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Abstract

We study the transition from steady, spatially uniform-flow to nonuniform and time-
dependent gas axial velocity profiles in an axial flow compression system. Local
bifurcation analysis of the uniform-flow solution reveals a series of bifurcations to
traveling waves of different mode number as a function of throttle opening. The number of
bifurcating modes is found to depend on the gas viscosity parameter, an effect introduced
in this work. Using the local approximations of the bifurcating solutions as starting points
of our numerical analysis, we uncover a complicated scenario of secondary bifurcations
ultimately resulting in parameter ranges where locally asymptotically stable stalled-flow
solutions of different mode number coexist.

Introduction

A common feature observed in a variety of compressor configurations is the loss of sta-
bility of the steady, spatially-uniform gas flow when the system is operated near peak
pressure-rise conditions. The resulting post instability behavior leads to decreased oper-
ating performance of the compressor and even to mechanical damage of the compression
system. Thus, there is a great incentive to understand the complicated sequence of flow
instabilities that mark the end of uniform flow so that the system stability margin can
be accurately quantified.

In the most general terms, there are two fundamentally different post-instability
equilibria: surging flow and rotating stall (Greitzer, 1976). Compressor surge occurs
when the plenum gas pressure exceeds the compressor pressure rise and so low frequency
(in time) oscillations of the mean gas flow rate develop. Rorating stall is a local
aerodynamic phenomenon that occurs when the gas passing through the rotor disengages
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Figure 1 A schematic of the compressor geometry.

from the blade surface, reducing the local gas flow rate (Day, 1991a). In this case, the bulk
gas flow remains constant in time, but flow measurements taken along the circumferential
coordinate (f of Fig. 1) of the compressor rotor will reveal spatial variations of the local
gas flow. This means the local gas velocity takes the form of a traveling wave, rotating
about the compressor annulus.

There is an inadequate understanding of the transitions to these undesirable operating
conditions. Coexistence of multiple attractors, subcritical bifurcations of the post-
instability equilibria and periodic solutions, and global bifurcations of the periodic
solutions lead to complicated dynamics in the phase space and intricate sequences of
transitions with changing parameters (Liaw et al., 1991; Adomaitis et al., 1992). The
introduction of computational dynamics and bifurcation techniques to the analysis of
these systems gives a rational framework with which to study and organize the observed
behavior, and most importantly, to give a rigorous definition to the compressor stability
margin (McCaughan, 1989a,b).

This work begins with a modification to the 2-dimensional partial differential equation
model of Moore and Greitzer (1986) to account for viscous dissipation of energy in the
compressor. Linearized stability analysis of the uniform flow solution is performed,
followed by a weakly nonlinear analysis of the bifurcating stalled-flow solutions. The
local nonlinear analysis shows, for our particular system, that low mode number stalled-
flow solutions are born in subcritical bifurcations while higher mode number solutions
are born in supercritical bifurcations. This analysis also gives us a starting point for
the numerical computation and continuation of the stalled-flow solutions. A wealth of
secondary bifurcations along the stalled flow branches is revealed, including symmetry-
breaking and bifurcations to modulated traveling waves. The most important aspect of
the secondary bifurcations is that they give rise to ranges of operating conditions where
locally asymptotically stable stalled-flow patterns of different mode number coexist.

Modification of the Moore-Greitzer Model

The model used is based on Moore and Greitzer’s (1986) model, but a term which
accounts for momentum transfer in the compressor section by viscous transport is
also included. A local momentum balance describing the two-dimensional flow in the



Parameter Value Description

«a 1/3.5 fluid inertial term

l, 8.0 overall compressor length

m 1.75 exit duct length factor

H 0.18 compressor characteristic height factor
w 0.25 compressor characteristic width factor
fo 0.3 compressor characteristic vertical offset
7 0.01 fluid viscosity

Table 1 Compressor parameters used in this work.

compressor and its associated ducting (Fig. 1) gives the partial differential equation:

0
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Note that our notation differs considerably from the original notation of Moore and
Greitzer: V denotes the annulus-averaged (mean) gas axial velocity; v, is the axial
velocity perturbation evaluated at 7 = 0 (the inlet face of the compressor); A, is
the plenum-to-atmosphere pressure rise; 7,0 are the axial and angular coordinates,
respectively; and p is the gas viscosity.

The compressor pressure rise f(V},,) is particular to each compressor and is obtained
from experiments in the stable operating range and estimated in the nonuniform-flow
range. Following Moore and Greitzer, we use a cubic equation in axial velocity
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where Vj,. = V + vg (the total local axial flow) and the characteristic parameters used
throughout this work are given in Table 1. If the momentum balance (1) is averaged
over the circumferential coordinate, we find
v 7
— + A = — db 2
loge+ By(r) = 5= [ 1 )
0

which can be thought of as determining the amplitude of the zeroth-order Fourier mode,
and so (2) determines the transient behavior of the mean flow (V). If there are no spatial
variations of gas density and pressure in the plenum, an overall material balance on the
gas over the plenum gives:

dA, 1

052 = [V(r) = F7(a)] (3)



where the throttle characteristic is given by the orifice equation F~1(A,) = v,/A,. The
parameter -+ is proportional to the throttle opening.

Uniform Flow Dynamics

If there are no spatial perturbations in the flow field (so vy = 0), the local momentum
balance PDE reduces to (2) which can be further simplified to

le+ 8y = 1(V). (4)
This means the dynamics (but not necessarily the true stability, as we shall see) in the
uniform flow subspace is governed entirely by (3-4). Steady, uniform flow solutions can
be understood physically by the requirement that the pressure rise through the compressor
(Ap = f(V)) must equal the pressure drop through the throttle opening (A, = F(V)).
Thus, the solutions are determined by the intersections of the graphs of the compressor
and throttle characteristics.

Since the position of the throttle characteristic is parameterized by the throttle opening
parameter «, we can construct bifurcations diagrams illustrating the behavior of the steady
flow and time periodic solutions to (3-4) born at the surge Hopf bifurcation points! as
a function of throttle opening. A representative bifurcation diagram is given in Fig. 2.
Notice that since the stability characteristics in the full space are shown in this diagram,
some of the transitions cannot be accounted for solely by the two-ODE model. This
illustrates the necessity for analysis of the full ODE/PDE model.

Linearized Stability With Respect to Spatial Perturbations

Substituting the annulus-averaged momentum balance (2) into the local momentum
balance (1) and linearizing at V = V and vg = 0, we find

n 0
. df(V) 0 1 8’00 8’00 8200
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Solutions are linear combinations of functions which are periodic in the circumferential
coordinate 6, satisfy vy = 0 at the inlet duct entrance (at n — —o0), and satisfy the
continuity condition (since we assume potential flow in the ducting). Thus, substituting
Un = 2n €Xp(AnT + ny + inf) into (5) and solving for the eigenvalues \,, we obtain

m 1 df(V n? . n

24 25, - 4D

n =Tav T Hag Tiay (6)

1 If we linearize the system at a steady, uniform-flow solution point (so V = v, Ap = Ap, and vp = 0), the linearized ODEs
decouple from the PDE (there are no vo terms after linearization) and so their eigenvalues are the sole determinant of the location
of the surge point.
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Figure 2 Steady and time-periodic uniform flow solutions for B = 0.5. Stability is
represented in the full (two Fourier modes) space. Dashed line represents unstable steady
flow, solid line stable steady flow, o unstable surge flow, and e stable surge flow.

This expression can be given some physical “feel” by considering its behavior for
very small (positive) x. For all ¢ and all mode numbers n, the real part of the eigenvalue
expression will be negative for compressor characteristic segments where the derivative
of the characteristic with respect to the mean flow V is negative (see the right-most
portion of the uniform-flow solution branch in Fig. 3). As the throttle is closed (moving
left on the solution branch), the local maximum is crossed and so the derivative changes
sign. This means, for small u and the first Fourier mode (n = 1), the real part of the
eigenvalue vanishes at a point just to the left of the peak. Since this point will move
farther down (to the left) the uniform-flow branch as the viscosity parameter increases,
we see, true to what we should expect, that viscous effects tend to damp out spatial
perturbations. Similar arguments can be made for the higher mode (n) bifurcation points
shown in Fig. 3.

The Bifurcating Traveling Waves—Local Analysis

The rotating stall equilibria are spatial waves of local axial velocity, some of which
rotate at a constant speed around the annulus. Rather than computing these traveling
wave solutions as limit cycles in the Fourier coefficient space, a more efficient method is
to introduce a rotating coordinate frame 8 «— 8 4 cr so that the amplitude coefficients of
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Figure 3 A portion of the uniform-flow solution branch in the uniform-flow phase space
(parameterized by throttle opening ) for the viscosity parameter value p = 0.01.
Circles indicate bifurcation points corresponding to different mode numbers n.

the traveling waves can be found as fixed points. Making this coordinate change affects
the PDE (1) only:

0
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If we approximate v by the eigenfunction associated with the eigenvalue ),

v = exp(nn)[an cos(nd) + by, sin(nb)] (8)
(and 50 vp = ay cos(nf) + a, sin(nd)), substitute (8) into (7) to form the residual, use
Galerkin’s method to determine the amplitude coefficients, and constrain the Fourier
coefficients by the relationship

A?L :G?L"*'b?w
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we obtain the greatly simplified, third-order set of ODEs:

ma + ndAy 3HV 3H 3
= - —Ay;
no  dr { 2w F(2w=V)- 2a ]A 8w’
2
lc‘fi—v = A+ fo+ ’2”;, (Bw— V) + El—H—(w — V) A2 (9a, b, ¢)

dA, 1
lC? = Z'Bﬁz'[v"ﬁ/x;],
a set ordinary differential equations closely related to the third-order model of Moore
and Greitzer (1986).

A number of features of the steady, stalled-flow solutions can be computed by hand
for this severely truncated approximation of the stalled-flow profile. The wave speed ¢
is computed from the requirement that if the coordinates rotate in Fourier space at the
same speed as the traveling wave, the eigenvalues at the stall bifurcation points will cross
the imaginary axis on the real axis. It can be shown (see Adomaitis, 1992 for details)
that this condition gives

. —n

~ 2(am +n)
(c.f. Eq. (57) of Moore and Greitzer). The amplitude of the bifurcating traveling wave
comes from the steady-state form of (9a) with A, # 0:

(10)

df n? 8?3
2
A, = ﬁ[dV Fom ] where B = 3 (11)
The steady mean flow V can now be computed from (9b)
v\ 1 f HV2 3H
_ (Y _ _ 2
Ap = (7) o /fd0 (3w V)+ e —(w —V)A;,. (12)

For A, # 0, the mean gas velocity V of the stalled-flow solutions are defined by the
cubic polynomial in V:

V\? 15HV? B5HV® 6HV pn?
Jo— - + + w)

V —w)~— =0. 13
2uw? 2w3 w +( (13)
We must be careful in interpreting solutions to (13), since some of the roots, when
substituted back into (11), will give A2 < 0, clearly an impossible physical result.

In the limit of B — 0 (small plenum size), equations (9) reduce to two since we can
write A, = (V/7)?. Linearizing at some mean flow V and mode amplitude A, gives

ma+ndA, [df /m 3d3f ~o - 2f
na dr [dV_ 2a 8dV3A (An = An) + | An "dv? V=V

v [1d*f . A a 2V 1df ., A
lo—0 = [§d_V2A"} (An — An) + [W‘?J’MWA"](V_V)'

(14a,b)
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Figure 4 Bifurcating stalled-flow solutions computed via local methods. Stability assignments (solid
curves = stable, dashed curves = unstable) correspond to the eigenvalues of (14), and so
do not necessarily apply in the full space. Compressor characteristic inflection point is at
¥ & 0.361 and the local peak is at ¥ = .615. The n = 7 branch falls outside the range shown.

The bifurcation diagram shown in Fig. 4 is computed using (13) to compute the mean
flow V of the bifurcating branches as a function of v which can be used in (11) to obtain
the amplitude of the stall mode. Proof that the low-mode stalled-flow solutions are born
in subcritical bifurcations and the high-mode number solutions are born in supercritical
bifurcations can be found in Adomaitis (1992)—these facts should be apparent from
the numerical evidence presented in Fig. 4. The stability of the bifurcating solution is
determined by the eigenvalues of (14), although it is important to note that the stability
determined in this manner reflects stability with respect to perturbations of mode number
equal to that of the bifurcating solution. Stability in the full Fourier space is discussed
in the following section.

The Bifurcating Traveling Waves—Numerical Results
The gas axial velocity perturbation is given by

N
v = Z exp(nn)[a, cos(nf) + by, sin(nh)]

n=1
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Figure 5 Stalled-flow solution branches computed with 24-mode discretizations (c.f. Fig. 4.23 of Lavrich, 1988).

and so, as before, the axial velocity profile at the inlet guide vanes is denoted vy (at
n = 0). Substituting the Fourier expansion into the local momentum balance PDE in a
rotating coordinate frame (7) and using Galerkin’s method to determine the amplitude

coefficients, the cos(nf) moment gives, after some rearranging,

2

2T

m 1], 1 un cnon
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and the sin(rnf) moment gives

27
2
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along with the ODEs (3-4). One of the advantages of using the cubic compressor
characteristic is that the integrals can be evaluated explicitly. These results are discussed
in detail in Adomaitis (1992).

Thus, we obtain a large set of ordinary differential equations in time describing
the dynamics of the Fourier mode amplitude coefficients that can be analyzed with
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Figure 6 Solution branches of Fig. 5 plotted as a function of throttle opening. The stability limits of the stable
sections of the bimodal and higher solution branches are marked by bifurcations to modulated traveling waves.

standard numerical bifurcation analysis techniques. We use the local bifurcation analysis
discussed in the previous section for determining the initial points on the solution branches
corresponding to the different stalled-flow modes and follow these branches with a
predictor-corrector continuation technique, similar to the one discussed in Doedel (1981).
Representative results are shown in Figs. 5 and 6.

There are a number of secondary bifurcations that take place along the stalled-flow
solution branches. All of the equilibrium solutions born in subcritical bifurcations go
through a saddle-node bifurcation; in the unimodal case, this results in a long segment
of stable, stalled-flow solution banch (see Fig. 7 for a representative flow profile). The
bimodal and all other n-modal stalled-flow solutions born off the uniform-flow solution
branch have the property that if the solution is shifted by 27 /n, the plot of axial velocity
will fall back on top of itself. Branches of solutions which do not possess this symmetry
are born off of the n-modal (with n > 2) solution branches shown in Figs. 5 and 6.
Finally, bifurcations to modulated traveling waves result in locally asymptotically stable
segments of the bimodal, trimodal, and 4-cell stalled-flow branches. No stable ranges
along the higher-mode solution branches were found, although we suspect this would not
be the case for smaller values of the viscosity parameter (;). By plotting these solutions
as a function of the throttle opening parameter, we see that there is a range of operating
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Figure 7 Representative axial flow profiles along the unimodal (left) and bimodal
(right) branches. Both flow profiles are locally asymptotically stable. Dashed
curves are the contributions of the different Fourier modes, solid denotes the sum.

conditions where different mode stall cells which are locally asymptotically stable coexit
(Fig. 6). This corroborates with the experimental observation of Lavrich (1988).

Conclusions

We have used a combination of local (analytical) and numerical bifurcation analysis
techniques to study the transitions from spatially-uniform, time-invariant gas flow profiles
in axial flow compressors to those with spatial structure. The primary contribution of
this work is the numerical study of the sequence of bifurcations resposible for ranges of
operating conditions where rotating stall cells of different mode number coexist and are
locally asymptotically stable.

This type of analysis is well suited for accurate computation of the instability margin.
It is also useful for evaluating control schemes designed for active instability suppression.
Most work in this area is focused on experimental systems (Paduano et al., 1991; Day,
1991b) for stall control, or pure simulation of controllers designed primarily for surge
supression (Badmus et al., 1991; Hosney et al., 1991). We feel the bifurcation-theoretic
approach will be useful in evaluating the global dynamical behavior of control systems
for active instability suppression.
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