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Preface 

 This project was support by the National Institute of Justice to further the 

knowledge and analysis of spontaneous ignition for fire investigations.  This thesis 

was intended to help fire investigators diagnose the occurrence of spontaneous 

ignition for self-heating materials.  The focus of this study was to present a 

mathematical model that can be a tool for forensic fire labs, and increase the accuracy 

of results by examining heat transfer characteristics for testing materials. 
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Nomenclature 

A = pre-exponential factor [s-1] 

!!"#$ = 2!" + 2!" + 2!" 

c	
  =	
  specific	
  heat	
  of	
  the	
  basket	
  [461	
  

J/kg-­‐K]	
  

E = activation energy [kJ/mol] 

!!" = view factor = 1 for parallel 

plates 

g = gravity [9.81 m/s2] 

h = basket heat transfer coefficient  

! = basket height [m] 

r = half-width of object  

R = universal gas constant [8.314x10-3 

kJ/mol-K] 

! = mass of the basket [kg] 

Q = heat of reaction [kJ/kg] 

! =	
  surface	
  area	
  of	
  basket	
  =	
  5 ∗ !!	
  

TA = ambient temperature [K] 

Ti = initial material temperature [K] 

TP = hot plate temperature [K] 

TR = reference temperature [K] 

!! = basket surface temperature [K] 

 

Greek 

 = Biot number  

! = !
!!"#$

= volumetric thermal 

expansion [K-1] 

!! = emissivity of the basket 

!! = emissivity of the oven 

!! = kinematic viscosity of air at Tfilm 

[m2/s] 

!S  = thermal conductivity of the 

material [W/m-K] 

! f = thermal conductivity of air  

!! = kinematic viscosity of air at Tfilm 

[m2/s] 

 !! = measured air velocity in 

convection oven [1.6 m/s] 

 = material density  [kg/m3] 

! = Stefan-Boltzmann constant 

[5.67*10-8 W/m2-K]

! =
hr
!
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Chapter 1: Introduction to Spontaneous Ignition 

Self-heating refers to the exothermic reaction of an unstable material leading to an 

internal temperature rise due to limited thermal conductivity within a material.  Any 

substance that possesses exothermiscity, by itself or in the presence of air, is prone to an 

unstable condition in which its internal temperature can increase significantly due to the 

heat released from a chemical reaction.  This reaction can be a decomposition of the 

substance, or oxidation.  An example of an exothermic substance is ammonium 

perchlorate (NH4 ClO4) or wood fiberboard.  Gaseous products from the reaction can be 

trapped causing large pressure increase or fissures in the material.  With a sufficient 

internal temperature increase, an accelerating reaction front can propagate through the 

material.  The internal temperature can increase high enough, with sufficient available 

oxygen, so that smoldering conditions may occur.  Eventually, the smoldering can 

transition to flaming.  The initiation of smoldering or flaming conditions here is referred 

to as spontaneous ignition or thermal explosion.   

 ASTM E-659 (ASTM Standard E659-78, 2005) is a standard test to analyze the 

spontaneous ignition of liquid heated to vapor in air.  It does this by measuring the 

minimum furnace temperature to cause a flame in a 500 ml spherical flask containing 

several drops of the evaporated liquid.  Spontaneous ignition for gaseous fuels in air 

occurs at the onset of a flame and the minimum temperature to cause ignition is called the 

auto-ignition temperature.  While auto-ignition temperatures are typically listed for 

liquids and gases, these values will vary depending on the size of the flask, the conditions 

of heating, and the configuration of the flammable mixture.  For example, the same fuel 

tested in ASTM E-659 and tested on a hot surface, the test on a hot surface will require a 
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much higher temperature for spontaneous ignition.  NFPA claims an increase of 200 ⁰C 

will be needed for ignition, but the temperature increase required can be more.  The hot 

surface case will require a higher auto-ignition temperature due to the heat source only 

being adjacent to the bottom of the flask.  

This thesis focuses on spontaneous ignition of porous oxidizing or exothermically 

decomposing solids.  To determine if spontaneous ignition may occur, the rate at which 

heat is generated from the exothermic reaction can be compared to the rate of heat 

released from the material to the surroundings.  When the rate of heat generated is less 

than the rate of heat escaped, the material will remain steady until all reactive material is 

depleted.  In contrast, if the material is generating heat at a higher rate than can be 

released, the temperature within the material will rapidly increase, known as thermal 

runaway.   

In determining the behavior of spontaneous ignition for porous solids, a 

combination of parameters is examined.  The main parameter is the critical ambient 

temperature (CAT), which is the surrounding air temperature that creates the onset of 

ignition.  This value may be obtained experimentally with a standard oven test, where a 

stainless steel wire-mesh basket is filled with reactive material and heated at a constant 

temperature in a convection oven (Bowes, 1984).  The test is repeated at different 

temperatures until the minimum temperature to cause ignition is obtained.  The CAT of a 

material can vary greatly with material volume, shape, and heating configuration; 

therefore, a mathematical model is needed to correlate results over a range of material 

sizes.  Frank-Kamenetskii (1939) developed the first mathematical model allowing the 
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means of determining conditions needed for spontaneous ignition, as well as a correlation 

for scaling critical temperatures with varying material sizes.   

The Frank-Kamenetskii model (F-K) uses a dimensionless heat generation 

parameter for a pile of material called the Damkohler number (! ) and compares it to the 

critical Damkohler number (!c ), which is the critical value of heat generation to cause 

ignition.  If ! !!c , ignition will occur.  The use of the Frank-Kamenetskii model with 

oven tests will be described for different fire scenarios and material shapes.   Material 

properties that do not vary with material configuration, P and M, and the method of 

determining these properties will be described.  P is the ratio of the activation energy (E) 

for the material to the universal gas constant (R), and M is a combination of variables 

from the Damkohler number that do not vary with body size or temperature under F-K 

theory assumptions. 

Note that the Frank-Kamenetskii model is simplified and ignores many factors 

such as the diffusion of oxygen, moisture, non-conduction heating within the substance, 

mixtures with competing reactions, and transient effects.  Since many factors are 

neglected in this theory, its results in practice should only be used as a guide to 

interpreting the spontaneous ignition.  The fire scenarios for a cold material in a hot 

environment, material on a hot plate, and hot material in a cold environment described 

later are ideal, and their application to real event scenarios are not likely to be perfect.  

This factor, as well as effects ignored in the theory, is responsible for the cautionary 

considerations in making predictions; however, it is the only tool that can be applied 

without the consideration of complex factors that may not stand the test of accuracy in 

their modeling.  Still, this approach will give reasonable results provided the input data 
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do not vary with scale.  One important deficiency is that data obtained at temperatures 

above the melting point will not conform to exposure conditions below the melting point.  

The material would lose its integrity by melting at the high temperature, while the outside 

of the material will retain solid integrity at the low temperature. 

In practice, the F-K method can be used to examine a real fire scenario in the 

following manner: 

1. Find!c  for the given scenario.  This parameter depends on the shape of the 

material body and the heating configuration being analyzed.  Details on finding 

!c  are given in Chapter 3 for the heating configurations of a cold body in a hot 

environment (Section 3.3), material layer on a hot surface (Section 3.4), and a hot 

body in a cold environment (Section 3.5).  This parameter may need to be 

adjusted if assumptions in Section 3.2.1 are not met.  Adjustment calculations are 

given within Sections 3.3, 3.4, and 3.5. 

2. Use a testing method, such as the oven basket method, to find the CAT for 

multiple size baskets.  The CAT values will change if the Biot number for the 

basket and the surroundings is not large.  The Biot number is large when the 

basket surface temperature remains approximately the same as the oven 

temperature, which is typically present in an oven basket test through high fan 

speed.  In the event that this value is not large, a correction can be made to !c  by 

following the heat transfer method provided in Chapter 5 and using the Biot 

correction in Section 3.3.2. 

3. Find the material constants, P and M, using the data produced by the standard 

oven basket test.  
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Section 4.2 gives a general description for finding these properties.  Section 4.5 is 

a compilation of P and M values from various sources. 

4. For the calculated P and M constants and the given half-width (r) from the real 

fire scenario, the minimum ambient temperature to cause ignition may be found, 

as seen in Section 4.6.  If the surrounding air temperature is higher than the 

calculated critical temperature, ignition is likely to occur.  The calculated critical 

temperature is only a rough estimate, so caution should be taken when analyzing 

the likelihood of spontaneous ignition. 

 

The purpose of this study is to provide fire investigators with: 

1. A guide of determining spontaneous ignition hazard for porous solids in three fire 

scenarios: cold material in a hot environment, material layer on a hot surface, and 

hot material in a cold environment. 

2. A method of experimentally finding material constants, P and M, for self-heating 

materials. 

3. A database of listed P and M values. 

4. An experimental procedure for finding the heat transfer coefficient between 

material and its surroundings in oven basket tests. 
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Chapter 2: Background 

 Many common materials such as fertilizers, animal feedstuff, grass, wood, and 

grains are known to generate heat during decomposition.  In combination with the 

magnitude of the volume of material and the exposure temperature, these materials can 

undergo spontaneous ignition.  Many self-heating fire cases result in large fires that make 

investigations difficult due to the destruction of evidence; however, the trend points to the 

phenomenon as the cause (Gray, 2002).  Spontaneous ignition is often difficult to 

investigate and even overlooked.  The hazard of spontaneous ignition has led to 

numerous fatalities and costly property damage. 

 February 23, 1991 a high-rise office building fire occurred at One Meridian Plaza 

in Philadelphia, Pennsylvania.  The fire was caused by the spontaneous ignition of 

linseed oil on cotton rags.  The innocent resulted in the fatalities of three Philadelphia 

firefighters and an estimated $100 million in direct property loss.  The litigation resulted 

in approximately $4 billion in civil damage claims (Routley, Jennings, & Chubb, 1991). 

Mitchell (1951), discussed a fire that occurred in the summer of 1950 that caused 

$2,609,000 in damages.  According to Mitchell’s article, nine freight cars of wood 

fiberboard were being delivered from a manufacturer in the South to an Army Warehouse 

in upstate New York.  Seven days into shipment and only a few miles from its 

destination, one of the freight cars was discovered in flames.  The car was left in the 

railyard and the remaining eight continued to the Army Warehouse where the fiberboard 

was unloaded into one pile.  Two days after being unloaded, the fiberboard pile ignited 

destroying the warehouse and its contents.  Tests of wood fiberboard specimens later 

determined that the fire causes were due to spontaneous ignition (Mitchell, 1951). 
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 Another common material that has caused countless accidental fires due to 

spontaneous combustion is calcium hypochlorite.  In July of 1999, a containership ship, 

CMA Djakarta, carrying a dry form of calcium hypochlorite set fire while sailing south of 

Crete.  The 21-member crew was required to abandon the 1998-built ship as the fire 

started among the containers on deck.  Efforts to extinguish the flames were unsuccessful 

as the flame continuously re-ignited due to the high ambient temperatures off the coast of 

Egypt (Darling, 1999).   

 In December of 1998, another anhydrous form of calcium hypochlorite was 

reported to ignite the cargo ship CMA Aconcagua while sailing off the Ecuadorian coast.  

The crew safely evacuated, though damages to the ship and cargo loss were estimated 

between $15-18 million.  As opposed to the incident on the Djakarta, the Aconcagua held 

the calcium hypochlorite below deck where temperatures may rise above ambient 

(Darling, 1999). 

 One month prior to the Aconcagua incident, an explosion occurred on the DG 

Harmony off the coast of Brazil.  According to the United States Court of Appeals for the 

Second Circuit ruling for the Harmony explosion, the ship was carrying approximately 

160,000 kilograms of calcium hypochlorite below deck.  On November 9th, an explosion 

occurred in the area where the calcium hypochlorite was being held.  The crew attempted 

to fight the fire for 12 hours before abandoning the vessel and the ship continued to burn 

for 3 weeks (DG Harmony v. PPG Industries Inc., 2008).  Though there were no 

casualties, the estimated damage was $16 million (Darling, 1999). 

 Another explosion on the vessel Contship France occurred in October of 1997.  

The ship had 512 drums of calcium hypochlorite (Contship Containerline Ltd. v. PPG 
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Industries Inc., 2006) aboard while docked in Papeete Harbor, Tahiti.  The explosion was 

originally thought to have been caused from a cargo of aerosol spray cans, until further 

investigation led to the self-heating of calcium hypochlorite contained in the area of the 

explosion (Darling, 1999).  The court ruling acknowledged that temperatures in the cargo 

area were high enough for the calcium hypochlorite to spontaneously ignite resulting in 

the cause of the explosion. 

 The previous accounts of cargo vessel fires were the result of dry calcium 

hypochlorite.  The chemical is also available in a more reactive hydrated form, which 

must be kept on deck during marine vessel transport.  In 1993, the Russian cargo ship 

Kapitan Sakharov set fire due to the self-heating of a hydrated calcium hypochlorite.  

Though the chemical was transported on deck, it is believed that radiation from the sun 

provided sufficient heat for spontaneous ignition to occur.  In addition to the vast 

financial damage, two fatalities occurred due to the fire (Darling, 1999). 

 Power companies and coalmines are familiar with the hazards of coal dust.  

Several fires have occurred in the past decade due to coal dust spontaneously combusting, 

including one in Gillette, Wyoming.  In June of 2004 at the Buckskin mine in a fire 

occurred at a storage warehouse causing $200,000 in damages.  According to the fire 

investigator, the cause of the fire was most likely the spontaneous ignition of coal dust 

that collected in the warehouse (The Gillette News, 2004). 

The occurrences of extensive damage from spontaneous ignition mentioned are 

only a few examples of countless events throughout history. The phenomena of self-

heating can cause millions of dollars in asset loss and hundreds of fatalities.  In the 

investigation of similar occurrences, spontaneous ignition is often a neglected cause of 
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fire or misdiagnosed.  The scope of this project will give an investigator a greater 

understanding of spontaneous ignition that will enable its recognition, and establish 

testing and analysis techniques to support its likelihood. 
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Chapter 3: Self-Heating 

3.1 General Description of Spontaneous Ignition 

The occurrence of spontaneous ignition in porous solids is simplified into two 

attributes of a material body: the internal heat generation rate, and the heat release rate to 

surroundings.  The rate of heat that escapes from a reactive pile to the environment is 

dependent on the size, shape, and thermal conductivity of the material.  A large pile size 

as well as a low conductivity will restrict heat release, therefore, increasing the 

probability of spontaneous ignition.  The heat generation within the pile is related to the 

reactivity of the material and the temperature inside the body.  Most exothermic oxidation 

reactions become more reactive with higher temperatures, so heat generation increases 

with rising body temperatures.  In general, the pile is stable as long as the rate of heat 

generated is less than the rate at which heat can be released from the material.  If the pile 

reaches conditions in which the rate of heat generation is faster than the release rate, the 

center temperature of the material will increase.  In most cases the increase of center 

temperature will cause the central heat generation to increase, leading to thermal runaway 

and ultimately ignition.  With sufficient available oxygen to the center of the material, 

flaming conditions may occur.  The oxygen needed for ignition can be supplied from 

diffusion or buoyant flow. 

A scientific model for determining the likelihood of spontaneous ignition for a 

known pile size and ambient conditions has been developed by Frank-Kamenetskii 

(Frank-Kamenetskii, 1939) and examined by Bowes (Bowes, 1984).  Frank-
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Kamenetskii’s model uses a dimensionless heat generation parameter, called the 

Damkohler number (! ), 

! =
E / R
TR

"AQ
#

r2

TR
exp !E / R

TR

"

#
$

%

&
'
          

(3.1) 

and compares it to the Critical Damkohler number, !c .  When ! >!c , spontaneous 

ignition occurs.  The Critical Damkohler number varies with the geometric condition, and 

the computations are explained for material in the following three common scenarios: (1) 

pile in a hot environment, (2) material on a hot surface, and (3) hot material in cool 

environment. 

 

3.2 Self-Heating Theory 

3.2.1 Assumptions to the Theory 

 The Frank-Kamenetskii theory derivation is valid under certain assumptions.  

These assumptions are developed by Frank-Kamentskii (Frank-Kamenetskii, 1939) and 

listed by Paula F. Beever (Beever P. F., 1988). 

1.) A single zeroth order exothermic reaction generates heat as a function of temperature 

only.  Also, there is no depletion or consumption of reactants due to the heat 

generation reaction.   

2.) The activation energy is high enough for the condition  

  ! =
RTA
E

<<1             (3.2) 

to hold true, where TA is the ambient temperature. 

3.) Conduction accounts for the heat transfer within the body. 
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4.) Convective and radiative heat transfer between the body surface and surroundings is 

enough so that the body surface temperature remains approximately equal to the 

surrounding air temperature.  High heat transfer between the body and environment 

implies the Biot Number, ! , approaches infinity such that: 

  ! =
hr
"
!"              (3.3) 

 If the Biot number is finite (not large), adjustments to !c  are needed (Section 3.3.2 

of this thesis) 

  

 It is important that the assumptions listed are met to ensure accuracy of the 

spontaneous ignition criteria.  A high heat transfer between the reactive body and 

surroundings is achieved with a high oven fan speed.  The high convection from an oven 

fan is easily applied in oven tests; however, fire incidents will often have low air 

velocities at the reactive material.  Low heat transfer between the body and surroundings, 

depletion of the reactive material, and low activation energy cause inaccuracy in the 

Damkohler number, in which it is necessary to use corrections.   

 

3.2.2 Introduction to Self-Heating Theory 

 The basis of the theory was developed by Frank-Kamenetskii and evaluated by 

Bowes (1984).  The results and notation from Bowes will be used.  The basic energy 

conduction equation with a uniform energy generation rate due to an exothermic 

chemical reaction is given as 

 !c !T
!t

="#""T + !$$$q             (3.4) 
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where, the heat generation term with no depletion is assumed to follow the Arrhenius 

Equation, given by: 

!!!!q =Q!Ae"E /RT             (3.5) 

The pre-exponential factor, A, can depend on temperature, and the concentration of the 

reactants.  Hence when the reactants are consumed from the heat generation reaction, A 

goes to zero as there is no energy generation.  A plot of !′′′ with temperature is sketched 

in Figure 3.1 for A constant (no depletion). 

 

Figure 3.1:  Internal heat generation with no depletion as a function of temperature. 

 

The rate of heat generation reaches a maximum of !QA as T→∞, and the values 

of !′′′ can range as low as 10-15 W/cm3 at normal ambient temperature to 1010 W/cm3 at 

flame temperatures.  If A drops as reactants are depleted, the curve in Figure 3.1 collapses 

to the horizontal axis.  In Equation 3.4, as long as the generation term is greater than the 

conduction term, the temperature will increase in the material. Even if a steady condition 

q''' 

T T~25°C 
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is reached the material will be higher than its surroundings, as the generation must equal 

the conduction loss. 

For a pile in uniform surroundings, the center temperature would be highest.  

Bowes considers such a case, and sketches the center temperature (To) relative to the 

ambient temperature (TA).  The lower curve (0-I) in Figure 3.2 represents steady 

conditions for this reaction. 

 

Figure 3.2:  Material center and ambient temperature differences as a function of the 
ambient temperature (Bowes, 1984) 

 

The upper curve from E represents steady conditions once ignition occurs to a smoldering 

reaction.  The level of the E curve will increase as the diffusion of oxygen dies.  The 

ambient temperature at I is the temperature needed for spontaneous ignition to 

smoldering.  The new steady state to S involves a jump in To.  The E point is the 

extinction of the smoldering reaction, and the curve I-E is unstable.  In reality, the 
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depletion of reactants would make the process unsteady.  A sketch of this is shown below 

where two different outcomes occur for TA less than and greater than its critical value at I, 

TA,crit. 

 

 

Figure 3.3: Critical (TA > TA,crit) and subcritical (TA < TA,crit) heating curves 

 

There is a more significant temperature rise above the critical condition for ignition.  

Alternatively, the size of the pile at a fixed TA could have a critical condition for this 

large temperature rise or “ignition”.  Here the ignition outcome is depicted as steady 

smoldering, but flow changes in the pile at this jump in temperature could lead to 

flaming.  

 

3.2.3 Steady Analysis 

With no reaction depletion, two outcomes are possible: (1) a steady solution exists 

where the center temperature becomes constant (T0>TA), (2) no steady solution exists and 
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the internal temperature will lead to thermal runaway.  In the approximate theory of F-K 

to follow, the non-steady case will cause the internal temperature to become infinite.  In 

real cases, ignition to smoldering or flaming prevents an infinite rise.  Hence, the 

approach is to examine problem scenarios governed by Equations 3.4 and 3.5 for which 

the point of no steady solution is found.  This is the “critical condition” that makes the 

boundary between a stable steady solution and ignition or thermal runaway.  In this way 

the conditions for spontaneous ignition are found. 

Analyzing the steady state condition of the energy balance, the left-hand side 

remains constant and, by definition, is zero.  This reduces Equation 3.4: 

!"#!"T = !$$q              (3.6) 

Next, Equations 3.5 and 3.6 can be non-dimensionalized with the identity,  

 !
E
RT

" !
E
RTA

+
!

1+"!
           (3.7) 

where, a dimensionless temperature (! ) can be defined as: 

! =
E
RTA

2 T !TA( )              (3.8) 

and  

! =
RTA
E

             (3.2)  

A dimensionless distance (z) is defined by 

 z = x
r

              (3.9) 

and, a dimensionless heat generation parameter is defined by the Damkohler number 

given by Equation 3.1.  The half-width (r) for common shapes can be seen below. 



 

 17 

 

 

Figure 3.4: Dimensions for an infinite slab, infinite cylinder, and sphere. 

 

Applying the given dimensionless parameters to the energy balance equation and 

recognizing!! 0  from Assumption 2, Equation 3.6 can be written as: 

 d 2!
dz2

+
j
z
!!
!z

+"e! = 0           (3.10) 

This can be thought of as the activation temperature to the system temperature.  The 

second parenthesis represents the energy by chemical reaction to the heat conducted.  It 

too is large for combustion substances, ~ 104, as ! is usually of order 1. 

 A solution for !  will depend on δ.  As δ increases (caused by an increase in r or 

TA), a value will be reached where a steady solution is not possible.  This is the critical 

value, δc.  Equation 3.10 can be solved for different scenarios, and the δc can be 

determined.  This process is described in the following sections.  Then if δ ≥ δc for the 

actual state of the substance, ignition is said to occur.  Three common scenarios will be 

examined, and the results found in the literature will be presented. 
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3.3 Material in a Hot Environment 

3.3.1 Finding the Critical Damkohler Number 

 Consider a uniform material with a given geometric shape exposed to the 

environment as seen in Figure 3.5.   

 

Figure 3.5: Reactive material in hot environment at TA . 

 

To find a solution to the Equation 3.10, boundary conditions must be added.  Considering 

the boundary condition at the surface of the object, the heat transfer can be expressed by: 

 !!!q = h Ts "TA( )           (3.11) 

At the surface layer, the amount of convective heat transferred to the surroundings must 

be the same as the conduction heat transfer within the material; therefore, the surface 

layer may be represented by 

 !!
"T
"x

= h Ts !TA( )           (3.12) 

at x = r.  By symmetry, the boundary condition at the center is 

 dT
dx

= 0            (3.13) 
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at x = 0.   

 Finally, the boundary conditions need to be non-dimensionalized by substituting 

the dimensionless variables.  The boundary condition are given by 

 !
d!
dz

="!            (3.14) 

for the center, z = 1, and 

 
d!
dz

= 0            (3.15) 

for the surface, z = 0.  Notice that the boundary condition for the body center is a function 

of the Biot number, ! .  The Biot number is expressed by the following equation. 

 ! =
hr
"

           (3.16) 

Examining the non-dimensional expressions, a steady-state solution will depend on !,",

and z. 

 The heat transfer coefficient can be a combination of convection and radiant 

heating from the surroundings.  For the unsteady problem where the initial material 

temperature Ti < TA, the temperature response is illustrated for a symmetric slab of r in 

Figure 3.6.  This case is like the “oven-method”, where cubes of material are inserted into 

a hot oven, to find critical temperature.  
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Figure 3.6: Symmetric self-heating over time for an infinite slab 

 

A solution to Equation 3.10 with boundary conditions has been given by Thomas 

(Thomas, 1958) for the symmetric slab.  The result shows that δc depends on ! , such 

that 

!! 0 , δc = !
!
 

!!" , δc = 0.88 

Complete results are given for the slab, cylinder, and sphere in Figure 3.7, and !S  (!  at z 

=1) and !o  (!  at z = 0) are given in Figures 3.8 and 3.9, respectively. 

To implement these results for a given geometry, the following properties must be 

known: the size of the material (r), the specified ambient temperature (TA), and the 

computed Biot number (α).  

 

Curves 1 and 2:  heating from TA 

Curve 3:  steady result, now cooling to TA,  

Curve 4:  ignition event,  
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Figure 3.7:  !c  as a function of the Biot number for common shapes (Thomas, 1958) 
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Figure 3.8:  !S  as a function of the Biot number for common shapes (Thomas, 1958) 

Figure 3.9:  !o  as a function of the Biot number for common shapes (Thomas, 1958) 

 

Also, the table below gives !c for common shapes as listed by Bowes (Bowes, 1984).  

The following !c values listed are for cases where all assumptions are satisfied.   

Body δc(!!" ) θο 
Infinite plane slab, thickness 2r 0.878 1.119 
Infinite cylinder, radius 2r 2.000 1.386 
Infinite square rod, side 2r 1.700 1.492 
Sphere, radius r 3.322 1.622 
Short cylinder, radius r, height 2r 2.764 1.778 
Cube, side 2r 2.519 1.888 

Table 3.1:  Values for a more complete list of geometries for !!"  (Bowes, 1984) 
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3.3.2 Correcting for Finite Biot Number 

 If certain assumptions to the self-heating theory are not met, corrections can be 

applied to increase the accuracy of the critical Damkohler number.  The cases for which 

corrections may be applied are for the cases of finite Biot numbers, material consumption 

from the reaction, and materials involving low activation energy.  Bowes uses correction 

equations from Barzykin et al (Barzykin, Gontkovskaya, & Merzhanov, 1966).  The 

corrections act as factors to the uncorrected critical Damkohler value, denoted  

!c !, 0,!( ) .  The following equation may be used for corrections: 

 !c ",#,B( ) =!c !, 0,!( )C!C"CB         (3.17) 

where, !c !,",B( )  denotes the critical Damkohler number corrected for !,",B , and

C!,C",CB  are the correction factors for !,",B , respectively.  Here, C!  corrects for the 

Biot number, C!  corrects for low activation energy, and CB  corrects for material 

depletion.  

As seen in Figure 3.7, !c  will vary significantly for small values of ! .  In finding 

the critical Damkohler number corrected for ! , denoted !c (") , the correction factor can 

be found with two methods.  The first method is by inspection of Figure 3.7 and is valid 

for 0.0<! <15.  The graph may be used directly to find !c (")  for the listed shapes: 

sphere, cylinder, and slab.  If the desire shape is not shown in Figure 3.7, the curve for a 

sphere may be used in the following manner.  The critical Damkohler number for a 

sphere corrected for ! , !c (")sphere , can be obtained by inspection from Figure 3.7 and 

divided by the uncorrected critical Damkohler number for a sphere from Table 3.1, 
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!c (" !")sphere  [3.322].  This is the !  correction factor, C! , and may be thought of as a 

percentage of the !  corrected and uncorrected Damkohler values of a sphere.  This 

percentage is then multiplied with the uncorrected Damkohler number for the desire 

shape, !c (" !")shape , found in Table 3.1, i.e.: 

!c "( ) = !c "!"( )shape
!c "( )sphere
3.322

#

$
%
%

&

'
(
(
        (3.18) 

The second method has been provided by Barzykin et al (Barzykin, 

Gontkovskaya, & Merzhanov, 1966) and adopted by Bowes.  Barzykin offers a Biot 

correction correlation that similarly follows Figure 3.7.  The following correlation can be 

used for any material shape with known finite Biot number: 

C! =
!
2

! 2 + 4 !!( )exp ! 2 + 4 !! ! 2
!

"

#
$$

%

&
''        (3.19) 

where,  !c "( ) = !c "!"( )C"  from Equation 3.17. 

Example for Biot correction:  Suppose !c (")  for an infinite slab is to be found.  If 

the Biot number is calculated to be 3 (! = 3 ), then !c (" = 3) ! 0.5  from the slab curve in 

Figure 3.7.  The figure below shows the low Biot values of the slab curve and the 

corresponding !c (")  values. 
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Figure 3.10: Finding !c  for a slab with ! = 3  

 

To test the graph using Equation 3.18, !c (" !")slab is known to be 0.88 and !c (" = 3)sphere  

is approximately found from Figure 3.7 to be 1.85.  The equation gives 

!c " = 3( )slab ! 0.49  which, is very close to!c " = 3( )slab ! 0.5  value found directly from 

the graph.  Calculating !c " = 3( )slab  from Equation 3.19, !c " = 3( )slab ! 0.50 . 

 

3.3.3 Correcting for Low Activation Energy 

 By the assumptions under the self-heating theory, the activation energy must be 

high enough for the condition  

               (3.2) 

to be justified.  E is typically in the range of 60-140 kJ/mol for self-heating materials and 

as a result, RTA
E

 is generally on the order of TA
104

 (E ~ 100 kJ/mol).  For fire conditions, 

! =
RTA
E

<<1
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TA ~ 103 yields .  Babrauskas suggests that corrections for low activation energy 

do not need to be made in practice for E > 40 kJ/mol (Babrauskas, 2003).  

 Under circumstances that require a correction and E is known for the material, a 

correction factor can be applied to the !c !!"( )  from Table 3.1.  Barzykin et al provide 

the following correction factor: 

 C! =1+!            (3.20) 

 

3.3.4 Correcting for Reactant Consumption 

 Now that the Critical Damkohler Number is corrected for the finite Biot Number 

and low activation energy, the Critical Damkohler Number can next be corrected for 

reactant consumption.  The self-heating theory assumes a single zeroth order exothermic 

reaction generating heat as a function of temperature only.  As in all real systems, 

reactants are consumed and thus an ideal steady state is not possible.  To account for 

reactant consumption, it is necessary to determine the dimensionless adiabatic 

temperature rise for the system (B), as well as a dimensionless ambient temperature (! ).  

The equation for !  is given by Equation 3.2 and B can be found using the following: 

CB =
1

a! b n
B( )

2/3           (3.21) 

where a and b are constants that vary with !  and n is the reaction order.   

Also, 

 B = E
RT 2

A

QCo

!c
           (3.22) 

! ~ 0.1
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where Q is the heat of reaction, and Co is the initial concentration of the reactant.  For 

porous solids, Co and !  will approximately be the same, and therefore, cancel each 

other.  Values for a and b with known !  can be found from the table below.   

!  a b 
0.000 1.000 2.28 
0.025 0.973 2.35 
0.050 0.944 2.41 
0.075 0.916 2.49 
0.100 0.885 2.56 

Table 3.2:  a and b values with varying !  (Bowes, 1984) 

Due to doubts by B F Gray and Sherrington on the validity of the analysis, Barzykin et al 

suggests that a = 1 and b = 2.4 can be used with reasonable accuracy for first order 

reactions, i.e. n = 1.  

 This correction is difficult to implement due to the extent of variables needed for 

calculations.  The reaction order number (n) would need to be obtained using a detailed 

chemistry analysis, which is not likely feasible.  Babrauskas suggests that n =1may be 

assumed as a rough estimate (Babrauskas, 2003).  Further, Q would need to be obtained 

using a calorimetry method.  Instead, a rough estimate will often suffice in order to gain a 

general understanding of the effects of reactant depletion. 

 

3.4 Reactive Material on Hot Surface 

3.4.1 Finding the Critical Damkohler Number for Unsymmetric Heating 

 The second scenario is for a reactive material located on a hot surface.  Here the 

scenario has a slab of thickness 2r on a hot surface of temperature TP with its other face 

exposed to the ambient at TA having Newtonian cooling.  Figure 3.11 shows the 
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arrangement, and how the temperature would behave over time when Ti = TA.  This case 

is unsymmetric since the maximum temperature (Tm) is not located in the center of the 

slab. 

  

Figure 3.11: Unsymmetric self-heating over time for an infinite slab 

 

From Equation 3.10 in which the reference temperature is now TP, Equation 3.1 is given 

in terms of TP, not TA; i.e. δ(TP).  Also, the dimensionless temperature can be rewritten in 

terms of TP as seen below: 

! T( ) = E
RTP

!

"
#

$

%
&
T 'TP
TP

!

"
#

$

%
&          (3.23) 

The boundary conditions are 

! = 0    at z = 0  

!
d!
dz

=! "S !!A( )  at z = 2         (3.24)  

Curve 0: Initial State; Ti = TA 

Curve 1: Unsteady heating 

Curve 2: Steady condition;  

Curve 3: Thermal runaways;  
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where z is the dimensionless distance from Equation 3.9.  The dimensionless temperature 

parameter can be expressed in terms of the exposed surface temperature, !S for T = TS, 

ambient temperature, !A  for T = TA, or maximum material temperature, !m  for T = Tm. 

In most cases, a feasible critical Damkohler number, corrected for ! , can be 

obtained with the approximate solutions below: 

!c =
1
2

"
1+ 2"
!

"
#

$

%
&
2

1.4'#A( )2  when ! > 5   

and               (3.25) 

!c = !
"
4e

   when ! ! 0  

However, a more exact result can be taken from the figure below. 

Figure 3.12:  !c  as a function of !  and !A  for an unsymmetrically heated slab  
(Bowes, 1984) 
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Additionally, Figure 3.12 gives the dimensionless maximum material temperature 

(!m ) as well as its corresponding dimensionless location ( zm ).  Note, !A  is negative as 

TP > TA.  The maximum dimensionless temperature and its position are also given.  For 

the unsymmetric case, δc values are much higher than the symmetric values. 

 There appears to be no correction correlations due to reactant consumption for an 

unsymmetrically heated case.  However, study by Tyler and Jones identifies that there is 

an even stronger effect from reactant consumption for the unsymmetric case as compared 

to the symmetric case.  For this reason, caution should be taken when analyzing an 

unsymmetric self-heating scenario with low B values.  This is also an area that further 

research is suggested.  

 

3.5 Hot Material in a Cold Environment 

3.5.1 Finding the Critical Damkohler Number 

 Here a symmetric hot body is placed in a cooler ambient environment with 

Newtonian cooling at the surface.  Figure 3.13 illustrates the transient behavior for an 

initial temperature Ti in surroundings at TA. 
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Figure 3.13:  Transient behavior of hot self-heating infinite slab in cooler ambient 

 

This is inherently an unsteady problem since the initial condition t = 0 and T = Ti must be 

used.  However, numerical results and an approximate solution yield the following: 

!c j( ) =M j ln 2!o( )!" #$
N j  when !!"        (3.26) 

where,  

Shape Mj Nj 
Slab (j=0) 2.66 1.30 
Cylinder  (j=1) 7.39 0.83 
Sphere (j=2) 12.10 0.60 

Table 3.3: Mj and Nj values for common shapes (Bowes, 1984) 

 

Figure 3.14 below gives a more exact result for Equation 3.26: 

Curve 0:  initial condition 

Curve 1:  cooling 

Curve 2:   steady result,  

Curve 3:  ignition event,  

 



 

 32 

 

 

Figure 3.14:  !c  as a function of !o  for common shapes with !!"  (Bowes, 1984) 
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Figure 3.15: !c  as a function of !o  for hot spots of a sphere with varying !  values 

(Bowes, 1984) 

 

Also, Figures 3.14 and 3.15 showing results for α → ∞, and for a sphere with 0.5 ≤ α ≤ 

∞, respectively.  In addition, for arbitrary α, the approximation for the slab (j = 0), 

cylinder (j = 1) and sphere (j =2) is given as 

!c =" 1+ j( )!oe
" 1+ j( )
!c

          (3.27) 
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Here the notation uses Ti as the reference, so the critical Damkohler number is written as 

a function of the initial temperature, i.e. !c = !c Ti( )  and, the dimensionless temperature 

parameter is written as: 

!o =
E
RTi

!

"
#

$

%
&
Ti 'TA
Ti

!

"
#

$

%
&           (3.28) 

This problem can also be transformed into a “hot spot” scenario in which a hot object of 

temperature Ti initially spanning a radius r over an infinite symmetrical body with 

remainder temperature TA.  The results for α → ∞ in the “hot body” scenario relate 

directly to!o  for the hot spot replacing 2!o  for the hot body in Equation 3.26. 
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Chapter 4: P and M Properties 

4.1 Introduction to P and M Properties 

Many of the material properties required to find the Damkohler number may be 

difficult to obtain experimentally.  Calorimetric methods, such as differential scanning 

calorimetry (DSC) and differential thermal analysis (DTA), are available to find the 

necessary properties.  Concerns arise using these methods to find thermal properties of 

materials in large-scale applications since these tests use specimens many orders of 

magnitude less, resulting in the risk of error.  It is easier and more accurate to combine 

the unknown properties into two material constants, P and M.  These properties are 

desirable since they are not a function of the shape and size of the sample, unlike critical 

temperature.  The notation and units of these properties vary in different literature so 

Bowes’ (1984) notation and units will be used.  P and M are defined below: 

   [K]            (4.1) 

  or  K 2

mm2

!

"
#

$

%
&       (4.2) 

P and M can be substituted into Equation 3.1 to simplify the Damkohler equation in terms 

of P, M, r, and TR as seen in the equation below:   

P = E
R

M = ln E
R
!AQ
"

!

"
#

$

%
& exp M( ) = E

R
!AQ
"
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! =
r2

TR
2 exp M +

!P
TR

"

#
$

%

&
'   (Eq 4.3) 

where, 

TR ! TA  for cold material in a hot environment 

 TR ! TP  for material on a hot surface 

 TR ! Ti  for hot material in a cold environment 

Examining Equations 4.1 and 4.2, it is obvious that P is directly proportional to the 

activation energy and M incorporates the activation energy, pre-exponential factor, 

density, thermal conductivity, and the heat of reaction.   

 

4.2 Determining P and M from Oven Tests 

In the case of the oven test, a cube of material is inserted into a hot oven at TA.  

Conditions are sought where the center temperature of the cube increases sharply 

(thermal runaway). The equation of δ can be equated to the corrected δc for the cube in 

logarithmic form: 

ln !c
TA
r

!

"
#

$

%
&
2'

(
)
)

*

+
,
,
=M -

P
TA

           (4.4) 

By plotting the left-hand-side against (1/TA) for a set of data, the slope (P) and 

intercept (M) can be found. From this small scale data it is possible to extrapolate to 

larger scale conditions.  This is the best way to quantitatively evaluate whether ignition is 

possible, i.e. δ ≥ δc.  This test will only yield good results if the chemical rate follows a 

zeroth order Arrhenius behavior, and as long as the Biot number is large or known for the 

oven. Good flow conditions in the oven are required to make α large.  This is indicated by 
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the closeness of the cube surface temperature to TA.  Other factors can affect the accuracy 

of extrapolation, including the effects of melting, moisture, and maintaining the same 

material.  However, corrections can be made to the results if the reaction rate order is not 

zero, and for low Biot numbers.  Never the less, material values for P and M will be 

compiled for tested materials to provide a framework for assessing their potential for 

spontaneous ignition.  

 

Example:   

This is a basic example for finding P and M.  No corrections will be made for this case, 

however, each correction is shown in the example from Section 4.3.  

Beever (1988) ran oven basket tests for milk powder and found the critical 

ignition temperatures for cubes of size 5.0, 7.5, and 10.0 cm.  The CAT’s are listed below 

Cube Size, 2r 
(mm) 

Critical Temperature  
(°C ± 1 °C) 

50 171 
75 156 
100 141.5 

Table 4.1:  CAT values for each milk powder oven test sample (Beever, 1988) 

 

The uncorrected critical Damkohler value for a cube in a hot environment is 2.52 from 

Table 3.1.  Next ln!cTA
2

r2
, where TA is the CAT in units of K for each basket and r is in the 

units of mm, is plotted against 1/TA.  The data to plot is listed below in the second and 

third column. 
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Cube half-width, r 
(mm) ln!cTA

2

r2
 1/TA 

[K-1] 
25 6.7 2.25E-03 

37.5 5.8 2.33E-03 
50 5.2 2.41E-03 

Table 4.2:  Cube half-width, and x,y data for P and M plot 

 

After plotting the x,y coordinates, the points are fit with linear regression to find the 

equation of the line.  The plotted points and the corresponding linear equation can be seen 

below. 

 
Figure 4.1:  Linear regression to find P and M for milk powder 

 

The linear equation from Figure 4.1 is y = -9,497x + 28.02.  The slope of the line gives                    

P = 9497 [K] and the y-intercept gives M = 28.02, with units based on eM  having units of 

K2/mm2.  The values of P and M relate to Equation 4.3 as such: 

 ln!cT
2
A

r2
= 28.02! 9497

TA
           (4.5) 

y = -9497x + 28.02 
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4.3 Example: Finding P and M for Wood Fiberboard 

Bowes (Bowes, 1984) finds P and M values of wood fiberboard using the Frank-

Kamenetskii model and the full procedure is presented below.  The wood fiberboard 

example has information about the material is known so that all of the corrections may be 

implemented.  Thomas (1958) and Bowes (1984) have wood fiberboard oven test results 

for cubes and slabs, and this data is combined with from Mitchell to increase the data set.  

The slabs used are of length 0.2 m with various thicknesses.  Mitchell uses wood 

fiberboard cubes of width 2r and octagonal stacks of width and height 2r. 

 

Figure 4.2:  Octagonal stack of width and height of 2r. 

 

The uncorrected critical Damkohler number [!c !, 0,!( ) ] for the octagonal pile is 

calculated by Bowes to be 2.77.  As expected, the octagonal pile value closely fits the 

value of 2.76 from a short cylinder.  From Table 3.1, !c !, 0,!( )  values for the cubes and 

slabs are 2.52, and 0.88 respectively. 
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4.3.1 Varying Parameters 

The half-length is needed for the calculations and is measured directly from the 

material size.  For a circle the half-length would be half of the diameter, which is the 

equivalent of the radius, and would be half of the height for a square.  Next, a standard 

basket-oven spontaneous ignition test can be used to find the critical ambient 

temperatures (CAT) for each pile size, which is the lowest temperature that causes 

ignition.  Assuming the CAT falls between the highest observed non-ignition temperature 

and the lowest observed ignition temperature, the average of these two values are taken to 

ensure the accuracy of the CAT.  Additionally, the thermal conductivity, thermal 

diffusivity, and kinematic viscosity of air are needed at the film temperature for the finite 

Biot correction calculations. 

r = half-length [mm] 

TA = critical ambient temperature [K] 

! f = conductivity of air at film temperature [W/m-K] 

! = thermal diffusivity of air at film temperature [m2/s] 

k f = kinematic viscosity of air at film temperature [m2/s] 

Note:  The units of half-length are listed in millimeters while the conductivity and kinetic 

viscosity are listed in meters. 
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!c !, 0,!( )  r TA λf g/νκf 

   mm K W/mK m-3 

Cube* 2.52 
3.2 523 0.040 4.3E+09 
6.4 485 0.038 5.5E+09 

Octagonal 
Pile* 2.77 

12.7 473 0.037 5.9E+09 
25.4 450 0.036 7.0E+09 
51 420 0.034 8.8E+09 

102 398 0.032 1.1E+10 
152 389 0.032 1.2E+10 

Cube** 2.52 
12.7 475 0.037 6.0E+09 
25.4 450 0.036 7.0E+09 
51 425 0.035 8.0E+09 

Slab** 0.88 
6.8 475 0.037 6.0E+09 

13.7 445 0.036 7.0E+09 
21 435 0.035 7.7E+09 

* Based on tests from Mitchell 
** Based on tests from Thomas and Bowes 

Table 4.3: Parameters for wood fiberboard oven tests 
 
 

4.3.2 Finite Biot Number Correction Factor 

 The experimental process of determining P and M values uses a convection fan in 

an oven to increase the Biot number of the sample.  With high forced convection, the 

temperature gradient within the material increases along with the Biot number.  If the 

Biot number is large enough, the temperature difference between the surface of the 

material and the ambient air remains negligible and there is no energy transfer by 

conduction.  A large Biot number simplifies the calculations of P and M because it 

eliminates the need for the Biot number correction.  However if the Biot number is finite, 

a correction needs to be applied since the material surface temperature differs from the 

temperature of the air.  The material in this example is exposed to an environment with 

no wind, so the Biot number will be small.   
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 The Biot number correction adjusts the uncorrected critical Damkohler number, 

!c !!"( )  in Table 3.1, which will be used to determine if a material will lead to 

thermal runaway.  Since there is no forced convection in this example, Nusselt 

correlations for natural convection may be used to obtain the heat transfer coefficient 

between the basket surface and environment.  To determine the effect of natural 

convection on the material, the Rayleigh number is found using the equation below: 

 Ra = g
!k f

D3 RTA
E

            (4.6) 

where 

 g =  gravity [9.81 m/s2] 

 D = diameter = 2r1,000  [m] 

 R = universal gas constant [8.31*10-3 kJ/mol-K] 

 E = activation energy [100 kJ/mol] 

In the case of the slabs, the D used is equal to the length (D = 0.2m).  Note, Bowes uses 

this equation as a practical approach to finding Ra.  A more appropriate calculation for 

Ra is given by Equation 4.7. 

Notice E is used for Equation 4.6.  Bowes estimates this to be 100 kJ/mol for 

wood fiberboard.  In many cases the activation energy is not known and not needed since 

it is found in P, so Equation 4.7 can be used when the surface temperature of the material 

is known. 

Ra = g
!k f

D3 TS !TA
TA

              (4.7) 

 Next, Ra is used in determining the heat transfer coefficient due to convection.  In 

combination with the radiation component of the heat transfer, the total heat transfer to 
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the wood fiberboard is found.  A general equation for determining the convective heat 

transfer coefficient (hc) is proposed by Bowes (Bowes, 1984) and seen below: 

hc =
! f

D
(2.0+ 0.6Ra1/4 )            (4.8) 

Babrauskas also recommends this equation as a practical approach for any shape since 

calculations for a body of arbitrary shape generally become burdensome (Babrauskas, 

2003).  This equation is only used for a case where free convection is the only form.  In 

cases where forced convection is used, such as a convection oven with high fan speed, 

the heat transfer coefficient is most accurately found experimentally.  An accurate 

method of determining the heat transfer coefficient in forced convection cases is 

described in Chapter 5.  The equation for the radiative heat transfer coefficient (hr) is: 

 hrad =
! T 2

S +T
2
A( ) TS +TA( )

1!!S
!S

+F12 +
1!!O
!O

"

#
$

%

&
'
Abasket
Aoven

"

#
$

%

&
'

          (4.9) 

where 

!! = emissivity of the material surface  (1 dimensionless units) 

!! = emissivity of the surroundings  (1 dimensionless units) 

 ! = Stefan-Boltzmann Constant  (5.67*10-8 W/m2-K4) 

 !!" = view factor (1.0 for parallel plates) 

The surface area of the oven (Aoven) must be known to solve the equation.  The oven area 

is not given in Bowes’ example because he reduces the equation under the assumption of 

an infinite Biot number and equal surface areas.  Bowes’ values will still be used for this 

example; however, note that a more accurate estimation can be taken using Equation 4.9 

in its full form. 
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The convective and radiative heat transfer coefficients are summed to give the 

total heat transfer between the atmosphere and the sample.  The total heat transfer is used 

to find the Biot number (! ) of the sample using the following, 

 ! =
(hr + hc )r

"s
             

(4.10) 

where is thermal conductivity of the sample.  Bowes estimates !S for wood fiberboard 

to be 0.5 W/m-K.  Since this example is the scenario of an initially cool object in a hot 

environment, the !c correction factor from Equation 3.19, ie:  

C! =
!
2

! 2 + 4 !!( )exp ! 2 + 4 !! ! 2
!

"

#
$$

%

&
''   

is used with the calculated!  values for each size test sample. 

 
r Ra hc hr α  C!  

 mm   W/m2K W/m2K     

Cube* 
3.2 49 22.4 32.4 3.5 0.6 
6.4 465 14.2 25.9 5.1 0.7 

Octagonal 
Pile* 

12.7 3.8E+03 9.8 24.0 8.6 0.8 
25.4 3.4E+04 7.2 20.7 14.2 0.9 
51 3.3E+05 5.4 16.8 22.7 0.9 

102 3.0E+06 4.2 14.3 37.8 0.9 
152 1.0E+07 3.8 13.4 52.1 1.0 

Cube** 
12.7 3.9E+03 9.8 24.3 8.7 0.8 
25.4 3.4E+04 7.2 20.7 14.2 0.9 
51 3.0E+05 5.5 17.4 23.4 0.9 

Slab** 
6.8 1.9E+06 4.5 24.3 3.9 0.6 

13.7 2.1E+06 4.5 20.0 6.7 0.8 
21 2.2E+06 4.4 18.7 9.7 0.8 

Table 4.4:   Biot correction results for wood fiberboard tests. 

 

!s
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4.3.3 Low Activation Energy Correction Factor 

 Bowes estimates E to be 100 kJ/mol.  Though E is high enough (>40 kJ/mol) that 

no activation correction is needed, it may still be applied in the following manner.  From 

Equation 3.2, the dimensionless ambient temperature (! ) is calculated and applied to the 

activation energy correction factor.  The combined equation gives: 

C! =1+
RTA
E

           (4.11) 

 

 r TA !  C!  

 mm K     

Cube* 
3.2 523 0.043 1.043 
6.4 485 0.040 1.040 

Octagonal 
Pile* 

12.7 473 0.039 1.039 
25.4 450 0.037 1.037 
51 420 0.035 1.035 

102 398 0.033 1.033 
152 389 0.032 1.032 

Cube** 
12.7 475 0.039 1.039 
25.4 450 0.037 1.037 
51 425 0.035 1.035 

Slab** 
6.8 475 0.039 1.039 

13.7 445 0.037 1.037 
21 435 0.036 1.036 

Table 4.5: Wood fiberboard low activation correction results 

  

The activation energy is known for this specific example.  However, if E is not 

known for the material, Bowes suggests using an iteration calculation from the P 

constant.  In other words, calculate P and M without correcting for the low activation 

energy.  Then determine a rough estimate of E from the calculated P using Equation 4.1.  
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Correct for the activation energy using the rough estimate value of E.  Then recalculate 

for P and M.  This iteration will be a better estimate than not correcting for !  at all. 

 

4.3.4 Reactant Depletion Correction Factor 

 Next, !c  can be corrected for reactant consumption.  As in all real systems, 

reactants are consumed and thus an ideal steady state is not possible.  To account for 

reactant consumption, it is necessary for to determine the dimensionless adiabatic 

temperature rise for the system (B).  B is given from Equation 3.22 and seen again below: 

 B = E
RT 2

A

QCo

!c
  

The heat of reaction (Q) for wood fiberboard is estimated to be 3.5*105 J/kg-K and the 

initial concentration (Co) is assumed to be equal to the density.  The specific heat (c) of 

wood fiberboard was estimated by Gross and Robertson to be 1.4*103 J/kg-K.  Next, the 

reactant depletion correction factor (CB ) can be found using B and the constants a and b 

referenced in Table 3.2 for variation with ! .  The reaction order is assumed to be 1 (n = 

1) and reasonable results can be obtained by using a = 1 and b = 2.4 for first order 

reactions, so these values will be used.  CB  is given in Equation 3.21 and rewritten 

below: 

 CB =
1

a! b n
B( )

2/3  

The results from the equations for B and CB are tabulated below.  
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 r TA B CB 

 mm K   
Cube* 

3.2 523 11.0 1.94 
6.4 485 12.8 1.78 

Octagonal 
Pile* 

12.7 473 13.4 1.74 
25.4 450 14.8 1.66 
51 420 17.0 1.57 

102 398 19.0 1.51 
152 389 19.9 1.49 

Cube** 
279 382 20.6 1.47 
12.7 475 13.3 1.75 
25.4 450 14.8 1.66 

Slab** 
51 425 16.6 1.58 
6.8 475 13.3 1.75 

13.7 445 15.2 1.64 
Table 4.6:  Wood fiberboard reactant consumption results 

 

4.3.5 Finding P and M 

 With the correction factors for the finite Biot number, low activation energy, and 

reactant consumption calculated, they can be multiplied with the uncorrected critical 

Damkohler number to find the adjusted critical Damkohler number as in Equation 3.17: 

!c ",#,B( ) = !c !, 0,!( )C!C"CB  

Finally, the corrected critical Damkohler number can be correlated with the critical 

ignition temperature by plotting the right hand side of Equation 4.4 

 ln!cTA
2

r2
=M !

P
TA

 

against 1,000/TA.  Linear regression will result in P = slope*(-1000) and M = y-intercept. 
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!c !, 0,!( )  C!

 
C!  CB  !c !,",B( )  

1,000
TA

 ln!cT
2
A

r2
 

Cube* 2.52 
0.6 1.043 1.94 3.13 1.91 11.33 
0.7 1.040 1.78 3.28 2.06 9.84 

Octagonal 
Pile* 2.77 

0.8 1.039 1.74 4.02 2.11 8.63 
0.9 1.037 1.66 4.16 2.22 7.17 
0.9 1.035 1.57 4.12 2.38 5.63 
0.9 1.033 1.51 4.10 2.51 4.13 
1.0 1.032 1.49 4.09 2.57 3.29 

Cube** 2.52 
0.8 1.039 1.75 3.68 2.11 8.55 
0.9 1.037 1.66 3.78 2.22 7.08 
0.9 1.035 1.58 3.80 2.35 5.57 

Slab** 0.88 
0.6 1.039 1.75 1.02 2.11 8.51 
0.8 1.037 1.64 1.14 2.25 7.09 
0.8 1.036 1.61 1.21 2.30 6.25 

Table 4.7:  Wood fiberboard correction results and P and M equation components 

 

Figure 4.3: Linear regression to find P and M values for wood fiberboard 
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 The linear regression in Figure 4.3 gives the equation y = -12.025x + 34.084.  The 

slope of the equation is -12.025 and the y-intercept is 34.084.  This means that the 

calculated P and M values are 12,025 K and 34.084 (with units of eM =K2/mm2) 

respectively.  Bowes finds the critical parameters for wood fiberboard to be           

M = 34.550 (with units of eM =K2/mm2) and P = 12,145 K which is reasonably close.  

The small difference in values is probably due to rounding errors.   

 

4.4 Units of M 

 It is important to keep the units of M consistent in studying spontaneous ignition.  

Bowes (1984) gives eM  in units of K2/mm2 and the same units are used in this thesis.  

Babrauskas (2003) denotes the same property (our M) as P and gives m as the unit of 

measure. Further, Babrauskas gives the activation energy of a material as opposed to 

Bowes giving P.  Beever (1988) follows Bowes’ nomenclature for P and M, however, 

gives eM  having units of K2/m2.  The conversion from Babrauskas’ and Beever’s units is 

simply a difference of ln(106), as seen below: 

M K 2

mm2

!

"
#

$

%
&

*

=M K 2

m2

!

"
#

$

%
&

*

' ln 106( )         (4.12) 

* units seen are for eM , not M 

 

Example:  Beever gives an M of 41.9 ( eM having units K2/m2) for milk powder.  

Subtracting ln(106) converts M to 28.1 (eM  having units K2/mm2). 
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4.5 List of P and M Values 

 Bowes (1984) and Babrauskas (2003) reference many P and M values in their 

literature.  A list of these values has been compiled and is seen below.  The units and 

nomenclature have been converted to those of Bowes to ensure consistency (M based on 

eM  having units K2/mm2).  Some of the P and M values in the following list were 

calculated from the specified chemical properties from Babrauskas.  See the comments 

column for more information about the specifics of the material. 
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Material P (K) M* E 
(kJ/mol) Comments Source 

Ammonium 
Nitrate 17921 43.2 149 fertilizer grade (Hainer, 1954) 

Ammonium 
Nitrate 16237 42.2 135 fertilizer grade with 7% 

additional fuel added (Hainer, 1954) 

Animal 
Feedstuff 8404 26.06 70   (Bowes, 1984) 

Bagasse 13000 33.08 108   (Bowes, 1984) 

Calcium 
Hypochlorite 5833 19.5 48.5 hydrated.  Values are for low 

temperature regime 

(Gray & 
Halliburton, 
2000) 

Calcium 
Hypochlorite 14793 44.5 123 hydrated. Values are for high 

temperature regime 

(Gray & 
Halliburton, 
2000) 

Carbon 
(Activated) 10007 28.2 83.2 

oven-cube tests on powdered 
activated charcoal over 50-
190 °C temperature range 

(Nelson, 1992) 

Cellulose 
Insulation 13230 32.8 110 unretarded cellulose from 

adiabatic furnace test (Issen, 1980) 

Cellulose 
Insulation 13591 26.5 113 hot-plate method with 

density of 34 kg/m^3 
(Ohlemiller & 
Rogers, 1980) 

Cellulose 
Insulation 15876 30.1 132 

insulation retarded with 20% 
boric acid using hot-plate 
method with density of 41 
kg/m^3 

(Ohlemiller & 
Rogers, 1980) 

Charcoal 
(Activated) 11666 28.1 - 35.7 97 

all types except the 3 
minimally hazardous 
products from oven-cube 
tests of 10 types 

(Cameron & 
MacDowall, 
1972) 

Charcoal 
(Activated) 12700 36.975 106 weathered 

(Cameron & 
MacDowall, 
1972) 

Coal 8419 25.0 70 
bituminous South African 
with volatile content of 26% 
over 120-220 °C 
temperature range 

(Tognotti, 
Petarca, & 
Zanelli, 1988) 

Cork (Dust) 13711 37.2 114 oven basket method (Hensel, 1988) 

Cork (Solid) 9622 23.9 80 

calculated directly from 
E,Q,A, density, and 
conductivity from values 
based on small-specimen 
tests in adiabatic furnace 

(Gross & 
Robertson, 1958) 

Cotton 11282 28.6 93.8 
based on oven-basket 
method on cotton fibers of 
! = 50kg m3  

(Gray, Little, & 
Wake, 1992) 

Cotton 17319 41.4 144 

calculated directly from 
E,Q,A, ! = 320kg m3 , and 
conductivity from values 
based on small-specimen 
tests in adiabatic furnace 

(Gross & 
Robertson, 1958) 

* M based on eM  having units K2/mm2 
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Material P (K) M* E 
(kJ/mol) Comments Source 

Distiller's 
Dark Grains 8046 25.3 66.9  (Bowes, 1984) 

Eucalyptus 
Leaves 8539 24.5 71 leaves were at density 140 

kg/m^3 
(Jones & Raj, 
1988) 

Fertilizer 
(12-13-6) 17319 47.9 144 based on oven-basket data for 

12-13-6 fertilizer 
(Huygen & 
Perbal, 1965) 

Forest Floor 
Material 1 9862 27.2 82    (Jones et al, 

1990) 

Forest Floor 
Material 2 10945 30.2 91   (Jones et al, 

1990) 

Milk 
Powder 11678 26.2 97.1 

skim milk from temperature 
range 135 – 170 °C and
! = 670kg m3  

(Chong, Chen, & 
Mackerth, 1999) 

Milk 
Powder 9502 34.7 79 skim milk from temperature 

range 142 – 171 °C 
(Beever P. , 
1984) 

Milk 
Powder 9538 28.7 79.3 

skim milk from temperature 
range 138 – 173 °C and 
density 600 kg/m^3 

(O'Connor, 1990) 

Milk 
Powder 19292 45.5 160.4 

(E seems high) whole milk 
from temperature range 130 – 
145 °C 

(Chong, Chen, & 
Mackerth, 1999) 

Milk 
Powder 9056 20.5 75.3 whole milk from temperature 

range 145 – 165 °C 
(Chong, Chen, & 
Mackerth, 1999) 

Milk 
Powder 9754 29.4 81.1 

milk with 30% fat added from 
temperature range 130 – 
200°C 

(J.G. & Synnott, 
1988) 

Milk 
Powder 11979 34.2 99.6 

milk with 44% fat added from 
temperature range 135 – 
175°C 

(Duane & 
Synnott, 1992) 

Mineral 
Wool 6800 21.6 56.54   

(Spokoinyi & 
Eidukyavicius, 
1988) 

Plywood 
(Fire Rated) 11570 35.7 96.2 

calculated directly from 
E,Q,A, density, and 
conductivity for fire rated 
plywood 

(Loftus, 1985) 

Plywood 
(Plain) 10572 32.9 87.9 

calculated directly from 
E,Q,A, density, and 
conductivity for plain 
plywood 

(Loftus, 1985) 

Rice Husks 12629 32.5 105 small scale oven-cube test 
with density 140 kg/m^3 

(Jones & Raj, 
1988) 

Spent 
Brewing 
Grains 

6495 19.9 54   (Walker, 1961) 

Wheat Flour 15539 44.2 129.2   (Nelson, 1992) 

Yeast 
Powder 16640 44.5 138   (Bowes, 1984) 

* M based on eM  having units K2/mm2 
Table 4.8:  P and M values for specific materials 
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Explosive Materials 

Material P (K) M*  E 
(kJ/mol) 

!  
(kg/m3) Comments Source 

Ammonium 
Nitrate 26941 60.2 224  chemically pure (Hainer, 

1954) 

Composition 
B 21649 51.6 180 1580 

calculated directly 
from E,Q,A, with 
density, and 
conductivity 

** 

DATB 23333 46.9 194 1740 

 (2,4,6-trinitro-1,3-
benzenediamine); 
calculated directly 
from E,Q,A, 
density, and 
conductivity 

** 

HMX 26580 57.5 – 57.8 221 1800 

(octahydro-1,3,5,7-
tetranitro-1,3,5,7-
tetrazocine); 
calculated directly 
from E,Q,A, 
density, and 
conductivity 

** 

NQ 10464 29.3 87 1700 

(nitroguanidine); 
calculated directly 
from E,Q,A, 
density, and 
conductivity 

** 

PBX 9404 26460 57.7 – 57.9 220 1800 

calculated directly 
from E,Q,A, 
density, and 
conductivity 

** 

PETN 23694 57.9 197 1740 

(2,2-
bis[(nitrooxy)methy
l]-1,3-propanediol, 
dinitrate); 
calculated directly 
from E,Q,A, 
density, and 
conductivity 

** 

* M based on eM  having units K2/mm2 
**Original sources: (Skinner, Olson, & Block-Bolten, 1998), (Maiden, 1987), (Dobratz & 

Crawford, 1985);  E,Q,A,!,"  listed by Babrauskas (Babrauskas, 2003). 
Table 4.9:  P and M for explosive material 
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4.6 Woodfiber Fire Investigation Case Study 

 On June 2nd, 1951, nine railcars of wood fiberboard were in transit from their 

manufacturer in the South, to upstate New York.  While in the course of switching, only a 

few miles outside of their destination, one of the freight cars ignited and was left to burn.  

The remaining cars continued to the Army Warehouse in Voorheesville, NY, where they 

were unloaded into one pile exceeding 24,000 ft3.  On June 17th, two days after 

unloading, a fire broke out that destroyed the warehouse and its contents.  Spontaneous 

ignition was determined to have caused the fire (Mitchell, 1951).  

 The Frank-Kamenetskii method was applied to determine the likelihood of 

spontaneous ignition as the cause.  The description of the fire scenario is vague so many 

needed parameters have been estimated.  The stacking configuration was not specified for 

the fire scenario so a cube was analyzed.  Also, the article suspects that the fire was due 

to a hot material pile being introduced to a cold environment; however, this heating 

configuration as well as the case of a cold material in a hot environment will be 

compared.   

The wood fiberboard may have been hot after being manufactured and stacked 

without cooling to a safe temperature, approximately 208 °F (Mitchell, 1951).  With the 

addition of the hot temperatures in the South region, the boards may have been self-

heating in transit to the Army warehouse.  This case was analyzed with an initial material 

temperature (Ti) of 208 °F (369 K).  Weather history for Albany, NY, located within ten 

miles of Voorheesville, showed maximum temperatures for June 16th and June 17th was 

79 °F (297 K) on both dates so this temperature was used for TA (Weather Underground).  

P and M for wood fiberboard was obtained by Bowes (Bowes, 1984) in the example 
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explained previously in this chapter.  Bowes determined wood fiberboard properties of M 

= 34.550 ( eM  having units K2/mm2) and P = 12,145 K. 

In contrast, a different case was analyzed in which the boards were assumed to 

initially cool, and the cool material pile was introduced into a hot environment.  Summer 

temperatures inside the warehouse may have reached higher temperatures than the 

outside air due to lack of warehouse ventilation.  For this case, the minimum warehouse 

temperature require to cause ignition was calculated.    

P = 12,145 K  

M = 34.550 (eM  having units K2/mm2) 

Volume = 24,000 ft3  

!s = 0.5W/mK 

 

4.6.1 Cube Material Pile in Hot Environment 

 For a cube at the described volume, the height was 28.8 ft so r =14.4 ft = 4396mm

. The uncorrected critical Damkohler number for a cube in a hot environment was 2.52 

from Table 3.1.  This value was corrected for a finite Biot number by estimating the 

convective and radiative heat transfer coefficients.  From Equation 4.6, P was substituted 

in place of R/E and combined with Equation 4.8 to yield: 

hc =
! f

D
2.0+ 0.6 g

! f! f

D3 TA
P

!

"
##

$

%
&&

1/4!

"

#
#

$

%

&
&
        (4.13) 

This equation gave a convective heat transfer coefficient of 2.4 W/m2K.  To estimate the 

radiative heat transfer coefficient from Equation 4.9, an estimation of the surface 



 

 56 

 

temperature and emissivity was needed.  For simplification, emissivities of 1 were used 

for the wood fiberboard and surroundings.  For a general estimation of the radiative term, 

TS was assumed approximately equal to TA.  With these assumptions, hr was 

approximately 6.9 W/m2K.  Inputting the heat transfer coefficients into the Biot number 

equation (Equation 4.10) gave a Biot number of 818.  This value was large, mainly since 

r was large, and showed that the Biot correction was not needed for this case. 

 The activation energy (E) was calculated from P in Equation 4.1 to be 101 kJ/mol.  

This activation energy was high enough so that the low activation energy correction was 

not necessary; however, a comparison in critical ambient temperature with and without 

the correction was made.  Substituting P into Equation 3.2 and combining the equation 

with Equation 3.20 gave the following correction for low activation energy: 

 C! =1+
TA
P

           (4.14) 

 Here, C! was calculated to be 1.03. 

 The uncorrected critical Damkohler number for a cube was 2.52 from Table 3.1.  

Applying the low activation energy correction factor using Equation 3.17 gave the critical 

Damkohler number corrected for !  to be 2.58.  !c !( )  was compared to the Damkohler 

number for the pile and ignition would have likely occurred if! >!c .   

 The Damkohler number for the stack of wood fiberboard was found using 

Equation 4.3, i.e.: 

! =
r2

TR
2 exp M +

!P
TR

"

#
$

%

&
'  
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where TR for this case was TA [K].  The critical ambient temperature was found such that 

!
!c
=1 , i.e. when ! = 2.58 for the corrected case or ! = 2.52  for the uncorrected case.  

Here, the CAT was found to be 106.3 °F with the low activation energy correction, and 

106.0 °F without the correction.  Notice, the correction in this case only changed the 

CAT by 0.3 °F, which was relatively small.  Hence, no corrections were necessary for 

this example.  If the temperature inside the Army Warehouse were in excess of 106 °F 

spontaneous ignition would have been likely.  With the outside air reaching temperatures 

of 79 °F the warehouse may have been even hotter.  Temperature data inside the 

warehouse would have needed to be taken to find out if these values were possible.  Also, 

the material stack could have been larger than the estimated 24,000 ft3.  Scaling to large-

scale applications is not exact.  The critical ambient temperature of 106 °F was only a 

rough estimate and temperatures slightly lower than this value could indeed cause 

ignition.  Hence, use of the Frank-Kamenetskii method should be used cautiously.  If the 

warehouse temperature were 79 °F like the outside temperature, !
!c
! 0.16 and 

spontaneous ignition due to a cold body in a hot environment would not be likely. 

 

4.6.2 Hot Cube Material Pile in Cold Environment 

 To analyze if spontaneous ignition occurred as a result of a hot material pile being 

introduced to a colder environment (Section 3.5), the dimensionless center temperature 

was calculated by substituting P into Equation 3.28 to give the following: 

 !o =
P
Ti

!

"
#

$

%
&
Ti 'TA
Ti

!

"
#

$

%
&           (4.15) 
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where, TA = 79 °F.  The initial temperature of the material could have been as hot as 208 

°F when stacked from the manufacturer, so this value was used for Ti.  !O was calculated 

to 6.4.  Figure 3.14 was used with !O = 6.4  to find a critical Damkohler value of 14.5, i.e 

!c !14.5 .  The Damkohler for the wood fiberboard stack was found using Equation 4.3 

to be 716.  This gave ! !c
= 49  which is much higher than the critical ratio of 1.  If the 

boards were at an initial temperature of 208 °F when stacked, ignition in the Army 

Warehouse for a cube shape pile size of 24,000 ft3 would be extremely likely. 
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Chapter 5:  Heat Transfer in Oven Tests 

It is important to correct the critical Frank-Kamenetskii parameter if the material 

is under conditions of a finite Biot number.  As part of the equation for the Biot number, 

seen again below, 

            (3.16) 

 the heat transfer coefficient (h) between the material and surroundings is needed.  

Several methods have been developed where the heat transfer coefficient can be found 

experimentally, however, a new experiment will be proposed that is easy to implement 

and accurate for oven basket tests with wire-mesh baskets. 

O’Conner (1990) developed a way of calculating the heat transfer to the center of 

a smooth surfaced hollow aluminum sphere.  A sphere is theoretically convenient since it 

allows the use of direct Nusselt calculations to verify results; as opposed to a cube, which 

is not a common shape for direct calculations.  Further, the smooth surface made direct 

calculations easier, since a rough mesh surface would yield different results.  The method 

calculated the heat transfer distribution over time by tracking the center temperature.  His 

results consistently showed the average heat transfer coefficients for aluminum spheres, 

at ambient temperature 143.2 °C and diameter ranging between 1.5 to 4 inches, were 

approximately 19 to 22 W /m2K  (O'Connor, 1990).  Though the method seems valid for 

the smooth surface aluminum, the method would not be applicable for a wire-mesh 

basket since the forced hot air and radiation from the oven would easily pass through the 

mesh openings. 

! =
hr
"
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Jones and Wade (1999) developed a way to find the Biot number of for mesh 

oven test baskets by insulating the baskets with an inert material, glass fiber at density 

146 kg m-3, and measuring the center temperature.  This method does in fact find the Biot 

number for the basket with the glass fiber; however, the thermal conductivity of the glass 

wool will typically differ from the conductivity of spontaneously combustible materials.  

This method requires the thermal conductivity of the glass fiber be known in addition to 

the conductivity of the testing material.  Further, the method does not directly find the 

heat transfer coefficient at the surface of the container. 

An article in the Journal of Food Engineering by Carson et al (2006) describes 

four methods of measuring the heat transfer coefficients within a convection oven.  The 

aim of the study was to produce meat with desirable sanitation, color, texture, smell, and 

taste while minimizing weight loss during the cooking process.  Cube plaster specimens, 

wet and dry, were used to simulate the moisture loss of a batch of meat.  The first method 

of determining the heat transfer coefficient was to back-calculate the heat transfer 

coefficient from transient temperature-time data (Carson, Willix, & North, 2006).  The 

oven temperature consistently fluctuated a difference of roughly 20 °C, which made the 

method invalid.   

The second method of determining heat transfer coefficients by Carson was 

through a mass-loss-rate calculation, which measured the weight of the plaster samples 

throughout the heating process.  The method yielded reasonable heat transfer coefficient 

results that ranged between 22 and 28 W /m2K for oven temperatures between 43.6 and 

134 °C (Carson, Willix, & North, 2006).  The application of this method for spontaneous 

ignition would not be desirable since the internal heat generation from the chemical 
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reaction may result in higher mass-loss-rates and show inaccurate higher heat transfer 

coefficients than actually exist.   

The next heat transfer coefficient calculation was a direct measurement of the heat 

flux using heat flux sensors.  This method was the easiest to implement and gave h  

values between 15 and 40 W /m2K  (Carson, Willix, & North, 2006).  These values seem 

reasonable; however for oven basket testing, the emissivity and texture of the heat flux 

sensor would differ than the mesh baskets.  The difference between the sensor and basket 

would most likely yield inaccuracies since the heat flux sensor’s smooth surface may 

show lower heat transfer coefficients compared to the rough basket surfaces.   

The last method Carson implemented for finding the heat transfer coefficient was 

through direct empirical correlations based on the velocity and geometry of the samples.  

Direct empirical correlations were assumed laminar flow from the fan velocities; 

however, the geometry of the oven and fan mixing action likely created turbulent flow 

rendering the method invalid since the small velocities yielded negative values for the 

mixed condition correlation (Carson, Willix, & North, 2006).   

Another article published in the Journal of Food Engineering by Melike Sakin et 

al (Sakin, Kaymak-Ertekin, & Ilicali, 2009) describes two additional methods of 

calculating the heat transfer coefficients inside of a convection oven.  The methods were 

“Lumped Capacity” and “Time-Temperature Matching”.  Both methods used solid 

aluminum cylinders so that the low thermal conductivity of the metal may be neglected, 

and the temperatures at the radial axis and half radial positions were measured.  The 

Lumped Capacity method was easy to implement and yielded reasonable results with h

values of 28-34 W /m2K with fan, and 11-20 W /m2K without fan.  The Time-
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Temperature Matching also yielded similar results with values of 24-31 W /m2K with fan 

and 10-21 W /m2K without fan; however, computer programming in Visual Basic was 

required to solve the Gauss elimination matrix systems.  Similar to the smooth surface of 

the heat flux gauge in the heat flux method, the aluminum cylinders would not be 

desirable for calculating the heat transfer coefficient in the spontaneous ignition tests 

since the surface differs greatly from the mesh baskets. 

It is evident that calculating the heat transfer coefficient has proven challenging 

and there is no standard method yet available.  In finding h for the application of 

spontaneous ignition oven tests, it is recommended to use the same stainless steel wire-

mesh baskets that will be used in the oven test to ensure similar emissivities and 

roughness factors.  The purpose of the following experiment is to provide a simple 

method of accurately determining the heat transfer coefficient between the convection 

oven and sample baskets used in oven tests.  

 

5.1 Experimental Preparation 

5.1.1 Testing Oven 

The heat transfer coefficient is needed for the correction factor in determining the 

criticality spontaneously ignitable materials in a standard oven test.  Bowes (1984) 

describes a standard for the oven test that can be used to find the critical ignition 

temperatures of spontaneously combustible materials.  To ensure accuracy between 

critical temperature tests and heat transfer determination, the experimental setup for the 

oven and baskets was designed according to the standard.  The oven used in this 
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experiment was a Memmert UFE 500 115V forced air controlled convection oven that 

was fitted with four type K thermocouples to measure the temperature at various 

locations within the oven.  The internal dimensions were as follows: 

 Internal oven width = 0.56 m 

 Internal oven height = 0.47 m 

 Internal oven depth = 0.40 m 

This oven was desired since it provided a uniform temperature distribution and 

temperature controll within ± 1 °C or better.  The thermocouples were attached to a 

multichannel temperature-recorder so that all temperatures were taken simultaneously.  

Since it was desired that the test samples were suspended near the center of the oven, a 7” 

stainless steel rod was cantilevered to the back of the oven that provided a hanging 

location for the test baskets.  Additionally, a nitrogen temperature controlled fire 

suppression system was installed as a safety device. 

 

5.1.2 Sample Containers 

 Following Bowes description of assembling testing baskets for spontaneous 

ignition burn tests, open-topped cube containers were made using 60-mesh stainless steel 

wire gauze (Bowes, 1984).  The cube sizes were 2.5, 5.0, 7.5, 10.0, and 15.0 cm long and 

spot welds were used to hold the shape of the baskets.  To prepare the baskets for the heat 

transfer tests, the baskets were insulated internally to minimize heat transfer occurring 

inside the baskets.  A layer of aluminum foil was added to the internal surface of each 

basket to insulate the center of the basket from forced convection and radiation heat 

transfer.  Next each basket was filled with low-density kaowool to create an approximate 
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still air boundary, and a thermocouple was inserted into the center to record the center 

temperature.  The tops of the baskets were covered with a sheet of aluminum foil, and a 

thermocouple was affixed to the surface of the basket to record the surface temperature. 

 

Figure 5.1:  Experimental setup for heat transfer tests 

 

5.2 Experimental Method 

5.2.1 Measuring the Overall Heat Transfer Coefficient of the Baskets 

The internal air velocity at the center of the convection oven was measured using 

an anemometer with the oven set to 20 °C and the fan speed set to max.  The convection 

oven was then preheated to 100 °C with the fan set to maximum speed.  A prepared 

insulated basket was quickly placed in the heated oven, careful to minimize the amount 

of heat that escaped from the oven.  The surface and center temperatures of the basket 
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were recorded over time.  This method was repeated for three additional scenarios listed 

in Section 5.2.2. 

 

5.2.2 Experimental Configurations 

1. Stainless steel (SS) surface basket placed in a stainless steel surfaced oven with 

maximum fan speed. 

2. Stainless steel surface basket placed in a stainless steel surfaced oven with fan 

turned off. 

3. Aluminum foil (AL) covered basket placed in an aluminum foil lined oven with 

maximum fan speed. 

4. Aluminum foil covered basket placed in an aluminum foil lined oven with fan 

turned off. 

The first configuration used the insulated basket with the stainless steel mesh surface 

exposed.  The convection fan was turned to maximum speed so that the heat transfer was 

largely due to the combination of forced convection and radiation heat transfer.  The 

second configuration was the same oven and basket setup; however, the fan was turned 

off yielding the heat transfer predominantly due to radiation and natural convection.   

For configurations 3 and 4, the insulated baskets were lined with an external layer 

of aluminum foil; similarly, the oven’s internal surfaces were lined with aluminum foil.  

Since aluminum foil had a much lower emissivity than the stainless steel, 0.04 (Kreith & 

Bohn, 2001), the aluminum foil lining minimized the amount of radiation transmitted to 

and absorbed into the stainless steel baskets.  The aluminum-lined configurations 

drastically reduced the emissivity of the oven and basket, which simulated a low radiation 
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allowing convective heat flux to dominate the heat transfer equations.  Configuration 3 

used the aluminum foil oven and basket lined surfaces with the fan turned on, while 

configuration 4 had the fan turned off. 

 

5.3 Calculations 

5.3.1 Heat Transfer to the Basket Surface 

The energy balance equation of the insulated stainless steel basket is required to 

derive the basket heat transfer equations.  Equation 5.1 shows the energy balance 

equation for the stainless steel basket under the condition that the center temperature 

remains approximately the initial temperature, !!"#$"% ≈ !!"!#!$% 

 !" !!!
!"

= ℎ! !! − !! − !"!!            (5.1) 

where !  is  the surface area of the basket (5!!), !  is the mass of the basket, !  is the 

specific heat of the basket, !!  is the basket surface temperature, !! is the oven 

temperature, !!!
!"

 is the rate of temperature rise of the basket surface. 

For a semi-infinite solid, since the basket is thermally insulated, the surface heat 

flux at a constant surface temperature is given by 

 !"! =
! !!!!!

! !
!" !

!/!                      (5.2) 

where !  is the thermal conductivity, and ! is the density of air since the insulation is 

treated as such.  From Equation 5.2, the basket-air interface can be written as 

 !"! ≈
!!!!!
!"!/!

!"# !"#
!/!           (5.3) 

therefore Equation 5.1 can be rewritten as 
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for up to t @ To > Ti .   

Examining the limit at t = 0 for the heat loss term, L, 
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therefore, the total heat transfer coefficient at the surface of the basket reduces to 

	
     ℎ!"! ≈
!" !"! !" !!

!
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!!!!!
  	
   	
   	
   	
   	
   	
   	
  	
  	
  	
  (5.6) 

where mc is known for the aluminum foil layers and stainless steel baskets. 

 

 A graphical representation of the expected temperature readings for the basket 

surface, basket center, and oven temperature can be seen below.  Since the basket surface 

is exposed, the initial rise of the temperature should be steep and gradually reach the oven 

temperature.  The insulated center of the basket should remain constant until the 

insulation is slowly heated.  The described energy balance is only valid for the period of 

time that the basket center remains approximately constant.  The temperature of the oven 

should remain approximately constant throughout the experiment. 
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Figure 5.2:   An ideal depiction of the basket surface, basket center, and oven 

temperatures are graphed from the heat transfer experiment. 

 

 Equation 5.6 shows the total heat transfer coefficient, which includes convection 

and radiation.  The contributions of the convective and radiative heat transfer relate to the 

total heat transfer with the equation 

ℎ!"! = ℎ! + ℎ!            (5.7) 

where hc  is for convection and hr  is for radiation.  The radiation portion can be 

calculated using 

hrad =
! T 2
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where ! is the Stefan-Boltzmann constant (5.67*10-8 W /m2K ), !! is the emissivity of 

the basket surface, !! is the emissivity of the oven surface, !!" is the view factor (1.0 for 

parallel plates), and !!"#$ is the internal surface area of the oven. 

 

5.3.2 Applicable Nusselt Correlations 

Classical heat transfer correlations do not apply directly to a cube shape.  Studies 

have been conducted that use computer simulation to illustrate flow around a cube; 

however, there seems to be no studies directly related to a cube where equal air mixing is 

occurring at each surface.  Instead, an approximate estimation may be obtained by 

applying correlations for a flat plate or a sphere.  The first equation analyzed is the ratio 

of the Grashof number to the Reynolds number squared.  This ratio will determine if the 

convection at the surface of the cube is primarily forced, natural, or mixed.  The relation 

of natural and forced convection is given by the equation 

!"
!"!

= !"!! !!!!! /!!"#!

!!!
!!"#

!          (5.9) 

where ! is the acceleration due to gravity (9.81 m/s2), ! is the volumetric thermal 

expansion or the inverse of the film temperature, ! is the cube height, !!"# is the  

kinematic viscosity of air at Tfilm, and !! is the measured air velocity in convection oven.  

If Equation 5.9 is less than 0.7, then convection is essentially due to forced convection; if 

greater than 10, convection is essentially free convection.  Values in-between 0.7 and 10 

indicate that there are mixed conditions (Kreith & Bohn, 2001). 
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 Knowing the essential convection type allows the simplification in the 

determination of the Nusselt correlations for an individual specimen.  When different size 

specimens are used, as with this experiment, it may be easier to find the Nusselt number 

for forced and free convections for each size and combine them according to the equation 

!"!!"#$%&'( = !"!!"#$%& ± !"!!"#$%"&       (5.10) 

where the sum applies to flows in the same direction, and subtraction applies to flows in 

opposite directions (Kreith & Bohn, 2001).  Since the flow direction of the mixing air in 

the oven is unknown, a maximum and minimum value for the combined Nusselt number 

can be obtained by using the sum and subtraction.  The n value of 3 is recommended for 

vertical plates. 

 Typical velocity values in a convection oven will require use of laminar 

correlations to find the Nusselt numbers for the baskets.  The average surface Nusselt 

number for laminar flow over a sphere in a stirred bath can be calculated using 

!" = 2.0+ 0.6!"!/!!"!/!         (5.11) 

as provided by Bowes (Bowes, 1984).  For parallel laminar flow over a flate plate, the 

average surface Nusselt number can be found using the equation below (Incropera). 

 !" = 0.664!"!/!!"!/!         (5.12) 

The Nusselt correlation equivalent for a laminar natural convection to a sphere in a stirred 

bath is given by: 

!" = 2.0+ 0.6!"!/!!"!/!         (5.13) 

as provided from Bowes (Bowes, 1984).  The laminar natural convection to a vertical 

surface can be obtained using (Incropera): 

Nu = 0.59 GrPr( )1/4              (5.14) 
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The heat transfer coefficient can be found from: 

h = Nu
! f

L
           (5.15)  

Care must be taken when using the previous Nusselt correlations in oven testing since the 

cube shape of the oven and mesh surface of the basket may result in unexpected 

turbulence.   

 

5.4 Results from Heat Transfer Tests 

5.4.1 Heat Transfer Coefficients 

The air velocity at the center of the oven was found to be 1.6 m/s with the fan set 

to maximum speed.  The temperature of the oven, basket center, and basket surface was 

collected for each configuration in 5.2.2 for basket sizes of 2.5, 5.0, 7.5, 10.0, 15.0 cm in 

height.  The heat transfer coefficient of each run was calculated from Equation 5.6 and 

the results are tabulated below for each configuration. 

 Max Fan Speed Fan Off 

 
SS Basket and 

Oven 

AL Lined 
Basket 

and Oven 

SS Basket 
and Oven 

AL Lined 
Basket and 

Oven 
 Basket 
Width, 
2r (cm) 

h 
(W/m2K) 

Stand 
Dev 

h 
(W/m2K) 

h 
(W/m2K) 

h 
(W/m2K) 

2.5 118.1 11.6 25.7 7.9 5.2 
5 50.8 8.1 16.5 6.5 3.7 
7.5 28.3 7.0 8.9 5.6 2.9 
10 23.4 2.5 6.4 5.3 2.3 
15 31.2 0.3 6.8 4.5 2.1 

Table 5.1:  htotal for various basket sizes and configurations at 100 °C. 
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Figure 5.3:  Experimental h’s for each configuration and basket size 

 

5.4.2 Estimation of the Radiative Heat Transfer Coefficient 

The emissivity of the aluminum foil, 0.04 (Kreith & Bohn, 2001), was used to 

estimate the radiative heat flux for the low radiation experiments.  Using Equation 5.8, 

the radiative heat transfer coefficient was calculated to be 0.3 W /m2K at 100 °C.  

Following Equation 5.7, the value of the radiative heat transfer coefficient was subtracted 

from the total heat transfer coefficient as found from the experiments using the aluminum 

foil to find the heat transfer coefficient due to convection. 

y = 209.7x-0.85 

y = 55.2x-0.84 

y = 10.6x-0.31 

y = 8.5x-0.53 0 

20 

40 

60 

80 

100 

120 

2 4 6 8 10 12 14 16 

h 
(W

/m
2 -

K
) 

Basket Size, 2r (cm) 

SS Surface with Max Fan 
Speed 

AL Lined Surface with Max 
Fan Speed 

SS Surface with No Fan 

AL Lined Surface with No 
Fan 

Oven temperature = 100 °C 
Oven Internal Surface Area = 1.35 m2 
Max fan speed = 1.6 m/s 



 

 73 

 

!!" = emissivity of aluminum foil = 0.04 (Kreith & Bohn, 2001) 
!!! = emissivity of stainless steel ! 0.22 (Incropera) 

 
 

 
Figure 5.4: The difference between the stainless steel and aluminum surfaces for the 

natural convection experiments yielded a radiation difference of 2.7 
W /m2K . 

  

 Analyzing the two experiments without the fan, the free convection heat transfer 

for the stainless steel surface baskets was assumed to be the same for the aluminum 

surface baskets.  This assumption allows us to find the radiation heat transfer coefficient 

for the stainless steel baskets using Equation 5.7.  With a radiation difference of 2.7 

W /m2K between the stainless steel (curve 1 in Figure 5.4) and aluminum (curve 2 in 
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Figure 5.4) natural convection experiments, the radiation calculated previously for the 

aluminum experiments of 0.3 W /m2K summed to the 2.7 W /m2K yielded a total 

radiative heat transfer coefficient of 3.0 W /m2K .  Further, the emissivity of the stainless 

steel oven walls was assumed equivalent to the surface of the stainless steel baskets.  

Following Equation5.8, the emissivity of the stainless steel was calculated to be 0.36.   

 

5.4.3 Varying Ambient Temperature 

 A few additional tests were run to examine the effect of a different temperature.  

For the stainless steel surface tests with the 7.5 cm cube, a test was run at 200 °C with the 

fan on and with the fan off.  Further, a test was run on the 10 cm basket at 200 °C with 

the fan on to observe the effect of a different basket size.  The results of the additional 

tests are graphed below. 

 Max Fan Speed Fan Off 

 100 °C 200 °C 100 °C 200 °C 

Basket 
Width, 
2r (cm) 

h 
(W/m2K) 

h 
(W/m2K) 

h 
(W/m2K) 

h 
(W/m2K) 

7.5 28.3 31.0 5.6 7.2 
10 23.4 30.8 

Table 5.2:  Effect of higher temperature for heat transfer tests 
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5.5 Discussion of Heat Transfer Results 

5.5.1 Comparison of Results between Heat Transfer Test and Previous Methods 

 O’Conner’s method, which used smooth surfaced aluminum spheres in a 

convection oven, showed heat transfer coefficient results ranging between 19 and 22 

W /m2K  for spheres of diameter 1.5 to 4 inches at 143.2 °C.  The fan of the oven was on, 

though the speed was not recorded.  It was assumed that the mixing action of his oven 

closely matched ours, and an air velocity of 1.6 m/s.  With the sphere diameters of 2”, 3”, 

and 4” used by O’Conner, the specimens of similar sizes from the proposed heat transfer 

test best compared to the cubes of width 5.0, 7.5, and 10.0 cm.  

Cube 
Width 
(cm) 

Calculated h from 
Sphere in Stirred 
Bath at 143.2 °C  

(W/m2K) 

O’Conner’s AL 
Sphere Results 

at 143.2 °C 
(W/m2K) 

Calculated h 
from Sphere in 
Stirred Bath at 

100 °C (W/m2K) 

AL Covered Cube 
Heat Transfer 

Experiment at 100 °C  
(W/m2K) 

5 19.3 21.2 20.3 16.5 
7.5 15.6 20.1 16.4 8.9 
10 13.4 20.0 14.1 6.4 

Table 5.3:  Comparing experimental, calculated, and O’Conner’s results for aluminum 
 
  

As seen in the table above, the results found using the aluminum covered mesh 

cubes were lower than O’Conner’s results.  This was expected since the lower oven 

temperature yielded lower heat transfer coefficients.  Further, the cube tests had 

aluminum foil lining the surface of the oven, where O’Conner’s experiments kept the 

stainless steel oven surface exposed.  The aluminum foil oven lining in the presented 

method reduced the radiation emitted to the baskets since the emissivity of the oven was 

lower, ultimately lowering the heat transfer coefficients.  Additionally, the aluminum foil 

lining in the oven may have resulted in lower air mixing since it may have slowed the air 
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velocities.  Since the correlation did not apply to the cube shape, the intention of the 

comparison between the calculated and experimental values was to show that the 

experiment gave reasonable results. 

Examining the fluctuation of heat transfer with varying specimen sizes, it is 

unknown why O’Conner’s data stayed relatively constant for the 3 sizes examined.  His 

result for the 5 cm specimen was exceptionally close to the calculated data from the 

Nusselt correlation, however, does not show similar reduction in heat transfer with 

increasing sample sizes.  Therefore, it is recommended that the heat transfer coefficient 

be found for each basket size used in the Frank-Kamenetskii method. 

Two to three additional trials were run for the stainless steel basket sizes with 

maximum fan speed to show variance between runs.  The standard deviation constantly 

decreased as the size of the basket increased.  This was most likely due to the better 

insulation ability of the larger baskets.  The precision of determining h seems to increase 

with the larger baskets.  In addition, running tests in larger baskets will yield better 

extrapolation to large-scale applications.  For these reasons, if it recommended to runs 

standard oven tests and heat transfer tests for larger baskets to increase accuracy.  The 

larger baskets require more preparation and material, so choose basket sizes up to ones 

that fit into the financial budget. 

There was an unexpected increase in h from the 10 cm basket to the 15 cm for 

both the stainless steel and aluminum foil baskets with the maximum fan speed.  

However, the increase was not seen for either basket with the oven fan off.  This increase 

may have been due to a difference in air circulation patterns within the convection oven.  

Since the baskets were different sizes, the surfaces were in different locations within the 
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oven.  Any inconsistencies in the mixing action could have impacted the heat transfer to 

the baskets. 

 

5.5.2 Comparison to Nusselt Correlations 

 Examining the heat transfer coefficient results with the heat transfer values 

obtained from the Nusselt correlation for a vertical plate in Equation 5.14, the results can 

be seen below in Table 5.4. 

Cube 
Width 
(cm) 

Calculated h for Free 
Convection to Vertical Plate 

(Equation 5.14)  
(W/m2K) 

h Experimental from Free 
Convection on AL Covered Cube 

(W/m2K) 

2.5 10.7 5.2 
5.0 9.0 3.7 
7.5 8.1 2.9 

10.0 7.6 2.3 
15.0 6.8 2.1 

Table 5.4: Comparison of experimental results AL lined basket with Nu correlation 

 

 The experimental results for the low radiation free convection runs are lower than 

the calculated values from the Nusselt correlation.  The Nusselt calculations are for an 

ideal isothermal plate, however, the experimental values were probably lower due to the 

small heat loss into insulated basket.  Further, since there was not a Nusselt correlation 

for the cube shape, a vertical plate correlation was used since the cube side was like a 

vertical flat plate.  Since the shape for the calculation and experiment differ, the closeness 

in h values were reasonable.  The calculated values showed that the experimental results 

were on the same order and the numbers seemed reasonable for the wire-mesh baskets. 
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5.5.3 Estimation of the Radiative Heat Transfer Coefficient 

The calculated emissivity of 0.36 for the rough stainless steel basket was found to 

be higher than the value listed by Incropera for clean stainless steel, however, the 

calculated value closely matched listed values for lightly oxidized stainless steel at 0.33.  

The lightly oxidized value was a better estimate since previous oven basket tests 

generated smoke that lightly stained the oven despite cleaning efforts on the oven surface. 

 

5.5.4 Varying Ambient Temperature 

As expected, the higher oven temperature resulted in a higher heat transfer 

coefficient for both the case of maximum fan speed and no fan.  With regards to the  

10 cm basket, the increase in temperature with the fan on showed increase in h.  In 

contrast, the 7.5 cm basket exhibited smaller increase in h.  The calculated increase in 

radiation due to the temperature increase was 1.7 W/m2K.  From the 7.5 cm basket, 

radiation may have the largest affect on h for oven temperatures within this range.  

Further heat transfer tests over a range of temperatures would need to be run to show the 

true affect of radiation and convection with varying temperatures.   
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Figure 5.5:  Increasing the oven temperature from 100 °C to 200 °C showed very small 
change in h 

 

Though there was increase in h with higher temperature, the increase was very 

small, as seen Figure 5.5.  For this reason, h data from the 100 °C experiments could 

directly be used to determine h values for experiments at 200 °C.  Therefore, if a 

convection oven has similar characteristics (emissivity, fan speed, dimensions) to the 

oven used in the experiment, the equation from the 100 °C runs may be used if desired 

temperature approximately is near the range 100-200 °C.  From the power function for 

the 100 °C stainless steel basket curve with maximum fan speed, an estimation of the 

heat transfer coefficient for basket sizes 2.5cm ! 2r !15cm  may be found using: 

htot ! 209.7 2r( )"0.85            (5.16) 

y = 209.7x-0.85 

y = 10.6x-0.31 
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For TA !100" 200 °C, u# !1.6 m / s,   eS! eO ! 0.36  where r is in cm.  Similarly, the 

equation from the power function of the free convection (no fan) experiments may be 

used to estimate the heat transfer coefficient for ovens of similar characteristics. 

 htot =10.6 2r( )!0.31           (5.17) 

For TA !100" 200 °C, u# ! 0.0 m / s,   eS! eO ! 0.36  where r is in cm. 

 

5.6 Conclusion 

The method for calculating the heat transfer in a convection oven can be useful 

for fire investigators applying the Frank-Kamenetskii model to examine spontaneous 

ignition.  Having accurate heat transfer data will yield a better finite Biot correction 

factor and ultimately more precise P and M properties.  Theory for the method allowed 

the equation 

ℎ!"! ≈
!" !" + !" !!

!

!"!
!" !

!! − !!
 

to be used to calculate the heat transfer coefficient between the oven and basket surface.  

The method presented gave reasonable results and was implemented with the same 

stainless steel baskets used with determining critical temperatures for a sample.  It was 

easy to apply and required little additional supplies.  If a convection oven with 

approximately similar characteristics (fan speed, emissivity, dimensions) is used, 

Equations 5.16 and 5.17 may be used to estimate heat transfer coefficients between the 

basket surface and oven air for a temperature range approximately between 100 °C and 

200°C.
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Chapter 6:  Conclusion 

 A method of determining the likeliness of spontaneous ignition has been provided 

through the Frank-Kamenetskii method.  This method can be a helpful tool for fire 

investigators examining reactive porous solids under the case of the following scenarios: 

a cold material in a hot environment, a material layer on a hot surface, and a hot material 

in a cold environment.  To simplify the chemical analysis process in determining 

criticality, a method of determining material constants, P and M, has been described 

using a standard oven test to find critical ambient temperatures.  Additionally, a list of 

known P and M values has been collaborated to provide reference in examining common 

self-heating materials.   

Many factors are ignored in the basic self-heating theory, including diffusion of 

oxygen, moisture, non-conduction heating within the substance, mixtures with competing 

reactions, and transient effects.  For this reason, the presented method should be used 

merely as a guide for determining the likelihood of spontaneous ignition.  The ignored 

factors may have affects on the accuracy of the model, so it is important to increase 

accuracy in areas that may be corrected.  These correctable factors are for the case of a 

finite Biot number, low activation energy, and reactant consumption.  The reactant 

consumption has shown to be difficult to implement due to the required parameters 

within the chemical process.  Still, a rough estimate of the reaction order, and a and b 

values will be feasible in implementing the consumption factor.  An example used by 

Bowes (Bowes, 1984) was given to help describe the procedure of applying all of the 

available corrections. 



 

 82 

 

For correcting the self-heating case with a finite Biot number at the surface of the 

material, a method has been derived from the energy balance of a test basket in a 

convection oven.  The method is simple to implement and is mainly used with existing 

materials from a standard oven test.  The additional supplies required are aluminum foil 

and kaowool, and bare little added financial expense.  Tests were run in a convection 

oven, to ensure the validity of the derived heat transfer method.  The results for the heat 

transfer coefficients were compared to known Nusselt correlations and the comparison 

seemed reasonable.  The method is recommended for correcting critical Damkohler 

numbers for the standard oven tests.  The heat transfer test should be run for the 

temperatures in range of the critical ambient temperatures of the samples used.  The heat 

transfer results varied with basket sizes due to the differing lengths and air circulation 

patterns.  Therefore, the heat transfer test should be performed for each basket size used 

in testing. 

As described, scaling to large-scale fires may result in errors.  The largest range of 

baskets that are financially applicable should be used to reduce this error.  The larger 

baskets were also shown to increase the precision of the heat transfer tests, which may 

additionally increase the accuracy of the heat transfer corrections. 

  The proposed heat transfer test was also used to calculate the radiation emitted 

from the convection oven by analyzing samples low and high radiation.  The resulting 

emissivity of the convection oven used in the described tests was determined to be 0.36.  

With the light soot residue on the oven walls and baskets, this value closely matched the 

listed value of lightly oxidized stainless steel. 
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Spontaneous ignition has caused extensive financial loss and many fatalities in 

historical fire events.  In the investigations of these cases, the phenomena is difficult to 

investigate due to the destruction of evidence from the fire and improper analysis of self-

heating.  The intent of this thesis is to assist fire investigators with the concept of 

spontaneous ignition, and to provide testing and analysis methods to assist in diagnosis.   
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Appendices 

A. Select Temperature vs. Time Graphs from Heat Transfer Experiments 
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B. P and M Database Sorted According to Hazard 

 A hypothetical scenario was established to examine the hazard of each material 

listed in the P and M database (Section 4.5).  The scenario was considered for a cube 

under ideal conditions (!c = 2.52 ) where TA = 32 °C (90 °F) and the width (2r) of the 

cube is 2m.  The Damkohler number for each specific material cube was found from  

Equation 4.3 for the listed P and M values, and given conditions.  The explosives listed in 

Section 4.5 were determined not to be a spontaneous ignition hazard under the given 

conditions, so they were not listed here.  The classification of the hazard was based on the 

P and M values listed in the literature. 

 

Highest Risk (Very Likely) 

Material P (K) M* E 
(kJ/mol) Comments Source 

!
!c

 

Milk Powder 9502 34.7 79 
skim milk from 
temperature range 142 
– 171 °C 

(Beever P. , 
1984) 150.1 

Calcium 
Hypochlorite 5833 19.5 48.5 

hydrated.  Values are 
for low temperature 
regime 

(Gray & 
Halliburton, 
2000) 

6.3 

Mineral 
Wool 6800 21.6 56.54   

(Spokoinyi & 
Eidukyavicius, 
1988) 

2.2 

Distiller's 
Dark Grains 8046 25.3 66.9   (Bowes, 1984) 1.5 

 

High Risk (Likely) 

Material P (K) M* E 
(kJ/mol) Comments Source 

!
!c

 

Spent 
Brewing 
Grains 

6495 19.9 54   (Walker, 1961) 1.07 

Animal 
Feedstuff 8404 26.06 70   (Bowes, 1984) 0.97 
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Medium Risk (Not Likely) 

Material P (K) M* E 
(kJ/mol) Comments Source 

!
!c

 

Plywood 
(Plain) 10572 32.9 87.9 

calculated directly 
from E,Q,A, density, 
and conductivity for 
plain plywood 

(Loftus, 1985) 0.74 

Plywood 
(Fire Rated) 11570 35.7 96.2 

calculated directly 
from E,Q,A, density, 
and conductivity for 
fire rated plywood 

(Loftus, 1985) 0.46 

Milk Powder 9538 28.7 79.3 
skim milk from 
temperature range 138 
– 173 °C and density 
600 kg/m^3 

(O’Connor, 
1990) 0.33 

Coal 8419 25 70 

bituminous South 
African with volatile 
content of 26% over 
120-220 °C 
temperature range 

(Tognotti, 
Petarca, & 
Zanelli, 1988) 

0.32 

Milk Powder 9754 29.4 81.1 
milk with 30% fat 
added from 
temperature range 130 
– 200°C 

(J.G. & Synnott, 
1988) 0.33 

 

Low Risk (Highly Unlikely for the given conditions) 

Material P (K) M* E 
(kJ/mol) Comments Source 

!
!c

 

Eucalyptus 
Leaves 8539 24.5 71 leaves were at density 

140 kg/m^3 
(Jones & Raj, 
1988) 0.13 

Calcium 
Hypochlorite 14793 44.5 123 

hydrated. Values are 
for high temperature 
regime 

(Gray & 
Halliburton, 
2000) 

0.08 

Carbon 
(Activated) 10007 28.2 83.2 

oven-cube tests on 
powdered activated 
charcoal over 50-190 
°C temperature range 

(Nelson, 1992) 0.04 

Charcoal 
(Activated) 12700 36.975 106 weathered 

(Cameron & 
MacDowall, 
1972) 

0.04 

Milk Powder 11979 34.2 99.6 
milk with 44% fat 
added from 
temperature range 135 
– 175°C 

(Duane & 
Synnott, 1992) 0.03 

Forest Floor 
Material 1 9862 27.2 82    (Jones et al, 

1990) 0.03 

Forest Floor 
Material 2 10945 30.2 91   (Jones et al, 

1990) 0.01 

Charcoal 
(Activated) 11666 28.1 - 

35.7 97 
all types except the 3 
minimally hazardous 
products from oven-
cube tests of 10 types 

(Cameron & 
MacDowall, 
1972) 

0.01 

Wheat Flour 15539 44.2 129.2   (Nelson, 1992) 0.01 
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Low Risk (Highly Unlikely for the given conditions) 

Material P (K) M* E 
(kJ/mol) Comments Source 

!
!c

 

Cork (Solid) 9622 23.9 80 

calculated directly 
from E,Q,A, density, 
and conductivity from 
values based on small-
specimen tests in 
adiabatic furnace 

(Gross & 
Robertson, 
1958) 

0.00 

Cork (Dust) 13711 37.2 114 oven basket method (Hensel, 1988) 0.00 

Cotton 11282 28.6 93.8 
based on oven-basket 
method on cotton 
fibers of  

(Gray, Little, & 
Wake, 1992) 0.00 

Rice Husks 12629 32.5 105 
small scale oven-cube 
test with density 140 
kg/m^3 

(Jones & Raj, 
1988) 0.00 

Fertilizer 
(12-13-6) 17319 47.9 144 

based on oven-basket 
data for 12-13-6 
fertilizer 

(Huygen & 
Perbal, 1965) 0.00 

Milk Powder 9056 20.5 75.3 
whole milk from 
temperature range 145 
– 165 °C 

(Chong, Chen, & 
Mackerth, 1999) 0.00 

Bagasse 13000 33.08 108   (Bowes, 1984) 0.00 
Yeast 
Powder 16640 44.5 138   (Bowes, 1984) 0.00 

Cellulose 
Insulation 13230 32.8 110 

unretarded cellulose 
from adiabatic furnace 
test 

(Issen, 1980) 0.00 

Ammonium 
Nitrate 16237 42.2 135 

fertilizer grade with 
7% additional fuel 
added 

(Hainer, 1954) 0.00 

Milk Powder 11678 26.2 97.1 
skim milk from 
temperature range 135 
– 170 °C and  

(Chong, Chen, & 
Mackerth, 1999) 0.00 

Cotton 17319 41.4 144 

calculated directly 
from E,Q,A, , and 
conductivity from 
values based on small-
specimen tests in 
adiabatic furnace 

(Gross & 
Robertson, 
1958) 

0.00 

Ammonium 
Nitrate 17921 43.2 149 fertilizer grade (Hainer, 1954) 0.00 

Milk Powder 19292 45.5 160.4 
(E seems high) whole 
milk from temperature 
range 130 – 145 °C 

(Chong, Chen, & 
Mackerth, 1999) 0.00 

Cellulose 
Insulation 13591 26.5 113 hot-plate method with 

density of 34 kg/m^3 
(Ohlemiller & 
Rogers, 1980) 0.00 

Cellulose 
Insulation 15876 30.1 132 

insulation retarded 
with 20% boric acid 
using hot-plate method 
with density of 41 
kg/m^3 

(Ohlemiller & 
Rogers, 1980) 0.00 
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