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1 Introduction 

 

This thesis was inspired by the work of Lucas (1994) and Bishop (2000) who hold 

patents for acoustical compressors based on generating standing waves in a cavity.  

Lucas used a specially shaped resonator chamber driven by an electromechanical 

actuator, while Bishop used a piezoelectric actuator driving the fluid within a straight 

tube.  Baz (2000) combined these two ideas to create a new type of acoustical 

compressor.  It consists of a specially shaped chamber with the fluid driven directly by a 

piezoelectric actuator.  The purpose of this thesis is to derive an analytical model 

describing the pressure in the chamber based on its shape and the size of the actuator.  

This model is then used to create an optimum shape for the cavity and actuator to 

maximize the pressure and minimize the power input. 

 

In the case of Bishop’s compressor sketched in Figure 1, a piezoelectric actuator is used 

to generate standing pressure waves in a straight chamber.  This has the advantage of 

using no moving parts for the actuator.  The standing wave generated by the actuator 

creates negative and positive pressure during each acoustic cycle.  The valves allow the 

working fluid to be drawn into the chamber during the negative pressure portion of the 

cycle and delivered to the system during the positive pressure portion.  The pressure 

developed in a straight tube is considerably less than the pressure that can be created in a 

shaped chamber. 

 



 

 2

 

One-Way Valve

Piezoelectric Actuator

Electronic Drive Circuits 

Standing Wave Pattern  

 

Figure 1 - Standing Wave Compressor of Bishop 

 

A simple representation of Lucas’ compressor is sketched in Figure 2.  A conventional 

reciprocating electro-mechanical actuator is used to oscillate a specially shaped chamber.  

This drive method makes virtually all of the interior surface area of the resonator 

available for driving the working fluid.  Lucas collaborated with other researchers in 

publishing two papers (Lawrenson, et al., 1998; Ilinskii, et al., 1998), which describe the 

experimental results and theory.  Ilinskii et al. (1998) created a one-dimensional, time 

domain model using the gas dynamics equations to calculate non-linear standing waves 

in an oscillating chamber with an imposed acceleration.  The solution of the nonlinear 

equations is beyond the scope of this thesis and seeking this solution would have 

increased computation time significantly during optimization.  However, the 
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experimental results of Lawrenson, et al. (1998) may be used as a point of reference to 

evaluate the utility of the results obtained from the linear equations. 

 

 

Reciprocating Actuator 

Optimally Shaped Chamber 

Valve Arrangement 

 

Figure 2 - Standing Wave Compressor of Lucas 

 

In Lucas' approach, high pressures can be generated but a conventional reciprocating 

actuator with moving parts is used.  Bishop's compressor uses a piezoelectric actuator 

but it does not generate useful pressure.  The design concept shown in Figure 3 

combines the simplicity of a stationary chamber and a piezoelectric actuator with the 

high pressures attainable with a shaped chamber.  A summary of the three designs of 

standing wave compressors is given in Table 1. 
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Valve Arrangement

Piezoelectric Actuator

Electronic Drive Circuits 

Optimally Shaped Chamber 

 

Figure 3 – Piezoelectric Acoustical Compressor (PAC) Concept 

 

Table 1 – Comparison of Types of Acoustical Standing Wave Compressors 

Compressor Type Advantages Disadvantages 

Bishop 
Piezoelectric actuator 

Stationary chamber 

Low pressures 

Small surface area for power 
transfer to the working fluid 

Lucas 
High Pressures 

Large surface area for power 
transfer to the working fluid 

Conventional actuator 

Moving chamber 

PAC 

High Pressures 

Piezoelectric actuator 

Stationary chamber 

Small surface area for power 
transfer to the working fluid 
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The equations of motion of the system must include some interesting features such as 

fluid-structure interaction, coupled electrical and mechanical fields, and acoustic fluid 

elements.  It is the purpose of this thesis to create a linear mathematical model of a finite 

amplitude standing wave compressor with a piezoelectric actuator.  This model will then 

be used to create an optimally shaped chamber, which produces the maximum pressure 

at the end opposite to the actuator and requires the least amount of electrical input 

power. 
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2 Theory 

 

The Finite Element Method (FEM) is used to model the acoustical compressor.  The 

problem consists of a fluid domain, an actuator, and the interaction between the two.  

First, the development of the FEM matrices for the fluid and a generic actuator is 

considered.  The actuator model is then expanded from a simple mass/damper/spring 

system as shown in Figure 4 into a piezoelectric actuator.  The inclusion of the actuator 

dynamics in the model allows for simultaneous optimization of the cavity and the drive 

system. 

 

 

Cs 

Ks 
Ms

F(t)

u  

Figure 4 – Simplified Diagram of Typical PAC 

 

2.1 Fluid-Structure interaction problem 

 

The acoustic fluid in the cavity is modeled using the approach developed by Everstine 

(1981), Olson and Bathe (1985), and Bathe (1996).  This procedure assumes an inviscid, 
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isotropic fluid undergoing small displacements and having no body forces.  The 

momentum equation under these conditions simplifies to  

 0=∇+ pv&ρ  (1) 

where ρ = mass density, v = particle velocity, and p = pressure.  A velocity potential 

function φ  is defined such that 

 φ∇=v  (2) 

Solving the momentum equation for pressure gives 

 φρ &−=p  (3) 

The equations of motion will be generated using the Hamilton Principle (Meirovich, 

2001).  This approach requires the calculation of Kinetic (T) and Potential (U) energies, 

and virtual work due to non-conservative forces (Wnc). 

 
( )∫ =+−2

1

0
t

t nc dtWUT δδδ
 

(4) 

where δ indicates variation in the generalized coordinates.   

 

The energies of the fluid ( f ) and structure ( s ) are (Baz, 1997) 

 ( ) dxxAdVmvT
L

V

f ∫∫ ∇==
0

2
2

12
2

1 )( φρ , (5) 

 ∫=
V

ss dVuMT 2
2

1 & , 

 dxxA
c

dV
c

P
U

L

V

f ∫∫ ==
0

2
22

1
2

2

2
1 )(

1 φρ
ρ

& , (6) 

and ∫=
V

ss dVuKU 2
2

1  
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where subscript f refers to the fluid, subscript s refers to the structure, V = volume, c = 

speed of sound in the fluid, and φρ &−=p   has been substituted for the pressure.   

 

The final equations needed are the work done due to the non-conservative forces acting 

on the system.  These forces are the actuation force on the structure (s), the force due to 

the damper (d), and the fluid-structure interaction forces (fsi) 

 
,  

,   )(

uCF

tFF

sd

s &−=
=

 (7) 

and  fsifsifsi APAF φρ &=−=  

where fsi indicates the locations in the fluid that interact with the structure.  The area (A) 

is the projection of the interaction area in the direction of interest.  For the one-

dimensional model considered here, this direction is along the resonator axis.  From 

these equations, the variation in the virtual work is 

 fsifsifsifsifsifsissnc uAuAuuCuFW φδρδφρδδδ &&& ++−=  (8) 

where the variation is taken with respect to the general coordinates.  Hamilton’s 

principle for the system under consideration can now be written as 

 ( )∫ −−+2

1

t

t fsfs dtUUTTδ
 

 
( ) 0

2

1

=++−+ ∫ t

t fsifsifsifsifsifsiss dtuAuAuuCuF φδρδφρδδ &&&
 

(9) 

 

Equation 9 along with equations 5 and 6 describe the governing equations for the 

system.  We are now in a position to form the finite element equations for the system.  
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The discretized fluid cavity is shown below in Figure 5.  A typical three noded, one-

dimensional, fluid finite element in the cavity is shown in Figure 6. 
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Ks 
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Fs(t) 

us 

φ1 φ3 
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φ5 

φ4 

φ2N+1 

φ2N 

φ2i+1 

φ2i 

φ2i-1 

Element 1 
Element i Element N 

φ2N-1 

 

Figure 5 – Finite Element Model of Acoustic Fluid Cavity 

 

 

i j k 

ri 

rk 
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X i=0 X j=L/2 Xk=L 

 

Figure 6 – Typical Acoustic Fluid Element 

 

The value of the potential function at a point along the element is assumed to vary 

quadratically (Bathe 1996).  The fluid potential can thus be written as 

 2
321)( xaxaax ⋅+⋅+=φ ; or in matrix form  

 ( )( )Taaaxxx 321
21)( =φ  (10) 

subject to the boundary conditions 

 kji L
L φφφφφφ === )(;
2

;)0(  (11) 
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Combining equations 10 and 11 into a matrix equation yields the fluid element nodal 

deflection vector  

 { }  ==Φ
3

2

1

2

2

1
22

1

001

a

a
a

LL

LL

k

j

i

φ
φ
φ

 (12) 

Solving equation 12 for the unknown interpolation constants a1, a2, a3 and substituting 

into equation 10 yields: 

 ( ) [ ] { }Φ =

−1

2

2
2

1
22

1

001

1

LL

LL
xxxφ , (13) 

i.e. ( ) { }Φ +−−+−=
222

244231
L

x

L

x

L

x

L

x

L

x

L

x
xφ  (14) 

Equation 14 can be written symbolically as { }{ }Φ= hx )(φ  where {h} is the 1x3 

interpolating vector.  With this definition of the velocity potential, the particle velocity is 

now given by  

 { }{ }Φ== xx hv φ  (15) 

The cross sectional area for the tapered fluid element shown in Figure 6 is given by 

   )()( 2xrxA π=  (16) 

where 
L

x
rrrxr iji )()( −+=  

Recalling equation 5, the fluid and structure kinetic energies in terms of the nodal 

potentials and the structure displacement vector u are 
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{ } { } { }{ }

{ } { } { } { } ,  )(

)(

0

2
1

0

2
1

ΦΦ=

ΦΦ= ∫∫
dxhhxA

dxhhxAT

L

x
T

x
T

L

x
T

x
T

f

ρ

ρ
 (17) 

and { } [ ]{ }uMudVuMT s
T

V

ss &&& 2
12

2
1 == ∫  

The fluid kinetic energy may be further simplified as 

 { } [ ]{ }ΦΦ= f
T

f KT 2
1 , (18) 

where [ ] { } { }dxhhxAK
L

x
T

xf ∫=
0

)(ρ  

Similarly, the potential energies may be written as 

 

{ } { } { }{ }

{ } { } { } { } ,   )(
1

)(
1

0
22

1

0
22

1

ΦΦ=

ΦΦ= ∫∫ && &&
dxhhxA

c

dxhhxA
c

U

L
TT

L
TT

f

ρ

ρ
 (19) 

and { } [ ]{ }uKudVuKU s
T

V

ss 2
12

2
1 == ∫  

Simplifying the fluid potential energy yields 

 { } [ ]{ }ΦΦ= &&
f

T

f MU 2
1 , (20) 

where [ ] { } { }dxhhxA
c

M
L

T
f ∫=

0
2

)(
1 ρ  

Substituting the kinetic energy, potential energy, and the virtual work in equation 9 and 

expanding the coordinates to nodal coordinates yields 
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 { } [ ]{ } { } [ ]{ }( )∫ ΦΦ+2

1 2
1

2
1t

t f
T

s
T dtKuMu &&δ

 

 
{ } [ ]{ } { } [ ]{ }( )dtMuKu

t

t f

T

s
T∫ ΦΦ+− 2

1 2
1

2
1 &&δ

 
(21) 

 
{ } { } { } { } { } { }( ) 0

2

1

=Φ+Φ+−+ ∫ t

t fsifsifsifsiss dtuAuAuuCuF &&& δρδρδδ  

Taking the variations indicated yields 

 [ ]{ } { } [ ]{ } { }( )∫ ΦΦ+2

1

t

t fs dtKuuM δδ &&
 

 
[ ]{ } { } [ ]{ } { }( )dtMuuK

t

t fs∫ ΦΦ+− 2

1

&& δδ
 

(22) 

 
{ } { } { } { } { } { }( ) 0

2

1

=Φ+Φ+−+ ∫ t

t fsifsifsifsiss dtuAuAuuCuF &&& δρδρδδ  

Rearranging terms gives 

 [ ]{ } { } [ ]{ } { }( )444444 3444444 21 &&&&
I

t

t fs dtMuuM∫ ΦΦ−2

1

δδ
 

 
[ ]{ } { } [ ]{ } { }( ) tduuKK

t

t sf∫ −ΦΦ+ 2

1

δδ
 

(23) 

{ } { } { } { } { } { } 0
2

1

= Φ+Φ+−+ ∫ t

t

II

fsifsifsifsifsifsiss dtuAuAuuCuF 44 344 21 &&& δρδρδδ

 

Integrating the portion of this equation labeled I by parts yields 

 

[ ]{ } { } [ ]{ } { }

[ ]{ } { } [ ]{ } { }( )dtMuuM

MuuMI

t

t fs

t

tf

t

ts∫ ΦΦ+−

ΦΦ−=

2

1

2

1

2

1

δδ

δδ &&&& &&
 (24) 
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As the virtual displacements are arbitrary, we choose them such that they are zero at t1 

and t2.  Thus, I is 

 [ ]{ } { } [ ]{ } { }( )dtMuuMI
t

t fs∫ ΦΦ+−= 2

1

δδ &&&&  (25) 

Integrating II by parts and invoking the arbitrariness of the virtual displacements yields 

 

{ } { } { } { }( )
{ } { }( )∫ ∫

Φ−=

Φ−Φ=

2

1

2

1

2

1

t

t fsifsifsi

t

t fsifsifsi

t

tfsifsifsi

dtuA

dtuAuAII

δρ

δρδρ & &
 

(26) 

A further simplification can be obtained by defining a fluid-structure interaction matrix Ω such that 

 
Otherwise        0

j node fluid  toconnected i node structurefor    

=Ω

=Ω fsiij Aρ
 (27) 

This definition for Ω automatically accounts for the particular nodes that are involved in 

the fluid-structure interaction.  The equation for II can now be written as 

 
[ ] { } { }( )∫ ΦΩ−= 2

1

t

t

T dtuII δ&
 

(28) 

Substituting for I, II, and Ω yields 

 [ ]{ } [ ]{ }( ) { } [ ]{ } [ ]{ }( ) { }( )dtKMuuKuM
t

t ffss∫ ΦΦ+Φ++−2

1

δδ &&&&
 

 { } { }( ) { } { } { }( ) 0
2

1

=ΦΩ−ΦΩ−−+ ∫ t

t

T
ss dtuuuCF δδ &&&  (29) 

Rearranging terms, we have 

 [ ]{ } [ ]{ } [ ]{ } { }( ) { }( )dtuFuKuCuM
t

t ssss∫ ΦΩ+−++−2

1

δ&&&&
 

 [ ]{ } [ ]{ } { }( ) { }( ) 0
2

1

=ΦΩ−Φ+Φ+ ∫ t

t

T
ff dtuKM δ&&&  (30) 
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Since the equation must hold for any arbitrary value of the virtual displacements 

{ } uδ and { } Φδ , each integrand must equal zero. 

 [ ]{ } [ ]{ } [ ]{ } { } ssss FuKuCuM =ΦΩ+++ &&&&  , (31) 

and [ ]{ } [ ]{ } { } 0=Ω+Φ−Φ− uKM T
ff &&&  (32) 

Arranging the equations in a matrix form and summing over all of the elements to form 

the global matrices gives 

 =Φ −
+ΦΩ Ω

+Φ − 00

0

00

0 Fu

K

KuCu

M

M

f

s

T
s

f

s &&&&&&  (33) 

where the element fluid matrices are given in equations 18 and 20, and the fluid-

structure coupling matrix Ω is given by equation 27.  The matrices in equation 33 are 

global matrices formed by summing over the entire finite element domain. 

 

If the actuator dynamics are not of interest, equation 33 can be simplified to 

 [ ]{ } [ ]{ } { }uKM T
ff &&& Ω=Φ+Φ  (34) 

where the structure has an imposed velocity u& .  This form of the equation is particularly 

useful in evaluating the response for the entire resonator drive scheme of Lucas.  In this 

case, equation 34 is used along with the entire internal surface area of the resonator in 

the axial direction as the interface area in the coupling matrix.   
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2.2 Piezoelectric Actuator models 

 

The simple spring/mass/damper system will now be expanded to a more realistic 

actuator for the acoustic cavity.  Two types of piezoelectric actuators were considered in 

this study, a stacked actuator, and a bimorph actuator.  In the stacked type of actuator, 

piezoelectric layers are arranged in such a way that their deflections add together when 

voltage is applied across the stack.  Each layer is actuated in its 3-3 mode, which means 

they are intended to expand axially.  A bimorph actuator expands in the radial direction 

(1-3 mode), but the two layers are arranged such that as one expands, the other contracts.  

This causes the disc to bend.  Figure 7 shows the standard notation defining directions in 

a piezoelectric material.  A cross section of the two types of actuators considered is 

shown in Figure 8.  The letter P and an arrow indicate the poling direction of the 

material. 

 3 

1 
2 

4 5 

6 

Top Electrode 
Surface 

Bottom Electrode
Surface

 

Figure 7 – Standard Directions in Piezoelectric Material 
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P 

V0- 

V0+

Cross Section of Stacked Type Actuator 

 

P 
V0 

Cross Section of Bimorph Type Actuator 
 

Figure 8 - Typical Piezoelectric Actuator Types 

 

2.2.1 General Piezoelectric Modeling 

 

The Piezoelectric materials will be modeled based on the linear theory of piezoelectricity 

as defined in IEEE Standard 176.  One form of the constitutive equations is 

 jjpq
E
pqp EeScT −=

 , (35) 

and jjpqpqp ESeD ε+=
 

 
or in matrix form: 

  −
= E

S

e

ec

D

T
T

E

ε
 (36) 

where T = mechanical stress, cE = compliance matrix at constant electric field, S = 

mechanical strain, e = piezoelectric constant matrix, D = electric displacement, ε = 

permittivity matrix at constant stress, and E = electric field.  This form for the equations 

is the same as that used by ANSYS.  This will allow the use of the same material 

properties when comparing the model created here and the commercial code. 
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We will use the Lagrange equations to create the finite element formulation 

 nc
KEKE Q

q

U

q

T

q

T

dt

d =
∂
∂+

∂
∂− ∂

∂ &  (37) 

where TKE is the kinetic energy, U is the potential energy, q is the generalized 

coordinate, and Qnc is the non-conservative force.  The subscript KE is added to the 

kinetic energy to avoid confusion with the mechanical stress.  The energy expressions 

given by Baz (2001) are 

 dVEDdVTSU
V

T

V

T ∫∫ +=
2
1

2
1

 (38) 

 dVuT
V

KE ∫= 2

2

1 &ρ  (39)
 

The finite element model will be based on the mechanical and electrical displacements at 

the nodes of the elements.  This formulation will simplify the application of an electrical 

potential across the piezoelectric as a boundary condition.  Therefore, the stresses and 

electric field will need to be eliminated from equation 38.  Solving the second of 

equations 36 for E and substituting in the first equation yields 

 { } [ ] [ ] { } [ ] [ ]DSeE T 11 −− +−= εε , (40) 

and { } [ ] [ ][ ] [ ]( ){ } [ ][ ] { }DeSeecT TE 11 −− −+= εε  

2.2.1.1 Potential Energy 

 

Substituting equations 40 into the potential energy equation yields 
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{ } [ ] [ ][ ] [ ]( ){ } { } [ ][ ] { }

{ } [ ] [ ] { } { } [ ] { }444 3444 21444 3444 21 444 3444 2144444 344444 21
IV

V

T

III

V

TT

II

V

T

I

V

TET

dVDDdVSeD

dVDeSdVSeecSU ∫∫ ∫∫
−−

−−

+−

−+=

11

11

2

1

2

1

2

1

2

1

εε

εε

 (41) 

In the finite element formulation, the mechanical and electric displacements will be 

approximated by shape functions as follows 

 { } [ ]{ }uuNu ∆= , (42) 

and { } [ ]{ }ddND ∆=  

where {∆ } is the appropriate nodal deflection vector.  The mechanical strain can be 

related to the mechanical displacement by applying the appropriate operation on the 

shape function.  This gives the strain as 

 { } [ ]{ }uuBS ∆=  (43) 

The [Bu ] matrix is a function of the [Nu ] matrix and depends on the specific geometry 

being modeled.  With these substitutions, and noting that III is the transpose of II, the 

pieces of equation 41 become 

 { } { } [ ] [ ][ ] [ ]( ){ }{ }dVBeecBI
V

uu
TET

u
T

u∫ ∆+∆= −1

2

1 ε , 

 { } { } [ ][ ] { }{ }dVNeBII
V

dd
T

u
T

u∫ ∆∆−= −1

2
1 ε , (44) 

and { } { } [ ] { }{ }dVNNIV
V

dd
T

d
T

d∫ ∆∆= −1

2

1 ε  

The potential energy may now be written as 

 
{ } [ ]{ } { } [ ]{ }

{ } [ ]{ } { } [ ]{ }ddd
T

dudu
T

d

dud
T

uuuu
T

u

KK

KKU

∆∆+∆∆−

∆∆−∆∆=

2
1

2
1

2
1

2
1

 (45) 
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where  

 

{ } [ ] [ ][ ] [ ]( ){ }

{ } [ ][ ] { }

{ } [ ] { }dVNNK

KK

dVNeBK

dVBeecBK

V

d
T

ddd

T
uddu

V

d
T

uud

V

u
TET

uuu ∫∫∫ −

−

−

=

=

=

+=

1

1

1

ε

ε

ε

 (46) 

A final simplification can be made by defining 

 − −
=

dd
T
ud

uduu

KK

KK
K , (47) 

and { } ∆
∆

=∆
d

u  

then the potential energy is 

 { } [ ]{ }∆∆= KU T

2
1

 (48) 

2.2.1.2 Kinetic Energy 

 

The kinetic energy is easily written by substituting the definition for the mechanical 

displacement from equation 42 into equation 39. 

 { } [ ] [ ]{ }dVNNT
V

uu
T

u

T

uKE ∫ ∆∆= &&ρ
2

1
 (49) 

which is written more compactly as 

 { } [ ]{ }∆∆= && MT
T

KE 2

1
 (50) 
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where [ ] [ ]dVNNM
M

M
V

u
T

uuu
uu ∫== ρ,

00

0
, (51) 

and { } ∆
∆

=∆
d

u&&&  

2.2.1.3 Non-conservative force 

 

The non-conservative forces can be determined from the virtual work 

 { }qQW ncδδ =  (52) 

For the piezoelectric device used as an actuator, the exciting force is the applied 

electrical potential.  The virtual work will be 

 0QVW δδ =  (53) 

where Q is the surface charge and V0 is the applied voltage.  The charge on the 

piezoelectric material layers is given by 

 ∫=
s
DdsQ  (54)

 

where s is the surface area.  Substituting the finite element formulation for D we have 

 [ ]{ }∫ ∆=
s dd dsNQ  (55) 

The virtual work is thus 

 [ ] { }ds d sdNVW ∆= ∫ δδ 0  (56) 

By inspection, we see that the non-conservative force is 

 [ ]∫=
s dnc dsNVQ 0  (57) 



 

 21 

2.2.1.4 Equations of motion 

 

It is now a simple substitution of the preceding into the Lagrange equation to obtain the 

equations of motion 

 [ ]{ } [ ]{ } ( )ncQKM =∆+∆&&  (58) 

In an expanded form, the above equation is written as 

 =∆
∆−

−
+∆

∆ ncd

u

dd
T
ud

uduu

d

uuu

QKK

KKM 0

00

0 &&&&  (59) 

Combining the piezoelectric actuator with the fluid matrices gives 

 =Φ
∆
∆ −

−
−

+Φ
∆
∆Ω

Ω
+Φ

∆
∆ − 0

0

00

0

0

00

000

0

00

000

00

ncd

u

f

dd
T
ud

uduu

d

u

T

uu

d

u

f

uu

Q

K

KK

KKC

M

M &&&&&&&&&  (60) 

 

2.2.1.5 Drive Power 

 

The actuator will require an electrical drive unit to supply voltage and current.  The 

sizing of this power supply depends on knowing the required power output.  The 

electrical power is given by 

 0IVP =  (61) 

where P = electrical power, I = current, and V0 = voltage.  For harmonic drive at a 

frequency ω,  

 Qi
dt

dQ
I ω==  (62) 
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 [ ]{ }∫ ∆=
s dd sdNiVP ω0  (63) 

Comparing this expression with the non-conservative force in equation 57 we see that 

 { }dncQiP ∆= ω  (64) 

For sinusoidal voltage input, the RMS power is simply 

 PPRMS 2

2=  (65) 

Once the nodal displacements are calculated, the power is found by applying equation 64 

or 65. 

 

2.2.2 Derivation of FE model of stacked actuator 

 

A single layer finite element model of a stacked actuator is shown in Figure 9 below.  A 

local coordinate x is defined which varies from 0 at the leftmost node i to L at the 

rightmost node k.  Comparing this figure with Figure 7, we see that the x coordinate 

corresponds to the standard piezoelectric direction 3. 
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Figure 9 - Three Noded Stacked Actuator Finite Element 

 

The mechanical displacement is assumed to vary quadratically along the element.  The 

interpolation equation is the same as that used for the velocity potential.  Substituting u 

for φ in equation 14 gives 

 ( )  +−−+−=

k

j

i

u

u

u

L

x

L

x

L

x

L

x

L

x

L

x
xu

222

244231  (66) 

Writing this equation in the same form as the general derivation given in section 2.2.1 

gives  

 [ ]{ }uNxu ∆=)(  (67) 

Noting that xu
dx

du
S == , the Bu matrix is 

 [ ]xu NB =  (68) 
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where the subscript in the interpolation matrix denotes differentiation with respect to x.  

As 0=∇D , we must have kji DDD == .  This means the interpolation function for D is 

the identity function.  Denoting the cross sectional area by A and substituting these 

definitions into the equations for the stiffness matrices yields 

 { } [ ] [ ][ ] [ ]( ){ }∫ −+=
L

x
TET

xuu dxNeecNAK
0

1ε , (69) 

 { } [ ][ ] { }∫ −=
L T

xud dxeNAK
0

1 1ε , (70) 

and [ ] [ ] 1

0

1 −− == ∫ εε ALdxAK
L

dd  (71) 

The mass matrix is given by 

 [ ] { }∫=
L

uu dxNAM
0

ρ  (72)
 

The non-conservative electrical force is 

 AVQnc 0=  (73) 

The element deflection vector ∆ is 

 { }ikji Duuu=∆T  (74) 

Substituting the preceding expressions into the equations of motion 

 { } { } =∆−
−

+∆ AVKK

KKM x

dd
T
ud

uduuuu

0

130

00

0 &&  (75) 

Equation 75 along with equations 69, 70, 71, and 72 form the finite element description 

for a single layer of the actuator.  These layers are then stacked up to get the desired 

deflection.  This leads to the drawback of using this type of actuator.  The first order 

performance of this type of actuator from Near (1996) is 
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 033VndL =∆ , (76) 

and )tan1(2 2
0 δπ += CVfPower  

where ∆L is the change in length, n is the number of layers, f is the actuation frequency, 

tanδ is the loss tangent, and C is the capacitance 

 tAnC T /ε=  (77) 

For a typical material such as PZT-5H, the material properties are  

Volt120

mm125.0
Volt

m10595

max

12
33

=
=

×= −

V

t

d

      m
Farad108542.8

3400
12

0

033

−×=

=

ε

εε T

 

Given these parameters, each layer contributes only 0.149 µm to the deflection.  For a 

target deflection of 40 µm, 560 layers are required.  The power required to drive a 560 

layer, two-inch diameter actuator at 100 Hz would be approximately 2500 watts.  A 

more efficient design could possibly be obtained by using the bimorph, as it only has 

two layers contributing to the total capacitance.  The derivation of the finite element 

model for the bimorph actuator follows. 

 

2.2.3 Derivation of FE model for axisymmetric bimorph disc 

 

Before jumping into the FE formulas, we will first make some simplifying assumptions 

regarding what components of stress and strain can be expected. 

 

Dobrucki and Pruchnicki (1997) present a finite element theory for vibrations of a 

piezoelectric bimorph.  Unfortunately, they assume that since the stress in the z-axis is 
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negligible (Kirchoff hypothesis), the strain may also be ignored.  We will see that this is 

not the case for piezoelectric materials. 

 

Referring back to the constitutive equations, 

 jjpq
E
pqp EeScT −=

 , 

and jjpqpqp ESeD ε+=
 (78) 

 
For axisymmetric vibrations, p and q = 1-3 refer to the radial (1), angular (2), and 

vertical (3) directions, as in Figure 10.  The arrows indicate the poling direction of the 

material.  Actuation voltage is applied in the 3 direction; therefore, j is set to 3. 

 θ (2) 

Z (3) 

R (1) 

P 

Z=-t

Z=0

Z=+t

 

Figure 10 – Cross Section of Bimorph 

 

Noting that the material properties in direction 1 equal those in direction 2, we have for 

the stress equations 

 3313132121111 EeScScScT EEE −++= , 

 3313132221122 EeScScScT EEE −++= , (79) 

and 3333332311313 EeScScScT EEE −++=  
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For flexural vibrations of a thin disc, it is reasonable to make the Kirchoff assumption 

that T3 = 0.  The T3 equation can therefore be solved for S3, 

 0)( 3333332131 =−++ EeScSSc EE , (80) 

or )( 21
33

31
3

33

33
3 SS

c

c
E

c

e
S

E

E

E
+−=  

Substituting this expression for S3 into the equations for T1 and T2, and noting that matrix 

cE is symmetric, we have 

 3312
33

31
1

33

31
3

33

33
132121111 )( EeS

c
c

S
c
c

E
c
e

cScScT E

E

E

E

E
EEE −−−++= , 

or 333
33

13
312

33

2
13

121
33

2
13

111 )()
)(

()
)(

( Ee
c
c

eS
c
c

cS
c
c

cT E

E

E

E
E

E

E
E −−−+−=  (81) 

giving 3
*
312

*
121

*
111 EeScScT EE −+=  

where we have defined effective compliance and piezoelectric constants as in Ling-Hui 

(1998) 

 
E

E
EE

c
c

cc
33

2
13

11
*

11

)(−≡ , 

 
E

E
EE

c
c

cc
33

2
13

12
*

12

)(−≡ , (82) 

and 33
33

13
31

*
31 e

c
c

ee E

E

−≡  

Similarly, 

 3
*
312

*
111

*
122 EeScScT EE −+=  (83) 

Thus, the stress equations are reduced to two equations with the equivalent compliance 

and piezoelectric constants as defined above. 
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The actuation voltage and electrodes are in the 3 direction, giving rise to an electric 

displacement also in the 3 direction 

 3333332311313 ESeSeSeD ε+++=  (84) 
 

Substituting the expression for S3 from above 

 33321
33

31
3

33

33
332311313 )( ESS

c

c
E

c

e
eSeSeD

E

E

E
ε+ +−++=  (85) 

and simplifying 

 3
*
332

*
311

*
313 ESeSeD ε++=  (86) 

 

where the effective permittivity is defined as 

 
33

2
33

33
*
33 c

e
+≡ εε  (87) 

 

In summary, there are two components to the stress and strain matrix, and one 

component to the electric displacement and electric field matrices.  The constitutive 

matrices for this type of actuator are reduced to 

 
{ } =

2

1

T

T
T ,{ } =

2

1

S

S
S  ,

 
{ } { }3DD =  ,

 
{ } { }3EE =  (88) 

 
[ ] =

*
11

*
12

*
12

*
11

EE

EE
E

cc

cc
c , [ ] =

*
31

*
31

e

e
e , [ ] [ ]*

33εε =  (89) 

 

The relationship between the displacements and the strain are needed in order to write 

the finite element matrices.  Let the bimorph be divided into finite elements of length L 

as shown in Figure 11.  There is no deformation of the element along the central axis, 

and planes normal to the axis are assumed to remain normal after deformation.  The 
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dashed lines indicate the undeformed shape of the element.  The inner radius node of the 

element is designated node i and the outer radius node as j.  A coordinate x is introduced 

which varies from 0 at node i to L at node j.  The radius of a location along the element 

is 

 xrxr i +=)(  (90) 

where ri refers to the radius of node i.  The coordinate z is taken along the thickness of 

the element and varies from -t to +t. 

 

Figure 11 – Typical Axisymmetric Bimorph Finite Element 

 

From Figure 11, the radial displacement u of any point through the thickness of the 

actuator is  

 
dx

dw
zu =  (91) 

The radial strain is therefore 

x 
ri 

w 

dw 
dx 

u 

r 

z 

i 

j 
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2

2

1 dx

wd
z

x

u
S =

∂
∂=  (92) 

The circumferential or hoop strain is 

 
( )

dx

dw

r

z

rd

rddur
S =−+=

θ
θθ

2  (93) 

Let w(x) be described by a cubic equation as follows 

 
3

4
2

321)( xaxaxaaxw +++=  (94) 

or, in matrix form 

 ( )( )Taaaaxxxxw 4321
321)( =  (95) 

The boundary conditions are  

 iww =)0( , jwLw =)( , ixw θ=)0( , jx Lw θ=)(  (96) 

where xw=θ .  The boundary conditions in terms of the nodal deflections are 

 iwaw == 1)0( , 

 jwLaLaLaaLw =+++= 3
4

2
321)( , 

 ia θθ == 2)0( , (97) 

and jLaLaaL θθ =++= 2
432 32)(  

Following a similar procedure to that given in the fluid modeling section, the out of 

plane deflection in terms of the nodal deflection values is 

 [ ]( )uuNxw ∆=)(  

where [ ]   +−− +−+−=
232232

2321231
L

x

L

x
x

L

x

L

x

L

x

L

x
x

L

x

L

x
Nu

, (98) 

and ( ) ( )Tjjiiu ww θθ=∆  

Substituting w into equations 92 and 93 yields the Bu matrix 
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  +
= +

=
x

i

xx

x
i

xx

u N
xr

N
zN

xr

z
zN

B 1  (99) 

For the electric displacement, a simple linear interpolation function is used 

  −=
j

i

D

D

L

x

L

x
xD 1)(  (100) 

or [ ]( )ddNxD ∆=)(  

The preceding can now be substituted into the mass and stiffness matrix equations.  For 

an axisymmetric element, the differential volume element is dV=2π r dz dx 

 

[ ] [ ][ ] [ ]( )

[ ] [ ][ ] [ ]( ){ } ( )dxxrN
xr

N
dzeeczN

xr
N

dVN
xr

N
eeczN

xr
NK

i
x

i

xxL t

t

TET
x

i

T
xx

V x
i

xx
TET

x
i

T
xxuu

+ +
+ +

=

 +
+ +

= ∫ ∫∫
+

−

−

−

11
2

11

0

12

12

επ

ε

 (101) 

The integral in curly braces above can be simplified as 

 
[ ] [ ] [ ][ ] [ ]( )

[ ] [ ][ ] [ ]( )TE

t

t

TE
e

eect

dzeecz

13

12

3

2 −

+

−

−

+=

+= ∫
ε

εD
 (102) 

The electro-mechanical coupling matrix is 

 

[ ][ ] { }

[ ][ ]{ }{ }( )dxxrNdzezN
xr

N

dVNezN
xr

NK

id

L t

t

T
x

i

T
xx

V

d
T

x
i

T
xxud

+ +
=

 +
= ∫ ∫∫

+

−

−

−

0

1

1

1
2

1

επ

ε
 (103) 

For a bimorph, the top and bottom layer piezoelectric matrices have equal magnitude but 

opposite signs.  Considering the integral in curly braces we have 
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[ ][ ] [ ][ ] [ ][ ]

[ ][ ] 12

0

10 11

−

−

−

−+

−

−

=

+−= ∫∫∫
ε

εεε

et

dzezdzezdzez
t

t

t

t  (104) 

then, [ ][ ] { }( )dxxrNN
xr

NetK id

L T
x

i

T
xxud + +

= ∫−

0

12 1
2 επ  (105) 

The electric displacement stiffness matrix reduces to 

 [ ] { } { }( )∫ += − L

id
T

ddd dxxrNNtK
0

122 επ  (106) 

The mechanical mass matrix is written as 

 [ ] [ ]( )∫ +=
L

iu
T

uuu dxxrNNtM
0

22 ρπ  (107) 

The final piece required to fully describe the piezoelectric bimorph is the non-

conservative force 

 [ ]∫=
s dnc dsNVQ 0  (108) 

There are three surfaces to consider in this integral, the top electrode, bottom electrode, 

and the cylindrical side of the piezoelectric bimorph.  Since D3 is parallel to the sides, 

this contribution to the charge will be zero.  We will also consider either the top or the 

bottom electrode to be grounded as a boundary condition.  This leaves only the integral 

over one of the electrodes, choose the upper electrode surface for convenience.  At this 

position, z=t, ds=r dθ dr=2π (ri+x) dx 

 [ ]∫ +=
L

i
T

dnc dxxrNVQ
00 )(2π  (109) 

where the transpose has been taken to make the force consistent with the vector scheme 

used.  The voltage V0 refers to the peak amplitude across both layers of the bimorph. 
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Each bimorph element is assembled into the global matrix.  This global matrix is then 

inserted into the fluid-structure interaction equations.  The bimorph actuator is 

discretized along the radial direction, while the fluid is discretized along the axial 

direction.  The fluid-structure interaction matrix allows the multiple structural nodes to 

connect with a single fluid node.  This simplifies the model by not requiring the use of 

parallel fluid elements.  The matrix is populated with the area of the bimorph at the 

structural node row and the fluid node column. 

 

2.3 Damping 

2.3.1 Fluid Damping 

 

Equation 33 contains a complete description of the finite element model for a fluid filled 

cavity driven by a simple piston type actuator.  The only damping included in this model 

is the actuator damping matrix Cs; however, we know that the fluid must exert some 

damping effect on the vibrations of the system.  The method adopted here is to substitute 

a complex speed of sound in the fluid mass matrix (equation 20) as described in Kinsler, 

et al. (1982).  The speed of sound is written as 

 
ω
α

j
cc

−=∗
11

 (110) 

where c* is the complex speed of sound, c is the thermodynamic speed of sound, ω is the 

frequency of the vibrations, and α is the absorption coefficient.   
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The absorption coefficient is the sum of multiple absorption mechanisms.  The 

predominant mechanisms are the absorption due to the bulk fluid, and absorption at the 

wall due to viscous resistance and thermal conduction.  The bulk absorption is very 

much less than these two sources for frequencies less than approximately one MHz in air 

(Kinsler, 1982).  Driving frequencies will be much less than one MHz in order to reduce 

the power requirements of the device, as the power consumed by a piezoelectric actuator 

is proportional to the driving frequency.  The viscous and thermal effects on fluid motion 

in a pipe of radius r result in an absorption coefficient of (Kinsler, 1982)  

  
2

1

f

e

rc ρ
ωηα =  (111) 

where ( )
2

e 11  −+=
η

κγηη
pC

 

where η and ηe are the true and effective coefficients of shear viscosity, γ is the ratio of 

specific heats, κ is the thermal conductivity of the fluid, and Cp is the specific heat at 

constant pressure.  The absorption coefficient has been studied extensively resulting in 

models that consider the effects of humidity, temperature, pressure, and other 

complicating assumptions; see for example Rodarte, et al. (2000), Zuckerwar and 

Meredith (1985), Page and Mee (1984), and Tijdeman (1975).  The additional 

complications were not deemed necessary, as the damping in the cavity will be adjusted 

at a later date once experimental data is available.  The factor 2
1

c
 in the finite element 

equations can be expanded now as 

 ( )
2

22

111  −=⇒
∗ ω

α
j

ccc
 (112) 
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or ( )  −−=
∗ 2

2

2

1

2

1

2
21

11

rr
j

cc f

e

f

e

ωρ
η

ωρ
η

 (113) 

Substituting this result in equation 20 yields the following mass matrix for a fluid 

element 

 [ ] { } { }dxhhxA
rr

j
c

M
L

T

f

e

f

e
f ∫  −−=

0
2

2

)(
1

2

1

2
21

1 ρ
ωρ

η
ωρ

η
 (114) 

By examining the matrix described in equation 114, we see that [Mf ] can be broken into 

three distinct matrices.  Each matrix has geometric and frequency dependence.  The 

geometric dependence can be evaluated during the creation of the finite element 

equations, but the frequency dependence must be calculated during the determination of 

the frequency response of the system.  The following equations show this notation 

 [ ]  −−= 3212 22
2

1
f

f

e
f

f

e
ff MMjM

c
M

ωρ
η

ωρ
η

, (115) 

where { } { }dxhhxAM
L

T
f ∫=

0

1 )(ρ , (116) 

 { } { }dxhhxA
r

M
L

T
f ∫ =

0

2 )(
1 ρ , (117) 

and { } { }dxhhxA
r

M
L

T
f ∫ =

0
23 )(

1 ρ  (118) 

With this formulation, the Mf1, Mf2, and Mf3 matrices can be calculated for each element 

and formed into global matrices for the full system.  During calculation of the frequency 

response, the full [Mf ] matrix is calculated depending on the frequency of interest. 
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Alternatively, an acoustic boundary absorption coefficient can be assigned to the cavity 

surfaces.  This is the approach used in the ANSYS program.  Morse and Ingard (1968) 

give the following expression for the real part of the boundary absorption coefficient at 

the walls in a duct 

 ( )[ ]hv dd
c

1
2

1 −+= γωβ  , (119) 

where 
ρω
η2=vd  , (120) 

and 
p

h C
d

ρω
κ2=  (121) 

The terms dv and dh are the thicknesses of the viscous and thermal boundary layers 

respectively, other symbols are as defined above.  This equation is valid for ducts with 

radii greater than about three times the boundary layer thicknesses.  By expanding these 

equations and comparing to the previous definition for absorption coefficient, we see 

that 

 βα
r

1=  (122) 

In implementing this damping in ANSYS, an average value over the frequency range of 

interest is calculated and inserted in the ANSYS model.  As each harmonic frequency is 

identified, the appropriate value for that frequency is used in equation 119.  The 

resulting damping value is inserted back into ANSYS.  This procedure is repeated until 

the natural frequency for all modes of interest is determined. 
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2.3.2 Damping in the piezoelectric actuator 

 

Data sheets for the PZT material specify damping in terms of the mechanical Q.  This 

mechanical Q can be considered either hysteretic or viscous damping as follows (Nashif, 

1985). 

   
2

1

ζ
=MQ   (viscous) (123) 

 
L

MQ
η
1=    (hysteretic) (124) 

For viscous damping, the term ζ is the damping ratio.  The hysteretic damping term is 

the ratio of real to imaginary parts of the stiffness and is known as the loss factor. 

 ( )LiKK η+=∗ 1  (125) 

where K* is the complex stiffness and K is the real part.  The hysteretic damping is a 

more physical approach for the piezoelectric material and is easily incorporated in the 

Matlab routine by multiplying the “c” matrix portion of the stiffness matrix.  ANSYS 

does not allow hysteretic damping; therefore, the damping ratio must be used in ANSYS.  

The addition of viscous damping to an undamped system decreases both the amplitude 

and resonant frequency of the system.  Hysteretic damping will only affect the amplitude 

of the vibration at resonance.  This will result in the frequency calculated by ANSYS to 

be somewhat less than that determined by the Matlab solution.  The error should be 

minimal as the damping is so small that the differences will generally be negligible. 
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2.4 Implementation and Optimization in Matlab 

 

The preceding equations were incorporated in a MATLAB program.  Matlab was chosen 

as it is easy to program, high level language, and it has toolboxes available that allow the 

use of symbolic notation and optimization.  This section describes the procedure used to 

solve the equations of the preceding sections. 

 

The acoustic cavity with bimorph actuator is shown schematically in Figure 12.  The 

fluid-structure interaction is between the odd numbered piezoelectric nodes and the first 

fluid node.  The odd numbered nodes are the translation and the even numbered nodes 

are the rotation degrees of freedom for the element. 
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Element i Element N 
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∆1,∆2∆3,∆4  ∆i  = ui∆i+1 = θi

∆2i-1,∆2i  ∆2i+1,∆2i+2  ∆2Np+1,∆2Np+2  

φ3 Ω1,1 Ω3,1 Ω2i+1,1 Ω2Np+1,1 

 

Figure 12 – Finite Element Model of Acoustic Cavity with Bimorph Actuator 
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The interaction area at each node is calculated by using half an element length on either 

side of the node to determine inner and outer radii.  The exceptions are the end nodes 

which only use the side where an element exists to determine the interaction area.  For 

the stacked actuator, the piezoelectric and fluid elements only interact at one node and 

the area is the full diameter of the stack. 

 

With the element scheme from Figure 12 and the equations of the preceding sections, the 

finite element matrices can be computed.  The complete equations of motion describing 

the piezoelectric actuator interacting with the acoustic fluid are shown below in 

expanded form. =Φ
∆
∆ −
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M &&&&&&&&&  (126) 

The fluid damping embedded in the Mf matrix is a function of the driving frequency; 

therefore, an iterative solution scheme must be used.  A brute force method of solution 

could be employed where the solution over a frequency range is obtained and then a 

peak search done to find the resonant frequencies.  During optimization, this search 

method would result in very long run times for each iteration of the cavity.  A better 

approach is to estimate the natural frequencies of the system, then perform a search 

about the estimate to locate the true natural frequency.  The Matlab control toolbox 

provides the "damp" command to determine the natural frequencies of a damped first 

order linear differential equation system.  The second order equation can be recast into a 

first order system by the substitution of a new coordinate.   
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 { } [ ] [ ] [ ] [ ] { }X
CMKM

I
X  −−

= −− 11

0& , (127) 

where { } ∆
∆

= &X  

and the matrices have been collapsed for clarity.  The difficulty with employing this 

method is that the electrical degrees of freedom have no entry in the mass matrix, 

resulting in an indeterminate inverse.  The first step in solving this problem is to reduce 

the order of the piezoelectric matrices to condense out the electrical degrees of freedom.  

Expand the matrix equations for the piezoelectric actuator  

 0=∆−∆+∆+∆ duduuuuuuuuu KKCM &&& , (128) 

and ncdddu
T
ud QKK =∆+∆−  

and solve the second set of equations for the electrical displacement 

 u
T
udddncddd KKQK ∆+=∆ −− 11  (129) 

Substitute this equation back into the first set of matrix equations 

 ( ) 011 =∆+−∆+∆+∆ −−
u

T
udddncdduduuuuuuuuu KKQKKKCM &&& , 

or ( ) ncddudu
T
uddduduuuuu QKKKKKKM 11 −− =∆−+∆&&  (130) 

The reduced order model for the piezoelectric actuator is 

 FRKRCRMR uuu =∆+∆+∆ &&&  (131) 

where uuMMR = , 

 uuCCR = , 

 T
uddduduu KKKKKR 1−−= , 

and ncddud QKKFR 1−=  

The resulting reduced order system model is now 
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Since the actuator damping is embedded in the KR matrix, CR is the appropriate size 

zero matrix.  The above matrices can be used in equation 127 without any difficulties. 

 

The fluid mass matrix is calculated at a trial frequency of 1000 Hz then the estimates of 

the natural frequency are calculated from the reduced order system.  These estimates are 

used as the start point for a simple search to determine the peak pressure response at the 

end of the fluid cavity.  This position was chosen because it is the preferred location for 

the valves that allow the acoustical compressor to deliver the high-pressure fluid. 

 

The entire resonator drive scheme was also implemented in the Matlab code to allow 

comparison with published experimental data.  Lawrenson, et al. (1998) report results for 

standing waves in closed cavities generated by oscillating the entire resonator using an 

electrodynamic shaker.  The resonators were filled with refrigerant R-134A (1,1,1,2-

tetrafluoroethane).  The results reported in the paper do not include the velocity used to 

drive the resonators, only the power delivered to them.  The average power delivered to 

the fluid per cycle is (Ilinskii, et al., 2001) 

 ∫=
V

dVvaPower ρ  (133) 

where a is the imposed acceleration on the resonator and v is the velocity of the fluid.  

When entire resonator drive is chosen, the Matlab routine prints the power delivered to 

the fluid by the imposed acceleration.  Using this information, the input acceleration may 

be varied until the proper input power is reached. 
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A large number of fluid elements will be required to adequately capture the geometry 

and response of the fluid cavity.  This large number of shape variables will present a 

difficult problem for the optimizer and result in very long run times if convergence can 

be obtained at all.  For this reason, the shape of the cavity is generated by a cubic 

polynomial fit between a few control points.  The polynomial is used to discretize the 

cavity into an arbitrary number of fluid elements while using only a few controlling 

variables.  This method reduces the number of variables in the optimization. 

 

The code does not include modeling of fluid flow effects; therefore, these were 

accounted for by constraining the shape of the cavity.  Expansion sections in the cavity 

will result in an adverse pressure gradient that can cause separation of the flow and result 

in turbulence in that area.  The maximum divergence angle was restricted to 10 degrees 

to ensure the fluid flow would remain in the laminar range (Mehta and Bradshaw, 1979).  

The objective of the optimization was to generate maximum pressure at the end of the 

cavity for minimum power input.  The figure of merit used to judge a cavity was the end 

pressure minus 10% of the electrical power required to drive the cavity.  Furthermore, if 

the velocity of the fluid exceeded 0.98 of the speed of sound, the figure of merit was set 

to zero.  Although the true fluid behavior is strongly nonlinear at high pressures and 

velocities, the use of these penalty functions in the optimization prevents the routine 

from finding solutions that would result in shock wave formation. 
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2.5 Nonlinear Effects 

 

The finite element equations developed in this thesis are linear in nature.  As noted in 

section 2.1, the fluid must be inviscid, isotropic, and undergoing small displacements.  

The inviscid requirement is minimized due to the inclusion of damping in the form of a 

complex velocity with absorption coefficient.  Most fluids of interest for this application 

behave isotropicaly, so this is a good assumption.  The difficulty with the linear 

equations is that we are using them to design a cavity that obviously causes large 

displacements and velocities to create the high pressure.  The development and solution 

of the non-linear finite element equations describing the fluid motion is beyond the 

scope of this thesis.   However, a discussion of them is in order. 

 

One formulation of the nonlinear fluid finite element equation is shown in equation 134 

(Hoffelner, et al.2001) 

 [ ]{ } [ ]{ } [ ]{ } [ ]{ } [ ]{ }ΦΦ+ΦΦ=Φ+Φ+Φ &&&&&&& )()( 21 NNKCM fff  (134) 

where M, C, and K are the linear mass, damping, and stiffness matrices.  The two 

nonlinear matrices on the right hand side are 

 ( )[ ] { }{ }{ } { }dxhhh
cA

B
xAΦN

L
T∫ Φ=

0
41

1
)( && ρ  (135) 

 ( )[ ] { }{ }{ } { }dxhhh
c

xAΦN
L

x
T

x∫ Φ=
0

22

2
)(ρ  (136) 

where B/A is known in the literature on nonlinear acoustics as the nonlinearity 

parameter.  For an ideal gas,  
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 1−= γ
A

B
 (137) 

The N1 matrix will be small if either the nonlinearity parameter is small or the pressure is 

low ( { }{ }Φ−= &hp ρ ).  The N2 matrix will only be small for low velocities 

( { }{ }Φ= xhv ).  Using a nonlinear solution approach and these equations would have 

resulted in excessively long run times during the optimization.  The linear solution gives 

a good approximation to the solution and can be used to evaluate the relative 

performance of different shapes for the cavity.  As will be seen in the results section, the 

linear code provides useful results. 
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3 Results 

 

The simple fluid - structure interaction described in section 2.1 was first coded and 

verified.  Verification was done by comparing the pressures calculated against an 

ANSYS model.  Then the stacked actuator of section 2.2.2 was added and verified.  

Finally, the bimorph model was verified on its own and then added to the fluid-structure 

interaction.  Once the routine was verified, the MATLAB optimization functions were 

used to generate an optimum actuator/cavity configuration. 

 

The material properties used are shown in Table 2 (Morgan Electro Ceramics, and Kays 

and Crawford 1993). 

Table 2 – Material Properties 

Piezoelectric Material (PZT-5A) Fluid Material (Air) 

Property Value Units Property Value Units 

Ee31 -5.4 
mvolt

N

⋅
 

ρ  1.225 
3m

kg
 

Ee33  15.8 
mvolt

N

⋅
 

c  340.3 
s

m
 

Ec11 121.0 GPa  γ  1.4  
Ec12  75.4 GPa  pC  1004 

Kkg

J

⋅
 

Ec13  75.2 GPa  κ  25.36 
Km

mW

⋅
 

Ec33  111.0 GPa  η  17.89 sPa ⋅µ  ρ 7750 
3m

kg
 

   

QM 75     

0

33
ε

ε S

 830     
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3.1 Verification of Acoustic Fluid FEM and Damping 

 

As a first step prior to optimization, the MATLAB program was verified against a 

simple tapered cavity shown in Figure 13.  The purpose of this verification exercise was 

to determine that the equations for the acoustic fluid interacting with a moving structure 

and incorporating fluid damping would produce accurate results when compared against 

the commercial FEM code ANSYS. 

 

 

15.00 in 

7.50 in 

∅ 0.25 in ∅ 2.00 in ∅ 0.75 in 

 

Figure 13 – Verification Model Cavity 

 

The ANSYS model is a two-dimensional axisymmetric model of the fluid cavity.  The 

stacked piezoelectric actuator was not incorporated in the ANSYS model; an imposed 

deflection matching that of the MATLAB model was placed on the boundary 

representing the actuator interface.  The MATLAB model used 48 fluid elements, while 

the ANSYS model was 1870 fluid elements.  A comparison of the results from the two 
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approaches is shown below in Figure 14 and Table 3.  The “End Pressure” in Table 3 

refers to one half the peak-to-peak pressure over an acoustic cycle. 
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Figure 14 – Comparison of Matlab and ANSYS Solutions of Verification Model Cavity 

 

Table 3 – Frequency and End Pressure Comparison of Verification Model Cavity 

Mode Frequency (Hz) End Pressure (psi)
Number Matlab ANSYS Difference Matlab ANSYS Difference

1 542.57 542.23 0.1% 1.13 1.11 2.2%
2 954.05 953.53 0.1% 1.91 1.88 2.1%
3 1398.37 1398.13 0.0% 2.66 2.61 1.9%
4 1831.24 1831.66 0.0% 3.23 3.17 1.9%
5 2281.59 2283.30 0.1% 3.73 3.66 2.0%
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The mode shapes along the centerline agree quite well and the frequency agreement is 

also excellent.  There is a small difference in calculated end pressure, likely due to the 

one-dimensional model versus a two-dimensional model.  Increasing the number of 

elements in the Matlab model up to 200 elements made no appreciable difference to the 

results. 

 

3.2 Verification of Bimorph FEM 

 

A 480 element 2-D axisymmetric ANSYS model was created to verify the frequencies 

and displacements calculated by a 48 element 1-D Matlab model.  The actuator modeled 

consisted of a PZT-5H bimorph of radius 1.25 inch, layer thickness 0.19 mm, actuation 

voltage 90 volts across each layer.  Figure 15 below shows a comparison of the mode 

shapes and displacements.  Table 4 and Table 5 compare the frequency, displacement, 

and drive power required assuming that the ANSYS result is more correct. 
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Figure 15 – Bimorph Results Comparison, Matlab (M) vs. ANSYS (A) 

 

Table 4 – Bimorph Model Frequency and Displacement Comparison 

Mode Frequency (Hz) Peak displacement (mm)
Number MATLAB ANSYS Difference MATLAB ANSYS Difference

Static 0.281 0.285 1.4%
1 277.4 275.5 0.7% 25.856 25.177 2.7%
2 1627.0 1618.2 0.5% 2.500 2.450 2.0%
3 4049.5 4026.8 0.6% 0.777 0.762 1.9%
4 7547.7 7502.8 0.6% 0.353 0.346 1.8% 

 

Table 5 – Bimorph Model Drive Power Comparison 

Mode Drive Power (watts)

Number MATLAB ANSYS Difference

1 109.9 106.5 3.2%
2 91.5 89.4 2.3%
3 107.3 105.6 1.6%
4 149.6 148.1 1.0% 
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The agreement is excellent, considering that the MATLAB model has 1/10 of the 

number of elements and fewer degrees of freedom than the ANSYS model.  Notice that 

for a relatively low power input, the bimorph delivers an impressive amount of 

deflection compared to a stacked type actuator.  At these large deflections, the model 

assumptions are violated and the solution accuracy is decreased.  The bimorph would 

likely break without some type of reinforcing layer. 

 

3.3 Verification of Bimorph FEM with fluid and damping in a sample cavity 

 

Finally, the bimorph model was added to the fluid model and verified using the cavity in 

Figure 13.  The results of the ANSYS model of the tapered cavity versus the Matlab 

solution are shown in Table 6 and Table 7. 

 

Table 6 –Tapered PAC Model Frequency and End Pressure Comparison 

Mode Frequency End Pressure (psi)
Number MATLAB ANSYS Difference MATLAB ANSYS Difference

1 426.71 424.16 0.6% 3.38 3.24 4.3%
2 548.77 548.41 0.1% 3.69 3.62 1.9%
3 944.15 948.71 0.5% 0.918 0.924 0.6%
4 1388.51 1388.70 0.0% 0.349 0.358 2.7% 
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Table 7 –Tapered PAC Model Displacement and Drive Power Comparison 

Mode Center point displacement (um) Drive Power (watts)

Number MATLAB ANSYS Difference MATLAB ANSYS Difference

1 15198.90 14876.00 2.2% 99.43 96.90 2.6%
2 1220.80 1175.85 3.8% 10.56 10.22 3.4%
3 78.67 78.39 0.4% 10.04 10.12 0.8%
4 44.36 44.70 0.8% 15.57 15.60 0.2% 

 

The frequency agreement of the combined model is still excellent.  The results agree to 

within 4% on amplitude and less than 1% on frequency even though different damping 

methods are used and the MATLAB model has many fewer elements.  The end pressure 

and drive power calculated are also in good agreement. 

 

3.4 Comparison with Published Measurement Data 

 

Lawrenson, et al. (1998) report the pressure measured at the end of several different 

geometry resonators filled with refrigerant R-134A and employing Entire Resonator 

Drive (ERD).  They analyzed the pressure signal and give the pressure recorded for the 

first 10 harmonics of the fundamental frequency used to drive the resonator.  They 

considered several geometries, a cylinder, a cone, and a horn-cone shape.  They only 

report both pressure and power for the horn-cone; therefore, this geometry was used to 

verify the Matlab model against a real world problem.  The acceleration in the model 

was varied until the output power matched that reported in the paper. 
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The thermodynamic properties of the refrigerant used in the MATLAB calculations are 

shown in Table 8.  The paper lists the density of the R-134A used in the experiment as 

13.8 kg/m3 and gives the ambient pressure within the cavity for the time during which 

measurements were taken.  Since the cavities were sealed, the ambient density does not 

change from one experiment to the next.  Given the density and pressure, the other 

thermodynamic properties were calculated.  These properties are obtained from the 

software program EES that implements the Martin-Hou equation of state. 

 

Table 8 – Material Properties for R-134A used in Experiment 

Property P=306kPa P=327kPa Units 

ρ  13.8 13.8 
3m

kg
 

c  154 159.2 
s

m
 

γ  1.16 1.16  

pC  908.4 922.2 
Kkg

J

⋅
 

κ  13.77 15.05 
Km

mW

⋅
 

η  11.75 12.41 sPa ⋅µ  
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Figure 16 –MATLAB output for horn-cone geometry using ERD at 14.74g (41.7 Watts) 
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Figure 17 –MATLAB output for horn-cone geometry using ERD at 28.02g (144 Watts) 
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Figure 18 – Time History Comparison of MATLAB to Experiment (41.7 Watts) 
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Figure 19 – Time History Comparison of MATLAB to Experiment (144 Watts) 
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Table 9 – Comparison of Matlab Linear Code to Experiment 

Power Frequency (Hz) Peak to Peak Pressure (psi)
(Watts) Experiment MATLAB Difference Experiment MATLAB Difference

41.7 463.6 463.9 0.1% 106.8 91.1 14.7%
144 481.8 479.6 0.5% 183.5 171.0 6.8% 

 

Table 10 – Comparison of Matlab Linear Code to Experiment (First Harmonic) 

Peak to Peak Pressure (psi)
Power First Harmonic Only

(Watts) Experiment MATLAB Difference

41.7 90.1 91.1 1.1%
144 130.2 171.0 31.4% 

 

Table 9 and Table 10 summarize the results compared to the experiment.  Figure 16 and 

Figure 17 show the shape of the standing wave and fluid velocity along the resonator 

axis for different drive levels.  Time history plots of the pressure signal at the end of the 

horn cone geometry in Figure 18 and Figure 19 compare the Matlab solution to the total 

measured response and the first harmonic measured response.  The Matlab results have 

been adjusted in level to coincide with the lowest pressure measured in the experiment.  

The Matlab solutions assume all of the input energy is delivered to the first harmonic; 

however, the nonlinearities present in the system pump some of the energy into higher 

harmonics.  This is particularly evident in Figure 19, where the linear solution is 

considerably higher in level than the actual first harmonic measured. 
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The Matlab code was also compared to an ANSYS model.  The two solutions are 

compared using the same accelerations and material properties as were used in the 

experiment comparisons above.  Table 11 compares the results for 14.74g acceleration 

and Table 12 for 28.02g.  The percent difference at each mode for the frequency and end 

pressure is exactly the same between the two drive levels.  This seems to point to a 

systematic modeling difference rather than some error in the code.  As the Matlab 

frequency agreement is excellent with the experiment, it appears that the Matlab model 

accurately models the frequency response of the fluid. 

 

Table 11 – Comparison of Matlab Linear Code to ANSYS for 14.74g Acceleration of 
Horn-Cone Resonator 

 
Mode Frequency (Hz) End Pressure (psi)

Number MATLAB ANSYS Difference MATLAB ANSYS Difference

1 463.9 452.9 2.4% 45.5 43.7 4.1%
2 725.9 713.3 1.7% 15.9 15.2 4.2%
3 990.9 973.7 1.7% 15.4 14.6 5.2%
4 1306.6 1274.8 2.4% 11.4 9.7 14.6% 

 

Table 12 – Comparison of Matlab Linear Code to ANSYS for 28.02g Acceleration of 
Horn-Cone Resonator 

 
Mode Frequency (Hz) End Pressure (psi)

Number MATLAB ANSYS Difference MATLAB ANSYS Difference

1 479.6 468.2 2.4% 85.5 82.0 4.1%
2 750.4 737.4 1.7% 29.9 28.6 4.2%
3 1024.4 1006.6 1.7% 28.8 27.4 5.1%
4 1350.7 1317.8 2.4% 21.4 18.2 14.6% 
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The frequency and pressure calculated by the linear code are in reasonable agreement 

with the experiment.  The mathematical model captures enough of the physics to 

approximate the system response and allow generation of an optimally shaped cavity. 

 

3.5 Optimization of cavity/actuator system 

 

Multiple optimizations were run with different initial cavity shapes such as straight, 

tapered, and spear point.  For each optimization, the drive voltage remained constant at 

90 volts across each layer.  The results of the optimization using air as the working fluid 

are shown in Figure 20 and Figure 21.  The cross-section displayed in Figure 20 is 

distorted, the axes are not plotted equally to allow for modification of the cavity.  Each 

blue control point can be moved by clicking on it with the mouse and dragging to a new 

location.  This lets the user have a qualitative feel for the sensitivity of the solution to 

small cavity dimensional changes. 
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Figure 20 - Matlab output of optimized shape (Air) 
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Figure 21 - Matlab frequency response of optimized shape (Air) 

 

Figure 21 shows a spectrum plot of the response.  If the application only requires ±12 

psi, a simple control system could be used as the frequency range is large for this level.  
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For the best pressure delivery, a fairly tight controller with feedback is required to 

maintain operation at the optimum point at the peak of the pressure. 

 

A three-dimensional cross-section of the optimized shape is shown in Figure 22.  The 

shape bears a striking resemblance to a wine bottle. 

 

Figure 22 - Cross section of optimized shape (Air) 

 

Using the air solution as a starting point, another optimization was done for R-134A as 

the working fluid.  Mode shapes and frequency response plots follow in Figure 23 and 

Figure 24.  The resulting cavity delivers relatively high pressures, possibly enough to 

drive a small refrigeration system. 
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Figure 23 - Matlab output of optimized shape (R-134A) 
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Figure 24 - Matlab frequency response of optimized shape (R-134A) 
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The preceding shapes were transferred to ANSYS for verification.  The shape was 

generated in ANSYS using the native cubic spline and the control points as defined by 

the optimization results. 

 

3.6 Verification of Optimized Shape 

 

In the ANSYS model, the walls of the acoustic cavity are assumed rigid and designated 

as impedance surfaces to include the damping as discussed in section 2.3.1.  The 

piezoelectric bimorph is created and the surface of interaction identified.  Plots of the 

pressure contours are shown below in Figure 25 and Figure 26.  Note that the pressure 

wave is nearly planar at 1719.2 Hz (Mode 2) but shows considerable two-dimensional 

effects at 1636.2 Hz (Mode 1).  This likely accounts for some of the differences between 

the ANSYS and Matlab models.  The ANSYS model is a two-dimensional axisymmetric 

model of the acoustic fluid while the Matlab model is one-dimensional.  Table 13 and 

Table 14 compare and summarize the results of the two solution approaches. 
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 1616.9 Hz     1678.4 Hz 

Figure 25 – Mode 1 and 2 Pressure (psi) in optimized cavity (ANSYS, Air) 
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 1954.7 Hz          3603.0 Hz 

Figure 26 – Modes 3 and 4 Pressure (psi) in optimized cavity (ANSYS, Air) 
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Table 13 – Comparison of Optimized PAC Frequency and Pressure Results (Air) 

Mode Frequency (Hz) End Pressure (psi)
Number MATLAB ANSYS Difference MATLAB ANSYS Difference

1 1632.76 1616.90 1.0% 17.94 17.00 5.5%
2 1695.23 1678.40 1.0% 19.39 19.37 0.1%
3 1964.54 1954.70 0.5% 6.963 6.774 2.8%
4 3634.54 3603.00 0.9% 0.444 0.465 4.5% 

 

Table 14 – Comparison of Optimized PAC Displacement and Power Results (Air) 

Mode Center point displacement (um) Drive Power (watts)
Number MATLAB ANSYS Difference MATLAB ANSYS Difference

1 1654.21 1393.49 18.7% 42.10 35.64 18.1%
2 1701.46 1930.45 11.9% 44.01 49.68 11.4%
3 235.01 236.28 0.5% 6.34 6.40 1.0%
4 19.03 19.23 1.1% 9.96 9.88 0.8% 

 

Notice the large difference in actuator center displacement in the first two modes.  At 

these large displacements, the assumptions used in the Matlab model become invalid.  

The ANSYS model does not make the same assumptions, and as such may be considered 

more correct.  Frequency agreement is excellent between the two approaches indicating 

that the response differences are due to two-dimensional effects and the differences in 

damping models. 

 

Verification of the optimization using R-134A as the working fluid follows.  The shape 

is very similar, comparisons between ANSYS and the MATLAB solution shown below 
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         940.07 Hz              1063.8 Hz 

Figure 27 – Mode 1 and 2 Pressure (psi) in optimized cavity (ANSYS, R-134A) 
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         1337.4 Hz              1924.3 Hz 

Figure 28 – Mode 3 and 4 Pressure (psi) in optimized cavity (ANSYS, R-134A) 
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Table 15 – Comparison of Optimized PAC Frequency and Pressure Results (R-134A) 

Mode Frequency (Hz) End Pressure (psi)
Number MATLAB ANSYS Difference MATLAB ANSYS Difference

1 953.76 940.07 1.5% 72.26 70.09 3.1%
2 1074.9 1063.8 1.0% 66.03 61.39 7.6%
3 1346.9 1337.4 0.7% 74.57 73.61 1.3%
4 1966.6 1924.3 2.2% 23.86 24.80 3.8%

 

 

Table 16 – Comparison of Optimized PAC Displacement and Power Results (R-134A) 

Mode Center point displacement (um) Drive Power (watts)
Number MATLAB ANSYS Difference MATLAB ANSYS Difference

1 3002.2 2840.6 5.7% 44.6 41.7 7.0%
2 5339.0 5316.3 0.4% 88.2 87.0 1.4%
3 2962.2 2809.4 5.4% 59.7 56.2 6.3%
4 168.5 184.7 8.8% 9.0 9.2 1.4%

 

 

Figure 27 and Figure 28 show that the R-134A results have more pronounced two-

dimensional effects than the air results.  The increased density of R-134A over air allows 

the chamber to develop higher pressures.  Note that the end pressure of 70 psi (mode 1) 

requires 41.7 watts of electrical power.  Referring to Table 10 of the experimental data, 

41.7 watts of power delivered to a chamber using ERD produced 90 psi.  The paper by 

Lawrenson, et al. does not specify the electrical power necessary to drive the chamber, 

only the amount of power delivered to the fluid via the electromechanical actuator.  The 

optimal cavity found here delivers nearly the same amount of pressure for approximately 

the same power but without the complication of a moving cavity. 
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4 Summary, Conclusions, and Future Work 

 

The concept of a Piezoelectric Acoustical Compressor was introduced and a finite 

element model of the system was developed.  This model may be used for optimizing the 

chamber shape and actuator size concurrently.  The frequency and pressure predicted by 

the model is in good agreement with the commercial FEM code ANSYS.  The fluid 

damping model included is in reasonable agreement with one set of experimental 

measurements found in published literature.  An optimal chamber was found that could 

generate ± 19 psi at 1700 Hz for 50 watts of power using air as a working fluid.  Another 

optimal chamber was found using R-134A as working fluid that can generate ± 70 psi at 

950 Hz for 42 watts of power. 

 

Future work will be to build and verify the design.  As the material properties of 

piezoelectric materials can vary substantially and fluid properties will change during 

operation, a control system will be needed to maintain the drive frequency at the 

optimum point for high-pressure delivery.  One-way valves will also need to be added 

for the compressor to be useful.  The results of the experiments can be used to verify the 

damping model and the piezoelectric drive power model used in this thesis. 
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