchanged between informed and uninformed
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traders. The trading volume at time t, denoted by Volt, can be calculated by Eq. (2.33)

Volt =
NM

NM + 1

|∆t|
cIt + cUt

, (2.48)

where we can rewrite ∆t as

∆t = (cIt + cUt )

[
(1− γt)(X̂U

t + Θ)−NM

t−1∑
n=1

(1− γt−n)(X̂U
t−n + Θ)

(NM + 1)n
− NUθ

U
0

(NM + 1)t−1

]
.(2.49)

Obviously, ∆t ∼ N
(
(cIt + cUt )µ∆

t , (c
I
t + cUt )2(σ∆

t )2
)
, where

µ∆
t = Θ(1− γt)−ΘNM

t−1∑
n=1

1− γt−n
(NM + 1)n

− NUθ
U
0

(NM + 1)t−1
, (2.50)

and σ∆
t is given in Appendix 2.8.5. Thus, the average trading volume is

Volt =
NM

NM + 1

E [|∆t|]
cIt + cUt

=
NM

NM + 1

[√
2

π
σ∆
t e
− 1

2
(
µ∆
t
σ∆
t

)2

+ µ∆
t

(
1− 2Φ

(
−µ

∆
t

σ∆
t

))]
, (2.51)

where Φ is normal cumulative distribution function. Therefore, we can compute the average

trading volume for each period.

When the information only comes to the market at the opening, the average trading

volume exhibits a U-shape pattern throughout the trading duration, i.e., high trading volume

happens at the beginning and at the end. The high trading volume at the beginning comes

from the information arrival. As Figure 2.1(b) shows, when there is more information (high

τε,1/τV ), the trading volume is higher. The high trading volume at the end comes from the

realization of the liquidity shock for informed traders. The more volatile the shock is, the

higher the trading volume at the market closure as Figure 2.1(c) shows. The red lines in

Figure 1. show that when market makers have significant market power, traders will smooth

out their trading even though they have no market power. Hence, there are cases the average

trading volume can be higher in a market with oligopolistic market makers than in a market

with competitive market makers.
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(a) τV = 1, τX = 1
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(b) τV = 0.1, τX = 1
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(c) τV = 1, τX = 0.1

Figure 2.1: Parameters are λI = λU = 1, Θ = 1000, NIθ
I
0 = NUθ

U
0 = Θ/2, V̄ = 100, X̄ = 0,

and τε,t = 0 except for τε,1 = 1.
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Figure 2.2: Parameters are λI = λU = 1, Θ = 1000, NIθ
I
0 = NUθ

U
0 = Θ/2, V̄ = 100, X̄ = 0,

τV = 1, τX = 1, and τε,t = 0 except for τε,1 = 1 and other certain dates as indicated.
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As Figure 2.2 shows, the average trading volume is very sensitive to information flow.

We focus on two common types of information flows. First, as in Figure 2.2(a) and (b),

the information only comes at certain points of time. Once there is information coming

to the market, the trading volume will spike. Thus, the information has a ripple effect on

average trading volume. This information ripple effect is more strong in the competitive

case. However, when there are only a few market makers in the market, the market power

of market makers lead traders to smooth their orders, which weakens the information ripple

effect on trading volume. Second, the information comes to the market at a constant rate

as Figure 2.2(c) shows. In this case, the trading volume goes to zero after several rounds of

trading, and then renounces to the level which is slightly higher than the one in a competitive

market. In competitive markets the trading volume only depends on uninformed traders’

expected value of X, thus the trading volume decreases monotonically with the number of

trading rounds as information gradually comes to the market. However, in monopoly markets

trading volume also depends on the inventory level, thus after several rounds of trading the

expected liquidity shock reaches the inventory level, both informed and uninformed have the

same reservation value for the stock, resulting in no trading volume.

2.5.2 Dynamics of Bid-Ask Spread

This model allows us to examine the dynamic of both average trading volume and bid-ask

spread. By Eq. (2.45) we can compute the average spread as

At −Bt =
1

NM + 1
E [|∆t|] , (2.52)
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Thus, the average bid-ask spread is perfectly correlated with the average trading volume.

The average bid-ask spread, hence, also exhibits a U-shape pattern throughout the trading

duration with large spread at the market opening and closure. However, when there is in-

formation coming in throughout the trading duration, the average spread exhibits different

patterns from average trading volume. This is because average spread not only depends on

the state variable X̂U
t and inventory, but also depends on cIt + cUt which serves a multiplier.

cIt + cUt depends on how much weight traders put on the next period’s information. Unsur-

prisingly, cIt + cUt dramatically increases when the next period’s information is very accurate.

Therefore, when information comes at certain points of the time, the average spread spikes

one period before the information arrival as Figure 2.3(a) and (b) show. When information

comes at a constant rate, the average spread exhibits a similar pattern as the average trading

volume, as Figure 2.3(c) shows. This is because in this type of information environment,

cIt + cUt changes gradually, so the variation of the average spread mostly comes from the

change of state variable and inventory.

Another often used quantification of spread is the relative spread with respect to the

price level At−Bt
E[|Pt|] , which we discuss in the Appendix 2.8.5.

2.6 Market Makers’ Profits

Since we shut down the inventory risk of market makers, market makers’ profits purely come

from making the market instead of speculating by carrying inventory. The total profit for

each market maker in a NM -market-maker market with T trading periods is

Profit(NM , T ) =
1

(NM + 1)2

T−1∑
t=1

|∆t|2

cIt + cUt
. (2.53)
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Figure 2.3: Parameters are λI = λU = 1, Θ = 1000, NIθ
I
0 = NUθ

U
0 = Θ/2, V̄ = 100, X̄ = 0,

τV = 1, τX = 1, and τε,t = 0 except for τε,1 = 1 and other certain dates as indicated.
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Figure 2.4: Parameters are λI = λU = 1, Θ = 1000, NIθ
I
0 = NUθ

U
0 = Θ/2, V̄ = 100, X̄ = 0,

τV = 1, τX = 1, and τε,t = 0 except for τε,1 = 1 and other certain dates as indicated.

Thus, the expected profit is

E[Profit(NM , T )] =
1

(NM + 1)2

T−1∑
t=1

(cIt + cUt )
[(
µ∆
t

)2
+
(
σ∆
t

)2
]
. (2.54)

Obviously, reducing the number of market makers always benefit market makers. Thus

one way to increase market makers’ profit is to increase their trading speed to gain market

power. There is existing literature studying the trading speed racing among market makers.

In this paper, we focus on homogeneous speed to examine whether increasing trading fre-
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quency can benefit market makers without giving them more market power. For simplicity,

we study the monopoly market with only one market maker. Now we change the number of

trading rounds T but fixing the information environment in three common ways as follows.

In Figure 2.4(a), the information only arrives at the beginning, i.e., τε,t = 0 except for t = 1.

In this case, adding trading rounds make market makers less profitable. This is because

informed and uninformed traders tend to shred their orders in monopoly market to reduce

the transaction cost. More trading rounds, narrower the average spread, thus the market

maker make less profit. In Figure 2.4(b), there is information arrives at certain point of

time. For example, the whole trading duration is one day, and in the middle of the day there

is an accoutrement, then whether adding trading rounds before the information or after the

information can benefit the market maker? As Figure 2.4(b) shows, adding trading rounds

before the information arrival can make the market maker more profitable. In Figure 2.4(c),

information comes at a constant rate. In this information environment, as the number of

trading rounds increases, the market maker’s profit increases at first, and then falls down.

As Figure 2.4 shows, a monopolistic market maker does not necessarily prefer make

the market more frequently. This may explain why in some OTC markets, for example, in

municipal bond markets where the market makers have significant market power, the trading

frequency is very low.

So far we study the trading frequency from the market maker’s standing point. In the

future work, we will study how trading frequency affects informed and uninformed traders’

welfare or a social plan’s objective function to try to understand whether continuous trading

can make all market participants better off.
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2.7 Concluding Remarks

In this paper, we develop a multi-period model of stock trading in which market markers have

significant market power to set bid and ask prices in the presence of information asymmetry

and heterogeneous hedging demands. We show that the volume pattern over time is closely

related to the flow and the nature of the information.

If private information mainly arrives at the opening, both trading volume and bid-

ask spread exhibit U-shape patterns, consistent with empirical findings. Traders tend to

trade more aggressively with more information arrivals. As a result, market makers charge

high bid-ask spreads and earn higher profits. In addition, we find that the market power

of market makers tends to dampen trading spikes due to new information arrivals. Our

model generates several new testable empirical predictions. For example, our model predicts

that the variation of trading volume tends to be smaller for stocks with less competition

during periods of news events. Our model is very flexible and can be extended to study

the equilibrium when there is residual noise in the fundamental value or when there is new

liquidity shock every period.
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2.8 Appendix

2.8.1 Proof of Lemma 3

Proof. To derive the filtering equations, we use the results in the following lemma, the proof

of which can be found in [45].

Lemma 6. Let

xt = Atxt−1 +Btεx,t, yt = Htxt + εy,t, t = 1, 2, ...

xt is the n-vector of state variables at t, yt is the m-vector of observations at t. At, Bt

and Ht are , respectively, (n × n), (n × k), (m × n) constant matrices. {εx,t, t = 1, 2, ...}

and {εy,t, t = 1, 2, ...} are respectively a k-vector and an m-vector white Gaussian sequence.

εx,t ∼ N (0, Qt), εy,t ∼ N (0, Rt), and x0 ∼ N (x̄0,Σx,0). x0, {εx,t} and {εy,t} are independent.

Let

x̂t = x̂t|t = E[xt|yτ : 1 ≤ τ ≤ t],

Ot = Ot,t = E[(xt − x̂t)(xt − x̂t)>|yτ : 1 ≤ τ ≤ t].

Then,

x̂t = Atx̂t−1 +Kt(yt −HtAtx̂t−1),

Ot = (In −KtHt)(AtOt−1A
>
t +BtQtB

>
t ),

Kt = (AtOt−1A
>
t +BtQtB

>
t )H>t [Ht(AtOt−1A

>
t +BtQtB

>
t )H>t +Rt]

−1.

where In is the (n× n) identity matrix.
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We can now solve for the informed filters V̂ I
t by applying this lemma. Make the

following substitution:

xt = x0 = V, εx,t = 0; yt = vt, εy,t = εt. (2.55)

so the constant matrices are

At = 1, Ht = 1, Qt = 0, Rt = τ−1
ε,t . (2.56)

By definition

x̂t = V̂ I
t , Ot = oIV,t,

so by the above lemma, we have oIV,t = (1−KI
t )oIV,t−1 and

1

oIV,t
=

1

oIV,t−1

+ τε,t, (2.57)

KI
t =

oIV,t−1

oIV,t−1 + τ−1
ε,t

= oIV,tτε,t, (2.58)

i.e., KI
t can be expressed in terms of oIV,t−1 and {oIV,t} can be expressed recursively with the

initial value oIV,0 = τ−1
V . Now we can express informed investors’ expectation as follows:

V̂ I
t = V̂ I

t−1 +KI
t (vt − V̂ I

t−1). (2.59)

We can now solve for the uninformed filters V̂ U
t and X̂U

t by applying this lemma. Make

the following substitution:

xt = x0 =

V
X

 , εx,t =

0

0

 ; yt = st, εy,t = εt. (2.60)
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The constant matrices are

At = I2 ≡

1 0

0 1

 , Ht =

(
1 −ht

)
, Qt = 0, Rt = τ−1

ε,t . (2.61)

Since st = vt − htX = V − htX + εt, by definition

x̂t =

V̂ U
t

X̂U
t

 , Ot =

 oUV,t oUV X,t

oUV X,t oUX,t

 ,

where oUV X,t = CovUt (V,X). Therefore, by the above lemma,

KU
t =

1

oUt−1

Ot−1

 1

−ht

 =
1

oUt−1

oUV,t−1 − htoUV X,t−1

oUV X,t−1 − htoUX,t−1

 , (2.62)

Ot = Ot−1 −
1

oUt−1

Ot−1

 1 −ht

−ht h2
t

Ot−1, (2.63)

where oUt−1 is a scalar determined by Ot−1 and ht

oUt−1 = HtOt−1H
>
t +Rt = oUV,t−1 − 2hto

U
V X,t−1 + h2

to
U
X,t−1 + τ−1

ε,t ≡ VarUt−1(st). (2.64)

Thus, the elements of Ot can be determined by the elements of Ot−1:

oUV,t = oUV,t−1 −
1

oUt−1

(oUV,t−1 − htoUV X,t−1)2,

oUX,t = oUX,t−1 −
1

oUt−1

(oUV X,t−1 − htoUX,t−1)2,

oUV X,t = oUV X,t−1 −
1

oUt−1

(oUV,t−1 − htoUV X,t−1)(oUV X,t−1 − htoUX,t−1).

Reversely, Ot−1 can be determined by Ot as

oUV,t−1 =
[oUV,to

U
X,t − (oUV X,t)

2]h2
t − oUV,tτ−1

ε,t

oUV,t − 2oUV X,tht + oUX,th
2
t − τ−1

ε,t

, (2.65)

oUX,t−1 =
oUV,to

U
X,t − (oUV X,t)

2 − oUX,tτ−1
ε,t

oUV,t − 2oUV X,tht + oUX,th
2
t − τ−1

ε,t

, (2.66)

oUV X,t−1 =
[oUV,to

U
X,t − (oUV X,t)

2]ht − oUV X,tτ−1
ε,t

oUV,t − 2oUV X,tht + oUX,th
2
t − τ−1

ε,t

. (2.67)
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Thus, if we take a guess of OU
T−1, then all the {OU

t } for t < T−1 can be computed recursively,

and {OU
T−1} can be pinned down recursively with initial value O0 =

τ−1
V 0

0 τ−1
X

.

Moreover,

oUt−1 ≡ VarUt−1(st) =
τ−2
ε,t

τ−1
ε,t − (oUV,t − 2oUV X,tht + oUX,th

2
t )
, (2.68)

which can be proved positive.

Similarly, KU
t ≡

KU
V,t

KU
X,t

 can be expressed by OU
t :

KU
V,t =

oUV,t − htoUV X,t
τ−1
ε,t

= oUV,tτε,t − (
µt
oIV,t
− µt−1

oIV,t−1

)oUV X,t, (2.69)

KU
X,t =

oUV X,t − htoUX,t
τ−1
ε,t

= oUV X,tτε,t − (
µt
oIV,t
− µt−1

oIV,t−1

)oUX,t, (2.70)

KI
t = oIV,tτε,t. (2.71)

Thus, {OU
t } and {KU

t } for t < T − 1 can be determined by the initial guess of OU
T−1

and {ht}, and so doesV̂ U
t

X̂U
t

 =

 V̂ U
t−1

X̂U
t−1

+

KU
V,t

KU
X,t

 [st − (V̂ U
t−1 − htX̂U

t−1)]. (2.72)

2.8.2 Proof of Proposition 16 and 17

Proof. To derive the optimal holdings and price, we use the following lemma.

Lemma 7. Let u be an n × 1 normal vector with mean ū and covariance matrix Σ, A a

scalar, B an n × 1 vector, C an n × n symmetric matrix, I the n × n identity matrix, and
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|M | the determinant of a matrix M . Then,

Eu exp{−ρ[A+B>u+
1

2
u>Cu]} =

1√
|I + ρCΣ|

exp
{
− ρ[A+B>ū+

1

2
ū>Cū

−1

2
ρ(B + Cū)>(Σ−1 + ρC)−1(B + Cū)]

}
.

Now we compute the optimal holdings and price for the last period. For every informed

trader, his terminal wealth at t = T is

W I
T = W I

T−1 + θIT−1(V − PT−1) + V X/NI , (2.73)

which is normally distributed. So his expected utility at t = T − 1 is

EI
T−1[W I

T ] = −e−λINIW I
T−1+λINIθ

I
T−1PT−1−λI(NIθ

I
T−1+X)V̂ IT−1+ 1

2
(λI)2(NIθ

I
T−1+X)2oIV,T−1 . (2.74)

By the first order condition, we have

NIθ
I
T−1 =

V̂ I
T−1 − PT−1 − λIoIV,T−1X

λIoIV,T−1

, (2.75)

and the second order condition λIoIV,T−1 > 0 is automatically satisfied. Thus, informed

traders’ trading reveals a mixed signal ST−1 = V̂ I
T−1 − λIoIV,T−1X, i.e., µT−1 = λIoIV,T−1.

Similarly, we can compute uninformed traders’ optimal holding. Every uninformed

trader’s terminal wealth at t = T is

WU
T = WU

T−1 + θUT−1(V − PT−1), (2.76)

which is also normally distributed. So his expected utility at t = T − 1 is

EU
T−1[WU

T ] = −e−λUNUWU
T−1+λUNUθ

U
T−1PT−1−λUNUθUT−1V̂

U
T−1+ 1

2
(λUNUθ

U
T−1)2oUV,T−1 . (2.77)
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By the first order condition, we have

NUθ
U
T−1 =

V̂ U
T−1 − PT−1

λUoUV,T−1

, (2.78)

and the second order condition λUoUV,T−1 > is automatically satisfied.

In equilibrium, by market clearing condition NIθ
I
T−1 +NUθ

U
T−1 = Θ,

PT−1 = ωT−1(V̂ I
T−1 − µT−1X) + (1− ωT−1)V̂ U

T−1 − µT−1ωT−1Θ, (2.79)

where

µT−1 = λIoIV,T−1, (2.80)

ωT−1 =
(λIoIV,T−1)−1

(λIoIV,T−1)−1 + (λUoUV,T−1)−1
, (2.81)

and equilibrium holdings can be computed

NIθ
I
T−1 = γT−1(X̂U

T−1 + Θ)− X̂U
T−1, (2.82)

NUθ
U
T−1 = (1− γT−1)(X̂U

T−1 + Θ), (2.83)

where

γT−1 = ωT−1. (2.84)

Now let’s compute backward. Define state vector Φt =

X̂U
t

1

, innovation term for

informed traders eIt = V − V̂ I
t−1 + εt, and innovation term for uniformed traders eUt =

V − V̂ U
t−1 − ht(X − X̂U

t−1) + εt. Thus,

eIt | F It−1 ∼ N (0,ΣI
t−1),

eUt | FUt−1 ∼ N (0,ΣU
t−1),
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where

ΣI
t−1 = VarIt−1(vt) = oIV,t−1 + τ−1

ε,t ,

ΣU
t−1 = VarUt−1(st) = oUV,t−1 − 2hto

U
V X,t−1 + h2

to
U
X,t−1 + τ−1

ε,t = oUt−1.

Under the price conjuncture, define Qt = Pt−Pt−1. Then different filtration, Φt and Qt have

different expressions.

Under informed traders’ filtration, we have

Φt = fΦ,tΦt−1 + aΦ,te
I
t , (2.85)

Qt = fQ,tΦt−1 + aQ,te
I
t , (2.86)

V̂ I
t = V̂ I

t−1 + aV,te
I
t , (2.87)

where

fΦ,t =

1−KU
X,t(µt−1 − ht) KU

X,t(µt−1 − ht)X

0 1

 ≡
1− fΦ

t fΦ
t X

0 1

 , (2.88)

fQ,t =

 µt(1− ωt)[1−KU
X,t(µt−1 − ht)]− µt−1(1− ωt−1)

[µt−1 − µt + µt(1− ωt)KU
X,t(µt−1 − ht)]X + [µt−1ωt−1 − µtωt]Θ


>

≡
(
fQΘ,t − f

Q
X,t fQX,tX + fQΘ,tΘ

)
, (2.89)

and

aΦ,t =

KU
X,t

0

 , (2.90)

aQ,t = KI
t + µt(1− ωt)KU

X,t, (2.91)

aV,t = KI
t , (2.92)
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since V̂ I
t − V̂ U

t = µt(X − X̂U
t ).

Under uninformed traders’ filtration, we have

X̂U
t = X̂U

t−1 + bX,te
U
t , (2.93)

Qt = gQ,t(X̂
U
t−1 + Θ) + bQ,te

U
t , (2.94)

where

gQ,t = µt−1ωt−1 − µtωt, (2.95)

and

bX,t = KU
X,t, (2.96)

bQ,t = KU
V,t − µtωtKU

X,t. (2.97)

Now we compute backward to t = T − 2. For informed traders, we plug Eq. 2.82 into

Eq. 2.74 and obtain

J IT−1 = −ρIT−1e
−λINIW I

T−1−λ
IXV̂ IT−1−

1
2

Φ>T−1H
I
T−1ΦT−1 (2.98)

= −ρIT−1e
−λINIW I

T−2−λ
INIθ

I
T−2QT−1−λIXV̂ IT−1−

1
2

Φ>T−1H
I
T−1ΦT−1 (2.99)

where

HI
T−1 =

µ2
T−1

oIV,T−1

 (1− ωT−1)2 −(1− ωT−1)ωT−1Θ

−(1− ωT−1)ωT−1Θ 0

 ≡
 kT−1 −kΘ

T−1Θ

−kΘ
T−1Θ 0

(2.100)
and ρIT−1 is a constant that absorbs the quadratic terms of X and Θ. The value function at
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T − 1 of informed traders can be expressed as

J IT−1 = −ρIT−1e
−λINIW I

T−2−λ
INIθ

I
T−2(fQ,T−1ΦT−2+aQ,T−1e

I
T−1)−λIX(V̂ IT−2+aV,T−1e

I
T−1)

×e−
1
2

(fΦ,T−1ΦT−2+aΦ,T−1e
I
T−1)>HI

T−1(fΦ,T−1ΦT−2+aΦ,T−1e
I
T−1) (2.101)

= −ρIT−1e
−λINIW I

T−2−λ
IXV̂ IT−2−

1
2

Φ>T−2f
>
Φ,T−1H

I
T−1fΦ,T−1ΦT−2

×e−λINIθIT−2fQ,T−1ΦT−2−BIT−1e
I
T−1−

1
2

(eIT−1)>CIT−1e
I
T−1 , (2.102)

where

AIT−1 = Φ>T−2f
>
Φ,T−1H

I
T−1aΦ,T−1 + λIXaV,T−1, (2.103)

BI
T−1 = λINIθ

I
T−2aQ,T−1 + AIT−1, (2.104)

CI
T−1 = a>Φ,T−1H

I
T−1aΦ,T−1 = kT−1(KU

T−1)2. (2.105)

Recall that eIT−1 | F IT−2 ∼ N (0,ΣI
T−2). Thus,

EI
T−2[J IT−1] = −(ρIT−1)′e−λ

INIW
I
T−2−λ

IXV̂ IT−2−
1
2

Φ>T−2f
>
Φ,T−1H

I
T−1fΦ,T−1ΦT−2

×e−λINIθIT−2fQ,T−1ΦT−2+ 1
2

ΞIT−2(λINIθ
I
T−2aQ,T−1+AIT−1)2

, (2.106)

where ΞI
T−2 = ((ΣI

T−2)−1 + CI
T−1)−1, and (ρIT−1)′ absorbs the constants that contain the

quadratic terms of X and Θ. The first order condition with respect to θIT−2 gives

fQ,T−1ΦT−2 = aQ,T−1ΞI
T−2B

I
T−1, (2.107)

and

NIθ
I
T−2 = [

fQ,T−1

λIa2
Q,T−1ΞI

T−2

−
a>Φ,T−1H

I
T−1fΦ,T−1

λIaQ,T−1

]ΦT−2 −
aV,T−1

aQ,T−1

X, (2.108)

≡ γIT−2X̂
U
T−2 + γIX,T−2X + γIΘ,T−2Θ, (2.109)
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which contains X̂U
T−2, Θ and X, and where

γIT−2 =
fQΘ,T−1 − f

Q
X,T−1

λIa2
Q,T−1ΞI

T−2

−
(1− fΦ

T−1)kT−1K
U
X,T−1

λIaQ,T−1

, (2.110)

γIX,T−2 =
fQX,T−1

λIa2
Q,T−1ΞI

T−2

−
fΦ
T−1kT−1K

U
X,T−1

λIaQ,T−1

− aV,T−1

aQ,T−1

, (2.111)

γIΘ,T−2 =
fQΘ,T−1

λIa2
Q,T−1ΞI

T−2

+
kΘ
T−1K

U
X,T−1

λIaQ,T−1

. (2.112)

The second order condition is ΞI
T−2 > 0, which is automatically satisfied.

For uninformed traders, we plug Eq. 2.83 into Eq. 2.77 and obtain

JUT−1 = −ρUT−1e
−λUNUWU

T−1−
1
2
HU
T−1(X̂U

T−1+Θ)2

(2.113)

= −ρUT−1e
−λUNUWU

T−2−λ
UNUθ

U
T−2QT−1− 1

2
HU
T−1(X̂U

T−1+Θ)2

, (2.114)

where

HU
T−1 =

µ2
T−1ω

2
T−1

oUV,T−1

. (2.115)

The value function at T − 1 of uninformed traders can be expressed as

JUT−1 = −ρUT−1e
−λUNUWU

T−2−
1
2
HU
T−1(X̂U

T−2+Θ)2

×e−λUNUθUT−2gQ,T−1(X̂U
T−2+Θ)−BUT−1e

U
T−1−

1
2
CUT−1(eUT−1)2

, (2.116)

where

AUT−1 = HU
T−1(X̂U

T−2 + Θ)bX,T−1, (2.117)

BU
T−1 = λUNUθ

U
T−2bQ,T−1 + AUT−1, (2.118)

CU
T−1 = HU

T−1b
2
X,T−1. (2.119)
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Recall that eUT−1 | FUT−2 ∼ N (0,ΣU
T−2). Thus,

EU
T−2[JUT−1] = −ρUT−2e

−λUNUWU
T−2−

1
2
HU
T−1(X̂U

T−2+Θ)2

×e−λUNUθUT−2gQ,T−1(X̂U
T−2+Θ)+ 1

2
ΞUT−2(λUNUθ

U
T−2bQ,T−1+AUT−1)2

, (2.120)

where ΞU
T−2 = ((ΣU

T−2)−1 + CU
T−1)−1. The first order condition with respect to θUT−2 gives

gQ,T−1(X̂U
T−2 + Θ) = bQ,T−1ΞU

T−2B
U
T−1, (2.121)

and

NUθ
U
T−2 = γUT−2(X̂U

T−2 + Θ), (2.122)

where

γUT−2 =
gQ,T−1

λUb2
Q,T−1ΞU

T−2

−
HU
T−1bX,T−1

λUbQ,T−1

. (2.123)

The second order condition is ΞU
T−2 > 0, which is automatically satisfied.

Now we have best responses of informed traders Eq. (2.108) and uninformed traders

Eq. (2.122), we can compute the equilibrium at T − 2 by imposing the market clearing

condition NIθ
I
T−2 +NUθ

U
T−2 = Θ. Therefore,

γIX,T−2 = 0, (2.124)

γIΘ,T−2 + γUT−2 = 1, (2.125)

γIT−2 + γUT−2 = 0. (2.126)

The above three equations are not independent. If two of them are satisfied, then the third

will be automatically satisfied. Thus, we only need to solve Eq. (2.124) and Eq. (2.125).
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Eq. (2.124) leads to the solution of µT−2 and hT−1 as follows

µT−2 = λIoIV,T−2, (2.127)

hT−1 = 0. (2.128)

Proposition 16 can be proved by following the same logic, and thus

µt−1 − µt = KI
t (µT−1 − ht). (2.129)

Eq. (2.125) leads to the solution of ωT−2 as follows

µT−2ωT−2 − µT−1ωT−1 = gQ,T−1

=

(
1 +

HU
T−1K

U
X,T−1

λUbQ,T−1

−
kΘ
T−1K

U
X,T−1

λIaQ,T−1

)(
1

λIa2
Q,T−1ΞI

T−2

+
1

λUb2
Q,T−1ΞU

T−2

)−1

(2.130)

where

1

ΞI
T−2

= (ΣI
T−2)−1 + kT−1(KU

X,T−1)2, (2.131)

1

ΞI
T−2

= (ΣU
T−2)−1 +HU

T−1(KU
X,T−1)2, (2.132)

and HI
T−1 =

 kT−1 −kΘ
T−1Θ

−kΘ
T−1Θ 0

, aQ,T−1 = KI
T−1 + µT−1(1 − ωT−1)KU

X,T−1 and bQ,T−1 =

KU
V,T−1 − µT−1ωT−1K

U
X,T−1. Thus, ωT−2 can be calculated backward.

Define γT−2 = 1− γUT−2 = 1 + γIT−2, then in equilibrium

NIθ
I
T−2 = γT−2(X̂U

T−2 + Θ)− X̂U
T−2, (2.133)

NUθ
U
T−2 = (1− γT−2)(X̂U

T−2 + Θ), (2.134)

and

γT−2 = 1 +
HU
T−1bX,T−1

λUbQ,T−1

− µT−2ωT−2 − µT−1ωT−1

λUb2
Q,T−1ΞU

T−2

(2.135)

=

(
1 +

HU
T−1bX,T−1

λUbQ,T−1

)
cT−2 +

kΘ
T−1K

U
X,T−1

λIaQ,T−1

(1− cT−2), (2.136)
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where

cT−2 =
(λIa2

Q,T−1ΞI
T−2)−1

(λIa2
Q,T−1ΞI

T−2)−1 + (λUb2
Q,T−1ΞU

T−2)−1
. (2.137)

Now let’s plug back the equilibrium holdings into the expected value functions to

compute J I,UT−2. It is easy to show that for uninformed traders, their value function still has

the form as

JUT−2 = −ρUT−2e
−λUNUWU

T−2−
1
2
HU
T−2(X̂U

T−2+Θ)2

, (2.138)

where

HU
T−2 = HU

T−1 − 2
HU
T−1K

U
X,T−1gQ,T−1

bQ,T−1

+
g2
Q,T−1

b2
Q,T−1ΞU

T−2

. (2.139)

Similarly, for informed traders, their value functions also has the form as

J IT−2 = −ρIT−2e
−λINIW I

T−2−λ
IXV̂ IT−2−

1
2

Φ>T−2H
I
T−2ΦT−2 , (2.140)

where ρIT−2 absorbs all the quadratic terms of X and Θ, and HI
T−2 also has the form of

HI
T−2 =

 kT−2 −kΘ
T−2Θ

−kΘ
T−2Θ 0

 , (2.141)

which has no cross term of XX̂U
T−2 because of Eq. (2.129). The elements of HI

T−2 can be

calculated recursively by the elements of HI
T−1, i.e., by kT−1 and kΘ

T−1 as follows

kT−2 = kT−1(1− fΦ
T−1)2 +

(fQΘ,T−1 − f
Q
X,T−1)2

a2
Q,T−1ΞI

T−2

− 2
kT−1K

U
X,T−1

aQ,T−1

(1− fΦ
T−1)(fQΘ,T−1 − f

Q
X,T−1)

= kT−1

[
(1− fΦ

T−1)−
KU
X,T−1

aQ,T−1

(fQΘ,T−1 − f
Q
X,T−1)

]2

+
(fQΘ,T−1 − f

Q
X,T−1)2

a2
Q,T−1ΣI

T−2

, (2.142)

kΘ
T−2 = kΘ

T−1(1− fΦ
T−1) + λI(1− γT−2)fQΘ,T−1 − λ

IγT−2(fQΘ,T−1 − f
Q
X,T−1)

+
(fQΘ,T−1 − f

Q
X,T−1)2

a2
Q,T−1ΞI

T−2

. (2.143)

125



Therefore, we can compute ωt recursively by applying Eq. (2.130), and then use computed

ωt to compute J I,Ut . Now Proposition 17 has been fully proved.

2.8.3 Proof of Lemma 5

Proof. Firstly, we study the case ∆t < 0. In this case, we conjecture that I investors sell at

the bid at time t, and U investors buy at the ask at time t, i.e. PUR
t > At > Bt > P IR

t ,

At = PUR
t − cUt

NM∑
j=1

αM,j
t

Bt = P IR
t + cIt

NM∑
j=1

βM,j
t

Since market makers are infinitely risk averse, they are zero tolerance of uncertainty. The

net positions of market maker should be zero, i.e. θM,j
t = θM,j

t−1 + βM,j
t − αM,j

t = 0 for

t = 1, 2, 3, ..., T − 1, where θM,j
t−1 = θM,j

t−2 + βM,j
t−1 − α

M,j
t−1 = 0. They maximize their profits from

ask-bid by choosing αM,j
t and βM,j

t at time t. Market maker j’s problem is to maximize profit

max
αM,jt

αM,jt =βM,jt +θM,j1

αM,j
t At − βM,j

t Bt (2.144)

The optimal quantities each market maker chooses to buy and sell at time t are

αM,j
t = βM,j

t = − 1

NM + 1

∆t

cIt + cUt
(2.145)

Therefore,

At = PUR
t + ct

NM

NM + 1
∆t

Bt = P IR
t − (1− ct)

NM

NM + 1
∆t

At −Bt = − ∆t

NM + 1
(2.146)
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It can be verified that PUR
t > At > Bt > P IR

t if ∆t < 0.

Secondly, if ∆t > 0, we conjecture that U investors sell at the bid at date t, and I

investors buy at the ask at date t, i.e., P IR
t > At > Bt > PUR

t . The optimal quantities each

market maker chooses to buy and sell at date t are

αM,j
t = βM,j

t =
1

NM + 1

∆t

cIt + cUt
(2.147)

and the ask and bid prices are

At = P IR
t − (1− ct)

NM

NM + 1
∆t

Bt = PUR
t + ct

NM

NM + 1
∆t

At −Bt =
∆t

NM + 1
. (2.148)

2.8.4 Proof of Proposition 18

Coming soon...

2.8.5 Computation of Average Trading Volume and Bid-ask Spread

σ∆
t depends on the variance of X̂U

t . Since

X̂U
t = µ−1

t (V̂ U
t − V̂ I

t ) +X, (2.149)

and

V̂ I
t = (τV +

t∑
n=1

τε,n)−1

(
V̄ τV + V

t∑
n=1

τε,n +
t∑

n=1

τε,nεn

)
(2.150)

V̂ U
t = (τV + τ1 +

t∑
n=2

τε,n)−1

(
V̄ τV + V (τ1 +

t∑
n=2

τε,n) + τ1(ε1 − h1X) +
t∑

n=2

τε,nεn

)
(2.151)
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where 1
τ1

= 1
τε,1

+
h2

1

τX
. We can rewrite

X̂U
t = µ−1

t

(
(oUV,t − oIV,t)τV V̄ +

[
oUV,t(τ1 +

t∑
n=2

τε,n)− oIV,t
t∑

n=1

τε,n

]
V + (oUV,t − oIV,t)

t∑
n=2

τε,nεn

)
+µ−1

t (oUV,tτ1 − oIV,tτε,1)ε1 + (1− µ−1
t h1τ1o

U
V,t)X (2.152)

:= dtV̄ + dVt V + dεtε1 + µ−1
t (oUV,t − oIV,t)

t∑
n=2

τε,nεn + dXt X, (2.153)

where

dVt = µ−1
t [oUV,t(τ1 +

t∑
n=2

τε,n)− oIV,t
t∑

n=1

τε,n], (2.154)

dεt = µ−1
t (oUV,tτ1 − oIV,tτε,1), (2.155)

dXt = 1− µ−1
t h1τ1o

U
V,t. (2.156)

Since V , X and {εt} are independent,

(σ∆
t )2 = Var

(
(1− γt)X̂U

t −NM

t−1∑
n=1

(1− γt−n)X̂U
t−n

(NM + 1)n

)

=

(
(1− γt)dVt −NM

t−1∑
n=1

(1− γt−n)dVt−n
(NM + 1)n

)2

τ−1
V +

(
(1− γt)dXt −NM

t−1∑
n=1

(1− γt−n)dXt−n
(NM + 1)n

)2

τ−1
X

+

(
(1− γt)µ−1

t (oUV,t − oIV,t)−NM

t−2∑
n=1

(1− γt−n)µ−1
t−n(oUV,t−n − oIV,t−n)

(NM + 1)n

)2

τε,2 + · · ·

+

(
(1− γt)µ−1

t (oUV,t − oIV,t)−
NM

NM + 1
(1− γt−1)µ−1

t−1(oUV,t−1 − oIV,t−1)

)2

τε,t−1

+
(
(1− γt)µ−1

t (oUV,t − oIV,t)
)2
τε,t +

(
(1− γt)dεt −NM

t−1∑
n=1

(1− γt−n)dεt−n
(NM + 1)n

)2

τ−1
ε,1

=

(
(1− γt)dVt −NM

t−1∑
n=1

(1− γt−n)dVt−n
(NM + 1)n

)2

τ−1
V +

(
(1− γt)dXt −NM

t−1∑
n=1

(1− γt−n)dXt−n
(NM + 1)n

)2

τ−1
X

+
t−1∑
s=2

(
(1− γt)µ−1

t (oUV,t − oIV,t)−NM

t−s∑
n=1

(1− γt−n)µ−1
t−n(oUV,t−n − oIV,t−n)

(NM + 1)n

)2

τε,s

+
(
(1− γt)µ−1

t (oUV,t − oIV,t)
)2
τε,t +

(
(1− γt)dεt −NM

t−1∑
n=1

(1− γt−n)dεt−n
(NM + 1)n

)2

τ−1
ε,1 . (2.157)
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The competitive price can be rewritten as

Pt = ptV̄ + pVt V + pXt X + pεtε1 +
[
(1− ωt)oUV,t + ωto

I
V,t

] t∑
n=2

τε,nεn − µtωtΘ, (2.158)

where

pVt = (1− ωt)oUV,t(τ1 +
t∑

n=2

τε,n) + ωto
I
V,t

t∑
n=1

τε,n, (2.159)

pXt = −(1− ωt)oUV,tτ1h1 − µtωt, (2.160)

pεt = (1− ωt)oUV,tτ1 + ωto
I
V,tτε,1. (2.161)

Therefore,

σPt =
√

Var(Pt) =

√√√√{(pVt )2

τV
+

(pXt )2

τX
+

(pεt)
2

τε,1
+
[
(1− ωt)oUV,t + ωtoIV,t

]2 t∑
n=2

τε,n

}
. (2.162)

Obviously, Pt ∼ N
(
µPt , (σ

P
t )2
)
, where

µPt = V̄ − µtωtΘ, (2.163)

and σPt is given in Appendix 2.8.5. These lead to the average absolute value of price level

E[|Pt|] =

√
2

π
σPt e

− 1
2

(
µPt
σPt

)2

+ µPt

(
1− 2Φ

(
−µ

P
t

σPt

))
. (2.164)

Thus, the relative spread can be computed as

At −Bt

E[|Pt|]
=
cIt + cUt
NM

√
2
π
σ∆
t e
− 1

2
(
µ∆
t
σ∆
t

)2

+ µ∆
t

(
1− 2Φ

(
−µ∆

t

σ∆
t

))
√

2
π
σPt e

− 1
2

(
µPt
σPt

)2

+ µPt

(
1− 2Φ

(
−µPt
σPt

)) . (2.165)

Therefore, we can plot the relative spread At−Bt
E[|Pt|] for each period under different configuration

of information flows.
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Figure 2.5: Parameters are NM = 1, λI = λU = 1, Θ = 1000, NIθ
I
0 = NUθ

U
0 = Θ/2, V̄ = 100,

X̄ = 0, τV = 1, τX = 1 and τε,t = 0 without indication.

When there is no information, the relative spread exhibits similar pattern as absolute

spread. However, when there is information coming in, the relative spread takes price takes

price volatility into account, so it exhibits different pattern from absolute spread or average

trading volume. As Figure 2.5(a) shows, the spikes of relative spread are higher near the

market closure compared to Figure 2.2(b). In Figure 2.5(b) there is a constant flow of

information, i.e., each period there is information with accuracy τε/T coming in. In such

information environment, there is no spike in average trading volume or absolute spread.

However, there is a spike in relative spread as Figure 2.5(b) shows. When the spike happens

is determined by the total information accuracy τε flowing into the market. As τε is higher,

the sooner the spike will happen. How large is the spike is determined by the number of

trading periods T . As T gets bigger, the smaller the spike will be. Since the information is

more spread out, the spike of relative spread becomes lower. However, since this is CARA-

normal setup, no matter how large V̄ is, Pt can still be close to zero. Therefore, we do not
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include the relative spread analysis in our main paper.
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