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Abstract

Plants and their insect herbivores have been a dominant component of the ter-

restrial ecological landscape for the past 410 million years and feature intricate

evolutionary patterns and co-dependencies. A complex systems perspective

allows for both detailed resolution of these evolutionary relationships as well

as comparison and synthesis across systems. Using proxy data of insect herbi-

vore damage (denoted by the damage type or DT) preserved on fossil leaves,

functional bipartite network representations provide insights into how

plant–insect associations depend on geological time, paleogeographical space,

and environmental variables such as temperature and precipitation. However,

the metrics measured from such networks are prone to sampling bias. Such

sensitivity is of special concern for plant–DT association networks in paleonto-

logical settings where sampling effort is often severely limited. Here, we

explore the sensitivity of functional bipartite network metrics to sampling

intensity and identify sampling thresholds above which metrics appear robust

to sampling effort. Across a broad range of sampling efforts, we find network

metrics to be less affected by sampling bias and/or sample size than richness

metrics, which are routinely used in studies of fossil plant–DT interactions.
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These results provide reassurance that cross-comparisons of plant–DT net-

works offer insights into network structure and function and support their

widespread use in paleoecology. Moreover, these findings suggest novel oppor-

tunities for using plant–DT networks in neontological terrestrial ecology to

understand functional aspects of insect herbivory across geological time, envi-

ronmental perturbations, and geographic space.

KEYWORD S
bipartite networks, fossil plant–insect interactions, functional networks, network metrics,
plant–damage type associations, sampling size bias

INTRODUCTION

Ecological interactions among species come in many
forms, are extremely complex, and are spatiotemporally
variable. Researchers trying to reconstruct such interac-
tions through limited observations often focus on a set of
species of interest (e.g., Agrawal et al., 2012; Dormann
et al., 2017; Dyer et al., 2007). To understand and explore
their complex interdependencies at an ecosystem scale,
these interactions often are represented as an ecological
network involving two specific sets of biological entities,
such as plant hosts and their dependent insect herbivore
species and pathogens. Such two-part networks are called
bipartite networks (Bascompte & Jordano, 2013; Dormann
et al., 2017), and researchers often focus on taxonomic
bipartite networks where nodes are Linnaean taxa.
Taxonomic bipartite networks have proved instrumental
in elucidating numerous important aspects of various eco-
logical processes (Bascompte & Jordano, 2013) and are
widely used for network studies in modern ecology.

A shift from taxonomic, or species-specific studies, to
functional studies, especially studies involving functional
traits, has shown the importance of ecological drivers on
interactions in both the modern and paleontological
ecological literature (e.g., Barnosky et al., 2017; Kunstler
et al., 2016; Perez et al., 2020; Schellenberger Costa
et al., 2018). Thus, the progression from taxonomic to func-
tional bipartite network analyses can allow for the compari-
son of interacting trophic levels regardless of taxonomic
classification, the designation of which is often challenging
or inaccessible within paleontological, deep-time studies.
Additionally, comparisons among modern taxonomic bipar-
tite networks are often difficult due to the presence of dis-
joint species/taxonomic units for both classes of nodes, and
most comparisons rely solely on overall network metrics.

In this work, we focus primarily on plant–insect herbi-
vore associations. Identification of the insect herbivore spe-
cies is essential for building taxonomic bipartite networks
(which is the case for all modern herbivory networks), but
such information is seldom available for the fossil record.

Therefore, taxonomic networks are often impossible to con-
struct in palaeoecological cases. Additionally, as mentioned
above, comparisons between modern taxonomic networks
of insect herbivory are difficult due to high insect (and
plant) species turnover across space. Both of these prob-
lems can be tackled to a substantial extent by using a func-
tional approach to insect herbivory rather than a taxonomic
approach, and such an approach is not only useful for
paleoecological insect herbivory studies but also for
cross-comparisons among modern ones.

The node classes in functional bipartite networks that
can be used for such studies are plant hosts (often deter-
mined using compression leaf fossils in palaeoecological
cases), and insect/arthropod or pathogen damage (often
termed as damage types). Insect feeding damage or DTs are
morphologically distinct, stereotyped, feeding patterns pre-
served on plant tissue, which have remained almost
unchanged in structure over large periods of geological time
and geographical space (Labandeira & Wappler, 2022), mak-
ing them a good functional representative of insect herbiv-
ory and other damages on plants. DTs are the most
abundant available data on ancient herbivorous insects and
their ecological associations, whereas insect body fossils are
sporadic through the geologic record (Labandeira &
Eble, 2000) and do not often preserve information regarding
their ecological associations (i.e., plant–insect interactions).
Direct observations of ancient insects feeding upon specific
plants are rarer still, such as scale insects preserved on fossil
leaves and stems (Xiao, Labandeira, Ben-Dov, et al., 2021).
These functional bipartite networks are a paleoecological
counterpart, or analog, to the taxonomically based
plant–insect interaction networks commonly found in the
modern ecological literature (Table 1; major differences
between taxonomic vs. functional bipartite networks).
Examples from the modern literature include undirected
network associations between woody perennial species and
their pathogens, specialization in plant-host–gall interac-
tions, and the preference of insects for particular fern
hosts (Araújo & Koll�ar, 2019; Fodor & Hâruṭa, 2014;
Fuentes-Jacques et al., 2021). However, for fossil data, one of
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these node classes, the DTs functionally serve as ecological
units that have links to plant taxa and would incorporate
data such as one herbivore species producing multiple DTs
and multiple herbivore species producing one DT, the
multidamagers and monodamagers of Carvalho et al. (2014).
Such a formulation would allow comparisons of functional
bipartite networks to be potentially useful in the study of
deep-time plant–insect associations, such as the evolution of
insect feeding strategies across considerable time intervals,
up to and including present-day ecosystems.

Functional bipartite network-based analyses of plant
and insect associations have been appearing in paleo-
ecological contexts (e.g., Currano et al., 2021; Swain
et al., 2021) and new work on applying them to modern
assemblages is underway. One such recent approach is
to use the most finely resolved metric of arthropod and
pathogen damage, feeding event occurrences that define
an herbivore community on an individual plant species
within a fossil plant assemblage (Xiao, Labandeira, &
Ren, 2022). The characteristics of these functional net-
works (Table 1) offer a new, broadly applicable
approach to understanding the ecology of interspecific
interactions. Even though myriad opportunities exist for
using functional bipartite networks in both the fossil
and the modern record, some concerns regarding the
robustness of the network metrics and their applicability
remain.

A major concern with various bipartite networks
(including modern taxonomic ones) is that many of the
patterns inferred from them may simply be artifacts of the
sampling regime, and in particular, they may be a conse-
quence of incomplete sampling (Fründ et al., 2016;
Hegland et al., 2010), an issue that is also of concern for
food webs (Paine, 1988; Wood et al., 2015). These problems
are especially alarming when we are dealing with paleoeco-
logical assemblages (Shaw et al., 2021), where inherent bias
due to differences in preservation, sample size, and collec-
tion methods present challenges to inference.

A host of methods exists that aim to statistically stan-
dardize comparisons among fossil plant assemblages. Most
frequently, resampling has been done at the lowest sample
size. Recent work (Currano et al., 2021) used resampling at
300 leaves as a procedure to investigate the metrics of bipar-
tite networks constructed from angiosperm-dominated
assemblages from the Late Cretaceous (�67 Ma) to the
recent (although they suggest sampling at higher numbers
is always beneficial). In such resampling-based analyses,
ecological specialization and structuring were found to be
affected by major geological and ecological events such as
the end-Cretaceous crisis, and by shifts in environmental
variables such as temperature (Currano et al., 2021). These
results are critical for decoding/understanding future cli-
mate change and the response of plant–insect interactions
to future shifts in climate and environmental perturbations.

TAB L E 1 Comparison of taxonomic versus functional bipartite networks.

Feature Taxonomic bipartite network Functional bipartite network

Node classes Plant-host taxa; herbivore taxa Plant-host taxa; plant–arthropod/pathogen
interaction (damage types/DT) attributes

Variables for node classes Taxa (e.g., species, genera) for both nodes Taxa (e.g., species, genera); plant–damage
(e.g., damage types)

Link interaction strengths Frequencies of species-to-species encounters Frequencies of plant–damage variables
(e.g., functional feeding groups, damage
types, feeding event occurrences)

Type of data used Presence/absence of plant-host–arthropod and
pathogen herbivore species

Presence/absence of plant-host–arthropod and
pathogen herbivore damage

Establishing herbivory Determined by live insects caught in the act,
laboratory rearing on hosts, or agricultural
and entomological sources

Determined by observing arthropod and
pathogen damage on plant organs

Establishing
generalization–specialization

Determined on plant-host breadth of herbivore
species

Determined by plant-host breadth of functional
variables such as damage types

Feature being examined Evolution of species-to-species interactions Evolution of feeding strategies and herbivory
patterns

Applicability Modern record only Modern and fossil records

Dimensional domain Modern spatial dimension Modern and fossil spatial and temporal
dimensions

Data limitation or advantages Primary data abundant (modern record);
sampling issues

Primary data limited (fossil record); sampling
issues
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Comparisons of functional bipartite networks in Currano
et al. (2021) were completed using 500 bootstrap replicates
for each assemblage resampled to 300 leaves, standardizing
across uneven sampling regimes. Despite this consistency,
however, the question remains of how the subsampling reg-
imen affects the network values of the original assemblage.
Here, we tackle this question by systematic reanalysis of
data from 63 fossil plant assemblages representing almost
all continents, varied paleolatitudes, and nonanalog ecosys-
tems (dataset of Currano et al., 2021). We explore the effect
of resampling at different leaf sampling intensities (above
and below 300 leaves) to determine the robustness of net-
work metrics, assess paleoecologically relevant
network-level and network class-level properties, and com-
pare it with richness-based metrics that are often used in
these systems (see Currano et al., 2021). We find that func-
tional bipartite network representations not only perform
better than many richness-based metrics, but also, with lim-
ited data, network metrics capture certain aspects of the
complex structure of plant–DT interactions that are other-
wise impossible to ascertain from aggregate richness
metrics.

Overall, these efforts provide a partial resolution of
the concerns associated with bipartite networks applied
to functional plant–DT networks. Once the sampling
impediments have been resolved, functional bipartite net-
works can illuminate the ecology of interspecific
plant–insect interactions, which are not available in tra-
ditional taxonomic bipartite networks.

DATA AND METHODS

Data collection

The compiled dataset analyzed here was developed for
a previous meta-analysis study (Currano et al., 2021).
In that study, fossil insect damage census data published
before 2021 were collected using Web of Science and
Google Scholar using the keywords “insect herbivory,”
“plant–insect interactions,” and “fossil.” Censuses
selected for analysis were younger than 70 million years
(Late Cretaceous) and dominated by dicotyledonous angio-
sperms. The sites were included in the meta-analysis only
if they were collected in an unbiased manner; that is, only
if all identifiable leaves were scored for herbivory and
amounted to at least 300 dicot leaves. Each fossil assem-
blage dataset consisted of information about individual
fossil leaves (e.g., taxonomic information) in the assem-
blage and a list of the number of different DTs present on
each leaf. The fossil sites chosen represented a wide
range of temporal, geographical, and environmental set-
tings. For associated metadata referring to location and

environmental conditions for each assemblage, consult the
original work (Currano et al., 2021).

Resampling

The basic independent unit of data/measurement in our
work and related previous works is a single leaf and the
associated DTs present on that leaf. As sample sizes
(number of leaf specimens) differ among assemblages,
this difference in sampling intensity can lead to spurious
results while doing cross-comparisons, especially in met-
rics that heavily depend on sampling and this is espe-
cially true for network metrics (Costa et al., 2016;
Currano et al., 2021; Fründ et al., 2016; Hegland
et al., 2010; Henriksen et al., 2019; Schachat et al., 2018).
Resampling all the assemblages to a lower common
denominator number of leaves (i.e., rarefaction) is the
accepted way of dealing with such a condition for a vari-
ety of richness and diversity-based metrics (see Currano
et al., 2021; Schachat et al., 2018), but a detailed analysis
of the robustness of such resampling on specifically net-
work metrics remains unexplored.

To test the efficacy of sampling intensity on common
network metrics, we resampled the data for each assem-
blage at the leaf level, using intervals relevant to the size
of each assemblage (Table 2). For example, Chilga, an
Oligocene site from Ethiopia, yielded 1063 leaves, and so
we identified “resampling points” every 50 leaves for the
range 50–500 and at intervals of 100 leaves for the range
600–1000. The resampling stopped at 1000, even though
the actual number of samples is 1063, for ease of compar-
ison across assemblages at specified sample sizes. After
finding these resampling points, resampling was repeated
5000 times. These intervals based on the size of an assem-
blage were created to ensure reduced computational time
as each run of network metric estimation was computa-
tionally expensive. The results do not reveal any new

TABL E 2 Sampling frequency at various ranges of sample

sizes for the assemblages, and summary of number of assemblages

within each sample size (specimens) grouping.

Sample
size range

Sampling
frequency

No. assemblages
with total leaves in this

sample size range

0–500 50 18

500–1000 100 22

1000–2000 200 13

2000–4000 500 6

4000–8000 1000 2
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trends when done at finer resampling points for intervals
of greater numbers of leaves but take a longer
computational time.

Metrics and comparisons

For each resampling of a given assemblage, we constructed
a bipartite network using the occurrence data of DTs on
individual leaves, such that plants and DTs are the two
node classes in the network with edges or links connecting
them. If one considers the adjacency matrix representation
of this network, where rows are plant taxa and columns
are DTs, we collated the number of DTs of a particular type
on the leaves of a particular plant taxon in a single matrix
element corresponding to the row and column represented
by the plant and DT respectively. The reconstructed net-
work was then used to calculate a set of metrics that have
appeared in previous analyses of bipartite networks and
may be ecologically meaningful metrics for plant–DT
associations. These metrics have been used in previous
works for different ecological systems (Bascompte &
Jordano, 2013; Dormann et al., 2017), and in specific fossil
plant–DT associations (Currano et al., 2021; Swain
et al., 2021) to elucidate different aspects of the structure of
ecological networks, such as richness (number of species/
DTs), prevalence of interactions (connectance), specializa-
tion (H20, interaction evenness, partner diversity, together-
ness), co-occurrence (C-Score, niche overlap), resilience to
random perturbations (resilience slope) and nestedness
(traditional nestedness, nestedness metric based on overlap
and decreasing fill [NODF]). These network metrics allow
us to compare different aspects of the overall structure of
different networks (Dormann et al., 2017), which otherwise
are very difficult to compare directly (see Results section for
more details on each metric in context).

We repeated this process of network metric estima-
tion for each of the 5000 replicates for each possible
resampling point of a given assemblage. To facilitate
among-assemblage comparisons, we then normalized
each metric using the value obtained from the network
reconstructed from the complete data of an assem-
blage. In addition to an overall comparison, we
divided the assemblages into five groups based on the
number of samples (<500, 500–1000, 1000–2000,
2000–4000, and >4000 specimens; see Table 2 for a
brief summary) as the number of specimens varied
greatly among the assemblages of interest. We then
examined how each network metric fared in the five
groups at different sampling regimes using the nor-
malized metric values obtained from the respective
network reconstructed from the complete data of an
assemblage.

RESULTS

From standard resampling procedures, it is expected that
the resampled dataset would yield a lower richness than
the full dataset, and this result is recovered (see
Figure 1A,B). For both plants and DTs, a 75% recovery rate
(i.e., the fraction of true value observed in a subsample) is
observed for richness on average at the standard 300 sam-
ple size, and this continues to increase, as expected, with
increased sampling. This relationship is the backbone of
most of the comparisons using resampling in fossil
plant–DT association studies (Currano et al., 2021). Given
this result, one would expect that network metrics, which
heavily depend upon the complex interactions among spe-
cies, would perform even worse in resampling calculations
as they depend highly upon the sampling and its accuracy.
This is indeed true for a few widely used network metrics
like functional complementarity (Figure 1C,D), which is a
community-level measure of ecological niche complemen-
tarity and is measured as the total branch length of a
(functional) dendrogram based on qualitative differences
in DT presence among plants (Devoto et al., 2012).
Functional complementarity was underestimated by �50%
at the 300-leaf sampling level, and this underestimation
persisted even at higher sampling levels (Figure 1C,D).
Given the sensitivity of dendrogram construction to the
incorporation of new data, the result is not entirely sur-
prising, especially for the elevated underestimation of rarer
interactions. This does not mean that functional comple-
mentarity is not an interesting metric, but rather it is very
sensitive to sample size and consequently it is not a practi-
cal metric to use in comparisons among assemblages.

Surprisingly, however, a large array of other network
metrics do not depend as sensitively on sample size. For
example, connectance, which measures the proportion
of realized interactions to the total number of possible
interactions, was overestimated approximately by a mini-
mal 6% at 300 leaves (Figure 1E). Connectance was
overestimated for most of the sampling regime because
smaller sample sizes routinely failed to include the rarer
plant species and rarer DTs. Given such absences,
connectance was artifactually inflated because there were
fewer nodes in the resampled networks that could be
linked together. As sample sizes increased (and assem-
blages became richer), the connectance shifted to being
slightly underestimated (Figure 1E). This reversal from
overestimation to underestimation occurred as ever
larger levels of resampling included rarer plant species or
DTs, but not necessarily the interactions with those
nodes, thereby underestimating the realized number of
interactions. Beyond 250 leaves, the connectance esti-
mate remained, on average, within 10% of the value esti-
mated with full data (VFD) for each assemblage
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(Figure 1E). This result is much better than the widely
used richness metrics (i.e., the number of given taxa and
related statistics) for plants and DTs, which hovered
around 70% of the VFD estimate (Figure 1A,B) over a
large range of sampling efforts. These differences among
metrics as a function of sampling effort suggest that some

aspects of network structure, like connectance, can
reliably be understood at much smaller sampling efforts
than can other metrics, such as traditional richness
measurements.

The picture becomes even more interesting when we
consider metrics that involve the number of interactions

F I GURE 1 Normalized values of selected common network metrics averaged across all 63 assemblages (with 95% confidence

intervals [CI]) at different sampling points. These metrics include the species richness of plants at (A); damage types (DTs) at (B); their

respective functional complementarity at (C) and (D); connectance at (E); and interaction evenness at (F). The values for each assemblage,

before being averaged, were normalized with respect to the metric value of the complete assemblage, thereby using all the available data for

the assemblage, which would have a value of 1. The red dotted horizontal line denotes 1, and the blue vertical dotted line denotes the

300-sample size of leaves used in previous works (see Currano et al., 2021). Please note that the sample size axis is logarithmic.
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associated with each link. Such metrics require weighted
edges/links in bipartite networks, rather than just pres-
ences or absences that involve unweighted edges/links
in bipartite networks. Considering the weighted version
of connectance, we found a 10% overestimation of
connectance at 300 leaves (Appendix S1: Figure S1), a
percentage that is acceptable considering that the incor-
poration of abundance data can be very noisy. Another
such example is interaction evenness (Blüthgen
et al., 2008; Tylianakis et al., 2007), which characterizes
how balanced the frequency of interactions is across the
species and DTs in a given assemblage. (This metric can
be thought of as akin to Shannon evenness.) The value
estimate for this metric was within 2% of the value
obtained from the VFD. Although interaction evenness is
a metric that performs extremely well, one must be wary
that presence–absence data usually is more robust than
frequency data.

Indices related to network DT–host-plant (network)
specialization showed similar promise (Figure 2). Niche
overlap, which measures the mean similarity of associa-
tion patterns among DTs or plants of a given node class
level (Figure 2A,B), had an underestimation of about 6%
for DTs and 10% for plants at the standard 300-leaf sam-
ple level. This underestimation is attributable to the
incorporation of unknown associations that can increase
the overlap between any two species/DTs. Togetherness,
which is the mean number of co-occupancies across all
species/DT combinations at a given node level, was less
than 5% error (at 300 leaves) for both DTs and plants,
except for the special cases of highly diverse assemblages
(discussed later; Figure 2C,D). Togetherness for plants
was slightly underestimated, as the full complement of
interactions with rarer DTs usually is not incorporated,
and the opposite pattern occurs in the case of DTs, where
togetherness was slightly overestimated (Figure 2C,D).
Partner diversity registers a 20%–25% underestimation of
the VFD at the 300-leaf sample level, which is apprecia-
ble, but still an improvement over the richness metrics
(where the margin of error is much higher). Given the
strict dependence of sample size on richness and abun-
dance, these results are not surprising.

The C-Score, also called the checkerboard score
(Stone & Roberts, 1992), measures the mean number
of checkerboard combinations across all nodes and
indicates co-occurring associations. This metric was
overestimated in both plants (by �15% at 300 leaves)
and DTs (by �20% at 300 leaves; Figure 3A,B), attribut-
able to the incorporation of samples of rarer plants and
DTs that can add an association previously considered
as absent. Such an association is exclusive, or
checkerboard-like to another association, and therefore
reduces the C-Score.

Measurement of nestedness in an ecological system
can be accomplished in several ways (see Strona
et al., 2014 for a brief overview). The most commonly
used is the traditional metric of nestedness which is
based on the “temperature” of the occurrence matrix
(BINMATNEST; Rodríguez-Gironés & Santamaría, 2006),
and NODF, an acronym for nestedness metric based on
overlap and decreasing fill (Almeida-Neto et al., 2008;
Almeida-Neto & Ulrich, 2011). Estimations were calcu-
lated for both, and it was found that NODF performed
much better than the traditional temperature-based met-
ric (Appendix S1: Figure S2); NODF underestimated the
nestedness VFD by less than 15% at the 300-leaf sample
level, whereas the traditional metric overestimated it by
50%. This makes NODF a better tool for measuring
nestedness in plant-host–DT bipartite networks, although
it is generally less sensitive to randomness and data
structure (Almeida-Neto et al., 2008). By contrast, the
weighted versions of the nestedness metrics performed
better using the traditional BINMATNEST methods than
did NODF (see Appendix S1: Figure S2).

H20 is an often-used metric to assess how different the
interactions in an assemblage are compared with a ran-
dom assortment; the assessment is based on the abun-
dance values of both the plants and the DTs (Blüthgen
et al., 2006). This metric was overestimated by 16% at the
300-leaf sample level as compared to the VFD. Given that
H20 uses abundance data for its estimation and not just
presence–absence values, its performance is noteworthy
but not surprising as in previous works. It has been
shown to be robust to estimation based on partial data
(Blüthgen et al., 2006).

In ecological bipartite networks, resilience slope, also
termed the extinction slope, works on a repeated random
sequence of plant node removals, and in our case calculates
the number of secondary removals, such that if a DT is pre-
sent in two plant species and both plants are removed, then
the DT is not attached to any plant at the plant node level
and is “secondarily” removed, resulting in the recalculation
of its slope (Memmott et al., 2004). In network parlance,
resilience/robustness refers to the area under this plot of
secondary removal (Memmott et al., 2004), which in mod-
ern ecological texts is referred to as secondary extinctions,
representing another measure of how tightly connected a
network is. (See Klein et al., 2021; Zitnik et al., 2019 for a
broader network context for resilience). Here, we only con-
sider plant removals as they provide the food source and
can cause the extirpation of DTs. The converse, pertaining
to the impacts that the removal of functional DTs has on
plant species, has an unclear meaning ecologically, and
therefore is not used in this study. The resilience slope was
underestimated by 13% and the ratio resilience/robustness
was underestimated by less than 4% (at 300 leaves), making
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the latter a good metric for assessing the hardiness of
assemblage structure to random secondary node removals
(Figure 3E,F).

These network metrics, on average, addressed our
ecological measurement needs and performed sufficiently

well in the face of subsampling issues when averaged
across all assemblages and their sample sizes. This can be
seen from the fact that beyond 4000 leaves, the graph
data trend lines became uneven for most of the metrics.
This is because with only three assemblages larger than

F I GURE 2 Normalized values of various specialization metrics averaged across all the assemblages (with 95% CI) at different sampling

regimes. These metrics include niche overlap for plants at (A) and damage types (DTs) in (B); togetherness for plants in (C) and DTs in (D);

and partner diversity for plants in (E) and DTs in (F). The values for each assemblage, before being averaged, were normalized with respect

to the metric value of the complete assemblage, such that all the available data were used for the assemblage, which would have a value of

1. The red dotted horizontal line denotes 1, and the blue vertical dotted line denotes the 300-sample leaf size used in previous work (Currano

et al., 2021). Please note that the sample size axis is logarithmic.
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4000 specimens there were too few assemblages for
assessing metric performance in a comparative setting.
Without a doubt, a range of sample sizes exists across
assemblages, and hence the effects of subsampling would
differ across sample sizes. To further investigate this, we

plotted the variation of these network metrics relative to
VFD for different sample size groups (see Figure 4;
Table 2).

For ease of discussion, we will focus on the case of
subsampling at 300 leaves for all metrics and the error

F I GURE 3 Normalized values of various network metrics averaged across all the assemblages (with 95% CI) at different sampling

regimes. These metrics include the C-Score for plants at (A) and damage types (DTs) at (B); nestedness, or the nestedness metric based on

overlap and decreasing fill (NODF) at (C); H2, specialization at the level of the entire network, at (D); resilience slope (for DTs) at (E); and

robustness/resilience (for DTs) at (F). The values for each assemblage, before being averaged, were normalized with respect to the metric

value of the complete assemblage, using all the available data for the assemblage, which would have a value of 1. The red dotted horizontal

line denotes 1, and the blue vertical dotted line denotes the 300 sample leaf level used in previous works (Currano et al., 2021). Please note

that the sample size axis is logarithmic.
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F I GURE 4 Legend on next page.
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from the VFD. Richness values for subsampled assem-
blages show a general expected trend of worse perfor-
mance for larger sample size assemblages for a given
subsampling size, with more than 50% underestimation
for groups with 2000–4000 and >4000 leaves
(Figure 4N,O). In contrast, network metrics that have
performed well for the average case, continued to per-
form better across the subsampling range (Figure 4), with
all of the metrics showing less than 50% under- or
overestimation, and considerably better performance
than richness. C-Score, nestedness and partner diversity
showed relatively worse behavior among the network
metrics, but still performed better than richness
(Figure 4). Metrics like connectance, interaction even-
ness, togetherness and resilience had less than 25% error
from the VFD. This shows that selected network metrics
reliably capture aspects of the interaction structure, even
from partial data (subsampling).

DISCUSSION

Using functional bipartite network approaches, in con-
trast with taxonomic bipartite networks (Table 1), we
sought to examine the robustness of network metrics to
sampling intensity, and thereby assess the general useful-
ness of functional bipartite network approaches for the
analysis of plant–insect associational data. Here, we show
that many network metrics are reliable at estimating vari-
ous interactions between plant and insect herbivores,
using damage types (DTs; Labandeira et al., 2007) within
paleontological datasets. Utilizing the functional network
approach allows us to depart from taxonomic classifica-
tions, focusing on conserved functional traits/groupings,
which are comparable across large swaths of geological
time as well as geographical space.

Traditionally, studies of plant–DT associations have
focused on quantifying the frequency and richness of
DTs and functional feeding groups (FFGs) from plant
assemblages (Currano et al., 2021). Such determinations,
although important, do not capture the intricate aspects
of the interconnectedness and complexity of the feeding
associations or aid understanding of potential drivers of
change in a plant-host–herbivore assemblage. Employing
a functional bipartite network perspective affords a

level of understanding about the complexity of such
systems; however, whether the magnitudes of network
metrics are factual representations of the systems or are
consequences of sampling bias has been a major concern.
Earlier, foundational works focusing on extant taxonomic
bipartite ecological networks have explored the effects
of undersampling on the robustness of network
structure and associated metrics (Fründ et al., 2016;
Vizentin-Bugoni et al., 2016). These studies have shown
that taxonomic network metrics are differentially sensi-
tive to undersampling and subsampling from both a theo-
retical perspective (Fründ et al., 2016) and with field data
(Vizentin-Bugoni et al., 2016). The results reported here
show the effectiveness and reliability of network metrics
to capture aspects of the interaction structure of fossil
plant-interaction networks in specific, and ecological
networks in general (Figures 1–4). Through functional
network-based methods, we find that even partial data
about assemblages afford estimates that reasonably approxi-
mate the metrics of the overall assemblage. This makes the
complex systems approach—where we look at the system
as a whole without aggregating or averaging out intricate
interactions—not only useful but also necessary.

Among the network metrics, connectance, interac-
tion evenness, togetherness, and resilience performed
the best across sampling regimes. Other metrics, such as
H20, NODF, C-Score, and niche overlap, performed bet-
ter than richness, irrespective of the original sample size
and subsampling range (Figures 1–4). Thus, our ana-
lyses identify a set of network metrics most likely to be
robust to sampling effort. However, we caution that the
precise nature of sampling effort in particular systems
may deviate from the rarefaction methods we adopted
here. Preservation of fossil leaves is a multiscale process
that depends on a variety of environmental inputs such
as climate, the site of the preserved plant assemblage,
the local environment (during burial), vicissitudes of
leaf damage, the chemical milieu of the plant speci-
mens, and other factors (Behrensmeyer et al., 2000;
DiMichele & Gastaldo, 2008; Greenwood & Donovan,
1991). Moreover, the observation of DTs is dependent
on a fossil plant assemblage that has achieved or
exceeded a threshold in which the plant specimens are
sufficiently well preserved, abundant, diverse, and unbi-
ased, and have voucher specimens deposited in an

F I GURE 4 (A–Q) Normalized values of various network metrics averaged across all assemblages (with 95% CI) at different sampling

regimes and sample size groups. The number of assemblages is indicated in each group. The values for each assemblage, before being

averaged, were normalized with respect to the metric value of the complete assemblage, using all the available data for the assemblage,

which would have a value of 1. The dotted red horizontal line denotes 1, and the blue vertical dotted line denotes the 300-sample leaf size

used in previous studies (Currano et al., 2021). Please note that the sample size axis is logarithmic. DTs, damage types; NODF, nestedness

metric based on overlap and decreasing fill.
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institution accessible to other researchers (e.g., Currano
et al., 2021; Gunkel & Wappler, 2015; Maccracken
et al., 2022; Wilf, 2008; Xiao, Labandeira, Dilcher, &
Ren, 2022a, 2022b). Developing better models that con-
sider preservational bias, such as mode of preservation,
will provide error margins for estimating interactions in
a manner that is site- and taxon-specific, thereby
allowing for quantification of site preservation quality.
Expanding from simple rarefaction to incorporate such
effects in subsampling routines may provide a better
ecological signal, one that accounts for collection and
various forms of preservational bias.

Bipartite networks for modern and fossil plant–insect
associations often differ in sampling intensity, and modern
Linnaean taxonomic networks use datasets derived from
plants and insect herbivores instead of plants and DTs.
Nevertheless, the plant–DT association data we considered
is similar to modern data in two ways. First, interactions, as
damage, are represented on leaves and other plant organs.
Such types of damage are therefore proxy units for observa-
tion of insect herbivory, and more importantly, these DTs
are similar across space and time, irrespective of species
which lodged them. For bulk census data of modern floral
assemblages, documentation of an interaction typically is
independent of the existence of the two interacting species
of a plant host and an interactive herbivore (Novotny
et al., 2010; Oliveira et al., 2010). Rare exceptions occur
when an insect is documented in the act of consuming its
plant host in the field (Dyer et al., 2007; Salazar et al.,
2018), or reared on their suspected hosts in the laboratory
(Carvalho et al., 2014; Dyer, 1995; Dyer et al., 2007), options
not available from fossil data, with rare exceptions such as
scale insects on fossil plant organs (Xiao, Labandeira,
Ben-Dov, et al., 2021). Second, leaves containing DT data
from a fossil plant assemblage are both time-averaged
(inherently representing multiple growing seasons) and
space-aggregated (representing elements of a regional flora
and stable insect herbivore communities) (Kidwell &
Flessa, 1995). Modern ecological studies focusing on similar
patterns of plant–insect interactions with similar condi-
tions of spatiotemporal averaging primarily focus on her-
bivory frequencies and diversities/richness (Adams et al.,
2010; Smith & Nufio, 2004). These studies greatly differ
from the collection of foliage from a modern plant assem-
blage that also represents a local spatiotemporal sampling
of habitats from a larger regional flora (Novotny
et al., 2010) or insect feeding guilds sampled within a mod-
ern flora (Oliveira et al., 2020). Sampling of a fossil or mod-
ern plant assemblage, replete with time averaging and
space aggregation, can be beneficial where there is a more
comprehensive representation of plant taxa from adjacent
local habitats within the regional flora (Burnham
et al., 1992; Olszewski, 1999), of which there are several

examples in the fossil record (e.g., Xiao, Labandeira,
Ben-Dov, et al., 2021; Xiao, Labandeira, Dilcher, &
Ren, 2021; Xiao, Labandeira, Dilcher, & Ren, 2022a, 2022b;
Xiao, Labandeira, & Ren, 2022). Paleobotanical leaf locali-
ties characterize spatiotemporal averaging with each site
representing multiple growing seasons (e.g., Burnham
et al., 1992). As these leaf samples are not from single grow-
ing events, they aid in our understanding of stable,
nonrandom instances of plant–DT associations. This is
important for characterizing stable communities through
time, rather than herbivory at single plant assemblages.
These similarities in the plant-host–DT data structure of
fossil versus modern plant assemblages can provide conti-
nuity in the methods of assessing network metric robust-
ness, although more work and data are needed for such
comprehensive comparisons.

Due to the operational nature of DTs and the
time-averaged and space-aggregated nature of DTs on
plants, there is an important difference, at least prelimi-
narily, between evaluating herbivory between fossil
and modern assemblages. This difference involves how
plant-host specificity of insects is determined from fossil
plant assemblages versus how insect host-plant specific-
ities are determined for modern insect host species. The
DT plant-host specificity assignments of generalized,
intermediate specificity, and specialized are based on
the distribution of damage on species within a fossil
plant assemblage. These assignments are analogous. but
not explicitly comparable, to the modern insect herbi-
vore dietary categories of polyphagy, oligophagy, and
monophagy, respectively (Xiao, Labandeira, Dilcher, &
Ren, 2021; Xiao, Labandeira, Dilcher, & Ren, 2022a,
2022b; Xiao, Labandeira, & Ren, 2022). Equivalencies
or the lack thereof between analogous fossil and
modern categories of host-plant specificities would
require a study of the kinds of DTs left on modern
plants by the feeding activities of known insects with
known host-plant dietary specificities.

Network metrics hold great promise in discerning the
complexity of interactions between plants and insects
that have dominated the terrestrial biodiversity landscape
during the past 410 million years. Understanding this
complexity through the lens of fossil plant–DT interac-
tions can provide an exploration not only into the ecolog-
ical structure of the herbivore communities of host-plant
species, but importantly how plants and their insect
herbivores have responded to major geological and
evolutionary events such as mass extinctions at the
Permian–Triassic and Cretaceous–Paleogene ecological
crises (Carvalho et al., 2021; Labandeira et al., 2002,
2016), major transient shifts in the Earth’s climate
such as the Paleocene–Eocene Thermal Maximum
(Azevedo-Schmidt et al., 2019; Currano et al., 2008,

12 of 15 SWAIN ET AL.

 19399170, 2023, 3, D
ow

nloaded from
 https://esajournals.onlinelibrary.w

iley.com
/doi/10.1002/ecy.3922 by U

niversity O
f M

aryland, W
iley O

nline L
ibrary on [03/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



2010), and dramatic expansions of major plant groups
such as seed plants during the Permian (Maccracken &
Labandeira, 2020; Xu et al., 2018), angiosperm diversifi-
cation in the mid-Cretaceous (Xiao, Labandeira,
Dilcher, & Ren, 2022a, 2022b; Xiao, Labandeira, & Ren,
2022), and possibly the spread of grasses during the later
Cenozoic. A promising development has been an extension
of the FFG/DT system to modern floras in a variety of eco-
logical studies (e.g., Adams et al., 2010; Meineke et al.,
2018; Smith & Nufio, 2004). A current exploration is the
elucidation of functional herbivory networks on individual
plant-host species using the most highly resolved metric
available—feeding event occurrences—for establishing vari-
ation in the structure of herbivory among plant assemblages
(Xiao, Labandeira, Dilcher, & Ren, 2022a, 2022b; Xiao,
Labandeira, & Ren, 2022). These and other studies include
recording how DT richness is correlated with the diversity
of their culprit leaf-chewing insects (Carvalho et al., 2014),
evaluating the role of altitude on Mongolian oak compo-
nent communities of insect herbivores (Sohn et al., 2019),
assessing herbivory intensity along latitudinal gradients
(Adams et al., 2010), determining the patterns of insect her-
bivory in invasive plants (Bachelot & Kobe, 2013; Beaulieu
et al., 2018), and documenting increasing herbivory during
the last century using herbarium specimens (Meineke
et al., 2018). We expect such studies will continue to extend
in both directions: characterizing additional, appropriate
fossil plant assemblages—as well as modern plant
assemblages—to address fundamental ecological questions
that involve plants, insects, and their associations.
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